
ANewApproach to Scheduling in Flowshops
Sebastian Cáceres Gelvez 1, 2 Adam N. Letchford 1 Thu H. Dang 1

1Lancaster University Management School, Lancaster, UK 2Universidad de Santander, Cúcuta, Colombia

What is Flowshop Scheduling . . . ?

Assume a manufacturer has received an order:

To process a number of n jobs

Jobs are processed on m machines, arranged in a flowline,

(i.e., a flowshop)

Each machine processes one job at a time

M1 M2 M3

The problem is to find a sequence (i.e., a schedule) that optimises

some criteria.

The Permutation Flowshopwith
Makespan Criterion (PFM)

Suppose an order consists of 3 jobs: {J1, J2, J3}

A feasible solution is a permutation of jobs: i.e, a sequence

3 1 2

Once defined, the sequence is the same for all the machines

The objective is to minimise the completion time of the last

job on the last machine: the makespan.

For m = 3, we can represent the sequence {J3, J1, J2} using a

Gantt chart, where we can check that the makespan value is 11:

1 2 3 4 5 6 7 8 9 10 11

M3

M2

M1 J3

J3

J3

J1

J1

J1

J2

J2

J2

Time

M
a
c
h
in
e
s

NewNeighbourhoods for the PFM

We propose five new neighbourhoods for the PFM:

Let us assume we have a feasible solution for an instance with n = 5:

4 1 2 5 3

1. Position Blocks: block_size = 2 (consecutive).

4 1 2 5 3

Jobs in block_size can move

2. Generalised Swap: set_size = 2.

4 1 2 5 3
Positions in set_size = {1, 4} can move

3. Delta (Deterministic): delta (δ) = 2.

4 1 2 5 3

Jobs can move up to δ = 2

4. Randomised Delta: Delta (∆) = random (1, 2 ∗ δ − 1).

4 1 2 5 3

Jobs can move up to ∆ (different for each job)

5. Extended: set_size = 2.

4 1 2 5 3

Jobs in set_size = {2, 4} can move freely; other jobs can move up to δ

Acknowledgements
The first author gratefully acknowledges funding from the Engineering and Physical Sciences Research

Council (EPSRC) through the grant EP/V520214/1, and from the Ministerio de Ciencia, Tecnología e

Innovación of Colombia (MINCIENCIAS) through the call “885 de 2020—Doctorados en el Exterior”.

AMatheuristic Algorithm

1. Initialise sequence: obtained using the NEH algorithm [1]

2. Build a MIP model: proposed by Stafford et al. [2]

3. Perform search: In a loop, we apply two approaches:

“Shift” local search, as proposed in Taillard [4], and

Any of the proposed neighbourhoods by solving reduced

MIPs using IBM CPLEX and Python 3.10.

Some Results So Far . . .

Table 1. Computational results by neighbourhood operator for Taillard

instances (m = 5) [3]

Neighbourhood Avg. %gap Avg. time(s)

Position block 0.71 3.17

Generalised swap 0.60 3.84

Delta 0.17 11.45

Randomised delta 0.08 50.66

Extended 0.12 41.99

Table 2. Computational results by neighbourhood operator for Taillard

instances (m = 10) [3]

Neighbourhood Avg. %gap Avg. time(s)

Delta 1.67 388.19

Randomised delta 1.34 2343.78

Extended 1.28 1012.18

We are currently working on the bigger instances with m = 20!

References

[1] M. Nawaz, E. Enscore, and I. Ham. “A heuristic algorithm for the m-machine, n-job

flow-shop sequencing problem”. In: Omega 11 (1983), pp. 91–95.

[2] E.F. Stafford, F.T. Tseng, and J.N. Gupta. “Comparative evaluation of MILP flowshop

models”. In: J. Oper. Res. Soc. 56 (2005), pp. 88–101.

[3] E. Taillard. “Benchmarks for basic scheduling problems”. In: Eur. J. Oper. Res. 64 (1993),

pp. 278–285.

[4] E. Taillard. “Some efficient heuristic methods for the flow shop sequencing problem”.

In: Eur. J. Oper. Res 47 (1990), pp. 65–74.

LUMS Conference, May 9, 2024 PhD in Management Science: s.caceresgelvez@lancaster.ac.uk


	References

