

Lancaster University Management School

Adam N. Letchford ¹ Sebastian Cáceres Gelvez ^{1, 2} Thu H. Dang¹

¹Lancaster University Management School, Lancaster, UK

A New Approach to Scheduling in Flowshops

²Universidad de Santander, Cúcuta, Colombia

New Neighbourhoods for the PFM

We propose **five new neighbourhoods** for the PFM:

• Let us assume we have a feasible solution for an instance with n = 5:

3 5

1. Position Blocks: block_size = 2 (consecutive).

Jobs in block size can move

2. Generalised Swap: set size = 2.

23 5

Positions in set_size = $\{1, 4\}$ can move

3. Delta (Deterministic): delta (δ) = 2.

Jobs can move up to $\delta = 2$

4. Randomised Delta: Delta (Δ) = random (1, 2 * δ - 1).

Jobs can move up to Δ (different for each job)

5. Extended: set_size = 2.

4	1	2	5	3
~~~				\rightarrow

Jobs in set_size = $\{2, 4\}$ can move freely; other jobs can move up to δ

Acknowledgements

The first author gratefully acknowledges funding from the Engineering and Physical Sciences Research Council (EPSRC) through the grant EP/V520214/1, and from the Ministerio de Ciencia, Tecnología e Innovación of Colombia (MINCIENCIAS) through the call "885 de 2020–Doctorados en el Exterior".

Some Results So Far ...

- instances (m = 5) [3]
 - Neigh
 - Posit
 - Gene
 - Delta
 - Rand
 - Exter

Table 2. Computational results by neighbourhood operator for Taillard instances (m = 10) [3]

- Neigl
- Delta
- Rand
- Exter

We are currently working on the bigger instances with m = 20!

- [1]

- [3]
- pp. 278-285. [4]

A Matheuristic Algorithm

1. **Initialise sequence**: obtained using the NEH algorithm [1]

2. Build a MIP model: proposed by Stafford *et al.* [2]

3. **Perform search**: In a loop, we apply two approaches:

• "Shift" local search, as proposed in Taillard [4], and • Any of the proposed neighbourhoods by solving reduced MIPs using IBM CPLEX and Python 3.10.

Table 1. Computational results by neighbourhood operator for Taillard

hbourhood	Avg. %gap	Avg. time(s)
ion block	0.71	3.17
eralised swap	0.60	3.84
A	0.17	11.45
omised delta	0.08	50.66
nded	0.12	41.99

hbourhood	Avg. %gap	Avg. time(s)
A	1.67	388.19
lomised delta	1.34	2343.78
nded	1.28	1012.18

References

M. Nawaz, E. Enscore, and I. Ham. "A heuristic algorithm for the *m*-machine, *n*-job flow-shop sequencing problem". In: Omega 11 (1983), pp. 91–95.

E.F. Stafford, F.T. Tseng, and J.N. Gupta. "Comparative evaluation of MILP flowshop models". In: J. Oper. Res. Soc. 56 (2005), pp. 88–101.

E. Taillard. "Benchmarks for basic scheduling problems". In: Eur. J. Oper. Res. 64 (1993),

E. Taillard. "Some efficient heuristic methods for the flow shop sequencing problem". In: Eur. J. Oper. Res 47 (1990), pp. 65–74.