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Abstract. Accurate fuel debris location is crucial part of the 

decommissioning of the Fukushima Nuclear Power plants. Conventional 

methods face challenges due to extreme radiation and complex structure 

materials. In this study, we propose a novel approach utilising neutron 

detection and machine learning to estimate fuel material location. Geant4 

simulations and Python scripts have been used to generate a comprehensive 

dataset to train a machine learning model using MATLAB’s regression 

learner. Gaussian Process Regression model was chosen for training and 

prediction. The results show excellent prediction performance to effectively 

estimate the corium thickness and locating the nuclear fuel material with 

MSE value of 0.009738. By combining the machine learning with the 

nuclear simulation codes, it promising to enhancing the nuclear 

decommissioning efforts and fuel debris retrieval.    

1 Introduction 

  Locating the fuel debris within the Fukushima Daiichi Nuclear Power Plant Stations FDNPS 

has proven to be a complex challenge during the decommissioning process, primarily due to 

the extreme radiation levels that makes the visual inspection impractical. While several 

attempts have utilised gamma spectroscopy, the presence of activated structural material and 

the dispersion of Cs137 within the primary containment vessel PCV have complicated efforts 

to accurately locate the exact location of the fuel debris [1]. Neutron detection is a promising 

alternative, as neutrons emitted solely from nuclear fuel material offer a more direct indicator 

of its presence. However, to leverage neutron detection effectively, it is essential to 

understand the neutron intensity and spectrum, which can vary depending on the composition 

of the corium mixture [2]. 

The corium resulting from the 2011 accident comprises various materials, including UO2, 

Zircaloy cladding, control rods (B4C), concrete, and stainless steel. Accurately quantifying 

the mass of each component is crucial for estimating the location and quantity of the fuel 

material [3]. Previous studies have employed severe accident codes such as MELCOR and 

MAAP to estimate the mass distribution of corium components, providing valuable insights 

that inform the selection of component masses where they are summarised in Table 1[4].  

 



The proposed approach focuses on using robust neutron detectors which capable to withstand 

extreme radiation environment, particularly diamond detectors. The computations 

throughout the study have been calculated at the cluster at Lancaster University. 

Subsequently, Python scripts are developed to analyse and visualise the results, providing 

valuable insight into the relationship between neutron spectra and fuel material 

characteristics.  

In this paper, we aim to determine the location and the quantity of nuclear fuel material based 

on neutron energy spectra and source intensity. Thousands of different fuel debris scenarios 

have been generated using Python computer code and then simulated them using Geant4 

Monte Carlo to calculate the neutron energy spectra for each scenario. Subsequently, machine 

learning algorithms have been utilised to analyse the spectral data implemented un MATLAB 

to predict the location of the fuel material. This study focus is predicting the thickness of 

corium layers above the nuclear fuel material to speed up the nuclear decommission process 

to retrieve the fuel debris.  

 

Table 1. Corium mixture components inventory at the time of accident. 

Material MELCOR 
MAAP MCNPX 

UO2 69.4 
76.15 75.77 

Zr 25.8 
16.59 17.8 

ZrO2 16.6 
14.14 13.82 

B4C 0 
0.502 0.59 

Cr 5.9 
1.13 1.1 

Cr2O3 0.03 
2.732 2.73 

FeO 0.23 
11.2 11.2 

Ni 2.53 
0.55 0.556 

NiO 0.03 
1.2 1.2 

2 Methodology 

The study begins by obtaining by obtaining the fuel composition and radionuclides 

inventories from JAEA data, which were calculated using ORIGEN2 code. This dataset 

provides crucial information such as weight, radioactivity, and neutron and photon emission 

rates [5]. The primary neutron emission source considered in our investigation is the Cm244 

spontaneous fission nuclide [6].  

With the assumption that the corium is situated in the pedestal area with a diameter of 

500 cm, and its mass is known, various cases can be investigated [7,8,9,10]. Using a Python 

script, thousands of possibilities of corium thicknesses and neutron source locations were 

generated. 

To obtain the necessary data, Geant4 simulations have been produced to calculate the 

detector response for each case, specifically the neutron count rate and the total energy 

deposited in the detector. Taking the advantage of the supercomputer cluster at Lancaster  



University, 256 cores have been used to calculate 1800 simulations where each simulation 

completed in approximately 20 minutes.  

To predict the corium thickness based on these parameters, a machine learning algorithm 

has been used, taking the advantage of the MATLAB built in algorithms, an Optimisable 

Process Regression (GPR) model with Bayesian optimisation is chosen. Gaussian Process 

Regression has been selected due to its powerful technique for modelling complex 

relationship between datasets and a complex pattern between input and output variables [11].  

To feed the GPR model with training data, the features and target variables should be 

selected with a sample data shown in Table 2 for demonstration. The features selection is: 

neutron count rate, neutron source intensity, and total energy deposited in the detector, While 

the target variable is the corium thickness above the neutron source. The features and target 

variables have been extracted using a Python script to efficiently automate the simulation 

process. This dataset is then organised and stored in an Excel file format providing an input 

for training the machine learning GPR model in MATLAB.  

 

 

Table 2. Sample dataset used to feed the GPR model.  

Neutron 

source n/s 

Corium 

thickness 

cm 

Total energy deposited in 

the detector MeV 

Detector count rate 

cts/sec 

65281000 
2 

56718.77938 213279 

66996000 
2 

58191.5405 218888 

111000 
2.1 

97.57484927 345 

1826000 
2.1 

1575.446575 5876 

3541000 
2.1 

3042.774188 11422 

5256000 
2.1 

4520.044424 16918 

6971000 
2.1 

5954.856039 22394 

3 Results and Discussion 

After training the GPR model using MATLAB, the response plot and the prediction vs. True 

response plots have been produced. The response plot as shown in Figure 1 represents the 

accuracy and precision of the prediction model. From the figure, it is clearly shown the 

perfect alignment. This perfect alignment shows the reliability and high performance of the 

GPR model in observing the relationship within the data. It was found that the Root Mean 

Squared Error (RMSE) value of 0.098685 and Mean Squared Error (MSE) value of 0.009738 

which clearly indicate a high prediction accuracy. Table 3 shows the model parameters and 

prediction performance values.  

 



 

In addition to the response plot, a scatter plot is presented to compare the prediction 

corium thickness values against their true response.  

 

 

 

 
Fig. 1. Response plot results from the GPR training. 

 

 
Figure 2 shows the total observations that used to train the machine learning model, with the 

true corium thickness values plotted along the x-axis and the corresponding predictions 

values along the y-axis. From Figure 2, the observations are gathered along the line of perfect 

prediction, which indicates an excellent agreement between the true and predicted values 

which imply the high performance of the model to estimate the corium thickness based on 

the input parameters. 

 

 

 

 

 

 

 

 



 

Table 3. model optimization parameters and results. 

 

Parameter Value 

Model Optimizable GPR 

RMSE (Validation) 0.098685 

MSE (Validation) 0.009738 

Prediction speed 41000 obs/sec 

Optimiser Bayesian optimisation 

 

 

 

 

 

 
Fig. 1. Prediction plot for the true and prediction response with the observation points and 

perfect prediction line 

 



4 Conclusion 

 

This study shows the applicability of machine learning algorithms to predict the corium 

thickness above the neutron source, in another word, locate the fuel material within the 

Fukushima Daiichi Nuclear Power Plant. The optimizable Gaussian Process Regression 

model in MATLAB is chosen for prediction, which shows a high prediction accuracy of the 

corium thickness. This is a critical part of the decommissioning process where the nuclear 

fuel material needed to be located to effectively retrieve the fuel debris.  

In the future, different machine learning algorithm will be used to estimate the quantity 

of the neutron source and produce a map shows the location and the quantity.  
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