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Abstract. Accurate fuel debris location is crucial part of the 

decommissioning of the Fukushima Nuclear Power plants. Conventional 

methods face challenges due to extreme radiation and complex structure of 

the materials involved. In this study, we propose a novel approach utilising 

neutron detection and machine learning to estimate fuel material location. 

Geant4 simulations and pythonTM scripts have been used to generate a 

comprehensive dataset to train a machine learning model using MATLAB’s 

regression learner. A Gaussian Process Regression model was chosen for 

training and prediction. The results show excellent prediction performance 

to estimate the corium thickness effectively and to locate the nuclear fuel 

material with a mean square error (MSE) of 0.01. By combining the machine 

learning with nuclear simulation codes, this promises to enhance the nuclear 

decommissioning efforts to retrieve nuclear fuel debris.    

1 Introduction 

Locating fuel debris in the Fukushima Daiichi Nuclear Power Plant Stations (FDNPS) has 

proven to be a complex challenge during their decommissioning, primarily due to extreme 

radiation levels that makes visual inspection impractical. Whilst several attempts have 

utilised gamma-ray spectroscopy, the presence of activated structural materials and the 

dispersion of 137Cs throughout the primary containment vessels (PCVs) has complicated 

efforts to locate the exact location of the fuel debris with sufficient accuracy [1]. Neutron 

detection is a promising alternative, as neutrons emitted solely from nuclear fuel material 

offer a more direct indicator of its presence. However, to leverage neutron detection 

effectively, it is essential to understand the neutron intensity and spectrum, which can vary 

dependent on the composition of the corium mixture [2].  

   The corium resulting from the 2011 accident comprises various materials, including the 

fuel (UO2), Zircaloy cladding, control rods (B4C), concrete, and stainless steel. Accurately 

quantifying the mass of each component is crucial for estimating the location and quantity of 

the fuel material [3]. Previous studies have employed severe accident codes such as 

MELCOR (MELtdown Core Response) and MAAP (Modular Accident Analysis Program) 

to estimate the mass distribution of corium components, providing valuable insights that 

inform the selection of component masses summarised in Table 1[4].  

 



Table 1. This table presents the inventory of corium mixture components after 10 years of the 

accident, as simulated by MELCOR, MAAP, and MCNPX models (tons) [4]. 

Material MELCOR MAAP MCNPX 

UO2 69.4 76.15 75.77 

Zr 25.8 16.59 17.8 

ZrO2 16.6 14.14 13.82 

B4C 0 0.502 0.59 

Cr 5.9 1.13 1.1 

Cr2O3 0.03 2.732 2.73 

FeO 0.23 11.2 11.2 

Ni 2.53 0.55 0.556 

NiO 0.03 1.2 1.2 

 

 

   This study employs a practical approach to predict the corium thickness using machine 

learning algorithms focuses on using neutron detectors capable of withstanding extreme 

radiation environments, particularly diamond detectors. A comprehensive workflow has been 

developed, as depicted in Figure 1, to guide the implementation of the methodology. This 

workflow encompasses various stages, including the generation of diverse corium mixture, 

analysis of neutron detector responses, dataset generation using pythonTM, development of 

machine learning model in MATLAB, and prediction of corium thickness. This workflow 

serves a roadmap for this study. Furthermore, the Monte Carlo simulations necessary for 

simulating neutron energy spectra for each scenario were calculated using Geant4 Monte 

Carlo code. These computations throughout the study have been calculated using the High-

End Computer (HEC) cluster of Lancaster University [5], enabling efficient and accurate 

analysis of the neutron energy spectra. The focus of this is to predict the thickness of the 

corium layers above the nuclear fuel material to speed up the nuclear decommission process 

to retrieve fuel debris.  

 

   The structure of this paper is as follows: 

   Section 2 provides an overview of the methodology employed for predicting corium 

thickness using machine learning techniques. Section 3 details the data acquisition process, 

simulation setup, and machine learning model development. Section 4 presents the results 

obtained from training the machine learning model and evaluates its performance.  



 
Fig. 1. Workflow diagram illustrates the methodology for predicting corium thickness using 

machine learning. The diagram outlines the various stages of the process, starting from 

generating various corium mixture, followed by neutron detector response analysis, training 

dataset generation in python, machine learning model in MATLAB, and corium thickness 

prediction.  

2 Methodology 

The investigation begins by obtaining the fuel composition and radionuclides inventories 

from the Japan Atomic Energy (JAEA) data [6]. These datasets, calculated using ORIGEN2 

isotope generation and depletion code, serve as the foundation of our analysis. This dataset 

provides crucial information such as mass, radioactivity, and neutron and photon emission 

rates [7]. A significant aspect of the methodology involves determining the proportion of the 

primary neuron emission source, identified as the 244Cm spontaneous fission nuclide [8].  

Using this information, we model various scenarios by assuming the corium is located in 

the pedestal area with a known diameter and mass [9,10,11,12]. Geant4 simulations are then 

used to calculate the detector response for each scenario, including neutron count rate and 

total energy deposition in the detector. Utilising the High-End Computing (HEC) cluster at 

Lancaster University, our simulations are performed efficiently, with 256 cores to compute 

1800 simulations, each completed in approximately 20 minutes.  

For corium thickness prediction, we deployed a machine learning algorithm, specifically 

an Optimisable Gaussian Process Regression (GPR) model with Bayesian optimisation and 

nonisotropic exponential kernel function, taking the advantage of the build-in MATLAB 

algorithms. GPR is chosen for its ability to model complex relationships between datasets 

and complicated patterns between input and output variables [13].   

In preparing the GPR model for training, the features and target variables should be 

selected. Neutron count rate, neutron source intensity, and total energy deposited in the 

detector are identified as features, with corium thickness above the neutron source serving as 

the target variable. The features and target variables have been extracted using a pythonTM 

script to automate the simulation process. The resultant dataset is then organised and stored 

in CSV file format, and constitutes the input for training the GPR model in MATLAB. Table 

2 present a sight of the sample data comprising the target and feature variables, demonstrating 

the scope of the dataset used for training the machine learning model.  

Various Corium Mixture
Neutron Detector 

Response 

Training Dataset 
Generation 
(pythonTM)

Machine Learning (MATLAB 
Regression Learner)

Corium Thickness 
Prediction



Table 2. This table represents the dataset used to train the Gaussian Process Regression 

(GPR) model, including neutron source intensity, total energy deposited in the detector, 

detector count rate, and corium thickness. 

Neutron 

source / 107 

n/s 

Total energy 

deposited in the 

detector / MeV 

Detector count rate 

/ s-1 

Corium thickness 

cm 

6.5 5.7 2.1 2 

6.7 5.8 2.1 2 

0.11 97.6 0.3 2.1 

1.8 1.6 6.0 2.1 

3.5 3.0 11.0 2.1 

5.2 4.5 17.0 2.1 

6.9 5.9 22.0 2.1 

3 Results and Discussion 

After training the GPR model using MATLAB, the response and the prediction plots against 

true response have been generated. Figure 2 provides the response plot, indicating the 

accuracy and precision of the prediction model. The nearly perfect alignment observed in the 

plot demonstrates the reliability and high performance of the GPR model in capturing the 

relationship within the data. We further assessed the model’s performance using evaluation 

metrics. The Root Mean Squared Error (RMSE) value of 0.09 and Mean Squared Error 

(MSE) value of 0.009 signify a high level of prediction accuracy. Table 3 presents the model 

parameters and performance metrics in detail.  

   In addition to the response plot, a scatter plot is presented to compare the predicted corium 

thickness values against their true response. Figure 3 displays the total observations used to 

train the machine learning model, where true corium thickness values plotted along the x-

axis and their corresponding predicted values along the y-axis. The observations cluster 

closely along the line of perfect prediction, indicating an excellent agreement between the 

true and predicted values. This suggests that the model performs exceptionally well in 

estimating corium thickness based on the input parameters.  

 

 



 
Fig. 2. The response plot of GPR training results. This figure illustrates the response 

generated from the Gaussian Process Regression (GPR) training process. The x-axis 

represents the record number, corresponding to the total observations, while the y-axis 

denotes corium thickness in centimetres (cm).  

 

Table 3. This table summarises the optimization parameters and results of the GPR training 

model. 

Parameter Value 

Model Optimizable GPR 

Kernel function Nonisotropic Exponential 

RMSE (Validation) 0.098685 

MSE (Validation) 0.009738 

Prediction speed 41000 obs/sec 

Optimiser Bayesian optimisation 



 
Fig. 3. Scatter plot of True and Predicted Corium Thickness Values. This figure depicts 

the comparison between true and predicted corium thickness values, displaying the 

training points alongside a line representing perfect prediction. The x-axis denotes true 

thickness values (in cm), while the y-axis represents corresponding predicted values. 

 

4 Conclusion 

This study shows the applicability of machine learning algorithms to predict the corium 

thickness above the neutron source with potential application to locate the fuel debris within 

the Fukushima Daiichi Nuclear Power Plant. The optimizable Gaussian Process Regression 

model in MATLAB was chosen for the prediction, and shows a high degree of accuracy in 

predicting corium thickness. This is a critical part of the decommissioning process where the 

nuclear fuel debris needs to be located for effective retrieval.  

In the future, different machine learning algorithms will be used to estimate the quantity 

of the neutron source and to produce a map showing its location and extent.  
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