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A B S T R A C T

In this manuscript, we propose an algorithm based on an artificial neural network (ANN) for the analysis of the NaI(Tl) gamma-ray spectra with radioisotope
(RI) mixtures to identify RIs and determine the relative activity levels of the identified RIs. The ANN was trained based on the spectra that were generated
by synthesizing previously identified spectra from single RIs, considering the characteristics of the measurement environments, such as gain shift effects and
statistical fluctuations in the spectrum. The proposed ANN was evaluated through several measured spectra that contained up to six certified reference materials
for a quantitative analysis. We also evaluated the shift in the spectra due to temperature variations in the range of 0–50 ◦C and the low-count spectra with a
one-second acquisition period. These results were compared with those from an ANN trained through simulated spectra to emphasize the importance of acquiring
a high-quality training dataset. In addition, we show that complex low-resolution spectra can be accurately analyzed with the proposed ANN under various
scenarios, in which the maximum root mean square error was found to be 2.8%.

1. Introduction

Radioisotope (RI) identification algorithms aim to identify or quan-
tify radioactive materials by measuring the energy of the emitted
gamma rays. Various fields such as homeland security, decontamina-
tion, nuclear nonproliferation, radioactive waste, and other disciplines
that involve radiation rely on different types of detectors with dedicated
algorithms to identify nuclear threats and to track and investigate
radioactive materials. High-purity germanium (HPGe) detectors with
high energy resolutions can provide an accurate quantitative analysis.
However, these types of detectors are typically bulky because they
require a cooling system to reach the cryogenic temperatures necessary
for successful operation. Although portable HPGe detectors have been
used in recent years, their high cost and low detection efficiency make
them difficult to use in many practical applications. Thallium-doped
sodium iodide (NaI(Tl)) detectors are also commonly used and can
be manufactured in various forms, offering high detection efficiency.
However, a quantitative analysis with these types of detectors remain
challenging owing to their low energy resolutions and high sensitivity
to temperature changes. Various RI algorithms have been proposed to
overcome these limitations.

Wavelet analysis has been applied to the NaI(Tl) spectra to localize
the photo-peaks to determine the gamma-ray energies of RIs [1]. The
multiple-isotope material basis set method has been suggested to an-
alyze spectra that have been attenuated and distorted by intervening
absorbers [2,3]. A fuzzy-logic-based algorithm with feature extraction
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and pattern recognition capabilities has been applied to spectra that
were measured for a short acquisition period [4]. A Bayesian-based
algorithm has also been introduced to infer the posterior probability of
RIs considering the factors such as the percentage of identified peaks,
the centroid positions of the peaks, and the peak areas, thus yielding a
list of RIs with detection certainties [5,6]. However, these methods are
limited only to determining RI types in the sample at hand, and they
cannot provide quantified information about activities. To enable quan-
titative analyses of low-resolution spectra, a genetic algorithm (GA) has
been used to optimize the objective function, which is defined as a
linear combination of the previously identified spectra of various single
RIs (base spectra) to find a scale factor corresponding to each RI [7].
To improve the analysis performance, GAs have been combined with
other techniques. One combination used multiple objectives and the
Pareto optimality theory to enable the GA to search more extensively
for a solution [8]. Another combination used fuzzy logic to detect
possible RIs, and only these confined RIs were sent to the input of the
GA [9]. Although these hybrid approaches are promising when used to
analyze the relative activities of RIs with acceptable accuracy levels,
actual spectra should be analyzed while considering other ambient
conditions, such as the gain shift effect due to temperature changes.
An artificial neural network (ANN) has been applied to low-resolution
spectra to analyze complex spectra quantitatively considering poor
statistics and gain shift effects [10–12]. This approach showed clear
improvements over the earlier methods in terms of RI identification
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with a large number of RIs. Although researchers thus far have provided
quantification analysis results of complex spectra with mixed RIs, most
spectra were not obtained experimentally but were rather created via
Monte Carlo simulations. In addition, the quantitative accuracy levels
of the results need to be improved.

In this work, we propose an ANN-based algorithm that analyzes low-
resolution gamma-ray spectra to provide identified RIs quantitatively
in terms of their relative activity levels. Although previous studies
have also presented methods based on ANNs with the same goal, we
emphasize the importance of acquiring high-quality training data by
comparing the ANN model trained by widely used simulated spectra
with a model trained by the proposed measurement-based synthetic
spectra. Through a data analysis, we demonstrate that the proposed
model yields higher accuracy in comparison to that of a model trained
by simulated spectra with respect to the measured complex spectra
containing RI mixtures. Furthermore, we show that the proposed model
is less vulnerable to shifts in the spectra and to low counts due to
temperature variations and short acquisition periods, respectively.

2. Materials and methods

2.1. Artificial neural network

An ANN is a mathematical model that simulates the network of
neurons in the brain so that a computer can learn things and make
decisions in a humanlike manner. ANNs have been used in various
fields in relation to radiation detection, such as dosimetry, pulse shape
discrimination, and medical imagery [13–15]. Fig. 1 shows one ex-
ample of an ANN architecture that consists of layers fully connected
to each other. This ANN has L neurons in input layer A, M neurons
in hidden layer B, and N neurons in output layer C. The neurons
in the layers are next to each other and are connected by weights.
Mathematical operations are performed in each neuron, summing the
products of the values in the previous layer and the corresponding
weight connecting the neurons, as shown in Fig. 2. This summation is
then transformed by applying a nonlinear activation function, with the
output then sent to the next layer. Typical choices of the activation
function are the sigmoid, tanh or rectified linear unit (ReLU). The
ANN may be trained so that the weights are adjusted to minimize the
error of the cost function that evaluates the deviation of the output
of the ANN from the true value. A common choice when training the
ANN is backpropagation [16]. Backpropagation tracks the derivatives
of the activation functions in each successive neuron to find the optimal
weights that minimize the error. Various techniques that efficiently
perform backpropagation have been suggested. In this paper, the Adam
optimizer is chosen due to its overall performance capabilities [17].
With regard to the cost function, the cross-entropy function used in
previous studies is applied here for error comparison purposes [10,11].
This is expressed as

E = − 1
𝑁

𝑁
∑

𝑛=1
𝑦𝑛 log

(

𝑦̂𝑛
)

+
(

1 − 𝑦𝑛
)

log
(

1 − 𝑦̂𝑛
)

, (1)

where N is the total number of output neurons, 𝑦𝑛 is the truth of the
𝑛th output, and 𝑦̂𝑛 is the ANN output of the 𝑛th output.

Overfitting is a common problem for an ANN and can arise here
due to the large number of parameters in this model. To address this
issue, neuron dropout and early stopping are applied when training the
model [18]. Dropout is a regularization technique that approximates
the training of a large number of neural networks in parallel with
different architectures. During each training iteration, some number
of layer output (dropout rate) is ignored or dropped out at random.
Therefore, dropout forces the learning algorithm to spread out the
weights rather than letting it focus on specific features. Early stopping
is another technique for improving generalization. In this method,
the available data is divided into two subsets. The first subset is the
training set, which is used to find the optimal weights in the layers.

Fig. 1. An example of an ANN architecture with L neurons in input layer A, M neurons
in hidden layer B, and N neurons in output layer C.

Fig. 2. Operation of a single neuron in hidden layer B.

The second subset is the validation set. The error of the validation set
is monitored during the training process. In the initial stages of training,
the validation error generally tends to decrease with the training error.
However, the validation error begins to increase as the model starts to
fit overly into the training data. Thus, terminating the training process
around this time can prevent the overfitting issue. In this study, the
training process was terminated when there was an increase in mean
cross-entropy error of the validation set during 100 consecutive epochs.
The ANN was modeled and trained through the Python package Keras,
version 2.0.8, as the backend [19].

2.2. Establishment of the training and validation sets

Training and validation sets were created in two different ways for
comparison purposes: one set consists of measurement-based synthetic
spectra and the other consists of simulated spectra. The synthetic
spectrum S can be assumed to be a linear combination of the base
spectra, as follows,

𝑆 =
𝑁
∑

𝑛=1
𝜀𝑖𝑛𝑡,𝑛𝑔𝑛𝑟𝑛𝐵𝑛, (2)

where N is the population of RIs, 𝑖𝑛𝑡,𝑛 denotes the intrinsic efficiency,
𝑔𝑛 is the gamma yield per decay (i.e., 2.797 γs−1Bq−1 for the 511
and 1275 keV gamma-rays of 22Na), 𝑟𝑛 is the relative activity of
the RIs, and 𝐵𝑛 is the base spectrum for RI 𝑛 retrieved from a base
spectrum library that contains the following set: 152Eu, 154Eu, 22Na,
54Mn, 57Co, 60Co, 109Cd, 133Ba, and 137Cs. The intrinsic efficiency was
calculated via Monte Carlo N-Particle Transport Code 6 (MCNP6). To
create the base spectrum library, each RI was measured for 600 s
using a two-inch NaI(Tl) detector with the corresponding background
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spectrum subtracted. The subtracted spectrum was then normalized to
one. Although self-attenuation, pile-up, and shielding have effects on
the measured spectral shape, these effects are assumed to be negligible.
The detailed process of making the synthetic spectrum is shown in
Fig. 3. Up to five random RIs were selected from the base spectrum
library. The relative activity for the selected RIs was randomly sampled,
while the others were assigned a value of zero. Then, the synthetic
spectrum was made according to (2). To mimic the shift in the spectrum
due to the gain shift effects, each channel in the spectrum was linearly
repositioned. The shifted spectrum was reconstructed by means of
spline interpolation with the original channels. The magnitude of this
shift was randomly selected to be in the range of 0.92–1.08. This
shifted spectrum does not reflect the features of the actual measured
spectrum, such as the irreducible statistical fluctuations of the spectrum
associated with physical processes. To mimic a more realistic spectrum,
white noise was added and the spectrum was then normalized. This
process was repeated to generate 100,000 and 10,000 spectra for the
training and validation sets, respectively.

The simulated spectra were created using MCNP6. The methods
used to select the RIs, the relative activity, and the magnitude of
the shift in the spectrum was identical to those mentioned above. To
consider different statistical fluctuations in the spectrum, the number of
particle histories was randomly selected and was in the range of 1×104−
1 × 107. Similar to the synthetic spectrum case, we simulated 100,000
and 10,000 spectra to generate the training set and the validation set,
respectively. Fig. 4 shows the results of a comparison of the synthetic
spectrum and the simulated spectrum with regard to the experimen-
tal spectrum with the following mixture configuration: 137Cs, 39.0%;
22Na, 30.5%; 60Co, 23.5%; and 54Mn, 7%. As shown in this figure,
the synthetic spectrum mimics the measured spectrum better than
the spectrum simulated. It should also be noted that the coefficients
‘‘a’’, ‘‘b’’, and ‘‘c’’ of the FT8 GEB card for the peak-broadening effect
in the NaI(Tl) detector were optimized using a genetic algorithm to
make the simulated spectrum resemble the experimental spectrum as
much as possible [20], but these values still had some discrepancies in
comparison to physical values.

2.3. Establishment of the test set

To create a test set, gamma spectra were measured with six com-
binations of RIs, as given in Table 1. The corresponding RIs were
placed 6 cm away from the NaI(Tl) detector for 300 s at room tem-
perature (20 ◦C). In this case, certified reference materials were used.
Two more test sets were made by assuming low-count and gain-shift
scenarios. The low-count scenario was intended to evaluate how well
the proposed algorithm analyzes highly fluctuating spectra without
obvious photo-peaks. Hence, spectra were made for the six cases with
a one-second acquisition period. The gain-shift scenario was intended
to ensure that accuracy is maintained when the spectra are shifted due
to temperature changes. The most complex spectra with the mixture
configuration of Case 6 was measured under conditions identical to
those mentioned above but with the temperature increased from 0
to 50 ◦C in steps of 10 ◦C. At each step, the temperature was held
for two hours to achieve equilibrium in the entire volume of the
scintillator. It should be noted that the NaI(Tl) scintillator connected
to a photomultiplier tube (PMT) was placed in a constant-temperature
oven (HG-THC150), whereas nuclear instrumentation modules such
as an amplifier (ORTEC 673) and a multi-channel analyzer (ORTEC
TRUMP-PCI-2k) were placed outside of the oven at a constant room
temperature. Fig. 5 shows the relative photo-peak positions of a 60Co
spectrum while adjusting the temperatures. In this figure, the spectrum
slightly shifts in the positive direction, possibly because the light yield
of the NaI(Tl) scintillators tends to fluctuate slightly as the temperature
increases, whereas the PMT gain tends to decrease [21]. Although the
spectrum rarely shifted in this case, it was intentionally biased toward
the positive direction by adjusting the gain and was then measured for
the gain-shift scenario.

Fig. 3. A block diagram of the overall process used to create the synthetic spectrum.

Fig. 4. A comparison of the synthetic spectrum and the simulated spectrum with
respect to the measured spectrum for the following mixture: 137Cs, 39.0%; 22Na, 30.5%;
60Co, 23.5%; and 54Mn, 7.0%. The amount of shift in the synthetic and simulated
spectra was set as unity.

2.4. Hyper-parameter optimization

The proposed ANN has several hyper-parameters that define the
model architecture, including the number of layers, the number of
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Table 1
Current activity of certified radioactive materials and six combinations of RIs for a test
set.

RIs Current activity (μCi) Case

1 2 3 4 5 6
152Eu 0.917 ○ ○ ○ ○ ○ ○
154Eu 0.873 ○ ○ ○ ○
60Co 0.743 ○ ○ ○ ○
137Cs 0.953 ○ ○ ○
22Na 0.568 ○ ○ ○
54Mn 0.165 ○
57Co 0.125
109Cd 0.280
133Ba 0.923

Fig. 5. Relative 60Co peak position versus the temperature change of 0–50 ◦C.

neurons and the activation function of each layer, the learning rate of
the Adam optimizer, the neuron dropout rate, and the batch size. These
parameters cannot be trained directly from the training data and can
significantly affect the performance of the ANN. Therefore, choosing
the optimal hyper-parameters is crucial. One of the predetermined
hyper-parameters is the softmax activation function,

softmax
(

𝑧𝑗
)

=
exp

(

𝑧𝑗
)

𝑁
∑

𝑛=1
exp(𝑧𝑛)

, (3)

which is located in the last layer to quantify the probability linked to
each output neuron. Although this function is traditionally used for
classification, it is effective in a regression model [10–12]. The remain-
ing hyper-parameters were determined using Bayesian optimization,
which uses all available information from previous evaluations of the
model to determine where to sample for the next evaluation, whereas
the grid search and random search methods operate independently of
the previous run [22,23]. Bayesian optimization consists of two main
parts. First, it builds a statistical model𝑓 , which is a Gaussian process
due to its flexibility and tractability for the objective function (that
is, the cross-entropy function), after which it updates the posterior
probability distribution of 𝑓 using all available data. The mean and
covariance matrices for the posterior distribution were calculated using
the Matern 5/2 kernel function [22]. The acquisition function was then
calculated using the current posterior distribution. Here, the expecta-
tion improvement was used to determine the next sampling point for
the evaluation. We used Bayesian optimization as implemented in the
Python package GpyOpt, version 1.2.0, which searched the space of the

Fig. 6. The training error (solid line) and the validation error (dotted line) with optimal
hyper-parameters searched by the Bayesian optimization process for Models A (blue)
and B (black). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

hyper-parameters in Table 2. This table presents the optimized hyper-
parameters for two models trained by the synthetic spectra (Model A)
and trained by the simulated spectra (Model B). The errors with these
optimized values during training are shown in Fig. 6. The training error
calculations for both models were terminated just before the errors
between the training and validation began to diverge from each other;
i.e., neither model overfits the training data.

3. Results

3.1. Performance in a radioisotope analysis

To validate the performance of the two different models with regard
to the quantitative analysis of the RIs, we quantified the RIs that
contribute to the spectra as measured by the NaI(Tl) detectors for
the test spectra of six cases (Table 1). For a direct comparison of the
obtained results, a root mean square error (RMSE) was used, where

RMSE (%) =

√

√

√

√

√

√

√

𝑁
∑

𝑛=1

(

𝑦𝑛 − 𝑦̂𝑛
)2

𝑛
. (4)

RMSE, a metric used for model evaluations, represents the square
root of the average squared differences between the expected value
𝑦𝑛 and the predicted value 𝑦̂𝑛. This metric assigns a relatively high
weight to large differences that are undesirable. Fig. 7 shows the test
spectrum of the six cases (red line) and the corresponding spectrum
estimated based on the quantitative analysis results evaluated by Model
A (blue dotted line). These results were compared to those evaluated by
Model B, and their corresponding RMSE outcomes are given in Table 3.
Although these spectra exhibit complex spectral shapes, Model A was
able correctly to identify RIs on the spectra that contain up to six RIs
and determine their relative activity levels with acceptable accuracy;
the RMSE outcomes of Cases 1, 2, 3, 4, 5, and 6 were 0.0, 1.0, 1.6,
1.0, 0.9, and 1.8%, respectively. As presented in Fig. 7, their estimated
spectra are in good agreement with the test spectra. Model B was also
able to identify RIs in the test spectra, but it determined that there
were additional RIs that did not contribute to the spectra. In addition,
the RMSE outcomes of Cases 1, 2, 3, 4, 5 and 6 were 5.7, 15.3, 2.4,
6.1, 2.8, and 2.9%, respectively, showing inferior quantitative analysis
results. However, when Model B evaluated simulated spectra with the
same mixture configuration used with the six cases, it showed opposite
results, as presented in Table 4. Model B accurately analyzed these
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Table 2
Search spaces of the hyper-parameters and the corresponding optimal values for Models A and B.

Hyper-parameters Search space Type Determined values

Model A Model B

Number of layers [1, 2, 3, 4] Discrete 2 2
Learning rate [10−1, 10−5] Continuous 9.82 × 10−3 2.84 × 10−4

Batch size [100, 500, 1000, 3000] Discrete 500 3000
Activation function [sigmoid, tanh, Relu] Discrete Relu Relu
Neuron number in layer 1 [1, 10000 ] Continuous 410 710
Dropout rate in layer 1 [0, 1] Continuous 0.59 0.20
Neuron number in layer 2 [1, 10000] Continuous 468 1454
Dropout rate in layer 2 [0, 1] Continuous 0.63 0.37

Table 3
Comparison results of the quantitative analysis of the measured spectra of six cases with a 300 s acquisition period for Models A and B, and their corresponding
RMSE values.

Case Group Radioisotopes RMSE(%)
152Eu 154Eu 60Co 137Cs 22Na 54Mn 57Co 109Cd 133Ba

1 Expected value 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 –

Predicted value Model A 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Model B 87.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 11.9 5.7

2 Expected value 51.2 48.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 –

Predicted value Model A 49.0 50.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
Model B 29.6 32.3 0.0 0.0 0.0 0.0 0.0 37.0 1.0 15.3

3 Expected value 41.0 0.0 33.3 0.0 25.7 0.0 0.0 0.0 0.0 –

Predicted value Model A 37.2 0.0 36 0.0 26.9 0.0 0.0 0.0 0.0 1.6
Model B 36.2 0.0 36.5 0.0 23.5 3.6 0.0 0.0 0.0 2.4

4 Expected value 26.3 25.0 21.4 27.3 0.0 0.0 0.0 0.0 0.0 –

Predicted value Model A 24.5 25.6 23.5 26.3 0.0 0.0 0.0 0.0 0.0 1.0
Model B 20.4 21.4 19.2 22.4 0.0 0.0 0.0 16.0 0.0 6.1

5 Expected value 22.6 21.5 18.4 23.4 14.1 0.0 0.0 0.0 0.0 –

Predicted value Model A 22.2 22.2 19.6 24.1 12.0 0.0 0.0 0.0 0.0 0.9
Model B 20.6 19.5 19.1 20.9 11.1 2.2 0.0 6.3 0.0 2.8

6 Expected value 21.7 20.7 17.6 22.5 13.6 3.9 0.0 0.0 0.0 –

Predicted value Model A 21.0 23.1 16.7 22.7 9.7 6.5 0.0 0.0 0.0 1.8
Model B 20.1 18.7 17.5 19.5 10.9 6.5 0.0 6.6 0.0 2.9

Fig. 7. The measured spectrum of six cases (red line) with a 300-second acquisition period against the spectrum estimated based on the analysis results as evaluated through
Model A (blue dotted line)

simulated spectra, showing that the RMSE outcomes for Cases 1, 2,
3, 4, 5 and 6 were 0.0, 0.2, 0.4, 0.2, 0.4, and 0.9%, respectively,

whereas Model A provided poor analysis results, with corresponding
RMSE outcomes of Cases 1, 2, 3, 4, 5 and 6 of 0.0, 5.4, 1.0, 5.7, 5.3,
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Table 4
Comparison results of the quantitative analyses of the simulated spectra with the same mixture configuration of the six cases for Models A and B, and their
corresponding RMSE values.

Case Group Radioisotopes RMSE (%)
152Eu 154Eu 60Co 137Cs 22Na 54Mn 57Co 109Cd 133Ba

1 Expected value 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 –

Predicted value Model A 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Model B 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2 Expected value 51.2 48.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 –

Predicted value Model A 62.4 37.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.4
Model B 50.7 49.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2

3 Expected value 41.0 0.0 33.3 0.0 25.7 0.0 0.0 0.0 0.0 –

Predicted value Model A 39.4 0.0 32.4 0.0 28.2 0.0 0.0 0.0 0.0 1.0
Model B 40.2 0.0 34.0 0.0 25.7 0.0 0.0 0.0 0.0 0.4

4 Expected value 26.3 25.0 21.4 27.3 0.0 0.0 0.0 0.0 0.0 –

Predicted value Model A 30.7 10.9 22.7 35.6 0.0 0.0 0.0 0.0 0.0 5.7
Model B 26.7 25.0 21.1 27.1 0.0 0.0 0.0 0.0 0.0 0.2

5 Expected value 22.6 21.5 18.4 23.4 14.1 0.0 0.0 0.0 0.0 –

Predicted value Model A 25.7 7.8 17.7 30.1 16.5 0.0 2.1 0.0 0.0 5.3
Model B 22.5 20.9 19.1 24.0 13.4 0.0 0.0 0.0 0.0 0.4

6 Expected value 21.7 20.7 17.6 22.5 13.6 3.9 0.0 0.0 0.0 –

Predicted value Model A 23.1 11.2 15.8 28.5 15.8 5.5 0.0 0.0 0.0 3.9
Model B 21.5 21.9 18.0 22.1 11.5 4.9 0.0 0.0 0.0 0.9

Fig. 8. The measured spectrum of six cases (red line) with a one-second acquisition period against the estimated spectrum based on the quantitative results evaluated through
Model A (blue dotted line)

and 3.9%. These results stem from certain discrepancies between the
spectra trained for the ANN and the spectra actually evaluated.

3.2. Performance on low-count spectra

To investigate how well the ANN analyzes highly fluctuating spectra
without obvious photo-peaks, the spectra were measured for one sec-
ond for the six cases. Fig. 8 illustrates the measured spectra (red line)
and estimated spectra based on the quantitative analysis results evalu-
ated via Model A (blue dotted line). These results were also compared
to those evaluated via Model B. Despite the lack of obvious photo-
peaks, Model A correctly identified RIs and provided activity levels
nearly identical to the expected values; the RMSE outcomes of Cases
1, 2, 3, 4, 5, and 6 were 0.0, 1.4, 1.6, 1.9, 2.8 and 1.8%, respectively.

These results demonstrate only a slight increase in the RMSE compared
to the results obtained from the measured spectra in Fig. 7. This was
made possible by the addition of various magnitudes of white noise to
mimic the actual measured spectra with a short acquisition period when
we synthesized the spectra for the training data. Model B was able to
identify RIs, but it determined that there were additional RIs that are
not part of the spectra. In addition, the RMSE outcomes of Cases 1,
2, 3, 4, 5, and 6 were 0.3, 5.6, 4.7, 12.7, 7.0, and 5.2%, respectively,
showing a relatively large increase compared to the results acquired
from the measured spectra in Fig. 7. From the comparison of the results
of the two models, we confirmed that the ANN provides more degraded
analysis results for highly fluctuating spectra when the training spectra
are inconsistent with the measured spectra.
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Table 5
Comparison results of the quantitative analyses of the measured spectra of six cases with a one-second acquisition period (low-count scenario) evaluated through
Models A and B, and their corresponding RMSE values.

Case Group Radioisotopes RMSE (%)
152Eu 154Eu 60Co 137Cs 22Na 54Mn 57Co 109Cd 133Ba

1 Expected value 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 –

Predicted value Model A 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Model B 76.0 16.1 0.0 0.0 0.0 0.0 0.0 7.9 0.0 10.0

2 Expected value 51.2 48.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 –

Predicted value Model A 48.2 51.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4
Model B 24.7 36.9 0.0 0.0 0.0 0.0 0.0 33.4 4.5 14.8

3 Expected value 41 0.0 33.3 0.0 25.7 0.0 0.0 0.0 0.0 –

Predicted value Model A 37.2 0.0 36.0 0.0 26.9 0.0 0.0 0.0 0.0 1.6
Model B 27.1 1.6 36.9 0.0 25.9 8.2 0.0 0.0 0.0 5.5

4 Expected value 26.3 25.0 21.4 27.3 0.0 0.0 0.0 0.0 0.0 –

Predicted value Model A 29.1 20.7 23.5 26.7 0.0 0.0 0.0 0.0 0.0 1.9
Model B 19.3 21.2 21.3 21.8 0.0 3.5 0.0 12.6 0.0 5.4

5 Expected value 22.6 21.5 18.4 23.4 14.1 0.0 0.0 0.0 0.0 –

Predicted value Model A 17.8 21.0 16.5 29.9 14.3 0.0 0.0 0.0 0.0 2.8
Model B 16.0 16.1 16.4 12.1 10.1 0.0 0.0 29.3 0.0 10.9

6 Expected value 21.7 20.7 17.6 22.5 13.6 3.9 0.0 0.0 0.0 –

Predicted value Model A 20.4 22.0 13.2 23.2 15.6 5.5 0.0 0.0 0.0 1.8
Model B 19.9 18.6 14.5 18.3 12.4 4.0 0.0 12.0 0.0 4.5

3.3. Performance on gain shift

For a more in-depth analysis of the gain shift effects, the Case 6
spectra were evaluated while altering the temperature in the range of
0–50 ◦C in steps of 10 ◦C. Fig. 9 shows an example of the spectra
measured at 20 ◦C (gray line) and at 50 ◦C (red line). In addition,
this spectrum was evaluated when intentionally shifted in a positive
direction (blue line). These shifted spectra would be difficult to analyze
without recalibration because the positions of the original photo-peaks
move to other photo-peak positions as the spectrum shifts. Further-
more, for the spectrum shifted in the positive direction, the spectrum
is both shifted and further broadened. Nonetheless, Models A and B
demonstrated some degree of temperature invariance, showing only
a slight fluctuation of the RMSE, as shown in Table 6. This occurs
because the training data were created while considering intentionally
shifted spectra to minimize the positional effects of features, such as
the photo-peaks, and to train the overall spectral shape. Although
Model A incorrectly identifies 109Cd in some spectra, the predicted
value of the relative activities was insignificant (less than 1.0%). The
incorrectly identified RI can be rejected by determining the minimum
contribution threshold based on an analysis of the false alarm rate on
the training set [10]. It should be noted that the quantitative analysis
results evaluated by Model B remain consistently degraded.

4. Discussion

Here, we demonstrated an ANN-based algorithm to identify RIs
in complex low-resolution NaI(Tl) spectra and determine the relative
activities of the identified RIs. In particular, we compare a model
trained with measurement-based synthetic spectra with a model trained
with simulated spectra to emphasize the importance of acquiring high-
quality training data. From the results, we confirmed that the model
trained with the simulated spectra showed inferior performance in
terms of RI identification and quantification under various scenarios
(Table 3, 5, and 6) in comparison to those of the model trained with
synthetic spectra, which were similar to the measured spectra (Fig. 1).
This occurred because the simulated spectra used to create the training
set had some discrepancies in comparison to the measured spectra
(Table 4). In fact, previous studies used Monte Carlo simulations to
mimic the measured spectra to generate the training set, and they
performed the data analysis for simulated spectra with RI mixtures [10–
12]. It should be noted that these results would have been further
degraded if measured spectra were used for the evaluation. We are

Fig. 9. Case 6 (152Eu, 154Eu, 60Co, 137Cs, 22Na, 54Mn) spectra measured at 20 and
50 ◦C, and the spectrum positively biased by adjusting the gain. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

aware of the accessibility of the simulation process in terms of gen-
erating spectra and including additional RIs due to the challenges that
may be encountered when measuring RIs (e.g., short half-lifetimes) for
synthetic spectrum generation. Nonetheless, it is important to recognize
that some discrepancies between the measured and simulated spectra
can degrade the accuracy of the data analysis because it is difficult fully
to mimic actual measured spectra through a simulation [20,24–27]. In
fact, this problem may not be fully addressed in a manner that solves
the overfitting issue, as it results from fundamental differences between
the spectra used for the training set and those used for the test set.

We also showed how accurate results from a quantitative analysis
of low-resolution spectra can be achieved. The proposed model was
able fully to identify complex low-resolution spectra that contain up
to six RIs even under the low-count and gain-shift scenarios (Table 3,
5, and 6), thus demonstrating clear improvements in comparison to
previous cases [10–12]. This could be due to the high-quality training
data used, as mentioned above, and to the limited number of target
RIs. In contrast, previous studies included approximately 30 target

7
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Table 6
Comparison results of the quantitative analyses of the measured spectra of Case 6 while changing the temperature in the range of 0–50 ◦C in steps of 10 ◦C
evaluated through Models A and B, and their corresponding RMSE values.

Temp (◦C) Group Radioisotopes RMSE(%)
152Eu 154Eu 60Co 137Cs 22Na 54Mn 57Co 109Cd 133Ba

Expected value 21.7 20.7 17.6 22.5 13.6 3.9 0.0 0.0 0.0 -

0 Predicted value Model A 20.1 22.7 15.5 22.8 12.6 5.5 0.0 0.8 0.0 1.3
Model B 18.8 18.0 15.9 18.5 10.6 6.6 0.0 10.1 1.5 4.2

10 Predicted value Model A 19.9 22.5 15.3 21.8 14.2 6.2 0.0 0.0 0.0 1.4
Model B 19.0 18.5 16.3 18.5 11.1 6.1 0.0 8.4 2.1 3.6

30 Predicted value Model A 20.2 22.7 16.2 23.0 12 5.8 0.0 0.0 0.0 1.3
Model B 18.7 17.9 16.0 18.6 10.5 6.6 0.0 10.2 1.3 4.2

40 Predicted value Model A 20.3 23.6 15.3 22.9 11.9 5.2 0.0 0.7 0.0 1.5
Model B 19.1 18.1 15.8 19.2 10.4 7.2 0.0 9.8 0.0 4.0

50 Predicted value Model A 20.7 22.8 16 23.2 10.5 5.8 0.0 0.9 0.0 1.6
Model B 17.5 18.8 14.7 19.9 10.5 6.1 0.0 11.9 0.0 4.6

P Predicted value Model A 19.1 23.6 16.5 22.3 12 6.4 0.0 0.0 0.0 1.7
Model B 18.5 21.9 18.6 18.4 10.3 6.5 0.0 2.3 3.5 2.7

RIs in the libraries used. In fact, their cross-entropy errors exceeded
1.6, whereas the errors in this work did not exceed 0.9, meaning
that the error increases with an increase in the number of target RIs.
Although there are several applications that utilize no prior information
of the RIs contained in a given spectrum, some applications do have
situations where the existing RIs may be predetermined. For example,
some gamma-emitting RIs such as 152Eu, 154Eu, 54Mn, 60Co, 134Cs,
and 137Cs are well documented for surveys of sites and for building
characterizations as part of decommissioning works [28]. These RIs
also exist in the form of check sources so that measurement-based base
spectra are created. Another option is to construct an additional ANN
that can distinguish target RIs from non-target RIs prior to the use of an
ANN that analyzes a limited number of target RIs for a more accurate
analysis of complex low-resolution spectra.

5. Conclusion

In this study, we presented two different ANNs trained by simulated
spectra and trained by synthetic spectra, and these results were com-
pared with each other for a quantitative analysis. From these results, we
demonstrated how important it is to create training spectra which are as
similar as possible to the measured spectra in terms of the accuracy of
RI identification and the quantitative analysis outcomes. In this regard,
a training set consisting of simulated spectra can degrade the accuracy
when evaluating measured spectra. In addition, we showed that the
model trained with synthetic spectra similar to the measured spectra
did exhibit high accuracy in a quantitative analysis, even under low-
count and gain-shift scenarios. Thus, these results suggest the feasibility
of using a NaI(Tl) detector for the purpose of a quantitative analysis
given that limitations such as the low resolution and the temperature
dependency of the gain for some applications can be overcome.

Although our method and those in previous studies have shown
promising results in analyzing complex low-resolution spectra, they
provide only point estimates, possibly leading to overly confident de-
cisions regardless of the degree of statistical variation present in the
spectra. We are currently in the process of utilizing Bayesian inference
to resolve this issue, and these results will be published as future work.
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