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A B S T R A C T

Three different Artificial Neural Network architectures have been applied to perform neutron/𝛾 discrimination
in neda based on waveform and time-of-flight information. Using the coincident 𝛾-rays from agata, we have been
able to measure and compare on real data the performances of the Artificial Neural Networks as classifiers.
While the general performances are quite similar for the data set we used, differences, in particular related
to the computing times, have been highlighted. One of the Artificial Neural Network architecture has also
been found more robust to time misalignment of the waveforms. Such a feature is of great interest for online
processing of waveforms.
. Introduction

The NEutron Detector Array (neda) [1,2] is a neutron detector de-
igned to be used with high resolution 𝛾-ray spectrometers such as the
dvanced GAmma Tracking Array (agata) [3]. The liquid scintillator
sed in neda [4] is not only sensitive to neutrons but also to 𝛾-rays.
ince neda is being used as a neutron multiplicity filter, it is imperative
o differentiate the interactions due to neutrons from those due to 𝛾-
ays. Because the excited molecular states (with decay constants 3.16,
2.3 and 270 ns) are being populated with different relative intensities
or both particles, Pulse Shape Discrimination (psd) techniques can
e applied to distinguish them. Some traditional methods, i.e. the
harge comparison [5,6] or the integrated rise time [7,8], have been
mplemented in analogue electronic modules for a long time. With
he advance of digital electronics, the waveform of signals can be
ampled, processed in the cards, possibly transferred to be processed in
omputer farms, even stored on disk for complex offline analysis. While
raditional methods could still be implemented, digital electronics have
lso opened the path to new discrimination techniques (see [9,10] and
eferences therein). As computation power becomes more affordable,
achine learning techniques have emerged offering new possibilities

∗ Corresponding author.
E-mail address: o.stezowski@ip2i.in2p3.fr (O. Stézowski).

for offline as well as for online data processing. Concerning liquid
scintillator detectors, it has been shown that artificial neural networks
can improve 𝑛∕𝛾 discrimination especially at low energy [11,12]. For
other scintillators, unsupervised algorithms have been found capable of
separating 𝛾-rays from neutrons and were also found useful to optimize
parameters of traditional methods [13].

For many years, the agata germanium array has been installed at
different facilities [14–16] and, for the first time, it was coupled at
ganil with the scintillators of the neutron array neda (including some
modules of the Neutron Wall [17,18]) and with diamant [19], a charged-
particle detector array, see also [20]. The 𝑛∕𝛾 discrimination in the neda
scintillators using three different types of Artificial Neural Networks
(ann) is reported here. Section 2 describes the experimental setup and
introduces the ann that were studied. Section 3 provides details on
the implementation of such ann and presents the results achieved on
experimental data. The last Section 4 presents some complementary
studies on pseudodata in order to highlight the differences between the
different ann architectures.
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2. Methodology

2.1. Experimental context: 2018 agata -neda-diamant campaign

The data used in this paper comes from one of the experiments
arried out at ganil in 2018 using the agata-neda-diamant setup to detect
n coincidence 𝛾-rays, neutrons and charged particles. A beam of 50Cr
mpinged on a target of 58Ni at 175 MeV producing, through fusion–
vaporation reactions, many different residual nuclei which can be
haracterized by the three detection systems.

At the lowest level, waveforms produced by the neda modules have
een processed in the numexo2 board, as explained in Ref. [21], and
hen sent to computer farms for more complex psd. On the agata
ide, waveforms have been passed through the standard processing
hain, the most important brick being the Pulse Shape Analysis (psa)
lgorithm, to produce, for every single germanium crystal, a list of hits.
oth subsystems were part of the Global Trigger and Synchronization
ystem (gts tree [22]) set up to validate or reject the events to be
ecorded. For the data used in this paper, the global trigger condition
as one neutron identified in the neda cards (using a standard, fast
lgorithm) and one 𝛾-ray on the agata side. For valid events, the neda
aveforms were sampled every 5 ns over a window 1160 ns large
nd then recorded allowing to re-process the data through various psd
lgorithms. A time of flight evaluation is also performed using the tdc
mplemented in the numexo2 cards, the time reference being provided
y the cyclotron RF signal, and the obtained value incorporated in the
ata flow. On the agata side, hits produced online by the psa algorithm
ave been recorded. It should be noticed that such a choice for the
lobal trigger condition does not have consequences on the results
resented in this paper since only relative comparisons are performed.
riggerless data have also been recorded for a short time to allow
bsolute measurements. Indeed, such a triggerless acquisition produced
huge amount of data and unfortunately not enough coincidences to be

tatistically significant for the studies realized in this paper. Concerning
iamant, the standard parameters (energy and particle identification)
rom all the individual cells were recorded with the timestamp provided
y the gts system.

At the global level, coincidences were built offline using a window
f 1 μs on timestamp data, before running the tracking algorithm on
gata hits. A more precise window of 200 ns has been set at the very
ast stage of the data analysis. A particular attention has been devoted
n having the three subsystems (agata-neda-diamant) well aligned in
ime among each other to reduce random coincidences. For the neda
ubsystem itself, the time-alignment procedure has not been pushed
o the finest level in order to stress the ann with a greater variety of
aveforms.

.2. Artificial neural networks

For any given neda detector module, our goal was to provide the
ost efficient ann able to answer the question whether or not the

ollected signal comes from a neutron. Thus our approach has been
o feed the network not only with the waveform but also with the
easured Time of Flight (𝑇 𝑜𝐹 ) value. This differs from the previous

tudies [11,12] in which the discrimination is based only on samples
f the signal. Feature extractions, the equivalent for machine learning
pproaches to calibration for physicists, is crucial to not spoil the
erformances of the ANN as it is going to be underlined in this paper:
ur choice has thus been to try and feed the networks with what
e thought to be the more discriminant and the less noisy data. The

nput layer of the three ann was composed of 75 neurons. On the first
3 neurons, samples of the waveform are given, the baseline being
ubtracted and the highest value normalized to 1. This represents a
ampling of the scintillation light over 365 ns, which is long enough
o include some background noise at the beginning (baseline) and to
over most of the collected signal especially the decay part, the most
2

Fig. 1. (Color online) Convolutional neural network architecture used in this work.
Twenty filters are applied to the 75 input data. Three consecutive convolutional layers
are applied, each of them immediately followed by a max-pooling layer. 𝑁 is at each
step the number of inputs while n is the size of the kernel (see text for further
explanations). Data are then flattened to feed a mlp (sequence of fully connected layers)
architecture.

relevant one for the discrimination. Since a single ann has been used
whatever the neda module, all the detectors have been aligned so that
the true collected signal starts at about 80 ns. On neurons 74 and 75 are
given respectively the amplitude of the signal, so that the network can
deal with energy depositions, and the 𝑇 𝑜𝐹 value.

The last layer is composed of two neurons because there are two
classes: neutron or not a neutron (by extension abusively labeled 𝛾-
ray). For consistency, the sum of the two output values is always
equal to 1 because of the renormalized exponential 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 activation
function being used. The first (second) output neuron thus yields the
probability that the given waveform is generated by a neutron (𝛾-ray).
The differences and parameters used to setup the three different ann
studied are summarized in Table 1.

The first architecture, a Multi Layer Perceptron (mlp), is similar to
the one proposed by Ronchi et al. [11]: neurons are fully connected
between consecutive layers and we have used two hidden layers. We
reduced the size of the two hidden layers from 20 and 5 neurons to 10
and 4 respectively as it led to similar results. The second architecture,
a Convolutional Neural Network (cnn), usually takes images as input
upon which features are extracted at different zoom/scale levels. The
one-dimensional image provided in this work to this ann was the
sampled waveform. The cnn architecture is made of three convolution
layers each of them immediately followed by a max-pooling layer (see
Fig. 1) which reduces by a factor of 2 the size of the input by keeping
the highest (𝑚𝑎𝑥) of two consecutive inputs. The size of all the filters
(kernels) used has been set to six which corresponds, at least for the
input layer, to search (through the convolution product) for features in
the signal over a 60 ns time window. We have set the number of filters
to 20. The last layer of the convolutional part is connected to a mlp, i.e. a
sequence of fully connected layers, composed respectively of 100, 20
and 2 neurons. The third architecture studied is based on Long Short
Term Memory (lstm) layers [23], an evolution of the Recurrent Neural
Network architecture. For such a kind of layer, inputs are fed by time
steps, along with the output of the previous time step. An important
parameter is the number of memory units used to pass information
from one time step (sample 𝑖 of the waveform) to the next one (sample
𝑖 + 1 of the waveform). This number of units also set the number of
output values of the lstm layer. The lstm architecture is able to select
which information will be forgotten or added, giving better results
in applications where the context is important. Since in our case the
discrimination is done looking at the way the decay part of the signal
evolves, our strategy has been to have an lstm layer, to try and extract
the time evolution, coupled with a mlp layer to do the discrimination.

For the architecture studied in the work, we have chosen only one lstm
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layer composed of 50 units giving then 50 output values fully connected
o the output layer composed of the two neurons used for neutron/𝛾
lassification.
ann are supervised machine learning algorithms: the training/

alidating phase is crucial to get an efficient and robust classifier. For
he three proposed architectures, the hyperparameters of the networks
number of layers, number of neurons per layer, . . . ) have been tuned
o find the most compact structure in order to minimize the online
rocessing time. Large networks have been set and trained to reach
he highest accuracy. The hyperparameters have then been modified
o decrease the size of the networks. The selected ann can be trained
ithin few hours (on our GPU card) to reach the accuracy obtained
ith bigger anns.

The training/validation datasets have been prepared from the data
ollected during the experiment. First, signals have been cleaned by
emoving pile-up events and badly shaped waveforms. This procedure
as been based on a standard algorithm which consists in keeping
nly signals having one zero-crossing in their first derivative. Several
wo dimensional cuts have been used to tag a signal as coming from
eutrons or 𝛾-rays. The involved quantities to build the 2D histograms
re the time of flight 𝑇 𝑜𝐹 , the amplitude of the waveform and a
arameter called Slow on Fast 𝑆𝑜𝐹 . The 𝑆𝑜𝐹 parameter, described in
ef. [11], implements the charge comparison method by calculating the
atio between the integration of the waveform before and after a time
oundary. Fig. 2 shows 𝑇 𝑜𝐹 -𝑆𝑜𝐹 density plots.

The black cut contains mostly neutrons while the red one is used to
ag 𝛾-rays or any event which obviously cannot be assigned to a single
lean neutron. It should be noticed that there is a region in between
ontaining events not used at the training/validation level. Such events
re precious to check the anns behave consistently and to look for any
verfitting. We will address this point in the next section. Similar 2D
lots have been built using the 𝑇 𝑜𝐹 and the amplitude of the waveform
n which specific 2D cuts have been drawn to distinguish neutrons
rom 𝛾-rays/backgrounds. The conjunction (𝑎𝑛𝑑 operator) of the 2D
uts determines whether or not a signal should be tagged as neutron
r not a neutron. While the complete procedure allows to strongly tag
signal as coming from a neutron or even a 𝛾-ray, it does not however

xclude the possibility to have a fraction of mislabels.
For the training phase, the data set (140000 signals) we used was

omposed of an equal number of neutrons (70000 signals) and 𝛾-rays
(70000 signals). The signals were randomly dispatched in two groups:
90% of them to train the network and 10% for validation. At each
epoch, the accuracy of the network is calculated for the training and
for the validation data set to look, at this level, for any overfitting.
Using only the accuracy on the validation data set, the training phase
is stopped once this value is not progressing over 20 epochs. For
the studies we performed in this paper, the network having the best
accuracy over the last 20 epochs is applied to a different data set
itself composed of 5.7 million of events (two different runs). For the
training phase, we have used a standard categorical cross-entropy loss
function which is well suited to single label categorization problems.
Regarding the optimizer, the mlp and cnn architectures are trained using
a Stochastic Gradient Descent algorithm while the Adam algorithm led
to a faster training for the lstm network.

2.3. Figures of merit

Once an artificial neural network is trained, one can use it to classify
any detector fired in neda as likely to have been impinged by a neutron
or by a 𝛾-ray. The output of the network (Neural Network Output Value)
s embedded in the data flow of the data acquisition system.

In this paper, in order to compare the three networks, we will
ormalize it such that the value is inside [0; 100] (𝑁𝑁𝑁𝑂𝑉 for Nor-
alized Neural Network Output Value). For any event, whatever the psd
lgorithm, neda provides a counting on the number of neutrons (𝑥𝑛)

etected which allows, from the tracked 𝛾-ray in coincidence in agata,

3

Table 1
Consecutive layers (second column) composing the three different neural network
architectures (first column) and their number of parameters (third column). D, C, M,
R and F means respectively Dense, Convolutional, Max pooling, Recurrent and Flatten
layer.

Network Layer structure # of parameters

mlp 75:D:10:D:4:D:2 814

lstm 75:R:50:D:2 10 502

cnn 75:(C:70:M:35:C:30:M:15:C:10:M:5)x20

F:100:D:20:D:2

7042

to build the different 𝛾-ray spectra (𝑆𝑥𝑛) associated to the number of
neutrons identified (𝑥𝑛).

Through the 𝛾-ray transitions in those spectra we do have a way
to determine how many neutrons are emitted, assuming a clean 𝛾-
ray transition is well selected. Combining all the information one can
extract a mislabel probability, i.e. the probability to incorrectly qualify
an event, as detailed in Appendix. Of course, increasing the selectivity
of any condition, whatever the algorithm, results in less statistics in the
channel of interest and this has to be evaluated in balance with the
mislabel probability.

The performances of the three ann architectures have been com-
pared with respect to a more classical approach consisting in tagging a
signal with the conjunction of the two 2D cuts that have been defined
to train the networks. To get a clean spectrum, we have restricted
our studies to events having only one neda module fired and we have
required to have three protons detected and zero alpha detected in
diamant. This leads to study the 105In and 104In nuclei which correspond
espectively to 0 and 1 neutron emitted.

The 𝛾-ray transitions selected to estimate the mislabel probability and
he gain/loss in statistics are at high energy in the 𝛾-ray spectrum where
he density of transitions is also reduced. Our final choice has been
et on the 1341.6 keV ( 132

+
→ 9

2
+
) and the 1258.8 keV (9+ → 7+)

𝛾-ray transitions respectively corresponding to the 0 and 1 neutron
evaporation channel.

3. Results on experimental data

3.1. Implementation

As explained in Ref. [2], whatever the algorithm, the Pulse Shape
Discrimination should be applied online to reduce as soon as possible
the transfer of data. At this level in the data flow, waveforms are
reduced to a few parameters, in particular one tagging the event as
coming from a 𝛾-ray or a neutron. While waveforms can also be stored
on disk at an earlier stage for offline re-processing, it is however
obvious that any psd in neda should be compliant for online processing
which puts stringent constraints on the technological solution used
to run machine learning based algorithms. To fully benefit from the
multiple cpu and multi-core machines of the neda computer farm, our
choice has been to use the TensorFlow library [24] which allows a
high level parallelization, provides a C++ interface and can run either
on cpu or on gpu. The anns have been trained using the Keras [25]
python interface. Typical time to train an ann, i.e. to reach a target
accuracy of about 98% without improvement on the validation dataset
over 20 epochs, is 30 minutes and 60 minutes for the mlp/lstm and cnn
architecture respectively on our hardware.

Once frozen, the ann model is uploaded in a narval actor (see
Ref. [2]) to process any signal out of the neda modules. To fully take
advantage of the parallelism capabilities of the TensorFlow Library,
waveforms are first grouped by batches before being processed by the
library. Typical inference times have been estimated for the three anns
we have studied. They are given in Table 2 for different batch sizes
and different processing units. The batch size may have a significant
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Fig. 2. Time Of Flight 𝑇 𝑜𝐹 versus Slow On Fast 𝑆𝑜𝐹 for all events (left side) and for a subset of events selected by the mlp network output value (right side). The black line
represents the cut used at training time to tag neutrons while the red one is for 𝛾-rays. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
Fig. 3. (Color online) Normalized Neural Network Output Value 𝑁𝑁𝑁𝑂𝑉 distributions for the three ann architectures.
t

impact on the mean processing time for a single event and should
be selected accordingly. As it can be seen, the mlp architecture is the
fastest with about 1 μs inference time, whatever the computing unit.
With such a time, we were able, during the full agata-neda-diamant
campaign, to perform inference online (on cpu units), using such neural
network architecture at a mean maximum rate of about 6500 Hz at
the psd level. The two other architectures have been developed after
the campaign and thus have not been tested online in a complex
environment. Inference times on cpu are at least ten time slower. It
may have been a bottleneck of the data processing chain, bottleneck
that could be absorbed, at least partially, at the cost of running online
with gpu cards in the daq box.

3.2. Mislabel and statistics

Fig. 3 gives the Normalized Neural Network Output Value 𝑁𝑁𝑁𝑂𝑉
distributions obtained for the three different architectures. For all the
 t

4

Table 2
Typical inference times (in μs per signal) for the three anns depending on the batch
size and the processing unit used.

Batch Size mlp cnn lstm

cpu gpu cpu gpu cpu gpu

5000 1.5 0.7 9.5 1.8 50.0 12.0
20 000 1.0 0.7 11.0 1.7 60.0 10.0
80 000 1.2 0.8 11.0 4.0 75.0 9.0

distributions, one can clearly see two peaks. The first one (low values)
corresponds to input classified as 𝛾-rays and the second one (high
values) corresponds to neutrons. One can see different behaviors by
comparing the resolutions of the peaks. The peaks of the cnn distribu-
ion are the broadest suggesting the network is less clear concerning
he way it classifies. On the other hand, the lstm distribution provides
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well defined, sharp peaks while it is the case only for 𝛾-rays looking at
the mlp output. The regions in between the two main peaks suggest also
the lstm network is more confident in its classification than the others.

A threshold 𝑁𝑁𝑁𝑂𝑉𝑡ℎ𝑛 on the distribution provides a way to clas-
sify an input as neutron (𝑁𝑁𝑁𝑂𝑉 ≥ 𝑁𝑁𝑁𝑂𝑉𝑡ℎ𝑛) or 𝛾-ray
(𝑁𝑁𝑁𝑂𝑉 < 𝑁𝑁𝑁𝑂𝑉𝑡ℎ𝑛). Depending on the analysis one would like to
perform, one can then be more or less restrictive. Because the networks
take as input the whole signal, and the 𝑇 𝑜𝐹 , moving the threshold is
equivalent to increasing/decreasing the boundaries of complex cuts in
a multidimensional space. It goes also beyond the basic application of
the 2D cuts that have been used to tag the training inputs. For instance,
a selection by the output of the network of 𝛾-ray events allows to get
some events inside the black cut shown in Fig. 2: those events are
related, as expected, to background under the island of neutrons.

The classification provided by the networks might be wrong. As
explained in Section 2.3, through the 𝛾-rays detected in coincidence
in agata one can evaluate how wrong the 𝑛∕𝛾 discrimination is through
the mislabel probability. Fig. 4 shows, for the three ann, the evolution
of the mislabel probability as a function of the threshold 𝑁𝑁𝑁𝑂𝑉𝑡ℎ𝑛
pplied. To complete the comparisons, the mislabel probability for a
iscrimination based only on the training cuts is also given. With our
ata and cuts, we got about 1.2%, which corresponds to the horizontal
lue line in Fig. 4. The gain/loss in statistics is also given (in red) relative
o the basic application of the training cuts. As expected, increasing the
hreshold results in having less mislabeled events. The cost is of course
ess statistics for the selected events. The three ann have a similar global
ehavior and cross the horizontal lines at slightly different values. At
he crossing points 𝑁𝑁𝑁𝑂𝑉𝑡ℎ𝑛𝑐 , the ann have the same performances
han the standard 2D cuts. Note that the numbers given here for
he quality of the neutron-gamma discrimination using the charge
omparison method are valid only for the cuts used in the training,
nd do not reflect true limits of the neda array [G. Jaworski et al. to
e published]. With a threshold (𝑁𝑁𝑁𝑂𝑉𝑡ℎ𝑛 = 52) lower than the
rossing point (𝑁𝑁𝑁𝑂𝑉𝑡ℎ𝑛𝑐 = 58), one can get, for the mlp architecture,
he blue spectrum displayed in Fig. 5. It is compared with what is
btained by applying only the 2𝐷 cuts (gray spectrum). One can see
here are more counts in all the peaks, in the expected 𝛾-ray transitions
oming from the one neutron evaporation channel (1258.8 keV, 9+ →
+ 104In) but also in the background one (1341.6 keV, 13

2
+

→ 9
2
+

105In). This is expected since the Mislabel probability evolves slowly
before the crossing point. With a threshold higher than the crossing
point (𝑁𝑁𝑁𝑂𝑉𝑡ℎ𝑛 = 64) the red spectrum is obtained. Looking at
the 1341.6 keV ( 132

+
→ 9

2
+ 105In) transition, the reduction of the

ackground transitions due to the higher neutron selectivity becomes
isible. At the same time, counts in the interesting peaks are also well
educed. This analysis bolsters our confidence that the output of the
nn is a good marker for a precise neutron selection in neda.

The last point we have checked is how the networks are able to
nterpolate on inputs that have not been part of the training set (see
ection 2). Indeed, specific cuts have been used to tag neutrons (see
lack contour in Fig. 2) and 𝛾-rays (red contour in Fig. 2). The three
etworks have consistently characterized such an unlabeled category:
he bulk of events in between the cuts are classified with Normalized

Neural Network Output Value between 40 and 60, i.e. between the
main peaks corresponding to 𝛾-rays and neutrons. Such capability to
nterpolate is illustrated in Fig. 2 where one can see the distribution
f inputs having, for the mlp architecture, a Normalized Neural Network
utput Value in the range 40 to 60. A polynomial fit (order 3) of the
islabel probability curve in that range has shown that the inflection
oint of the curve matches almost the position of the lowest points in
he valley of the Normalized Neural Network Output Value distribution.
s already pointed out, this valley is deeper for the lstm architecture.

n order to see whether or not such architecture outperforms the other
nes, we have realized complementary studies using synthetic pulses

nstead of real data.

5

. Results on pseudodata

The anns slightly differ in their response function and their capabili-
ies to interpolate. In order to understand how sensitive they are to the
nput, we have generated synthetic pulses instead of real data. This has
wo main advantages:

• there are no ambiguities at all concerning the nature of the
particles generating the waveforms used for training;

• the shape of the signal is parameterized and all the parameters
are completely known.

n the following sections, the procedure to produce signals is first given
nd then the sensitivity to some parameters is explored.

.1. Waveform generation

We have used the Marrone’s model which describes scintillator
ulse shapes as (see [11])

(𝑡) ∝
[

𝑒𝑥𝑝
(

−
𝑡 − 𝑇0
𝜃

)

− 𝑒𝑥𝑝
(

−
𝑡 − 𝑇0
𝜆𝑠

)

+ 𝑅 𝑒𝑥𝑝
(

−
𝑡 − 𝑇0
𝜆𝑙

)

]

(1)

where 𝜃, 𝜆𝑠 and 𝜆𝑙 are different specific decay times, in principle
constant for a given material. 𝑇0, the time at which the signal starts,
experimentally depends on the way the electronic card captures the
waveform. The interaction of neutrons with liquid scintillator detectors
produces more excited molecular states with long decay times than 𝛾-
rays. Since the 𝑅 parameter in Eq. (1) controls the proportion of the
longest decay time (𝜆𝑙) to the signal, it is directly connected to the
nature of the interacting particle.

In order to set parameters which are as realistic as possible, clean
signals from real neda detectors have been fitted with the function and
the parameters extracted from the parameters distributions obtained. It
leads to set 𝜃 to 16 ns, 𝜆𝑠 to 20 ns and 𝜆𝑙 to 270 ns. Sensitivities to 𝑅 and
𝑇0 have been tested and values have been set differently depending on
the objectives. However, the mean value of 𝑅 has been set from the fits
to 𝑅𝑚𝑒𝑎𝑛−𝑛 = 0.0415 for neutrons and 𝑅𝑚𝑒𝑎𝑛−𝛾 = 0.0165 for 𝛾-rays. Once
the parameters are fixed, two histograms are built, one for neutrons and
one for 𝛾-rays with a binning corresponding to the sampling of the real
signals. The signals required for the anns training/validating/testing
are then randomly generated. The full procedure is to first select the
nature of the particle (equal number of neutrons and 𝛾-rays), to set the
integral 𝐼𝑠 (constant and equal to the mean value of the real signals)
and the 𝑇0 (from the relevant Gaussian distribution) of the signal, and
then to randomly produce 𝐼𝑠 values from the corresponding histogram:
this allows the inclusion of some random statistical noises, quite similar
to the real ones even if a bit smaller, to the generated waveforms. One
should mention however that this level of noise remains quite low and
does not affect the general conclusions given in Section 4.2.

4.2. Sensitivity to input parameters 𝑅 and 𝑇0

The first parameter we have played is 𝑅 with 𝑇0 constant and equal
to 80 ns. Signal by signal, 𝑅 has been randomly set using Gaussian
distributions centered respectively on 𝑅𝑚𝑒𝑎𝑛−𝑛 = 0.0415 for neutrons and
𝑅𝑚𝑒𝑎𝑛−𝛾 = 0.0165 for 𝛾-rays. The widths of the distributions 𝜎𝑛 and 𝜎𝛾
have been modified so that for some studies the two distributions are
clearly separated while for others they overlap. What we have observed
is, whatever the ann architecture, the network, once trained, is able
to recognize a 𝛾-ray from a neutron with almost 100% efficiency as
soon as the neutron distribution is well separated from the 𝛾-ray one.
In case of overlapping, the three networks are wrong in about 50% of
the cases for signals in the overlapping area. This is of course expected.
For the second study, the two widths for the 𝑅 Gaussian distributions
have been set respectively to 𝜎𝑛 = 0.0013 and 𝜎𝛾 = 0.001, so that the
two distributions do not overlap. The signals for the training have been
generated using a Gaussian distribution for 𝑇 with a 𝜎 of 2 ns. The
0
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Fig. 4. Mislabel probability (in blue) and statistics (in red) for the three ann architectures as a function of the threshold 𝑁𝑁𝑁𝑂𝑉𝑡ℎ𝑛 applied to the Normalized Neural Network Output
Value 𝑁𝑁𝑁𝑂𝑉 . The horizontal lines correspond to the results obtained by applying a discrimination based only on standard binary cuts, the ones used to train the networks.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. Part of agata 𝛾-ray spectra obtained by setting different conditions on neda. In blue by applying a threshold (𝑁𝑁𝑁𝑂𝑉𝑡ℎ𝑛 = 52) on the Normalized Neural Network Output
Value slightly lower that 𝑁𝑁𝑁𝑂𝑉𝑡ℎ𝑛𝑐 = 58 which corresponds in Fig. 4 to the crossing point between the horizontal blue line and the mlp Mislabel probability curve. In gray by
applying classical 2D cuts, the ones used to train the networks. In red by applying a threshold (𝑁𝑁𝑁𝑂𝑉𝑡ℎ𝑛 = 64) on the Normalized Neural Network Output Value higher that
𝑁𝑁𝑂𝑉𝑡ℎ𝑛𝑐 = 58. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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etworks have then been tested with three set of signals generated by
roadening the 𝑇0 distribution respectively with 𝜎 = 10 ns, 𝜎 = 20 ns
nd 𝜎 = 40 ns. Such a procedure is performed to check the sensitivity of
he network to misalignment of the signals, which is likely to happen
uring an experiment. We have quantified the percentage of signals
or which the classification done by the three networks is reliable,
.e. when the range in the Normalized Neural Network Output Value for
hich the distribution coming from neutrons overlaps with the one

rom 𝛾-rays is excluded. The results are given in picture 6. Obviously,
he performances of the lstm network are not affected at all by any
hift in time of the input signals. This is certainly inherent to such
etworks for which correlations in the input sequence are explored.
uch a characteristic is of great interest for online processing, this
ould allow to have an algorithm that can operate with the same
fficiency in case any time misalignment occurs. The cnn architecture
 a

6

emains efficient but only to some extent. For that network, it should be
oticed that there might be different combinations of hyper parameters
hat could possibly reach the raw performances of the lstm network.
he mlp architecture is the worst: the loss in efficiency reaches quickly
0% as soon as the width of the 𝑇0 distribution is increased. In fact, the
iscrimination for that network relies mostly on a particular sub-range
f input values (the decay part which is the part of the signal different
or both particles). For instance, setting to 0 the rising part of the signals
odifies only slightly the mlp performances. It is thus crucial to feed this
etwork only with well aligned signals, at least signals similar to the
aveforms used for the training part.

Closely related to this behavior, we would like to mention other
tudies we have performed concerning the performances of the three
rchitectures to identify and disentangle pile-up signals. The full studies
re out of the scope of the present article. However, one could mention
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Fig. 6. (Color online) Discrimination power of the three different ann architectures as
a function of the 𝜎 of the 𝑇0 Gaussian distribution used to generate the signals and
est the networks.

hat, as it is the case for the studies on sensitivity to the 𝑇0 parameter,
he mlp architecture has been found less capable of identifying pile-up
n cases where the two signals have very close 𝑇0 values.

. Conclusions

Different ann architectures have been tested to perform 𝑛/𝛾 discrim-
ination in the neda neutron detector. Thanks to the coupling with the
agata 𝛾-ray detector, we have been able to quantify and qualify pre-
cisely the performances of the networks compared to a more classical
approach based on binary cuts. Thresholds on a unique parameter, the
output of the network, are equivalent to apply complex cuts to select
neutrons. The interpolation capabilities of the networks have also been
shown to be correct. Using the TensorFlow library, online inferences on
cpu based machines have been performed for the mlp architecture. The
three anns slightly differ in their way of classifying the input data. One
explanation is the sensitivity of the networks to the misalignment of the
input waveform. On this point, the lstm architecture is extremely robust
such that it embodies the preferred candidate for online processing. On
the other hand, inference for such architectures needs more processing
time, which may impose the use of GPU cards. Like for more classical
discrimination algorithms, calibration (feature extraction), may deteri-
orate the global performances of the ANN if the chosen solution is too
sensitive to parameters likely to be unstable. One solution offered by
machine learning techniques would be to use autoencoders in order to
identify, signal by signal, anomalies so that the most adapted algorithm

could be applied. t

7

CRediT authorship contribution statement

X. Fabian: Formal analysis, Software, Methodology, Visualization,
ata curation, Validation. G. Baulieu: Conceptualization, Formal anal-
sis, Software, Methodology, Visualization, Data curation. L. Ducroux:

Formal analysis, Software, Methodology, Data curation, Validation. O.
Stézowski: Conceptualization, Formal analysis, Software, Methodol-
ogy, Writing - original draft, Writing - review & editing. A. Bou-
rad: Investigation, Data curation, Resources. E. Clément: Investiga-
ion, Data curation, Resources. S. Coudert: Investigation, Data cura-

tion, Resources. G. de France: Investigation, Data curation, Resources.
N. Erduran: Investigation, Data curation, Resources. S. Ertürk: Inves-
tigation, Data curation, Resources. V. González: Investigation, Data
curation, Resources. G. Jaworski: Investigation, Data curation, Re-
sources. J. Nyberg: Investigation, Data curation, Resources. D. Ralet:
Investigation, Data curation, Resources. E. Sanchis: Investigation, Data
curation, Resources. R. Wadsworth: Investigation, Data curation, Re-
sources.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

One of the author acknowledges support of the National Science
Centre, Poland (NCN) (grant no. 2017/25/B/ST2/01569).

Appendix. Conditional and mislabel probabilities

With neda and agata in coincidence, one can build 𝛾-ray spectra
s a function of the number of neutrons detected (and classified as

such). This is illustrated in Fig. A.1. The horizontal axis represents
𝛾-ray energies detected on which are shown several 𝛾-ray transitions
(𝛾0𝑛, 𝛾1𝑛 … , 𝛾𝑦𝑛) that unambiguously identify a given nucleus using its
level scheme. The superscript is thus related to the number of neutrons
emitted by the compound nucleus to feed a particular residue. 𝛾-ray
spectra (𝑆𝑥𝑛) are decomposed on the second axis depending on the
number of neutrons detected (𝑥𝑛). On the vertical axis one can read the
intensity of the measured 𝛾-ray lines. For a given 𝛾-ray line, the sum of
all the intensities over the different spectra is constant and can be used
to calculate several conditional probabilities. 𝑝(𝑥𝑛|𝑦𝑛), the conditional
probability to detect (and identify as such) 𝑥 neutrons knowing that 𝑦
are emitted, is given by

𝑝(𝑥𝑛|𝑦𝑛) =
𝐼𝑆𝑥𝑛 (𝛾𝑦𝑛)

∑∞
𝑥𝑛=0 𝐼𝑆

𝑥𝑛 (𝛾𝑦𝑛)
(A.1)

The intensities on the diagonal of the matrix (𝑥 = 𝑦) are related to
he efficiency of the neda array. In particular, for the case 𝑥 = 𝑦 = 1, one
Fig. A.1. (Color online) Schematic matrix showing the intensity of the 𝛾-ray lines 𝛾𝑦𝑛 corresponding to 𝑦𝑛 neutrons emitted decomposed into different spectra, 𝑆𝑥𝑛 corresponding
to the number of neutrons 𝑥𝑛 detected and classified as neutron in neda.
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can get the efficiency to select the one neutron evaporation channel.
Probabilities from under the diagonal (less neutrons detected than
emitted) are due mostly to the geometrical efficiency since the detector
does not cover 4𝜋. It includes also the probability to identify a neutron
as a 𝛾-ray. This number however should be marginal since much more
𝛾-ray are emitted and interact with the detector than neutrons. More
interesting for this paper are the intensities over the diagonal: they are
due to neutron crosstalks (the same neutron hits several modules) as
well as wrong classifications i.e. 𝛾-rays identified as neutrons. Looking
at events where only one neda module has fired removes the contri-
bution of the cross-talks. Thus the conditional probability 𝑝(1𝑛|0𝑛) to
detect one neutron knowing that no neutron has been emitted, can be
used as a measurement of the mislabel probability due to the classifier.

𝑚𝑖𝑠𝑙𝑎𝑏𝑒𝑙 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑝(1𝑛|0𝑛) =
𝐼𝑆1𝑛 (𝛾0𝑛)

∑∞
𝑥𝑛=0 𝐼𝑆

𝑥𝑛 (𝛾0𝑛)
(A.2)
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