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Abstract: Nuclear energy is a clean and popular form of
energy, but leakage and loss of nuclear material pose a
threat to public safety. Radiation detection in public spaces
is a key part of nuclear security. Common security cameras
equipped with complementary metal oxide semiconductor
(CMOS) sensors can help with radiation detection. Previous
work with these cameras, however, required slow, complex
frame-by-frame processing. Building on the previous work,
we propose a nuclear radiation detection method using
convolution neural networks (CNNs). This method detects
nuclear radiation in changing images with much less com-
putational complexity. Using actual video images captured
in the presence of a common Tc-99m radioactive source, we
construct training and testing sets. After training the CNN
and processing our test set, the experimental results show
the high performance and effectiveness of our method.
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1 Introduction

Nuclear energy has been rapidly developed and promoted
worldwide as an important energy source and now plays
an important role in modern industry. However, nuclear
leakage [1], loss of nuclear materials and equipment [2],
and the use of radioactive minerals as commemorative
gifts [3] remind us that nuclear radiation detection and
monitoring remain necessary for public safety.

Complementary metal oxide semiconductor (CMOS)
image sensors respond directly to X-rays and gamma
rays. Because of their decreasing prices and ready avail-
ability, they have generated tremendous research interest
for detecting radiation. CMOS sensors can measure radia-
tion doses [4–7], detect radiation events [8–11], gather
cosmic rays, and support space exploration [12,13]. CMOS
cameras have been used directly for nuclear radiation
detection with the lens covered [14–19]. In our previous
work [20,21], we used uncovered CMOS cameras to detect
nuclear radiation via image processing methods. However,
processing every image frame is computationally expensive
and time-consuming.

To speed up detection time, computer vision and
machine learning methods are increasingly being used.
In the case where the camera’s lens is not shielded, the
electrons excited by radiation particles and visible light
in the depletion layer of the p–n junction of the CMOS
sensor are superimposed on each other, resulting in the
grayscale value of bright blotches in the video image
being larger than the surrounding grayscale value [21].
Using a CMOS camera to detect nuclear radiation will
collect a large amount of image data, which inspired us
to use a deep learning algorithm that is good at proces-
sing a large number of image data to assist nuclear radia-
tion detection. While convolution neural network (CNN)
is widely used in target detection of nuclear medical
images and nuclear radiation imaging [22–25], most of
the direct detection of nuclear radiation events is a
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manual judgment by detection instruments. To reduce
computational complexity and improve detection effi-
ciency, we proposed a nuclear radiation detection method
using a CNN model and an uncovered CMOS camera for
public surveillance environment. We obtained surveillance
videos from a CMOS camera with a commonmedical Tech-
netium-99m (Tc-99m) radiation source. We then imple-
mented an image fusion method to construct training
and testing sets. Finally, the CNN was trained to test our
method’s performance for nuclear radiation detection. We
also perform experiments to verify the feasibility and effec-
tiveness of our proposed method.

2 Materials and methods

2.1 Data acquisition

Surveillance videos were recorded using a TTQ-JW-02
camera with a 1/2.7 inch CMOS sensor OV2710-1E [26], a
3 μm pixel size, a frame rate of 25 fps, and 1,920 × 1,080
pixel image size. Table 1 provides the specifications of the
OV2710-1E sensor, which is widely used in machine
vision [27] and internet of things (IoT) [28] applications.

To obtain the bright spot image without radiation, we
covered the camera lens and recorded 48 h of video. We
selected 100,000 images with bright blotches from the
video and labeled them as Dataset A. We then mounted
the camera on a tripod to record videos without radiation,
obtaining 200,000 frames of noncontinuous images with
people but without radiation blotches designated as Dataset
B. We placed a 7 × 108-Bq Tc-99m radioactive source above
the camera, as shown in Figure 1. The half-life of Tc-99m is
6.02 h and the γ-ray energy is 140 keV. We used the camera
with its lens covered to obtain 100,000 frames of radiation
images designated as Dataset C. In addition, we used
Dataset 1 and Dataset 2 from other research [21], including
20,000 monitoring images without radiation and 20,000
images with radiation captured in our previous work, to
test the effectiveness of our proposed method.

When the CMOS camera lens is not shielded, the
electrons that are excited by radiation particles and

visible light are superimposed on each other in the p–n
junction depletion layer of the CMOS sensor, resulting in
the grayscale values of bright blotches being larger than
the surrounding grayscale values in the video image.
However, it is difficult for researchers to distinguish
whether there are radiation bright blotches in images
from surveillance cameras, especially when there are
moving objects in the image backgrounds. Because
nuclear radiation experiments cannot be carried out in
public, it is not possible to obtain monitoring images con-
taining radiation images directly. Therefore, we use an
image fusion algorithm to process the images with only
bright blotches (noise bright blotches and radiation bright
blotches) and the monitoring images without radiation
bright blotches to obtain the training and test sets for
further experiments.

Sample frame images with blotches in Datasets A and
C are shown in Figure 2. The corresponding original

Table 1: Product specifications of the CMOS sensor

Model OV2710-1E Shutter Rolling

Active array size 1,920 × 1,080 Maximum exposure interval 1,096 tline
Lens size 1/2.7-in Image area 5,856 μm × 3,276 μm
Scan mode Progressive Package dimensions 7,465 μm × 5,865 μm

Figure 1: TTQ-JW-02 CMOS camera and Tc-99m radioactive source.
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image without radiation bright blotches in Dataset B is
shown in Figure 3. Table 2 shows the image category of
each dataset.

2.2 Acquisition of training set and
testing set

2.2.1 Weighted averaging image fusion

Image fusion aims to combine multiple images from one
or more sensors into a new image to meet a specific need
using an image fusion algorithm. The result contains
more useful information than any single image [29]. Cur-
rent image fusion methods work at three levels [30]. The
first and lowest level is pixel-level fusion, which retains
original information as much as possible. The second
level is feature-level fusion, which might lose important
information in the image and distort the image. The third
level is decision-making-level fusion, with difficult proces-
sing and implementation. We use the pixel-level image
fusion method to construct the images with and without
radiation from the observed image to retain bright blotch
andmonitoring information. These images form the training
and test sets, respectively.

The weighted average (WA) method is the simplest
pixel-level image fusion method and has the advantages
of simple implementation, fast operation, and the ability
to improve the signal-to-noise ratio of the fused image.
The improved algorithm is widely used in infrared ima-
ging, medical imaging, and other fields [31–33]. The prin-
ciple of the WA method can be described as follows.
Given images F1 and F2, the pixel value of fusion image
F at pixel point (x, y) is

( ) ( ) ( )= × + ×F x y w F x y w F x y, , , ,1 1 2 2 (1)

Figure 2: Two images with bright blotches: (a) unirradiated;
(b) irradiated.

Figure 3: A monitoring image without radiation.
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where w1 and w2 are the weights of F1(x, y) and F2(x, y),
respectively, and w1 + w2 = 1. In this work, w1 and w2 are
determined by F1(x, y) and F2(x, y):

⎧
⎨⎩

( ) ( )
=

≥w F x y F x y1, , , ,
0, otherwise.1

1 2 (2)

2.2.2 Training set and testing set

We randomly fused 100,000 images in Dataset A and
100,000 images in Dataset B using the WA method and
grouped 100,000 fusion images as Dataset N (negative).
The remaining images in Datasets B and C were randomly
fused to obtain images in Dataset P (positive). We used
Datasets N and P as the training set.

In our previous work [21], we obtained Data1 and Data2
that included 10,000 unirradiated and 10,000 radiated
monitoring images. In this work, we expanded the number
of both images to 20,000, which was used as a testing set.

2.3 Convolutional neural network

Deep learning is one type of machine learning algorithm
and employs a deep neural network structure. A CNN is a

multiple layer feed-forward neural network designed spe-
cifically to process large numbers of image or sensor data
in the form of multiple arrays by considering local and
global stationary properties [34]. CNN is popular due to
its efficient performance in solving object recognition tasks
such as gesture recognition, face recognition, object clas-
sification, and scene description generation [35–39].

A CNN consists of three kinds of primary hidden
layers: a convolution layer, a pooling layer, and a fully
connected layer. The neurons of the fully connected layer
are arranged in three dimensions: width, height, and
depth. Readers interested in understanding the detailed
structure and principle of each layer of CNNs are directed
to Christian Szegedy [37]. For the sake of a brief review of
the layers and the rectified linear unit (ReLU) of the CNN,
we briefly describe them here:
• Convolution layer: A convolution layer is composed of
filters convoluted on input images to extract features.
This layer discovers features in the image.

• Pooling layer: The pooling layer receives feature sets
from the convolution layer and then shrinks large
images while preserving the most important informa-
tion. Image calculations in the pooling layer do not
affect the previous layer’s output because the only max-
imum value from each window is taken and brought to
the upper layer. This layer also preserves the best fits of
each feature within the window.

• Rectified linear unit: The ReLU replaces every negative
numeric value from the pooling layer with 0 to address
the problems of disappearing gradients and conver-
gence fluctuation. This preserves the CNN’s mathema-
tical stability by preventing learned values from getting
stuck near 0 or blowing up toward infinity.

• Fully connected layer: Each node of the full connection
layer is connected with all nodes of the upper layer to

Table 2: The image category of each dataset

Dataset Image category

A Images with noise bright blotches
B Monitoring images without radiation
C Images with radiation bright blotches

Figure 4: The base architecture of CNN used in this work.
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synthesize the features extracted from the front, and
translate the high-level filtered images into categories
with labels.

Figure 4 shows the framework of the CNN used in our
research. Our CNN consists of five convolution layers and
three fully connected layers. There are three max pooling

operations (pooling layer) behind the first, second, and
fifth convolution layers, which are not shown in Figure 4.
The main structure of the model is input data; convolu-
tion, max pooling, ReLu activation; convolution, max
pooling, ReLu activation; convolution, ReLu activa-
tion; convolution, ReLu activation; convolution, max
pooling, ReLu activation; full connection, ReLu activation,

Figure 5: Cropped image set before fusion: (a) monitoring image; (b) bright blotches.
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dropout; full connection, ReLU activation, dropout;
output.

In this CNN, the input data is a 3-channel image of
size 224 × 224 pixels. The first convolution layer uses 96
convolution cores of size 11 × 11 × 3 and is divided into
two groups (48 in each group). The input layer is convo-
luted according to the stride size of 4-pixel to produce
two groups of 55 × 55 × 48 convolution results. For con-
volution results, we use the ReLU activation function to
obtain the activation results. Using the overlap maximum
pooling with a window size of 3 × 3 and a stride size of
2-pixel, we obtain 27 × 27 × 48 pooling results. We apply a
local response normalization operation to obtain the nor-
malized result of 27 × 27 × 48. In the later convolution
layers, similar operations are performed with different
windows and stride sizes. The window size of each layer
is shown in Figure 4.

To evaluate the validity of the method, we used the
following evaluation indicators commonly used in classi-
fication tasks:

=

+

Precision TP
TP FP

, (3)

=

+

Recall TP
TP FN

, (4)

=

× ×

+

F1 2 Precision Recall
Precision Recall

, (5)

=

+Accuracy TP TN
Total

. (6)

In these equations, T represents the result of the clas-
sifier prediction being correct and F represents that it is
incorrect; P represents positive samples and N the nega-
tive samples; TP, TN, FP, and FN represent the number of
samples corresponding to the following four cases; TP is
true positive, an actual positive sample correctly deter-
mined to be positive; TN is true negative, an actual nega-
tive sample correctly determined to be negative; FP is
false positive, a negative sample incorrectly determined
to be positive; FN is false negative, a positive sample
incorrectly determined to be negative; and Total is the
total number of test samples.

3 Results

In this experiment, most areas of the surveillance images
were unchanged, so we cropped areas where people
appear along with the bright blotches in Datasets A and
B. The pixel size of the cropped images was 224 × 224, as
shown in Figure 5. The unirradiated images in Dataset A
and the radiated images in Dataset C were randomly
fused with the monitoring images in Dataset B (using
the method described previously) to obtain the training

Figure 6: Image fusion generates training set samples.

Table 3: Data used in this research

Type of radiation Unirradiated image Radiated image

Training set 75,000 75,000
Validation set 25,000 25,000
Testing set 20,000 20,000
Size of data set 3 × 224 × 224 (RGB,

pixel)
3 × 224 × 224 (RGB,
pixel)
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set. Training images were labeled 0 or 1 according to the
presence of radiation. Figure 6 shows the above process.

Thus, we obtained the training set, including the ver-
ification set. In our previous work, we obtainedmonitoring
images containing radiation. We used this previous data as
the test set for evaluating the CNN model. Table 3 provides
details about this prior data. Then the CNN was trained,
validated, and tested on our deep learning server, which
had the configuration shown in Table 4. The training loss
and accuracy are shown in Figure 7.

Finally, we used the testing data to test the effective-
ness of the CNN model, with results given in Table 4. The
precision, recall, F1, and accuracy of the test results indi-
cate that the proposed method effectively detected radia-
tion. In order to further verify the performance of CNN on
the research object in this paper, we also trained and
tested the other two widely used CNN models, and the
final test results are listed in Table 5.

4 Discussion

In this article, a new method based on CNN to detect
nuclear radiation using CMOS surveillance cameras is
proposed. However, limitations in the ability to obtain

radiation images from actual populated places led the
authors to use image fusion to construct training and
validation sets. The data collected in the previous work
as a testing set were also used.

From the results shown in Figure 6 and summarized
in Table 5, we point out that our method achieves a recall
score of 0.9736 for radiation detection. This score indicates
that more radiation events can be identified successfully.
Precision performanceneeds further improvement because
a small number of unirradiated events were identified as
radiation events.

5 Conclusion

In this article, a new method of detecting nuclear radia-
tion under public surveillance scenarios that uses an
uncovered CMOS camera, an image fusion method, and
a CNN model is proposed. Surveillance videos were obtained
from a CMOS camera with a common medical Technetium-
99m (Tc-99m) radiation source. Then, an image fusionmethod
was implemented to construct training and testing sets.
Finally, we trained the CNN and tested our method’s per-
formance for nuclear radiation detection. The experimental
results show that performancewith this testing set was not as
high as for the training set, but recalled, F1, and accuracy
scores still show significant effectiveness. Our proposed
method offers significant promise for real-time detection
of nuclear radiation using common monitoring cameras.
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Table 4: Experimental setup in this research

CPU version Intel® Core™ E5-4655 CPU @3.20 GHz

GPU version NVIDIA GeForce GTX 1080Ti × 2
Framework TensorFlow
Operation system Ubuntu 16.04
Network used AlexNet

Figure 7: Loss and accuracy of CNN training phase.

Table 5: Precision, recall, F1, and accuracy on testing data

Model Precision Recall F1 Accuracy

AlexNet 0.8981 0.9736 0.9343 0.9314
GoogleNet 0.9174 0.9293 0.9233 0.9228
ResNet 0.9186 0.9443 0.9443 0.9303
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