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Abstract 9 
 We have developed an algorithm for on-the-fly radionuclide identification for radiation 10 

portal monitors using organic scintillation detectors. The algorithm was demonstrated on 11 

experimental data acquired with our pedestrian portal monitor on moving special nuclear material 12 

and industrial sources at a purpose-built radiation portal monitor testing facility. The experimental 13 

data also included common medical isotopes. The algorithm takes the power spectral density of 14 

the cumulative distribution function of the measured pulse height distributions and matches these 15 

to reference spectra using a spectral angle mapper. 16 

 F-score analysis showed that the new algorithm exhibited significant performance 17 

improvements over previously implemented radionuclide identification algorithms for organic 18 

scintillators. Reliable on-the-fly radionuclide identification would help portal monitor operators 19 

more effectively screen out the hundreds of thousands of nuisance alarms they encounter annually 20 

due to recent nuclear-medicine patients and cargo containing naturally occurring radioactive 21 

material. Portal monitor operators could instead focus on the rare but potentially high impact 22 

incidents of nuclear and radiological material smuggling detection for which portal monitors are 23 

intended.   24 
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1. Introduction 25 

1.1. Motivation 26 
 The smuggling of special nuclear material (SNM), including highly enriched uranium 27 

(HEU) and weapons-grade plutonium (WGPu), and radiological material across international 28 

borders remains a threat to world security [1–11]. The installation of thousands of radiation portal 29 

monitors (RPMs) at border crossings, shipping ports, and airports over the past decades aims to 30 

detect and deter the movement of these dangerous materials [12–16]. RPMs typically measure 31 

gamma ray and neutron count rates. If measured neutron or gamma ray count rates exceed 32 

thresholds above the anticipated natural background count rates, the offending vehicle, person, or 33 

cargo container undergoes a thorough inspection to determine the location and identity of the 34 

radiation source [15,17–20]. 35 

 Worldwide, only a handful of incidents of nuclear and radiological material interdictions 36 

are reported every year [2]. Nevertheless, the Unites States Customs and Border Protection 37 

processes hundreds of thousands of RPM radiation alarms annually [15]. Nearly every one of these 38 

RPM radiation alarms is a “nuisance” or “innocence” alarm. One major source of nuisance alarms 39 

stems from cargo containing a large enough quantity of naturally occurring radioactive material 40 

(NORM) to set off the RPM gamma ray alarm. Common NORM culprits include kitty litter, 41 

fertilizer, glazed ceramics, and a host of other materials [21]. The second source of nuisance alarms 42 

stems from recent nuclear-medicine patients. Depending upon the activity and half-life of the 43 

administered isotope, a recent nuclear-medicine patient may alarm at an RPM anywhere from days 44 

up to months after a procedure. The medical radionuclide 99mTc has a six-hour half-life, and is 45 

estimated to retain high enough activity after a procedure to cause an RPM alarm for up to 3.4 46 

days after a procedure. Because 99mTc accounts for over 90% of nuclear medicine procedures in 47 

the United States, it is also the most common nuisance alarm source amongst nuclear-medicine 48 

patients [19]. 49 

 Nuisance alarms cost additional personnel time and thus financial resources to process [15]. 50 

Therefore, RPMs should ideally distinguish special nuclear material from NORM or medical 51 

sources on-the-fly. Two challenges hamper this goal. Firstly, measurement times per RPM 52 

occupancy are on the order of three seconds, so the collected data can exhibit a high degree of 53 
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statistical uncertainty. Secondly, the cost of each RPM unit has to be low enough to make 54 

expansive deployment financially feasible.  55 

The vast majority of deployed RPMs contain large slabs of plastic scintillators for gamma 56 

ray detection. Organic scintillators would not be the first choice for any spectroscopy application, 57 

because Compton scattering is the predominant observed gamma ray detector interaction. High-58 

purity germanium or inorganic scintillators, on the other hand, would exhibit radio-nuclide specific 59 

photo-peaks in measured spectra due to the predominant photo-electric effect gamma ray 60 

interaction in these detectors. Such detectors could be excellent candidates for an on-the-fly 61 

spectroscopic RPM. However, the relatively high cost of these detector materials relative to 62 

organic scintillators makes such RPMs unattractive. Therefore, finding a way to use organic 63 

scintillator measured pulse height distributions for radionuclide identification would open the door 64 

for an affordable spectroscopic RPM.   65 

1.2. Past work 66 
 We have developed two RPMs using liquid organic scintillation detectors, and tested 67 

them on a variety of moving neutron and gamma ray sources with different shielding 68 

configurations [22–27]. These RPMs were tested at a purpose-built facility for RPM testing at the 69 

European Commission’s Joint Research Centre (JRC) in Ispra, Italy, in February and November 70 

2014. A variety of sources, including 51 g of 89.9 % 235U HEU, and 6.6 g of 93% 239Pu WGPu, 71 

were available to us for testing the RPM response to SNM and other radiation sources.  72 

 On-the-fly radionuclide identification was developed in stages for the pedestrian RPM. 73 

These identification algorithms relied on template matching between measured and reference 74 

gamma ray pulse height distributions (PHDs) [26,28]. The performance of this algorithm was 75 

improved with the use of cumulative distribution functions (CDFs) of the pulse height 76 

distributions, but none of the algorithms produced the desired close to 100% correct radionuclide 77 

identification percentage [26].  78 
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2. Data analysis method 79 

2.1. Raw RPM data 80 
 Three seconds of RPM data acquisition are triggered when movement is detected by the 81 

occupancy sensors. Detector pulses are digitized and pulse shape discrimination based on a charge 82 

integration method is used to discern pulses arising from neutron versus gamma ray interactions 83 

in the detectors [29]. Pulse shape discrimination, therefore, allows for the creation of separate 84 

PHDs for measured neutron and gamma ray interactions in the RPM. Examples of raw and 85 

background-corrected gamma ray PHDs for a moving WGPu source measured with the pedestrian 86 

RPM are given in Figure 1. The measured PHDs exhibit high statistical uncertainty due to the low 87 

number of counts one can expect in a three second measurement of a moving source of this activity, 88 

as seen when comparing the PHDs in Figure 1 before and after background subtraction. 89 

Background measurement times were on the order of 30 minutes. Background gamma ray PHDs 90 

exhibited low statistical uncertainty relative to the three second moving source measurements.     91 

 Each PHD bin on-average contains less than 50 counts after background subtraction. For 92 

example, the dataset shown in Figure 1 contains 3556 total counts for a three-second measurement 93 

before subtracting a background PHD normalized to three seconds and containing 2062 total 94 

counts. Propagating uncertainty for the background subtraction and conversion to count rate result 95 

in a combined standard uncertainty of 5% for this single RPM measurement [30]. On-the-fly 96 

radionuclide identification therefore is challenging due to this high statistical uncertainty, and due 97 

to the lack of radionuclide-specific photopeaks when using organic versus inorganic scintillators. 98 

 99 
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 100 

Figure 1: Example of a gamma ray PHD resulting from a three second measurement of moving 6.6 g WGPu with the 101 
pedestrian RPM at the European Commission Joint Research Centre in Ispra, Italy, in February 2014 before (blue 102 
squares) and after (red circles) background subtraction [26]. The source was moving at 1.2 m/s on an electric rail-103 

cart at 1 m separation from the RPM. The source was travelling at a height of 1.2 m.  104 

  105 

2.2. Modifying RPM data 106 
The first step in our radionuclide identification algorithm is to compute CDFs of the 107 

measured and reference gamma ray PHDs. The CDF, 𝑥(𝑛), of any distribution 𝐹(𝑥) is the 108 

probability that X takes a value less than x, i.e., 𝑃(𝑋 ≤ 𝑥). A CDF can be computed by integrating 109 

the PHD bin-by-bin, and expressing what fraction of the total PHD exists to the left of each bin. 110 

Our subsequent analysis uses 𝑦(𝑛) = ൫1 − 𝑥(𝑛)൯. Figure 2 shows 𝑦(𝑛) of 14 gamma ray reference 111 

spectra and three moving-source measurements taken with the pedestrian RPM at the JRC and 112 

C.S. Mott Children’s Hospital [26,27,31]. The x-axis of Figure 2 shows pulse amplitudes in units 113 

of light output [keVee] based upon an energy calibration using the Compton edge of 137Cs. The 114 

pulse amplitudes are shown in descending order to better visualize small differences in CDFs at 115 

higher energies, whereas much of the CDF arises from only a few lower energy bins, especially in 116 

the cases of the lowest energy gamma ray emitting sources, like 57Co and 241Am. 117 

 118 
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 121 

Figure 2: High-gain 𝑦(𝑛) library matrix for RPM radionuclide identification with 𝑦(𝑛) for gamma ray 122 
PHDs of moving measurements of (a) 133Ba, (b) 137Cs, (c) and 131I with pedestrian RPM at JRC Ispra, Italy, in 123 

February 2014 [26], and 𝑦(𝑛) of seven common medical isotopes measured at University of Michigan’s C.S. Mott 124 
Children’s Hospital in June 2016. Library matrix spectra generally exhibited a combined standard uncertainty below 125 
0.1% due to the much longer measurement times relative to the three second moving source measurements, so error 126 

bars were excluded for the library spectra. 127 

 Visual comparisons of measured and reference 𝑦(𝑛) show that, for example, the 𝑦(𝑛) of 128 

the moving 137Cs and the 137Cs reference 𝑦(𝑛) behaving very similarly over the shown pulse height 129 

range. This trend, however, might not manifest itself in a point-by-point comparison of these 𝑦(𝑛), 130 

such as a least-squares comparison. A few outliers or detector gain shift could make a fit appear 131 

poor, even though visually a reference and measured 𝑦(𝑛) might agree well over most of the 132 

energy range. Therefore, we use a discrete Fourier transform (DFT) to convert 𝑦(𝑛) from the 133 

energy to the frequency domain. The Fourier transform will then describe how rapidly 𝑦(𝑛) 134 

changes over its domain, thus capturing information on its overall shape and behavior over its 135 

energy domain. 136 

 We use a fast Fourier transform (FFT) algorithm [32] to reduce the complexity of 137 

computing the DFT, as shown in Equation 1 below, for a vector of length N. 138 

                            𝐷𝐹𝑇(𝑘) = ∑ 𝑦(𝑛) exp ቀ−𝑖 ∗ 2 ∗ 𝜋 ∗ (𝑘 − 1) ∗
ିଵ

ே
ቁ ,  1 <=  𝑘 <=  𝑁ே

ୀଵ                  (1) 139 
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The absolute value of DFT(k) is the amount of frequency (Equation 2) in the signal, y(n) is 140 

1 − 𝑥(𝑛), n is the sample in the energy domain, and k is the sample in the frequency domain: 141 

                                                                                 𝑓 =
ିଵ

ே
.                                                        (2) 142 

For a continuous signal, the power spectral density (PSD), shown in Equation 3, computes 143 

how “power” is distributed over frequency of 𝑦(𝑛) by computing the square of the FFT: 144 

                                                                            𝑃𝑆𝐷(𝑘) = |𝐹𝐹𝑇(𝑘)|ଶ.                                                                  (3) 145 

 For RPMs, the “power” of the signal has no direct physical meaning, as it would in 146 

electrical engineering applications. Nevertheless, the power spectral density provides us with a 147 

metric for how measured and reference spectra behave over their entire domain. 148 

2.3. Identifying radionuclides 149 
 We use spectral angle mapping (SAM) for comparing the modified measured RPM data 150 

from Section 2.2 to reference spectra. This method computes the spectral angle 𝛼 between the 151 

measured and reference power spectral densities (𝑃𝑆𝐷(𝑘) and 𝑃𝑆𝐷௧௫(: , 𝑖)), as shown in 152 

Equation 4 and Figure 3:  153 

                                                              𝛼 = cosିଵ ቂ
൫ௌ()∙ௌ ೌೝೣ(:,)൯

‖ௌ()‖‖ௌೌೝೣ(:,)‖
ቃ  [33].                                 (4) 154 

This computation is performed point-by-point, and results in a spectral angle 𝛼 in radians 155 

for each possible reference spectrum isotope i available in our library. The smaller the spectral 156 

angle, the better the fit is between a measured spectrum and that particular reference spectrum. 157 

Our algorithm selects the radionuclide with the reference spectrum that results in the lowest 158 

spectral angle 𝛼 as a match to the measured spectrum. Section 3.2. includes a discussion on 159 

maximum possible 𝛼-values and negative identifications.  160 
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 161 

Figure 3: Illustration of spectral angle 𝛼 that would be computed point by point between a measured spectrum and 162 
all possible reference spectra. The smallest total 𝛼 indicates the best fit in the SAM analysis [33]. 163 

 SAM was developed by J. W. Boardman in the early 1990s. The method’s original 164 

application involved mapping the distribution and composition of materials on the earth’s surface 165 

by comparing spectral similarities between measured and reference spectra from imaging 166 

spectrometry [33,34]. SAM has since been adopted for a variety of earth science applications for 167 

the purposes of spectral identification [35–38]. The SAM identification method has also been used 168 

in some limited fashions in nuclear sciences, but it has not yet been used for on-the-fly radionuclide 169 

identification with organic scintillators [39,40]. 170 

2.4. Comparison of radionuclide identification methods using F-scores 171 
F-scores provide a statistical measure of radionuclide identification algorithm 172 

performances, while also factoring in a system’s susceptibility to false negatives, i.e., not alarming 173 

on a present source [41]. The F-score (F) (Equation 5) utilizes both precision (p) and recall (r) 174 

values shown in Equations 6 and 7. Precision and recall values are based upon the system’s true 175 

positive alarms or correct identifications (𝑡), incorrect identifications or false positives (𝑓), and 176 

not seeing a present source or false negatives (𝑓): 177 

                                                                             𝐹 =
൫ଵାఉమ൯

ఉమା
,                                                                  (5) 178 

                                                                                 𝑝 =
௧

௧ುା
,                                                                        (6) 179 
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                                                                        𝑟 =
௧

௧ା
,                                                                      (7) 180 

where 𝛽 is a weighting factor that can be used to emphasize the importance of precision (higher 181 

correct identification rate at cost of more false negatives) versus recall (lower false positive rate 182 

at cost of worse correct identification rate). A 𝛽 value of 1 indicates no bias towards either 183 

precision or recall. A perfect algorithm would result in an F-score of 1.  184 

 F-scores can be used to compare the performance of different radionuclide identification 185 

algorithms for a common dataset. Alternatively, one can apply one radionuclide identification 186 

algorithm to datasets of different levels of “difficulty” (more or fewer counts per spectrum), and 187 

then use F-score analysis to determine at what point an algorithm’s failure rate becomes 188 

unacceptable.  189 

3. Experimental Results 190 

3.1. Experimental setup 191 
 Data used in the subsequent analysis were collected in two separate experiments. The full 192 

pedestrian RPM consisting of eight SCIONIX Holland model “76A76/3M-EJ309 E1XNEG” 7.6 193 

cm diameter and 7.6 cm height cylindrical volume EJ309 organic liquid scintillation detectors was 194 

used to measure moving sources at a purpose-built RPM testing facility at the European 195 

Commission Joint Research Centre in Ispra, Italy, in February 2014 [22,24,26,28]. An electric rail-196 

cart moved sources at a source height of 1.2 m and source transit speeds of 1.2 or 2.2 m/s. The 197 

perpendicular distance from the RPM front face and the source transit path was 1 m. The sources 198 

and source activities used in these measurements are given in Table 1. The table also lists source 199 

activities recommended by the ANSI standard for RPM testing [14]. The tests also included HEU 200 

and WGPu samples. The data acquisition time window was three seconds for all measurements. 201 

Table 1: Sources available for RPM testing at JRC Ispra during February 2014 tests with pedestrian RPM [26]. 202 
Actual used source activities as well as ANSI-recommended source activities are listed [14]. 203 

Source Source Activity [kBq] 
(ANSI) [14] 

Source Activity [kBq] (JRC Ispra 
2/2014, pedestrian RPM) [26] 

57Co 185 204 
133Ba 518 301 
137Cs 592 370 
60Co 259 259 
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232Th 517 NA 
241Am 1740 2220 
HEU NA 51 g; 89.9 % 235U 

WGPu NA 6.6 g; 93% 239Pu 

  204 

 Data were also acquired for common medical isotopes at the University of Michigan’s C. 205 

S. Mott Children’s Hospital in June 2016. Measurements were performed with a single 7.6 cm 206 

diameter cylindrical volume SCIONIX-Holland EJ309 organic liquid scintillation detector (see 207 

Figure 4), as well as three other organic scintillators that are not considered in the present analysis. 208 

The samples consisted of 260 kBq liquid solutions in glass vials. A list of medical isotopes 209 

measured, their activities at time of measurement, and their respective half-lives are listed in Table 210 

2. 211 

  212 

 213 

Figure 4: June 2016 setup for measuring medical isotopes at University of Michigan’s C.S. Mott Children’s 214 
Hospital using: (a) a 7.6 cm diameter by 7.6 cm height cylindrical volume EJ309 organic liquid scintillation 215 

detector, (b) stilbene crystal, (c) a larger organic liquid scintillation detector (d) a BB3 plastic scintillator from 216 
Radiation Monitoring Devices. (b-d) were not considered in present analysis. 217 

 218 

 219 
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Table 2: List of medical isotopes measured at University of Michigan’s C.S. Mott Children’s Hospital in 220 
June 2016 and their respective radioactive half-lives in hours, and their activities at time we measured them.   221 

Isotope T
1/2 

[h] Activity at time of 
measurement [mCi] ±20% 

99m

Tc 6.0 0.007 
123

I 13.3 0.007 
201

Tl 72.9 0.008 
131

I 192.5 0.008 
111

In 67.3 0.007 
18

F 1.8 0.001 
67

Ga 78.3 0.007 

 222 

 Medical isotope samples were measured for thirty minutes each. Due to its short half-life, 223 

the 18F sample had substantially decayed by the time it was measured. However, because its half-224 

life is so short, 18F is not considered a likely source of RPM nuisance alarms [21,19]. Therefore, 225 

the 18F results were excluded from the data analysis. The sources had 20% uncertainty in their 226 

calibrated activity. The source-to-detector distance was much shorter than that used for the 227 

pedestrian RPM, only one detector was used, and the source was static and not moving. Therefore, 228 

instead of trying to scale the medical isotope data to an expected response from the full pedestrian 229 

RPM, we used a fixed number of pulses sampled out of the thirty-minute measurement. This 230 

process was repeated to create the desired number of sample datasets for each medical isotope. For 231 

example, for the pedestrian RPM and the natural background radiation observed at the JRC Ispra, 232 

about 400 net counts after background subtraction were required to cause a gamma ray alarm. For 233 

the 99mTc sample, we acquired thirty one-minute measurements. Data were down-sampled 234 

accordingly.  235 

3.2. Radionuclide Identification Results for SAM 236 
 The radionuclide identification algorithm was tested on two datasets obtained with liquid 237 

organic scintillation detectors. The first, and less challenging dataset, henceforth named “Dataset 238 

1”, consists of thirty trials of three-second measurements of the sources listed in Table 1 travelling 239 

past the pedestrian RPM at 1.2 m/s [26]. Dataset 1 also includes thirty trials of 1,000 net pulses 240 

from the medical sources listed in Table 2. The more challenging second dataset, referred to 241 
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subsequently as “Dataset 2”, uses pedestrian RPM measurements of the sources from Table 1 for 242 

which the source transit speed had been increased to 2.2 m/s. Dataset 2 also only uses 400 net 243 

pulses from the medical sources listed in Table 2. 244 

 Table 3 lists two parameters for each radionuclide from each of the two datasets. The first 245 

parameter of interest is whether or not enough gamma ray interactions were recorded to trigger a 246 

system alarm. In other words, does the RPM even register the presence of the source relative to 247 

natural background radiation? For Dataset 1 all sources are generally detected 100% of the time. 248 

For Dataset 2, however, the two lowest energy gamma ray emitting sources (241Am, 57Co) are only 249 

detected approximately for half of the thirty trials per radionuclide.  250 

The second parameter of interest concerns whether or not the RPM correctly identifies the 251 

source after the presence of a gamma ray source has been detected. From the Table 3 results, one 252 

again sees that this undertaking is easier with more counts per trial, i.e., the algorithm performs 253 

better for Dataset 1 as opposed to for Dataset 2. Assuming an average walking speed of 5 km/h 254 

(1.4 m/s), Dataset 1 is a more realistic dataset for a pedestrian RPM.  255 

   Tables 4 and 5 show the average SAM 𝛼 values calculated for the correct radionuclide 256 

for the thirty trials per radionuclide from Datasets 1 and 2, respectively. Tables 4 and 5 also include 257 

the standard deviations of these SAM 𝛼-values. A comparison of Tables 4 and 5 shows that Dataset 258 

1 results in better, i.e., smaller, 𝛼-values than those computed for Dataset 2.  259 

𝛼-values are smaller on average for Dataset 1 versus Dataset 2 when considering the full 260 

results for 30 99mTc measurements for both Datasets 1 and 2, respectively. For Dataset 1, the SAM 261 

𝛼-values for comparisons with 99mTc reference spectrum are mostly upwards of an order of five 262 

smaller than those for other possible radionuclide reference spectra. 123I results in a 𝑦(𝑛) very 263 

similar to that of 99mTc, as shown in Figure 2. Nevertheless, the 𝛼-values for the comparison with 264 

the 123I reference spectrum are still a factor of two larger than the 𝛼-values for the comparisons 265 

with the 99mTc reference spectrum. For Dataset 2, the 𝛼-values for comparisons with the 99mTc and 266 
123I are more similar, which leads to two of 30 trials being misidentified as 123I. 267 

Table 3: Results for pedestrian RPM alarming on different gamma ray sources and correctly identifying them with 268 
the SAM technique described in Section 2. Results are shown for two datasets described in Section 3.2. The first 269 
column per dataset lists the percentages out of 30 trials for which sufficient gamma rays above background were 270 
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detected to trigger an RPM alarm on the given source. The second column per dataset lists the percentages out of the 271 
number of gamma alarm cases for which correct radionuclide identification results were obtained. 272 

 Dataset 1 Dataset 2 
Radionuclide Gamma Alarm [%] Correct ID [%] Gamma Alarm [%] Correct ID [%] 

57Co 97% 100% 50% 67% 
133Ba 100% 100% 100% 77% 
137Cs 100% 100% 100% 100% 

241Am 100% 100% 60% 94% 
HEU 100% 100% 100% 60% 

WGPu 100% 100% 100% 93% 
123I 100% 100% 100% 90% 
131I 100% 100% 100% 100% 

67Ga 100% 100% 100% 100% 
99mTc 100% 100% 100% 93% 
201Tl 100% 100% 100% 100% 
111In 100% 100% 100% 100% 

 273 

Table 4: Average and standard deviations of the SAM 𝛼-values computed for the correct isotope for thirty datasets 274 
for each of the 12 tested radionuclides (Dataset 1).  275 

 241Am 133Ba 57Co 137Cs HEU WGPu 67Ga 123I 131I 111In 99mTc 201Tl 

𝛼௩ 0.0061 0.0040 0.0065 0.0049 0.0047 0.0031 0.0018 0.0030 0.0016 0.0017 0.0020 0.0019 

𝛼௦௧ௗ 9.8E-04 5.2E-04 9.7E-04 5.3E-04 6.8E-04 3.9E-04 2.0E-4 3.3E-04 9.4E-04 2.0E-04 2.7E-04 1.9E-04 

 276 

Table 5: Average and standard deviations of the SAM 𝛼-values computed for the correct isotope for thirty datasets 277 
for each of the 12 tested radionuclides (Dataset 2). This number of counts is at the limit of detection for the 278 

pedestrian RPM for a three second measurement given the background conditions and associated gamma alarm 279 
threshold used at the JRC Ispra[26,31].  280 

 241Am 133Ba 57Co 137Cs HEU WGPu 67Ga 123I 131I 111In 99mTc 201Tl 

𝛼௩ 0.0072 0.0051 0.0076 0.0060 0.0062 0.0043 0.0034 0.0047 0.0030 0.0017 0.0037 0.0036 

𝛼௦௧ௗ 8.2E-04 6.9E-04 1.1E-03 5.0E-04 6.6E-04 5.6E-04 3.7E-4 4.9E-04 2.5E-04 2.0E-04 4.7E-04 3.7E-04 

 281 

 So far the 𝛼-values have been presented as relative markers. However, even for some 282 

arbitrary input spectrum, the algorithm will still produce 𝛼-values for the different radionuclides. 283 

These 𝛼-values should be larger than if the spectra arose from the correct radionuclide source. 284 

Figure 5 shows three test cases, none of which should produce a positive identification as they 285 

include a background spectrum, a linear function, and a squared function. The 𝛼-values obtained 286 

from the radionuclide identification algorithm using these datasets should provide a cutoff above 287 

which any 𝛼-values can be considered proof of negative identification. The 𝛼-values resulting 288 
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from these three test cases are shown in Table 6 and compared to results for WGPu measurements. 289 

The identification results for WGPu show much smaller 𝛼-values than those for the three test cases 290 

from Figure 5, thus strengthening the plausibility that WGPu is present.  291 

 292 

Figure 5: CDFs tested on power spectral density SAM radionuclide identification algorithm including CDFs of a 293 
gamma ray PHD background measurement, a linear function through the origin, and a square function through the 294 
origin. None of these functions should produce correct radionuclide source identifications. The SAM 𝛼-values for 295 

these test cases are shown in Table 6. 296 

Table 6: SAM 𝛼-values computed for the test cases shown in Figure 5. None of these test cases are from actual 297 
sources, so they should not result in positive radionuclide identifications. The right most column shows SAM 𝛼-298 

values computed for actual WGPu measurements with the pedestrian RPM [26]. 299 

Radionuclide SAM 𝛼ிಳಸ
 SAM 𝛼ிసೣ

 SAM 𝛼ி
సೣమ

 
SAM 

𝛼ிೈಸುೠೌೡ±ೈಸುೠೞೡ
 

241Am 0.022 0.017 0.013 0.008±0.001 
133Ba 0.016 0.010 0.004 0.006±0.000 
57Co 0.020 0.014 0.009 0.005±0.001 
137Cs 0.012 0.004 0.004 0.009±0.001 
HEU 0.020 0.014 0.008 0.005±0.001 
226Ra 0.014 0.007 0.003 0.007±0.001 

WGPu 0.019 0.013 0.007 0.003±0.000 
67Ga 0.020 0.014 0.008 0.008±0.001 
123I 0.026 0.020 0.014 0.011±0.001 
131I 0.014 0.007 0.003 0.009±0.001 

111In 0.022 0.015 0.010 0.009±0.001 
99mTc 0.028 0.022 0.016 0.013±0.001 
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201Tl 0.020 0.014 0.008 0.008±0.001 

3.3. Comparison to Other Radionuclide Identification Algorithms 300 
 The performance of the radionuclide identification algorithm must be quantified with a 301 

metric that allows for easy comparisons with other identification algorithms. Table 7 gives F-score 302 

comparisons for the performance of the new and two previous identification algorithms [26,28] 303 

for Dataset 1. Each method clearly shows improved performance over the previous radionuclide 304 

identification algorithm. 305 

 Even the new radionuclide identification algorithm has its limitation though. Table 8 shows 306 

a slight dip in performance, as measured by the new F-score of 0.91, when the new algorithm is 307 

applied to the more challenging Dataset 2. Nevertheless, this F-score of 0.91 represents a 308 

significant improvement in performance over what either of the previously implemented 309 

identification algorithms achieved using the less challenging Dataset 1.  310 

Table 7: Precision, recall, and F-scores computed for pedestrian RPM for Dataset 1 [26]. The following three 311 
isotope identification algorithms are compared: identification using least squares comparison with modified PHDs 312 
(LS PHD) [26,28], identification using least squares comparison with cumulative distribution functions (LS CDF) 313 
[26,31], and identification using power spectral density and spectral angular mapper (SAM-PSD) from Section 2 314 

[31]. 315 
 

LS PHD LS CDF SAM-PSD 

Precision 0.58 0.70 1.0 

Recall 0.99 0.99 1.0     

F(𝛽 = 1) 0.73 0.82 1.0 

F(𝛽 = 0.5) 0.63 0.74 1.0 

F(𝛽 = 2) 0.87 0.92 1.0 
 316 

Table 8: Precision, recall, and F-scores computed for Datasets 1 and 2 [26]. F-scores are computed for both datasets 317 
using the identification algorithm using power spectral density and spectral angular mapper from Section 2. 318 

 Dataset 
1 

Dataset 
2 

Precision 1.0 0.90 

Recall 1.0 0.92 

   

F(𝛽 = 1) 1.0 0.91 

F(𝛽 = 0.5) 1.0 0.91 
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F(𝛽 = 2) 1.0 0.91 

4. Conclusions 319 
 Identifying and screening out nuisance alarms caused by NORM-bearing cargo and recent 320 

nuclear-medicine patients would result in significant time savings for RPM operators. Promising 321 

results were obtained for a new on-the-fly radionuclide identification algorithm on data obtained 322 

with an organic scintillator-based pedestrian RPM. Radionuclides measured included HEU and 323 

WGPu, common industrial sources, and several common medical isotopes. 324 

 The new algorithm emphasizes spectral characteristics by taking the power spectral density 325 

of modified CDFs of measured PHDs. This approach shows great sensitivity to trends in the 326 

measured data that are not apparent in the initial background corrected PHDs. A SAM method is 327 

used to compare measured and reference spectra, and thus determine a likeliest radionuclide match. 328 

F-score analysis shows a marked performance improvement from 0.82 to 1.0 for this new 329 

radionuclide identification algorithm over previous methods [26,28] when applied to the same 330 

datasets.  331 

A successful and robust radionuclide identification algorithm for RPMs made of organic 332 

scintillators offers a way of reducing the number of nuisance alarms having to be processed in 333 

secondary inspections. Such a system could address the overwhelming ratio of nuisance to threat 334 

radiation alarms witnessed in RPMs. Future work will address scenarios including multiple sources 335 

present in a single measurement.  336 
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