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Abstract—This work investigates the use of Artificial Neural 
Networks (ANN) for radiation dose prediction due to a nuclear 
power plant (NPP) accident with radioactive material release. 
The main objective is to avoid necessity of using complex time-
consuming simulators during the emergency. Training, test and 
production data sets have been generated by realistic simulations 
on the precise atmospheric dispersion system used in CNAAA 
Brazilian NPP. Considering a hypothetical Lost of Coolant 
Accident (LOCA), several ANN architectures have been trained 
with a wide range of atmospheric conditions in order to predict 
spatial effective doses. As a result, a Backpropagation Multilayer 
Perceptron (MLP) with 5 layers demonstrated to achieve the best 
generalization, reaching a correlation factor of 0.990 for the 
validation dataset. On the other hand the GRNN reached a 
correlation factor slightly worse (0.986) but very faster. 
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I. INTRODUCTION 

An accurate prediction of atmospheric dispersion of 
radioactive material during a Nuclear Power Plant (NPP) 
emergency is very important to support decision related to 
people evacuation and environment protection. Such prediction 
generally involves simulation of complex physical models, 
such as: source term prediction, wind field calculations, plume 
dispersion, radionuclide deposition and equivalent doses 
prediction. These models are, however, much time consuming 
and need powerful computers to achieve the desired quality. 

Aimed to overcome the need for such computational 
resources during emergencies, we investigate here the use of 
Artificial Neural Networks (ANN) [1] in the prediction of 
spatial doses. 

The ANNs are trained offline, using data previously 
generated by the CNAAA Brazilian NPP atmospheric 
dispersion system (ADS) (simulator) considering a hypothetical 
Lost of Coolant Accident (LOCA) with its default releasing 
paths and NPP status. The ANNs were trained to predict spatial 
effective doses for a wide range of atmospheric conditions. 

The main objective of this work is to evaluate the ability of 
ANNs in dealing with such complex task. To accomplish that, 

three ANN architectures have been investigated: two 
Backpropagation Multilayer Perceptrons (MLP) [1] and one 
General Regression Neural Networks (GRNN) [2]. 

The remaining of this paper is subdivided as follow. 
Section 2 contextualize and introduces the problem. Section 3 
describes the ANN design and training. Results of the 
investigations are shown in section 4 and, finally, some 
concluding remarks are seen in section 5. 

II. CONTEXTUALIZATION AND PROBLEM DESCRIPTION 

There are several works in literature that relates the use of 
ANN applied to radioactivity prediction. 

Timonin and Savelieva [3] investigated the use of a GRNN 
for spatial predictions of radioactivity. They used the SIC2004 
exercise as benchmark and concluded that GRNN is promising 
for spatial prediction of radioactivity. 

Mól et al [4] also applied a GRNN for dose prediction 
inside the area of the Argonauta research reactor at Instituto de 
Engenharia Nuclear/CNEN (Brazil). In this work, dose 
prediction was done as function of reactor operating power and 
a given position. 

Sarwat and Helal [5] used a GRNN for estimating workers 
internal dose. They emphasized that GRNNs are efficient for 
continuous functions mapping and concluded that they have 
good possibilities in the proposed application. 

There are also several correlated works that do not deals 
with radiation, but is related to atmospheric dispersion. 

Cao et al [6] applied ANN in prediction of short-term 
concentration distributions of aerosols released from point 
sources. He concluded that the performance of the neural 
network model was comparable or better than predictions from 
two Gaussian-based puff models. 

Lauret et al [7], investigated the use of ANN in atmospheric 
gas dispersion concluding that the stationary ANN model gave 
good agreement with CFD software with the advantage of 
faster processing. 

Hossain [8] applied ANN to predict concentration of carbon 
monoxide and particulate matters in urban atmospheres using 
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field meteorological and traffic data. The conclusion was that 
ANN models based on both meteorological and traffic 
variables are capable of resolving patterns of pollutant 
dispersion to the atmosphere for different cities. 

The present work is aimed to investigate the use of ANNs 
to predict doses due to atmospheric dispersion of radionuclide 
during a NPP emergency with radioactive material release. The 
computational experiments have been done considering the 
scenario in the neighborhood of CNAAA NPP site, at Angra 
dos Reis (Brazil), as illustrated in Figure 1.  

 
FIGURE I.  REGION OF INTEREST FOR DOSE PREDICTION 

The present work is aimed to investigate the use of ANNs 
to predict doses due to atmospheric dispersion of radionuclide 
during a NPP emergency with radioactive material release. The 
computational experiments have been done considering the 
scenario in the neighborhood of CNAAA NPP site, at Angra 
dos Reis (Brazil), as illustrated in Figure 1, considering that 
North is 0o and angles increase clockwise. 

III. NEURAL NETWORS DESIGN AND TRAINING 

Artificial Neural Networks (ANN) [1] are mathematical 
models inspired in human brain, which have the ability of 
learning by examples. There are many different approaches for 
ANNs. In this work, we consider those that use supervised 
learning (input/output learning) and are skilled for interpolation 
and prediction. According to literature, Backpropagation 
Multilayer Perceptrons (MLP) [1] and General Regression 
Neural Networks (GRNN) [2] present such characteristics. 

MLPs are comprised by: i) an input layer, which receives 
the input data, ii) an output layer, which provides the ANN 
output and iii) one or more hidden layers. The number of 
neurons in the input layers is equal to the number of inputs of 
the problem. As well, the number of neurons in the output layer 
is equal to the number of outputs. The number of neurons in the 
hidden layer(s) is flexible and is responsible to provide the 
ability of non-linear adaptation of the ANN. The activation 
function of neurons may also be non-linear for complex 
adaptations. The training algorithm used is the backpropagation 
[1]. 

GRNN is "a memory-based network that provides estimates 
of continuous variables and converge to the underlying (linear 
or nonlinear) regression surface" [2]. It uses a one-pass learning 

algorithm that provides smooth transitions between training 
patterns even with sparse data in multidimensional spaces. 
GRNNs are based on the concepts of consistent estimators 
proposed by Parzen (1962). The estimated output (Equation 1) 
is a weighted average of all training patterns. 
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XY is the estimated output; 
iX  and 

iY are the 
training patterns inputs and outputs, respectively; X is an 
observed value to which an estimation is required; and  is the 
smoothing factor. 

High values of   leads to more smooth function. To find 
optimum value for  , optimization procedures can be used in 
order to minimize the least squared errors for a given test set. 

A. ANN Inputs and Outputs 

The ANNs are trained to predict doses based on position (X, 
Y), meteorological conditions, for a given postulated accident. 
Many meteorological conditions could be used as ANN inputs, 
such as: i) wind velocity; ii) wind direction; iii) wind stability; 
iv) temperature; v) temperature gradient; vi) rainfall index; 
among others. Similarly, several possible outputs could be used: 
i) equivalent doses; ii) effective doses; iii) dose rates etc. 
However, in this preliminary investigation a reduced set is 
considered. The ANN inputs/outputs used here are shown in 
Table 1. 

TABLE I.  ANN INPUTS AND OUTPUTS 

 
Inputs 

Wind velocity 
Wind direction 
Position X 
Position Y 

Output Dose rate 

B. Training, Test and Validation Patterns Generation 

This work used, as reference, the atmospheric dispersion 
system (ADS) used CNAAA NPP. This system is 
automatically started if an emergency occurs. In this case, 
monitored plant status as well as acquired meteorological data 
are used as inputs. The ADS might also be used in simulation 
mode, allowing realistic cases to be simulated using user 
defined inputs. Figure 2 illustrates the ADS used in this work to 
simulate training, test and validation data . 
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FIGURE II.  SCHEMATIC DIAGRAM OF THE NPP ATMOSPHERIC 

DISPERSION SYSTEM 

Using the ADS simulator shown in Figure 2, training, test 
and validation data have been generated, uniformly distributed 
on the space formed by the ANN input variables. Table 2 
shows the ranges and distribution of each variable of training, 
test and production sets. 

TABLE II.  RANGES AND DISTRIBUTION OF TRAINING, TEST AND 
VALIDATION DATASETS 

Name Range Values Step 
Wind velocity (m/s) 1 - 5 9 0.5 
Wind direction (degrees)  315 - 45 9 11.25 
Position X a 1 - 65 * 17 4 
Position Y a 10 - 42 * 9 4 

a Computational domain is discretized into 65 x 42 cells of 250 x 250 meters. 
Making all possible combinations of variables shown in 

Table 2, 12,393 patterns (input-output) have been generated. 
Through empirical optimization tests, a good usage distribution 
was defined, according to Table 3. 

TABLE III.  USAGE OF  GENERATED PATTERNS 

Usage Quantity 
Training 3,825 
Test 2,448 
Validation 6,120 

Due to the complexity of the problem, a relatively great 
number of training patterns were needed. On the other hand, 
increasing the training set implies a great delay on training time. 
This cost/benefit relation was observed during preliminary tests. 

Note that Test set is also great in order to better evaluate 
stopping criteria on MLPs and better optimize smoothing 
factors on the GRNN. Validation data are not used during ANN 
training. They are only used to simulate the real use of the 
ANN.  

In order to improve the ANNs efficiency in learning the 
training patterns, data have been normalized according to 
Equation 3. 

S

XX
X N

)( 
                                     (3) 

where NX is the normalized value; X is the original value; 
X is the average and S is the standard deviation; 

C. The ANNs Architectures 

Two Backpropagation Multilayer Perceptrons (MLP)  
architectures and one GRNN have been investigated for the 
proposed application.  

The simplest MLP (MLP-3Layers) was a 3-layer with 
logistic activation function in the hidden and output layers 
(input layer only scales and distributes the inputs). According 
to training data, input and output layers have 4 and 1 neurons, 
respectively. The hidden layer is comprised by 60 neurons. 

The second MLP (MLP-5Layers) was a 5-layer with 
logistic activation function in hidden and output layers (input 
layer only scales and distributes the inputs). Input and output 
layers have 4 and 1 neurons, respectively. The 3 hidden layers 
are comprised by 20 neurons each.  

The GRNN [2] architecture is a one-pass training and its 
architecture is casted by the training data (the hidden layer have 
one neuron for each training pattern). However, the smoothing 
factor is a critical parameter for good generalization. Hence, the 
GRNN used here was optimized by a Genetic Algorithm [9], 
aimed to find the best smoothing factor for the selected test set. 

IV. RESULTS AND DISCUSSIONS 

In this section, numerical results obtained in design, 
training and application of proposed ANN are evaluated, 
compared and discussed. Tables 4 shows comparisons of the 
results obtained by each ANN architecture when applied to the 
validation dataset. 

TABLE IV.  STATISTICS OF  MLP-1 

Architecture Correlation Máx.Err Ave. Err Trn. Time 
MLP-3Layers 0.978 132.859 2.869 4:59 h 
MLP-5Layers 0.990 125.594 1.045 2:37 h 
GRNN 0.986 137.551 1.477 0:23 h 

Training/optimization times on Tables 4 are only for effect 
of relative comparisons. As training has been done on a Virtual 
Machine with emulated Windows XP 32 bits, such execution 
times do not reflect absolute performance that can be achieved 
on training times.  

It could be observed that the best statistics were obtained  
for the MLP-5Layers. Errors and correlation for the validation 
dataset demonstrate very good generalization (ability to predict 
untrained patterns). On the other hand, the GRNN which 
presented slightly worse correlation and average error, was the 
fastest to be trained (about 6.8 times faster than the MLP-
5Layers).  

MLP-3Layers was the worst one with 0.978 of correlation 
(not so bad), average error almost 3 times and training time 
about 2 times greater than MLP-5Layers. 

Figures 3 and 4 illustrate graphically the influence of the 
numbers shown on Table 4 on dose predictions using the 
validation dataset.  
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FIGURE III.  FITTING ON HIGH OUTPUT (DOSE) VALUES. 
SIMULATED (ACTUAL) VERSUS PREDICTED (NETWORK) 

VALUES: (A) MLP-3LAYERS; (B) MLP-5LAYERS; (C) GRNN. 
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(b) 

 
(c) 

FIGURE IV.  FITTING ON LOW OUTPUT (DOSE) VALUES. 
SIMULATED (ACTUAL) VERSUS PREDICTED (NETWORK) 

VALUES: (A) MLP-3LAYERS; (B) MLP-5LAYERS; (C) GRNN. 

Note, in Figure 3, that for high values of output (dose), the 
fitting between simulated (label "actual(1)" in figures) and 
ANN prediction (label "network(1)" in figures) is good for all 
architectures, with certain advantage to MLP-5Layers. 

However, for low values of output (dose), significant 
discrepancies may appear. Figure 4 shows a sub-set of  the 
validation dataset which the simulated output should be zero. 
Observe that all ANN architectures present non null values. 
MLP-3Layers output reaches values about 11, while MLP-
5Layers got 1.1 and the GRNN found 0.08. 

Looking from this point of view, GRNN seems to be the 
best choice, however, looking deeper on the general fitting for 
high values of output, MLP-5Layers is slightly better. 

V. CONCLUSIONS 

In this work, 3 different architectures of ANN have been 
applied to radiation dose prediction in a realistic scenarios in 
Angra dos Reis, Brazil. The precise atmospheric dispersion 
system used in CNAAA NPP was used to simulate training 
patterns. 

Results demonstrate that the Backpropagation Multilayer 
Perceptron with 5 layers (MLP-5Layers) is the better choice in 
terms of generalization, finding the best correlation coefficient 
(0.990) and the smaller average error.  

Corroborating literature [5], GRNN also demonstrate to be 
efficient for continuous functions mapping. Although it 
presented a slightly worse correlation and average error, if has 
2 advantages that could be considered: quick training 
(smoothing factor optimization) and better fit in small values. 
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