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Artificial neutral networks were developed for use as a potential ‘information barrier’ technology in the

verification of arms control treaty accountable items. They were used to identify and measure specific

attributes from g-ray spectra. These attributes included the presence or absence of plutonium, the

plutonium Pu-239/Pu-240 isotopic ratio or 239Pu content and the material age. A set of over 400 training

spectra were generated using a spectral simulation software package and various methods for the

selection of input data were tested. An input data set which discounted low energy regions susceptible

to shielding effects was found to be most effective. Once trained, the network correctly identified the

presence or absence of plutonium from real g-ray spectra. Accurate results were also achieved for

estimating the content of 239Pu. In simulated test spectra a root mean squared error (RMSE) of less than

0.1 was found when using the optimum number of inputs. The network was also able to distinguish

between spectra from plutonium samples of different ages. Further work is planned to investigate the

estimation of a confidence level for whether a specific threshold of 239Pu content is exceeded. An

improved training set is anticipated to improve accuracy in determining the material age, which was not

achieved accurately.
1. Introduction

The potential for a future treaty in the disarmament of nuclear

weapons has prompted the development of various forms of

verification technologies1–3 as well as assurance protocols.4,5

Although specific requirements vary, such technologies share

a common goal in providing a trusted system that allows verifi-

cation at defined stages of the disarmament process. Previous

mock scenarios between states have highlighted the necessity

for any disarmament process to present complete transparency

to both the host and inspecting parties. This raises many

important issues with regards to procedures and technology

implementation.

Utilising g-ray spectrometry has significant potential in

warhead verification due to its ability to disclose information

regarding isotopic content and material age.6–9 Both 239Pu and
235U have distinct g-ray signatures; however the latter displays

prominent peaks only at low energies presenting problems in

obtaining useful spectra when shielding is present. On the other

hand, plutonium isotopes generate peaks of higher energy which

are detectable even when shielding such as that of typical

warhead containers is present. Therefore, the work presented
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bThreat Reduction Division, AtomicWeapons Establishment, E-mail: matt.
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here focuses on obtaining g-ray spectrometry of plutonium

isotopes, particularly 239Pu, 240Pu and 241Pu.
1.1. Information barriers

Although the spectral information of such isotopes allows

information to be extracted relating to the isotopic content and

material age, such measurements also pose significant issues with

the disclosure of sensitive or proliferative information. Infor-

mation regarding isotopic content, for example, allows identifi-

cation of the source of the radioactive material (i.e.which reactor

it came from).10 This presents a problem as any verification

measurements to be taken are likely to be carried out by an

inspecting party external to the host state.

An ‘‘information barrier’’ has been seen for some time as

a potential solution to this problem.11 The idea represents

a physical barrier which allows information through that verifies

the presence of a nuclear warhead or components of one, whilst

preventing the disclosure of any sensitive information. There

have been various interpretations of what an information barrier

may involve and require.12,13 The two main requisites are:

� That the host can be confident that sensitive information will

not be disclosed to the inspecting party;

� That the inspecting party can be confident that the inspection

system will represent an accurate and reproducible result.

The work presented here proposes the application of an arti-

ficial neural network (ANN) as an information barrier. The

advantage of using an ANN is its ability to be trained to produce
This journal is ª The Royal Society of Chemistry 2012
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Fig. 1 A simple neural network, showing the basic architecture.
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a specific output in response to an input dataset. In this instance

its function is primarily to (A) recognise the presence of

plutonium based on the emission spectrum. The network is also

required to identify (B) whether the plutonium present exceeds

a specific isotopic ratio and (C) the age of the sample, a factor

that influences its isotopic composition. The first two of these

requirements involve presenting only a positive or negative

Boolean output and thereby do not disclose any additional

information which may be deemed classified. Determining the

age of the sample, while providing additional information that

may be deemed sensitive and subject to classification can be

considered an ‘optional extra’. A further advantage of using

a neural network for the process of isotopic analysis is that the

g-ray spectra generated for training the network can be

completely unclassified. Therefore once trained, the network

itself contains no classified information and also requires no

further alteration; so it can be freely distributed to both hosting

and inspecting parties for their own testing and verification of

the technology. In this way the ANN can become a trusted and

transparent piece of equipment to parties on both sides of the

verification process.

While it is true that highly reliable gamma spectral codes

currently exist, for example MGA,14–17 it would be far from

simple to convert these codes for Arms Control monitoring. The

issue of how such complex codes could be authenticated by two

independent parties (host and inspector) is currently an unsolved

problem. Indeed, any code which relies on significant computing

power to run would be necessity be used on host supplied

computing equipment, leaving any inspecting party with

considerable issue in trusting any output gained. Assessing

alternative routes for gamma analysis is therefore highly desir-

able for Arms Control purposes. The use of neural networks

provides the possibility of future implementation in hardware

rather than software for the analysis of gamma spectra, poten-

tially significantly reducing the complexity of monitoring

equipment. This potentially would be a big step forward towards

trustable measurement technologies for Arms Control purposes.

Clearly much work still remains to achieve this, but this initial

demonstration of the concept is an important step in this

direction.

Further, the demonstration of network training using

computer simulated data to high material identification success

has potential applications in other radiological detection areas.

Widening this training to other gamma detection systems could

lead to improved detection success for portal monitoring systems

for nuclear security and safeguards purposes, cutting down

current high false positive detection rates. Such a system would

therefore have significant commercial applications.
1.2. Artificial neural networks

An ANN is an assembly of interconnected processing elements,

known as units or nodes. The processing ability comes from the

strength or weights of the connections between nodes which are

adapted during a learning phase in order to achieve the desired

result for a set of training data.18,19 Their structure is loosely

based on the biological neural system of neurons and synapses. A

standard network consists of an input layer, one or more hidden

layers and an output layer as shown in Fig. 1.
This journal is ª The Royal Society of Chemistry 2012
ANNs have previously been developed for spectral classifica-

tion typically for the identification of a radioactive or nuclear

source.20–22 Reported results have indicated their capability in

this field. However previously, these networks have been devel-

oped using small numbers of input variables thereby limiting the

information extracted from the spectrum. While using a smaller

input dataset allows the network to be trained more rapidly, it

also removes potentially useful information from the emission

spectrum dataset, and could lower the accuracy of the system’s

response. Objectives of this work include looking at the effec-

tiveness of using larger data sets (i.e. some or all of the available

emission spectrum data) in order to measure and identify

isotopic ratios and material age from complex spectra such as are

emitted by plutonium.

Many neural network architectures exist, and there are various

techniques employed for training an ANN, with the two most

popular being backpropagation (BPNN)23 and Radial Basis

Function Networks (RBFN). It has been observed that the

performance of the RBFN fails to match that of the BPNN when

the network complexity and the amount of data available are the

constraining factors. However, when a simpler training proce-

dure and reduced computational times are required, RBFN is the

preferred choice.24 In the present study where training times were

not an issue and the network is of high complexity, the most

appropriate for this application was identified as the back-

propagation algorithm, using the training approach described

by19 from earlier work by.23

Backpropagation neural network training has been shown to

be extremely useful for identification and characterisation of

many kinds of sources based on their spectral signatures,

including stars,25 plasma chamber leaks26 and EEGs used to

detect sleep patterns in humans.27 In comparison to some other

neural network training methods, backpropagation is relatively

easy to implement. As mentioned above, it does often take

a larger number of training steps to produce comparable

performance, but is more robust following training and with

large input data sets. While it has been around for a long time as
J. Anal. At. Spectrom., 2012, 27, 432–439 | 433
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Fig. 3 Simulated g-ray spectrum of plutonium (92% 239Pu) for various

ages displaying changes in ratio of 241Pu to 241Am and 237U, with a loga-

rithmic scale of counts (intensity) versus wavelength energy.
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a method (approximately 25 years), it continues to be useful and

relevant.

In the backpropagation method, the network uses the differ-

ence (or error) between the actual output and the desired output

from each output node. The actual output node activation is

achieved by activating the layers of the network in sequence, with

the output signal from a node being in direct relation to the

summed input signals from all nodes connected to it in the

previous layer. The error at each output node is reduced by

adjustment of the weights preceding that node according to

simple mathematical rules. This process is then propagated back

through the network. The error is gradually reduced by iteration

of this process over a number of steps, with the training being

halted at either some predefined error threshold, or when no

perceivable improvement is being made. A training rate is also

required which governs the magnitude of the changes made to

the weights, thereby controlling how fast the network is trained.

Further information about the number of nodes within each

neural network layer, and additional design factors, are given in

later sections.
1.3. Spectral regions of interest

Two regions of the plutonium g-ray spectrum were identified to

be of particular interest for the network input, based on infor-

mation given in.28 The isotopic ratio of 239Pu to 240Pu can be

measured in the relatively high energy region of 635–665 keV. A

distinguishing feature of the spectrum produced by plutonium is

a symmetrical triplet of peaks centred at 640 keV. Fig. 2 shows

how this triplet varies from low 239Pu content (ratio 1 : 1 of 239Pu

to 240Pu and 241Pu) up to high 239Pu content (ratio 1 : 0) due to the
240Pu peak at 643 keV.

Age determination of plutonium samples is typically done

using the analysis of 241Am content exploiting the decay of 241Pu

to 241Am and 237U. The energy region of 330–350 keV is partic-

ularly useful for these measurements as it contains peaks at 332.4

keV and 335.4 keV generated by excited states of 237Np which are

populated from 241Am decay and 237U. Fig. 3 shows how these

peaks vary as the plutonium age is increased. It should be noted

that these peaks are generally unresolved from 239Pu peaks which

occur at 332.8 keV and 336.1 keV. The contribution from 239Pu
Fig. 2 Simulated g-ray spectrum of 5 years old plutonium for different

ratios of 239Pu to 240Pu and 241Pu, with a logarithmic scale of counts

(intensity) versus wavelength energy.
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can however be analysed using the well resolved 239Pu peaks at

341.5 keV and 345.0 keV.

This analysis is normally carried out using a combination of

visual peak analysis (to identify the presence or absence of

signature peaks) and measurement of the comparative height

of different peaks to give an indication of isotopic ratio. Clear

mathematical relationships between peak height and isotopic

ratio are difficult to produce, as individual peaks are strongly

influenced by sample shape, size, sampling time, shielding

material and the isotopic mix that is present. Both energy regions

discussed above are of use in determining the presence or absence

of plutonium, but it is difficult to draw any more information

from the spectrum than this using traditional approaches. The

use of neural networks in producing more accurate isotopic ratio

information is based on the ability of neural networks to detect

patterns in large, noisy and inconsistent datasets.29,30

In addition, peaks from the isotopes of 239Pu, 240Pu and 241Pu

are also found outside of these identified regions, meaning that

there might be additional identification/measurement accuracy

to be found through the inclusion of other portions of the

emission spectra. In order to develop this idea, an investigation

was carried out to determine whether varying the size of the

spectral region presented to the neural network affects the

accuracy of the output results.
2. Methods

2.1. Generating training data

A deterministic 1-dimensional modelling software package

developed in-house at AWE was used for spectral simulation to

generate a set of training data for the network. This allowed

a wide range of controlled spectra to be generated in a reduced

time scale and for a reduced cost compared to that of obtaining

the measurements experimentally. The model consisted of a 500g

sphere of plutonium of defined isotopic ratios, surrounded by

a defined uniform layer of shielding material. The shielding

sphere was surrounded by a vacuum. A 40% high purity

germanium detector was modelled at 1 metre from the centre of

the sphere and took measurements for 1000 s intervals. A matrix

was generated to define the most relevant model parameters and

how they would be varied; consisting of:
This journal is ª The Royal Society of Chemistry 2012
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� Isotopic ratio of 239Pu to 240Pu and 241Pu; 1 : 1, 2 : 1, 4 : 1,

8 : 1 and 12 : 1;

� Material age; 0, 5, 15 and 50 years;

� Shielding material; plastic, aluminium, steel, lead and

depleted uranium;

� Shielding material thickness; 3 to 4 values depending on the

material to give realistic values.

A similar model was used to generate non-plutonium spectra,

typically of common radioisotopes found in the background or

used in the commercial or medical industries. This data was used

to train the network to recognise the absence of plutonium and

consisted of spectra generated from radioisotopes including:
241Am, 133Ba, 109Cd, 252Cf, 57Co, 60Co, 137Cs, 152Eu, 131I, 192Ir, 40K,
237Np, 226Ra, 99Tc, 232Th, 233U, 235U, 238U and 88Y. Overall, the

training set consisted of a total of 420 samples including both

plutonium and non-plutonium spectra.

The generated training spectra provided a huge range in total

counts, primarily due to the effects of different shielding. In order

to allow the neural network to learn effectively, each input value

was required to be in the range [0, 1]. Therefore some kind of

normalisation of the data was required. In order to ensure that

the normalisation procedure carried out was the best possible,

a range of different approaches was tested. The most effective

method was found to use a moving average over a window of

a certain size centred on each data point, with the value each

point divided by this moving average. All datasets were also

normalised to fully occupy the range [0, 1], by dividing each value

after conversion by the maximum value in the converted spec-

trum. This improved the network training and accuracy and

ensured greater consistency between datasets. Tests were carried

out with a range of moving average window widths. An optimal

width was found to be within the range [60, 200], with no

significant variation across this range. A window width of 100

was therefore selected as being as close to the best value as could

be determined. Throughout these optimisation tests, all 420

training datasets were used.
2.2. Generating test data

A small dataset of spectra was generated for testing using the

trained neural network models. Different parameter values were

used in order to test the network on datasets that were not the

same as any of the training data. The parameter values that were

used did however fall within the parameter value ranges used for

training the neural network models. While it is possible that the

network could be tested in situations where certain parameters,

such as shielding thickness or material age, are outwith the range

used for training, it is not reasonable to expect the network to

achieve the same levels of accuracy as it can for parameters lying

within its training experience. The total number of modelled test

spectra was 152.

A number of experimentally-generated spectra were also

identified for network testing. These included a set of spectra

generated from a plutonium sphere with various types of

shielding, a number of PIDIE (Plutonium Isotopic Detonation

Intercomparison Exercise) spectra (standardised plutonium

spectra developed by31 and a set of non-plutonium spectra con-

sisting of some common radioisotopes, giving a total of 24

spectra. In order to present these spectra as an input to the
This journal is ª The Royal Society of Chemistry 2012
network, it was necessary to reformat and normalise them into

the same configuration as the modelled spectra. A small piece of

software was written to enable this reformatting; providing the

experimental spectra with the same number of input points at the

same calibration as the modelled spectra. It should be noted that

such treatment of the experimental measurements along with the

data normalisation discussed previously would be required in

any potential future systems, due to the range of measuring

devices that are available and their different output formats.
2.3. Neural network development

2.3.1. Structure & training algorithm. The chosen neural

network structure consisted of an input layer, two hidden layers

and an output layer. Each layer was fully connected to the

following layer, with connection weightings being randomized in

the range [�0.25, 0.25] prior to training. The size of the input

layer was varied in order to identify the most effective energy

range to be used, with the first node in the layer corresponding to

the lowest energy band for that spectral ‘window’, and the last

node corresponding to the highest energy band in that window.

In one training case, two windows were used, at different energy

ranges. Each energy band was approximately 0.85 keV wide.

Three sets of windows of the spectra were chosen for training, to

identify optimal performance: 300–400 keV and 600–700 keV;

260–850 keV; 5–1277 keV. These windows were chosen to

include known peaks from the plutonium spectrum, or in the case

of the third option to include the entire spectral range.

In each case, the number of nodes in the hidden layer equalled

double the number of input nodes or 100 nodes, whichever was

less. The output layer consisted of three nodes relating to:

(a) Pu presence/absence;

(b) Percentage 239Pu content;

(c) Age determination.

Regardless of size, each network was trained using the back-

propagation neural network training algorithm. All possible

combinations of training step count (1000, 2000, 5000, 10000,

20000 and 50000 steps trialled), training rate (values of 0.001,

0.002, 0.005, 0.01, 0.025, 0.05, 0.1) and momentum rate (values of

0.1, 0.3, 1, 2, 5) were investigated. The final training was carried

out for 10000 steps, with a training rate of 0.025 and

a momentum rate of 1. It was found that using these parameter

values, the network was not overfitted to the training data but

that accuracy in comparing against test data was optimised. For

further information on the implementation of the back-

propagation training method, the reader is referred to23 or to.19

2.3.2. Using simulated annealing to identify optimal network

inputs. As the number of data points used for network input

could potentially be very high, resulting in a network that

required a great amount of computational time to train and use,

the possibility of reducing the number of inputs was explored.

This would speed up the network operation and potentially

improve its accuracy. For this to be achieved the points which

provide the greatest information content within the overall

dataset would have to be found. A technique of finding these

data points known as simulated annealing was used. This tech-

nique essentially ‘evolves’ the locations of a fixed number of

sample sites from across the overall dataset, i.e. sample site
J. Anal. At. Spectrom., 2012, 27, 432–439 | 435
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locations are adjusted by small random values until a situation of

least error between the actual and predicted values is found. By

using this strategy and varying the number of sample points

chosen, it is possible to find near-optimal locations for each

sample point and determine the accuracy of a neural network

trained with data from only these points.

This technique was used for a network trained to identify the

presence of plutonium and its isotopic ratio. The number of input

sample points was varied between 10, 20, 50 and 100 with two

network outputs. In each case, the number of nodes in each of the

hidden layers equalled the number of nodes in the input layer,

which equalled the sample count. The simulated annealing was

carried out using the following algorithm over a total of 10000

annealing steps:

1. Initialise the sample locations randomly across the full

spectral range (5–1277 keV), and set the initial sample ‘jump’ size

to 50.

2. Measure the performance of the network trained with the

initialised sample positions. Call this performance Q1, normal-

ised using the range of possible values to the range [0, 1] (where

low values indicate lower error rates).

3. Randomly reposition the sample positions up to the current

jump size away from their current positions (higher or lower).

4. Measure the performance of the network trained using the

new sample positions. Call this normalised performance Q2.

5. Calculate the probability P of accepting the new sample

positions as equal to:

P ¼ e�ðQ2�Q1Þ=D (eqn. 1)

Where D equals 0.02 (determined through trial and error). If Q2

< Q1 (i.e. the performance has improved), then the new sample

positions are accepted automatically and the value of Q1 is

replaced by that of Q2. If P < 1 then a random number generator

is used to determine whether or not the new sample positions are

accepted, and Q1 remains the same.

6. Reduce the sample ‘jump’ size by 1 every 200 annealing

steps.

7. Repeat as from step 3.

The results for using this technique showed that as the number

of samples decreases, the system performance worsens. It also

shows that even for 100 samples, the RMSE is generally worse

than when the entire range is used. Overall, the results show that

even when a large number of inputs are used, the strategy of

selecting a set of sample points using what should be the best

available method degrades system performance. Therefore it was

decided that the network would be provided with as much of the

datasets for input as possible, with the only limiting factors being

spectral effects of shielding at low energies or background peaks

which would preferably be excluded. Determination of the

dataset input size is thus described in the following section, with

these constraints in mind.
Fig. 4 RMSE and r-squared comparison for network which provides an

estimate of 239Pu content. Results for each network output are displayed

for training data, modelled test data and real test data using the three

window sizes (a), (b) and (c).
3. Results

3.1. Optimising the window range

A key objective was to optimise the window range to be used for

network input. Therefore three window ranges were selected for

comparison:
436 | J. Anal. At. Spectrom., 2012, 27, 432–439
(a) 300–400 keV and 600–700 keV;

(b) 260–850 keV;

(c) 5–1277 keV.

Size (a) was selected as this region provides the most valuable

information from the spectrum regarding the isotopic content

and the material age as discussed in Section 1.3. The two larger

sizes were chosen due to conclusions of the network development

stage, where it was found that in general, a larger dataset for

input improved the network performance. Size (c) was chosen to

capitalise on this result including a wide range of the spectral

data whilst discounting the spectral region containing the

prominent background peak at 1.46 MeV from potassium-40.

Size (b) was chosen as an intermediate between the other two

window sizes which also discounts the lower energy region of the

spectrum due to its higher susceptibility to variations from

shielding effects.

The root mean squared error (RMSE) was calculated for each

output category and each window range for the training data set

(420 spectra), the modelled data set (152 spectra) and the real

data set (28 spectra). In addition, the r2 values for correlation

between the target and network values were also calculated, for

each dataset involved. These results are displayed in Fig. 4. For

presence/absence predictions, the p-values for training, model

test and real test datasets were less than 0.01 for every window

size, indicating very low probability that these results were

obtained by chance. For Pu-239 content, p-values ranged from

0.023 (Training (c) to 0.056 (Training (a)), indicating low
This journal is ª The Royal Society of Chemistry 2012
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Fig. 5 Network outputs for the presence (1) or absence (0) of plutonium

in real test spectra, using window range (b).
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probability of the results being obtained by chance. For sample

age, p-values tended to be higher, ranging from 0.050 (Training

(c)) to 0.121 (Model test (b)), with all but Model test (b) giving

values below 0.1. These values are moderately low, but not as

powerful as for presence/absence or Pu-239 content.

For the real data set the RMSE could not be calculated for

either 239Pu content or age as neither of these attributes were

known for the given spectra. While Fig. 4 gives the RMSE values

for the presence/absence outputs, it would perhaps be more

appropriate to express this result as a misclassification error rate.

Setting the threshold for classification at 0.5, with values below

this meaning absence and values above meaning presence, the

network achieved a 100% accuracy rate for all datasets. The

largest error value found for presence/absence was less than 0.2,

indicating high certainty of classification in each case.

The results shown in Fig. 4 demonstrate relatively small

RMSE values for Pu presence/absence and 239Pu content, with

the RMSE values for age being significantly larger. This is

assumed to be due to the training set consisting of an uneven

spread of values with unrealistic values (such as 0 years) being

included. Therefore, it is assumed that with improved variations

of age in the training set, reduced RMSE values could potentially

be achieved.

Fig. 4 also shows that the smallest RMSE for the training data

occurs for the largest window size, (c). This is in agreement with

the initial results found in the network development as discussed

in Section 2.3.2 which found that the larger the dataset used the

smaller the RMSE. Excluding the large RMSE produced for

the age determination, the most accurate results for both the

modelled and real test data sets were found using window size

(b). This may correspond to the fact that window size (b)

excludes the low energy region of the spectrum, which is most

susceptible to shielding effects. Size (b) also includes additional

information not provided by window size (a). Following this

result, window size (b) is analysed for the remainder of this

section.
3.2. Presence/absence determination

The most significant test performed on the trained network to

look for the presence/absence of plutonium was that on the real

experimental data. The network consistently gave an output in

agreement with the desired value as shown in Fig. 5.
Fig. 6 Network outputs for 239Pu content of modelled test spectra using

window range (b).
3.3. 239Pu content

Due to the lack of variation regarding the plutonium-239 content

of the real data set, the modelled data set was used to analyse this

network output. The results are shown in Fig. 6, comparing the

actual 239Pu content with the network’s estimated value.

Although the overall RMSE for the plutonium-239 content is

similar to that for the presence/absence of plutonium, Fig. 6

shows how this error can be much more significant as the various

content ratios used can sometimes differ by less than the RMSE

involved. This is reflected in the lower r-squared values for

plutonium-239 content in Fig. 4. A more effective method may

be to develop the network with a node output which gives

a confidence level for whether a certain threshold content level is

exceeded. For example this could be implemented by training the
This journal is ª The Royal Society of Chemistry 2012
output node to give a value of 1 for a plutonium-239 content

above a given threshold value and a value of 0 for a content

below a given threshold value. Two threshold values could even

be used, possibly separated by a difference of 0.1, thereby

providing the full node range (from 0 to 1) for results which may

appear in the most ambiguous region.
3.4. Age determination

As with the plutonium-239 content, the accuracy of the age

determination was analysed for the modelled test data set as

shown in Fig. 7. As can be seen, the only samples for which the

age determination is relatively accurate (samples 25–28) are

actually non-Pu. The large discrepancies between the network

output and the desired output may be attributed to the irregular

distribution of ages within the training data. Using an age of

0 years may also be unrealistic due to the complete exclusion of

Am241. The consequence of this is that the sample produces

a spectrum similar to that when 100% Pu239 is used, as shown in

Fig. 2. The large variation produced from either of these

conditions may affect the efficiency and accuracy of training the

network, therefore the inclusion of such data should be consid-

ered. However, it is also observable from Fig. 4 that the network

has quite high r-squared values considering the high RMSE

values; this indicates that adjustment of the network outputs
J. Anal. At. Spectrom., 2012, 27, 432–439 | 437
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Fig. 7 Network outputs for material age of modelled test spectra using

window range (b).
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according to an inherent bias may improve the results. Exami-

nation of Fig. 7 shows that for the majority of the test datasets,

the network outputs appear to be offset by approximately 15

years on average.

Improvements on the results of Fig. 7 could potentially be

achieved by better defining the age variation in the training

spread or using a more realistic and even spread of ages. It is also

possible that a separate network dedicated to age alone could

improve prediction accuracy. However, the results obtained here

show that age determination using this neural network approach

is not sufficiently accurate to be usable. Therefore, it cannot be

considered to have been accomplished.
4. Conclusions

We have demonstrated a method for using neural networks to

identify and characterise radioactive material, in this case

plutonium-239, on the basis of gamma-ray emission spectra

taken through shielding. Such a neural network could be

implemented easily within a laptop or PDA attached to

a gamma-ray detector, and used in the field for arms control

verification. The network itself would not contain any informa-

tion of a sensitive nature, and could be used transparently and

rapidly to verify claims regarding potentially threatening

material.

The network performance has been consistent in identifying

the presence or absence of plutonium in a set of real g-ray spectra

different to that of the simulated data used for training. In

addition, the network was tested on its ability to identify the 239Pu

content from a range of simulated g-ray spectra, also different to

that of the training data. Although the RMSE of the output

values were of similar magnitude to those for the absence/pres-

ence of plutonium, the effect was much greater as the difference

in 239Pu content of sample data was comparable to the RMSE.

To improve the accuracy in these results, a second method will be

trialled for the network development. Here the output will offer

a confidence level relating to whether a certain threshold 239Pu

content level is exceeded or not, rather than calculating a precise

value.

Such a method could be more useful as it does not output an

estimate for the ratio which if accurate could be deemed classified

when employed in a real application. However a comparison of
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the two methods is recommended to provide a more compre-

hensive exploration of the network’s capability. If the first

method was in fact found to be more effective then additional

code could be added to compare the ratio estimate with a given

threshold and give a positive/negative output relating to the

presence/absence of that ratio.

As an extension of analysing the network’s capability, its

ability to identify plutonium age from g-ray spectra was also

investigated. The error was much larger for this output and it was

found that the network was not able to distinguish between

spectra of plutonium of different ages. By imposing an offset to

the network output the error could be reduced significantly, but

this is not an approach that could be relied upon in practice as in

some cases it would result in a negative value for age. Further

improvement in determining plutonium age might be achieved by

improved selection of training data and including spectra from

plutonium of a more even distribution of ages.

Ideally once an optimum neural network is developed using

software, a hardware implementation would be much more

appropriate for the desired application. However the accuracy of

identifying 239Pu content requires significant improvement before

such development could be investigated as the confidence levels

would be have to be much higher for an operational verification

technology. Future work in this area should focus on improve-

ment of the method using more advanced neural network designs

and training algorithms, and increasing the quantity of the

training data.
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