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A B S T R A C T

Nuclear technology industries have increased their interest in using data-driven methods to improve safety,
reliability, and availability of assets. To do so, it is important to understand the fundamentals between the
disciplines to effectively develop and deploy such systems. This survey presents an overview of the fundamentals
of artificial intelligence and the state of development of learning-based methods in nuclear science and en-
gineering to identify the risks and opportunities of applying such methods to nuclear applications. This paper
focuses on applications related to three key subareas related to safety and decision-making. These are reactor
health and monitoring, radiation detection, and optimization. The principles of learning-based methods in these
applications are explained and recent studies are explored. Furthermore, as these methods have become more
practical during the past decade, it is foreseen that the popularity of learning-based methods in nuclear science
and technology will increase; consequently, understanding the benefits and barriers of implementing such
methodologies can help create better research plans, and identify project risks and opportunities.

1. Introduction

Over the past decades, many industries have integrated information
technologies to support the design and innovation of products and
services. While the field of nuclear science and engineering is not
known as a highly innovative industry, there has been increasing in-
terest in modernizing the instrumentation in existing and new nuclear
reactor technologies (Arndt, 2015) as well as emergent technologies,
such as nuclear robotics. The International Atomic Energy Agency
(IAEA) has suggested that it “is necessary to address obsolescence issues, to
introduce new beneficial functionality, and to improve overall performance
of the plant and staff” (IAEA-TECDOC-1389, 2004) and to “enhance and
detect subtle variation that could remain unnoticed” (IAEA-TECDOC-1363,
2003), including the use of artificial intelligence (AI) (IAEA-TECDOC-
812, 1995) to support decisions. For instance, in nuclear power plants
(NPP) there are approximately 1,200 different alarms for a 3-loop
pressurized water reactor (PWR).

In the early days, the field of AI focused on solving problems that

were intellectually difficult for humans and problems that could be
easily described by simple mathematical rules (LeCun et al., 2015),
such as chess. Unfortunately, for tasks in uncertain real-world en-
vironments, the development of a set of rules is not practical and be-
comes infeasible. The subfield of AI, known as machine learning, has
the particular characteristic of deriving relationships or set of rules
from data, which allows machines to solve more complex problems and
deal with uncertainty. Subsequently, its application in engineering as a
fast-estimator tool or fast optimization has become an area of research.
In the nuclear industry, the interest in developing a computer-aided
system to reduce information load in operations tasks has been at the
forefront since the 1980s (Buettner, 1985), and in radionuclide detec-
tion since the 1990s (Olmos et al., 1991). While many applications of
learning-based methods have been proposed, understanding both the
potential benefits and challenges that arise from these methods will
help individuals to better formulate the problem and collect re-
presentative data for a robust implementation.

While the field of AI has seen remarkable achievements over the
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past decade, robustness and ethics in AI is of increasingly concern to the
scientific community because of emerging applications of AI in high-
stakes applications (Dietterich, 2017), such as surgical assistants
(Shademan et al., 2016), autonomous driving (Campbell et al., 2010),
power grid stability (Gopakumar et al., 2014), or autonomous weap-
onry (Arkin, 2009), because of the possible risk imposed to humans
lives. Therefore, the purpose of this paper is to: (1) provide an in-
troduction to the fundamentals of artificial intelligence (AI), (2) explore
the evolution of different technologies and their integration and chal-
lenges within the nuclear science domain, and (3) provide re-
commendations for more robust implementation in academia and be-
yond. Furthermore, due to the nature of the paper, more emphasis is
placed on concepts and scope of methods while the technical details are
left to the references. By providing the reader with this review, it will
ease the researcher to better allocate resources and investigative cap-
abilities for future studies.

The reminder of this paper is organized as follow. Section 2 provides
a brief overview of the field of artificial intelligence and explores some
of the concepts and historical achievements of machine learning
methods, particularly neural networks, as they are widely applied in the
nuclear domain. Section 3 presents an overview of different applica-
tions of machine learning in the nuclear and radiological engineering
domain, focusing on identifying the potential benefits and challenges in
this specific area. Section 4 discusses and provides suggestions on fur-
ther research, as well as some of the challenges for a successful de-
ployment of such methods in the nuclear industry. Finally, Section 5
provides a summary, conclusion, and recommendations.

2. Fundamentals of artificial intelligence

The literature on the subject of artificial intelligence (AI) is rather
vast and can be overwhelming for non-AI researchers. To better un-
derstand the advances in the field, however, it is important to under-
stand the fundamentals as they will guide nuclear and radiological
scientists and engineers to better define the objectives for a successful
and robust implementation. As one of the newer fields in science and
engineering, the term artificial intelligence was coined in the mid-50s at
the Dartmouth Summer Research Project on AI. Historically, four
schools of thought have been followed as noted by (Russell and Norvig,
2010):

• Think Humanly: the philosophy of fundamentally understanding
how humans think (e.g., human reasoning)

• Act Humanly: the philosophy of making machines perform tasks
than can be perceived as performed by a human (e.g., Turing, 1950)

• Think Rationally: governed by the field of logic or laws of thought,
where problems are described and solved in a logical manner (e.g.,
solving a problem using principles vs practice)

• Act Rationally: the philosophy of achieving the best/expected out-
come, based on the exogenous and endogenous factors over time

These four schools of thought have formed the basis of the overall
goal of AI of: building machines that can learn and think like people.
Nonetheless, early ambitions diminished over time as the magnitude,
difficulty, and lack of understanding of human reasoning was ac-
knowledged (Brooks, 1991). Thus, it is practical to use reductionism by
isolating specific aspects that comprise AI. As one of the most important
papers in the history of AI, which the authors highly encourage reading,
“Steps Towards Artificial Intelligence” (Minsky, 1961) notes five major
subfields that fundamentally constitute the AI domain: planning, pat-
tern recognition, credit assignment, and inference; each focusing in
solving a different type of problem. The search problem: given a well-
defined problem, a computer must have ways to find a solution other
than an exhaustive search. The planning problem: given a complex pro-
blem where limitations exists (e.g., time, cost, constraints, and multiple
solutions are possible), a machine must have ways to select only a few

for full analysis. The pattern recognition problem: given a problem, a
machine must classify it based on extracting features that are invariant
to common distortion into the problem’s different categories. The credit
assignment problem: uses the analogy of reinforcement to encourage
desired behavior, through which a system “learns” by stimulation via
reward. The inductive inference problem: given a specific domain; a ma-
chine must have methods that can be used to construct a general
statement based on unrecorded information.

Following the combination of these concepts, AI is focused on sol-
ving four fundamental problems (Feigenbaum, 1963) to try to model
human traits:

1.General problem-solver: modeling “reasoning” by modeling the
human cognitive process.
2.Game-playing machine: modeling “strategy” through strategy
games.
3.Question and answering machines: modeling “comprehension”
through natural language and text.
4.Other applications: modeling “decision making” through heuristics,
combinatorial, and searching problems.

Subsequently, when a machine is able to answer all fundamental
question, then it can be considered to be “intelligent”. The latter has
been an ongoing debate (Brooks, 1991) and it is beyond the scope of
this study. Nevertheless, within the last decade AI systems have been
able to play Jeopardy, recognize objects in photos, describe the photos,
and recognize your voice and commands in a ‘human-like’ way. Before
discussing implementations in nuclear science, let us present the most
popular machine learning methods that have and continue to be used
for pattern recognition problems.

2.1. Popular machine learning methods

There are several AI methods that can be encountered in the lit-
erature, the ‘old-fashioned AI’ (Nilsson, 1980), more modern AI (Russell
and Norvig, 2010), and machine learning methods (Bobin et al., 2016;
Mitchell, 1997; Murphy, 2012), each having its own strengths and
weaknesses. Generally, most machine learning methods try to find an
empirical model f that learns from a training data matrix ∈ ×D Rn d

obtained from a system, where d is the number of concerned variables
and n is the number of training data samples. Machine learning com-
bines the pattern-recognition, credit assignment, and inductive in-
ference problem, where in supervised learning, the updates aim to re-
duce an error and improve the algorithm’s pattern recognition
capabilities by modifying parameters, and for unsupervised learning,
the updates work toward matching an expected value based on the
presented data (Lake et al., 2016). There are five popular algorithms
that can be found in nuclear and radiological science applications; these
are decision trees (DT), artificial neural networks (ANNs), nearest
neighbor (NN), support vector machine (SVM), and Naïve Bayes (NB),
because of their flexibility for pattern recognition problems, see
Table 1. Two more are also presented, evolutionary algorithms (EA)
and fuzzy logic, as they are found in nuclear- and radiological-related
problems as standalone algorithms or in combination with neural

Table 1
Sensitivity evaluation of popular machine learning methods.

Criterion DT ANNs NN SVM NB

Mixed data yes no no no yes
Missing Values yes no some no yes

Outlier yes yes yes yes no
Monotone transformations yes some no yes no

Data dimensionality yes yes no no yes
Irrelevant inputs some no no yes no
Interpretable yes no no yes yes
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networks (i.e., neuro-fuzzy or neuro-evolutionary), in some of the lit-
erature.

1.Decision trees are some of the simplest, yet powerful, methods in
machine learning and work by partitioning the input space into local
simple models in each of the resulting regions. While many optimal
partition strategies exist, the most commonly used are based on the
GINI index (see CART Breiman et al., 1984), entropy, or information
gain (see C4.5 and ID3 Quinlan, 1993; Quinlan, 1986).
2.Artificial neural networks are some of many biologically-inspired
techniques that enables a computer to learn from observational
data. It is inspired by the biological structure of the brain, where the
artificial counterpart reproduces a similar functionality (McCulloch
and Pitts, 1943). They work by presenting data to the network via
the ‘input layer,’ which communicates to one or more ‘hidden layers’
where the processing is done via a system of weighted ‘connections.’
The development and success of the error back-propagation algo-
rithms, gives the network the ability to use a loss function to find a
learning rule that decides under which circumstances the weighted
connections need to be modified such that the desired value and the
actual output value are close (Rumelhart et al., 1986). ANNs are the
dominant learning-based algorithm used in nuclear and radiological
science (Ma and Jiang, 2011) because of their ability to deal with
nonlinear, inconsistent, and noisy data (Tsoukalas and Uhrig, 1996;
Adali et al., 1950).
3.k-Nearest Neighbor is an intuitive classification technique that
classifies a data instance according to the majority class of its k
nearest neighbors. This algorithm requires a distance metric such as
Euclidean distance.
4.Support vector machine is a powerful non-parametric method
whose principal idea is to construct a decision boundary that max-
imizes the distance to example points, referred to as maximum
margin separator. Furthermore, SVMs have the ability to embed the
data into a higher dimensional space using the original set. By
transforming the data into a higher dimensional space, a linear se-
parator is found. This linear separator is nonlinear when trans-
formed back into the original space. This is the so-called kernel trick.
For further details see Cortes et al. (1995), Schölkopf et al. (1999)
and Wang et al. (2017)
5.Naïve Bayes is formulated based on Bayes theorem

=P y x( | ) P x y P y
P x

( | ) ( )
( ) , where the prior probability (P y( )) is estimated

using the training set, and the class-conditional probability P x y( | ) is
estimated assuming that the input variables are conditionally in-

dependent (i.e., =
∏ −P y x( | )

P y P x y
P x

( ) ( | )
( )

i
N

i1 ).
6.Evolutionary learning techniques are popular because of their
nature-inspired concept of simulating the evolutionary process.
These holistic approaches do not guarantee a best solution; how-
ever, they generate or approximate a good enough (local optimum)
solution to complex problems in a reasonable amount of time.
Generally, the central common feature of all evolutionary methods
is that they start off with an arbitrary initial solution, iteratively
produce new solutions by a (simple) rule, evaluate the newly gen-
erated solutions by a penalty or fitness function, and report the best
solution found during the search process. Presumably the goal of
generating solutions is to create more, and varied, solution con-
jectures to enhance diversity and quality. For further details see
Bäck (1996), Cortes et al. (1995) and Freitas (2003).
7.Fuzzy logic is a technique derived from the so-called principle of
incompatibility (Zadeh, 1973) which correlates imprecision and
uncertainty to the complexity of a complex system. Introduced in
1965 (Zadeh, 1965), fuzzy set theory and fuzzy logic revolves
around the idea that given two sets, an object can belong to a set
with a degree of membership. This deviates from the classical set
theory and classical logic where an object either belongs to one set
or not. Fuzzy logic approaches are efficient when applied in fields

where imprecision and uncertainty is high and are less efficient
when precision is apparent (Ponce-Cruz and Ramírez-Figueroa,
2004). For details on the evolution of fuzzy logic see Zadeh (2015)

2.2. Beyond classical ANNs

In the new millennium, multi-layered ANNs have demonstrated
remarkable performance when data is plentiful because they have
outperformed other alternative machine learning methods (e.g., SVM)
through improved representation learning via many hidden layers and
improved optimization algorithms that facilitate training. ANNs have
been mathematically substantiated to be universal function approx-
imators (Cybenko, 1989; Hornik et al., 1989; Leshno et al., 1993) (i.e.,
according to the universal approximation theorem), there exists a
neural network with at least one hidden layer with a finite number of
units that can approximate any function at any desired degree of ac-
curacy. Additionally, training speed also saw a breakthrough with the
utilization of graphical processing units (GPUs), which excel at fast
matrix and vector multiplications required not only for image proces-
sing but can also be used for ANN training. GPU hardware reported an
increase in speed by a factor of 20 (Oh and Jung, 2004) or more based
on the specifications, and better computational scalability (Strigl et al.,
2010) than central processing units (CPUs). Deep learning (DL) models
have rapidly evolved to become the state-of-the-art technology in ma-
chine learning tasks such as object recognition, speech recognition,
adversarial games, and controls. The two most popular deep learning
structures are convolutional neural networks for object detection in
images and recurrent neural networks and Long Short Term Memory for
sequential information with time dependencies. Although these require
higher levels of understanding to appropriately tune them, the appli-
cation of these structures has been rather limited in nuclear sciences,
but some examples are detecting steel cracks underwater using video
(Chen and Jahanshahi, 2018) or isotope detection (Kamuda et al.,
2019) using convolutional structures.

2.2.1. Convolutional neural networks
Convolutional neural networks, more commonly known as CNNs or

ConvNets, were firstly introduced in (Fukushima, 1979; Fukushima,
1980; Fukushima, 2013) by means of mimicking the vision process of
mammals, and later implemented for handwritten number recognition
(LeCun et al., 1989). Currently, CNNs are the dominant structure for
object recognition tasks and it can be comparable to human-level per-
formance (He et al., 2015; Russakovsky et al., 2015; Szegedy et al.,
2014). The novelty of the approach was the use of convolution layers to
significantly reduce the number of parameters that needed to be opti-
mized, as shown in Fig. 1a, which both reduces the memory required
and increases the model efficiency. The convolution layer consist of
three different stages: convolution, activation, and pooling. First, a
convolution is a mathematical operation of two functions of real value
arguments that form a new function (Goodfellow et al., 2016). Sec-
ondly, each entry is then transformed by a nonlinear activation function
to extract features. At the pooling stage, the pooling function replaces
the output of the network with a statistical summary of the nearby
outputs. The key concept from this stage, is to make the representation
invariant to small transformations of the inputs. Thus, after the feature
extraction stage the ×m n image is divided into a ×m n disjoint and
take the max (or other function) feature activation over these regions to
obtain the “convolved features” that can then be used for classification.

2.2.2. Recurrent neural networks
Recurrent neural networks (RNNs) have been the preferred choice

for tackling memory tasks with time dependencies. However, when
long-time dependencies are required to be learned, RNNs suffer from
the vanishing gradient problem (Hochreiter, 1998), for which memory
structures have been proposed in the form of gated units. Gated re-
current neural networks are based on the idea of hybrid-designed gates
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that create pathways through time whose derivatives neither vanish nor
explode (Goodfellow et al., 2016). This is achieved by using three types
of control gates: the write control that determines the input to the
memory state (with linear activation), the forget gate that controls how
much of the stored memory value is transferred to the next time step,
and the output gate which regulates the output of the memory cell. The
most popular gated type units used are the gated recurrent unit (GRU)
(Cho et al., 2014) and the Long Short Term Memory(LSTM) (Greff et al.,
2015), and these are regarded as the state-of-the-art for sequential data
such as speech recognition and translation (Sutskever et al., 2014).

2.3. Comparison of popular algorithms

While it is unrealistic to expect that the data collection or genera-
tion is going to be perfect, data availability is one of the major factors
that determines which method is suitable for a successful application. A
selection criteria is presented in Table 1 (Dietterich, 2005; Tan et al.,
2005) with the following criteria explanations:

• Mixed data: the ability to handle different types of data (i.e., con-
tinuous, discrete, etc.)

• Missing Values: sensitivity to unrecorded data

• Irrelevant inputs: sensitivity to values that do not contain relevant
information to the application

• Outlier: robust to unusual or inconsistent values

• Data dimensionality: ability to handle increasing features in data
sets

• Monotonic transformations: sensitivity to monotonic transforma-
tions

• Interpretable: ability to understand the rationale behind the deci-
sion/classification of the algorithm (Doshi-Velez and Kim, 2017)

3. Intelligence augmentation: a nuclear and radiological
challenge

The civil uses of nuclear technology have a number of different
applications with various benefits to the general public. Medical ap-
plications include the use of nuclear materials to diagnose, monitor,
and treat many different human conditions; industrial applications are

numerous and are characterized by being non-intrusive including
sterilization, radiography, smoke detectors, and food safety among
others; academic applications include the use of nuclear material for
laboratory practices, and research and development; and energy ap-
plications include to produce electricity, heat water, and work in con-
junction with other energy sources. While it is common to characterize
physical systems employing first principles, which can be very accurate
when the underlying laws are well known, empirical methods can be
used to develop approximate mathematical models when the laws are
not well understood (de Oliveira et al., 2000), which, if used correctly,
can be very useful.

This section presents the performance and flexibility or machine
learning methods in nuclear technologies, with a focus on nuclear re-
actor health monitoring, gamma spectroscopy and optimization, and
their support to both technical and economic objectives shown in
Table 2; ultimately, enhancing safety, reliability, and availability of the
equipment. The collective problems in this section are of different
types: (1) regression refers to the prediction of continuous values, (2)
classification to the prediction of a category or class, or (3) combina-
torial and exploratory. In nuclear engineering, researchers have iden-
tified the potential use of pattern recognition in various tasks in nuclear
reactors (Uhrig et al., 1999; Uhrig et al., 1998; I.N.E.S. NP-T-1.2, 2008;
I.N.E.S. NP-T-1.1, 2008). In radiation detection, research takes ad-
vantage not only of the pattern recognition to analyze the reactor de-
tectors’ signals for anomalies, but also to analyze and categorize gamma
and neutron spectrums for transportation, security, and environmental
monitoring. Lastly, optimization applications use available data for the
discovery of more, and varied, solutions in a timely manner.

Fig. 1. Popular deep learning structures.

Table 2
Nuclear Science Objectives.

Technical Economical

• Reduce radiation exposure to
personnel

• Enhance equipment reliability

• Avoid actuation of safety systems

• Assist with correct and timely
decision making

• Enhance safety margins

• Optimize the maintenance schedule

• Improve plant availability

• Avoid escalation of minor problems
into major event

• Support power uprate and life
extension
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3.1. Plants health and management approaches

In nuclear power plants (NPPs), there are a wide variety of tasks
that have been studied using learning-based methods, particularly the
development of neural network structures for parameters prediction
and classification using sensor data to perform monitoring, diagnosis,
prognosis, controls, planning, and other tasks that can benefit from
pattern recognition. Degradation, ageing, and transients can happen
over a short or long period of time; thus, it is feasible to extract a unique
set of patterns or fingerprints for the operators to perform a root cause
analysis in a timely manner. The primary goal of such applications is to
provide a quick and accurate insight such that additional time can help
derive the optimal procedure/strategy to be implemented to correct the
situation via artificial anticipators or fast first estimation tools, there-
fore increasing the safety of the plant and components.

In NPPs, learning-based methods have been studied for instrument
calibration monitoring, equipment monitoring, reactor core mon-
itoring, loose part monitoring, transient identification, reactor controls,
and others. The task of monitoring and diagnosis systems consists of
detecting the departure of a process from normal conditions to char-
acterize the new process/state based on temporal trends (Denœux et al.,
1997). Conventionally, a fault threshold level for each plant parameter
is set and an alarm is given when the signal exceeds the threshold level
(i.e., if-then rules derived from model-based approaches Frank, 1990;
Isermann, 1984; Basseville, 1988). However, minor abnormal condi-
tions may not be detectable until they reach a critical threshold (Boring
et al., 2015; Ulrich et al., 2015), which is where computer-aided sys-
tems can prove to be worthwhile. Plant health and management cap-
abilities are not unique to the nuclear industry, as other complex en-
gineered systems are also interested in such features (Tan et al., 2016;
Schlechtingen et al., 2013; Mirowski et al., 2014; Shahid et al., 2012;
Ge et al., 2008), which translates to better performance and help con-
serve the asset in optimal conditions. The economic impact of the de-
velopment of advanced systems can have a potential savings of $48
billion USD over a 40-year life span of a typical power plant as shown in
Chai et al. (2003); roughly $1 billion USD per year, when optimal op-
eration is maintained.

Research in the monitoring domain using simulators and codes has
been extensive (Sirola et al., 2012; Fantoni et al., 1996; Santosh et al.,
2009; Kim et al., 1992; Subhra et al., 2010; Vinit Tarey et al., 2012;
Pinheiro et al., 2019; Nabeshima et al., 1998; Uhrig, 1991; Yang et al.,
2018; Boring et al., 2015; Na et al., 2006; Ulrich et al., 2015) because of
the potential economic impact. Nevertheless, for the success of in-
telligent aided systems in the nuclear industry, the use of real or pro-
totypical systems is also encouraged as such systems will be subject to
the problem of verification and validation (V&V) (Kim, 1994). Some
examples of machine learning studies using real plant information are:
the Tennessee Valley Authority Sequoyah NPP (Zhichao and Uhrig,
1992) to determine the variables that affect the heat rate and thermal
performance, Watts Bar NPP (Bartlett et al., 1992) for operating status
recognition, High Flux Isotope Reactor operated at Oak Ridge National
Laboratory (Hines et al., 1996) for sensor calibration systems and
sensor fault detection systems, experimental Breeder Reactor
(Upadhyaya and Eryurek, 1992), prototypical Small Light Water
(Fernandez et al., 2017) for plant wide behaviour analysis, and Narora
Atomic Power Station (Vinod et al., 2003) to identify eight particular
initiating events. Although there have been some real setting applica-
tions, the use of real NPPs information for performance studies has been
rather limited due to the highly regulated industry and intellectual
property protection concerns (Uhrig et al., 1999; Adali et al., 1950;
Wallace et al., 2011).

Other applications where machine learning methods can be en-
countered are: the prediction of the behavior of systems components
such as heat exchangers (Ridluan et al., 2009; Patra et al., Feb. 2010;
Wijayasekara et al., 2011; Patra et al., 2012), power peaking factor
estimations (Montes et al., 2009; Patra et al., 2012), key safety

parameter estimation (Mazrou, 2009; Farshad Faghihi and Seyed, 2011;
Calivá et al., July 2018), aging and degradation (Boshers et al., 1993;
Agarwal et al., 2015), uncertainty propagation (Krivtchik et al., 1991),
severe accidents classification (Na et al., 2004; Ma and Jiang, 2011; Lee
and Lee, 2006), functional failures of passive systems (Zio et al., 2010),
research reactors (Nasrine Allalou et al., 2016), and more recently crack
detection in internal reactor components (Chen and Jahanshahi, 2018).
All of these problems are well suited, with the advantage that more data
can be generated or made available to researchers.

3.1.1. Flow regime identification
Other related areas to reactor safety is the identification of flow

regimes. Several methodologies for flow identification seem to be
subjective based on visual observations (Tsoukalas et al., 1997), with
some being more objective (Vince and Lahey, 1982; Jones et al., 1975).
The use of learning-based methods to predict flow regime identification
based on nonintrusive instrumentation has been explored mainly using
feed forward neural networks (Lombardi and Mazzola, 1997; Mi et al.,
1998; Mi et al., 2001; Sunde et al., 2005; Tambouratzis and 10.1016/
j.anucene.2010.02.004, 2009; Tambouratzis et al., 2010; Lee et al.,
2008; Crivelaro et al., 2002; Hernandez et al., 2006; Juliá et al., 2008),
including some deep learning approaches (Yang et al., 2017; Guo et al.,
2016). Proper flow regime identification can accelerate the design
analysis and operation of engineering systems as correct hydrodynamic
and kinematic mechanism can be modeled. Additionally, nonintrusive
techniques can be used for the detection of wears, leakages, or un-
wanted events while operating.

3.2. Radiation protection

As one of the fundamental pillars of nuclear safety, intelligence
augmentation also extends to its application in radiation protection-
related tasks. In spectroscopy, the goal is to find a pattern or structure,
full peaks in most cases, and differential count rates by analyzing the
distribution of counts over a spectrum. Efficient and accurate char-
acterization and identification of radionuclides is of great importance as
it can help with illicit transportation of radioactive materials, or con-
taminants in the field, which are traditionally determined using gamma
spectroscopy. There is a wide variety of application for spectroscopy
ranging from the analysis of the instrumentation, the spectrum itself, its
meaning, and its derived features. Radionuclide identification using
learning-based methods based on gamma and neutron spectroscopy is
of interest as such approaches do not require templates or peak libraries
calculated in advance (Fagan et al., 2012). Moreover, they can help
discern subtle patterns in large multivariate data sets to reduce false
negatives (Kangas et al., 2008), calibration drifts (Kamuda et al., 2018),
data uncertainties (Dragović et al., 2005), and peak overlapping (Baeza
et al., 2011; Alizadeh and Ashrafi, 2019). Other applications with
limiting research include nuclear stability and decay (Gernoth et al.,
1995), SVM for anomaly detection from thermoluminescent dosimeter
(TLDs) glow curves (Amit and Datz, 2018), radiation signals encryption
(Chatzidakis et al., 2014), radiation therapy (Bibault et al., 2016),
among others. However, because of the large use of spectroscopy in the
field, the scope of this section will be focused on this particular appli-
cation. While the interest has been extensive, and many different
learning-based algorithms have been used, neural networks are the
dominant method.

In gamma spectroscopy, research related to the identification of
isotopes for hand-held instrumentation (Kamuda et al., 2019; Keller and
Kouzes, 1994) based on ANSI N42.34 standard isotope selection (A.N.S.
Institute, 2007), independent isotope classification (Abdel-Aal and Al-
Haddad, 1997; Yoshida et al., 2002; Shahabinejad et al., 2018;
Bellinger et al., 2015; Chen et al., 2009), mixture of elements (Olmos
et al., 1991; Kamuda et al., 2019; Bobin et al., 2016; Abdel-Aal and Al-
Haddad, 1997), and specific activity of naturally occurring radioactive
materials (NORMs) (Sheinfeld et al., 2017; Medhat, 2012) have been
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carried out. Similarly, neutron spectroscopy analysis has been a subject
of research using Bonner sphere systems (Vega-Carrillo et al., 2006;
Ortiz-Rodriguez et al., 2013; Kardan et al., 2003), and neutron dose
estimation (Vega-Carrillo et al., 2009) using neural networks have been
reported. The identification of radionuclides can also be extended to
other specific subfields such as special nuclear materials detection and
environmental monitoring where detection is more difficult. In other
specific areas such as optimization, one of the key principles of radia-
tion protection, via machine learning approaches can lead to the dis-
covery of solutions that typical deterministic approaches are not able to
provide or for which the exploration can be too costly.

3.2.1. Special nuclear material
Illicit nuclear material trafficking is one of the applications where

substantial efforts have gone into devising strategies for inspection. The
use of gamma spectroscopy is also extended to nonproliferation and
nuclear security applications. However, special nuclear material (SNM)
identification presents additional challenges, such as data collection
time, background level, and attenuation or distorted shielded spec-
trums, where scientists have applied machine learning methods to im-
prove on such challenges. Clustering methods for radioxenon classifi-
cation (Sharma et al., 2012), neural networks for shielded plutonium
(Aitkenhead et al., 2012), uranium ore compound classification (Ho
et al., 2015; Hata et al., 2015), spent fuel pool classification to ease
nuclear forensics (Jones and Turner, 2014), and general SNM detection
using: fuzzy logic systems (Alamaniotis et al., 2013; Alamaniotis et al.,
2009; Alamaniotis et al., 2009; Alamaniotis and Tsoukalas, 2015),
evolutionary algorithms (Alamaniotis et al., 2013; Alamaniotis and
Jevremovic, 2015), Gaussian process (Alamaniotis et al., 2015), naïve
bayes (Dalal and Han, 2010; Sullivan and Stinnett, 2015), are some of
the different tasks for which learning-based methods have been con-
sidered. The Gamma Detector Response and Analysis Software (GA-
DRAS) (Horne et al., 2014; Klasky et al., 2016) has been used as a
training data generator in some of the presented work for both gamma
and neutron spectrums.

3.2.2. Environmental monitoring
Environmental monitoring is achieved mainly from the detection of

gamma radiation, as it is the most penetrating radiation either natural
or anthropogenic. Other situations include the environmental applica-
tion of gamma spectroscopy for geological, geochemical, and environ-
mental mapping, allowing the interpretation of regional features, such
as atmospheric radon levels; human-made contamination around nu-
clear facilities to determine a baseline for accidental releases; mining
and other industrial activities (IAEA-TECDOC-1363, 2003; IIAEA-
TECDOC-1017, 1998). However, environmental systems present a
particular barrier that their dynamics are complex, nonlinear, and af-
fected by many exogenous stressors; therefore, the development of si-
mulation models, risk mapping, spatial predictions, representative data
collection and analysis (Kanevski et al., 2004) are ongoing challenges,
where models obtained through empirical data are typically better
suited than those from analytical equations (kuo Liu et al., 2014; Hsieh,
2009). Some noticeable studies are, legacy site Ra-226 contamination
characterization (Varley et al., 2015) and distribution (Varley et al.,
2015); and remediation monitoring (Varley et al., 2016), which can
serve as a first estimation tool to provide rapid insights of the activity,
depth, and distribution of the contamination. Estimation of an ambient
dose rate risk map using various machine learning methods (Yeşilkanat
et al., 2017), spatial prediction of fallout at the Chernobyl site (Kanevky
et al., 1997), suitability of neural networks for uranium activity ratio in
environmental spectra (Einian et al., 2015), and bio-availability and
bio-accumulation of NORMs in aquatic species through produced water
from the gas and oil industry (Chowdhury et al., 2004; Shakhawat
et al., 2006), are some of the areas that have shown promise for the
potential benefit of learning based methods. Other technologies such as
the Internet of Things (IoT) are also being explored in the field of

environmental monitoring (Muniraj et al., 2017; Lin and Liaw, 2015).

3.3. Optimization

Designing and analyzing engineering systems can be a very complex
process, of which energy systems are an exceptional example.
Optimization can be defined as the “act of obtaining the best result under
the given circumstances” (Rao, 2009). The highly iterative process in an
interdisciplinary environment leads to multiple suboptimal designs or
decisions until one is determined to be the best performing one (i.e.,
meeting the requirements imposed as well as being cost-effective, ef-
ficient, reliable, and durable (Arora, 2016)). In practical engineering,
optimization problems are expressed as an analytical function that in-
cludes decision variables and constraints, such that traditional optimi-
zation tools can be used (e.g., first or second order optimization algo-
rithms). However, in some cases analytical formulations are not feasible
or too simplistic to capture the complexity, for which nontraditional or
modern optimization methods are of particular interest.

In nuclear and radiological engineering, many processes can be
optimized by using a well-studied, and justifiable, machine learning
method. Bio-inspired methods, such as neural networks, evolutionary
algorithms, and particle swarms, among others, are very popular in the
optimization domain as their working mechanism allows them to gen-
erate more, and varied, solutions to enhance diversity and quality.
Combinatorial types of problems can easily take advantage of these
methods; for instance, in fuel loading management (Erdoğan et al.,
2003; Siegelmann et al., 1997; Faria et al., 2003; Hill et al., 2015;
Zameer et al., 2014; Jayalal et al., 2014; Eliasi et al., 2012), optimal
maintenance scheduling (Volkanovski and Cizelj, 2014), dry cask
loading (Spencer et al., 2018; Spencer et al., 2019; Bartlett, 1992),
packing and waste handling (Hopper and Turton, 1998), or dose opti-
mization (Wang et al., 2018; kuo Liu et al., 2014).

3.3.1. Robotics and controls
Although the scope of this paper is on learning based methods, ro-

botics and controls are complementary, as optimization is at the core of
control theory and machine learning methods are also being evaluated
(Zhang et al., 2018). The desire to provide autonomy (i.e., ability for
self-governance in the performance of functions (Antsaklis et al., 1991))
to machines has been one of the fundamentals of the field of artificial
intelligence as it can eliminate or reduce human roles from low level
tasks. Optimization and controls are conceptually different, where the
goal of controls is to produce a desired output given feedback from the
systems controllers (Arora, 2016), (i.e., the output is known). Robotics
in the nuclear industry can be beneficial by substantially reducing the
time that an individual has to spend in a radiation area and remotely
handling material that is considered hazardous, or when the conditions
of the environment or structural integrity are unknown. For instance,
(Wood et al., 2017) identifies three key areas where autonomous con-
trols can be beneficial: (1) detection and progression limitation of off-
normal events, (2) detection and response to degraded or failure con-
ditions (Lee et al., 2018), and lastly, (3) potentially unattended op-
eration with limited human interaction (Uhrig et al., 2003). Others
include, reactor temperature or power control (Ku et al., 1991; Ku et al.,
1992; Arab-Alibeik and Setayeshi, 2005; Na et al., 2006), coordinated
control strategies development using fuzzy logic and neural networks in
a multi-unit small modular reactor (Zhang et al., 2019; Zhao et al.,
2015), inspection (Yim et al., 2013), hazardous material search and
radiation mapping using robots(Zakaria et al., 2016; Sinclair et al.,
2016; Tokuhiro et al., 2004), and computer vision for radwaste man-
agement (Shaukat et al., 2016). Robotics and controls present some
particular challenges as they require special design considerations,
material selection, operational constraints, processes knowledge, etc.
With high-stake controls, it is of paramount importance that the prob-
ability of taking or advising the wrong solution path is minimal, which
is part of the robust artificial intelligence presented in recent years
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(Dietterich, 2017).1

3.4. Suitability of popular algorithms in nuclear and radiological problems

This section presents a general analysis based on the commonly
collected data for each of the different applications and is summarized
in Table 3. Please note that more than one algorithm among the popular
algorithms can be applied for a specific task, which is also reported in
the literature. Other factors such as training speeds/cost, accuracy,
model complexity, interpretability, etc., become part of the selection
process and are beyond the scope of this review. Table 1, along with
literature (i.e., Section 3), is used to provide an overall assessment of
the suitability of the algorithms that have been presented.

Moreover, it is worth noting that most, if not all, existing engineered
systems of relevance here consists of the human, measurement of
physical phenomena, purposeful design of small to large engineered
devices and systems (D&S) and other than unanticipated events, op-
eration of devices and systems as designed, constructed and intended.
On the basis thereof, both phenomena and function of D&S many times
have been created with inherent complexity (i.e., with multiple vari-
ables/parameters not only interacting within the D&S but via hu-
man–machine interaction). The current state of understanding of
complexity is limited and rudimentary not only because those who
acknowledge complexity are scattered across disciplines, but there is no
emerging consensus on characterizing it. The emerging application of
learning-based approaches, across the sub-disciplines and applications
noted herein is an attempt to characterize the complex interactions of
phenomena and D&S via an algorithmic approach that relies on coded
sampling of limited channels/streams of data generated by measure or
functional ‘gauges’ of the D&S. What is evident in the applications de-
scribed here is that phenomena and D&S with say approximately 10–50
variables and parameters approximately defined complexity and that
characterization of such a problem is limited to non-existent.

Further, learning-based methods of relevance and complexity level
herein implied are largely known or recognized as substantiating the
bulk of any characteristic distribution of recurring phenomena or
function. In other words, these methods do not work well for outliers.
Characterizing rare occurrences, such as “black swan” events, are not
well-suited for these methods. Thus, as noted by Agrawal et al. (2018)
and Tokuhiro (2019), learning-based methods are able to decipher
many familiar, coded ‘if-then-when’ instances at a systematic level as
inspected and then predict the likely next occurrence. Therefore, at this
time, prescriptive and systematic approaches and methods to com-
plexity, other than accessible cases of applicability as cited here, do not
yet exist.

4. Discussion and suggestions

In many industries, the rapid growth of information is creating a
dependence and reliance on advanced algorithms to analyze and make
decisions, or partial decisions, gradually reducing human involvement.
Unlike the nuclear industry, nonnuclear power systems have made di-
gital upgrades to their systems, whose lessons learned can be an ad-
vantage for more effective modernization (IAEA-TECDOC-1389, 2004).
While automating and modernizing technology is part of its evolution
(Sheridan, 2002) notes that underloading the mind can be just as
harmful as overloading because new issues arise not only by the levels
of automation defined for the domain, but also the result from the in-
terface between the user and automation (OHara and Higgins, 2010).
Failure to acknowledge the challenges can lead to the following: misuse
or the over-reliance on automation; disuse or the under-utilization of

automation; and abuse or inappropriate application of automation
(Parasuraman and Riley, 1997). Thus, fostering experts’ understanding
of the benefits of developing learning-based solutions can help avoid
potential issues. Moreover, a lack of proper evaluation method has
previously been identified in Reich and Barai (1999), resulting in ad-
ditional challenges and an impediment to the progress and improve-
ment in research and practice in the application of learning-based
methods in engineering.

4.1. Ethics

The aspiration to apply and deploy intelligent systems to improve
processes is a co-evolution between developers, users, and technology.
Unfortunately, such human-machine symbiosis is coupled with ethical
issues, which are not always anticipated by developers or the common
users. While data and algorithms are ethically neutral (i.e., they don’t
have a built-in perspective on what is right/wrong or good/bad), the
use of data and learning-based algorithms can represent a risk (e.g.
trusting black box models). Moor (2006) provides a philosophical dis-
cussion of how developers tend to evaluate the performance of the tools
based on accomplishing what they were designed for, and after the
technology matures, these norms become of second nature (i.e., ethics
derived from their human developers). Other prominent ethical issues
in the AI domain that are inherently carried over to other domains are:
undesirable uses of AI (Schulzke, 2013), loss of accountability (Beiker,
2012; Floridi and Taddeo, 2016), and machine ethics (Anderson et al.,
2005). All of these constitute an active, and rapidly evolving, area of
research that continues as the adoption of AI methods increases.

Because AI methods have not been extensively used, and AI-based
autonomy is still in early research stage in nuclear science and en-
gineering, ethical issues are not commonly mentioned. Based on the
state of the technology, the goal of intelligent systems in nuclear sci-
ences must be to inform and provide users with the appropriate inputs
to formulate, conform, and perform the most effective actions, and not the
replacement of any human input. A human counterpart has the ex-
pertise to ensure that trade-offs are fully understood before taking
proper decisions, while taking advantage of the superior data proces-
sing from computers. Thus, learning-based systems should be a sup-
plement to, rather than a substitute for, traditional methods to enhance
decision making. This holistic approach should serve as a guide to the
development of robust intelligent augmentation systems through the
most effective implementation of learning algorithms toward the de-
sired task, heeding the different objectives shown in Table 2, Table 1
and Section 2. Further consideration beyond the technological ad-
vantages and ethical issues are legal and social implications and the
development of guidelines and standards (with a recent publication
being OECD, 2019).

4.2. Collaborative and open access research

As information technologies continue to advance, so is the way re-
search is being conducted and shared; particularly in the fields of AI/
ML. The concept of FAIR (Findability, Accessibility, Interoperability,
and Reusability) (Wilkinson et al., 2016) is now a reality that all re-
searchers must consider. Open platforms, such as GitHub Inc., allow
research to be shared such that reproducing others’ work is simple, and
improvements on the current state of the research can be made. Thus,
increasing FAIR and focusing on new ideas will avoid unnecessary time
expenditure in reproducing results or duplicating research. Moving the
research process into a more collaborative and inclusive process will
encourage more discussion and interaction with other peers, compa-
nies, and developers, during (and after) the research cycle. This process,
in principle, increases the quality of the contributions made and ac-
celerates innovation. While sharing information is one way of facil-
itating research, information technologies include other research en-
hancers such as the Internet of Things/IoT (see Section 3.2.2) and cloud

1 For a more detailed review on nuclear robotics, see Bogue (2011), and ra-
diation effects on electronics, see Kuwahara et al. (Dec 2012) and Messenger
and Ash (1986).
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computing2, which allow for users with limited resources to access
services at lower costs, such as intensive multi-physics simulations Wu
et al., 2013.

5. Conclusion

This study presents a review of various applications of machine
learning to the field of nuclear science and associated engineering. It is
the authors’ intent that this review helps provide researchers with a
background and guidance to understand the benefits of new technolo-
gies as applied to the nuclear science domain to enable and accelerate
the scientific and technological outcomes of learning-based approaches.
Furthermore, it is crucial that the primary goal for the development and
implementation of machine learning algorithms is to provide fast esti-
mation for better informed decisions for the users (human in the loop),
as well as assuring interpretability and reproducibility of the models.
Lastly, to accelerate innovation the use modern research accelerators
that allow for active (virtual) discussion and collaborations is en-
couraged. Ultimately, the goal is a safe and effective application of
learning-based method in nuclear science.
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