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Abstract

Micro and survey datasets often contain private information about individuals,
like their health status, income, or political preferences. Previous studies have
shown that, even after data anonymization, a malicious intruder could still be
able to identify individuals in the dataset by matching their variables to external
information. Disclosure risk measures are statistical measures meant to quantify
how big such a risk is for a specific dataset. One of the most common measures
is the number of sample unique values that are also population unique. Mixed
membership models can provide very accurate estimates of this measure. A limi-
tation of this approach is that the number of extreme profiles has to be chosen by
the modeller. In this article, we propose a non-parametric version of the model,
based on the Hierarchical Dirichlet Process (HDP). The proposed approach does
not require any tuning parameter or model selection step and provides accurate
estimates of the disclosure risk measure, even with samples as small as 1% of the
population size. Moreover, a data augmentation scheme to address the presence
of structural zeros is presented. The proposed methodology is tested on a real
dataset from the New York microdata.

Keywords: Disclosure risk measures, Contingency tables, Privacy, Latent class
models, Bayesian non-parametrics, Hierarchical Dirichlet process
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1 Introduction

Statistical agencies routinely collect and disseminate to the public record-level and
microdata on individual persons and businesses. This data may contain private infor-
mation about individuals, like their income, political or sexual preferences, or health
conditions. This creates a serious concern for privacy breaches and the need to pro-
tect individuals’ anonymity. Previous studies have shown that, even after removing
names from the data, a malicious intruder could still be able to identify individuals by
matching some of their variables in the dataset to external data. Indeed, in a famous
example, [1] was able to identify 97% of the records in a voter registration list by using
just their birth date and zip code.

Disclosure risk assessment refers to a broad range of statistical techniques that
can be used to assess whether record-level or file-level data has to be considered at
risk of disclosing private information. A popular disclosure risk measure, proposed by
[2], is the number of sample unique values that are also population unique, denoted
by τ1. Individuals having a rare or unique combination of values in some variables
in the dataset are those most at risk of identification because if their variables are
matched using another dataset, it results in a perfect match. Therefore, if the estimated
measures of disclosure risk are high, additional privacy-preserving techniques, like,
for example, variable anonymization, data swapping, and addition of noise or cell
suppression, should be applied to the dataset before its release to the public.

Among the most popular models to estimate τ1 or similar disclosure risk measures
are log-linear, [3], and mixed-membership (also referred to as grade of membership)
models, [4]. Log-linear models are computationally very efficient, but their estimates
may deteriorate with the presence of many structural zeros. The mixed membership
models, as proposed in [4], seem to provide very accurate estimates of τ1, even with
samples as small as 1% or less of the entire population. However, a limitation of this
model is the practitioner needs to select a number of extreme profiles K to use for
a specific dataset. This has two drawbacks. Firstly, it affects the running time of the
methodology, since the model needs to be fitted for different values of K to evaluate
differences in the estimates of τ1. Secondly, the choice of a suitable K depends on the
value of τ1, which in real data scenarios is not available to the practitioner.

In this article, we propose a non-parametric version of the mixed-membership
model of [4] to perform disclosure risk assessment. The proposed model is formulated
as a Hierarchical Dirichlet Process, [5], and allows a potentially unbounded number of
extreme profiles. This number is then estimated directly from the data, hence result-
ing in a tuning-free modelling approach. We describe how to estimate τ1 within the
MCMC using both a population sampling approach, as in [4], and a much faster Monte
Carlo approximation, which can speed up the computational cost of the algorithm
substantially.

A common problem with modelling contingency tables is the presence of many
structural zeros. These are combinations of categorical variables that lead to impossible
values, i.e. values that are known to be zero in the population, for example, a pregnant
male. In real-data applications, structural zeros can account for a very large proportion
of possible combinations, and, if their presence is not properly accounted for in the
statistical analysis, the performance of the model can deteriorate dramatically. In this
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article, we also describe how to extend the proposed non-parametric model to deal
with the presence of many structural zeros, following the data augmentation idea
presented in [6]. This latter paper presents an approach to handle structural zeros in
tabular data, with an application in disclosure risk using a mixture model, in which
the dimension K is fixed, see also [7].

To sum up, the paper is organized as follows. Section 2 reviews the disclosure
risk problem and introduces the disclosure risk measure τ1. Section 3 presents the
non-parametric generalization of the mixed membership model of [4], using the Hier-
archical Dirichlet Process, and describes the Markov Chain Monte Carlo (MCMC)
algorithm to make inference on the model parameters and to estimate τ1. The exten-
sion of the model to include structural zeroes is discussed in Section 4. In Section 5,
some empirical illustrations are presented to show the performance of the proposed
methodology on synthetic and a real-data example with New York microdata from
the American Community Survey. Finally, some background material, derivations,
additional information on the experiments, and more experiments are included in the
Online Supplementary Material.

2 Disclosure Risk Problem

Disclosure risk problems for record-level data usually involve two distinct classes of
variables: 1) one set of variables, usually called sensitive variables, that contain private
information, e.g. health status or salary; 2) another class of identifying categorical vari-
ables, usually called key variables, e.g. gender, age, job, and more general demographic
information. Disclosure risk arises because a malicious intruder could potentially iden-
tify individuals in the dataset by cross-classifying their key variables and matching
them to some external source of information, like publicly available census data. If
these matches are correct, the intruder will be able to identify individuals’ identities
and disclose information contained in their sensitive variables. Disclosure risk mea-
sures are statistical measures that try to quantify how easy it is to identify individuals
based on the values of their key variables.

In order to formalize the problem, let us assume that J categorical key variables
in the dataset have been observed for a sample of n individuals, sampled from a
population of size N . The j-th key variable has nj possible categories, labeled, without
loss of generality, from 1 up to nj . Focusing only on key variables, observation for
individual i, denoted Xi “ pXi1, . . . , XiJq, therefore takes values in the state space

C :“
ŚJ

j“1t1 . . . , nju. This set has |C| “
śJ

j“1 nj values, corresponding to all possible
cross-classification of the J key variables. Information about the sample is usually
given through the sample frequency vector

`

f1, . . . , f|C|

˘

, where fc counts how many
individuals out of the n in the sample have a particular combination of cross-classified
key variables, corresponding to cell c P C.

`

F1, . . . , F|C|

˘

denotes the corresponding
vector of frequencies in the whole population of N individuals, i.e. Fc is the number
of individuals in the population belonging to cell c.

The earliest papers to consider disclosure risk problems include [8–11]. These works
propose different measures of disclosure risk and ways to estimate them, under specific
model assumptions for

`

f1, . . . , f|C|

˘

and
`

F1, . . . , F|C|

˘

. [12], [2] provide reviews of
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the most popular measures of disclosure risk. Disclosure risk measures depend on the
sample frequencies

`

f1, . . . , f|C|

˘

and often focus on small frequencies, especially on
cells having frequency 1, called sample uniques. Individuals belonging to these cells
are those at the highest risk of having their sensitive information disclosed. This is
because if any of these sample unique values are also unique values in the population,
called population uniques, any match of their key variables with information from
another dataset will produce a perfect match, i.e. perfect certainty about the identity
of that specific record, and their sensitive information will be therefore disclosed. For
a review of disclosure risk problems, the reader is referred to [13].

We usually distinguish between two groups of measures of disclosure risk :

1. Record-Level (or per-record) measures: they assign a measure of risk to each data
point or specific cell values. Among the most popular ones, there are

r1c “ P pFc “ 1|fc “ 1q , r2c “ E p1{Fc|fc “ 1q . (1)

c P t1, . . . , |C|u. The first measure provides the probability that a sample unique is
also population unique. The second one gives the probability that, given a sample
unique c, we guess her identity correctly, by choosing one of the Fc values in the
population uniformly at random. In general, the first measure is less conservative
and is always smaller than the second.

2. File-level measures: they provide an overall measure of risk for an entire sample or
dataset. File-level measures are usually defined by aggregating the corresponding
record-level ones. Popular examples are

τ1 “
ÿ

cPC:fc“1

r1c, τ2 “
ÿ

cPC:fc“1

r2c. (2)

In the disclosure risk literature, τ1 is a popular measure of disclosure risk, [2–
4, 6, 8, 14–18] and, in the rest of the paper, we will focus on its estimation using
the data

`

f1, . . . , f|C|

˘

. In the literature, the most popular modelling choices for this
task are log-linear and mixed membership models. Regarding the former ones, the
main references are [3], [19], in which indexes (1) and (2) are derived in closed form
and estimated using plug-in MLE estimators. Regarding the latter class of models,
[4] proposed the use of mixed membership models, which resulted in very accurate
estimates for (2), even for sample sizes n much smaller than the population size N .

If the estimated values of (1) and (2) are too high, then the data curator should
apply a disclosure limitation technique to the dataset before releasing it to the pub-
lic. Some possibilities are, for example, rounding, data swapping, cell suppression of
extreme values or entire variables, subsampling, or perturbation techniques. See [20]
for a review of different disclosure limitation techniques.

3 Mixed Membership models

In this section, we extend the mixed membership model of [4], reviewed in the Online
Supplementary Material, to its non-parametric version. Then, we summarize both
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the MCMC sampler to perform posterior inference and describe how to estimate (2)
within the sampler using either population sampling, as in [4], or a faster Monte Carlo
approximation.

In terms of background about the Hierarchical Dirichlet Process and its properties
(Stick Breaking construction, Chinese Restaurant Franchise, Posterior representation),
the reader is referred to [21]

3.1 Non-parametric Mixed Membership Model

Mixed Membership models are generalizations of mixture models to model multiple
groups of observations. In their parametric version, they assume K extreme profiles
(alias mixture components), having weights in the population regulated by a K-
dimensional probability vector ggg0. Within each group, some heterogeneity from the
common proportions ggg0 is allowed by introducing a group-specific partial affiliation
vector gggi. In the model used in [4], the i-th group of observations corresponds to the
J observations of key variables of the i-th individual.

In order to allow an unbounded number of extreme profiles, we select G0 „

DP pα0, Hq, where DP is a Dirichlet Process, [22], with concentration parameter α0

and base measure H. The base measure H is a probability measure on the space of all
arrays with J rows, having a nj-dimensional probability vector in the j-th row. From
the stick-breaking representation of the Dirichlet Process, G0 can be represented as

G0 “

8
ÿ

k“1

g0,kδθpkq

`

θpkq
˘8

k“1
are independent and identically distributed arrays, sampled from the base

measure H, representing the likelihood of the possibly unbounded extreme profiles,
while the sequence pg0,kq

8

k“1 is such that all entries 0 ď g0,k ď 1 and
ř

k g0,k “ 1,
and is sampled following a stick breaking distribution of parameter α0, [23]. As in the
parametric case, g0,k can be thought of as the popularity of extreme profile θpkq in the
population.

Given G0, each individual i selects her own affiliation distribution Gi, represent-
ing her partial affiliation to each possible extreme profile, according to Gi|G0 „

DP pαi, G0q. Given the almost sure discreteness of G0, each Gi is supported on the
same atoms of G0 and can be represented as

Gi “

8
ÿ

k“1

gi,kδθpkq

for a sequence of probability weights pgi,kq
8

k“1, see pages 161-162 of [21]. The parameter
αi regulates the variability of the weights pgi,kq

8

k“1 around their mean value pg0,kq
8

k“1.
The higher αi, the more heterogeneous individual i is from the rest of the population.
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Given the individual specific affiliation vector Gi, individual i will select her j-th
key variable from the infinite mixture model

Xi,j |Gi „

8
ÿ

k“1

gi,kθ
pkq

j,¨

where θ
pkq

j,¨ denotes the j-th row of θpkq.
As in the finite-dimensional case, it is computationally convenient to introduce the

mixture classification variables Zi,j , taking integer values, and summarize the model
as follows,

Xi,j | pZi,j “ kq , pθkq
8

k“1 „ θ
pkq

j,¨ i “ 1, . . . , n, j “ 1, . . . , J

P pZi,j “ k|Giq “ gi,k k P N, i “ 1, ..., n, j “ 1, ..., J

Gi|α,G0 „ DP pαi, G0q i “ 1, . . . , n

G0 „ DP pα0, Hq

αi „ Ga pa, bq i “ 1, . . . , n

α0 „ Ga pa0, b0q .

where the base measure H is chosen to assign Dir
`

Inj

˘

prior to the j-th row, for each
j P t1, . . . , Ju, where Inj is a vector of dimension nj with all entries equal to 1. Finally,
Ga denotes a Gamma distribution, and a, b, a0, b0 are positive hyperparameters. In all
the experiments of Section 5, the hyperparameters are set a “ a0 “ 2 and b “ b0 “ 1.

3.2 Posterior Inference

3.2.1 MCMC sampler

Posterior inference of the model parameters can be performed using the Direct Assign-
ment algorithm for the Hierarchical Dirichlet Process, pages 196-199 of [21]. In the
sampler, mik denotes the number of tables in individual i assigned to mixture compo-
nent k. At any stage of the algorithm, we denote by Kn the number of active mixture
components, i.e. components θpkq with at least one Zi,j assigned to them. At step 3,

the sampler resamples pg0,kq
8

k“1, by drawing a probability vector pg0,kq
Kn

k“0 (using the
posterior representation of G0, formula 5.9 in [21]), where g0,0 represent the probabil-

ity of a new mixture, i.e. g0,0 “ 1 ´
řKn

k“1 g0,k. Similarly for pgi,kq
8

k“1 at step 4. For
ease of notation, we will simply write pg0,kq and pgi,kq, where the index is over k and
ranges from 0 to Kn. The sampler iterates over the following steps.

1. Sample Zi,j : for i P t1, . . . , nu and j P t1, . . . , Ju, sample Zi,j from

Zi,j “

#

k with prob 9 gi,kθ
pkq

j,xij

knew with prob 9 gi,0
1
nj

(3)
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for k P t1, . . . ,Knu, where the factor 1{nj is the marginal probability of Zi,j being
sampled from a new mixture θpKn`1q, when θpKn`1q is distributed according to H.
If Zi,j “ knew, draw θpknew

q from (6), and update pg0,kq and pgi,kq as follows

ν0|α0 „ Beta pα0, 1q
`

gnew0,0 , gnew0,Kn`1

˘

“ pg0,0ν0, g0,0 p1 ´ ν0qq

νi|g0,0, α, ν0 „ Beta pαg0,0ν0, αg0,0 p1 ´ ν0qq
`

gnewi,0 , gnewi,Kn`1

˘

“ pgi,0νi, gi,0 p1 ´ νiqq

for every i “ 1, . . . , n. Finally, set Zi,j “ Kn ` 1 and increment Kn by 1.
2. Sample mik: for i P t1, . . . , nu and k P t1, . . . ,Knu, compute ni¨k “

řJ
j“1 I pZi,j “ kq, and sample mik from

P pmik “ m|ni¨k, g0,k, α0q “
Γ pα0g0,kq

Γ pα0g0,k ` ni¨kq
s pni¨k,mq pα0g0,kq

m

for m P t1, . . . , ni¨ku, and where s pn,mq are the unsigned Stirling numbers of the
first kind, which can be pre-computed outside the sampler from the recursion,
s p0, 0q “ s p1, 1q “ 1, s pn, 0q “ 0 for n ą 0 and s pn,mq “ 0 for m ą n and
s pn ` 1,mq “ s pn,m ´ 1q ` ns pn,mq.
As an alternative, mik can also be computed by drawing a Chinese Restaurant
Process with ni¨k customers and concentration parameter α0g0,k, and setting mik

equal to the number of resulting tables. This approach is incredibly fast when the
number J of categorical variables is small, and it is the approach we considered in
the experiments.

3. Sample pg0,kq: compute m¨k “
řn

i“1 mik for k “ 1, . . . ,Kn, and resample pg0,kq

from
Dir pα0,m¨1, . . . ,m¨Kn

q (4)

4. Sample pgi,kq: for i P t1, . . . , nu, resample pgi,kq from

Dir pαig0,0, αig0,1 ` ni¨1, . . . , αig0,Kn
` ni¨Kq (5)

5. Sample θpkq: for k P t1, . . . ,Knu and j P t1, . . . , Ju sample θ
pkq

j,¨ according to,

Dir

˜

1 `

n
ÿ

i“1

I pZij “ k,Xij “ 1q , ..., 1 `

n
ÿ

i“1

I pZij “ k,Xij “ njq

¸

(6)

6. Sample α0, αi: Using the augmentation from the Appendix of [5], let m¨¨ “
řKn

k“1 m¨k, then sample α0 according to

η0|α0,m¨¨ „ Beta pα0 ` 1,m¨¨q

s0|m¨¨, η0,Kn „ Bern

ˆ

m¨¨ pb0 ´ log η0q

Kn ` a0 ´ 1 ` m¨¨ pb0 ´ log η0q

˙
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α0|η0, s0,Kn „ Gamma pa0 ` Kn ´ s0, b0 ´ log η0q

and αi, for i P t1, . . . , nu according to

ηi|αi, J „ Betapαi ` 1, Jq i “ 1, ..., n

si|mi¨, ηi „ Bern

ˆ

Jpb ´ log ηiq

mi¨ ` a ´ 1 ` Jpb ´ log ηiq

˙

i “ 1, ..., n

αi|ηi,mi¨ „ Gammapa ` mi¨ ´ si, b ´ log ηiq i “ 1, ..., n.

3.2.2 Estimation of τ1

In this section, we describe two approaches to estimate the disclosure risk measure τ1,
formula (2), within the sampler described in 3.2.

The first approach follows [4] and relies on the simulation of the unobserved indi-
viduals in the population. Specifically, remember that f “

`

f1, . . . , f|C|

˘

denotes the
vector of frequencies of each cell c P C in the sample of size n, and F the correspond-
ing vector in the population of size N . Then, at iteration m of the MCMC sampler,

the m-th draw of τ
pmq

1 can be obtained by applying the following algorithm.

1. Let F pmq “ f , i.e. initialize the population vector using the sample vector.
2. For i “ n ` 1, . . . , N :
(a) draw pgi,kq from (5);
(b) for j “ 1, . . . , J :

(i) sample Zi,j | pgi,kq from (3);

(ii) sample Xi,j „ θ
pZi,jq

j,¨ ;

(c) set F
pmq
c “ F

pmq
c ` 1, where c is the cell corresponding to the sampled Xi.

3. Set τ
pmq

1 “
ř

cPC I pFm
c “ 1, fc “ 1q, where I denotes the indicator function.

Point estimates and credible intervals of τ1 can then be obtained from the empirical
quantities. This approach is computationally intensive when the population N is large.

An alternative approach, computationally much faster, relies on a Monte Carlo
approximation. Specifically, let us recall that C :“

ŚJ
j“1t1 . . . , nju denotes the state

space of the observations. Given a sample X1:n :“ pX1, . . . , Xnq, and denoting by
C̃X1:n

the set C̃X1:n
:“ tc P C :

ř

cPC I p
řn

i“1 I pXi “ cq “ 1qu the set of combinations
appearing with frequency 1 in the sample. Then, τ1 can be estimated within the
MCMC using the following algorithm.

1. For t “ 1, . . . T : draw pgt,kq from (5).

2. For c P C̃X1:n
: Compute the Monte Carlo approximation,

P ptXn`1 “ cu|G0, α0q «
1

T

T
ÿ

t“1

J
ź

j“1

˜

Kn
ÿ

k“1

gt,kθ
pkq

j,cj
` gt,0

1

nj

¸

.

3. Set τ
pmq

1 “
ř

cPC̃X1:n
p1 ´ P ptXn`1 “ cu|G0, α0qq

N´n
.
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In the algorithm, T is the number of Monte Carlo draws to approximate
P ptXn`1 “ cu|G0, α0q. The algorithm is easily parallelizable both in t and c. The
derivations of this approximation and the corresponding formula for the algorithm
with structural zeros of Section 4, can be found in the Online Supplementary Mate-
rial. This Monte Carlo approximation of τ1 is also a novel contribution in itself and
significantly improves the running time of the algorithm.

A final remark is that record-level measures of disclosure risk, such as r1c in for-
mula (1), can be easily estimated with the same approach. Indeed, both algorithms
presented in this subsection, at bullet points 2. of each iteration, estimate the record-
level quantities r1c for each sample unique cell c. Then, at bullet point 3., they sum
over all c P C̃X1:n to obtain the corresponding file-level estimate of τ1. However, given
that file-level disclosure risk measures provide a simple 1-dimensional summary of the
disclosure risk of a specific dataset and allow straightforward and easy to visualise
comparisons among different methodologies, we will focus our attention only on them
in the rest of the paper.

4 Extension to Structural Zeros

Structural zeros are combinations of key variables that lead to impossible values, like
a five-year-old veteran or a pregnant male. In real datasets, structural zeros might
account for an extremely large proportion of the possible cells |C|, often above 90-95%.
If a Bayesian model does not take into account the presence of structural zeros, its
posterior estimates can deteriorate dramatically, as shown in an example in Section 5.
This is because, if the prior distribution assigns positive probability to every possible
cell in C, the posterior distribution will also assign some mass to every cell. Even if
the posterior mass assigned to each structural zero cell is very low, if the number of
these cells is very large, their overall posterior mass will be far from being negligible.

Structural zeros should not be confused with sparsity for tabular data, as consid-
ered for example in [24]. Sparsity occurs in tabular data because, when the number of
key variables J is large, the vector of cross-classified cells will have a very large dimen-
sion |C|. If the sample size is not too large, most of the cells in the vector of sample
frequencies pf1, . . . , f|C|q will be equal to zero. Instead, structural zeros are cells that
are frequency zero in the sample not due to the small sample size, but to the specific
nature of their categorical variable values. They correspond to combinations of key
variables that are deemed impossible to observe also in the population. In the illus-
tration of Section 5, the real data example includes both sparsity, due to the small
sample sizes, and the presence of structural zeros.

Following the general algorithm of [6], in this Section, we describe an MCMC
algorithm to perform posterior inference on the model parameters and disclosure risk
measure τ1, in the presence of structural zeros. The main idea of the algorithm is to
consider the observed sample, X1:n of size n, as a truncated version of larger sample
X1:n`n0

of size n ` n0 sampled from the model of section 3.1, and in which n of
these observations have fallen into admissible cells, while the other n0 have taken
values in structural zeros cells. Then, the algorithm is a data augmentation scheme
in which in steps 7-9, we sample the latent variables (n0 truncated observations in
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the structural zeros, denoted Zpn`1q:pn`n0q Xpn`1q:pn`n0q) given the observed variables
and common parameters, and in steps 3-5 we sample the common parameters given
both the observed and latent variables.

Structural zeros can be defined in terms of marginal conditions. These are con-
ditions that fix 2 or more key variables to some specific values. For example µ “

t˚, 1, ˚, ˚, 2, ˚u is the marginal condition on a dataset with 6 key variables and includes
all cells taking value 1 in the second variable and value 2 in the fifth one, and the place-
holder symbol ˚ means that that variable is unrestricted. Conditions that fix more
than one category in a specific variable can be written separately as unions of multiple
marginal conditions. Moreover, a set of overlapping marginal conditions can always be
rewritten as a (possibly larger) set of disjoint marginal conditions. For example, let us
suppose to have 3 binary key variables, the two overlapping conditions µ̃1 “ t˚, 1, 2u

and µ̃2 “ t1, 1, ˚u (cell t1, 1, 2u belongs to both conditions) can be rewritten as disjoint
conditions µ1 “ t˚, 1, 2u and µ2 “ t1, 1, 1u, i.e. µ̃1 Y µ̃2 “ µ1 Y µ2.

Section 4.2 of [6] presents a simple algorithm to transform a set of overlapping
marginal conditions into a set of disjoint ones. This algorithm is run as a pre-processing
step before implementing the MCMC. Therefore, we can assume to have a set of C
disjoint marginal conditions, denoted Sd “ tµ1, . . . , µCu, specifying sets of impossi-
ble cells, and S “ YC

c“1µc the subset of sample space C corresponding to structural
zeros. In the MCMC sampler, for each marginal constraint µc, steps 7-9 simulate the
truncated observations from Xpn`1q:pn`n0q that fall into the cells specified by µc, and
their corresponding mixture classification variables Zpn`1q:pn`n0q. Specifically, step 7
computes the probability pc of all cells in µc, step 8 samples the number nc of trun-
cated observations from Xpn`1q:pn`n0q in µc, and finally step 9 samples their mixture
classification Zi given the event Xi P µc.

4.1 MCMC Algorithm including structural zeros

The MCMC sampler of Section 3.2.1 can be extended following [6] to account for the
presence of structural zeros. Specifically, we repeat the following steps.

1. Sample Zi,j : for i P t1, . . . , nu and j P t1, . . . , Ju, sample Zi,j from (3).
2. Sample mik: for i “ t1, . . . , n ` n0u and k “ t1, . . . ,Knu, sample mik as in step 2

of the sampler in Section 3.2.
3. Draw pg0,kq: Compute m¨k “

řn`n0

i“1 mik for k P t1, . . . ,Knu, and sample pg0,kq

from (4).
4. Draw pgi,kq: for i P t1, . . . , nu sample pgi,kq from (5).

5. Draw θpkq: For k P t1, . . . ,Knu and j P t1, . . . , Ju sample θ
pkq

j,¨ according to,

Dirichlet

˜

1 `

n`n0
ÿ

i“1

I pZij “ k,Xij “ 1q , ..., 1 `

n`n0
ÿ

i“1

I pZij “ k,Xij “ njq

¸

6. Update α0, αi, for i P t1, . . . , nu, as in step 6 of the sampler in Section 3.2.
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7. Compute pp1, . . . , pCq: for c P t1, . . . , Cu, compute with Monte Carlo

pc :“ P pXi P µc|G0, αq “

ż

P pXi P µc|Gi, αqP pGi|G0, αq dP pGiq

“

ż

ź

jPt1,...,Ju:µc,j‰˚

˜

Kn
ÿ

k“1

gi,kθ
pkq

j,µc,j
` gi,0

1

nj¨¨

¸

Dir ppgi,kq|pg0,kqq dgi,k

8. Draw pn1, . . . , nCq: sample a vector

pn1, . . . , nCq „ NM pn, p1, . . . , pCq ,

where NM denotes a Negative Multinomial distribution, with mass function,

p pn1, . . . , nC |p1, . . . , pCq “
Γ pn ` n0q

Γ pnq
śC

c“1 nc!

˜

1 ´

C
ÿ

c“1

pc

¸n C
ź

c“1

pnc
c

where n0 :“
řC

i“1 ni.

9. Sample Zpn`1q:pn`n0q, Xpn`1q:pn`n0q: for c P t1, . . . , Cu and for i P tn `
řc´1

l“1 nl `

1, n `
řc´1

l“1 nl ` 2, . . . , n `
řc´1

l“1 nl ` ncu (with the proviso that
ř0

l“1 nl “ 0):

• Draw pgi,kq from (5). Then, for j P t1, . . . , Ju:

– If µc,j ‰ ˚: Set Xi,j “ µc,j and sample Zi,j from (3).

– If µc,j “ ˚: Sample P pZi,j “ k| pgi,kqq “ gi,k, and sample Xi,j |Zi,j , θ „ θ
pZi,jq

j,¨ .

When the structural zeros account for the majority of cells, the probabilities and
counts from steps 7 and 8 can become very large. This implies that, at step 9, many
variables have to be simulated, and this slows down the algorithm significantly. In the
Online Supplementary Material, we describe an approximation of step 9 that reduces
the computational cost dramatically and produces similar estimates of τ1. Remark
also that even the estimate of τ1 should account for the presence of structural zeros,
and, as already mentioned, we describe this modification in the Online Supplementary
Material.

5 Experiments

This section is composed of two parts. In Subsection 5.1, we compare the parametric
and non-parametric versions of the mixed membership model on synthetic data. In
Subsection 5.2, we test the performance of the non-parametric model on a real dataset
in two scenarios, with and without modelling the structural zeros.

The code to reproduce the experiments is open source and available at
https://github.com/LorenzoRimella/BNP DR. All the experiments were run on a 32
GB Tesla V100 GPU available on “The High-End Computing” (HEC) facility at
Lancaster University. In the same Github folder, the implementation of the mixed
membership model of [4] is also available to reproduce the comparison. We did not
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compare with the original code of [4] and [6] as we did not find open-source references
in the manuscripts.

In the Online Supplementary Material, we have also included some notes on how
we implement the algorithm to exploit parallel computing.

5.1 Synthetic data

We generated synthetic data of size N “ 712174 from the mixed membership mod-
els of [4] with K “ 15, for J “ 10 categorical variables, and different numbers of
categories nj per variable, ranging from 2 to 11. We draw three samples of sizes
n “ 1000, 5000, 10000, and run three MCMC samplers: i) the non-parametric HDP
model with τ1 estimated via population sampling; ii) the non-parametric HDP model
with τ1 estimated via Monte Carlo sampling; iii) the algorithm from [4] for differ-
ent values of K, for 400k iterations, out of which 300k discarded as a burn-in. As
a further comparison, we also report the results obtained by an ‘oracle’ version of
log-linear models. This oracle model, which requires knowing the true value of τ1, is
obtained by implementing many different log-linear specifications proposed in [14, 24],
including pairwise interaction and LASSO regularization, and selecting that with best
estimates of τ1. Alternatively, a model selection procedure, such as that proposed in
[14], could be used to select a specific log-linear competitor. However, we focus on
the ‘oracle’ version instead, which produces the best competitor among all log-linear
model specifications.

Fig. 1 HDP on synthetic data with τ1 estimated via sampling. In red the true τ1. For the box plots:
in orange the median, in dashed green the mean, and the whiskers show 95% credible intervals.

Figures 1-2 display the histogram estimates (first column) and box plots (second
column) of τ1 and the trace plots of the number of mixture components Kn (third
column) for the HDP model, using population and Monte Carlo sampling, respectively.
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Fig. 2 HDP on synthetic data with τ1 estimated via Monte Carlo. In red the true τ1. For the box
plots: in orange the median, in dashed green the mean, and the whiskers show 95% credible intervals.

Fig. 3 Estimates of τ1 with the parametric model for different values of K. In red the true τ1. For
the box plots: in orange the median, in dashed green the mean, and the whiskers show 95% credible
intervals.

Different rows in the figures correspond to different sample sizes. The non-parametric
model performs well on synthetic data and is capable of recovering the true value of
τ1, which is 4, 28, 66 respectively and falls within 95% credible intervals for all three
sample sizes. Moreover, the algorithms with population sampling and Monte Carlo
sampling seem to have comparable performance, with the Monte Carlo approximation
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narrowing the credible intervals. In view of the computational time gain, the Monte
Carlo sampling approach seems preferable, and we have focused on that in the real-
data example. Also, in Figure 3, the results of the parametric model are shown, from
which it seems the model might slightly underestimate τ1. The overall posterior mean
point estimates and standard deviations of τ1 are summarized in Table 1 together with
the computational times to run the algorithms.

As already mentioned, for completeness, we have also included some comparison
with a log-linear Poisson model as in [14]. We find that the log-linear models are several
orders of magnitude faster but significantly overestimate τ1. We also tried to include
all the pairwise interaction terms and a LASSO penalization as suggested in [24], but
we did not see substantial improvements, see the Online Supplementary Material. In
all Tables, we only report an ‘oracle’ version of log-linear models, i.e. the log-linear
specification that results in the best estimates possible, which might vary from sample
to sample and requires knowing τ1. The underperformance of the log-linear models in
this simulation setting might be due to the fact that the synthetic data are simulated
from a mixed membership model, making the log-linear model a misspecified choice.

Algorithm type n True τ1 Est. τ1 Comp. time (hours, max = 12h)
HDP sampling 1000 4 6.66+/-2.42 12.01
HDP sampling 5000 28 34.92+/-23.63 12.01
HDP sampling 10000 66 67.33+/-25.42 12.0

HDP Monte Carlo 1000 4 6.79+/-1.55 1.49
HDP Monte Carlo 5000 28 34.48+/-20.86 3.13
HDP Monte Carlo 10000 66 67.64+/-24.78 5.35
Parametric K=2 1000 4 4.01+/-1.68 5.39
Parametric K=2 5000 28 20.26+/-3.67 5.95
Parametric K=60 10000 66 45.63+/-5.25 6.89
log-linear Poisson 1000 4 10.97 0.0024
log-linear Poisson 5000 28 55.28 0.0024
log-linear Poisson 10000 66 110.76 0.0024

Table 1 τ1 estimates for synthetic data using: the HDP model under sampling and Monte
Carlo, the parametric model with the best choice of K (the closest posterior mean to the true
τ1), and a log-linear model. The log-linear model is chosen according to an oracle.

5.2 Real data

We test the performance of the HDP model on a real dataset from the 5% public use
microdata sample (PUMS) of the American Community Survey, which is fielded by
the U.S. Census Bureau, for the state of New York [25]. In this illustrative real-data
example, we consider the entire dataset as the “population”, and draw a sample at
random from it, which is then used to estimate the actual value of τ1. The dataset
contains information about the following 10 categorical variables, observed for a popu-
lation of 953076 individuals: ownership of dwelling (OWNERSHIP: 3 levels), mortgage
status (MORTGAGE: 4 levels), age bands (AGE: 9 levels), sex (SEX: 2 levels), marital
status (MARST: 6 levels), race identification band (RACESING: 5 levels), education
level (EDUC: 11 levels), employment status (EMPSTAT: 4 levels), work disability
(DISABWRK: 3 levels), and veteran status (VETSTAT: 3 levels).
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EDUC 0 1 2 3 4 5 6 7 8 9 10
AGE
0 69386 77787 51360 2180 298 50 1 0 0 0 0
1 36 12 5016 6070 1867 176 115 0 0 0 0
2 44 6 933 4159 5774 1807 330 33 7 0 0
3 51 17 448 963 4157 5565 2178 73 3 0 0
4 754 268 2085 2011 3189 6908 34299 19418 4507 8339 762
5 1673 507 4022 2857 3639 3966 50900 18474 13830 29715 15523
6 2846 944 6466 3943 4822 5220 84127 27168 21237 35888 27232
7 3444 1764 10976 4872 5860 5098 73838 17735 9791 21102 23182
8 2402 1306 11635 3765 4428 3490 38307 6884 1973 6629 6154

Table 2 Cross table between AGE and EDUC showing the presence of structural zeros.

This data results in a contingency table of 2566080 cells in total, many of which can
be considered as structural zeros. For example, from Table 2, which cross-classifies age
and education, we can see that there are some obvious structural zeros. These are due
to the impossibility of some values of the categorical variables to coexist, e.g. age below
14 (level 1) with the highest level of education (level 11). Following [6], we recover
60 overlapping marginal conditions, resulting in 557 disjoint marginal conditions and
representing 2317030 cells of our contingency table (approx. 90%). As pointed out in
Section 4, this real-data example includes both sparsity and structural zeros. Indeed,
the total number of cells |C| is approximately 2.5 million, of which approximately 250k
cells are considered to be non-structural zero cells, while the remaining 2.25 million are
structural zeros. With sample sizes of just 1k-10k observations, the observed frequency
vectors restricted to non-structural zeros cell are still extremely ‘sparse’ and composed
mainly of cells with zero observed frequency (at most 1-2% of 250k non-structural zero
cells have non-zero observed frequency).

As an initial demonstration of the performance of the non-parametric model, we
first pre-processed the data to remove the majority of structural zeros and then
implemented the algorithm from Section 3.2. Specifically, we have removed all the
individuals that were younger than 18, and we dropped the categorical variables OWN-
ERSHP and MORTGAGE. This results in a dataset with 712174 individuals and a
significantly smaller contingency table of 39600 cells, with many fewer zero cells. For
example, now the dataset contains only rows from categories 4 to 8 of Table 2, hence
reducing substantially the number of empty cells.

After drawing three samples of sizes 1000, 5000, 10000, the MCMC of Section 3.2
was run for 300k iterations, with the first 200k iterations discarded as a burn-in.
Figure 4 displays the posterior histogram and box plot of τ1, together with the trace
plots of the number of mixture components Kn. Moreover, the first three rows of
Table 3 summarize point estimates and credible intervals of τ1. The true value of
τ1 is mostly within the 95% credible interval. Note that the slight deterioration in
performance compared to the synthetic data example might also be due to the presence
of some additional structural zeros that have not been completely removed with the
pre-processing step.

As a comparison, we consider a few log-linear model specifications: the simple log-
linear model [14], the log-linear model with pairwise interaction [14], and the log-linear
model with pairwise interaction and LASSO penalization [24]. We did not perform
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model selection for the LASSO penalization coefficient, as in [24], but rather considered
an ‘oracle’ selecting its best value, which was λ “ 1000, in terms of distance from the
true value of τ1, see Table 3. The ‘oracle’ version of the method from [24] performs
very well, suggesting its use in the absence of structural zeros, if the proposed model
selection step of λ was producing values comparable with the oracle ones (which
requires knowledge of τ1). More details on the results are available in the Online
Supplementary Material.

Fig. 4 Estimates of τ1 with HDP, algorithm from Section 3.2, on real data, after pre-processing to
remove structural zeros. In red the true τ1. For the box plots: in orange the median, in dashed green
the mean, and the whiskers show 95% credible intervals.

We now consider the raw data, in which structural zeros have not been removed.
In order to show how much they can deteriorate the performance of the algorithm,
we first run the algorithm of Section 3.2, which does not model structural zeros. The
results are displayed in Figure 5 and in Table 3. Even with 300k iterations, the Markov
chain fails to properly converge and estimates τ1 to be very far from the true values.
Indeed, the algorithm significantly overestimates τ , as sample unique values now have
a very low posterior probability of being sampled again. This is because most of the
posterior probability mass is now assigned to the structural zeros cells, and much
larger sample sizes are probably needed to wash out the effect of the prior and shrink
this probability to zero.

We then consider the log-linear models with ‘oracle’ for selection of the model
specification and regularization parameter. The number of possible cells in this exper-
iment is 2566080, compared to just 39600 after preprocessing. This fact significantly
impacts the memory cost of the algorithm and its running time. The running time
is still considerably cheaper compared to mixed membership models, even though it
seems to scale worse with the total number of cells. Looking at the accuracy of the
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estimates, the estimated values of τ1 are considerably far from the true values, with
estimates that are even 10 times higher than τ1, making the log-linear models not
suitable in the presence of structural zeros. We refer to Table 3 for the best ‘oracle’
log-linear model, and to the Online Supplementary Material for the other sub-optimal
specifications of log-linear models.

Fig. 5 Estimates of τ1 with HDP, algorithm from Section 3.2, on real data, without pre-processing
to remove structural zeros. In red the true τ1. For the box plots: in orange the median, in dashed
green the mean, and the whiskers show 95% credible intervals.

Finally, we run the algorithm of Subsection 4.1, which accounts for the presence
of structural zeros in the data. Figure 6 and the last three rows of Table 3 show the
results of 100K iterations, obtained after the burn-in period of 100k, for three samples
of sizes 1000, 5000, and 10000. The first two rows of Figure 6 display the histogram
estimators and box plots of τ1 and the trace plots of Kn, for the samples 1000 and
5000. From the plots, we can see that, for these samples, the MCMC has converged
to stationarity and the estimates τ1 are good, with the true value being within the
95% posterior credible intervals. However, we should warn that for some samples, the
posterior distribution can become multimodal. This is the case for the chosen sample of
size 10000, third row in Figure 6. It is indeed evident that the posterior is bimodal. Due
to the initialization chain, the chain spends many iterations in the sub-optimal mode
before jumping to the best mode. Estimates obtained by discarding more iterations
of burn-in, or running for Markov chain longer, produce reasonable estimates of τ1.
Alternatively, a clustering algorithm can be applied to separate MCMC iterations from
the two modes as a post-processing step.
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Algorithm type n True τ Est. τ Structural zeros Comp. time (hours)
HDP Monte Carlo 1000 9 7.49+/-5.32 False 2.01
HDP Monte Carlo 5000 27 38.8+/-12.0 False 4.52
HDP Monte Carlo 10000 53 66.72+/-10.85 False 7.20
log-linear Poisson 1000 9 8.87 False 0.0028
log-linear Poisson 5000 27 24.38 False 0.0029
log-linear Poisson 10000 53 64.08 False 0.0029
HDP Monte Carlo 1000 11 57.98+/-13.25 True 2.04
HDP Monte Carlo 5000 55 186.06+/-46.67 True 4.48
HDP Monte Carlo 10000 88 288.7+/-47.15 True 7.17
log-linear Poisson 1000 11 157.80 True 0.21
log-linear Poisson 5000 55 496.55 True 0.22
log-linear Poisson 10000 88 769.87 True 0.22

SZ HDP Monte Carlo 1000 11 10.81+/-1.66 True 7.61
SZ HDP Monte Carlo 5000 55 56.16+/-3.78 True 9.08
SZ HDP Monte Carlo 10000 88 189.46+/-5.76 True 12.58

101.98+/-5.27

Table 3 τ1 estimates from the real data with and without structural zeros (SZ). The HDP has been
launched with and without the adjustment for structural zeros. The log-linear model is chosen according
to an oracle. The HDP in the presence of structural zeros has two modes when n “ 10000, which are
both reported.

6 Discussion

In this work, we have proposed a Bayesian non-parametric approach, based on hierar-
chical modelling, that generalizes parametric mixed membership models to estimate
measures of disclosure risk. The proposed approach does not have any tuning param-
eters and performs well in the experiments, even with samples as small as 1% of the
entire population. Also, the methodology can be extended to account for the presence
of many structural zeros in the data through a data augmentation scheme. Moreover,
fast Monte Carlo approximation schemes have been suggested, which can reduce the
computational cost of running the algorithms dramatically, hence making the approach
applicable also in the presence of large population sizes N .

It is important to comment on the trade-off between our method and log-linear
models. Log-linear models are computationally fast and perform well without struc-
tural zeros. However, they can perform poorly in the presence of structural zeros, as
shown in Section 5.2. Moreover, they do not scale well with the number of categor-
ical variables and the overall number of cells. Indeed, their computational cost, see
Table 3, becomes 100 times slower when including structural zeros. The HDP method
is computationally more demanding, but also performs well in the presence of struc-
tural zeros. Moreover, the computational cost seems to scale well with the overall
number of cells, with an increase by a factor of only two/three times when includ-
ing structural zeros, see Table 3. These considerations suggest that log-linear models
might be preferable in the presence of a low computational budget, few categorical
variables, and no structural zeros, while the HDP method is preferable in the presence
of structural zeros and/or many categorical variables.

In terms of improvements, we have shown in the experiment section how the poste-
rior distribution of the augmented model, accounting for structural zeros, can become
multimodal, depending on the observed sample. If the MCMC algorithm is poorly
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Fig. 6 Estimates of τ1 with HDP, algorithm from Section 4.1, on real data, without pre-processing
to remove structural zeros. The last row reports the trace plot for N “ 10000. In red the true τ1. For
the box plots: in orange the median, in dashed green the mean, and the whiskers show 95% credible
intervals.

initialized and not run long enough, it can get stuck in a sub-optimal mode, hence pro-
ducing misleading estimates of τ1. Therefore, we recommend the practitioner to start
the algorithm from different initial values of the parameters, in order to detect whether
any multimodality is present. If so, the MCMC should be run for many iterations to
properly explore the parameter space and obtain accurate estimates. Alternatively, a
clustering algorithm could be applied as a post-processing step to separate MCMC
iterations obtained from different modes. As a direction for improvement, it would be
useful to define an automatic approach to detect multimodality in the posterior dis-
tribution of mixed membership models and, if so, a way of properly handling it, like
for example by restarting the algorithm from different initial values, choosing a good
way to initialize the algorithm using the observed sample, or trying to improve step
sizes and movement directions of the chain, to facilitate jumps from sub-optimal to
optimal modes.
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