

What Can X-Rays Tell Us About Uranus's Unusual Space Environment?

Dan Naylor

1st Year PhD Student Space and Planetary Physics Group Department of Physics Supervisor: Dr Licia Ray

d.naylor@lancaster.ac.uk

Uranus is a Mysterious Planet

- One of the most complex and unusual planets
- Orbits the Sun almost completely on its side
- Magnetic field tilted from the poles and offset from the centre
- Visited by Voyager 2 in 1986
- Complicated interaction with local space environment

Uranus is a Mysterious Planet

- One of the most complex and unusual planets
- Orbits the Sun almost completely on its side
- Can we image this interaction with X-rays?
- Complicated interaction with local space environment

Soft X-Ray Emission and Imaging

- Neutrals and charged particles
 interact
 - Produces X-ray emission
- Novel technology aims to provide global, dynamic view of systems

Image credit: ESA

What Dictates X-Ray Emission Rate?

Charged particle density

Neutral density

Relative speed

Interaction cross section

Uranus Does Not Exist in a Vacuum

Uranus's Magnetosphere

- Magnetic field carves cavity into solar wind
- Complicated magnetosphere with seasonal and daily variations
- Regions of interest
 - Bow shock
 - Magnetosheath
 - Magnetopause

Credit: Bagenal & Bartlett

Magnetopause and Bow Shock Surfaces

The Icy Moons of Uranus

Image credit: JWST, NASA

- Moons may provide water-based particles to system
- Source rates not well constrained

Where are the Neutrals?

Two models: 1. Pre-Voyager 2, estimates from Saturn 2. Post-Voyager 2

- Post-Voyager 2, plasma measurements
- System potentially plasma-depleted (Jasinski et al., 2024)

Emission Rate

- Intersection between neutrals and magnetosheath
- Higher at equinox than solstice

Emission Rate

How Do We Detect Emission?

- We want to detect the emission
- Sum along a line of sight for flux
- SMILE-like soft X-ray imager (SXI)

Viewing Geometries

• SXI position affects flux detection

 Top-down view is preferable

- ✓ Avoids planetary disk reflection
- ✓ Allows for equatorial orbit

Would SMILE Perform Well?

- System timescales:
 - Planetary rotation ~17.2 hours
 - Variable solar wind
- SMILE detects ~100 X-rays in ¹/₄ of planetary rotation

Note: rotation vs solar wind time not to scale!

Would SMILE Perform Well?

What Might a Future Imager Look Like?

- Consider future SXI:
 - Double field-of-view (FOV)
 - Much higher effective area
- Much improved detection times every 3 seconds!
- Trade off between improvements

Credit: ESA

- Neutral density largest driver of emission
- Seasonal dependence of emission
- Current technology is viable
- Technology improvements always welcome

Proof of concept model justifies further development!

Next Steps

- Cusp inclusion
- Full range of solar wind ions
- Full charge exchange physics

