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Abstract

In this thesis, we investigate the problem of axion production in laser-plasma systems, with the

aim of motivating the use of Light-Shining-Through-a-Wall (LSTW) experiments in the search

for axions and axion-like particles. We begin with the study of relativistic plasma waves, which

culminates in a proposal of a formulation of a 1+1D scalar field theory for laser wakefield acceler-

ators (LWFA). With this formulation, we derived a condition for the dimensionless laser amplitude

required to drive the maximum plasma wakefield only in terms of the wake velocity.

Studying the case of classical axion production in laser-plasma scenarios, we derive a resonance

condition for a given axion mass in terms of laser-plasma parameters.

We then move on to studying axion creation in laser-plasma scenarios through the lens of the

ponderomotive approximation. We propose a heuristic approach to ponderomotive dynamics and

then analyse the laser-plasma-axion dynamics.

Finally, we examine the problem of axion creation with consideration for the quantum nature of

the axion. The case of a quantum axion field driven by a classical plasma wave and an external

magnetic field is investigated. We calculate the expected axion flux of N ≈ 6.74 × 1018cm−2s−1

(Nmψ=0 ≈ 1.7 × 1020cm−2s−1 in the massless case) given the parameters are (axion-photon cou-

pling) gψ = 0.66 × 10−19eV, (magnetic field) B = 7 × 103eV2 (B ≈ 35T), (plasma frequency)

ωp = 4.12× 10−2eV, (plasma wake phase velocity) v = 0.99995c and (axion mass) mψ = 10−4eV.

This is a promising result. Despite the real flux created being smaller due to multidimensional

effects and beam dispersion, it could be potentially feasible to produce a flux that is comparable

to the hypothetical solar axion flux in terrestrial laboratories. We also obtain an expression for the

axion-photon transition rate given the form of a plasma wave driving the axion field at first order.
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Units in This Thesis

Throughout my thesis I have used a set of natural units defined by the condition:

c = ℏ = ϵ0 = 1. (1)

We note that this fixes the value of the magnetic permeability of the vacuum to be µ0 = 1. This

results in conversion factors:

1s = 1.52× 1015ℏ eV−1

1m = 5.07× 106ℏc eV−1

1kg = 5.63× 1035c−2 eV

1C = 1.89× 1018 ϵ
1
2
0 ℏ

1
2 c

1
2

1T = 1.96× 102 ϵ
− 1

2
0 ℏ−

3
2 c−

5
2 eV2,

(2)

given to three significant figures.
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Chapter 1

Introduction

The problem of dark matter is one of central importance to modern theoretical physics. Over the

years, many candidate theories have been proposed, ranging from modifying gravity to proposing

a new type of fundamental particle. The aim of this thesis is to focus on the latter proposition,

more specifically, the axion and the axion-like particle as candidates for dark matter and the search

for them using a novel laboratory-based approach based on laser wakefield acceleration. In this

chapter, the focus will be placed on a historical review and the motivation for a plasma-based

axion search.

1.1 Searching in the Dark

In the landscape of modern physics, dark matter is a hypothetical type of matter which does

not interact, or interacts extremely feebly, with the electromagnetic field. The existence of dark

matter is inferred solely through its gravitational effects on visible matter. Due to the fact that the

overwhelming majority of our experimental observations depend on the electromagnetic field, in

one way or another, the direct detection (meaning observation of interactions with regular matter)

of dark matter has proven elusive thus far. Furthermore, the actual composition of dark matter

is unknown and is one of the biggest open problems in physics today. The purpose of this PhD

project is to contribute to the onerous search for dark matter. In the following subsections, I will

provide a historical review of the problem of dark matter and how the model was developed.

1.1.1 The Early Years

It could be said that the field of astrophysics was born in 1687 when Isaac Newton published his

seminal work Philosophiæ Naturalis Principia Mathematica. Naturally, people studied astronomy

before Newton’s time, but Newton’s introduction of his laws of motion and the universal gravitation

law allowed a great deal more predictive power than ever before. More specifically, this allowed

for the prediction of celestial objects via inference from their gravitational pull. One of the first

examples of such predictions was made by the famous mathematician and astronomer Friedrich
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Bessel in 1844 [1], where he inferred the existence of much less luminous partner stars to Sirius

and Procyon via the analysis of their motion. Subsequently, the partner star to Sirius (dubbed

Sirius B) was first observed in 1862 [2] and the partner to Procyon (similarly dubbed Procyon B)

was discovered in 1896 [3]. Inferring the existence of celestial objects via their gravitational effects

on other objects is one of the most powerful tools for astrophysicists, which is why dark matter

poses such a conundrum. What do you do when you cannot verify your predictions based on grav-

itational influence with direct observation? Naturally, the two main methods of sidestepping this

problem are modifying gravitational models or proposing a new type of matter (dark matter) that

cannot be observed conventionally, and then searching for it. In this thesis, we are only concerned

with the proposition of dark matter (a candidate for which will be discussed in section 1.2), but

for more discussion on modified gravity, see [4].

The concept of “unseen” matter arose out of the study of the distribution of matter in our

galaxy in the early twentieth century. One of the first scientists to attempt a quantitative study

of our galaxy was Lord Kelvin in 1904 [5], where he used the theory of gases to analyse the Milky

Way. In his work, he treated the stars in the Milky Way as particles in a gas. In his treatment, he

postulated that there very well may be many stars which are too faint for observation at the time

and even estimated the upper limit for the amount of these “dark” stars in relation to the current

observations of the time. One of the first recorded uses of the term “dark matter” is attributed

to Henri Poincaré [6], [7], written as “matière obscure” in French, which he introduced in a paper

discussing Lord Kelvin’s approach to the study of the galaxy.

We now fast forward to the year 1922, when a Dutch Astronomer by the name of Jacobus

Kapetyn published his magnum opus “First Attempt at a Theory of the Arrangement and Motion

of the Sidereal System” [8] (the Sidereal system meaning the Milky Way). In this work, he laid out

one of the first quantitative descriptions of the size and shape of our galaxy. More pertinently for

our discussion, is that Kapetyn explicitly touched upon the problem of dark matter, and concluded

that the amount of dark matter could not be very excessive based on his approach. Over the next

decade, several people have improved Kapetyn’s work, chief among them being his student, Jan

Oort. In a 1932 paper [9] Oort estimated that the density of dark matter near our sun was about

half that of the total density of matter, and more interesting still, he referred to this matter as

“nebulous” and “meteoric” matter, which gives us a good idea of the hypotheses of what dark

matter was comprised of at the time.

1.1.2 The Coma Cluster Conundrum

Just a year after Jan Oort published his work (1933), a Swiss-American astronomer by the name

of Fritz Zwicky published his work on galaxy clusters [10]. More specifically, Zwicky was studying

the work of Edwin Hubble and Milton Humason [11] on the redshift of different galaxies. Zwicky

observed that there was a large scatter (in the statistical sense) in the apparent velocities of
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eight different galaxies in the Coma cluster. The resulting dispersion in the data was noticed by

Hubble and Humason; however, Zwicky took the analysis further by applying the virial theorem

to the system to estimate its mass. Zwicky found that the average velocity dispersion ought to

be around 80 km/s, while the observed average velocity dispersion was approximately 1000 km/s.

This analysis led him to conclude that the amount of dark matter in the galaxy cluster must have

exceeded the amount of “bright” matter by a good margin. Many cite this as the origin of the

theory of dark matter, which is not the case. Yet, it remains one of the most pivotal developments

in the area.

1.1.3 Galaxy Rotation Curves

Galactic rotation curves result from plotting the circular velocity profile of the stars and gases in a

galaxy as a function of their distance from the galactic centre. The study of galactic rotation curves

is very commonly attributed as the deciding factor in convincing the larger physics community of

the validity of the dark matter model. More precisely, it was the observation of the “flatness” of

the rotation curves at large distances from the galactic centre that proved decisive.

In 1939 an American astronomer, Horace Babcock, wrote in his thesis about measurements of

the rotation curves of the M31 (or Andromeda) Galaxy [12]. Babcock presented measurements of

M31’s rotation curve up to 100 arc min, where he found that the angular velocities far from the

galactic centre were very high in relation to what was predicted at the time. In his interpretation,

he argued that absorption of light might play a role in his observations or that some modified

dynamics would be required to explain why the detected mass at the outer edges of the galaxy was

much smaller.

In the 1970’s, one of the first concrete claims about some galaxies needing to have additional mass

was made by Freeman in an appendix of [13]. He argued that if the data he analyzed was correct,

then “there must be additional matter which is undetected, either optically or at 21 cm.”. In

general, the 70’s was a time of revolution for the study of what eventually became known as dark

matter, as the scientific community was inching towards acknowledging the need for dark matter

as a whole [14],[15],[16]. Indeed, in the review article [17], the abstract states that “It is concluded

that the case for invisible mass in the universe is very strong and becoming stronger.”.

Since then, the study of the problem of dark matter has become a major field of astrophysical

and cosmological detail. A full review of the history of dark matter is a grand task, far beyond

what can be included in an introduction. For reviews see [7], [18] and [19].

1.1.4 Summary

To conclude this section, it is clear to see that there is a very good reason to study dark matter,

as it is a model that matches observation well. There are, of course, alternative theories that can
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also match observation, mainly modified gravity (as mentioned in [7]), but the discussion of this

topic is beyond the scope of this thesis.

1.2 Washing Away the Strong CP Problem

Having discussed how the theory of dark matter was proposed and the evidence for it, we now ask

the question of what it is. Naturally, there are many competing theories about the nature of dark

matter. The proposition that we are investigating in this thesis is that of the axion, and in this

section we will discuss the origin of the axion theory.

1.2.1 QCD and the Strong CP Problem

To discuss the theory of the axion, we must first discuss Quantum Chromodynamics (QCD) and

the strong CP problem.

QCD is a quantum field theory of the strong force (one of the four fundamental forces of nature).

One of the most established properties is that it has a Charge-Parity (CP) symmetry. This means

that the Lagrangian remains unchanged under transformations which map particles to their anti-

particles (charge conjugation) and transformations which send the spatial coordinates x to their

negatives i.e. x → −x (parity transformation). The issue with this is that the theory of QCD

initially predicted that there would be a spontaneous breaking of this CP symmetry due to the

unique structure of its vacuum [20] [21] [22]. The term in the QCD Lagrangian that is responsible

for the CP symmetry breaking is given by:

Lθ = θ
g

32π2
GaµνG̃

µν
a , (1.1)

where Gaµν is the gluon field tensor, G̃aµν is the Hodge dual of the gluon field, g is the QCD

coupling and θ is a parameter of the theory. The breaking of CP symmetry would induce a

non-zero electric dipole moment for the neutron [23] [24] [25], thus one can use its experimental

measurement to set a bound on the value of θ. Current experimental measurements set the bound

as θ < O(10−10) [26]. This then poses a question: why should θ have such a small value? In

principle, there is no mechanism for it to have a specific value, and the issue worsens once we

consider the weak force. The value of θ also gets a contribution from quarks [27]:

θ = θ̄ + arg det(M), (1.2)

where M is the quark mass matrix (which is in general complex) and θ̄ is the “bare” θ parameter

unmodified by the contribution from the weak force. Why is it that these two quantities should

almost cancel each other out? Indeed the most straightforward explanation is that they simply

do, because if they didn’t we wouldn’t be able to observe it. This type of argument is known as

an anthropic argument and is a topic of much scientific and philosophical debate. Without getting

bogged down into too many details, many physicists find it unconvincing (including R.D. Peccei,
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whose work proposed a different solution for the strong CP problem) on the basis that a universe

is just as likely to have a specific value of θ as it would any other value [27].

1.2.2 Axion as a Solution

Having briefly discussed the strong CP problem, we can now discuss the axion. In 1977, Roberto

Peccei and Helen Quinn proposed an elegant solution to this problem [28]. In their approach, they

proposed a new chiral U(1) symmetry of the theory, which would necessarily be broken, and the

breaking of which would dynamically cancel out the θ term, thus preserving CP symmetry. The

breaking of this symmetry would lead to a new pseudo-Nambu-Goldstone boson particle which is

called the axion1 [30], which we will denote as ψ. The standard model Lagrangian is modified by

this field as [27]:

L = LSM + θ
g2

32π2
GaµνG̃

µν
a +

ψξ

fa

g2

32π2
GaµνG̃

µν
a − 1

2
∂µψ∂

µψ + LInt, (1.3)

where LSM is the Lagrangian for the standard model sans the CP-violating term arising from QCD,

fa is an energy scale for the axion (also known as the axion decay constant), ξ is a dimensionless

coupling parameter and LInt is the term responsible for axions coupling to matter. The term that

couples the gluons directly to the axion field can be interpreted as an effective potential, with a

minimum occurring at ⟨ψ⟩ = −θ faξ [27]. This then results in a cancellation of the CP violating

term, resolving the strong CP problem. 2

The axion is not a massless particle. It gains its mass mψ via its interactions with matter, which

was first calculated by Bardeen and Tye in [31]. Another very important point of note for this

thesis is that while axions do not couple directly to the electromagnetic field, they do couple to

fermions. Through a fermion loop, they obtain an effective coupling to the electromagnetic field

of the form:

Lγψ = −1

4
gγψψFµν F̃

µν , (1.4)

where gγψ is the axion photon coupling, the exact value of which is determined by the axion

model used, but it is generally very small in all models due to the inverse dependence with the

relatively large axion decay constant fa ≈ 1011GeV to 1018GeV [32]. The full effective axion-

electromagnetism Lagrangian is then given by:

Lγψ =
1

2
∂µψ∂

µψ − 1

2
m2
ψψ

2 − 1

4
FµνF

µν − 1

4
gψψFµν F̃

µν , (1.5)

where we have dropped the γ subscript in gψ, as we are only really concerned with axion couplings

to the electromagnetic field in this work.

1We note that the name has somewhat of a humorous origin. Frank Wilczek named it after a laundry detergent
called Axion, because of how it “cleaned up” the problem and its relation to the axial anomaly [29].

2It is common to redefine the axion field, in terms of a “physical” field such that ψPhysical = ψ− ⟨ψ⟩. With this
definition, the QCD Lagrangian does not have a CP-violating term, and the minimum of this physical axion field is
achieved at ⟨ψPhysical⟩ = 0.
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1.2.3 Original vs Invisible Axions

An important point of note that we have not addressed is that the original axion model proposed by

Peccei and Quinn has long been ruled out. The original mass of the axion was calculated in [30] to

be roughly on the order of 100keV, which should have been detected shortly after the development

of the theory. Hope for the axion is fortunately not lost, as not too long after the introduction of

the Peccei-Quinn theory, two separate models of something known as the “invisible axion” were

proposed; firstly, there was the Kim-Shifman-Vainshtein-Zakharov model (KSVZ) [33] [34] and

then the Dine-Fischler-Srednicki-Zhitnisky (DFSZ) model [35]. What both of these models had

in common is that they predicted an axion mass on the sub-eV order, which would prove much

trickier to probe. Indeed, to this day, these invisible axions have not been found, and the search is

out for them. 3

1.2.4 Axions as Dark Matter

Finally, we get to the main reason for our discussion of the axion: they are one of the premier

candidate particles for the constituents of cold dark matter. The low mass that the axions would

have, combined with their weak coupling and feasibility of early universe production, satisfy obser-

vational constraints obtained from cosmology. A comprehensive review of this topic can be found

in [36] and [37].

1.2.5 Axion Searches

The axion has proven to be elusive thus far. Many experiments have searched for the axion, with

a wide variety of approaches. Some of the high-profile experiments include:

• ADMX : The “Axion Dark Matter eXperiment” is perhaps the most well-known of the axion

searches. Its approach is based on using microwave cavities in order to detect the dark matter

present in our own dark matter galaxy halo. The experiment has been able to rule out several

axion models in the µeV range. [38] [37] [39].

• CAST : The “Cern Axion Solar Telescope” is an experiment that searches for axions that

would be produced in our very own sun. The experiment consists of pointing the telescope

at the Sun, inside of which there is a very strong magnetic field which would convert axions

into photons. So far it has been able to search the mass range mψ = O(10−1eV) [40]. It was

also able to place an upper bound on the axion-photon coupling gγψ ≤ 0.66×10−10GeV−1[41].

• PVLAS : The “Polarizzazione del Vuoto con LASer”4 experiment sets out to test the pre-

dictions of strong field QED, mainly the properties of the QED vacuum. Naturally, as with

any big experiment, there are other things that it can look for/rule out, which in this case is

also the axion. The core of the experiment was to search for changes in the polarization of

3It should also be noted that axions can be introduced as a model that is independent of QCD. It is common to
refer to such particles as axion-like particles (ALPs).

4Italian for “Polarization of the Vacuum with Laser”.
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light travelling through a magnetic field in a vacuum. If axions exist, they would also affect

the polarization of photons, and as such the PVLAS could be used as a vehicle to search for

axions. In 2006, a PVLAS result indicated the existence of axions with a mass of the order

mψ ≈ 1meV and axion-photon coupling of the order gγψ ≈ 5× 10−6GeV−1 [42]. This was in

contention with the already available CAST results [43], [44]. However, further experiments

from PVLAS ruled out this result [45].

1.2.6 Primakoff Effect

The Primakoff effect was introduced in 1951 by American-Russian physicist Henry Primakoff as a

way to describe the photoproduction of the π0 meson in a nuclear electric field [46]. In contrast to

the original formulation, in the axion context, the Primakoff effect refers to the production of an

axion via an interaction of a photon and a virtual photon provided by a strong external magnetic

field (as shown in figure 1.1). The reason for the same name is that the actual structure of the

calculation remains similar. The conversion of an axion into photons in an external magnetic field

is technically known as the inverse Primakoff effect; however, it is generally also referred to as the

Primakoff effect.

a γ

γ∗

BExt

Figure 1.1: A Feynman diagram for the axionic inverse Primakoff effect a+ γ∗ → γ with external
magnetic field BExt.

For a modern review of the topic of the axionic Primakoff effect in the context of axions

scattering off fermions and the case of a strong magnetic field see [47].

1.3 Surfing the Plasma Wave

Plasma is one of the four fundamental states of matter, alongside solids, liquids and gases. It is

a quasi-neutral fluid comprised of fully or partially ionised atoms and electrons. The scientific

community has been exploring the potential of plasmas for particle acceleration since the late 60’s

[48], but the concept really took off in the late 70’s with Dawson’s and Tajima’s seminal paper

[49]. They proposed what is now known as Laser Wakefield Acceleration (LWFA).

1.3.1 What is Wakefield Acceleration?

Wakefield Acceleration is a method of accelerating charged particles through the use of plasma

waves, involving a driving laser pulse (in the case of laser wakefield acceleration) or a particle bunch
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(in the case of particle wakefield acceleration). The focus of this thesis is specifically on the case of

laser wakefield acceleration (LWFA), and thus we will not be discussing the case of particle wakefield

acceleration (PWFA); a great historical overview of PWFA is given in [48]. The main draw of

this method is that one can achieve much stronger electric fields than in conventional particle

accelerators, which in turn leads to greater acceleration. Conventional particle accelerators use

radio-frequency (RF) cavities to accelerate particles via electric fields. The maximum electric field

achievable in these standard accelerators is approximately 100MVm−1 [50]; beyond this electric

field strength, a breakdown in the walls of the accelerator begins. The advantage of plasma

accelerators is that plasma is already mostly ionised, and such a breakdown is not an issue. Thus,

fields of the order of 100GVm−1 are achievable [51]. This results in plasma accelerators being much

more compact than conventional accelerators, and thus allows for a broader range of applications.

1.3.2 A Brief Theory Rundown

In this subsection, we will give an overview of some of the most basic concepts of LWFA.

1.3.2.1 Some assumptions

Before we discuss the basic principles of plasmas in the LWFA scheme, we want to introduce some

of the assumptions that we will be making.

• Collisionless: The first assumption is that any effect that arises from the particles within the

plasma colliding is negligible. This assumption is applied to systems in which the average

collision time is far greater than the characteristic time scale of the system one is interested

in.

• Static Ions: Due to the fact that ions have a much higher mass than electrons, they move

much less readily than electrons do within the plasma. On short enough time scales, this

means that ions can be treated as being essentially static. The time scales during which

LWFA happens (i.e. short laser pulses propagating in an underdense plasma) are generally

short enough to apply this approximation [52].

• Cold Plasma: A regime where thermal effects do not play much of a part in plasma processes

is called the cold plasma regime. In this regime, it is reasonable to treat the plasma as if

it had zero temperature (and by consequence no pressure effects). LWFA can generally be

described within the cold plasma regime.

1.3.2.2 Electron Oscillations

One of the most basic concepts in plasma physics is that of Electron Oscillations (also known as

Langmuir Oscillations). It is an oscillation in the electron density that results from the perturbation

of the electrons. A mathematical overview of Langmuir Oscillations is given in Chapter 2, so for

now we shall make statements without proof. The frequency at which electrons oscillate in a
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plasma is given by the plasma frequency, which in turn is given by:

ωp =

√
nee2

me
, (1.6)

where ne is the electron density, e is the elementary charge and me is the electron mass.

1.3.2.3 Underdense and Overdense Plasma

Having introduced the notion of plasma frequency, we can now discuss the concept of underdense

and overdense plasma. We begin with a discussion of the refractive index; for a cold collisionless

plasma, the refractive index η is given as:

η =

√
1−

(
ωp
ω

)2

, (1.7)

where ωp is the plasma frequency and ω is the laser angular frequency given by ω = 2π
λLaser

, where

λLaser is the laser wavelength. From equation (1.7) we can see that the scenario of a laser travelling

through a plasma has three distinct regimes:

• Firstly, there is the case in which ω > ωp, which results in a real refractive index i.e. η ∈ R.

This is called the underdense regime and is characterised by the laser pulse being able to

propagate through the plasma.

• Naturally, we then have the case in which ω < ωp which results in a complex refractive index

i.e. η ∈ C. This regime is called overdense and is characterised by the laser pulse not being

able to penetrate the plasma and thus effectively being reflected.

• Finally, there is the case where ω = ωp. The electron density at which this condition occurs

is known as the critical density. The value for the critical density nc can be easily found as

nc =
4π2me
e2

1
λ2
Laser

.

From looking at the refractive index, one can easily infer that an underdense plasma should be

used for LWFA, as it is the regime in which a laser can propagate through a plasma.

1.3.2.4 Wake Generation and the Ponderomotive Force

The basic mechanism of LWFA is best understood via looking at a concept called the ponderomotive

force. The ponderomotive force is in no way a fundamental force; rather, it is an effective term

that arises from an averaging process. A rigorous derivation of the ponderomotive force is a

difficult and contentious topic, and as such we shall accept its validity without proof in this thesis.

For further discussion see the references [53], [54], [55] and [56]. The most common form of the

(non-relativistic) ponderomotive force is given by the expression:

FPond = − e2

2meω2
p

∇|E|2. (1.8)
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Immediately, from inspection of equation (1.8), we see that the spatial gradient of the electric

field is crucial in generating a strong ponderomotive force. As such, a short laser pulse can induce

a very strong force which in extreme cases can create areas of little electron density within the

plasma. Due to the spatial charge separation, the electric field within those areas of low density

is extremely high. In the literature, this is known as the blowout or the bubble regime and is the

key mechanism behind LWFA. A final note is that later in this thesis we will take a different (but

equivalent) approach to ponderomotive effects, and equation (1.8) is used mostly for illustrative

purposes.

1.3.3 Light-Shining-Through-a-Wall Experiment

Having discussed the basic mechanisms of LWFA, we will now discuss its application to the search

for axionic dark matter. The method of interest is that of a Light-Shining-Through-a-Wall (LSTW)

experiment, the basic principle of which is the utilisation of what makes dark matter so difficult

to find: its feeble interaction with the electromagnetic field. The basic principle of the LSTW

experiment, which we will consider in this work, is that a non-linear plasma wave is excited via

a laser pulse with a static longitudinal magnetic field B1 externally applied within the plasma

channel. Due to the intersection of the magnetic field B1 and the nonlinear plasma wave, we

expect a flux of axions or ALPs to be produced.

Figure 1.2: A diagram illustrating a LSTW set-up. The blue box containing the sawtooth wave
represents the plasma, Ψ is used to label the outgoing axion flux, e− represents the plasma electrons,
and we use γ to label the outgoing photon from the axion-photon conversion process.

Leaving the plasma channel, we expect there to additionally be a strong flux of photons from

the laser and high-energy electrons. In order to separate the axions from the photons and the

electrons, a barrier is placed, which absorbs the photons and the electrons, but lets axions through

due to the weak coupling gψ. After the axions leave the barrier, a strong static magnetic field B2

is applied in the transverse direction and the axions are converted into photons via the Primakoff

effect; thus, one could view it as “light, shining through a wall”. This procedure is sketched in

Figure 1.2. For more references on this topic, see [57],[58] and [59].
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1.4 Summary & Thesis Plan

In conclusion, the problem of dark matter is one of the great problems of modern physics. There

are a multitude of solutions to it, amongst which the axion is a well-motivated one. As such,

searching for axions is an endeavour worth pursuing.

The thesis is structured as follows:

• In the second chapter, we focus on the theory of plasma waves and Laser Wakefield Acceler-

ation. We study some basic results and then expand on the result of a 1D LWFA driven by

a tophat laser pulse using a geometric approach [60]. (For a very good review of 1D LWFA

theory, see [61].)

• In the third chapter, we introduce the axion field and consider the basic cases of axion

production in a laser (see [62] and [63] for some more recent results in this area) and in a

plasma (see [64] and [59] for some recent results as well). At the end of the chapter, we derive

a resonance condition for the axion within a laser pulse travelling in a plasma, which relates

laser plasma parameters to the axion mass.

• In the fourth chapter, we consider the problem of axion creation in a laser plasma, using a

ponderomotive formalism (for a recent result which involves the application of a ponderomo-

tive formalism in the context of axions see [65]). We propose an action for the system, derive

the equations of motion and analyse a corresponding conservation law.

• In the fifth chapter, we consider the problem of axion production from a quantum perspective.

The main result of this chapter is an improvement upon the classical result found in [66].

• In the sixth and final chapter, we briefly discuss the results in the thesis and discuss potential

for future work.
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Chapter 2

Theory of Relativistic Plasma

Waves

In the introduction, we have reviewed the history and basic theory behind laser-plasma wakefield

accelerators (LWFA). To adequately capture the key physical aspects of plasma in LWFAs we need

to introduce and develop a theory of relativistic plasma waves, and as such, we do so in this chapter.

It should be noted that we shall be focusing on analytical methods, and as such the calculations

we will be performing will be concerned with simplified low-dimensional models. For a review of

low-dimensional analytical methods, see [61], while [67] provides an overview of computation in

the broader context of accelerator physics.

2.1 Mathematical Preliminaries

We begin by introducing the mathematical machinery we will be using to study the theory of

plasma waves1. Space-time is modelled by a 4-dimensional Lorentzian manifold M4, equipped

with a Minkowski metric g. In this thesis, we shall utilise the (−,+,+,+) signature, meaning that

in the case of using the Cartesian co-ordinates, the metric can be written as:

g = −dt⊗ dt+ dx⊗ dx+ dy ⊗ dy + dz ⊗ dz. (2.1)

Having specified the metric, we can also introduce the volume form, which specifies the orientation

of our space-time manifold. The volume form is given by:

⋆1 = dt ∧ dx ∧ dy ∧ dz. (2.2)

The ⋆ denotes the Hodge star operator, which defines an operation on p forms on an oriented

Riemannian or pseudo-Riemannian manifold that maps them onto n − p forms, where n is the

1It should be noted that this geometric approach isn’t strictly necessary as it is fully equivalent to conventional
methods. However, we chose to use it in order to make some computations simpler and gain geometric insight.
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dimension of the manifold. For any two p forms α and β, they satisfy:

α ∧ ⋆β = α · β ⋆1, (2.3)

where · denotes the inner product induced by the metric and ⋆1 is the volume form. The ∧ symbol

denotes the wedge product.

2.1.1 Action Principles via Differential Forms

Let us consider a p-form α on the space of differential forms α ∈ ΓΛpM. We can propose an action

of the form:

S =

∫
M

1

2
dα ∧ ⋆dα. (2.4)

To obtain equations of motion we naturally apply the principle of stationary action. To vary the

action we need to introduce a one-parameter family of p-forms αϵ, where the parameter ϵ takes

values in the range ϵ ∈ (−1, 1). The variation of the action is then given by:

δS[α] =
d

dϵ
S[αϵ]|ϵ=0. (2.5)

Denoting d
dϵαϵ|ϵ=0 = α̇, the first variation of the action given in (2.4) is:

δS[α] =

∫
M

1

2
(dα̇ ∧ ⋆dα+ dα ∧ ⋆dα̇) . (2.6)

Using an identity for forms β and γ of equal degree:

β ∧ ⋆γ = γ ∧ ⋆β, (2.7)

we can write dα ∧ ⋆dα̇ as:

dα ∧ ⋆dα̇ = dα̇ ∧ ⋆dα, (2.8)

thus getting rid of the 1
2 factor. Furthermore, we can utilise the Leibniz rule for the exterior

derivative to express the terms within the integral as follows:

dα̇ ∧ ⋆dα = d(α̇ ∧ ⋆dα)− (−1)pα̇ ∧ d ⋆ dα. (2.9)

By doing this, we have introduced a total derivative term into our integral, which now allows us

to apply Stokes’ theorem to our problem, giving us an expression for the variation of the action in

the form:

δS =

∫
∂M

α̇ ∧ ⋆dα− (−1)p
∫
M
α̇ ∧ d ⋆ dα, (2.10)

where ∂M denotes the boundary of the manifold. To proceed further, we shall make the physical

assumption that the variations we choose are such that α̇ vanishes on the boundary ∂M. With all

that in mind, we can apply the principle of least action and assume that the equations of motion
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are satisfied when the action is stationary. From this, we see that for

(−1)p+1

∫
M
α̇ ∧ d ⋆ dα = 0 (2.11)

to be true for all variations, we need

d ⋆ dα = 0 (2.12)

to also hold true. This is our equation of motion.

2.1.1.1 Example 1 : The Free Electromagnetic Field

Introducing the electromagnetic potential 1-form A, the action for the free electromagnetic field is:

S[A] =

∫
M

1

2
dA ∧ ⋆dA. (2.13)

The equation of motion obtained by variation with respect to A is simply

d ⋆ dA = 0. (2.14)

We can identify dA as the electromagnetic 2-form F . Using this and the nilpotent property of

the exterior derivative (ddA = 0) we arrive at the coordinate free form of the vacuum Maxwell

equations:

d ⋆ F = 0,

dF = 0.
(2.15)

2.1.1.2 Example 2: The Electromagnetic field with a current.

Introducing a current 3-form J , the action is written as:

S[A] =

∫
M

1

2
dA ∧ ⋆dA−A ∧ J . (2.16)

Varying w.r.t. A, we obtain the sourced Maxwell equation:

d ⋆ F = J , (2.17)

whilst the sourceless Maxwell equation follows from F = dA as before:

dF = 0. (2.18)

2.1.2 Body Manifold Formalism

The formalism that we will utilise here is that by Maugin [68], which we will refer to as the

body manifold formalism. We are still working with a space-time manifold M equipped with a
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metric (in our case, it is the Minkowski metric, but in general, this can be applied to any Lorentzian

metric when considering applications to gravitational systems [69], [70]). We also introduce a body

manifold B, which can be interpreted as corresponding to a plasma, i.e. the plasma is modelled by

two interpenetrating fluids with corresponding body manifolds (one for the electron fluid and one

for the ion fluid). Each infinitesimal point on the body manifold can be referred to as a particle

in the context of continuum mechanics. For completeness’ sake we mention that in this section

Dim(M) = 4 and Dim(B) = 3. Following [71], [70], the information about the dynamics of the

electron fluid is contained in a submersion between M and B that we shall denote as f , such that:

f : M → B

xµ → ξA = fA(xµ).
(2.19)

Here the index µ runs through µ = 0, 1, 2, 3 and the index A runs through A = 1, 2, 3. The

mapping f can be interpreted as mapping each world-line onto its corresponding plasma particle.

The plasma particles are in one-to-one correspondence with the integral curve of a time-like vector

V (see Figure 2.1). V naturally satisfies:

dfA(V ) = 0,

g(V, V ) = −1.
(2.20)

Figure 2.1: A diagram illustrating how the mapping f takes world-lines on M to points in B. Each
world-line is mapped to a unique point in B.

To model the dynamics of the plasma we start by introducing a differential 3-form Ω on the

body manifold B. We then define a 3-form on M as the pull-back of Ω from B onto M i.e.:

j = f∗Ω, (2.21)

where j is the plasma electron number current 3-form. We will refer to j as the current 3-form.

Having defined j, we can write down an action that will generate the equations of motion for the
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plasma:

S[A, f ] =

∫
M
m n ⋆ 1 + qA ∧ (j − jion) +

1

2
dA ∧ ⋆dA, (2.22)

where n =
√
j · j is the proper number density of the plasma electrons, the parameter m is the

electron mass, jion is the ion current 3-form in the plasma, A is the electro-magnetic potential

1-form and F = dA as previously established. The inner product is, of course, induced by the

Minkowski metric for which we are using the (−,+,+,+) convention, and ⋆ is the Hodge map.

The application of the inner product to j can be expressed as:

j · j = ⋆−1 (j ∧ ⋆j) . (2.23)

An additional point of note is that the first term in equation (2.22), m n ⋆ 1, follows from making

the cold plasma approximation, i.e. no pressure effects (note that these would be introduced in

the first term of (2.22) by replacing mn with some non-linear function f(n), which corresponds to

an equation of state). Finally, we can relate the current 3-form j to the velocity field V via:

Ṽ =
1

n
⋆−1 j. (2.24)

The tilde above a symbol, for example Ṽ , denotes the metric dual operation i.e. Ṽ (X) = g(V,X)

for all choices of vector X.

2.1.3 Equations of Motion

The variation of equation (2.22) with respect to the electromagnetic potential A leads to the

sourced Maxwell equation i.e.

d ⋆ F = −q(j − jion) (2.25)

where we recall that the second, i.e. unsourced, Maxwell equation:

dF = 0, (2.26)

comes from the nilpotency of the exterior derivative. We obtain the equation of motion for the

electron fluid via variation of (2.22) with respect to the map f . This is performed by introducing

a 1-parameter family of maps fϵ, with the condition that f0 = f . We note that the variation of

any field α with respect to f is defined as:

δfα =
dα

dϵ

∣∣∣∣
ϵ=0

. (2.27)
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Varying the proper number density gives:

δfn = δf
√
j · j

=
1√
j · j

1

2
(δf j · j + j · δf j)

=
1

n
δf j · j

=
1

n
⋆−1 (δf j ∧ ⋆j).

(2.28)

The 3-form Ω on B can be locally given in terms of co-ordinates {ξ1, ξ2, ξ3} on B :

Ω =
1

3!
ΩABC(ξ)dξ

A ∧ dξB ∧ dξC , (2.29)

where the Latin indices run through A,B,C ∈ {1, 2, 3}. The current 3-form j on M will then be

given by:

j = f∗Ω

= f∗
(
1

3!
ΩABC(ξ)dξ

A ∧ dξB ∧ dξC
)

=
1

3!
ΩABC(f(x))df

A ∧ dfB ∧ dfC .

(2.30)

The variation of j is then given by:

δf j =
1

3!

(
∂ΩABC
∂ξD

◦ f
)
δfDdfA ∧ dfB ∧ dfC +

1

2!
(ΩABC ◦ f) dδfA ∧ dfB ∧ dfC , (2.31)

which can then be more simply expressed as:

δf j = LY j, (2.32)

where L is the Lie derivative, which is defined by:

LXT =
d

dϵ
|ϵ=0(ϕ

∗
ϵT ), (2.33)

where X is a vector field, ϕϵ is the flow that generates X, ϕ∗ϵ is the pullback of ϕϵ and T is an

arbitrary covariant tensor. The vector field Y is a variation field given by:

Y = δfAYA, (2.34)

where {V, Y1, Y2, Y3} is a basis for vector fields on M, such that dfA(YB) = δAB (meaning that dfA

and YB are orthonormal) and dfA(V ) = 0 (this stems from V being time-like).

We know that the current 3-form j is a closed form (which is simply a geometrical manifestation

of charge conservation), due to Ω being a top form on the body manifold. Thus, the application
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of Cartan’s identity, LY j = ιY dj + dιY j, leads us to :

LY j = dιY j, (2.35)

where ιY is the interior operator with respect to the vector field Y . With that in mind, the variation

of the electron component of the plasma is given by:

δfS =

∫
M

m

n
dιY j ∧ ⋆j + qA ∧ dιY j. (2.36)

With the assumption of compact support of δfA (which means that Y has compact support) on

M we can integrate by parts to get:

δfS = −
∫
M
ιY j ∧ d(

m

n
⋆ j − qA). (2.37)

Due to the linearity of the interior operator (ιY = δfAιYA) , the condition for stationarity becomes:

ιYAj ∧ d(
m

n
⋆ j − qA) = 0. (2.38)

Finally, we can substitute the expression (2.24) and rearrange the result to obtain:

ιYAιV (mdṼ − qF ) = 0, (2.39)

where we used the fact that ⋆−1 = ⋆ on odd degree forms in 3+1D spacetime. Since {V, Y1, Y2, Y3}

is a frame on M, we get:

ιV dṼ =
q

m
ιV F. (2.40)

Since g(V, V ) is constant, we can write equation (2.40) using the Levi-Civita connection as:

∇V Ṽ =
q

m
ιV F. (2.41)

Further details on this step are included in Appendix A.1. We note that (2.41) is simply the

coordinate-free form of the Lorentz force equation. In the standard index notation, this is written

as:
dV ν

dτ
=

q

m
VµF

µν , (2.42)

where τ denotes the proper time for current with 4-velocity V ν .

2.1.4 Killing Vector Fields

Let us consider a metric g on a manifold M. A diffeomorphism is an invertible map from one

differentiable manifold to another such that the map and its inverse are both continuously dif-

ferentiable. An isometry is a diffeomorphism that preserves the metric e.g. for a diffeomorphism

f : M′ → M, where the manifolds are equipped with metrics (M, g) and (M′, g′), the pullback
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f∗ acts on the metric as:

f∗(g′) = g. (2.43)

Suppose we now consider a one-parameter family of isometries fϵ : M → M. From the definition

of the Lie derivative (2.33) we have:

Lξg =
d

dϵ
[f∗ϵ (g)]ϵ=0 = lim

ϵ→0

f∗ϵ (g)− g

ϵ
= 0, (2.44)

where ξ is the vector field that generates fϵ and is known as a Killing vector field. The importance

of Killing vector fields is that they quantify the symmetries of a metric.

2.2 Plasma Waves: Longitudinal Electric Field Case

Having described the equations of motion within our formalism, we can begin to model the waves

within the plasma. We begin by studying a simplified case where there is only the longitudinal

electric field present. This assumption allows us to capture some essential features of strong

longitudinal fields present in LWFA. This requirement will be relaxed in the next section.

2.2.1 2 + 2 Split

The physics of large-amplitude plasma waves is fraught with many issues when it comes to the

analytical approach. Dealing with a full 3+1-dimensional treatment analytically can be only done

perturbatively or in very specific cases and is otherwise impossible, and thus is usually left to the

domain of computational physics. To work on exact analytical solutions to problems, we aim to

reduce the dimension of the system via simplifications, such that we can work with an ODE instead

of a PDE.

We rewrite the current 3-form given in equation (2.30) as:

j =
1

3!
ΩABC(f(x))df

A ∧ dfB ∧ dfC

= dϕ̂ ∧ dx ∧ dy,
(2.45)

where dϕ̂ = Ω123(f(x))df
1 (where we change the notation for the co-ordinate argument x in order

to distinguish it from x) and f2 = x, f3 = y. We assume that ϕ̂ depends only on t and z, and this

assumption is what allows us to reduce the dimensionality of our equations. From now on, we will

be working on (t, z) slices of M, i.e. we have effectively performed a foliation on M. The Hodge

dual of j can then be written as:

⋆j = #dϕ̂, (2.46)

where #1 = dt∧dz is the Hodge operator on the (t, z) slices, which we shall call the reduced Hodge

operator. The reduced metric on the (t, z) slices is given by:

g = −dt⊗ dt+ dz ⊗ dz. (2.47)
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With that in mind, j ∧ ⋆j can be expressed as:

j ∧ ⋆j = dϕ̂ · dϕ̂#1 ∧ dx ∧ dy = dϕ̂ · dϕ̂ ⋆ 1. (2.48)

The same procedure can be applied to the ion current (which is given as data in our setup), and

we set:

jion = dϕ̂ion ∧ dx ∧ dy (2.49)

where ϕ̂ion also depends only on t and z. We also prescribe the form of the electromagnetic potential

to be:

A = A0(t, z)dt+A1(t, z)dz. (2.50)

We note that (2.50) leads to an expression for the electromagnetic 2-form of the form:

F = E#1, (2.51)

where E = ∂tA1 − ∂zA0. With these assumptions laid out, we can integrate out the redundant

degrees of freedom from the full EM-Plasma action given in (2.22) in order to obtain a reduced

action:

S[ϕ̂, A] = Λ

∫
m

√
dϕ̂ · dϕ̂#1 + qA ∧ (dϕ̂− dϕ̂ion) +

1

2
F ∧#F, (2.52)

where Λ is a cross-sectional factor that arose out of integrating out the x and y dependence.

We can now vary (2.52) with respect to ϕ̂ and A in order to obtain the reduced equations of

motion:

δϕ̂S = 0 → −d# dϕ̂∥∥∥dϕ̂∥∥∥ +
q

m
F = 0, (2.53)

δAS = 0 → d#F + q(dϕ̂− dϕ̂ion) = 0, (2.54)

where
∥∥∥dϕ̂∥∥∥ =

√
dϕ̂ · dϕ̂ 2.

Inspecting equation (2.54), it is apparent that we can write it as an exterior derivative of a

0-form:

d
(
#F + q(ϕ̂− ϕ̂ion)

)
= 0. (2.55)

We can immediately integrate equation (2.55):

#F + q(ϕ̂− ϕ̂ion) = C, (2.56)

where C is a constant of integration that we will set to zero without loss of generality. Noting the

identity of the reduced Hodge on forms of even degree ## = −1, we can obtain an expression for

2We define the norm for a p-form α as: ∥α∥ =

{√
α · α if α · α > 0√
−α · α if α · α < 0
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F :

F = q(ϕ̂− ϕ̂ion)#1. (2.57)

We can simply then substitute in (2.57) into (2.53) in order to obtain:

d#
dϕ̂∥∥∥dϕ̂∥∥∥ =

q2

m
(ϕ̂− ϕ̂ion)#1. (2.58)

One further very common approximation that we will apply is that, for now, we will neglect the

dynamics of the ions within the plasma, as they typically move on much longer time scales than

the electrons. With that in mind, we set dϕ̂ion = niondz, where nion is a constant ion density. We

now re-scale the fields:

ϕ =
1

nion
ϕ̂,

ϕion =
1

nion
ϕ̂ion.

(2.59)

Equation (2.58) then becomes:

d#
dϕ

∥dϕ∥
= ω2

p (ϕ− ϕion)#1, (2.60)

where ωp =
√

q2nion

m is the plasma frequency. Although it is very succinct, the covariant represen-

tation (2.60) of the electron dynamics in terms of the scalar field ϕ (which can be loosely thought

of as a potential due to dϕ corresponding to a current) appears to have received little attention in

laser-plasma physics.

2.2.2 Langmuir Oscillations

We can illustrate the workings of our formalism by calculating some basic results from the theory

of plasmas. The simplest possible example are the cold plasma Langmuir oscillations.

We begin by assuming that the amplitude of the electron wave is small and recalling that we

are considering a constant ion background:

ϕion = z, (2.61)

ϕ = ϕion + ϵψ, (2.62)

where ψ denotes the electron fluid perturbation and ϵ is a perturbation parameter such that |ϵ| ≪ 1.

We can apply these assumptions to equation (2.60) to arrive at a linear equation of motion. Firstly,
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we expand dϕ · dϕ as:

dϕ · dϕ = dϕion · dϕion + 2ϵdϕion · dψ +O(ϵ2)

= 1 + 2ϵ∂zψ +O(ϵ2),
(2.63)

and taking the magnitude:

∥dϕ∥ =
√
dϕ · dϕ

= 1 + ϵ∂zψ +O(ϵ2).
(2.64)

We then express dϕ
∥dϕ∥ as:

dϕ

∥dϕ∥
= dz − ϵ∂zψdz + ϵdψ +O(ϵ2)

= dz + ϵ∂tψdt+O(ϵ2),

(2.65)

since dψ = ∂tψdt+ ∂zψdz. We can then finally express the kinetic term in the equation of motion

(2.60) for ϕ as:

d#
dϕ

∥dϕ∥
= −ϵ∂2t ψ#1 +O(ϵ2). (2.66)

The other term in the equation is simply given by:

ω2
p (ϕ− ϕion)#1 = ϵω2

pψ#1. (2.67)

We now simply drop O(ϵ2) terms to arrive at:

∂2t ψ = −ω2
pψ, (2.68)

whose solutions describe the Langmuir oscillations of a cold plasma.

2.2.3 Cold Plasma Wave Breaking Limit

In this section, we will consider a classic result in the theory of non-linear plasma waves, that being

the cold plasma wave breaking limit, as derived by A. I. Akhiezer and R. V. Polovin in [72].

We begin by making a few assumptions; firstly we once again assume a constant ion background:

ϕion = z. (2.69)

Secondly, we assume that the electron fluid has the form:

ϕ = ϕion + ψ, (2.70)
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where ψ depends only on a coordinate ζ = z − vt, which is adapted to an observer travelling at

velocity v in the frame of the ions. Denoting ψ
′
= dψ

dζ , we can write:

∥dϕ∥ =
√

(1 + ψ′)2 − v2ψ′2. (2.71)

The kinetic term in (2.60) is then given by:

d#
dϕ

∥dϕ∥
=

(
(1 + ψ′)− v2ψ′√
(1 + ψ′)2 − v2ψ′2

)′

#1. (2.72)

The right hand side of (2.60) becomes:

ω2
p(ϕ− ϕion)#1 = ω2

pψ#1, (2.73)

leading to the full ODE of the form:

(
(1 + ψ′)− v2ψ′√
(1 + ψ′)2 − v2ψ′2

)′

= ω2
pψ. (2.74)

We can write down a Lagrangian which generates equation (2.74):

L = 1−
√
(1 + ψ′)2 − v2ψ′2 − 1

2
ω2
pψ

2. (2.75)

Noting that (2.75) has no explicit ζ dependence, we can immediately write down the first integral

of the system:

E = ψ′ ∂L

∂ψ′ − L

=
1 + ψ′√

(1 + ψ′)2 − v2ψ′2
− 1 +

1

2
ω2
pψ

2,
(2.76)

where E is a constant of motion. The additive constant and signs in (2.75) have been chosen to

cast (2.76) in an elegant form.

The extrema of ψ occur whenever ψ′ = 0, therefore the maximum value of ψ should satisfy:

E =
1

2
ω2
pψ

2
max. (2.77)

We shall insist on the solution being oscillatory, and as such, we know from (2.77) that is bounded

between two values −ψmax ≤ ψ ≤ ψmax. From this we then know that ψ has to take the value of 0

during an oscillation, meaning that the absolute maximum value of ψ is achieved on the oscillation

where ψ → 0 as ψ′ → ∞ (a sketch of this solution is given in figure 2.2). We can use this to obtain
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an expression for the constant of motion E :

lim
ψ′→∞

E =
1√

1− v2
− 1 = γ − 1, (2.78)

where γ is the Lorentz factor of the wave. Combining (2.78) and (2.77) we obtain:

ψmax =
1

ωp

√
2(γ − 1). (2.79)

We recall the form of equation (2.57), and in this case it becomes:

F = qnionψ#1 = E#1, (2.80)

where E denotes the z component of the electric field. Therefore, the absolute maximum electric

field amplitude inside a 1D cold plasma wave is given by:

Emax =
mωp
e

√
2(γ − 1), (2.81)

where q = −e has been used.

Figure 2.2: An illustration of the maximum amplitude wave solution for ψ.

2.2.4 Ion and Electron Perturbations

Thus far we have only investigated dynamics with a purely static ion background. We will now

consider a case where the ion background is also perturbed. We consider the electron and ion fluids

of the form:

ϕϵion = ϕ
(0)
ion + ϵϕ

(1)
ion +O(ϵ2),

ϕϵ = ϕ(0) + ϵϕ(1) +O(ϵ2).
(2.82)
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The zeroth order terms satisfy:

d#
dϕ(0)∥∥dϕ(0)∥∥ = ω2

p(ϕ
(0) − ϕ

(0)
ion)#1. (2.83)

At first order, we can write a quantity:

d

dϵ

dϕϵ

∥dϕϵ∥
|ϵ=0 =

dϕ(1)∥∥dϕ(0)∥∥ − 1∥∥dϕ(0)∥∥3
(
dϕ(1) · dϕ(0)

)
dϕ(0)

=
1∥∥dϕ(0)∥∥

(
1− dϕ(0)∥∥dϕ(0)∥∥ ⊗ d̃ϕ(0)∥∥dϕ(0)∥∥

)
(−, dϕ(1)),

(2.84)

where 1

∥dϕ(0)∥

(
1− dϕ(0)

∥dϕ(0)∥ ⊗ d̃ϕ(0)

∥dϕ(0)∥

)
is a rank (1,1) tensor, which acts on dϕ(1) and 1 = e0 ⊗

X0 + e1 ⊗X1 is an identity tensor with a basis X0, X1 (with e0, e1 being a dual basis to it). We

can choose our basis to be:

X0 =
#̃dϕ(0)∥∥#dϕ(0)∥∥ ,

X1 =
d̃ϕ(0)∥∥dϕ(0)∥∥ ,

(2.85)

with a dual co-basis of:

e0 = − #dϕ(0)∥∥#dϕ(0)∥∥ ,
e1 =

dϕ(0)∥∥dϕ(0)∥∥ .
(2.86)

The minus sign in e0 in (2.86) is required because dϕ(0) is spacelike. We can then write:

1− dϕ(0)∥∥dϕ(0)∥∥ ⊗ d̃ϕ(0)∥∥dϕ(0)∥∥ =
#dϕ(0)∥∥#dϕ(0)∥∥ ⊗ #̃dϕ(0)∥∥#dϕ(0)∥∥ . (2.87)

Noting that3
∥∥#dϕ(0)∥∥ =

∥∥dϕ(0)∥∥, we can introduce a vector field U :

U =
#̃dϕ(0)

∥dϕ0∥
(2.88)

which we can use to write the equation of motion for the first-order perturbations ϕ(1) and ϕ
(1)
ion:

d#

(
− 1∥∥dϕ(0)∥∥ Ũ ⊗ U(−, dϕ(1))

)
= ω2

p(ϕ
(1) − ϕ

(1)
ion)#1. (2.89)

3Note #dϕ(0) ∧##dϕ(0) = #dϕ(0) ∧ dϕ(0) = −dϕ(0) ∧#dϕ(0) = −dϕ(0) · dϕ(0)
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Using the property dϕ(1)(U) = U(ϕ(1)) of the exterior derivative, and the fact that the Lie derivative

acting on a 0-form is simply given by LUϕ(1) = U(ϕ(1)) we can write (2.89) as:

d#

(
1∥∥dϕ(0)∥∥LUϕ(1)Ũ

)
= −ω2

p(ϕ
(1) − ϕ

(1)
ion )#1. (2.90)

Furthermore, we note that for a scalar function f and a vector field U , we have:

d#(fŨ) = dιU#f

= LU#f.
(2.91)

This allows us to write (2.90) as:

LU#

(
1∥∥dϕ(0)∥∥LUϕ(1)

)
= −ω2

p(ϕ
(1) − ϕ

(1)
ion )#1, (2.92)

which then captures the first-order electron fluid response to first-order ion perturbations.

2.2.4.1 Example 1

We make an assumption that ϕ(0) depends on ζ = z − vt only. The 1-form Ũ is then written as:

Ũ =
#dϕ(0)∥∥dϕ(0)∥∥ =

−dt+ vdz√
1− v2

, (2.93)

and the metric dual of Ũ (a vector field) is given by:

U = γ(∂t + v∂z). (2.94)

Noting that U(ζ) = 0 and LU#1 = 0, we can write (2.92) as:

L2
Uϕ

(1) = −
∥∥∥dϕ(0)∥∥∥ω2

p(ϕ
(1) − ϕ

(1)
ion). (2.95)

To continue with the calculation, we need to introduce a new co-ordinate ξ = t− vz, which leads

us to specify an ortho-normal co-frame {γdζ , γdξ}. The Lie derivative LU acting on ϕ(1) can thus

be written as:

LUϕ(1) =
∂ϕ(1)

∂ξ
U(ξ) +

∂ϕ(1)

∂ζ
U(ζ)

=
1

γ

∂ϕ(1)

∂ξ
.

(2.96)

The expression L2
Uϕ

(1) then becomes:

L2
Uϕ

(1) =
1

γ2
∂2ϕ(1)

∂ξ2
. (2.97)
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We can then write:
1

γ2
∂2ϕ(1)

∂ξ2
= −

∥∥∥dϕ(0)∥∥∥ω2
p(ϕ

(1) − ϕ
(1)
ion). (2.98)

To proceed, we need to specify the zeroth order dynamics of the system. The simplest prescription

that matches the condition ϕ(0) ≡ ϕ(0)(ζ) is that ϕ(0) = ζ and ϕ
(0)
ion = ζ. Equation (2.83) is satisfied

trivially with these assumptions.

For example, if the ion dynamics are specified to first order as:

ϕion = ζ + ϵAe−k(|ζ+ξ|) +O(ϵ2), (2.99)

representing an exponentially decaying perturbation in the ion density. Equation (2.98) is then

given by:
∂2ϕ(1)

∂ξ2
= −ω2

p(ϕ
(1) −Ae−k(|ζ+ξ|)). (2.100)

The solution to (2.100) takes the form ϕ(1) = χ(ξ)e−kζ , thus we can write:

d2χ

dξ2
+ ω2

pχ = Ae−k|ξ|. (2.101)

The solution of (2.101) is plotted in 2.3, and illustrates the behaviour of the decaying perturbation

by showing purely oscillatory behaviour for large ξ.

Figure 2.3: The solution to (2.101) in the range ξ ∈ [0, 5] and with initial conditions ϕ(1)(0) = 0
and ϕ′(1)(0) = 1, with parameters A = 1, ωp = 1 and k = 1 for illustration.

2.2.4.2 Example 2

We set ϕ
(1)
ion = 0 and ϕ(0) = ϕ

(0)
ion depending only on the coordinate z, with the condition that

dϕ
(0)
ion

dz > 0. Taking U = #d̃ϕ(0)

∥dϕ(0)∥ , the equation of motion for ϕ(1) becomes:

∂2t ϕ
(1) = −ω(z)2ϕ(1), (2.102)

where ω(z) =
dϕ

(0)
ion

dz ωp. Equation (2.102) is immediately solved by:

ϕ(1)(t, z) = A(z) sin(ω(z)t) +B(z) cos(ω(z)t), (2.103)
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which is plotted in figure 2.4. This shows that for our given conditions, we get a solution that is

oscillatory in time with a position-dependent frequency.

Figure 2.4: An example solution ϕ(1)(t, z) with A(z) = e−|z|, B = 0 and ω(z) = ez for illustration.

2.2.5 Killing Vectors

We can use the symmetries of the Minkowski metric (which are described via Killing vectors) to

gain insights into some general solutions of (2.60).

LetK be a Killing vector field of the metric g. We will also require that LKϕ = LKϕion = constant.

2.2.5.1 Example 1: K = ∂t + v∂z

Suppose K = ∂t + v∂z, which coincides with a vector field corresponding to an observer travelling

with a velocity v along the z-axis. Physically, this then represents a current that is constant in the

direction of K. It then follows that:

LK(z − vt) = 0

LK(z) = v.
(2.104)

Due to this, we can immediately write down the general solution to LKϕ = LKϕion = a, where a

is a constant:

ϕ =
a

v
z + ψ(z − vt)

ϕ =
a

v
z + ψion(z − vt),

(2.105)

where ψ and ψion are arbitrary differentiable functions. This result can be interpreted as a current

profile that is transported along z at a constant speed v without dispersing.

2.2.5.2 Example 2: K = z∂t + t∂z

Let us consider a region where |z| > |t| (illustrated in figure 2.5), then the vector fieldK = z∂t+t∂z,

which is a generator of Lorentz boosts in the t− z plane, has a norm g(K,K) < 0 i.e. K is time-

like. This then physically corresponds to the case of an accelerating current density that remains
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unchanged under boosts.

Figure 2.5: A diagram illustrating the region where |z| > |t|.

The following holds from direct computation:

LK(z2 − t2) = 0. (2.106)

We can introduce a new set of coordinates (which are 2D Rindler co-ordinates):

z = ρ cosh(χ)

t = ρ sinh(χ).
(2.107)

We can then express K as :

K = ∂χ. (2.108)

Once again assuming the condition that LKϕ = LKϕion = a, we obtain a general solution of the

form:

ϕ = aχ+ ψ(ρ),

ϕion = aχ+ ψion(ρ).
(2.109)

Noting that the metric is written:

g = dρ⊗ dρ− ρ2dχ⊗ dχ, (2.110)

in the new set of coordinates, we can obtain an ODE for ψ(ρ) :

1

ρ

 ρψ′√
ψ′2 − a2

ρ2

′

= ω2
p(ψ − ψion), (2.111)

where ψ′ = dψ
dρ .
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Figure 2.6: A numerical solution to (2.111) with a = 1, ωp = 1 and initial conditions ψ(1) = 0 and
ψ′(1) = 1.

In 2.6, we see an electron density that goes to zero in the Rindler horizon (i.e. light-like

observers) and increases towards regions of lower acceleration.

2.3 Plasma Waves: Full Transverse Extended Field

In the previous section, we explored the case of plasma waves where the electromagnetic field was

specified to be F = E#1. In this section, we shall relax this condition and consider the transverse

components of the electromagnetic field. This will allow us to consider the important case of a

plasma driven by a laser pulse.

2.3.1 2+2 Split

Following a similar methodology to the previous section, we want to perform a 2+2 split in order

to make our equation tractable.

The electromagnetic 2-form F can be expressed as:

F = E#∥1 + dAj ∧ dxj −B#⊥1, (2.112)

where #∥1 = dt ∧ dz and #⊥1 = dx ∧ dy. E and B are 0-forms, while Ajdx
j is a 1-form, with

j = 1, 2 corresponding to the x and y components respectively. The key assumption for this

approach is that E, B and the components of dAj depend only on t and z.

Furthermore, the velocity field V may also be simply decomposed as:

V = V∥ + V⊥, (2.113)

where V∥ ∈ span{∂t, ∂z} and V⊥ ∈ span{∂x, ∂y}.
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2.3.1.1 Maxwell’s Equations

Maxwell’s equations coupled to a plasma containing both electrons and ions are given by:

d ⋆ F = −qn ⋆ Ṽ + qnion ⋆ Ṽion

dF = 0,
(2.114)

where we assume that Vion ∈ span{∂t, ∂z}. Under all the assumptions mentioned above, we obtain

the condition that B is constant and the equations:

dE = qn#∥Ṽ∥ − qnion#∥Ṽion, (2.115)

d#∥dAj = qnVj#∥1, (2.116)

where Vj are the components of Ṽ⊥ = Vjdx
j .

2.3.1.2 Lorentz Force

Equation (2.40) decomposes into the following equations:

ιV∥dṼ∥ − V jdVj =
q

m

(
E#∥Ṽ∥ − V jdAj

)
, (2.117)

(
ιV∥dVj

)
dxj =

q

m

(
ιV∥dAj

)
dxj − q

m
B#⊥Ṽ⊥. (2.118)

2.3.1.3 Plasma Wave Equations

Considering the constraint that B is a constant, we can consider a choice of B = 0, which then

allows us to solve equation (2.118):

Vj =
q

m
Aj . (2.119)

This then allows equation (2.116) to become:

d#∥dAj =
q2n

m
Aj#∥1, (2.120)

which is a massive wave equation for Aj and:

dṼ∥ =
q

m
E#∥1, (2.121)

follows from (2.117). The steps between equation (2.117) and (2.121) are given in appendix A.2.

We can conveniently express equation (2.120) in terms of the complex quantity A = q
m (A1 + iA2)

as:

d#∥dA =
q2n

m
A#∥1. (2.122)

Now noticing that n#∥Ṽ∥ and nion#∥Ṽion are closed forms since both the electron and the ion

current are independently conserved, we can write them as exterior derivatives of two 0-forms ϕ̂
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and ϕ̂ion i.e.:

n#∥Ṽ∥ = dϕ̂,

nion#∥Ṽion = dϕ̂ion.
(2.123)

This, combined with equation (2.115) immediately lets us write:

dE = q(dϕ̂− dϕ̂ion), (2.124)

from which :

E = q(ϕ̂− ϕ̂ion) (2.125)

immediately follows up to an integration constant, which we set to zero here. Equation (2.121)

hence becomes:

dṼ∥ =
q2

m
(ϕ̂− ϕ̂ion)#∥1. (2.126)

Seeking to eliminate Ṽ∥ in favour of ϕ̂, we note that:

Ṽ∥ =
∥∥∥Ṽ∥∥∥∥ #∥dϕ̂∥∥∥#∥dϕ̂

∥∥∥ , (2.127)

which follows from equation (2.123). The inner product #∥dϕ̂ ·#∥dϕ̂ can be shown to be:

#∥dϕ̂ ·#∥dϕ̂ = −dϕ̂ · dϕ̂, (2.128)

which implies that
∥∥∥#∥dϕ̂

∥∥∥ =
∥∥∥dϕ̂∥∥∥. We can also use the condition that V is a normalised unit

time-like vector field to obtain an expression for
∥∥∥Ṽ∥∥∥∥ i.e.:

∥V ∥2 = −
∥∥∥Ṽ∥∥∥∥2 + ∥∥∥Ṽ⊥∥∥∥2

= −
∥∥∥Ṽ∥∥∥∥2 + |A|2

= −1.

(2.129)

Equation (2.119) and A = q
m (A1+ iA2) have been used to substitute

∥∥∥Ṽ⊥∥∥∥ in (2.129). This finally

allows us to write the field equation (2.126) for the plasma wave as:

d

√1 + |A|2
#∥dϕ̂∥∥∥dϕ̂∥∥∥

 =
q2

m
(ϕ̂− ϕ̂ion)#∥1. (2.130)

Introducing ϕ = 1
nion

ϕ̂ and ϕion = 1
nion

ϕ̂ion, where nion is the ion proper number density, we can

write:

d

(√
1 + |A|2

#∥dϕ

∥dϕ∥

)
= ω2

p(ϕ− ϕion)#∥1. (2.131)

44



Equation (2.131) is an equation that now allows us to capture the effects of the transverse compo-

nents of the electromagnetic field on the motion of the plasma. Using (2.123), the plasma electron

proper number density n can be expressed as:

n =

∥∥∥dϕ̂∥∥∥√
1 + |A|2

, (2.132)

which immediately allows for equation (2.122) to be written as:

d#∥dA =
q2

m

∥∥∥dϕ̂∥∥∥√
1 + |A|2

A#∥1. (2.133)

This can be rewritten in terms of ϕ as:

d#∥dA = ω2
p

∥dϕ∥√
1 + |A|2

A#∥1. (2.134)

Equation (2.134) captures the evolution of the transverse components of the electromagnetic field.

A point of note is that equation (2.134) captures the physics of an effect called relativistic trans-

parency, in which a laser of a sufficient field strength can travel through what would initially be

an opaque plasma (for a review of the topic see [73]). This is due to the 1√
1+|A|2

term decreasing

the magnitude of the effective coupling of the electromagnetic wave to the plasma.

2.4 Plasma Wave Driven by a Circularly Polarised Pulse

Let us consider the case of a circularly polarised laser pulse. To do this, we express the electro-

magnetic potential as:

A = aeiΦ, (2.135)

where a is the dimensionless laser amplitude and Φ is the phase of the laser, which in principle

depends on z and t; however, due to the structure of (2.131), the exact form of it doesn’t matter.

With this assumption equation (2.130) becomes:

d

(√
1 + a2

#∥dϕ

∥dϕ∥

)
= ω2

p(ϕ− ϕion)#∥1, (2.136)

where ϕ̂ = nionϕ, ϕ̂ion = nionϕion and ωp =
q2nion

m . For the purposes of this calculation, we adopt an

orthonormal co-frame {γdζ, γdξ, dx, dy}, where ζ = z−vt and ξ = vz−t. This co-frame is adapted

to a plasma wave with phase velocity v (note that 0 < v < 1) moving along the z axis. We then

prescribe the function a such that it only depends on ζ, i.e. a ≡ a(ζ), thereby discarding equation

(2.133). This is a strong assumption as we both neglect, the reaction of the laser pulse to the

plasma, while still prescribing the pulse’s dispersive properties; nevertheless, this approximation is

very common in the wider literature surrounding theoretical studies of LWFAs, a good example of

which is given in [74].
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Figure 2.7: A figure illustrating the shape of the prescribed pulse. We separate the domain into
three regions 0,1 and 2 which correspond to the region in front of the travelling pulse, the region
within the pulse and the plasma wake region respectively.

Additionally we also assume that ϕion has the form ϕion = z. We seek a solution to the motion of

the electron fluid of the form ϕ = ϕion+ψ (a current of the form j = dN = n#∥Ṽ = niondz+niondψ

), where ψ also depends only on ζ, so dψ = ψ
′
dζ. We note that the requirement that all dynamical

variables depend on ζ is commonly known as the “quasi-static” approximation in the literature.

The reason for this nomenclature is that in this situation we can choose a frame in which the

electron fluid is static. This reduces the analysis of the plasma wave equation (2.136) to that of

solving an O.D.E. of the form:

(√
1 + a2

1 + ψ
′ − v2ψ

′√
(1 + ψ′)2 − v2ψ′2

)′

= ω2
pψ. (2.137)

We now assume that the dimensionless amplitude of the electro-magnetic potential of the laser

pulse has the form of a top-hat function, as illustrated in Figure 2.7.

To motivate our approach to this problem, we can solve an approximate problem numerically.

Beginning the numerical analysis, we prescribe the shape of the dimensionless laser potential a(ζ)

such that it can mimic the top hat function we are going to use for the analytical results. We

define a(ζ) as:

a(ζ) = a0
1

4

[
1 + tanh

(
ζ − σ + w

s

)][
1 + tanh

(
−ζ + σ + w

s

)]
, (2.138)

where the parameters σ, w and s control where the pulse is centred, the width of the pulse and

the “steepness” of the edges of the pulse. We solve the electron fluid equation for the case of the

pulse centred at ζ = 5, a “steepness” factor of s = 0.05 and a range of pulse widths. The numerical

solutions are graphed in Figure 2.8.
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Figure 2.8: The graphs of solutions a, b, c and d correspond to laser pulse widths of 0.5, 1.6, 2.2
and 3.9. The physical parameters chosen for the simulation are v = 0.9 and a0 = 1.6. The red
dotted line corresponds to the Akhiezer-Polovin cold plasma wave breaking limit from equation
(2.154) and the blue dotted line corresponds to the absolute maximum value of the wake within
the pulse from equation (2.152).

We now turn to the analysis of the plasma pulse within a prescribed top-hat laser pulse. More

specifically we want to consider the case in which the top-hat function wave is “matched” to the

plasma wave, meaning that the laser pulse occupies one-half of the first oscillation of the electric

field. We will investigate the region around the front of the pulse with length ∆ζ, more accurately,

we are considering the limiting case in which ∆ζ → 0. We integrate equation (2.136) with respect

to ζ across the interval ∆ζ, which yields:

[√
1 + |a|2 1 + ψ

′ − v2ψ
′√

(1 + ψ′)2 − v2ψ′2

]ζ+
(0∩1)

ζ−
(0∩1)

= ω2
pψ∆ζ +O(∆ζ2)

→ 0,

(2.139)

where ζ+(0∩1) = ζ(0∩1) +
∆ζ
2 and ζ−(0∩1) = ζ(0∩1) − ∆ζ

2 . The ± superscript will now denote the limit

of a function at a boundary that is approaching from the positive/negative direction respectively

e.g. f±(0∩1) = lim∆ζ→0 f(ζ(0∩1) ± ∆ζ
2 ). From the construction of the prescribed form of the laser

pulse potential, we know that a = 0 outside the pulse and a = a0 inside of the pulse. We then

assume that ψ
′+

(0∩1) = 0 in front of the pulse, which can be justified by the assumption that the

plasma is in equilibrium ahead of the pulse. Equation (2.139) then becomes:

1−
√

1 + a20
1 + ψ

′−

(0∩1) − v2ψ
′−

(0∩1)√
(1 + ψ

′−

(0∩1))
2 − v2ψ

′2−

(0∩1)

= 0, (2.140)

where the (0∩ 1) subscript denotes that the quantity is evaluated at the interface of regions 0 and

1.
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2.4.1 Maximum Wave Amplitude Inside The Laser Pulse

The case of a maximum amplitude electric field Emax within the laser pulse occurs for the solution

in which ψ
′

(0∩1) → ∞. In this limit equation (2.140) becomes:

1−
√
1 + a20

√
1− v2 = 0. (2.141)

This yields the condition for the amplitude a0:

a0 = γv. (2.142)

We now turn to a Lagrangian-based approach to derive the value for the maximum electric field.

A Lagrangian that generates equation (2.137) inside the pulse has the form:

L = −
√

1 + a20

√
(1 + ψ

′

(1))
2 − v2ψ

′2

(1) +
√
1 + a20 −

1

2
ω2
pψ

2
(1). (2.143)

The restriction of ψ to region (1) is denoted as ψ(1). Due to no explicit ζ dependence, we can

immediately identify a constant of integration E(1):

E(1) = ψ
′

(1)

∂L

∂ψ
′

(1)

− L

=

√
1 + a20(1 + ψ

′

(1))√
(1 + ψ

′

(1))
2 − v2ψ

′2

(1)

−
√
1 + a20 +

1

2
ω2
pψ

2
(1).

(2.144)

By assumption, ψ(1) is a continuous function; therefore in the limit ∆ζ → 0 the condition ψ+
(0∩1) = 0

ensures that ψ−
(0∩1) = 0 holds. Then, the constant of integration in region 1, E(1), is:

E(1) =

√
1 + a20(1 + ψ

′−

(0∩1))√
(1 + ψ

′−

(0∩1))
2 − v2ψ

′−2

(0∩1)

−
√

1 + a20. (2.145)

As noted before, the maximum value of the electric field will occur in the case of ψ
′−

(0∩1) → ∞. E(1)
in this limit can be expressed as:

E(1) =
√
1 + a20(

1√
1− v2

− 1)

=
√
1 + a20(γ − 1)

=
√
1 + a20(

√
1 + a20 − 1),

(2.146)

where the condition from equation (2.141) was used.

In order to get an explicit expression for ψ
′−

(0∩1), in the case of a0 < γv, we solve the jump
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condition (2.140) at the front of the pulse:

ψ
′−

(0∩1) = γ2(−1± γv√
γ2 − 1− a20

). (2.147)

We now require, that in the case of a0 = 0 (i.e. no laser pulse) ψ
′

(0∩1) = 0. This restricts the choice

of root:

ψ
′−

(0∩1) = γ2(−1 +
γv√

γ2 − 1− a20
). (2.148)

Using (2.145), we can now express the constant of motion E(1) as:

E(1) = −γv
√
γ2 − 1− a20 + γ2 −

√
1 + a20. (2.149)

Evaluating (2.144) at a maximum of the wave amplitude gives the constant of motion:

E(1) =
1

2
ω2
pψ

2
max, (2.150)

since ψ
′

(1) = 0 where ψ(1) = ψmax. Recalling that E can be expressed by:

E = q(ϕ̂− ϕ̂ion)

= qnion(ϕ− ϕion)

= qnionψ

(2.151)

we can finally find the expression for the maximum electric field amplitude:

Emax =
mωp
|q|

[
2

(
γ2 − γv

√
γ2 − 1− a20 −

√
1 + a20

)] 1
2

. (2.152)

The same expression as (2.152) is derived in [74] using a different approach (with a factor of
√
2

difference likely due to a typo). The absolute maximum value of Emax occurs at a0 =
√
γ2 − 1

(see equation (2.139)) i.e.:

EAM =
mωp
|q|

[2(γ2 − γ)]
1
2 . (2.153)

We note that this is a factor of
√
γ larger than the cold plasma wave breaking limit due to Akhiezer

and Polovin [72] :

EAP =
mωp
|q|

√
2(γ − 1). (2.154)

We illustrate this in figure 2.9.
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Figure 2.9: A graph illustrating the different maximum electric field values related to the phase
velocity of the plasma wake.

2.4.2 Relating the Dimensionless Laser Amplitude to the Phase Velocity

of the Maximum Amplitude Plasma Wave

We now turn our attention to the behaviour at the back of the laser pulse. Integrating equation

(2.137) across the back of the pulse yields:

1 + ψ
′−

(1∩2) − v2ψ
′−

(1∩2)√
(1 + ψ

′−

(1∩2))
2 − v2ψ

′−2

(1∩2)

−
√
1 + a20

1 + ψ
′+

(1∩2) − v2ψ
′+

(1∩2)√
(1 + ψ

′+

(1∩2))
2 − v2ψ

′+2

(1∩2)

= 0. (2.155)

We introduce a new constant of motion for the boundary of regions 1 and 2 using equation (2.144),

which we will call E(2). It can be expressed in terms of ψ(2) as :

E(2) =
1 + ψ

′

(2)√
(1 + ψ

′

(2))
2 − v2ψ

′2

(2)

− 1 +
1

2
ω2
pψ

2
(2), (2.156)

which holds at all points behind the pulse. For the case of the maximum amplitude plasma wake

behind the pulse, we recall from section 2.2.3 that there exists a point at which ψ
′

(2) → ∞ as

ψ(2) → 0. Equation (2.156) then allows us to express the constant of integration E(2) as:

E(2) = γ − 1. (2.157)
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Figure 2.10: An illustration of the case for which the plasma pulse satisfies ψ = 0 and has a finite
ψ′ value at ζ = ζ(1∩2)

Now, let us consider a situation in which ψ−
(1∩2) = 0 and ψ

′−

(1∩2) is finite. In that case the

expressions from equations (2.157) and (2.156) become:

γ − 1 =
1 + ψ

′−

(1∩2)√
(1 + ψ

′−

(1∩2))
2 − v2ψ

′−2

(1∩2)

− 1, (2.158)

which yields:

ψ
′−

(1∩2) = −1

2
. (2.159)

The continuity condition (2.155) becomes:

1 + v2√
1− v2

−
√
1 + a20

1 + 1
γ2ψ

′+

(1∩2)√
(1 + ψ

′+

(1∩2))
2 − v2ψ

′+2

(1∩2)

= 0. (2.160)

At the back of (but still inside) the laser pulse, the constant of motion E(1), using equation (2.144)

with ψ+
(1∩2) = 0, is expressed as:

E(1) =
√
1 + a20

1 + ψ
′+

(1∩2)√
(1 + ψ

′+

(1∩2))
2 − v2ψ

′+2

(1∩2)

−
√
1 + a20. (2.161)

Using equations (2.149) and (2.161) we arrive at the expression for ψ
′+

(1∩2) :

ψ
′+

(1∩2) = − 1

1± vη√
γ2−1−a20

, (2.162)

where η = γ2 − γv
√
γ2 − 1− a20. With a choice of the root, which we will justify numerically in

the next section, we find the expression:

a20 =
1

4v2
(γ − 1)

γ3
(γ3(v4 + 6v2 + 1)− 1), (2.163)

for the dimensionless laser amplitude required to drive the maximum plasma wakefield, which is
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plotted in figure 2.11.

Figure 2.11: A plot illustrating the dependence of the magnitude of the dimensionless laser ampli-
tude required for a maximum amplitude wake on the phase velocity of the wake.

2.4.3 Numerical Analysis

An issue that arose in subsection 2.4.2 was that of the ambiguity of the choice of root in equation

(2.162). It was mentioned that it is going to be justified numerically, and we shall endeavour to

do so now (for an analytical approach to this, see the appendix of [60]). This shall be done by

numerically analysing the equations arising from the constants of integration and jump conditions.

Firstly, we obtain another equation for ψ
′+

(1∩2) by using equations (2.149) and (2.161) for the integral

constant E(1) to obtain:

γ2 − γv
√
γ2 − a20 − 1−

√
1 + a20(1 + ψ′+

(1∩2))√
(1 + ψ′+

(1∩2))
2 − v2ψ′+2

(1∩2)

= 0. (2.164)

Equation (2.164) combined with equation (2.160) will form the basis of our numerical justification

of the choice of roots in equation (2.162).

For a given choice of v and a0 we can numerically solve equations (2.164) and (2.160) for ψ′−
(1∩2).

Solving (2.160) numerically in a physically relevant range of the variables v and a0, we find that

the solutions of ψ′−
(1∩2) are purely negative, while for equation (2.164), we get positive and negative

branches. One of the solutions of equation (2.160) agrees with one of the solutions of equation

(2.164), but the other two solutions disagree. This, of course, motivates us to only choose the

negative branch solutions of (2.164). With that in mind, we can compare the numerical values we

obtain from the jump condition and the condition derived from the constant of integration. The

values of the parameters v and a0 for which the solutions ψ′−
(1∩2) coincide will give us the relationship

between the dimensionless laser amplitude and the phase velocity of the plasma wave. This relation

is illustrated in Figures 2.12 and 2.13. If we approach solving this relation algebraically, we obtain
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Figure 2.12: A graph plotting the difference in the numerical solutions for ψ
′

(1∩2) obtained from

equations (2.164) and (2.160) against the dimensionless laser amplitude a0. The value of the wake
phase velocity is fixed at v = 0.9.

Figure 2.13: A two-dimensional plot plotting the difference in ψ
′

(1∩2) against both the dimensionless
laser amplitude a0 and the wake phase velocity.

four solutions.

a0 = ± 1

2v

√
−v6 − 4v4 + 3v2 ± 2

√
−v10 − 3v8 − 2v6 + 2v4 + 3v2 + 1 + 2

v2 − 1
.

Numerical verification allows us to pick the relevant branch:

a0 =
1

2v

√
−v6 − 4v4 + 3v2 − 2

√
−v10 − 3v8 − 2v6 + 2v4 + 3v2 + 1 + 2

v2 − 1
,

which coincides with the analytical result from equation (2.163).

One final observation about this calculation is that the numerical value of the dimensionless laser

amplitude a0 that drives the maximum amplitude wake is almost equal to the maximum of the

(non-dimensionalised) electric field of the wake ϵ = EAP|q|
mωp

, regardless of the phase speed of the

wave. This is illustrated in Figure 2.14.
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Figure 2.14: A plot of the absolute value of the ratio of the dimensionless laser amplitude a0 and
the dimensionless electric field if the wake ϵ plotted against the phase velocity of the wake v.
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Chapter 3

Classical Axion Production

In this chapter, we shall discuss the classical treatment of axion production1. Although axions arose

out of a fundamentally quantum theory, within the context of axion searches, classical approaches

are a good approximation due to the relative strengths of the electromagnetic fields used. As such,

in this Chapter, we provide an overview of some basics of axion production in a laser and also

consider the case of axions in a plasma.

3.1 Classical Axion-Electrodynamics

As mentioned in the introductory chapter, the Lagrangian for axion-electrodynamics is given by:

L = −1

4
FµνFµν +

1

2
∂µψ∂µψ − 1

2
mψψ

2 − 1

4
gψψFµν F̃

µν . (3.1)

To coincide with the formalism we laid out in Chapter 2, we will write the action for axion-

electrodynamics in terms of differential forms:

S[A,ψ] =

∫
1

2
(F ∧ ⋆F + dψ ∧ ⋆dψ +m2

ψψ
2 ⋆ 1− gψψF ∧ F ). (3.2)

The corresponding equations of motion are thus given by:

dF = 0,

d ⋆ dA = gψdψ ∧ F,

−d ⋆ dψ +m2
ψψ ⋆ 1 = gψ

1

2
F ∧ F.

(3.3)

1The concept of classical particle production can be a somewhat nebulous one. Strictly speaking, particle
production is not something that can be accounted for classically. The term “Classical Axion Production” is used
here heuristically, where it refers to calculating the amplitude of the classical axion field equation solution.
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3.1.1 2+2 Split

Following the method from Chapter 2, we perform a decomposition of the electromagnetic 2-form

as:

F = E#∥1 + dAj ∧ dxj −B#⊥1 (3.4)

where j = 1, 2. The indexed coordinates can be written as:

x0 = t

x1 = x

x2 = y

x3 = z

(3.5)

and the reduced Hodge operators are once again given by:

#∥1 = dt ∧ dz,

#⊥1 = dx ∧ dy,
(3.6)

where we also note that E,B and the components of Aj all only depend on t and z. With that in

mind, we can express F ∧ F as:

F ∧ F = −2EB ⋆ 1 + dAj ∧ dxj ∧ dAk ∧ dxk

= −2EB ⋆ 1 + idA ∧ dA ∧#⊥1.
(3.7)

We have defined A as:

A = Ax + iAy. (3.8)

We now set B = 0, and with that assumption, the 2D axion electrodynamics equations become:

d#∥dψ −m2
ψψ#∥1 = i

gψ
2
dA ∧ dA (3.9)

d#∥dA = igψdψ ∧ dA. (3.10)

3.2 Axion Production in a Laser

3.2.1 Linear Polarisation and the two-level system

We begin the analysis with perturbation theory, expanding around a background solution A0:

A = A0 +A1

ψ = ψ0 + ψ1.
(3.11)
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We assume no initial axion density, so ψ0 = 0. Furthermore, we change to a null coordinate system:

x+ = t+ z

x− = t− z,
(3.12)

and impose the condition that the background laser pulse only depends on x−. The equations of

motion, to first order, become:

d#∥dψ1 −m2ψ1#∥1 = i
gψ
2
(dA0 ∧ dĀ1 + dA1 ∧ dĀ0)

d#∥dA1 = igψdψ1 ∧ dA0

d#∥dA0 = 0.

(3.13)

Additionally, we assume that the background field, A0, is purely real (meaning that it is linearly

polarised). We also express ψ1 and A1 as:

ψ1 = Ψe−iωx
+

+Ψeiωx
+

iA1 = ae−iωx
+

+ aeiωx
+

,
(3.14)

where Ψ ≡ Ψ(x−) and a ≡ a(x−). The equations of motion for the coefficients in (3.14) are:

2iω
dΨ

dx−
=

1

2
m2
ψΨ+ iωgψ

dA0

dx−
a,

2iω
da

dx−
= −iωgψ

dA0

dx−
Ψ,

(3.15)

where we note that the equation of motion for A0 is satisfied automatically due to the fact it only

depends on x−. We can re-scale Ψ and a in order to simplify our equations:

Ψ = e−i
m2
ψ

8ω x
−
ϕ,

a = e−i
m2
ψ

8ω x
−
b.

(3.16)

This choice of scaling allows us to write the equations of motion in terms of a Schrödinger-like

equation for a two-level system, where the “state vector” is given by :

Φ =

b
ϕ

 , (3.17)

and the Schrödinger-like equation becomes:

i
dΦ

dx−
=

(
−
m2
ψ

8ω
σ3 +

gψ
2

dA0

dx−
σ2

)
Φ. (3.18)
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We note that σ1, σ2 and σ3 denote the usual Pauli matrices:

σ1 =

0 1

1 0


σ2 =

0 −i

i 0


σ3 =

1 0

0 −1

 .
(3.19)

To continue with the analysis, we will need to set a value for the driving field A0. For simplicity,

we will assume a sine wave of the form:

A0 =
β0
ω0

sin
(
ω0x

−). (3.20)

The Hamiltonian for the two-level system can then be explicitly written in matrix form as:

Ĥ =

 −m2
ψ

8ω −i gψβ0

2 cos(ω0x
−)

i
gψβ0

2 cos(ω0x
−)

m2
ψ

8ω

 . (3.21)

3.2.1.1 Rotating Wave approximation and Rabi-Like Frequency

Having obtained an explicit form for the Hamiltonian for the Schrödinger-like equation we can

start to apply all the standard techniques from the theory of quantum mechanics. A very com-

mon method that we can borrow from the field of quantum optics is known as the rotating wave

approximation (for further reference, one could read any introductory quantum optics text such as

[75]). The core principle of it is that, when the system is at or near resonance, rapidly oscillating

off resonant terms can be neglected. To obtain the form of the Hamiltonian in the rotating wave

approximation we express it in terms of the interaction picture:

ĤI =

 0 − igψβ0

4 (ei(ω0−
m2
ψ

4ω )x−
+ e−i(ω0+

m2
ψ

4ω )x−
)

igψβ0

4 (ei(ω0+
m2
ψ

4ω )x−
+ e−i(ω0−

m2
ψ

4ω )x−
) 0

 . (3.22)

In the rotating wave approximation, this Hamiltonian becomes:

ĤRWA
I =

 0 − igψβ0

4 ei(ω0−
m2
ψ

4ω )

igψβ0

4 e−i(ω0−
m2
ψ

4ω )x−
0

 . (3.23)

Following a method outlined in appendix B.1, we can solve explicitly for Φ. More particularly, we

are interested in ϕ whose magnitude squared is given by:

|ϕ|2 =
1

Ω2

(
gψβ0
4

)2

sin2
(
Ωx−

)
|b|2, (3.24)
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where Ω =

√(
ω0

2 − m2
ψ

8ω

)2
+
(
gψβ0

4

)2
. The result from (3.24) is plotted alongside the exact solution

in figure 3.1, showing the correspondence between the exact and approximate solution in the near

resonant case. We observe that a resonance occurs at 4ωω0 = m2
ψ.

Figure 3.1: A graph showing the comparison of the exact numerical solution vs the solution
obtained via the rotating wave approximation. The values for the parameters are gψ = 0.66 ×
10−19 eV−1, mψ = 10−4 eV, ω0 ≈ 1.51 eV, ω ≈ 10−9 eV and β0 = 103 eV2.

This resonance condition can be easily understood by thinking about axion creation via a

scattering process. We can consider the case of two counter-propagating photons colliding and

creating an axion particle (illustrated in Figure 3.2).

Figure 3.2: A diagram illustrating the γ + γ → ψ scattering process.

Let us denote two photons as Photon I and II. Their momentum 4-vectors are given by:

PI = (ω0, 0, 0, ω0) , (3.25)

PII = (ω, 0, 0,−ω) . (3.26)
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The 4-vector for the axion in the rest frame is simply:

Pψ = (mψ, 0, 0, 0). (3.27)

Through the conservation of momentum, we have:

PI + PII = Pψ. (3.28)

We can use the fact that PI and PII are null vectors and we can write:

2PI · PII = P 2
ψ, (3.29)

which gives us the resonance condition:

4ωω0 = m2
ψ. (3.30)

3.2.2 Circular Polarisation and the Three Level System

The analysis of the system in the case of circular polarization begins in a similar manner to the

linearly polarized case. The main difference is the form of the perturbations to the electro-magnetic

potential and the axion field:

Ψ1 = ψ′e−iωx
+

+ ψ̄′eiωx
+

iA1 = a′e−iωx
+

+ b̄′eiωx
+

.
(3.31)

This leads to equations of motion for the perturbations of the form:

i
da′

dx−
= −igψ

2

dA0

dx−
ψ′, (3.32)

i
db′

dx−
= −igψ

2

dĀ0

dx−
ψ′, (3.33)

i
dψ′

dx−
=
m2
ψ

4ω
ψ′ + i

gψ
4

(
dA0

dx−
b′ +

dĀ0

dx−
a′
)
. (3.34)

We now prescribe the form of A0 and re-scale ψ, a and b such that

dA0

dx−
= βe−iω0x

−
,

b′ = eiω0x
−
b,

a′ = e−iω0x
−
a,

ψ′ = ψ.

(3.35)
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This then allows us to write:

i
da

dx−
= −ω0a− i

gψβ

2
ψ,

i
db

dx−
= ω0b− i

gψβ

2
ψ,

i
dψ

dx−
=
m2
ψ

4ω
ψ + i

gψβ

4
(a+ b).

(3.36)

We note that a similar analysis can be performed to the one carried out in the case of a linearly

polarised pulse, with the use of Gell-Mann Matrices, however, the usefulness of such an approach

is more limited as the rotating wave approximation starts to lose meaning in relation to the laser-

axion system. Nevertheless, the system of equations given in (3.36) can be solved analytically,

although the exact form of the solution is not given as it is an incredibly cumbersome expression.

The solutions for ψ are plotted in Figure 3.3.

Figure 3.3: A graph comparing the numerical solutions of the axion field given a circularly polarised
laser and a linearly polarised one. The values for the parameters are gψ = 0.66 × 10−19 eV−1,
mψ = 10−4 eV, ω0 ≈ 1.51 eV, ω ≈ 10−9 eV and β0 = 103 eV2.

We observe in figures 3.3 and 3.4 that the axion field is stronger in the case of linear polarisation

than in the case of a circularly polarized pulse. This can be interpreted intuitively as the energy

in a system being distributed between two degrees of freedom i.e. the two levels corresponding to

the two laser polarisations.
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Figure 3.4: A plot of the ratio of the magnitude of the axion field produced in a linearly polarised
laser pulse ψL and a circularly polarised laser pulse ψC .

3.3 Axions in a Plasma

In this section, we will now move on to the case of a classical axion field inside of a plasma. The

action for the system is given by:

S[f,A, ψ] =

∫
mn ⋆ 1 + qA ∧ (j − jion) +

1

2
F ∧ ⋆F

+
1

2
dψ ∧ ⋆dψ +

1

2
mψψ

2 ⋆ 1− 1

2
gψψF ∧ F.

(3.37)

Variation with respect to the axion field ψ leads to the equation of motion for the axions:

δψS = 0 → −d ⋆ dψ +m2
ψψ ⋆ 1 =

1

2
gψF ∧ F. (3.38)

Assuming that ψ ≡ ψ(t, z), we can use the decomposition of the electromagnetic 2-form we used

in the previous section in order to obtain a reduced equation:

d#dψ −m2
ψψ#1 = gψEB#1− 1

2
igψdĀ ∧ dA. (3.39)

Variation with respect to A gives:

δAS = 0 → d ⋆ F − gψdψ ∧ F = −qn ⋆ Ṽ + qnion ⋆ Ṽion. (3.40)

We assume that Ṽion ≡ Ṽion(t, z) and Ṽ ≡ Ṽ (t, z). Additionally, we also write Ṽ as

Ṽ = Ṽ∥ + Ṽ⊥, (3.41)
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where Ṽ⊥ = Vjdx
j . We can use these assumptions to write:

dE − gψBdψ = qn#∥Ṽ∥ − qnion#∥Ṽion (3.42)

and:

d#∥dAj + gψdψ ∧ ϵjkdAk = qnVj#∥1, (3.43)

where ϵj
k is the Levi-Civita symbol. Since, in the standard formulation of axion-electrodynamics,

the couplings to matter (i.e. fermions) are usually ignored due to the dominance of the coupling to

photons, the plasma equations remain unchanged from the form they took in the previous chapter.

We state them here for completeness:

δfS = 0 →∇V Ṽ =
q

m
ιV F,

V · V = −1.

(3.44)

The form structure of (3.44) allows it to be split (like in equations (2.117) and (2.118)):

ιV∥dṼ∥ − V jdVj =
q

m

(
E#∥Ṽ∥ − V jdAj

)
, (3.45)

and

(ιV∥dVj)dx
j =

q

m
(ιV∥dAj)dx

j − q

m
B#⊥Ṽ⊥. (3.46)

Similar to what was done in the previous chapter, we set B = 0, which allows us to write:

Vj =
q

m
Aj . (3.47)

This leads to a massive wave equation for Aj :

d#∥dAj + gψdψ ∧ ϵjkdAk =
q2n

m
Aj#∥1. (3.48)

We can once again write down the EM potential in the form A = A1 + iA2, in order to arrive at:

d#∥dA− igψdψ ∧ dA =
q2n

m
A#∥1. (3.49)

Using equation (2.132), we have:

n = nion
∥dϕ∥√
1 + |A|2

, (3.50)

we then have:

d#∥dA− igψdψ ∧ dA = ω2
p

∥dϕ∥√
1 + |A|2

A#∥1. (3.51)
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The equation for ϕ is the same as (2.131):

d

(√
1 + |A|2

#∥dϕ

∥dϕ∥

)
= ω2

p(ϕ− ϕion). (3.52)

3.3.1 Electromagnetic Wave in a Plasma

In order to describe the process of axion creation in a laser plasma system, we now seek to describe

the behaviour of the electromagnetic wave in the plasma. Dropping the influence of the axion field

on the electromagnetic field (as it is negligible compared to the effect of the plasma), equation

(3.51) becomes:

d#∥dA = ω2
p

∥dϕ∥√
1 + |A|2

A#∥1. (3.53)

We write down the form of the electromagnetic potential as a circularly polarized pulse:

A = aeiθ, (3.54)

where a and θ are real 0-forms. Equation (3.53) results in two equations corresponding to its real

and imaginary parts:

−adθ ∧#∥dθ + d#∥da = ω2
p

∥dϕ∥√
1 + a2

a#∥1,

d(a2#∥dθ) = 0,

(3.55)

respectively. We now make the assumption that a depends only on one variable ζ = z − vt i.e.

a ≡ a(ζ) and that θ = ω0ξ, where ξ = vz−t. Furthermore, we also prescribe the form of ϕ = z+ψ,

where ψ depends only on the coordinate ζ = z − vt. This results in (3.55) reducing to the form:

a′′ + ω2
0a = γ2ω2

p

√
(1 + ψ′)2 − v2ψ′2

√
1 + a2

a, (3.56)

where a′′ = d2a
dζ2 and d(a2#∥dθ) = 0 is trivially satisfied.

We now make the assumption that ψ′ ≈ − 1
2 in a regime where γ >> 1 and ω0 >> ωp. This

can be justified numerically and will be included in Appendix B.2. Equation (3.56) in this regime

can be written down as:

a′′ + ω2
0a =

γω2
p

2

a√
1 + a2

. (3.57)

Provided that the condition
ωp
ω0

√
γ
2 << 1 is satisfied, we can utilise theKrylov-Boguliobov averaging

method [76].
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3.3.1.1 Krylov-Bogoliubov Method

The general form of an ODE that can be treated with the Krylov-Bogoliubov method is:

a′′ + ω2
0a = f(a, a′), (3.58)

where |f(a, a′)| <<
∣∣a′′ + ω2

0a
∣∣. Assuming the form of a = α cos(ω0ζ + φ), the first derivative is:

a′ = α′ cos(ω0ζ + φ)− α(ω0 + φ′) sin(ω0ζ + φ), (3.59)

and the second derivative is given by:

a′′ =− 2α′ω0 sin(ω0ζ + φ)− 2ω0φ
′α cos(ω0ζ + φ)

− ω2
0α cos(ω0ζ + φ) +O(α′′, φ′′, α′φ′, φ′2).

(3.60)

At first order (3.58) is given by:

−2ω0(α
′ sin(ψ) + αφ′ cos(ψ)) = f(α cos(ψ),−αω0 sin(ψ)), (3.61)

where ψ = ω0ζ + φ.

To proceed further with this method, we assume that α and φ are slowly varying, and as such we

hold them constant in the terms on the right hand side of (3.61). We then introduce an averaging

operator ⟨·⟩, which is given by:

⟨h(ψ)⟩ = 1

2π

∫ 2π

0

hdψ. (3.62)

Similarly to what is done in the theory of Fourier series, we use the orthogonality of the function

space {sin(nx), cos(mx)} in order to arrive at:

−α′ω0 = ⟨sin(ψ)f(a, a′)⟩,

−αω0φ
′ = ⟨cos(ψ)f(a, a′)⟩,

(3.63)

where α and φ are regarded as constants in the integrand. We can identify f(a, a′) using (3.57)

as:

f(a, a′) ≡ f(a) =
γω2

p

2

a√
1 + a2

. (3.64)

Equations (3.63) are then:

α′ω0 = −
γω2

p

2
⟨ a sin(ψ)√

1 + a2
⟩, (3.65)

and

αω0φ
′ = −

γω2
p

2
⟨a cos(ψ)√

1 + a2
⟩. (3.66)

Firstly, equation (3.65) evaluates to:

α′ = 0, (3.67)
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because a = α cos(ψ) and ⟨cosn(ψ) sin(ψ)⟩ = 0 for n ≥ 1. This result means that α is equal

to a constant (this is self-consistent with the previous assumptions), which we will set to the

dimensionless laser amplitude a0. Equation (3.66) is then given by:

φ′ = −
γω2

p

2πω0
F (a0), (3.68)

where F (a) is given in terms of complete elliptic integrals K and E of the first and second kind 2:

F (a0) =
2

a20
(E(ia0)−K(ia0)) , (3.69)

where:

K(x) =

∫ π
2

0

dθ√
1− x2 sin2(θ)

, (3.70)

and

E(x) =

∫ π
2

0

√
1− x2 sin2(θ) dθ. (3.71)

We can immediately integrate (3.68) to obtain:

φ = −
γω2

p

2πω0
F (a0)ζ + φ0., (3.72)

where φ0 is given by some initial condition. The exact value of φ0 does not matter as it amounts

to a phase shift in the laser pulse.

Returning to our expression for the electromagnetic field potential A we have:

A = aeiθ = a0 cos(Ω0ζ + φ0)e
iω0ξ, (3.73)

where Ω0 = ω0 −
γω2

p

2πω0
F (a0). For illustrative purposes, we rewrite (3.73) as:

A = a0
1

2
(ei(ω0ξ+Ω0ζ+φ0) + ei(ω0ξ−Ω0ζ−φ0)). (3.74)

(3.74) illustrates that our solution can be thought of as a sum of two counter-propagating wave

components.

3.3.2 Axion Resonance Condition

We are interested in deriving a condition for axion resonance that ties together the axion mass

and the laser-plasma parameters. To do this, we shall now restrict our scope of consideration to a

particular physical example. We consider the physical setup of an experiment where a laser pulse

is travelling through a plasma, with an external magnetic field applied. For this calculation, we

will neglect the effect of the magnetic field on the plasma, assuming that its magnitude is such that

2Using a standard relation for the derivative of the complete elliptic integral of the second kind, we can write

F (a0) even more concisely as F (a0) =
2
a0

dE(ia0)
da0
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it doesn’t significantly alter the dynamics of the plasma, yet is sufficient to mediate the process of

axion production.

The complex electromagnetic potential A is given by:

A = Alaser + Bz, (3.75)

where B = −iBx +By and is a constant corresponding to the magnetic field strength in the x− y

plane. For convenience we set Bx = 0 and By = B. We will additionally assume that the form of

Alaser will take the form given in equation (3.73). Looking at the source term in equation (3.39),

we are interested in the quantity:

1

2
igψdA ∧ dĀ =

1

2
igψ

(
i
a20ω0Ω0

γ2
sin(2(Ω0ζ + ϕ0))

− ia0ω0B(cos(χ+) + cos(χ−))

− ia0ω0B(cos(χ+)− cos(χ−))
)
#1,

(3.76)

where we introduced new co-ordinates χ± = ω0ξ ± (Ω0ζ + φ0). We now focus on the creation of

axions due to the terms in (3.76) proportional to B. With that in mind, we can obtain a resonance

condition:

dχ± · dχ± = − 1

γ2
(ω2

0 − Ω2
0) = −m2

ψ. (3.77)

This in turn leads to a relationship between the axion mass and the laser plasma parameters in

the resonant regime:

m2
ψ =

ω2
p

π
F (a0)

(
1

γ
−

ω2
p

4πω2
0

F (a0)

)
. (3.78)

The utility of equation (3.78) is that it allows for an experiment to probe the axion mass range

by tuning the laser-plasma parameters, and searching for resonant axion production. Figure 3.5

illustrates how equation (3.78) can be used to scan the axion mass parameter space.
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Figure 3.5: A graph showing the axion mass range that can be explored using the resonance
condition (3.78). The plasma frequency is set as ωp = 1eV, the laser frequency is set such that

ω2
0 = 0.8

ω2
pγ

2

√
1+a20.

, where a0 is the dimensionless laser amplitude at the front of the pulse.
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Chapter 4

Ponderomotive Axion Production

4.1 Introduction

One of the biggest challenges within the field of laser-plasma physics is dealing with the inherent

separation of time frames within the system. The time scale of the laser oscillations within its pulse

envelope can be much shorter than the timescale of the plasma dynamics. This makes simulations

of the full laser-plasma system incredibly computationally expensive. One way to overcome this

hurdle is via the ponderomotive approximation. The ponderomotive approximation is a ubiquitous

technique in the field of laser-plasma physics. Generally, it involves averaging out the “fast scale”

dynamics (e.g. the short time scale dynamics associated with laser oscillations) of a system, in

order to obtain an effective force. This, in turn, allows for the inclusion of the effects of the laser

oscillations within the laser pulse, without having to do extremely computationally demanding

simulations. In this Chapter, we introduce a heuristic approach to ponderomotive dynamics and

apply it to the problem of axion creation.

4.2 The Ponderomotive Formalism

The ponderomotive approximation formalism is often introduced via heuristic arguments within

the laser-plasma literature. For a more rigorous approach to the relativistic ponderomotive ap-

proximation one may read [77]. In this section, we present our approach to the ponderomotive

formalism.

The key ingredient in the formalism is the introduction of an “averaging map” ⟨−⟩, for which

we will not give an explicit expression, but rather introduce it in relation to how it acts upon

tensors. This averaging map is a linear, tensor order-preserving mapping on the space of tensors.

The averaging map satisfies:

⟨R+ T ⟩ = ⟨R⟩+ ⟨T ⟩,

⟨⟨T ⟩⟩ = ⟨T ⟩,
(4.1)
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where T and R are arbitrary rank tensors. For the case of anti-symmetric rank (0, n) tensors i.e.

differential forms, the map satisfies:

⟨⟨α⟩ ∧ β⟩ = ⟨α⟩ ∧ ⟨β⟩,

⟨ιU ⟨α⟩⟩ = ι⟨U⟩⟨α⟩,

⟨d⟨α⟩⟩ = d⟨α⟩,

(4.2)

where α and β are arbitrary n-forms, U is an arbitrary vector field and ιU is the interior operator

on forms with respect to U . Finally, since we will only be working with the Minkowski metric, the

metric is equal to its average:

⟨g⟩ = g, (4.3)

which leads directly to the condition that the averaging map and the Hodge star operator commute:

⟨⋆α⟩ = ⋆⟨α⟩. (4.4)

For example, suppose we have a tensor T that can be written as: T = T0+T1 cos(τ), where cos(τ)

oscillates rapidly from point to point in space-time in comparison to T0 and T1. The averaging

map acting on T will result in ⟨T ⟩ = T0.

Now let us move on to seeing how one might use this formalism in a calculation. Let C : s→ xµ =

Cµ(s) be the worldline of a point particle with charge q and a rest mass m. The particle worldline

naturally satisfies the covariant Lorentz force equation:

∇ĊĊ =
q

m
ι̃ĊF , (4.5)

where F is the electro-magnetic 2-form, the tilde (i.e. ˜) denotes the metric dual, ∇ is the Levi-

Civita connection and Ċ is given by:

Ċ =
dCµ

ds

∂

∂xµ
, (4.6)

where s is the particle’s proper time. It follows that Ċ · Ċ = −1, where the dot denotes the

metric-induced inner product, i.e. X · Y = g(X,Y ), where X and Y are vectors.

The principle behind the ponderomotive approximation formalism is to replace the worldline C

with an effective “averaged” worldline C. In our approach, we begin by replacing equation (4.5)

with a field system:

∇U Ũ =
q

m
ιUF, (4.7)

U · U = −1, (4.8)
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where U is a vector field for which C is an integral curve. Here we note that for the Levi-Civita

connection, the following holds true:

∇U Ũ = ιUdŨ , (4.9)

which directly leads us to express equation (4.7) as:

ιU (dŨ − q

m
F ) = 0. (4.10)

It follows that we can now write:

dŨ =
q

m
F + Λ, (4.11)

where Λ is a 2-form satisfying ιUΛ = 0 (due to equation (4.10)) and dΛ = 0 (due to the Gauss-

Faraday Law dF = 0). Λ can be viewed as a rotation term that leaves the worldline C unchanged

and thus can be set Λ = 0 without a loss of generality (for more detail see appendix C.1). Equation

(4.11) simply becomes:

dŨ =
q

m
F. (4.12)

With this in mind, we now introduce a split F = ⟨F ⟩ + Ffast, where we have separated the

fast-oscillation averaged electromagnetic 2-form ⟨F ⟩ and the contribution Ffast from the rapid os-

cillations of the electromagnetic field. A visualisation of this procedure is sketched in figure 4.1.

From the previously stated properties of the averaging map, equation (4.12) can be decomposed

as:

d⟨Ũ⟩ = q

m
⟨F ⟩, (4.13)

dŨfast =
q

m
Ffast, (4.14)

where Ufast = U − ⟨U⟩. Equation (4.8) then becomes:

⟨U⟩ · ⟨U⟩+ 2⟨U⟩ · Ufast + Ufast · Ufast = −1. (4.15)

Applying the averaging operator to both sides of equation (4.15) we obtain:

⟨U⟩ · ⟨U⟩+ ⟨Ufast · Ufast⟩ = −1. (4.16)

This motivates the introduction of a re-scaled vector field U of the form:

U =
⟨U⟩√

−⟨U⟩ · ⟨U⟩
. (4.17)

This then results in equation (4.13) becoming:

d

(√
1 + ⟨U2

fast⟩Ũ
)

=
q

m
⟨F ⟩, (4.18)
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Figure 4.1: An illustration visualising the splitting of the averaged motion characterised by the
envelope of the wave and the fast scale behaviour characterised by the rapid oscillations.

where ⟨U2
fast⟩ = ⟨Ufast · Ufast⟩. Applying ιu to both sides and expanding the exterior derivative

term we obtain:

ιUdŨ = −ΠUd ln

(√
1 + ⟨U2

fast⟩
)
+

1√
1 + ⟨U2

fast⟩
q

m
ιU ⟨F ⟩. (4.19)

Equation (4.19) can be evaluated along the integral curve C of the vector field U in order to describe

the averaged motion of a particle:

m∇Ċ
˜̇C = −mΠĊd ln

(√
1 + ⟨U2

fast⟩
)
+

1√
1 + ⟨U2

fast⟩
qιĊ⟨F ⟩, (4.20)

with

g(Ċ, Ċ) = −1, (4.21)

where Ċ is the 4-velocity of the averaged motion of a particle with worldline C. The first term

on the right-hand side of equation (4.20) is known as the ponderomotive force (alternatively the

ponderomotive pressure gradient force due to the resemblance to a pressure gradient term, where

m ln
(√

1 + ⟨U2
fast⟩

)
is the effective pressure). We note that in order to determine the averaged

dynamics of a particle, we need to know the form of the averaged out fast dynamics ⟨U2
fast⟩ and

the averaged dynamics of the electro-magnetic field ⟨F ⟩. So far we have been dealing with the

motion of a single test particle in a background electromagnetic field, but it is very easily extended

to include a background current 3-form J . The averaging map can be applied to the sourced

Maxwell’s equations d ⋆ F = J and dF = 0 to give:

d ⋆ ⟨F ⟩ = ⟨J ⟩, (4.22)

d⟨F ⟩ = 0. (4.23)
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The fast scale dynamics of the background current are given by:

d ⋆ dŨfast =
q

m
Jfast, (4.24)

where Jfast = J −⟨J ⟩. We note that for the case of ambient currents, the motion of a test particle

is in principle specified by ⟨J ⟩ and Jfast.

We note that the formalism discussed so far has been focusing on the motion of a single particle. In

principle, this formalism can be extended to a multi-particle one, where each particle obeys its own

set of equations of the form (4.20) and (4.21). It goes without saying that calculations using such

an approach would quickly become intractable, and the more desirable approach would be to work

with a charged continuum. Shifting from the single-particle description to the continuum case poses

many problems and ambiguities that require further assumptions in order to make computations.

As such, we shift to a perspective that considers an action principle with an application of the

previously defined averaging map.

4.3 Action Approach to the Ponderomotive Force

As stated in the previous section, in this approach we will want to consider the ponderomotive for-

malism from the perspective of an action principle. We first begin by considering an action principle

with just the electro-magnetic field terms, with the averaging map applied to the Lagrangian:

S =

∫
M

1

2
⟨F ∧ ⋆F ⟩ =

∫
M

(
1

2
⟨F ⟩ ∧ ⋆⟨F ⟩+ 1

2
⟨Ffast ∧ ⋆Ffast⟩

)
. (4.25)

In order to compute the averaged dynamics, we need to specify the fast-scale dynamics due to

Ffast. A very simple model for the fast scale dynamics is to prescribe plane wave motion in Ũfast

i.e.

Ũfast =
q

m
Re[αeiW ] (4.26)

where α is a 1-form andW is a 0-form such that eiW is rapidly oscillating relative to the point-wise

dependence of α. When evaluating dŨfast, we drop the terms not containing dW , as the terms

containing dW dominate. Therefore, from equation (4.14), we have:

⟨Ffast ∧ ⋆Ffast⟩ =
1

2
dW ∧ ᾱ ∧ (⋆dW ∧ α), (4.27)

where W = ⟨W ⟩ and α = ⟨α⟩ are assumed. For the rest of this section, we shall drop the averaging

map brackets ⟨−⟩ as they will be implied. The purely electromagnetic part of the averaged action

is then expressed as:

S =

∫
M

(
1

2
F ∧ ⋆F +

1

4
dW ∧ ᾱ ∧ (⋆dW ∧ α)

)
. (4.28)
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4.3.1 The Averaged Dynamics Coupled to Matter

We now want to consider a full action that describes a system of a laser pulse and a charged fluid.

For this purpose, we propose an action of the form:

S =

∫
M

(
λ(n, µ) ⋆ 1 + qA ∧ (j − jext) +

1

2
F ∧ ⋆F +

1

4
dW ∧ ᾱ ∧ ⋆(dW ∧ α)

)
, (4.29)

where F = dA, µ = ᾱ·α
2 and n =

√
j · j. We note that j and jext are number 3-currents, hence

the minus sign in the second term in (4.29). The λ(n, µ) term corresponds to the effective equa-

tion of state for the charged fluid (we can obtain the pressure of the system via the expression

p = n ∂λ∂n − λ(n, µ)), which, alongside the external number current 3-form jext, will be taken as

data. Note that the inclusion of µ in the equation of state is due to the fact that the averaging

over the fast oscillations induces a contribution to the effective pressure in the system.

With an action specified, we can easily generate equations of motion for the system. Firstly,

variations with respect to the map f result in the equation of motion:

ιV d

(
∂λ

∂n
Ṽ

)
= qιV F, (4.30)

where V is the time-like vector field for the velocity of the charged fluid defined by V = 1
n ⋆̃j. A

variation with respect to A naturally leads to the sourced Maxwell equation:

d ⋆ F = q(jext − j), (4.31)

where we remind the reader that these are the averaged fields.

Now, let us consider the variation of the action with respect to W . The variation takes the form:

δWS =

∫
M

1

4
[dδW ∧ ᾱ ∧ ⋆(dW ∧ α) + dW ∧ ᾱ ∧ ⋆(dδW ∧ α)]. (4.32)

Assuming compact support of δW and integrating by parts gives:

δWS = −
∫
M

1

4
δWd[ᾱ ∧ ⋆(dW ∧ α) + α ∧ ⋆(dW ∧ ᾱ)]. (4.33)

In order to satisfy the stationary condition for the action, the equation of motion for W is given

by:

d[ᾱ ∧ ⋆(dW ∧ α) + α ∧ ⋆(dW ∧ ᾱ)] = 0. (4.34)

In turn, the variation with respect to ᾱ takes the form:

δᾱS =

∫
M

(
∂λ

∂µ

1

2
δᾱ ∧ ⋆α− 1

4
δᾱ ∧ dW ∧ ⋆(dW ∧ α)

)
, (4.35)

74



where we have used δᾱµ ⋆ 1 = 1
2δᾱ · α ⋆ 1 = 1

2δᾱ ∧ ⋆α, noting that · denotes the metric inner

product. The stationary condition leads to the equation of motion:

dW ∧ ⋆(dW ∧ α) = 2
∂λ

∂µ
⋆ α. (4.36)

We can use equation (4.36) to immediately yield the condition:

dW ∧ ⋆α = 0, (4.37)

which follows simply from the application of an interior product ια̃ to (4.36):

ια̃(dW ∧ ⋆(dW ∧ α)) = ια̃(2
∂λ

∂µ
⋆ α)

ια̃dW ∧ ⋆(dW ∧ α)− dW ∧ ια̃ ⋆ (dW ∧ α) = 0

(α · dW ) ⋆ (dW ∧ α)− dW ∧ ια̃ια̃ ⋆ dW = 0

(α · dW ) ⋆ (dW ∧ α) = 0,

(4.38)

and the fact that dW ∧ α is not identically zero. The last line of (4.38) only holds in general for

the case of:

dW · α = 0, (4.39)

which we note is equivalent to (4.37), due to the identity α · β = ⋆−1(α ∧ ⋆β), for p-forms α and

β. Using equation (4.39) and the identity:

X̃ ∧ ⋆β = (−1)p−1 ⋆ (ιXβ) (4.40)

for a vector field X and p-form β, we can write equation (4.36) as:

dW · dW = −2
∂λ

∂µ
. (4.41)

We note that the variation of the action from equation (4.29) with respect to α simply leads to

the complex conjugate of equation (4.39), i.e.:

dW · ᾱ = 0, (4.42)

therefore we can write equation (4.34) as:

d(µ ⋆ dW ) = 0. (4.43)

Here we note that equation (4.43) doesn’t depend explicitly on α, rather it depends on µ. This

means that in order to generate the dynamics of V , F andW from the equations of motion, we only

need to prescribe the form of ᾱ · α and, except for (4.39), the actual direction of α is irrelevant.
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Finally, we turn our attention to the function λ(n, µ), which is the equation of state constraint

on the system. In order for our equations of motion to coincide with equation (4.18), we need to

prescribe the form of λ(n, µ) such that ∂λ
∂n =

√
m2 + q2µ (this can be thought of as the electrons

gaining effective mass that has a contribution from the ponderomotive pressure). The motivation

for the prescription of this condition comes from comparing equations (4.18) and (4.30), and noting

that:

⟨U2
fast⟩ = ⟨ q

2

m2

1

4

(
αeiW + ᾱe−iW

)
·
(
αeiW + ᾱe−iW

)
⟩

=
q2

m2

1

4
⟨α · αe2iW + 2α · ᾱ+ ᾱ · ᾱe−2iW ⟩

=
1

2

q2

m2
α · ᾱ,

(4.44)

which in turn leads to:

m
√

1 + ⟨U2
fast⟩ = m

√
1 +

q2

m2

1

2
α · ᾱ =

√
m2 + q2µ. (4.45)

If we consider the case of a cold fluid, we want the pressure, given by p = n ∂λ∂n −λ(n, µ), to vanish;

thus we can write λ down as:

λ = n
√
m2 + q2µ. (4.46)

This, in turn, lets us write (4.41) as:

dW · dW = − q2n√
m2 + q2µ

. (4.47)

We note that for the case of small values of q2µ
m2 and j = jext, we have dW · dW ≈ − q2next

m . It

is clear that the right-hand side of (4.47) is the negative of the square of a plasma frequency.

The time-like unit normalized vector field d̃W√
−dW ·dW is the 4-velocity of a collection of observers

who see the electro-magnetic field Ffast oscillate at the plasma frequency of the electron fluid. A

non-covariant form of this result, with some work from the reader, can be found in [78].

4.4 Ponderomotive Axion Dynamics

We now wish to apply our formalism to an axion-laser-plasma system. Returning to the underlying,

unaveraged, variables:

S =

∫
M

(
mn ⋆ 1 + qA ∧ (j − jext) +

1

2
F ∧ ⋆F +

1

2
dΨ ∧ ⋆dΨ

+
1

2
m2

ΨΨ
2 ⋆ 1− 1

2
gΨΨF ∧ F

)
,

(4.48)

where Ψ is the pseudo-scalar field for the axion, mΨ is the axion mass and gΨ is the axion-photon

coupling constant. We apply the averaging map to the Lagrangian to arrive at the ponderomotive
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dynamics. We split the fast and averaged dynamics of the electro-magnetic and the axion fields:

A = ⟨A⟩+Afast,

Ψ = ⟨Ψ⟩+Ψfast,
(4.49)

where the electro-magnetic 2-form is given by F = ⟨F ⟩+Ffast, which follows directly from F = dA.

We prescribe the fast-scale dynamics of the electro-magnetic and axion fields as:

Ψfast = Re[ψeiW ], (4.50)

Afast = Re[αeiW ]. (4.51)

We now consider the averaging map applied to each term in the Lagrangian in the action from

equation (4.48). Firstly, the EM-Axion coupling term becomes:

⟨ΨF ∧ F ⟩ =⟨(⟨Ψ⟩+ 1

2
ψeiW +

1

2
ψ̄e−iW )

(⟨F ⟩+ 1

2
idW ∧ αeiW − 1

2
idW ∧ ᾱe−iW + . . . )

∧ (⟨F ⟩+ 1

2
idW ∧ αeiW − 1

2
idW ∧ ᾱe−iW + . . . )⟩.

(4.52)

Expanding out the terms we obtain:

⟨ΨF ∧ F ⟩ = ⟨Ψ⟩⟨F ⟩ ∧ ⟨F ⟩ −
(
1

2
iψdW ∧ ᾱ− 1

2
iψ̄dW ∧ α

)
∧ ⟨F ⟩+ . . . , (4.53)

where the . . . denote terms which contain dα, dᾱ and dψ which will be dropped as the magnitudes

of the components of dψ and dα are typically much less than the magnitudes of the components of

dW . We also note that the term due to ⟨Ffast ∧Ffast⟩ is negligible, as it contains products of small

quantities Ffast as well as being of order gΨ in the already small axion photon coupling constant;

thus this term is dropped. The kinetic axion term, in turn, yields:

⟨dΨ ∧ ⋆dΨ⟩ = d⟨Ψ⟩ ∧ ⋆d⟨Ψ⟩+ 1

2
|ψ|2dW ∧ ⋆dW + . . . , (4.54)

and the axion mass term is simply:

⟨1
2
m2

ΨΨ
2 ⋆ 1⟩ = 1

2
m2

Ψ⟨Ψ⟩2 ⋆ 1 + 1

4
m2

Ψ|ψ|
2
⋆ 1. (4.55)

Having derived the averaged terms in the Lagrangian, we are now in a position to propose an

action SP for the ponderomotive dynamics. Dropping the angled brackets for simplicity we have:

SP =

∫
M

(
λ(n, µ) ⋆ 1 + qA ∧ (j − jext) +

1

2
F ∧ ⋆F +

1

4
dW ∧ ᾱ ∧ ⋆(dW ∧ α)

+
1

2
dΨ ∧ ⋆dΨ+

1

4
|ψ|2dW ∧ ⋆dW +

1

2
m2

ΨΨ
2 ⋆ 1 +

1

4
m2

Ψ|ψ|
2
⋆ 1

− 1

2
gΨΨF ∧ F − 1

4
gΨdW ∧ (iψ̄α− iψᾱ) ∧ F

)
,

(4.56)
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where µ = ᾱ·α
2 and λ = n

√
m2 + q2µ, just like in the previous section.

4.4.1 Ponderomotive Equations of Motion

Having introduced an action functional, we are now in a position to derive the equations of motion

for the system.

Variation of the action in equation (4.56), with respect to α, results in:

q2n√
m2 + q2µ

⋆ ᾱ− dW ∧ ⋆(dW ∧ ᾱ) + gΨiψ̄dW ∧ F = 0. (4.57)

The ψ variation leads to:

dW ∧ ⋆dWψ̄ +m2
Ψψ̄ ⋆ 1 + gΨidW ∧ ᾱ ∧ F = 0. (4.58)

The condition seen in equation (4.39) also holds for the current system. This can be arrived at by

taking the wedge product between dW and equation (4.57), thus once again leading to:

dW · ᾱ = 0. (4.59)

Due to this condition and the identity (4.40), we can use (4.57) to express ᾱ as:

ᾱ = − 1

dW · dW + q2n√
m2+q2µ

gΨiψ̄ ⋆ (dW ∧ F ). (4.60)

We now substitute (4.60) into equation (4.58) to obtain:

(dW · dW +m2
Ψ)(dW · dW +

q2n√
m2 + q2µ

) + g2Ψ(dW ∧ F ) · (dW ∧ F ) = 0. (4.61)

The coefficient ψ in the axion’s fast term follows from equation (4.58) and ⋆ ⋆ 1 = −1. We obtain:

ψ = − igΨ ⋆ (dW ∧ α ∧ F )
dW · dW +m2

Ψ

. (4.62)

Turning our attention to the equation of motion that is generated via the variation of the pon-

deromotive action with respect to W , we obtain:

d

(
1

4
ᾱ ∧ ⋆(dW ∧ α) + 1

4
α ∧ ⋆(dW ∧ ᾱ) + 1

2
|ψ|2 ⋆ dW − 1

4
igΨ(ψ̄α− ψᾱ) ∧ F

)
= 0. (4.63)

4.4.2 Conservation Law

We can introduce a vector fieldK = d̃W
||dW || . We will also assume that dW is time-like i.e. dW ·dW <

0. We also denote the metric norm of dW as :

||dW || = Ω, (4.64)
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where Ω can be interpreted as the angular frequency of the fast-scale oscillations of a laser pulse,

for an observer with a 4-velocity K. We can use this to decompose the electro-magnetic 2-form F

with respect to the vector field K:

F = −K̃ ∧ E −#B, (4.65)

where the Hodge map # acts as:

#β = ⋆(K̃ ∧ β) (4.66)

for p-forms β. Also note that ιKB = 0 and ιKE = 0. With that in mind, we can express:

dW ∧ F = ΩK̃ ∧ F

= −ΩK̃ ∧#B.
(4.67)

This then lets us write:

dW ∧ F ∧ ⋆(dW ∧ F ) = Ω2K̃ ∧#B ∧ ⋆(K̃ ∧#B)

= Ω2K̃ ∧#B ∧##B

= Ω2K̃ ∧#B ∧B

= Ω2K̃ ∧ (B ·B#1)

= −Ω2B ·B ⋆ 1.

(4.68)

We note that we used the definition of (4.66) in the second line of (4.68) and used the fact that

##β = β for p-forms β that satisfy ιKβ = 0. Equation (4.68) lets us express equation (4.61) as:

(
Ω2 −m2

Ψ

) (
Ω2 − Ω2

p

)
− g2ΨΩ

2B2 = 0, (4.69)

where Ω2
p =

nq2√
m2+q2µ

is the square of the effective plasma frequency. Equation (4.62) allows us to

arrive at the final expression for the complex amplitude of the fast scale portion of the axion field:

ψ =
−igΨΩα ·B
Ω2 −m2

Ψ

. (4.70)

(4.70) illustrates that a resonance occurs at Ω = mΨ and we shall investigate this case in subsection

4.4.3.
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Figure 4.2: An illustration of the region S.

Having derived an explicit expression for the axion field, we see that (4.63) suggests the intro-

duction of the current 3-form J :

J =

(
1

2
α · ᾱ+

1

2
|ψ|2

)
⋆ dW − 1

4
igΨ

(
ψ̄α− ψᾱ

)
∧ F. (4.71)

Expression (4.71) allows us to restate (4.63) as a local conservation law:

dJ = 0. (4.72)

We now introduce a four-dimensional region of space-time S, which is illustrated in Figure 4.2. We

define S such that :

Σ∗
InitialK̃ = 0,

Σ∗
FinalK̃ = 0.

(4.73)

This choice can be interpreted as choosing S such that ΣInitial and ΣFinal are surfaces of constant

W . Integrating (4.72) over S yields:

∫
S

dJ =

∫
∂S

J = 0, (4.74)

where the second equality comes from Stokes’s theorem. The integral
∫
∂S

J can be split up into:

∫
∂S

J =

∫
ΣInitial

J −
∫
ΣFinal

J +

∫
σ

J = 0. (4.75)
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If we consider the case in which the fields ψ and α vanish on σ, then (4.75) yields the condition:

∫
Σ Initial

J =

∫
ΣFinal

J . (4.76)

We can reduce this condition by decomposing J with respect to K:

J = ρ#1− 1

4
igΨK̃ ∧

(
ψᾱ− ψ̄α

)
∧ E, (4.77)

where:

ρ =
1

2

(
α · ᾱ+ ψψ̄

)
||dW ||+ 1

4
igΨ

(
ψ̄α ·B + ψᾱ ·B

)
=

1

2

(
α · ᾱ+

g2Ψm
2
Ψ|α ·B|2

(Ω2 −m2
Ψ)

2

)
Ω,

(4.78)

where we used equation (4.70) to eliminate ψ. The integral conservation condition (4.76) simply

becomes: ∫
ΣInitial

ρ#1 =

∫
ΣFinal

ρ#1. (4.79)

We shall use equation (4.79) in subsection 4.4.4 to derive a simple formula for the depletion of the

fast-scale laser pulse due to an external magnetic field.

4.4.3 Axion Flux and the Resonant Case

Let us consider a case of an electromagnetic wave travelling in a plasma along the z axis with a

phase velocity of v (note that 0 < v < 1) in the lab frame. We introduce a co-ordinate co-frame

{γdξ, γdζ, dx, dy}, which is adapted to an observer travelling along with the electromagnetic wave

with velocity v and γ is the usual Lorentz factor γ = 1√
1−v2 . We can write dξ and dζ in terms of

Cartesian co-ordinates in the lab frame as:

dζ = dz − vdt,

dξ = vdz − dt.
(4.80)

In order to compute the fast scale axion flux we have to specify the form of dW , α and B. For the

purposes of obtaining estimates on the axion flux one would expect in an experiment, we simply

set all the relevant quantities to be constants. We have already defined the magnitude ||dW || = Ω,

so we only need to define the direction:

dW = Ωγdξ. (4.81)

For the purposes of specifying α, we will assume that the electromagnetic wave is linearly polarised

along x. This allows us to simply write:

α = adx, (4.82)
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where a is the amplitude of the fast scale electromagnetic potential. Finally, we prescribe that the

external magnetic field will be aligned with the polarisation of the electromagnetic wave, i.e.:

B = Bdx. (4.83)

With these assumptions, the magnitude of the fast axion flux is given by:

|ψ| =

∣∣∣∣∣ gψΩBam2
ψ − Ω2

∣∣∣∣∣. (4.84)

Assuming that we are in the resonant regime i.e. q2n√
m2+q2µ

= m2
ψ and the condition |α ·B| = |α||B|,

we can use (4.61) and (4.62) to find the magnitude of ψ:

|ψ| = |⋆(dW ∧ α ∧ F )|
||dW ∧ F ||

. (4.85)

where ||dW∧F || =
√
|⋆−1((dW ∧ F ) ∧ ⋆(dW ∧ F ))|. We can apply all of our previous prescriptions

for dW , α and B to equation (4.85) to simply arrive at:

|ψ| = |a|. (4.86)

Therefore, in the resonant case, the axion production depends only on the magnitude of the electro-

magnetic potential due to the laser.

4.4.4 Ponderomotive Current Analysis

Having derived an expression for a conserved current for the fast-scale fields in (4.79), we can

conduct an analysis of its behaviour. The first issue to consider with this analysis is the alignment

of the fast pulse oscillations and the external magnetic field. This is done by specifying the form

of the metric inner product:

|α ·B|2 = (α ·B)(ᾱ ·B)

= (Re(α ·B))2 + (Im(α ·B))2.
(4.87)

We further note that we can express the real and imaginary parts of the metric inner product:

Re(α ·B) = |Re(α)||B| cos(θR), (4.88)

Im(α ·B) = |Im(α)||B| cos(θI), (4.89)

where θR and θI correspond to the angles between the magnetic field B and the real and imaginary

parts of the pulse. This results in an expression for ρ:

ρ = ρI + ρR, (4.90)
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where:

ρR =
1

2

(
1 +

g2Ψm
2
Ψ cos2(θR)B

2

(Ω2 −m2
Ψ)

2

)
(Re(α))2Ω,

ρI =
1

2

(
1 +

g2Ψm
2
Ψ cos2(θI)B

2

(Ω2 −m2
Ψ)

2

)
(Im(α))2Ω.

(4.91)

Let us now consider a scenario where there are two regions: I and II. In region I, there is no

externally applied magnetic field B, and in the region II, the field is switched on. Assuming linear

polarisation of the laser pulse, we can derive a simple formula for its depletion in an external

magnetic field. Assuming that α ∈ R and is aligned with B, due to the conservation law (4.79) we

have:

αII
αI

=

(
1 +

g2Ψm
2
ΨB

2

(Ω2 −m2
Ψ)

2

)− 1
2

, (4.92)

where αI and αII refer to the value of α in regions I and II respectively.
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Chapter 5

Quantum Axion Production

5.1 Introduction

In this chapter, we shall approach the problem of axion creation while considering quantum effects.

5.2 Perturbative Quantization and Toy Model

Let us begin by considering the action for axion-electrodynamics:

S[A,ψ] =

∫
1

2
F ∧ ⋆F +

1

2
dψ ∧ ⋆dψ +

1

2
m2
ψψ

2 ⋆ 1− 1

2
gψψF ∧ F. (5.1)

We then write down the fields as a sum of the classical field solutions and quantum fluctuations:

A = A0 +A1,

ψ = ψ0 + ψ1,
(5.2)

where the 0 and 1 subscripts denote the classical solutions to the equations of motion and quantum

fluctuations, respectively. The action can then be written as:

S =

∫
1

2
F0 ∧ ⋆F0 + F0 ∧ ⋆F1 +

1

2
F1 ∧ ⋆F1

+
1

2
dψ0 ∧ ⋆dψ0 + dψ0 ∧ ⋆dψ1 +

1

2
dψ1 ∧ ⋆dψ1

+
1

2
m2
ψψ

2
0 ⋆ 1 +m2

ψψ0ψ1 +
1

2
m2
ψψ

2
1 ⋆ 1

− 1

2
gψψ0F0 ∧ F0 −

1

2
gψψ1F0 ∧ F0 − gψψ0F0 ∧ F1

− 1

2
gψψ0F1 ∧ F1 − gψψ1F0 ∧ F1 +O(3rdorder),

(5.3)

where O(3rdorder) denotes terms of order 3 in the fluctuations that we shall disregard, as a conse-

quence of the small value of gψ. We also lose all the boundary terms (due to physical consideration

of the fields vanishing at infinity) and terms that are linear in the classical fields, as they will not
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affect the dynamics due to cancelling with the classical equations of motion. The action can then

be written as:

S = S0 + S2 + S3 +Boundary Terms, (5.4)

where S0 is the action for the fields satisfying the classical equations of motion, S2 is the action

containing all the terms that are of second order in the quantum fluctuations and similarly S3

contains all the terms of the third order in the fluctuations. As mentioned before, we drop the

terms of order 3 and any boundary terms. The term that captures the quantum effects in our

problem is S2, which results in a linear description. For now, let us consider the case where axions

are created from fully quantum effects (meaning that we set ψ0 = 0), and we prescribe the form

of the classical electromagnetic field (thus neglecting its dynamics). The action we shall consider

is then:

S = −
∫

1

2
F ∧ ⋆F +

1

2
dψ ∧ ⋆dψ +

1

2
m2
ψψ

2 ⋆ 1− gψψF ∧ F0, (5.5)

where we have dropped the 1 subscript from the fluctuation fields and added a minus sign in front

for future convenience, as it will ensure that the Hamiltonian describing our system is positive.

We can write (5.5) in a more standard form using vector calculus:

S[A, ϕ, ψ] =

∫
dt

∫
d3x

1

2
(E2 −B2)+

1

2
(∂tψ)

2 − 1

2
(∇ψ)2 − 1

2
m2
ψψ

2 − gψψ(E ·B0 +E0 ·B), (5.6)

with E = −∇ϕ− ∂tA and B = ∇×A, where ϕ is the scalar potential for the electric field and A

is the vector potential for the magnetic field. For our purposes, we shall set E0 = 0 and assume

that B0 is constant, as we are interested in the case of axion conversion in a constant external

magnetic field1. We switch to a Hamiltonian formalism via the use of a Legendre transform:

H =

∫
d3x (P∂tψ +Π · ∂tA)− L, (5.7)

where P = δL
δψ and Π = δL

δA are the canonical momenta of the axion and the electromagnetic field

respectively and the Lagrangian is naturally given by:

L =

∫
d3x

1

2
(E2 −B2) +

1

2
(∂tψ)

2 − 1

2
(∇ψ)2 − 1

2
m2
ψψ

2 − gψψ(E ·B0). (5.8)

We then shall also have to fix the gauge for the electromagnetic potential. We are looking to

eliminate ϕ from the equations of motion, and as such we choose the Coulomb gauge i.e.:

∇ ·A = 0. (5.9)

1In this subsection we are considering axion-photon conversion in an external magnetic field, and as such we set
E0 = 0. In the next section, we will consider a case where both of the classical fields E0 and B0 will contribute
(axion production due to a plasma wave and an external magnetic field), but we will not be considering the quantum
nature of E and B, due to the relevant field parameters being well within the classical regime.
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Using integration by parts and the condition that all of our fields vanish at infinity, we find that

the integral of ∂tA · ∇ϕ vanishes in the Coulomb gauge. We can then write the Lagrangian as:

L =

∫
d3x

1

2
(∇ϕ)2 + 1

2
(∂tA)2 − 1

2
(∇×A)2

+
1

2
(∂tψ)

2 − 1

2
(∇ψ)2 + 1

2
m2
ψψ

2

+ gψψ∇ϕ ·B0 + gψψ∂tA ·B0.

(5.10)

Proceeding with the elimination of ϕ from the action, we consider the equation of motion for ϕ

given by:
δS

δϕ
= 0 → ∇2ϕ = −gψ∇ψ ·B0, (5.11)

where ∇ ·B0 = 0 has been used. Equation (5.11) can be solved formally as:

ϕ = −gψ∇−2(B0 · ∇ψ), (5.12)

where ∇−2 is the formal operator inverse of ∇2 (which is simply the integral operator
∫
d3yG(x, y),

where G(x, y) is the Greens function of ∇2). Singling out the expressions in the Lagrangian that

contain ϕ we have: ∫
d3x

1

2
(∇ϕ)2 + gψψ∇ϕ ·B0. (5.13)

We can integrate (5.13) by parts to obtain:

∫
d3x

(
−1

2
ϕ∇2ϕ− ϕgψ∇ψ ·B0

)
=

∫
1

2
ϕ∇2ϕ,

(5.14)

where we used (5.11) to obtain the second line in (5.14). Finally, using (5.11) and (5.14), the

Lagrangian for our system can be written as:

L =

∫
d3x

1

2
g2ψ∇ψ ·B0∇−2(∇ψ ·B0) +

1

2
(∂tA)2 − 1

2
(∇×A)2

+
1

2
(∂tψ)

2 − 1

2
(∇ψ)2 − 1

2
m2
ψψ

2

+ gψψ∂tA ·B0.

(5.15)

Having arrived at this form of our Lagrangian, we can now perform the Legendre transform to

obtain our Hamiltonian. The canonical momenta are then given:

Π =
δL

δ∂tA
= ∂tA+ gψψB0,

P =
δL

δ∂tψ
= ∂tψ.

(5.16)
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Finally, we can write down the Hamiltonian:

H =

∫
d3x

1

2
P 2 +

1

2
(Π− gψψB0)

2

−1

2
g2ψ∇ψ ·B0∇−2(∇ψ ·B0)

+
1

2
(∇×A)2 +

1

2
(∇ψ)2 + 1

2
m2
ψψ

2.

(5.17)

We then drop the O(g2ψ) terms to obtain the final version of our Hamiltonian:

H =

∫
d3x

1

2
P 2 +

1

2
Π2 +

1

2
(∇×A)2 +

1

2
(∇ψ)2 + 1

2
m2
ψψ

2 − gψψΠ ·B0. (5.18)

5.2.1 Quantization of the Hamiltonian

We can quantise the Hamiltonian given in (5.18) through the usual prescriptions of canonical

quantisation2. We propose a quantum Hamiltonian:

Ĥ =

∫
d3x

1

2
P̂ 2 +

1

2
Π̂2 +

1

2
(∇× Â)2 +

1

2
(∇ψ̂)2 + 1

2
m2
ψψ̂

2 − gψψ̂Π̂ ·B0. (5.19)

The Hamiltonian in equation (5.19) can be split up into a free and an interacting part i.e. Ĥ =

Ĥ0 + ĤI , where:

Ĥ0 =

∫
d3x

1

2
P̂ 2 +

1

2
Π̂2 +

1

2
(∇× Â)2 +

1

2
(∇ψ̂)2 + 1

2
m2
ψψ̂

2, (5.20)

and

ĤI = −
∫
d3x gψψ̂Π̂ ·B0. (5.21)

For mathematical convenience, it is helpful to consider our system to have a finite volume V . We

can expand the free field operators as:

ψ̂(x) =
∑
k

1√
2ωψV

(
b̂ke

ik·x + b̂†ke
−ik·x

)
Â(x) =

∑
k

1√
2ωAV

(
âke

ik·x + â†ke
−ik·x

)
P̂ (x) = −i

∑
k

√
ωψ
2V

(
b̂ke

ik·x − b̂†ke
−ik·x

)
Π̂(x) = −i

∑
k

√
ωψ
2V

(
âke

ik·x − â†ke
−ik·x

)
,

where ωψ =
√

k2 +m2
ψ and ωA = |k|. The commutation relations for the operators are given:

[b̂k, b̂
†
k′ ] = δkk′ , (5.22)

[âk, â
†
k′ ] = δkk′I⊥, (5.23)

2We note that the principle of linearising the system and then quantising it is a standard method within condensed
matter physics, known as Bogoliubov theory. This was first applied to a weakly interacting bose gas, and can be
found in most textbooks on Bose-Einstein condensates such as [79]
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where I⊥ is the projector into the k-orthogonal plane.

We want to note that, for operators f̂(x) and ĝ(x) defined over a region of volume V we have:

∫
d3x f̂(x)ĝ(x) =

1

V

∑
kk′

∫
d3x f̂ke

ik·xĝk′e
ik′·x =

∑
k

f̂kĝ−k (5.24)

where:

f̂(x) =
∑
k

1√
V
f̂ke

ik·x. (5.25)

Using the relation given in (5.24) we can write down the full form of the Hamiltonian as:

Ĥ =
∑
k

ωψ(b̂
†
kb̂k +

1

2
) + ωA(â

†
k · âk + 1)− igψ

1

2

√
ωA
ωψ

(b̂k + b̂†−k)(a
†
k − a−k) ·B0. (5.26)

The Hamiltonian in equation (5.26) is quadratic and can be, in principle, exactly diagonalised.

However, we will restrict ourselves to the subspaces of n and n − 1 photon states and 0 and 1

axion states. This restriction simplifies the problem and allows us to capture the key features of

axion-photon transitions, as will be shown in the subsequent subsection.

5.2.2 Toy Model of Axion Creation

As a first step in the quantum consideration of our problem, let us consider a simplified model,

where we have a two-level axion system. We consider two states, a zero axion state |0ψ⟩ and a

single axion state with momentum q. The zero and one axion subspace lead to the following:

⟨0ψ| Ĥ |0ψ⟩ =
∑
k

1

2
ωψk

+ ωAk
(â†k · âk + 1),

⟨qψ| Ĥ |0ψ⟩ = −igψ
1

2

√
ωAq

ωψq

(â†−q − âq) ·B0,

⟨0ψ| Ĥ |qψ⟩ = −igψ
1

2

√
ωAq

ωψq

(â†q − â−q) ·B0,

⟨qψ| Ĥ |qψ⟩ = ωψq +
∑
k

1

2
ωψk

+ ωAk
(â†k · âk + 1),

(5.27)

where ωψq =
√

q2 +m2
ψ and ωAq = |q|. We introduce the operator:

â =
âq ·B0

B0
, (5.28)

where B0 = |B0|. We now further restrict the scope of our model by only considering the photon

states with momentum q, which allows us to write down the Hamiltonian for our model as:

Ĥ =(−1

2
ωψ + ωAâ

†â) |↓⟩ ⟨↓|+ igψ
1

2

√
ωA
ωψ

âB0 |↓⟩ ⟨↑|

− igψ
1

2

√
ωA
ωψ

â†B0 |↑⟩ ⟨↓|+ (
1

2
ωψ + ωAâ

†â) |↑⟩ ⟨↑| ,
(5.29)
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where ⟨↑| ≡ ⟨qψ|, ⟨↓| = ⟨0ψ| and the quantities ωψ and ωA are implicitly evaluated at k = q.

It should be noted that (5.29) is equivalent to the Jaynes-Cummings model, a ubiquitous model

within quantum optics[75]. Equation (5.29) can be written in matrix form as:

Ĥ = ω0â
†âI+

1

2

 ϵ igâ

−igâ† −ϵ

 , (5.30)

where g = gψ
√

ωA
ωψ
B0, ω0 = ωA, ϵ = ωψ and I is the 2× 2 identity matrix. Let us now consider a

solution to the Schrödinger equation, given the Hamiltonian given in (5.30), of the form:

|ψ⟩ = α(t)

|n− 1⟩

0

+ β(t)

 0

|n⟩

 , (5.31)

where |α|2 + |β|2 = 1. Using a standard result from quantum mechanics, which can be found in

many introductory textbooks such as [80], we can write down an expression for the coefficients α

and β in the following form:α
β

 = e−iω0(n− 1
2 )t

e−iΩ2 t
−i cos

(
θ
2

)
sin
(
θ
2

)
 sin

(
θ

2

)
+ ei

Ω
2 t

i sin( θ2)
cos
(
θ
2

)
 cos

(
θ

2

) , (5.32)

where Ω =
√
(ϵ− ω0)2 + g2n, Ω cos(θ) = ϵ − ω0 and Ω sin(θ) = −g

√
n. Finally, the transition

probability for a transition from the n - photon / 0 - axion state to a n − 1 - photon / 1 - axion

state is given by:

|α|2 =
1

2
(1− cos(Ωt))

g2n

(ϵ− ω0)2 + g2n
. (5.33)

Equation (5.33) is analogous to a calculation we shall perform in section 5 of this chapter. A

comparison between this result and the result from section 5, will be discussed in the aforementioned

section.

5.3 The Axion Driven by a Classical Source

In this section, we will set up the formalism needed to describe a quantum axion field driven by a

classical field. This is relevant as it can be used to model axion creation via plasma interactions,

without having to invoke quantum effects at the level of the plasma system. The Lagrangian

describing the Axion-Electromagnetic system is given by:

L =
1

2
∂µψ∂

µψ − 1

2
m2
ψψ

2 − 1

4
FµνF

µν − 1

4
gψψFµν F̃

µν , (5.34)

where ψ is the axion pseudo-scalar field, Fµν is the electromagnetic tensor, F̃µν is the dual elec-

tromagnetic tensor and gψ is the axion-photon coupling constant. The equation of motion for the
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axion field is given by:

∂2t ψ −∇2ψ +m2
ψψ = −gψE ·B. (5.35)

For the purposes of the calculation, we treat the electromagnetic field as a classical source for the

axions, and only give the quantum treatment to the axion particles.

5.3.1 Classical Field Solution

Before we move on to the quantum theory of the problem, it would be instructive to consider the

classical field theory first. A comprehensive treatment of the classical case can be found in [66],

but here we will state some of the basic results. We start by considering a sourced Klein-Gordon

equation:

∂2t ψ −∇2ψ +m2
ψψ = ρ, (5.36)

where ρ ≡ ρ(x, t) is a source term. Let us assume the initial conditions of the form:

ψ(x, 0) = 0,

∂tψ(x, 0) = 0.
(5.37)

Assuming that the field is “trapped” in a finite volume i.e. has compact support on a subset of

R3, we can expand the axion field as a Fourier series:

ψ(x, t) =
∑
k

1√
V
ψk(t)e

ik·x. (5.38)

This then lets us obtain a differential equation for the individual modes of the axion field:

d2

dt2
ψk + ω2

kψk = ρk, (5.39)

which is solved by:

ψk(t) =

∫ t

ti

dt
′ sin

(
ωk(t− t

′
)
)

ωk
ρk(t

′
), (5.40)

where ωk =
√
m2
ψ + k2. We are interested in the momentum flux of an axion field coming out of

the plasma. To calculate this, we first consider the stress energy tensor for the free axion field,

which is given by:

Tµν = ∂µψ∂νψ − 1

2
(ηλω∂λψ∂ωψ −m2

ψψ
2)ηµν . (5.41)

Now the momentum flux is given by T0j , which evaluates to:

T0j = ∂tψ∂jψ. (5.42)
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The total momentum is then given by:

P =

∫
d3x∂tψ∇ψ. (5.43)

We can use the solution to the classical equation of motion from (5.40) to directly compute the

total momentum:

P =
∑
k

k
| ρ∗k(ωk) |2

2ωk
, (5.44)

where the second tilde denotes a Fourier transform in time, i.e.:

fk(ωk) =

∫
dtfk(t)e

−iωkt. (5.45)

5.3.2 Coherent States of the Axion Field

5.3.2.1 The Hamiltonian

If we consider the EM-axion action, coupled to a generic source term ρ, we can construct a Hamil-

tonian for the system:

Ĥ =

∫
d3x :

1

2
Π̂2 +

1

2
(∇ψ̂)2 + 1

2
m2
ψψ̂

2 + ψ̂ρ :, (5.46)

where :: denotes normal ordering and Π̂ is the canonical momentum operator. The operators

ψ̂(x, t) and Π̂(x, t) satisfy the equal time canonical commutation relations:

[ψ̂(x), ψ̂(x′)] = 0,

[Π̂(x), Π̂(x′)] = 0

[ψ̂(x), Π̂(x′)] = iδ(x− x′)

(5.47)

If we once again assume a finite volume then we can expand ψ̂ and Π̂ as a Fourier series:

ψ̂(x, t) =
∑
k

1√
2ωkV

(b̂k(t)e
ik·x + b̂†k(t)e

−ik·x),

Π̂(x, t) = −i
∑
k

√
ωk

2V
(b̂k(t)e

ik·x − b̂†k(t)e
−ik·x).

(5.48)

The Hamiltonian is then expressed by:

Ĥ =
∑
k

(
ωkb̂

†
kb̂k − 1√

2ωk
(b̂k + b̂†−k)ρ

∗
k

)
, (5.49)

where ρ(x, t) =
∑

k
1√
V
ρke

ik·x. Since ρ is real, we have ρ∗k = ρ−k, it then follows that the

Hamiltonian can be re-written as:

Ĥ =
∑
k

(
ωkb̂

†
kb̂k − 1√

2ωk
(b̂kρ

∗
k + b̂†kρk)

)
. (5.50)
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5.3.2.2 Coherent State Path Integral

For the purposes of our calculation, we can consider the case of a quantum mechanical system of

a forced harmonic oscillator. Within the field of quantum optics, it is a well-known result that a

classical source driving the vacuum state of a harmonic oscillator generates a coherent state (this

can be found in most quantum optics textbooks, such as [75]). In anticipation of this, we will

use the coherent state path integral formalism in order to calculate the form of the coherent state

generated by the classical source. This is equivalent to doing the calculation for a single mode of

a quantum field theory; therefore, generalising this result will be quite straightforward.

Now, let us consider the transition function 0 → n for a time interval [ti, tf ] for a system of

a forced harmonic oscillator. It is well established that coherent states can be used to generate

number states, and as such, we can write transition function as:

⟨n, tf |0, ti⟩ =
1√
n!

(
∂

∂z∗f

)n 〈
z∗f , tf

∣∣0, ti〉|z∗f=0, (5.51)

where
〈
z∗f , t

∣∣∣zi, t〉 is the amplitude for the transition from the coherent state with index zi at ti to

a coherent state with index zf at tf . This then gives us motivation to evaluate the coherent state

path integral for our system

〈
z∗f , tf

∣∣0, ti〉 = ∫ DzDz∗eiS[z,z
∗]. (5.52)

For our case of the forced harmonic oscillator the transition function simply evaluates to:

〈
z∗f , tf

∣∣0, ti〉 = eiS[zc,z
∗
c ], (5.53)

This result can be found in [81]. The action is of the form:

iS[z, z∗] = z∗z(tf )−
∫ tf

ti

dt(z∗ż + iH(z∗, z)), (5.54)

with the Hamiltonian of the form:

H = ωz∗z − z∗ϱ√
2ω

− zϱ∗√
2ω
. (5.55)

In order to evaluate the classical action S[zc, z
∗
c ] we need to solve the Euler-Lagrange equations to

find zc , z
∗
c . The E-L equations yield a pair of ODE’s:

żc + iωzc −
iϱ√
2ω

= 0,

ż∗c − iωz∗c +
iϱ∗√
2ω

= 0,

(5.56)
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The boundary conditions for (5.56) are simply zc(ti) = zi and zc(tf ) = zf . Equations (5.56), when

solved, allow us to write down the classical action explicitly:

iS[zc, z
∗
c ] = z∗fzie

−iω(tf−ti)

+ i

∫ tf

ti

dt
1√
2ω

(z∗fϱ(t)e
−iω(tf−t) + ziϱ

∗(t)e−iω(t−ti))

− 1

2ω

∫ tf

ti

dt

∫ t

ti

dt
′
ϱ(t

′
)ϱ∗(t)e−iω(t−t

′
).

(5.57)

With the classical action written out in explicit form, we can now evaluate the transition function:

⟨n, tf |0, ti⟩ =
1√
n!

(
i√
2ω

∫ tf

ti

dte−iω(tf−t)ϱ(t)

)n
exp

(
−1

2

| ϱ∗(ω) |2

2ω

)
exp (iϕ)

=
1√
n!

(
i√
2ω
e−iωtf ϱ∗(ω)∗

)n
exp

(
−1

2

| ϱ∗(ω) |2

2ω

)
exp (iϕ) ,

(5.58)

where ϕ is a global phase factor, and is thus neglected. Additionally we note that: ϱ∗(ω)∗ =∫ tf
ti
dteiωtϱ∗.

We can use this result to find the coherent state that will be generated via the classical source, as

mentioned in the beginning of the subsection. To do this, we note that we can expand the vacuum

state at time ti in the basis of |n, tf ⟩. This is expressed as:

|0, ti⟩ =
∑
n

|n, tf ⟩ ⟨n, tf |0, ti⟩

= exp (iϕ) exp

(
−1

2

| ϱ∗(ω) |2

2ω

)
exp

(
i√
2ω
e−iωtf ϱ∗(ω)∗â†(tf )

)
|0, tf ⟩ .

(5.59)

Applying an annihilation operator at time tf to (5.59) gives:

â(tf ) |0, ti⟩ =
i√
2ω
e−iωtf ϱ∗(ω)∗ |0, ti⟩ , (5.60)

which shows us that the time-evolved state is a coherent state. Coherent states are the eigenstates

of the annihilation operator.

With the result for the quantum mechanical case obtained, we can “translate” our result into

the language of an axion field driven by a classical source. We identify the driving term ϱ as:

ϱ = ρk(t) =
1√
V

∫
d3xρ(x, t)e−ik·x. (5.61)

This means that :

ϱ∗ = ρ∗k(ω)

| ϱ∗ | =| ρ∗k(ω) | .
(5.62)

93



Therefore the action of the annihilation operator âk(tf ) on the initial axion vacuum state |0, ti⟩

leads to a coherent state of the form:

âk(tf ) |0, ti⟩ =
i√
2ω
e−iωtf ρ∗k(ω)

∗ |0, ti⟩ . (5.63)

5.4 The ALP Flux

The physical quantity that we are interested in calculating is the particle flux of the ALPs. Per-

forming such a calculation will allow us to compare our estimates to those of solar axions, thus

showing the viability of a terrestrial laboratory approach. The stress-energy tensor contains in-

formation about the energy and momentum flux of the axion field. To consider the stress energy

tensor in a Quantum Field Theory context, we need to impose some form of ordering on the op-

erator. The simplest choice for it is to use normal ordering i.e. : T̂µν :. We can define a “total

energy” tensor Eµν for the purposes of trying to analyse the total energy-momentum of the ALP

field we could expect in a laser-plasma experiment. We define Eµν to be:

Eµν = lim
T→∞

1

T

∫ t+T

t

dt′
∫
d3x ⟨0, ti| : T̂µν(x, t′) : |0, ti⟩ , (5.64)

where t > tf with tf being the time at which ρ vanishes. The time integral is introduced to

remove oscillatory terms in the space-space components. A more thorough explanation is included

in Appendix D.3. We can evaluate (5.64) for our set up, to give us:

Eµν =
∑
k

kµkν

ωk

1

2ωk
| ρ∗k(ωk) |2, (5.65)

where kµ = (ωk,k) and ωk =
√
m2 + k2.

5.4.1 The Infinite Volume Limit and Moments

In order to evaluate Eµν , we will have to take the limit as V → ∞, so that we can evaluate an

integral rather than an infinite series. We invoke relation (5.24):

∫
d3xf̂(x)ĝ(x) =

∑
k

f̂kĝ−k =
∑
k

1

V

√
V f̂k

√
V ĝ−k. (5.66)

The transition to the infinite volume (V → ∞) then involves us making the substitutions:

∑
k

1

V
→
∫
d̄3k, (5.67)

√
V f̂k → f̂(k), (5.68)
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where d̄nk = dnk
(2π)n . Equation (5.65) in the infinite volume limit then becomes:

Eµν =

∫
d̄3k

kµkν

ωk

1

2ωk
| ρ∗(ωk) |2, (5.69)

which is one of our main results. Since the frequency term ωk only depends on the magnitude of

the vector k = |k|, we will denote it as ωk from now on. We quickly note that we can now express

the term inside the modulus bracket as:

ρ∗(ωk,k) =

∫ tf

ti

dt

∫
d3xρ(x, t)ei(k·x−ωkt). (5.70)

The structure of Eµν can be interpreted as a second-order moment integral, which motivates us to

define a more general object, an nth order moment integral.

Eµ...ν =

∫
d̄3k

kµ . . . kν

ωk

1

2ωk

∣∣∣∣∫ tf

ti

dt

∫
d3xρ(x, t)ei(k·x−ωkt)

∣∣∣∣2 (5.71)

Eµν can be interpreted as containing information about the energy and momentum of the axion

field and the first order moment Eµ can then be interpreted as a particle number 4-vector.

5.4.2 Computation

In order to compute Eµν and Eµ we will need to specify the form our source will take. We will

prescribe the form of the source term from the analysis of plasma waves.

5.4.2.1 Plasma Wave Dynamics

For the purposes of this calculation, we will be following the prescriptions given in [82] and [66].

In the description of the plasma, we neglect the dynamics of the ions and assume that the electron

fluid is pressureless (cold plasma approximation). The electron fluid satisfies:

∂tp+ (u · ∇)p = −e(E+ u×B), (5.72)

where e is the elementary charge, u is the electron fluid 3-velocity and p is the electron fluid

3-momentum given by:

p =
meu√
1− u2

, (5.73)

where me is the electron mass. We also note that the charge density of the ions ρ0 is uniform in

this treatment; thus we can write down the expressions for charge density ρ and electron currents

J:

ρ = ρ0 + ρe, J = ρeu, (5.74)

where ρe is the charge density of the plasma electrons. The focus of this specific calculation lies

within the analysis of a nonlinear electron density wave in a magnetized plasma driving the creation
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of ALPs. In this setup, the density wave travels parallel to an externally applied uniform magnetic

field with field strength B. In order to make this calculation tractable we will restrict ourselves to

the case where all of the fields depend on only one co-ordinate ζ = z − vt, where ζ is the phase

of the plasma wave and v is the associated phase velocity satisfying 0 < v < 1. Furthermore we

express the electron fluid momentum p(ζ) in terms in terms of a dimensionless function ξ(ζ) as:

p = meγ(vξ −
√
ξ2 − 1) (5.75)

where γ is the Lorentz factor γ = 1√
1−v2 . We note that meξ corresponds to the energy of the

plasma electrons in the inertial frame which is moving with velocity v along the z coordinate. This

naturally introduces the condition ξ > 1. Given p(ξ), we can use (5.73) to express the z component

of the electron fluid 3-velocity uz = u as:

u =
vξ −

√
ξ2 − 1

ξ − v
√
ξ2 − 1

. (5.76)

Using (5.76) we can write (5.72) as:

E = −me

γe
ξ′. (5.77)

We now introduce an expression for the EM-Plasma-Axion system:

[
1

2
E2 − 1

2
(
ψ′2

γ2
−m2

ψψ
2)− meγρ0

e
(v
√
ξ2 − 1− ξ)

]′

= 0, (5.78)

which is the first integral of the system which we will derive in Appendix D.1. In order to obtain

a relation for the non-linear plasma wave, we neglect the effect of the axions by ignoring O(g2ψ)

terms. Using the fact that B is constant and equations (5.77) and (5.78), we obtain an ODE that

captures the dynamics of the non-linear plasma wave:

dξ

dζ
=
√

2γ3ωp

√
v
√
ξ2 − 1− ξ + 1. (5.79)

Equation (5.79) is formally solved in terms of the phase ζ(ξ) by:

ζ(ξ) =
1√

2γ3ωp

∫ ξ

1

1

(v
√
χ2 − 1− χ+ 1)

1
2

dχ, (5.80)

where we have chosen ζ(1) = 0. In the ultra-relativistic limit (see Appendix D.2), i.e. γ ≫ 1, we

find the solution:

ζ(ξ) =

√
γ

2

4

ωp

(
1−

√
1− ξ

2γ2

)
. (5.81)

From inspecting equation (5.79) at the turning point dξ
dζ = 0, we can immediately find that the

minimum and maximum values of ξ are ξmin = 1 and ξmax = γ2(1 + v2) respectively. Using this,
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we can find the period length l:

l = 2ζ|γ
2(1+v2)

1 ≈ 4
√
2γ

ωp
. (5.82)

We can now invert equation (5.81) to arrive at an expression for ξ in terms of ζ:

ξ(ζ) ≈ 8γ2
ζ

l
(1− ζ

l
) for 0 ≤ ζ ≤ l. (5.83)

Later on in this calculation, we will want to use a Fourier series representation of ξ(ζ). In antici-

pation of that task we can find the coefficients of the Fourier expansions as such:

ξn =
1

l

∫ l

0

e−i
2πnζ
l ξ(ζ)dζ ≈


4γ2

3 for n = 0

− 4γ2

π2n2 for n ̸= 0

. (5.84)

5.4.2.2 Structure of the Source function

Finally, we shall prescribe the form of the source function. To capture the scenario of axions leaving

the plasma, we introduce a temporal cut-off in the source via a step function:

ρ(x, t) = Θ(−t)gψE ·B, (5.85)

where Θ(−t) is the step function. In the previous section, we have specified that B is constant and

applied along the z direction, i.e. B = Bẑ. We also have determined in the previous section that

one can express E = E(ζ)ẑ, which leads to an expression for the source term (visualised in Figure

5.1) of the form:

ρ(x, t) = gψBΘ(−t)E(ζ). (5.86)

Figure 5.1: An illustration of the plot of equation.
(5.86)
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5.4.2.3 Calculating T 00.

We need to evaluate the integral:

∫ tf

ti

dt

∫
d3xρ(x, t)ei(k·x−ωkt), (5.87)

where we now also want to take ti → −∞ and tf → ∞. This then allows us to write the integral

as: ∫
d4xρ(x, t)ei(k·x−ωkt). (5.88)

Applying all the results from the previous section, we can use (5.85) and the result:

∫
dtΘ(t)e−iωt = πδ(ω) +

i

ω
, (5.89)

to write (5.88) as:

gψB

∫
d4xΘ(−t)E(ζ)ei(k·x−ωkt) = gψBδ̄

(2)(k⊥)E(k∥)
∗ i

ωk − k∥v
, (5.90)

where δ̄n = (2π)nδn. We used the fact that ωk − k∥v > 0, which eliminates the delta function

term in the Fourier transform of Θ(t). We now take the modulus square of the right-hand side of

equation (5.90):

∣∣∣∣gψBδ̄(2)(k⊥)E(k∥)
∗ i

ωk − k∥v

∣∣∣∣2 = g2ψB
2Aδ̄(2)(k⊥) | E(k∥) |2

1

(ωk − k∥v)2
, (5.91)

where we setA = δ̄(2)(0) as a formally infinite area factor which follows from δ̄(2)(k⊥) =
∫
dxdy e−ik⊥·x⊥ ,

with x⊥ = (x, y). We will circumvent the issue of this type of infinity by “dividing out” any infinite

factors that come from the fact that we are working with an infinite volume. The expression for

Eµν is then given as:

Eµν =

∫
d̄3k

kµkν

ωk

1

2ωk
Ag2ψB

2δ̄(2)(k⊥) | E(k∥) |2
1

(ωk − k∥v)2
, (5.92)

where E(k∥) =
∫ +∞
−∞ dζE(ζ)e−ik∥ζ . We now look at individual components of Eµν in order to look

at the total energy and the momentum flux of the axion field.

Firstly, we look at the E00 component. The integral will have the form of:

E00 =
1

2
A

∫
d̄3kg2ψB

2δ̄(2)(k⊥) | E(k∥) |2
1

(ωk − k∥v)2
, (5.93)

We can immediately integrate out the delta function to give us:

E00 =
1

2
Ag2ψB

2

∫
d̄k∥ | E(k∥) |2

1

(ωk − k∥v)2
, (5.94)
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where ωk =
√
k2∥ +m2

ψ because the delta function sets k⊥ = 0. To progress with our calculation,

we need to express E(ζ) using Fourier series :

E(ζ) =
∑
n

Ene
i 2πnl ζ , (5.95)

where l denotes the period of the saw-tooth wave. With that in mind E(k∥) is expressed:

E(k∥) =

∫
dζE(ζ)e−ikζ

=

∫
dζ
∑
n

Ene
i 2πnl ζe−ikζ

=
∑
n

En

∫
dζei(

2πn
l −k∥)ζ

=
∑
n

Enδ̄

(
k∥ −

2πn

l

)
.

(5.96)

Taking the modulus squared of E(k∥) gives:

| E(k∥) |2=
∑
n

∑
n′

EnE
∗
n′ δ̄

(
k∥ −

2πn

l

)
δ̄

(
k∥ −

2πn
′

l

)
. (5.97)

Hence, ∫
d̄k∥

∣∣E(k∥)
∣∣2

(ωk − k∥v)2
=
∑
n

∑
n′

EnE
∗
n′

(ωk − k∥v)2
δ̄

(
2πn

′

l
− 2πn

l

)
. (5.98)

The delta function has imposed the relation k∥ = 2πn
l . Substituting (5.98) into equation (5.94) we

arrive at an expression for E00 :

E00 = V
1

2
g2ψB

2
∑
n

| En |2 1

(ωk − k∥v)2
, (5.99)

because δ̄( 2π(n
′−n)
l ) = Lδnn′ where L = V

A = δ̄(0) is the (formally infinite) length of the domain.

We recall that equation (5.77) gives an expression for the electric field in terms of ξ i.e. E = −me
γe ξ

′.

With that in mind, we can relate En with ξn:

En = −2iπnme

γel
ξn. (5.100)

We can combine equations (5.99), (5.84) and (5.82) to express E00 as:

E00 = V
∑
n ̸=0

g2ψB
2m2

eω
2
pγ

e2π2

1

n2
1(√

ω2
pπ

2

8γ n2 +m2
ψ − v

ωpπ√
8γ
n

)2 . (5.101)

Considering that the term outside of the summation in the expression for E00 is formally infinite,

we want to introduce a finite object. We do this by dividing out the formally infinite volume term
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(a) T 00 vs v (b) T 00 vs mψ

Figure 5.2: Plots of the T 00 component against the wake velocity and axion mass. The relevant
physical parameters are gψ = 0.66 × 10−19eV, B = 7 × 103eV2 (B ≈ 35T ), ωp = 4.12 × 10−2eV.
The choice mψ = 10−4eV is made in plot (a), whilst v = 0.995 is made in plot (b).

V to arrive at an expression for the stress-energy tensor:

T µν =
Eµν

V
. (5.102)

We can now write down a cleaned-up expression:

T 00 = C
∑
n ̸=0

1

n2
(√

A2n2 +m2
ψ − vAn

)2 , (5.103)

where C =
g2ψB

2m2
eω

2
pγ

e2π2 and A =
ωpπ√
8γ
. This can be further split up into:

T 00 = C

∞∑
n=1

(an + bn) , (5.104)

where:

an =
1

n2
(√

A2n2 +m2
ψ − vAn

)2 ,
bn =

1

n2
(√

A2n2 +m2
ψ + vAn

)2 . (5.105)

Equation (5.104) is plotted in Figure 5.2. Finally, we note that one can easily find a general

expression for an nth order tensor as:

T µ...ν =
Eµ...ν

V
=

1

2
g2ψB

2
∑
n

| En |2 k
µ . . . kν

ω2
k

1

(ωk − k∥v)2
. (5.106)

5.4.2.4 Calculating T 03

Having calculated E00, which can be thought of as corresponding to the energy density of the axion

field, we now want to focus on the momentum density in the propagation direction i.e. E03. It is
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given by:

E03 = V
1

2
g2ψB

2
∑
n

| En |2
k∥

ωk

1

(ωk − k∥v)2
, (5.107)

this can be re-written as:

E03 = V g2ψB
2
∑
n

| En |2
k2∥v

(ω2
k − k2∥v

2)2
. (5.108)

which then allows to compute T 03:

T 03 = A
∑
n ̸=0

1

(n2 + s2)2
, (5.109)

where A =
16g2ψB

2m2
evγ

6

π4e2 and s =
mψ2

√
2γ

3
2

πωp
. We can express the infinite sum in (5.109) as:

∑
n ̸=0

1

(n2 + s2)2
=
π(π coth2(πs)s− πs+ coth(πs))

2s3
− 1

s4
, (5.110)

which in turn leads to the final expression:

T 03 =
16g2ψB

2m2
evγ

6

π4e2

(
π(π coth2(πs)s− πs+ coth(πs))

2s3
− 1

s4

)
. (5.111)

(a) T 03 vs v (b) T 03 vs mψ

Figure 5.3: Plots of the T 03 component against the wake velocity and axion mass. The relevant
physical parameters are gψ = 0.66 × 10−19eV, B = 7 × 103eV2 (B ≈ 35T ), ωp = 4.12 × 10−2eV.
The choice mψ = 10−4eV is made in plot (a), whilst v = 0.995 is made in plot (b).

Equation (5.111) is plotted in Figure 5.3. This result is analogous to the axion momentum flux

calculated in [59].

5.4.2.5 Calculating T 0

The E0 is given by:

E0 =

∫
d̄3k

k0

2ωk

1

ωk

∣∣∣∣∫ d4xρ(x, t)ei(k·x−ωt)
∣∣∣∣2. (5.112)
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This leads to a number density of the form:

T 0 = g2ψB
2
∑
n

|En|2
1

2ωk(ωk − k∥v)2
(5.113)

which in the ultra-relativistic limit is given by:

T 0 =
8

3
2 g2ψB

2γ
5
2m2

e

e2π5ωp

∑
n ̸=0

1

n2
1

(n2 + s2)
3
2 − 2nv(n2 + s2) + n2v2(n2 + s2)

1
2

, (5.114)

where s =
2
√
2γmψ
πωp

. We can split up the terms inside the sum to give:

T 0 =
8

3
2 g2ψB

2γ
5
2m2

e

e2π5ωp

∞∑
n=1

(αn + βn) . (5.115)

Where:

αn =
1

n2
1

(n2 + s2)
3
2 − 2nv(n2 + s2) + n2v2(n2 + s2)

1
2

,

βn =
1

n2
1

(n2 + s2)
3
2 + 2nv(n2 + s2) + n2v2(n2 + s2)

1
2

.

(5.116)

(a) T 0 vs v (b) T 0 vs mψ

Figure 5.4: Plots of the T 0 component against the wake velocity and axion mass. The relevant
physical parameters are gψ = 0.66 × 10−19eV, B = 7 × 103eV2 (B ≈ 35T ), ωp = 4.12 × 10−2eV.
The choice mψ = 10−4eV is made in plot (a), whilst v = 0.995 is made in plot (b).

Equation (5.114) is plotted in Figure 5.4. In the zero mass limit T 0 becomes:

T 0 =
2

11
2 γ

13
2 g2ψB

2m2
e(1 + v2)

e2π5ωp
ζ(5), (5.117)

where ζ(5) is the Riemann zeta function evaluated at 5. In the ultra-relativistic limit this gives:

T 0 =
(2γ)

13
2 g2ψB

2m2
e

e2π5ωp
ζ(5). (5.118)
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5.4.2.6 Calculating T 3

The E3 term is given by:

E3 =

∫
d̄3k

k3

2ω2
k

∣∣∣∣∫ d4xρ(x, t)ei(k·x−ωkt)
∣∣∣∣2. (5.119)

Invoking the same procedure as in the previous calculation, we factor out the formally infinite

factor A and we obtain:

E3 =
1

2
Ag2ψB

2

∫
d̄k∥

k∥

ω2
k

1

(ωk − k∥v)2
∣∣E(k∥)

∣∣2. (5.120)

Expanding the source term with a Fourier series yields a result that can be written as:

E3 = V g2ψB
2
∑
n

|En|2
k2∥v

ωk(ω2
k − k2∥v

2)2
. (5.121)

Expressing (5.121) as a component of T µ:

T 3 = g2ψB
2
∑
n

|En|2
k2∥v

ωk(ω2
k − k2∥v

2)2
. (5.122)

We can approximate (5.122) in the ultra-relativistic limit to be:

T 3 =
(2γ)

13
2 g2ψB

2m2
ev

e2π5ωp

∞∑
n=1

1

(n2 +
8γm2

ψ

ω2
pπ

2 )
1
2 (n2 +

8γ3m2
ψ

ω2
pπ

2 )2
. (5.123)

(a) T 3 vs v (b) T 3 vs mψ

Figure 5.5: Plots of the T 3 component against the wake velocity and axion mass. The relevant
physical parameters are gψ = 0.66 × 10−19eV, B = 7 × 103eV2 (B ≈ 35T ), ωp = 4.12 × 10−2eV.
The choice mψ = 10−4eV is made in plot (a), whilst v = 0.995 is made in plot (b).

Equation (5.123) is plotted in Figure 5.5. In the limit mψ → 0 we have:

T 3 =
(2γ)

13
2 g2ψB

2m2
ev

e2π5ωp
ζ(5), (5.124)

where ζ(5) ≈ 1 is the Riemann zeta function evaluated at z = 5. We note that this is exactly the
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same expression as T 0
mψ→0 in the ultra-relativistic limit.

5.4.3 Classical vs Quantum Results

In this section, we will compare the classical axion flux results that were obtained in [66] and

the quantum results we obtained in the previous sections. We can immediately identify that the

momentum flux of the axion field Pψ obtained in [66] is equal to expression T 03. This, of course,

makes a great deal of sense, as the quantum axion field is driven by a classical source (in our case,

a plasma wave) which leaves it in a coherent state. In order to obtain a number flux density Nψ

from the classical expression, the axion energy in [66] was divided out i.e.:

Nψ =
Pψ
γmψ

. (5.125)

In our formalism, we identify the axion number flux density with T 3. In Figure 5.6 we see a

comparison of the classical and quantum results. We note that we have switched to the use of

metric units for ease of comparison to another result. We see that the quantum calculation shows

that the axion number flux actually grows faster with the speed of the wake than the classical

theory would predict; additionally, we do not run into the problem of the divergence in the zero

axion mass limit for the number flux, which arises in the classical calculation.

(a) T 3 vs v (b) T 3 vs mψ

Figure 5.6: Plots of the classical axion number flux density Nψ and T 3 against the wake velocity
and axion mass. The relevant physical parameters are gψ = 0.66 × 10−19eV, B = 7 × 103eV2

(B ≈ 35T ), ωp = 4.12× 10−2eV and v = 0.99995 for the constant v plot and mψ = 10−4eV.

This work improves on the previous classical result obtained in [66] as our result has a finite

value in the zero mass limit for the axion. The expected axion flux of solar axions, considering an

axion mass in the range mψ ≲ 10−4eVc−2, the axion photon coupling of gψ = 0.66× 10−19eV and

some representative physical parameters for a LWFA set up being B = 7 × 103eV2 (B ≈ 35T ),

ωp = 4.12 × 10−2eV, and v = 0.99995, is estimated to be NSolarψ ≈ 1.73 × 1011cm−2s−1 [83],

while our estimates predict a number flux of NLWFAψ ≈ 6.74 × 1018cm−2s−1 (NLWFAmψ=0 ≈

1.7× 1020cm−2s−1 in the massless case). Naturally, the real flux density would be smaller due to

3D effects in the plasma, but we can estimate that the flux density would be roughly 25% of our

predicted value in the 3D bubble regime [59]. Additionally, the flux density will also decrease as

the axions leave the barrier due to beam dispersion.
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5.5 Axion-Photon Oscillations

In this section, we discuss the case of axions transitioning into photons in a strong magnetic field,

as motivated by the LSWT experiment discussed in subsection 1.3.3.

5.5.1 Photon Conversion

In this calculation, we want to focus on the region of the LSTW experiment outside the barrier.

The interaction Hamiltonian for the axion-photon system is given by:

ĤI = −igψ
1

2

∫
d̄3k

√
ωAk

ωψk

(
b̂k + b̂†−k

)(
â†k − â−k

)
· B, (5.126)

where ωAk
is the photon frequency given by ωAk

= |k|, ωψk
is the axion frequency given by

ωψk
=
√
k2 +m2

ψ, B denotes a strong external magnetic field which corresponds to B2 in figure

1.2 and gψ denotes the axion photon coupling. Additionally, we also used an underline as an

alternative vector notation for the operators âk, â
†
k and the magnetic field B. We are interested in

the case of the transition amplitude:

Pψ→γ =
∣∣⟨nψ, 1|z, 0⟩I ∣∣2, (5.127)

where the bra state is a number state of 1 photon with momentum k and nψ axions with momentum

k and the ket state is a coherent state of axions with parameter z and a photon vacuum state.

The transition amplitude is given by:

⟨nψ, 1|z, 0⟩I = ⟨nψ, 1| T̂ [e−i
∫ tf
ti

dtĤI ] |z, 0⟩ . (5.128)

To first order in the Dyson series, this can be expanded as:

⟨nψ, 1|
(
1− i

∫ tf

ti

ĤIdt

)
|z, 0⟩ . (5.129)

We now note that the non-interacting Hamiltonian is given by:

Ĥ0 =

∫
d̄3k

(
ωψk

b̂†kb̂k + ωAk
â†k · âk

)
. (5.130)

We can use the Heisenberg equation to find the time dependence of the creation and annihilation

operators i.e.:

i
˙̂
bk =

[
b̂k, Ĥ0

]
= ωψk

b̂k. (5.131)

This can be immediately solved by:

b̂k(t) = e−iωψk
(t−ti)b̂k(ti). (5.132)
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With this in mind, we can begin the calculation. The first perturbative term, corresponding to no

interaction is simply:

⟨nψ, 1|z, 0⟩ = 0. (5.133)

The first-order interaction term is:

P1 = −i ⟨nψ, 1|
∫ tf

ti

ĤIdt |z, 0⟩ . (5.134)

To evaluate this term, we want to find an explicit expression for
∫ tf
ti
ĤIdt. We choose B such that:

âk · B = â1kB, (5.135)

where 1 denotes the polarisation of the photon field. For simplicity, we drop the 1 in the subscript

â1k ≡ âk. With that in mind, we have:

∫ tf

ti

ĤIdt = −1

2
igψB

∫
d̄3k

√
ωAk

ωψk

(
−
b̂kâ

†
ke

−i(ωψk
−ωAk

)(tf−ti)

i(ωψk
− ωAk

)
+

b̂kâ
†
k

i(ωψk
− ωAk

)

+
b̂kâ−ke

−i(ωψk
+ωA−k

)(tf−ti)

i(ωψk
+ ωA−k

)
− b̂kâ−k

i(ωψk
+ ωA−k

)

+
b̂†−kâ

†
ke
i(ωψ−k

+ωAk
)(tf−ti)

i(ωψ−k
+ ωAk

)
−

b̂†−kâ
†
k

i(ωψ−k
+ ωAk

)

−
b̂†−kâ−ke

i(ωψ−k
−ωA−k

)(tf−ti)

i(ωψ−k
− ωA−k

)
+

b̂†−kâ−k

i(ωψ−k
− ωA−k

)

)
,

(5.136)

where the operators are evaluated at ti in the result of the integral of t. The previous result

simplifies to:

∫ tf

ti

ĤIdt = −1

2
igψB

∫
d̄3k

√
ωAk

ωψk

(
1− e−i(ωψk

−ωAk
)(tf−ti)

i(ωψk
− ωAk

)
b̂kâ

†
k

− 1− e−i(ωψk
+ωA−k

)(tf−ti)

i(ωψk
+ ωA−k

)
b̂kâ−k

− 1− ei(ωψ−k
+ωAk

)(tf−ti)

i(ωψ−k
+ ωAk

)
b̂†−kâ

†
k

+
1− ei(ωψ−k

−ωA−k
)(tf−ti)

i(ωψ−k
− ωA−k

)
b̂†−kâ−k).

(5.137)

We note that the only term in (5.137) that does not vanish is the term containing the operator

b̂kâ
†
k. The transition amplitude is thus:

Pψ→γ(k) =

∣∣∣∣∣12gψB
√
ωAk

ωψk

1− e−i(ωψk
−ωAk

)(tf−ti)

(ωψk
− ωAk

)

z
nψ+1
k√

(nψ + 1)!
e−

1
2

∫
d̄3k′|zk′ |2

∣∣∣∣∣
2

. (5.138)
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Which can be simplified to:

Pψ→γ(k) =
1

2
g2ψB

2ωAk

ωψk

1− cos ((ωψ − ωA)T )

(ωψ − ωA)2
|zk|2(nψ+1)

(nψ + 1)!
e−

∫
d̄3k′|zk′ |2 , (5.139)

where T = tf − ti. The coherent state index z comes from the driving term for the axion field. We

have derived the form of it in equation (5.63) and the absolute value of it is given by :

|zk| =
1√
2ωψk

∣∣∣∣∫ +∞

−∞
d4xρ(x, t)eik·x−iωt

∣∣∣∣. (5.140)

In order to compute the axion-photon transition rate we have to introduce more cut-offs to the

source, as the form of the source that was used in the previous section would lead to badly divergent

solutions, due to the infinity arising through the source having an infinite cross section. We can

propose a source function ρ(x, t) of the form:

ρ(x, t) = gψBΘ(−t)e−
(x2+y2)

Λ2 E(ζ), (5.141)

where Λ sets the scale of the source’s cross-section. The absolute value of the coherent state index

is then given:

|zk| = gψB

√
Λ2π2

2ωψk

e−
Λ2k2

⊥
4

ωψk
− k∥v

∣∣E(k∥)
∣∣. (5.142)

5.5.1.1 Comparison with the Toy Model

As mentioned at the end of Section 5.2, one can draw an analogy between the result in equation

(5.33) and the result in equation (5.139). The transition rate for a single photon transitioning into

an axion under the influence of an external magnetic field in the toy model is given by:

PToy
ψ→γ =

1

2
g2ψB

2ωAk

ωψk

1− cos
(√

(ωψk
− ωAk

)2 + g2ψB
2 ωAk

ωψk
T
)

(ωψk
− ωAk

)2 + g2ψB
2 ωAk

ωψk

. (5.143)

If we neglect the O(g2ψ) terms within the expression, we obtain:

PToy
ψ→γ =

1

2
g2ψB

2ωAk

ωψk

1− cos ((ωψk
− ωAk

)T )

(ωψk
− ωAk

)2
. (5.144)

This then leads us to see that the coherent state case simply modifies the previous result:

Pγ→ψ = PToy
ψ→γ

|zk|2(nψ+1)

(nψ + 1)!
e−

∫
d̄3k′|zk′ |2 . (5.145)

As a final point of note, we can see that the |zk| term in equation (5.145) should suppress transitions

to high nψ number states, due to its dependence on gψ.
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Chapter 6

Conclusions

The purpose of this PhD project was the exploration of axion production in laser-plasma systems

from a theoretical perspective.

6.1 Overview of the Results

In Chapter 2, we formulated a scalar field approach to the theory of plasma waves. Subsequently,

through the use of simplifying assumptions, we were able to describe 1+1-dimensional laser-plasma

systems in a novel way. This then allowed us to derive a condition for the dimensionless laser

amplitude required to drive the maximum plasma wakefield only in terms of the wake velocity.

Chapter 3 focused on the case of axion production from a classical field perspective. We derived

some basic results of axion-photon conversion from the classical equations in terms of two-level

and three-level systems. Furthermore, we derived a condition for axion resonance inside a laser

travelling through a plasma, which relates a given axion mass to the laser-plasma parameters

needed to achieve said resonance.

In Chapter 4, we looked at the case of axion production through the lens of the ponderomotive

approach. We introduced a heuristic approach to ponderomotive dynamics, from which we were

able to propose an effective action for the system. Having an action allowed us to derive equations

of motion, a conservation law (which then allowed for a formula for laser depletion due to axions)

and a dispersion relation.

Finally, in Chapter 5, we looked at the case of axion production with considerations for the quantum

nature of the axion. In this chapter, we first investigated a toy model of a photon-axion system

coupled to an external magnetic field and calculated a transition rate from a given n-photon state

to a 1-axion/n − 1-photon state. Following this, we considered the case of a quantum axion field

driven by a plasma wave with an applied external magnetic field. This investigation led to a

definition of an nth order tensor which contained information about the axion field produced from

the plasma wave and the magnetic field. The case of interest was the first order, which gave us

an expression for the number flux of the axion field produced in the plasma. We then were able
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to compare the axion flux predicted from previous calculations and found that our result didn’t

diverge in the zero axion mass limit, unlike the results of the approach in [59]. It was also found

that the expected axion flux from our calculations could, at the very least, match the hypothetical

flux of solar axions. This result is a good motivation for the use of laser-plasma experiments in

axion searches. The final thing that was investigated was the axion-photon transition rate in a

hypothetical LSTW experiment, given a plasma source. A transition function was found, and

a comparison with the toy model showed that it simply modified the toy model result with a

multiplicative factor.

6.2 Final Thoughts and Further Exploration

This project explored a variety of approaches to the theory of axion production in laser-plasma

experiments. It should be said that this exploration is by no means exhaustive, as there is a wide

range of effects and considerations that were left out of our approach. As such we shall state some

theoretical points our analysis was missing:

• More Classical Considerations: Throughout this thesis our treatment of the laser-plasma

system has involved a lot of assumptions to facilitate analytical calculations. In order to

probe the behaviour of the system with more detail, intensive computational approaches

would be needed. In this way, one could account for the effect of the plasma on the laser

pulse and the dynamics of the axions within the plasma. Such an attempt was featured in

[84]. Another aspect that could certainly be expanded upon is the low dimensionality of the

systems studied. One can extrapolate the behaviour of a low-dimensional LWFA to what one

could expect in the full 3D case via scaling arguments [85], but in order to approach accurate

results full multidimensional simulations are required.

• More Quantum Considerations: Due to the classical nature of a lot of plasma systems, it is

not unreasonable to treat the problem of axion production mostly from a classical perspective.

Despite this, axions are inherently quantum, and in a strong field QED regime, it is certainly

possible that quantum effects of the laser and the plasma could potentially play a role in

axion production (some work on how quantum effects modify the problem can for example

be seen in [86], [87]).

To conclude, we hope that the work of this thesis will serve as motivation for further exploration

of laser-plasma based searches for axions.
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Appendix A

Theory of Relativistic Plasma

Waves

A.1 The Lie Derivative And The Levi-Civita Connection

Introduce an operator AX defined as:

AX ≡ ∇X − LX , (A.1)

where X is an arbitrary vector field, ∇X is the Levi-Civita connection and LX is the Lie derivative,

both with respect to X. Immediately we see that for an arbitrary 0-form f , i.e. scalar field, AX

always satisfies:

AXf = 0. (A.2)

For the case of a vector field Y , AX acts upon it as:

AXY = ∇YX, (A.3)

where we have used the torsion-free property of the Levi-Civita connection (∇XY −∇YX−[X,Y ] =

0). Now let us consider the case of the operator AX acting on the inner product of vectors Y and

Z induced by the metric i.e. :

AX [g(Y,Z)] = 0

= AXg(Y,Z) + g(AXY,Z) + g(Y,AXZ)

= −LXg(Y, Z) + g(∇YX,Z) + g(Y,∇ZX),

(A.4)

Since the Levi-Civita connection is metric compatible, i.e. (∇Xg = 0), it follows:

LXg(Y,Z) = g(∇YX,Z) + g(Y,∇ZX). (A.5)
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We now want to consider the case for which Y = X = V , where V is a time-like normalized vector

field. Equation (A.5) then becomes:

LV g(V,Z) = g(∇V V,Z) + g(V,∇ZV ). (A.6)

We note that g(V,∇ZV ) = 0 because V is normalised and ∇Zg(V, V ) = 0 using metric compati-

bility. Equation (A.6) then leads to:

LV g(V,Z) = g(∇V V,Z). (A.7)

Finally, we can re-write (A.7) as:

LV Ṽ (Z) = ∇V Ṽ (Z), (A.8)

for an arbitrary vector field Z, and hence, LV Ṽ = ∇V Ṽ . The application of Cartan’s identity,

LV Ṽ = ιV dṼ + dιV Ṽ , and the fact g(V, V ) is constant gives:

ιV dṼ = ∇V Ṽ . (A.9)

A.2 Interior operator relation

Suppose we have a 1-form β, where β is an element of the span of dt and dz. We also require that:

β(V∥) ̸= 0. (A.10)

If we consider the equation:

ιV∥dṼ∥ =
q

m
ιV∥(E#∥1), (A.11)

we can then apply the wedge product between it and β.

β ∧ ιV∥(dṼ∥ −
q

m
E#∥1) = 0 (A.12)

Let us denote dṼ∥ − q
mE#∥1 = Γ. Using the interior operator properties we get:

β ∧ ιV∥Γ = −ιV∥(β ∧ Γ) + ιV∥β ∧ Γ

= β(V∥)Γ

= 0.

(A.13)

We used the fact that ιV∥(β ∧ Γ) is identically zero because the wedge product of Γ and β results

in a 3-form on a 2-dimensional subspace. Finally, (A.13) and (A.10) yield Γ = 0, which can be

written:

dṼ∥ =
q

m
E#∥1. (A.14)
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A.3 The Double Hodge Operator Property

In this appendix, we will review a basic property of the Hodge star operator (for a beginner-

friendly introduction to the broader formalism of geometrical methods in physics, see [88]). A

pseudo-Riemannian metric on an n-dimensional manifold can always be written in terms of an

orthonormal frame eµ as:

g = ηµνe
µ ⊗ eν , (A.15)

where ηµν are components of a matrix η and are given by:

ηµν =


+1 for µ = ν ∈ 1, . . . , k

−1 for µ = ν ∈ k + 1, . . . , n

0 for µ ̸= ν.

(A.16)

Now let α ∈ ΓΛpM, then the following holds true:

⋆ ⋆ α = (det η)(−1)p(n−p)α. (A.17)

This relation can be readily proved via induction. Firstly, we consider the action of the double

Hodge star on a 0-form. Without the loss of generality, we can consider the action of ⋆ ⋆ 1:

⋆ ⋆ 1 = ⋆(e1 ∧ · · · ∧ en)

= ιẽn . . . ιẽ1 ⋆ 1

= g−1(e1, e1) . . . g−1(en, en)

= det η,

(A.18)

since ⋆ ⋆ α = α ⋆ ⋆1 when α ∈ ΓΛ0M. Before we proceed and prove the statement for forms of all

orders, let us prove an identity that shall be useful in the proof:

⋆ιV α = (−1)p+1Ṽ ∧ ⋆α, (A.19)

where V is some vector field (i.e. V ∈ ΓTM). We begin to prove this identity by considering the

following expression:

ιX(Ṽ ∧ ⋆α) = ιX Ṽ ⋆ α− Ṽ ∧ ιX ⋆ α, (A.20)

where X ∈ ΓTM. However, it is also true that:

ιX Ṽ ⋆ α = ⋆(ιX Ṽ α)

= ⋆(ιV X̃α)

= ⋆(ιV (X̃ ∧ α) + X̃ ∧ ιV α),

(A.21)
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and

Ṽ ∧ ιX ⋆ α = Ṽ ∧ ⋆(α ∧ X̃). (A.22)

By combining (A.21) and (A.22), equation (A.20) can then be written as:

ιX(Ṽ ∧ ⋆α) = ⋆(ιV (X̃ ∧ α) + X̃ ∧ ιV α)− Ṽ ∧ ⋆(α ∧ X̃). (A.23)

Furthermore:

⋆(X̃ ∧ ιV α) = (−1)p−1 ⋆ (ιV α ∧ X̃) = (−1)p−1ιX ⋆ ιV α. (A.24)

This then leads us to the expression:

ιX(Ṽ ∧ ⋆α− (−1)p−1 ⋆ ιV α) = (−1)p ⋆ ιV (α ∧ X̃)− Ṽ ∧ ⋆(α ∧ X̃). (A.25)

Hence, if (A.19) is true (which can also be written as Ṽ ∧ ⋆α = (−1)p−1 ⋆ ιV α), then the following

also holds true:

Ṽ ∧ ⋆(α ∧ X̃) = (−1)p ⋆ ιV (α ∧ X̃). (A.26)

For the case of α ∈ ΓΛ1M we have:

Ṽ ∧ ⋆α = Ṽ ∧ ια̃ ⋆ 1

= −ια̃(Ṽ ∧ ⋆1) + ια̃Ṽ ⋆ 1

= ιV α ⋆ 1

= (−1)0 ⋆ ιV α.

(A.27)

If one takes X̃ = dxi (such that α ∧ dxi ̸= 0) in (A.26), then invoking linearity and (A.27), one

can see that higher order forms can be built up, thus proving the identity inductively.

Finally, we prove the double Hodge star property by first considering α ∈ ΓΛ1M. We can then

use (A.19) to write:

⋆ ⋆ α = ⋆ια̃ ⋆ 1

= (−1)n+1α ∧ ⋆ ⋆ 1

= (−1)n+1 det(η)α

= (−1)n−1 det(η)α.

(A.28)

This shows that the statement holds for the case of a 1-form. We now want to show that this

holds for a p-form in order to prove the statement inductively. Without loss of generality, we now

consider a p-form given by α ∧ β, where α is a (p− 1)-form and β = dxi (such that α ∧ dxi ̸= 0).

113



The double action of the Hodge Star operator then gives:

⋆ ⋆ (α ∧ β) = ⋆ιβ̃ ⋆ α

= (−1)n−p+2β ∧ ⋆ ⋆ α

= (−1)n−p+2(−1)(p−1)(n−p+1) det(η)β ∧ α

= (−1)p(n−p+1)+1 det(η)β ∧ α

= (−1)p(n−p) det(η)α ∧ β.

(A.29)

Having shown this for the case of β = dxp, one can easily see that this holds for the general case

β = β1dx
1 + · · ·+ βpdx

p via linearity. This then completes the proof.
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Appendix B

Classical Axion Production

B.1 Schrödinger Equation for a Two-Level System and Rabi

Oscillations

For ease of reading, we will include a step-by-step derivation of the Rabi frequency. Consider a

Schrödinger equation of the form:

iΦ̇ =

 α βeiωt

β∗e−iωt −α

Φ, (B.1)

where α and ω are real. Now introduce:

Φ =

eiω2 t 0

0 e−i
ω
2 t

ψ. (B.2)

The left-hand side of the Schrödinger equation then becomes:

iΦ̇ =

−ω
2 e
iω2 t 0

0 ω
2 e

−iω2 t

ψ +

eiω2 t 0

0 e−i
ω
2 t

 iψ̇ (B.3)

and the right-hand side: α βeiωt

β∗e−iωt −α

Φ =

 α βeiωt

β∗e−iωt −α

eiω2 t 0

0 e−i
ω
2 t

ψ. (B.4)
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The Schrödinger equation can be re-written as:

iψ̇ = −

e−iω2 t 0

0 ei
ω
2 t

−ω
2 e
iω2 t 0

0 ω
2 e

−iω2 t

ψ
+

e−iω2 t 0

0 ei
ω
2 t

 α βeiωt

β∗e−iωt −α

eiω2 t 0

0 e−i
ω
2 t

ψ
=

ω2 0

0 −ω
2

ψ +

 α β

β∗ −α

ψ.
(B.5)

From this, it follows that there are exact solutions to equation (B.5) of the form:

iψ̇ = Ωψ, (B.6)

where Ω is an eigenvalue of the matrix:ω2 + α β

β∗ −(ω2 + α)

 . (B.7)

Ω is given by:

Ω = ±
√
(
ω

2
+ α)2 + |β|2. (B.8)

We find the eigenvectors corresponding to the two Ω naturally satisfy the relation:ω2 + α− Ω β

β∗ −(ω2 + α)− Ω

a
b

 = 0. (B.9)

Thus we obtain a relation between a and b:

b = −
ω
2 + α− Ω

β
a. (B.10)

ψ is then given by:

ψ = e−iΩt

 1

−
ω
2 +α−Ω

β

 â+ eiΩt

 1

−
ω
2 +α+Ω

β

 b̂. (B.11)

Choosing the initial condition:

ψ(t = 0) =

1
0

 , (B.12)

leads to the following solutions for â and b̂:

â =
1

2Ω
(Ω +

ω

2
+ α),

b̂ =
1

2Ω
(Ω− ω

2
− α).

(B.13)
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Hence if we introduce ψ =

ψ↑

ψ↓

, then we find that:

ψ↓ = − i

Ω
β∗ sin(Ωt), (B.14)

and the magnitude squared |ψ↓|2 is:

|ψ↓|2 =
1

Ω2
|β|2 sin2(Ωt). (B.15)

With this, we will note a few points:

• Note that the maximum conversion occurs at ω
2 + α = 0, i.e. Ω = |β|.

• The state Φ is normalized, so ΦTΦ = 1, i.e. |ψ↑|2 + |ψ↓|2 = 1.

• ψ↑ is given by ψ↑ = cos(Ωt)− 1
Ω (

ω
2 + α)i sin(Ωt).

• ϕ =

Φ↑

Φ↓

, where Φ↑ = ei
ω
2 tψ↑ and Φ↓ = e−i

ω
2 tψ↓.

B.2 Justification of ψ′ ≈ −1
2

Let us consider the 1 + 1 D coupled system of the electron fluid and the laser pulse:

(√
1 + a2

1 + ψ
′ − v2ψ

′√
(1 + ψ′)2 − v2ψ′2

)′

= ω2
pψ, (B.16)

a′′ + ω2
0a = γ2ω2

p

√
(1 + ψ′)2 − v2ψ′2

√
1 + a2

a. (B.17)

We can solve this system numerically given some initial conditions. We assume that for the electron

fluid ψ(10) = 0 and ψ′(10) = 0, which corresponds to the electrons at the front of the laser pulse

being stationary, while the initial conditions for the laser pulse are a(10) = 1 and a′(10) = 0.

Additionally, we want to make the choice ω2
0 = 0.8

ω2
pγ

2

√
1+a(10)2

for the frequency. This is motivated

by considering the plot of the term: f = γ2ω2
p

√
(1+ψ′)2−v2ψ′2

√
1+a2

1
ω2

0
.
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Figure B.1: A plot illustrating the transition from exponential to oscillatory behaviour of the laser
pulse a. The value of a was normalised for readability.

We can see from Figure B.1 that whenever f > 1 we see exponential behaviour in the laser

pulse, and oscillatory behaviour for f < 1. Thus our choice of ω2
0 ensures we see a shock at the

front of the pulse and remain in tandem with our previous analysis.

Figure B.2 shows the plots of the numerical solutions to equations (B.16) and (B.17). We are

interested in the value of ψ′(ζ) in the region far from the initial shock at ζ = 10. In the far-

from-shock region we see that ψ′(ζ) is oscillating around the value of ≈ −0.495, thus it is not

unreasonable to assume ψ′(ζ) ≈ − 1
2 in a high γ regime.

Figure B.2: A plot showing the numerical solutions of equations (B.16) and (B.17). The numerical
parameters given for the calculation are γ ≈ 100, a(10) = 1, ωp = 1 and ω0 ≈ 23.
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Appendix C

Ponderomotive Axion Production

C.1 The Interpretation of Λ and the Fermi-Walker Connec-

tion

In order to see how we can interpret the 2-form Λ, we will consider an object called the Fermi-

Walker connection. Let us consider a worldline C : τ → xµ = Cµ(τ). The Fermi Walker connection

can be written as:

∇F
Ċ
Z = ∇ĊZ − Ã(Z)Ċ + ˜̇C(Z)A, (C.1)

where Z is a vector field, ∇Ċ is the Levi-Civita connection and A = ∇ĊĊ. We note that the Fermi-

Walker connection is metric compatible i.e. ∇F
Ċ
g = 0. Additionally, we can introduce projection

operators ΠĊ and PĊ such that:

ΠĊZ = Z + ˜̇C(Z)Ċ,
PĊZ = − ˜̇C(Z)Ċ, (C.2)

which we can use to simply write:

∇F
Ċ
Z = ΠĊ∇ĊΠĊZ + PĊ∇ĊPĊZ. (C.3)

With this in mind, we can easily generalize the Fermi-Walker connection to be taken with respect

to a vector field V i.e. ∇F
V Z = ΠV∇VΠV Z + PV∇V PV Z. We now introduce a co-ordinate frame

{V, Y1, Y2, Y3} ( i.e. [V, Yj ] = 0 for j = 1, 2, 3).
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Figure C.1: An illustration of the co-ordinate frame.

Furthermore, we also want to denote the V orthogonal projection of Yj as:

Yj = ΠV Yj . (C.4)

Now, we can write the action of the Fermi-Walker connection on Yj as a linear combination:

∇F
V Yj = Qj

kYk. (C.5)

The rank 2 tensor Q is key in interpreting Λ, as its anti-symmetric part corresponds to particle

rotation around an observer. We can express Q as:

Q = QjkE
j ⊗ Ek (C.6)

where {Ej}j=1,2,3 is a set of co-vectors such that:

Ej(Yk) = δjk

Ej(V ) = 0.
(C.7)

With this in mind, we can write:

Q = Ej ⊗Qj
kỸk

= Ej ⊗∇F
V Ỹj .

(C.8)

Using the fact that the Levi-Civita connection is torsionless, the relation Ej(V ) = 0 and assuming
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that V is unit normalized time-like vector field g(V, V ) = −1, we can write:

∇F
V Yj = ∇YjV. (C.9)

Finally, we can express Q as:

Q = Ej ⊗ ∇̃YjV

= ΠV

(
−Ṽ ⊗∇V Ṽ + Ej ⊗∇Yj Ṽ

)
= ΠV (e

a ⊗∇Xa Ṽ ),

(C.10)

where {Xa} is any frame and {ea} is its natural co-frame. We can split Q into its symmetric and

anti-symmetric parts:

Q = QS +QAS

= ΠV
1

2
(ea ⊗∇Xa Ṽ −∇Xa Ṽ ⊗ ea) + ΠV

1

2
(ea ⊗∇Xa Ṽ +∇Xa Ṽ ⊗ ea)

=
1

2
ΠV LVΠV g +ΠV dṼ .

(C.11)

As mentioned before, the anti-symmetric part of Q corresponds to the rotation of the particles

relative to a family of observers travelling along the integral curves of V . If we consider the

pre-contracted version of the Lorentz equation in (4.12) and take the U orthogonal projection:

ΠUdŨ = ΠU
q

m
F. (C.12)

The addition of a 2-form Λ as seen in equation (4.11) will only result in an additional rotation of

the particles in the system around the worldline C and thus can be chosen as zero, as an initial

condition.
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Appendix D

Quantum Axion Production

D.1 First Integral

In this appendix the method of deriving equation (5.78) will be discussed. In reference [82] this is

done via the calculation of the stress-energy 3-form, however, a more simple approach is to simply

derive it from the combined Laser-Plasma-Axion equations of motion. The equations describing

the electromagnetic field in our system are the macroscopic Maxwell equations:

∇ ·D = ρ, ∇×H = J+ ∂tD,

∇ ·B = 0, ∇×E = −∂tB,
(D.1)

where D is the displacement field and H is the magnetising field. In the presence of axions, these

fields are given by:

D = E− gψψB, (D.2)

H = B+ gψψE. (D.3)

If we apply the assumption that B is constant along z i.e. B = (0, 0, B) and that all other fields

are of the form f = (0, 0, f(ζ)), the Maxwell equations for D become:

D′ = ρ0 + ρe, D′ =
u

v
ρe. (D.4)

The macroscopic constitutive relation for D becomes:

D = E − gψψB. (D.5)

The axion field equation (5.35) becomes:

1

γ2
ψ′′ −m2

ψψ = gψEB. (D.6)
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Combining equations (D.5), (D.4),(D.6), (5.76) and (5.77) we obtain:

EE
′
− ψ

′
ψ

′′

γ2
+m2

ψψ
′
ψ − meγρ0

e

(
vξ√
ξ2 − 1

− 1

)
ξ
′
= 0. (D.7)

From inspection, we can see that (D.7) can be written as:

[
1

2
E2 − 1

2
(
ψ′2

γ2
−m2

ψψ
2)− meγρ0

e
(v
√
ξ2 − 1− ξ)

]′

= 0. (D.8)

D.2 Ultra-Relativistic Approximation

In this appendix, we will discuss the ultra-relativistic approximation of the expression:

ζ(ξ) =
1√

2γ3ωp

∫ ξ

1

1

(v
√
χ2 − 1− χ+ 1)

1
2

dχ. (D.9)

This method was included in the references [82] and [66]. We begin by introducing the variables

ξ̄ = ξ
γ2 and χ̄ = χ

γ2 . The integral can then be written as:

ζ(ξ̄) =
1√
2γωp

∫ ξ̄

γ−2

[√(
1− 1

γ2

)(
χ̄2 − 1

γ4

)
− χ̄+

1

γ2

]− 1
2

dχ̄. (D.10)

If we consider the integrand in (D.10) and neglect terms of order O( 1
γ4 ) and higher we arrive at

an approximation: √(
1− 1

γ2

)(
χ̄2 − 1

γ4

)
− χ̄+

1

γ2
≈ 1

γ2

(
1− χ̄

2

)
, (D.11)

where also have used
√
1− 1

γ2 ≈ 1− 1
2γ2 . With this in mind, the integral is approximately:

ζ(ξ̄) ≈
√
γ

2

1

ωp

∫ ξ̄

0

1√
1− χ̄

2

dχ̄

=

√
γ

2

4

ωp

(
1−

√
1− ξ

2γ2

)
.

(D.12)

D.3 The Need For Time Averaging in Eµν

In this appendix, we shall discuss the need to introduce time averaging in equation (5.64). We

begin by re-stating the form of the stress-energy tensor for a free axion field:

Tµν = ∂µψ∂νψ − 1

2
(ηλω∂λψ∂ωψ −m2

ψψ
2)ηµν . (D.13)

If we identify that the canonical momentum of the axion field is given by:

P = ∂tψ, (D.14)
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then we can write down the different components of the stress-energy tensor:

T 00 =
1

2
(P 2 + (∇ψ)2 +m2

ψψ
2),

T 0a = P∂aψ,

T ab = ∂aψ∂bψ − 1

2
(P 2 − (∇ψ)2 −m2

ψψ
2)ηab,

(D.15)

where a and b denote the spatial indices i.e. a, b ∈ {1, 2, 3} and ∂a = ηaν∂ν . Quantizing the free

axion field, we can write down the axion field operator and its corresponding canonical momentum

field operator as:

ψ̂(x, t) =
∑
k

1√
2ωkV

(
b̂k(t)e

ik·x + b̂†k(t)e
−ik·x

)
,

P̂ (x, t) = −i
∑
k

√
ωk

2V

(
b̂k(t)e

ik·x − b̂†k(t)e
−ik·x

)
.

(D.16)

We note that in the case of the free field, the time evolution of the ladder operators is given by

b̂k(t) = b̂k(ti)e
−iωk(t−ti) and b̂†k(t) = b̂†k(ti)e

iωk(t−ti). In the case of the driven axion field, the

time-dependent operator can be found from the Heisenberg equation of motion and is given by:

b̂k(t) = b̂k(ti)e
−iωk(t−ti) +

i√
2ωk

e−iωkt

∫ t

ti

ρke
iωkt

′
dt′, (D.17)

and the conjugate:

b̂†k(t) = b̂†k(ti)e
iωk(t−ti) − i√

2ωk
eiωkt

∫ t

ti

ρ∗ke
−iωkt

′
dt′. (D.18)

With that in mind, we can write down the expressions for the integral of the components of the

quantised stress-energy tensor:

∫
d3x : T̂ 00 :=

∑
k

ωk

2
b̂†kb̂k. (D.19)

The integral of the matrix element of the 00 component of the normal ordered stress-energy tensor

is then given by: ∫
d3x ⟨0, ti| : T̂ 00(tf ,x) : |0, ti⟩ =

∑
k

1

2
| ρ∗k(ωk) |2 . (D.20)

Similarly, the integral of the matrix element of the 0a component of the normal ordered stress-

energy tensor: ∫
d3x ⟨0, ti| : T̂ 0a(tf ,x) : |0, ti⟩ =

∑
k

ka

2ωk
| ρ∗k(ωk) |2 . (D.21)

A problem arises, however, whenever one considers the space-space components. The operator∫
d3x : T̂ ab : is given by:

∫
d3x : T̂ ab :=

∑
k

ωk

2
(b̂kb̂−k + b̂†−kb̂

†
k)η

ab +
kakb

2ωk
(2b̂†kb̂k + b̂kb̂−k + b̂†−kb̂

†
k). (D.22)
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The matrix element of this operator is then given by:∫
d3x ⟨0, ti| : T̂ ab(x, t) : |0, ti⟩ =∑

k

−ωk

2

(
e−2iωkt

2ωk

∫ t

ti

∫ t

ti

ρ
′

kρ
′′

−ke
iωk(t

′+t′′)dt′dt′′ +
e2iωkt

2ωk

∫ t

ti

∫ t

ti

ρ∗
′

−kρ
∗′′

k e−iωk(t
′+t′′)dt′dt′′

)
ηab

+
kakb

2ωk

(
1

ωk

∫ t

ti

∫ t

ti

ρ∗
′

k ρ
′′

ke
−iωk(t

′−t′′)dt′dt′′ − e−2iωkt

2ωk

∫ t

ti

∫ t

ti

ρ
′

kρ
′′

−ke
iωk(t

′+t′′)dt′dt′′

− e2iωkt

2ωk

∫ t

ti

∫ t

ti

ρ∗
′

−kρ
∗′′

k e−iωk(t
′+t′′)dt′dt′′

)
,

(D.23)

for a driven axion field and t > ti, where ρ
′

k ≡ ρk(t
′) and ρ

′′

k ≡ ρk(t
′′). As can be seen in equation

(D.23), there are four terms containing oscillating factors of the form e−2iωkt and e2iωkt. This

time dependence is problematic, as it means that equation (5.65) does not match with (D.23).

Introducing a time averaging in the definition given in (5.64) makes all the sinusoidal terms go to

zero i.e.

lim
T→∞

1

T

∫ t+T

t

dt′
∫
d3x ⟨0, ti| : T̂ ab(x, t′) : |0, ti⟩ =

∑
k

kakb

ωk

1

2ωk
| ρ∗k(ωk) |2 . (D.24)
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Diu; Franck Laloë: Quantenmechanik. Band 1. Vol. 1. Walter de Gruyter, 2013.

[81] Christian Grosche and Frank Steiner. Handbook of Feynman path integrals. Vol. 145. Springer,

1998.

[82] D A Burton, A Noble, and T J Walton. “Axionic suppression of plasma wakefield accelera-

tion”. In: Journal of Physics A: Mathematical and Theoretical 49.38 (Aug. 2016), p. 385501.

doi: 10.1088/1751-8113/49/38/385501. url: https://dx.doi.org/10.1088/1751-

8113/49/38/385501.

[83] S Andriamonje et al and (CAST Collaboration). “An improved limit on the axion–photon

coupling from the CAST experiment”. In: Journal of Cosmology and Astroparticle Physics

2007.04 (Apr. 2007), p. 010. doi: 10.1088/1475-7516/2007/04/010. url: https://dx.

doi.org/10.1088/1475-7516/2007/04/010.

[84] Xiangyan An et al. “Modeling of axion and electromagnetic fields interaction in particle-in-

cell simulations”. In: Matter and Radiation at Extremes 9.6 (2024).

[85] I Kostyukov, A Pukhov, and S Kiselev. “Phenomenological theory of laser-plasma interaction

in “bubble” regime”. In: Physics of Plasmas 11.11 (2004), pp. 5256–5264.
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