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Abstract

We study the optimal design of an innovation contest where a buyer seeks product

variety and faces a moral hazard problem. The suppliers are specialized and may differ

in their flexibility to adopt approaches outside their areas of expertise. If the specializa-

tions are sufficiently different and suppliers are otherwise symmetric, the buyer attains

the first-best with a fixed-prize contest (FPC). If one supplier is inherently advantaged

or the specializations are sufficiently close, the first-best is unattainable with an FPC.

In all cases, an auction is an optimal contest and implements the first-best, provided

the buyer can discriminate within the contest; if not, the buyer may prefer an FPC.
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1 Introduction

Contests are commonly used by public and private entities to inspire new ideas and procure

innovations.1 While a contest designer may have some broad objective they hope to achieve,

there are often different means to the same end. As the ‘best’ approach is not always known

ahead of time, a designer may wish to encourage a variety of different approaches. Take,

for example, NASA’s ‘Watts on the Moon Challenge’, which sought the development of new

technology to transmit power on the moon. The broad objective is clear, but there are many

different ways this could be achieved, and NASA explicitly sought different approaches:

“NASA has a significant interest in both wired and wireless transmission, and the challenge

seeks to incentivize and demonstrate both types of solutions”2

To elicit product variety, it is only natural to seek participation from innovators with dif-

ferent areas of expertise. An important question, then, is how to structure a contest to elicit

product variety when participants are specialized. In this paper, we address this question

by extending the literature on contest design as a means of incentivizing variety (Ganuza

& Hauk, 2006; Erat & Krishnan, 2012; Letina & Schmutzler, 2019)3 to an environment in

which innovators are specialized and may differ in their flexibility to adopt approaches outside

their areas of expertise. Contrasting existing results in the literature, we find that fixed-prize

contests (FPCs) can be highly effective tools for eliciting product variety. However, their

efficacy depends on the relative positions of the specializations and the competitive balance

within the contest. Specifically, FPCs perform best when the participants’ specializations

are sufficiently different and no participant is inherently advantaged.

Our model builds on the framework of Letina & Schmutzler (2019) (L&S) and is inspired

by Hotelling (1929): A buyer seeks an innovation from one of two suppliers. There are dif-

ferent approaches available to the suppliers, which correspond to points in the unit interval.

Ex ante, the ideal approach is unknown, but after the innovations are developed, the uncer-

tainty is resolved. The quality (buyer’s value) of a supplier’s innovation then depends on the

distance between the approach taken and the ideal approach. This reflects the idea that once

the buyer sees the innovations, she is better able to assess the extent to which they suit her

needs. The suppliers’ approaches are unobservable to the buyer, and the realized qualities

are observable but non-verifiable. Therefore, neither the approaches nor the qualities are

contractible, but the buyer’s purchasing decision depends on the qualities.

1For a survey on the contest theory literature, see Konrad (2009).
2https://www.challenge.gov/?challenge=watts-on-the-moon-phase-2)
3See, also, Lemus & Temnyalov (2024), which explores information design in a related context.
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Each supplier has a specialization, which is an approach that can be adopted at no cost.

The cost incurred by a supplier is an increasing function of the distance between her chosen

approach and her specialization. These cost functions may differ, capturing the idea that the

suppliers may differ in their flexibility to adopt approaches outside their areas of expertise.

To provide a concrete interpretation of the model, consider a hypothetical mobile phone

design competition: A mobile phone company (the buyer) contracts with two product design-

ers (the suppliers) to develop prototypes for a redesigned mobile phone. Broadly speaking,

mobile phones can be large – ideal for streaming/gaming – or small – better suited for porta-

bility. The core competencies of the suppliers may differ in this regard: One might specialize

in discreet, wearable technology, while the other is experienced in designing larger tablets

with high-quality screens. The buyer, uncertain about which approach is best, seeks a range

of options, and her ideal design is most likely to fall between the two extremes – smaller

than a tablet, but more functional than an earpiece.

While the context of this particular mobile phone competition is hypothetical, procure-

ment design competitions are commonplace in both the public and private sectors. The

Department of Defense in the U.S., for example, frequently runs such competitions to pro-

cure innovative weapons and defense systems (Lichtenberg, 1988). Similarly, firms, including

Apple, Telstar, and IBM, have been noted to use such competitions (see Lu et al., 2022, and

the references therein). The question is, how should the buyer optimally structure the contest

to elicit the ‘right’ level of variety?

Given their prevalence in the real world and in the Economics literature, our baseline

model focuses on FPCs and, in line with Fullerton & McAfee (1999), we allow entry fees.

In an FPC, the buyer commits ex ante to a prize (or price) for each supplier. After the

qualities are realized, the buyer purchases from the innovator offering the greatest surplus.4

L&S find that when all approaches are equally costly, an FPC is incapable of eliciting any

product diversity. Instead, adhering to the Principle of Minimum Differentiation (Hotelling,

1929; Downs, 1957), an FPC leads both innovators to cluster at the approach that maximizes

individual expected quality.5 In our model, the optimal prize structure depends on the

relative locations of the specializations, but there is never a lack of diversity in equilibrium.

If the specializations are sufficiently different, the optimal FPC calls for positive prizes

for both suppliers, who subsequently choose more conservative approaches (closer to the

4In the baseline model, we allow the buyer to set different prizes and entry-fees/subsidies for the two
suppliers. But we also consider a variant in which the buyer faces an anonymity constraint, requiring that
she offer the same contract to both suppliers. We further discuss this issue in Section 6.

5Similar clustering is found by Erat & Krishnan (2012).

2



median). As these approaches are costly, the buyer maintains variety by limiting the size

of the prizes. If, in addition, no supplier is inherently advantaged – through having lower

marginal cost or a more central specialization – the buyer attains the first-best with an FPC.

If one supplier is inherently advantaged, there is a distortion from the social optimum since

the first-best approaches cannot be implemented with equal prizes. When the prizes differ,

the supplier offering the greatest surplus may not be the supplier with the highest quality.

As a result, the buyer’s ex post purchasing decision may not be socially efficient. This ex

post inefficiency gives rise to an ex ante ‘distortion cost’ for the buyer.6 In response, the

buyer reduces the prize spread, relative to the prizes that implement the first-best, which

reduces the likelihood that she later purchases the lower-quality innovation. In equilibrium,

the advantaged supplier adopts an approach that is ‘too far’ from her specialization, while

the disadvantaged supplier adopts an approach that is ‘too close’ to her specialization. To

emphasize the role of the buyer’s limited commitment power in driving this result, we also

consider a variant in which the buyer can credibly commit to purchasing the highest quality

innovation. Reminiscent of results on rank-order tournaments (Lazear & Rosen, 1981), the

buyer attains the first-best with an FPC.7

When the specializations are sufficiently close, the buyer’s primary objective is to increase

variety, and this cannot be done in an FPC with two positive prizes. Instead, the buyer

awards a positive prize to exactly one supplier, say i. Supplier j is not excluded, but is

awarded a “prize” of zero and subsequently produces at her specialization. With this prize

structure, the buyer commits to purchasing from i only if her innovation is of sufficiently

higher quality than j’s. Since similar approaches yield similar qualities, i is led to differentiate

her approach from j. This scenario can be interpreted as one in which the buyer engages in a

bilateral negotiation with supplier i, committing to a price and using the threat of acquiring

j’s default innovation as leverage to induce differentiation.

Finally, for some configurations of the specializations, the buyer cannot improve upon

the default scenario using an FPC: The optimal FPC calls for prizes of zero and leaves the

suppliers to produce at their specializations. In this case, there is, in effect, no contest at

all. Instead, the buyer leaves the suppliers to produce according to their own core com-

petencies and subsequently acquires the innovation of higher quality.8 This occurs when

the specializations are moderately close – close enough that the buyer would prefer greater

6A similar distortion emerges in Maskin & Riley (2000) and Che & Gale (2003).
7See Galasso (2020) for another example of how limited commitment can lead to welfare distortions in

the context of innovation incentives.
8Equivalently, the buyer acquires both innovations and consumes the one of higher quality.
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variety, but sufficiently different that the prize needed to incentivize differentiation imposes

a prohibitively large distortion cost.

We then study a more general contest design problem, à la Che & Gale (2003). In this

setting, the buyer commits to a menu of allowable prices for each supplier; after the qualities

are realized, the suppliers compete by choosing prices from their menus. L&S show that an

auction, in which prices are unconstrained, always implements the first-best, but may be

inferior (for the buyer) to an FPC if entry fees are not permissible. We extend the first point

and obtain a similar finding to the second. First, we show that the auction implements the

first-best independently of the details of suppliers’ specializations/costs and the distribution

of the ideal. Driving the result is that the location-choice subgame is a potential game

(Monderer & Shapley, 1996), with a potential equal to the objective function of the social

planner. Second, if the buyer cannot offer identity-dependent prizes/entry-fees, she may

prefer an FPC, due to the auction’s tendency to leave greater rents to the suppliers.

Our results add to the literature on innovation contest design.9 Much of this literature

focuses on providing the right incentives for contestants to exert costly effort, which either

raises the probability/speed of successful innovation or increases the expected quality of the

innovation (see, e.g., Taylor, 1995; Fullerton & McAfee, 1999; Che & Gale, 2003; Schöttner,

2007).10 In either case, what defines ‘success’ or ‘high quality’ must be specified ahead of

time. This is not possible in our model, given the uncertainty over the ideal approach.

Gretschko & Wambach (2016) compare the welfare properties of different mechanisms

for procurement in an environment in which sellers are horizontally differentiated and the

buyer is uncertain of her preferences. But in their model, the specifications of the sellers are

fixed exogenously, and there is no scope for the buyer to induce different specifications.

Relative to the small number of studies that have considered contest design in the context

of eliciting product diversity, our contribution is the inclusion of supplier specializations.

This added feature is a relevant concern in real-world innovation contests. Indeed, the

consulting firm, McKinsey, recommends using prizes when the optimal approach is uncertain,

precisely to encourage participation from innovators with different areas of expertise.11 As

a concrete example, take the Mobile Design Competition organized in 2019 by Samsung and

9For studies on the optimal design of contests more broadly see, e.g., Moldovanu & Sela (2001), Liu et al.
(2018) or Olszewski & Siegel (2020).

10Baye & Hoppe (2003) show that, in some cases, patent races (innovators compete to innovate first) are
strategically equivalent innovation tournaments (innovators compete to produce the best innovation).

11“By attracting diverse talent and a range of potential solutions, prizes draw out many possible solu-
tions...” (Bays et al., 2009, p. 49).
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Dezeen, which sought the development of new accessories for Galaxy smartphones.12 One

of Samsung’s stated goals with the competition was to foster “. . . collaboration with a wide

variety of different designers to inform the future development of its products” (emphasis

added).

Moreover, introducing supplier specializations has important economic consequences for

the optimal design of incentives for variety. Contrasting prior results, we find that with

specialized suppliers, FPCs can be highly effective tools for eliciting variety, particularly

when there is sufficient differentiation between innovators’ specializations and no supplier is

inherently advantaged. Additionally, if one supplier has an inherent advantage, the buyer

may benefit (ex ante) from committing to purchase based solely on quality, without regard

to price. Finally, we extend results from the literature and demonstrate that, quite generally,

an auction provides just the right incentives for variety. At the same time, its attractiveness

to a buyer depends on her ability to extract surplus from the innovators. If this cannot be

done effectively – e.g., because suppliers are asymmetric but the buyer is constrained to treat

them equally – an FPC may be preferable.13

Our results also add to the extensive literature on innovation incentives. A related strand

of this literature concerns the length and breadth of patent protection. Waterson (1990), in

particular, emphasizes the role of patents in influencing product differentiation. He shows

that the patent system can raise social welfare (relative to free-entry) through its influence

on firms’ variety choices. Our study complements these general insights and shows how prize

competitions can be optimally structured to improve sellers’ variety choices for a buyer.

Finally, our model relates to the spatial models used in political economy to explain

the policy choices of political candidates/lobbyists.14 Our finding that FPCs induce variety

when innovators are specialized relates to the finding that, when candidates/lobbyists are

ideological, equilibria can be supported in which policies differ (see, e.g., Osborne, 1995;

Epstein & Nitzan, 2004). Differentiating our model from this stream of literature is the

endogeneity of the rewards for victory, which is our main focus.

12https://www.dezeen.com/samsung-mobile-design-competition-brief/
13The inclusion of supplier specializations and costly location choices also has technical implications for the

model. Reisinger et al. (2023) consider a duopoly Hotelling model in which firms first commit to prices, then
choose locations in product space. The second stage of this game is similar to the location-choice subgame
in our model but differs in that location choices are costless. The authors show that in many circumstances,
a PSNE does not exist. In our model, for many prize configurations, a PSNE does exist. The reason is
that the sort of mimicry that destroys PSNE when location choices are costless need not be profitable when
location choices are costly.

14For recent contributions to this literature, see, e.g., Münster (2006) or Balart et al. (2022).
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2 The model

There are two suppliers, called zero and one, from whom a buyer wishes to procure a single

unit of innovation. Neither the suppliers nor the buyer is certain of the ideal approach, y,

but all parties believe y is distributed according to a CDF, F , with full support on [0, 1].

We assume that F is smooth on (0, 1) with PDF f = F ′, which is also smooth on (0, 1),

symmetric about 1
2
, and increasing on [0, 1

2
]. Formally:

Assumption 1. For all y ∈ [0, 1], f(y) = f(1− y) > 0. For y ∈
(
0, 1

2

)
, f ′(y) ≥ 0.

Prior to the realization of the ideal, the suppliers simultaneously choose their approaches.

We let ℓi ∈ [0, 1] denote supplier i’s approach and let ℓ = (ℓ0, ℓ1) denote a profile of ap-

proaches. Using the mobile phone design competition discussed in the introduction as an

example, ℓi can be interpreted as the screen size chosen by supplier i, where ℓi = 0 corre-

sponds to a very small, wearable device, and ℓi = 1 corresponds to a device as large as a

tablet. If i chooses approach ℓi and the ideal is y, the buyer’s monetary value of i’s innovation

is Qi(ℓi, y) = q − |ℓi − y|. We refer to Qi(·) as the quality of i’s innovation.

Supplier i has a specialization, si ∈ (0, 1), where s0 ≤ s1.
15 If i chooses approach ℓi, she

incurs the cost Ci(ℓi−si). Each Ci is symmetric about 0: Ci(x) = Ci(−x) for all x ∈ [−1, 1],

and thrice differentiable with Ci(0) = C ′
i(0) = 0, C ′′

i > 0, and C ′′′
i ≥ 0. Thus, i can produce

an innovation at her specialization at zero cost, while Ci(d) > 0 for d ̸= 0. Each supplier

pays her cost regardless of the buyer’s purchasing decision. Abstracting from concerns of

adverse selection, we assume the specializations and cost functions are known by the buyer.

In our baseline model, we focus on FPCs: Prior to the suppliers choosing their approaches,

the buyer commits to prizes, v = (v0, v1), where vi ≥ 0 is the prize to be received by supplier i

if she wins the contest. The buyer may also charge entry fees (or offer subsidies), t = (t0, t1).

As a convention, we let ti > 0 denote an entry fee paid by supplier i and ti < 0 denote a

subsidy received by i. The approaches taken by the two suppliers are unobservable by the

buyer, while the realized qualities are observable but non-verifiable. Therefore, neither prize

may depend on the suppliers’ approaches or realized qualities, but the buyer’s purchasing

decision will be a function of the realized qualities. If the contest parameters are (v, t) and

the buyer purchases from supplier i, the buyer’s payoff is Qi(ℓi, y)− vi + t0 + t1 and supplier

j’s payoff is 1(i = j)vj − Cj(dj) − tj. All parties are risk-neutral, and we assume that q is

sufficiently large such that the buyer will always purchase from one of the two suppliers.

15We restrict attention to specializations on the interior of the unit interval for technical convenience, as
it simplifies some of the proofs. But it has no meaningful impact on our results. Our working paper (see
Protopappas & Rietzke, 2023) covers the case where s0 = 0 and s1 = 1.
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The timing is summarized as follows: In stage 1, the buyer commits to the contest

parameters, (v, t). In stage 2, the suppliers decide whether to participate; the participat-

ing suppliers then simultaneously choose their approaches. In stage 3, the quality of each

innovation is realized, and the buyer makes her purchasing decision.

We make the following assumptions on the distribution and cost functions:

Assumption 2.

(i) For all y ∈ [0, 1], |f ′(y)| < 2f(0).

(ii) For all d ∈ [0, 1] and each i ∈ {0, 1}, 2f
(
1
2

)
< C ′′

i (d).

Assumption 2(i) ensures that even the least-likely states occur with sufficiently high prob-

ability. Assumption 2(ii) implies that each supplier’s cost function is “sufficiently convex”;

in Section 6, we discuss its relevance in more detail. Assumptions 1-2 imply the following

additional properties on the distribution and cost functions:

Lemma 1. For all y, y′, d ∈ [0, 1], and each i = 0, 1,

(i) f(y) < 2f(y′)

(ii) C ′
i(d) > 2df

(
1
2

)
(iii) |f ′(y)| < C ′′

i (d).

Terminology

We define key terms used in the analysis: Supplier i’s default innovation corresponds to an

approach choice equal to her specialization. If both suppliers produce their default innova-

tions, we call this the default scenario (or simply, default). Approaches closer to 1
2
are called

more conservative, while those further from 1
2
are more radical. If i’s specialization is more

conservative than j’s, we say that i is more conservative (equivalently, j is more radical).

Supplier i is more flexible than j if C ′
i < C ′

j.
16 The suppliers are symmetric if they

are equally flexible and conservative: C0 = C1 and s0 = 1 − s1. Supplier i has a cost

advantage if the suppliers are equally conservative but i is more flexible: s0 = 1 − s1 and

C ′
i < C ′

j. Supplier i has a quality advantage if the suppliers are equally flexible, but i is more

conservative: Ci = Cj and |si− 1
2
| < |sj− 1

2
|. It is obvious that greater flexibility provides an

inherent advantage, as it enables i to choose approaches different from her specialization at

16When we write C ′
i < C ′

j , we mean C ′
i(d) < C ′

j(d) for all d > 0.
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a lower cost than j. But i is also advantaged when she is more conservative, as this implies

that the expected quality of her default innovation is higher than j’s.

We use the terms diversity or variety to refer to the spread between the chosen ap-

proaches, |ℓ1 − ℓ0|. Finally, we sometimes consider a simplified model in which y ∼ U [0, 1]

and Ci(d) =
ci
2
d2; we refer to this as the uniform/quadratic model.

3 Preliminary results

In this section, we characterize the first-best approaches; we then study the stages 2-3

subgames.

3.1 Benchmark solution – The first-best

As a benchmark, we consider the problem of a social planner whose objective is to maximize

total surplus. The planner’s problem proceeds in 2 stages: In stage 1 – facing uncertainty

over the ideal – she chooses the suppliers’ approaches. In stage 2 – after the uncertainty

is resolved – she allocates an innovation to the buyer. Efficiency requires that the planner

allocates the highest quality innovation to the buyer in stage 2. When the allocation is ex

post efficient, the ex ante expected surplus is,

SFB(ℓ) = QFB(ℓ)− C0 − C1,

whereQFB(ℓ) is the expected highest quality innovation: QFB(ℓ) = E [max{Q0(ℓ0, y), Q1(ℓ1, y)}] .
Since s0 ≤ s1, it is always optimal for the planner to choose approaches such that ℓ0 ≤ ℓ1.

Then, Q0(ℓ0, y) > Q1(ℓ1, y) if y < m(ℓ) and Q0(ℓ0, y) < Q1(ℓ1, y) if y > m(ℓ), where

m(ℓ) = ℓ0+ℓ1
2

. Thus, QFB(ℓ) = q − κFB(ℓ), where

κFB(ℓ) =

∫ m(ℓ)

0

|ℓ0 − y| dF (y) +
∫ 1

m(ℓ)

|ℓ1 − y| dF (y).

Letting LFB = κFB + C0 + C1, the planner’s stage-1 problem can be expressed,

min
ℓ∈[0,1]2

LFB(ℓ). (FB-P)

Before characterizing the solution to this problem, we mention two related benchmarks.

First, Assumption 1 implies that the expected quality of i’s individual innovation is maxi-

mized at an approach of 1
2
. Second, QFB(ℓ) is maximized at approaches (s∗, 1− s∗), where,
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F (s∗) =
1

4
. (1)

Moving both suppliers’ approaches closer to 1
2
increases the expected quality of each indi-

vidual innovation, but decreases diversity. Given the uncertainty over the ideal, there is

inherent value in maintaining variety, as this generates an option value for the buyer. The

approaches (s∗, 1− s∗) balance this trade-off to maximize the expected highest quality.

Proposition 1. There is a unique solution to (FB-P) characterized by the following first-

order conditions:

F
(
m

(
ℓFB

))
− 2F

(
ℓFB
0

)
= C ′

0

(
ℓFB
0 − s0

)
1 + F

(
m

(
ℓFB

))
− 2F

(
ℓFB
1

)
= C ′

1

(
ℓFB
1 − s1

)
.

Moreover, if s0, 1− s1 < s∗, then, s0 < ℓFB
0 and ℓFB

1 < s1. If s∗ < s0, 1− s1, then, ℓ
FB
0 < s0

and s1 < ℓFB
1 .

The first-best approaches characterized in Proposition 1 balance the trade-off between

raising the expected highest quality and limiting costs.

To provide the intuition for the two cases (s0, 1− s1 < s∗ and s∗ < s0, 1− s1) mentioned

in Proposition 1, first note that Assumptions 1-2 imply s∗ < 1
3
(see Lemma A.1 in the

Appendix). Thus, the condition s0, 1−s1 < s∗ implies s0 <
1
3
< 2

3
< s1, which means that the

specializations are sufficiently different and radical – i.e., positioned at opposite ends of the

unit interval. In this case, the default results in an inefficiently high level of diversity. Relative

to the default, it is optimal for the planner to reduce diversity and choose more conservative

approaches. Conversely, the condition s∗ < s0, 1− s1 implies, 1
3
< s0 ≤ s1 <

2
3
, which means

that the specializations are relatively close to one another and positioned towards the center

of the unit interval. In this case, the supplier’s specializations are ‘too conservative’ and the

default results in an inefficiently low level of diversity. Relative to the default, the planner

chooses more radical approaches and increases variety.

3.2 The buyer’s purchasing decision

Here, we examine the buyer’s ex post purchasing decision. Given the prizes and realized

qualities, the buyer purchases from i if she offers a greater surplus than j: Qi(ℓi, y) − vi >

Qj(ℓj, y)−vj. If both offer the same surplus, Q0(ℓ0, y)−v0 = Q1(ℓ1, y)−v1, we adopt the tie-
breaking rules in Che & Gale (2003) and L&S: We assume that the buyer has a preference for
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quality and purchases from supplier i if Qi(ℓi, y) > Qj(ℓj, y). If Q0(ℓ0, y)−v0 = Q1(ℓ1, y)−v1
and Q0(ℓ0, y) = Q1(ℓ1, y), the buyer purchases from each supplier with probability 1

2
.

It is useful to note that if |v1−v0| ≤ ℓ1−ℓ0 – i.e., the approaches are sufficiently different,

relative to the prize spread – then supplier zero [one] wins with probability F (y0 (ℓ, v))

[1− F (y0(ℓ, v))], where,

y0(ℓ, v) =
ℓ0 + ℓ1 + v1 − v0

2
.

However, if the approaches are sufficiently close, relative to the prize spread – in particular,

|ℓ1 − ℓ0| < vi − vj – then the supplier with the smaller prize, j, wins with probability 1. In

this case, the difference in qualities is always less than the difference in prizes; hence, j offers

greater surplus in any state of the world.

3.3 The suppliers’ equilibrium approaches

In this section, we take the prize values as given and study the stage-2 approach choice sub-

game, assuming both suppliers have entered. We focus on pure-strategy Nash equilibrium in

this subgame (henceforth, “equilibrium”).17 Letting pi(ℓ, v) denote i’s probability of victory,

her expected payoff is πi(ℓ, v) = pi(ℓ, v)vi − Ci(ℓi − si). Supplier i solves maxℓi∈[0,1] πi(ℓ, v).

The functional form of pi differs, depending on the prizes. If v0 = v1, then,

p0(ℓ, v) =


F (m(ℓ)), ℓ0 < ℓ1

1
2
, ℓ0 = ℓ1

1− F (m(ℓ)), ℓ0 > ℓ1

Letting ỹ0(ℓ, v) =
ℓ0+ℓ1+v0−v1

2
and 1(·) be an indicator function; if v0 ̸= v1, then,

p0(ℓ, v) =


F (y0(ℓ, v)), ℓ1 − ℓ0 ≥ |v1 − v0|

1(v0 < v1), |ℓ1 − ℓ0| < |v1 − v0|,

1− F (ỹ0(ℓ, v)) , ℓ0 − ℓ1 ≥ |v1 − v0|

And p1(ℓ, v) = 1− p0(ℓ, v). Let

u0(ℓ, v) = F (y0 (ℓ, v)) v0 − C0(ℓ0 − s0)

17For tractability, we do not consider mixed strategy Nash equilibria (MSNE). For a treatment of MSNE
in a game closely related to the 2nd stage of our game, see Reisinger et al. (2023).
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and

u1(ℓ, v) = [1− F (y0 (ℓ, v))] v1 − C1(ℓ1 − s1).

For (ℓ, v) such that |v1 − v0| ≤ ℓ1 − ℓ0, πi(ℓ, v) = ui(ℓ, v). Note that each ui is differentiable

in (ℓ, v) and twice differentiable whenever y0(·) ∈ (0, 1). Moreover, Lemma 1(iii) implies
∂2ui

∂ℓ2i
< vi

4
|f ′(y0(·))| − |f ′

i(y0(·))|; thus, if vi ≤ 4 then ∂2ui(ℓ,v)

∂ℓ2i
< 0.

While the ui’s are relatively well-behaved, the πi’s are not generally continuous or quasi-

concave. As a consequence, for a given pair of prizes, different types of equilibria can emerge;

moreover, there may be multiple equilibria, or an equilibrium may not exist. Propositions

A.1 and A.2 (in the Appendix) provide several necessary equilibrium conditions and give

sufficient conditions for existence. To avoid cumbersome technicalities, we present a parsi-

monious result, which emphasizes just the most important ideas for our later analysis. In

what follows, we let Φ(v) denote the set of stage-2 equilibria when the prizes are v.

Proposition 2. Let v0, v1 ≥ 0 and suppose ℓ∗ ∈ Φ(v). Let d∗i = |ℓ∗i − si|.

(i) If d∗0, d
∗
1 > 0 then s0 < ℓ∗0 < ℓ∗1 < s1, |v1 − v0| < ℓ∗1 − ℓ∗0, and

∂ui(ℓ
∗,v)

∂ℓi
= 0, i = 0, 1.

(ii) If s1 − s0 < vi and vj = 0 then ℓ∗j = sj and ℓ∗i ∈ {si, sj ± vi}.

Part (i) shows that FPCs tend to reduce diversity relative to the default. More precisely,

in any equilibrium in which both suppliers choose approaches different from their special-

izations, the approaches lie between the specializations. Moreover, the approaches remain

sufficiently far apart that the equilibrium occurs in the region of the strategy space where

πi = ui.

Part (ii) shows that, despite their tendency to reduce variety, an FPC can induce greater

variety. To explain, suppose vj = 0 and s1 − s0 < vi. Clearly, j has a dominant strategy

to choose sj. Moreover, i’s prize is sufficiently large that, if she were to choose si, or any

other approach that is too close to sj (specifically, any approach in (sj − vi, sj + vi)), the

difference in qualities is never large enough for the buyer to purchase from i. Depending

on the cost of doing so, i may therefore choose to differentiate her approach from j, which

increases the potential difference in qualities, and gives i some chance of victory. The next

example illustrates.

Example 1. Consider the uniform/quadratic model, and suppose s0 = 2
5
, s1 = 3

5
, v0 = 0

and v1 = 3
10
. In any equilibrium, ℓ∗0 = s0, so we focus on the choice of supplier one. To

win with non-zero probability, supplier one must choose an approach outside the interval,

(s0 − v1, s0 + v1) =
(

1
10
, 7
10

)
. It is straightforward to compute that either ℓ∗1 = s1 or ℓ∗1 =

7
10
,
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depending on c1. In particular, for c1 < 18, there is a unique equilibrium with ℓ∗1 =
7
10
. For

c1 > 18, there is a unique equilibrium with ℓ∗1 = s1. For c1 = 18 there are two equilibria; one

in which ℓ∗1 = s1 and one in which ℓ∗1 =
7
10
.

The next result provides sufficient conditions guaranteeing uniqueness of equilibrium,

and gives necessary and sufficient conditions characterizing this equilibrium, should it exist.

Lemma 2. Suppose s0, 1− s1 < s∗ and either 0 < v0 ≤ v1 ≤ 2s1 − s0 − 1 or 0 < v1 < v0 ≤
s1 − 2s0. Then there is at most one equilibrium in the stage-2 subgame and ℓ∗ ∈ Φ(v) if and

only if,

|v1 − v0| < ℓ∗1 − ℓ∗0 (2)

∂u0(ℓ
∗)

∂ℓ0
=
v0
2
f (y0 (ℓ

∗, v))− C ′
0(ℓ

∗
0 − s0) = 0 (3)

∂u1(ℓ
∗)

∂ℓ1
= −v1

2
f (y0 (ℓ

∗, v))− C ′
1(ℓ

∗
1 − s1) = 0. (4)

vi < vj =⇒ ui(ℓ
∗, v) ≥ vi − Ci

(
ℓ∗j + v0 − v1 − si

)
(5)

Recall from the discussion following Proposition 1 that s0, 1 − s1 < s∗ implies s0 <
1
3
<

2
3
< s1, meaning that the specializations are sufficiently different and radical. Under this

condition, Lemma 2 shows that if the prizes are not too large, then any equilibrium is unique

and characterized by (2)-(5). Condition (2) says that the equilibrium occurs in the region

of the strategy space where πi = ui. Conditions (3)-(4) are local optimality conditions,

ensuring each πi(·, ℓ∗j , v) attains a local maximum at ℓ∗i . Condition (5) is a global optimality

condition, which ensures the low-prize innovator does not have an incentive to deviate to a

point at which her payoff jumps upwards.

Thus far in this section, we have treated the prizes as exogenous. In the next section,

we analyze the buyer’s optimal choice of these prizes. While a stage-2 equilibrium need not

exist for every possible prize configuration, it is important to note that there are always

prize configurations for which a stage-2 equilibrium does exist. Trivially, if v0 = v1 = 0

then (s0, s1) ∈ Φ(v). However, our next result shows that there are also non-trivial prize

configurations for which an equilibrium exists.

Lemma 3. If vi = 0 for some i then Φ(v) ̸= ∅ for all vj ≥ 0. Furthermore, if s0 < s1, then

there exist v0, v1 > 0 such that Φ(v) ̸= ∅ and ℓ∗ ∈ Φ(v) =⇒ ℓ∗i ̸= si for each i.

Lemma 3 shows that, for any configuration of the specializations, an equilibrium always

exists if vi = 0 for some i. Moreover, as long as the suppliers have different specializations,

12



there are strictly positive prizes for which an equilibrium exists and, in any equilibrium, both

suppliers choose approaches different from their specializations.

4 The optimal FPC

We now study properties of the optimal FPC. To begin, we set up the buyer’s problem.

4.1 The buyer’s problem

As discussed in Section 3.3, certain prize configurations may lead to multiple equilibria. In

such cases, we assume the suppliers play the equilibrium that is preferred by the buyer. We

also note that it is always optimal for the buyer to ensure participation from both suppliers.

This is because each supplier’s default innovation can be produced at no cost; therefore, the

buyer can costlessly benefit from supplier i’s participation in the contest.

Given a pair of approaches and prizes, we let Qb(ℓ, v) denote the ex ante expected quality

of the innovation purchased by the buyer:

Qb(ℓ, v) = q −
∑
i

pi(ℓ, v)E [|ℓi − y| | i wins the contest] .

The buyer’s stage-1 expected payoff is, π̃b(ℓ, v, t) = Qb(ℓ, v)−p0(ℓ, v)v0−p1(ℓ, v)v1+t0+t1;
her objective is to induce an equilibrium ℓ ∈ Φ(v) by choosing (v, t), so as to maximize π̃b;

formally: maxℓ,v,t π̃b(ℓ, v, t) s.t. vi ≥ 0, πi(ℓ, v)− ti ≥ 0, i = 0, 1 and ℓ ∈ Φ(v).

Note that in any optimal FPC, the individual rationality constraints, πi ≥ ti, i = 0, 1,

must bind. If not, the buyer could increase ti and strictly increase her payoff. We formalize

this below (we omit the proof, as it is immediate from the text):

Lemma 4. In any optimal FPC, t∗i = πi(ℓ
∗, v∗), and the suppliers capture no rent.

Lemma 4 is consistent with moral hazard models under risk neutrality, where agents

typically capture no rent, absent additional frictions such as wealth constraints or adverse

selection. Consequently, our baseline model avoids the typical rent-extraction/efficiency

trade-off, allowing us to focus on a less conventional trade-off concerning ex ante vs. ex

post efficiency. However, in Section 5, we study a variant of the model in which the buyer

is subject to an anonymity constraint. In that setting, one supplier may capture a positive

rent, and the standard trade-off arises.

13



Given Lemma 4, we can express the buyer’s payoff as

πb(ℓ, v) = Qb(ℓ, v)− C0(ℓ0 − s0)− C1(ℓ1 − s1),

and we may formulate the buyer’s problem as

max
ℓ,v

πb(ℓ, v) s.t. v0, v1 ≥ 0, and ℓ ∈ Φ(v). (P)

To elucidate the ex ante/ex post efficiency trade-off, it is instructive to relate the buyer’s

objective function with that of the planner in Section 3.1. See that πb can be written,

πb(ℓ, v) = SFB(ℓ)− T (ℓ, v),

where T (ℓ, v) = QFB(ℓ) − Qb(ℓ, v). We refer to T as the buyer’s quality distortion cost,

and it captures the loss of ex ante surplus that results from the buyer’s (potentially) socially

inefficient ex post purchasing decision. To elaborate, note that by definition ofQFB, T (ℓ, v) ≥
0. That is, the ex ante expected quality of the innovation purchased by the buyer can be no

greater than the expected highest-quality innovation. If v0 = v1, the buyer always purchases

the highest-quality innovation, and in this case, T (ℓ, v) = 0. On the other hand, if v0 ̸= v1

and ℓ0 ̸= ℓ1, then, with strictly positive probability, the buyer purchases the lower-quality,

cheaper, innovation; in this case, T (ℓ, v) > 0. Moreover, the greater the spread of the

prizes, |v1−v0|, the more likely it is that the buyer subsequently purchases the lower-quality

innovation. For this reason, T , is increasing in the prize spread, |v1 − v0|.

4.2 Optimal prize structures

This section provides some general features of the structure of the prizes in the optimal FPC.

We let FP = {(ℓ, v)|ℓ ∈ Φ(v), v0, v1 ≥ 0} denote the buyer’s set of feasible choices and we

note that by Lemma 3, FP is non-empty. We also let AP = argmax(ℓ,v)∈FP
πb(ℓ, v) denote

the set of optimal FPCs for the buyer.

Before stating the main results in this section, we provide two preliminary results; the

first one shows that a solution to the buyer’s problem exists.

Lemma 5. AP ̸= ∅ for all s0, s1 ∈ (0, 1).

The next result shows that the buyer offers a non-zero prize to i if and only if i’s subse-

quent equilibrium approach is distinct from her specialization.

14



Lemma 6. Let (ℓ∗, v∗) ∈ AP . Then, v
∗
i > 0 if and only if ℓ∗i ̸= si.

Our first main result in this section shows that if the specializations are sufficiently

different and radical, the buyer awards a non-zero prize to each supplier. On the other hand,

if both specializations are conservative enough, at least one supplier’s prize is zero.

Proposition 3. If the specializations are sufficiently different, the buyer awards a non-

zero prize to each supplier, and equilibrium variety decreases relative to the default. If both

suppliers’ specializations are sufficiently conservative, then at least one supplier’s prize is

zero. Formally, if s0, 1− s1 < s∗ then (ℓ∗, v∗) ∈ AP implies v∗0, v
∗
1 > 0 and s0 < ℓ∗0 < ℓ∗1 < s1.

If s∗ ≤ s0, 1− s1 then (ℓ∗, v∗) ∈ AP implies v∗j = 0 for some j.

When the specializations are sufficiently different (s0, 1 − s1 < s∗), the buyer wants

to elicit more conservative approaches; she can implement such an equilibrium by offering

positive prizes to both suppliers. On the other hand, if the suppliers are both sufficiently

conservative (s∗ < s0, 1 − s1), the buyer wants greater diversity. As an FPC with two

positive prizes tends to reduce diversity, there is a conflict between the buyer’s objective and

the supplier’s incentives. But recall from Proposition 2 and Example 1 that the buyer may

be able to elicit greater diversity by offering one positive prize. As our next result shows,

when the specializations are sufficiently close, this is indeed the structure of the optimal

FPC.

Proposition 4. If the specializations are sufficiently close, the buyer awards a positive prize

to exactly one supplier and equilibrium variety increases relative to the default. Formally,

for each s1 ∈ (0, 1) there exists ϵ > 0 such that for all s0 ∈ (s1 − ϵ, s1], (ℓ
∗, v∗) ∈ AP implies

v∗j = 0 < v∗i and s1 − s0 < |ℓ∗i − sj| = v∗i .

When the specializations are close, the buyer benefits from increased variety, and she

can accomplish this by awarding one positive prize that exceeds the spread between the

specializations. As outlined in the Introduction, we can interpret this scenario as one in

which the buyer negotiates solely with i, using j’s default innovation as leverage to induce i

to differentiate her approach. It is then natural to ask with which supplier the buyer chooses

to negotiate. The next result sheds light on this question.

Proposition 5.

(i) Suppose supplier i has a cost advantage and the specializations are sufficiently close.

Then the buyer awards a non-zero prize only to supplier i. Formally, suppose C ′
i < C ′

j
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and s0 = 1− s1 = s. There exists ϵ > 0 such that for all s ∈
(
1
2
− ϵ, 1

2

]
, (ℓ∗, v∗) ∈ AP

implies v∗j = 0 < v∗i .

(ii) Consider the uniform/quadratic model and suppose supplier i has a quality advantage

and the specializations are sufficiently close. Then the buyer awards a non-zero prize

only to supplier i. Formally, suppose C0 ≡ C1. For each s1 ∈ (0, 1) there exists ϵ > 0

such that for all s0 ∈ (s1 − ϵ, s1) with
∣∣si − 1

2

∣∣ < ∣∣sj − 1
2

∣∣, (ℓ∗, v∗) ∈ AP (s0, s1) implies

v∗j = 0 < v∗i .

Part (i) of Proposition 5 shows that if i is more flexible and the specializations are symmet-

ric and sufficiently close, the buyer negotiates only with i. The intuition is straightforward:

The buyer wants to induce one supplier to choose an approach different from her special-

ization, and the more flexible supplier can do so at a lower cost. As the buyer internalizes

these costs, she is best off motivating the more flexible supplier.

Part (ii) of Proposition 5 shows that if i has a quality advantage and the specializations

are sufficiently close, then in the uniform/quadratic model, the buyer negotiates only with

i. This result is more subtle, and there are competing forces at play.

To explain, suppose s0 < s1 and both specializations are close to 1. Here, the buyer wants

one supplier to choose a more conservative approach. To implement a given level of variety, it

is more costly to do so by awarding the prize to supplier one since she would necessarily need

to adopt an approach further from her specialization. All else equal, this favors awarding the

prize to supplier zero. On the other hand, for a given level of variety, more centrally-located

approaches tend to generate higher quality for the buyer. More precisely, for any k ≥ 0 and

any two approaches such that |ℓ1 − ℓ0| = k, the expected maximum quality is higher when

the midpoint between those approaches is closer to 1
2
. All else equal, this favors awarding

the prize to supplier one, as the resulting approaches would be more centrally located. For

the uniform distribution, the second force is more subdued, and the first force dominates.

However, this second force is stronger when the ideal is strictly less likely to occur in more

radical regions of the approach space.

To close this section, we first present an example illustrating how the prize structure

changes as the specializations vary. We then discuss configurations of specializations not

covered by the results in this section.

Example 2. Consider the uniform/quadratic model and suppose Ci(d) = 1
2
d2 and s0 =

1− s1 = s ≤ 1
2
. We will examine how the structure of the optimal FPC varies with s. First,

let s < s∗ = 1
4
. As will be shown in Lemma 7, the solution to the buyer’s problem is the
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solution to (P’), which is characterized in the FOCs in (17)-(19). Solving this system, we

obtain, v∗0 = v∗1 = 1
3
− 4

3
s > 0, and the equilibrium approaches are, ℓ∗0 = 1−ℓ∗1 = s+

v∗i
2
= 1

6
+ s

3
.

Next, let s ≥ 1
4
. Using Propositions 3 and 4, we can compute the optimal FPC by

comparing the buyer’s payoff in two scenarios: The first is her payoff in the default scenario;

we denote this payoff by πdef
b (s). It holds,

πdef
b (s) = q −

∫ 1
2

0

|y − s|dy −
∫ 1

1
2

|y − (1− s)|dy = q + s− 2s2 − 1

4
.

In the second scenario, the buyer chooses vj = 0 < s1 − s0 < vi and i’s equilibrium

approach satisfies |ℓi − si| = vi. As the suppliers are symmetric, it is irrelevant whether

the prize is awarded to supplier zero or one, but for concreteness, let’s suppose v0 > 0.

Assuming supplier zero then adopts an approach different from her specialization, there is

an equilibrium in which ℓ0 = ℓ0(v0) = s1 − v0.
18 The buyer’s payoff is then,

q −
∫ ℓ0(v0)

0

(ℓ0(v0)− y)dy −
∫ 1

ℓ0(v0)

|y − (1− s)|dy − 1

2
(ℓ0(v0)− s)2. (6)

The buyer chooses v0 to maximize (6) subject to the constraints, v0 ≥ s1 − s0 and

u0(ℓ0(v0), s1) ≥ 0. The first constraint ensures that the prize provides the right incentive for

supplier zero to differentiate her approach from supplier one. The second constraint ensures

that supplier zero is better off choosing an approach different from her specialization (at the

optimum, neither constraint binds). Computing the value function associated with this prob-

lem and comparing it with πdef
b , we find the optimal prize structure: Letting s = 1√

6
≈ .408,

for s ∈
[
1
4
, s
)
, v∗0 = v∗1 = 0 and ℓ∗i = si. For s ∈

(
s, 1

2

]
, v∗1 = 0 < s1 − s0 < v∗0 = 2

3
− s,

ℓ∗1 = s1, and ℓ
∗
0 = s1 − v∗0 = 1

3
.19

Example 2 examines a scenario in which the suppliers are symmetric with s0 = 1− s1 =

s ≤ 1
2
. As s increases from 0 to 1

2
, the specializations move closer to one another, and

the structure of the optimal FPC changes. Consistent with Proposition 3, for s < 1
4
= s∗,

v∗0, v
∗
1 > 0, but when 1

4
< s, v∗j = 0 for at least one supplier, j. In particular, there is

s ∈
(
1
4
, 1
2

)
such that for s ∈

[
1
4
, s
)
, v∗0 = v∗1 = 0, whilst for s ∈

(
s, 1

2

]
, v∗j = 0 < v∗i .

To understand the distinction between the latter two sub-cases, recall from the discussion

surrounding Proposition 3 that, when the buyer wants to encourage greater diversity, she

18For s < 1
2 , this equilibrium is unique. For s = 1

2 , supplier zero is indifferent between choosing s1 − v0 or
s1 + v0; this is not important, since the buyer would also be indifferent between these two choices.

19If s = s, the buyer is exactly indifferent between choosing v∗0 = v∗1 = 0 or v∗1 = 0 < v∗0 .
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must offer a strictly positive prize to exactly one supplier and that prize must exceed the

spread between the specializations: s1−s0 = 1−2s < vi. For s close to
1
2
, the specializations

are close and the buyer can elicit greater diversity with a small prize, which imposes a small

quality distortion cost. In addition, the buyer’s default payoff is low. In this case, the benefit

from increased diversity outweighs the cost of achieving it. As s decreases towards 1
4
, the

buyer’s default payoff increases. Additionally, the minimum prize needed to elicit greater

variety increases, which increases the quality distortion cost. For s close enough to 1
4
, the

benefit from increased variety is outweighed by the cost, and the buyer is better off at the

default. The threshold, s, leaves the buyer indifferent between the default and implementing

greater variety.

Finally, it is worth discussing the parameter configurations not covered by the results in

this section (for example, if 1−s1 < s∗ < s0 and the specializations are not “too close”). The

qualitative conclusions drawn from Proposition 3 and Example 2 extend to such scenarios.

For instance, if the specializations are sufficiently different, the optimal FPC specifies positive

prizes for both suppliers, and equilibrium variety decreases relative to the default. If the

specializations are moderately close, then the structure of the prizes depends on whether the

buyer is most concerned with increasing or decreasing variety (relative to the default).

Figure 1 illustrates how the structure of the FPC changes in Example 2 for all possible

configurations of the specializations in which supplier zero has a quality advantage; i.e.,

s0 ≥ 1−s1 (the case s0 ≤ 1−s1 is symmetric). The relevant region of the parameter space is

the triangle bounded on the left by the line s1 = 1− s0 and on the right by the line s1 = s0.

Hence, as we move from left to right in the triangle, the specializations move closer to one

another.

In Region 1, the specializations are sufficiently different and the buyer awards a positive

prize to both suppliers. In Region 4, the specializations are sufficiently close and the buyer

awards a positive prize to only one supplier – supplier zero in this example – and induces

greater variety. In Regions 2 and 3, the specializations are moderately close. In Region 2, the

buyer awards a positive prize only to supplier one. Different from the single-prize scenario

covered in Proposition 4, this prize is sufficiently small (specifically, vi < s1 − s0) that it

provides supplier one an incentive to adopt a more conservative approach, and equilibrium

variety decreases relative to the default. Intuitively, in this region, supplier one’s default

innovation is of sufficiently low quality that the buyer’s primary motivation is to encourage

her to adopt a more conservative approach. This can be accomplished by offering her a

sufficiently small positive prize. Ideally, the buyer would also like supplier zero to adopt a
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more radical approach (closer to 0), but such an equilibrium cannot be implemented with

two positive prizes. Instead, the buyer awards a prize of zero to supplier zero. In Region 3,

both prizes are 0, and the intuition is analogous to the case s ∈ [1
4
, s) in example 2. That is,

the buyer would like to increase diversity, relative to the default, but to do so would require

a prize spread that imposes too large of a quality distortion cost on the buyer.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.6

0.7

0.8

0.9

1

Region 1 Region 2
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Region 4

s0

s 1

1

Figure 1: An illustration of how the structure of the prizes in the optimal
FPC changes as the specializations vary in Example 2. In Region 1, v∗0 , v

∗
1 >

0. In Region 2, v∗0 = 0 < v∗1 < s1 − s0. In Region 3, v∗0 = v∗1 = 0. And in
Region 4, v∗1 = 0 < s1 − s0 < v∗0 .

4.3 Further analysis and welfare implications

We now examine the welfare implications of moral hazard in our model, and we explore fur-

ther properties of the optimal FPC when the buyer awards positive prizes to both suppliers.

In what follows, we let π∗
b = πb(ℓ

∗, v∗) denote the buyer’s ex ante expected payoff in the

optimal FPC, and let SFB = SFB(ℓ
FB) denote maximized ex ante total surplus. We say

that the buyer attains the first-best if π∗
b = SFB. Our first result shows the circumstances

under which the buyer can attain the first-best.

Proposition 6. The following statements are equivalent:
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(i) The buyer attains the first-best with an FPC.

(ii) C ′
0(ℓ

FB
0 − s0) = C ′

1(s1 − ℓFB
1 ) ≥ 0.

(iii) There exists vFB
0 = vFB

1 ≥ 0 such that ℓFB ∈ Φ(vFB).

Proposition 6 shows that the buyer attains the first-best if and only if the first-best

approaches can be implemented by equal prizes; equivalently, marginal costs are equal at

the first-best approaches and s0 ≤ ℓFB
0 , ℓFB

1 ≤ s1. Intuitively, when the prizes are equal,

the quality distortion cost is zero. So, if the first-best can be implemented by equal prizes,

the buyer offers such prizes, appropriates the suppliers’ surplus through the entry fees, and

attains the first-best payoff. The structure of the optimal FPC here is similar to the typical

‘franchise contract’ that emerges in moral hazard models with risk neutrality (see, e.g.,

Bolton & Dewatripont, 2004). On the other hand, if ℓFB cannot be implemented with equal

prizes, the buyer must either offer unequal prizes and/or implement different approaches.

Either way, she cannot attain the first-best. We now provide a more economically meaningful

corollary, which shows one set of circumstances under which the first-best is attainable.

Corollary 1. If the specializations are sufficiently different and the suppliers are symmetric,

the buyer attains the first-best with an FPC. That is, if s0 = 1− s1 < s∗ and C0 ≡ C1, then,

π∗
b = SFB.

When the suppliers are symmetric, the first-best can be implemented with equal prizes

and, as a result, there is no distortion from the social optimum. Note that symmetry of

the distribution is important for Corollary 1, but is not critical for Proposition 6. That

is, whenever the first-best can be implemented with equal prizes, the optimal FPC will be

socially optimal. But with an asymmetric distribution, this need not correspond to a setting

with symmetric suppliers. In the remainder of this section, we provide further insights into

the design of the optimal FPC when the specializations are sufficiently different but the

first-best cannot be attained.

To begin, we discuss some technical points that will greatly simplify the analysis. By

Proposition 2, if ℓ ∈ Φ(v) and ℓi ̸= si for each i then |v1 − v0| < ℓ1 − ℓ0. This means

Qb(ℓ, v) = q − κ(ℓ, v), where

κ(ℓ, v) =

∫ y0(ℓ,v)

0

|ℓ0 − y|dF (y) +
∫ 1

y0(ℓ,v)

|ℓ1 − y|dF (y).

In addition, ℓmust satisfy the first-order conditions given in equations (3) and (4). Motivated

by these facts, let
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L(ℓ, v) = κ(ℓ, v) + C0(ℓ0 − s0) + C1(ℓ0 − s0),

and consider the following auxiliary problem for the buyer:

max
ℓ,v

q − L(ℓ, v) s.t. v0, v1 ≥ 0, |v1 − v0| ≤ 1 and
∂ui(ℓ, v)

∂ℓi
= 0, i = 0, 1. (P’)

Similar to the first-order approach used to characterize optimal contracts in principal-

agent models, the problem (P’) simplifies (P) by replacing the equilibrium constraint with

the first-order conditions in (3)-(4).20 Our next result shows that the solutions to (P’) and

(P) coincide when s0, 1− s1 < s∗.

Lemma 7. If s0, 1− s1 < s∗, then, (ℓ∗, v∗) solves (P) if and only if (ℓ∗, v∗) solves (P’).

Lemma 7 greatly simplifies the analysis, as we can study the buyer’s problem, (P), by

analyzing the simpler problem, (P’). This is not obvious because the feasible sets (and,

in general, the objective functions) in the two problems do not coincide. Nevertheless, we

exploit this fact to characterize the solution to the buyer’s problem in Appendix B.1 (see

equations (17)-(19)). Here, we focus on the key ideas.

Proposition 7. Suppose s0, 1 − s1 < s∗ and C ′
i

(∣∣ℓFB
i − si

∣∣) < C ′
j

(∣∣ℓFB
j − sj

∣∣). Then

(ℓ∗, v∗) ∈ AP implies v∗i < v∗j and
∣∣ℓ∗i − 1

2

∣∣ < ∣∣ℓ∗j − 1
2

∣∣. Moreover,
∣∣ℓ∗i − 1

2

∣∣ < ∣∣ℓFB
i − 1

2

∣∣
while

∣∣ℓFB
j − 1

2

∣∣ < ∣∣ℓ∗j − 1
2

∣∣.
Proposition 7 describes some key features of the optimal FPC and shows how the

approaches are distorted when the social optimum is unattainable. In particular, when

C ′
i

(∣∣ℓFB
i − si

∣∣) < C ′
j

(∣∣ℓFB
j − sj

∣∣), supplier i is awarded a smaller prize and adopts a more

conservative approach than supplier j. Moreover, relative to the first-best, i adopts an

approach that is too conservative and too far from her specialization, while j adopts an

approach that is too radical and too close to her specialization.

To provide the intuition, first note that under the hypotheses of Proposition 7, the buyer

could implement the first-best approaches by offering unequal prizes, vFB
i < vFB

j . However,

doing so requires a prize spread that results in a high-quality distortion cost. Instead,

relative to the first-best approaches, the buyer induces i to choose an approach further from

her specialization and induces j to choose an approach closer to her specialization. Doing

20The additional constraint that |v1−v0| ≤ 1 is made purely for technical reasons. It is shown in Appendix
B that this constraint never binds.
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so enables the buyer to reduce the prize spread, which limits the distortion cost. Also note

that since one supplier’s approach is more conservative than her first-best approach, while

the other’s is more radical, it is not clear how the equilibrium level of diversity compares

with the first-best. Indeed, the comparison is generally ambiguous, and it is not difficult to

construct examples wherein equilibrium diversity is greater, lower, or equal to the first-best

level.

Following on from Proposition 7, the next corollary provides a more economically mean-

ingful statement revealing the nature of the distortion that arises. In what follows, we say

that supplier i has an advantage over j if she is both more flexible and conservative than j:

C ′
i ≤ C ′

j and
∣∣si − 1

2

∣∣ ≤ ∣∣sj − 1
2

∣∣, where at least one inequality is strict.

Corollary 2. If the specializations are sufficiently different and supplier i has an advantage

over j then i receives a smaller prize and chooses a more conservative approach than j.

Moreover, i’s equilibrium approach is more conservative than her first-best approach, whilst

j’s is more radical. Formally, suppose s0, 1 − s1 < s∗. If
∣∣si − 1

2

∣∣ ≤ ∣∣sj − 1
2

∣∣, and C ′
i ≤ C ′

j,

where at least one of the inequalities is strict, then (ℓ∗, v∗) ∈ AP implies, v∗i < v∗j and∣∣ℓ∗i − 1
2

∣∣ < ∣∣ℓ∗j − 1
2

∣∣. Moreover,
∣∣ℓFB

i − 1
2

∣∣ < ∣∣ℓ∗i − 1
2

∣∣ while ∣∣ℓ∗j − 1
2

∣∣ < ∣∣ℓFB
j − 1

2

∣∣.
As Corollary 2 suggests, if i has an advantage over j then C ′

i

(∣∣ℓFB
i − si

∣∣) < C ′
j

(∣∣ℓFB
j − sj

∣∣),
and the conclusion of Proposition 7 follows.

Corollary 2 is reminiscent of a common theme in contest design, which is ‘leveling the

playing field’ – i.e., placing contestants on equal footing to raise the intensity of competition

(see, e.g., Chowdhury et al., 2023). However, the motivation behind awarding a larger prize to

the disadvantaged supplier in our context is driven by very different considerations; namely,

the buyer’s motivations to balance a trade-off between raising individual expected qualities,

maintaining variety, and limiting costs. Suppose, for example, i has a quality advantage

over j. By definition, this means i’s default innovation is closer to 1
2
– the innovation

that maximizes expected individual quality. Due to diminishing returns, at the default, a

marginally more conservative approach for i yields a lower marginal increase in her expected

quality, as compared to j. Driven by this fact, the buyer wants to motivate j to move further

from her specialization than i, and this calls for a greater prize for j.

4.4 Contractible rank-order

As we showed in the last section, when one supplier is advantaged, the buyer is unable to

attain the first-best with an FPC. Driving the inefficiency is not moral hazard per se. Rather,
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it is the buyer’s inability to commit to an ex post socially efficient purchasing rule. In this

section, we formalize this intuition. In the spirit of Lazear & Rosen (1981), we examine a

model in which the rank-order of qualities is contractible, and the buyer can commit to a

purchasing rule. We show that the buyer can achieve the first-best with an FPC for any

specializations such that s0, 1− s1 < s∗.

Formally, given the realized qualities, let z0(Q) = 1(Q0 > Q1) be an indicator function

equal to 1 if Q0 > Q1 and equal to 0 otherwise. We assume that z0(·) is contractible. In

stage 1, the buyer chooses the contest parameters, (v, t), and commits to a purchasing rule,

ω : {0, 1} → {0, 1}, which is a mapping from the realizations of z0 to the identity of the

supplier from whom the buyer will purchase.21

Proposition 8. If s0, 1 − s1 < s∗ and the rank-order of qualities is contractible, then the

buyer attains the first best with an FPC.

Consider the context of a procurement design competition, as discussed in the Introduc-

tion. Proposition 8 suggests that buyers might benefit from committing to evaluate design

submissions anonymously – that is, without regard to the identities (and therefore the prize

values) attached to the submissions.

5 Optimal contests

In this section, we study the design of optimal contests, where a contest now takes the more

general form considered by Che & Gale and L&S. Specifically, we allow the buyer to offer

each supplier a menu of allowable prices, µi ⊆ R+. After the approaches are chosen, the

qualities are realized and observed by both suppliers, who then simultaneously choose prices

from their respective menus. After the prices are chosen, the buyer purchases from the

supplier offering her the greatest surplus.

The game proceeds in four stages: In stage 1, the buyer chooses the menus and entry

fees/subsidies. In stage 2, the suppliers make their entry decisions, and each participating

supplier chooses their approach. In Stage 3, the suppliers observe the realized qualities and

choose a price from their menus. In stage 4, the buyer chooses which innovation to purchase.

We maintain the same tie-breaking rules as in the baseline model, and we will consider

two versions of the model regarding the buyer’s ability to discriminate (i.e., specify different

21Note that the buyer’s purchasing rule does not distinguish between the case where Q0 < Q1 and Q0 =
Q1. Moreover, we have restricted attention to deterministic purchasing rules. Certainly, both of these
simplifications can be relaxed. But for our purposes, restricting attention to these simple rules is sufficient
to show that the buyer can attain the first best.
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contest parameters for the suppliers). First, we allow for identity-dependent subsidies/entry

fees, and we show that, quite generally, an auction is an optimal contest and the buyer

attains the first-best. We then consider a variant in which the buyer faces an anonymity

constraint and is required to set the same contest parameters for the two suppliers. In

that environment, although the auction implements the first-best, it may not be an optimal

contest; in particular, the buyer may be better off using an FPC.

5.1 Discriminatory contests

To begin, we allow the buyer to set different entry-fees for the two suppliers; we will show

that, for any pair of specializations, an auction in which µi = R+ is an optimal contest and

the buyer attains the first-best. In fact, as will be seen, this result is quite robust and holds

independently of several earlier assumptions on the distribution of the ideal and suppliers’

costs. In particular, symmetry of the distribution, as well as differentiability, convexity, and

continuity of the cost functions, are not crucial for the result.

So let µi = R+ for each i. We begin with the stage-3 and stage-4 subgames, noting that

in these subgames, the suppliers’ costs are sunk and the ideal has been realized. Hence,

the equilibrium in this subgame is independent of the cost functions and distribution of the

ideal. Then, the equilibrium is exactly as characterized by L&S: The stage-3 equilibrium

pricing strategy of supplier i is, σi(ℓ, y) = max{Qi(ℓi, y)−Qj(ℓj, y), 0}. And in stage 4, the

buyer purchases from i whenever Qi(·) > Qj(·).
Now consider stage 2. Assuming equilibrium behavior in subsequent stages, supplier

i’s expected payoff is, πi(ℓ) = E[σi(ℓ, y)] − Ci(ℓi − si). Letting pi(ℓ) = pr(Qi(·) > Qj(·)),
and, suppressing the arguments of all functions for ease of exposition, we have E[σi] =

piE [Qi|Qi > Qj]− piE [Qj|Qi > Qj]. Adding and subtracting pjE[Qj|Qj > Qi], E[σi] can be

written, E[σi] = E[max{Q0, Q1}]− E[Qj]; hence, i’s payoff can be written,

πi(ℓ) = QFB(ℓ)− E [Qj (ℓj, y)]− Ci(ℓi − si) = SFB(ℓ)− E [Qj (ℓj, y)] .

As Qj(·) is independent of ℓi, it is easy to see that the stage-2 subgame is an exact potential

game with potential, SFB; that is, πi(ℓ
′
i, ℓj) − πi(ℓi, ℓj) = SFB(ℓ

′
i, ℓj) − SFB(ℓi, ℓj) for all

ℓ′i, ℓi, ℓj ∈ [0, 1]. It follows that if ℓFB ∈ argmaxℓ SFB(ℓ), then, ℓ
FB is an equilibrium profile

in the stage-2 subgame (see Monderer & Shapley, 1996). By setting ti = πi(ℓ
FB), the buyer

appropriates each supplier’s surplus, and the next result is immediate:

Proposition 9. An auction is an optimal contest, and the buyer attains the first-best.
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L&S show that an auction implements the socially optimal approaches when all ap-

proaches share the same fixed cost (see their Proposition 2). Here we have shown why the

auction implements the socially optimal approaches, and why this is independent of the spe-

cializations, cost functions, and distribution of the ideal. More intuitively, in the auction –

as in the FPC – each supplier benefits from having a higher-quality innovation, as this raises

her chance of victory. At the same time, the auction incentivizes the suppliers to differentiate

their approaches, as similar approaches lead to small quality differences and more intense

price competition at stage 3. Consequently, each supplier chooses their approach to strike a

balance between raising their individual quality, maintaining diversity, and limiting costs –

precisely the trade-offs resolved by the first-best approaches.

L&S do not allow for entry fees and show that, although the auction implements the

first-best, it tends to leave large, positive rents to the suppliers, rendering it inferior to the

FPC in some circumstances. In the next section, we study a related issue that arises when

the buyer faces an anonymity constraint.

5.2 Auctions vs FPCs under anonymity

As we elaborate upon in Section 6, unequal treatment of the suppliers may not be feasible for

a number of practical and legal reasons. To understand the implications, in this section, we

consider a variant of the model in which the buyer faces an anonymity constraint, requiring

that the prizes/menus/entry-fees are the same for both suppliers. First, we focus on environ-

ments where the specializations are sufficiently different, but one supplier is advantaged. We

discuss how the anonymity constraint affects the buyer in both the auction and FPC, and we

then compare the performance of the two. In order to obtain clear-cut welfare comparisons,

the results in this section are based on the linear/quadratic model, but many of the insights

discussed below hold more generally.

Adding additional constraints clearly cannot help the buyer, regardless of the contest

structure she uses. However, their impact differs in the auction and the FPC. In the auction,

the buyer loses the ability to fully extract rents from the suppliers, but, as the menus are

unaffected by the constraint, total surplus remains at the first-best level. The buyer sets the

entry fee to fully extract the rent from the disadvantaged supplier, leaving a positive rent

for the advantaged supplier, equal to the difference in the suppliers’ payoffs.

In the FPC, the entry fees are set in an analogous manner to the auction, but as the

relinquished rent is an increasing function of the prize, this leads to a distortion from the

social optimum. In particular, the prize is suboptimally small (from a welfare perspective),
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and the suppliers choose approaches that are closer to their specializations than is socially

optimal. In the linear/quadratic model, the magnitudes of these distortions are greater

than the distortions that emerge without an anonymity constraint. As a consequence, total

surplus falls, relative to that scenario.

Comparing the performance of the FPC and the auction under anonymity, the auction

generates a greater total surplus, but it leaves a greater rent to the advantaged supplier than

does the FPC. Intuitively, in the FPC, the buyer limits the relinquished rent by reducing

the size of the prize. On balance, in the linear/quadratic model, the buyer prefers the FPC.

The next result formalizes the points made in the discussion thus far. In what follows,

we say that i has a singular advantage over j if she has either a cost or quality advantage.

Proposition 10. Consider the uniform-quadratic model. Suppose s0, 1−s1 < s∗ and supplier

i has a singular advantage over j. Under an anonymity constraint, in both the auction and

FPC, the disadvantaged supplier captures no rent, while the advantaged supplier captures a

positive rent. In addition,

(i) In the auction: Total surplus is equal to the first-best.

(ii) In the FPC: Total surplus is less than the first-best and each supplier’s approach is

closer to her specialization than is her first-best approach (i.e., |ℓ∗i − si| <
∣∣ℓFB

i − si
∣∣

for each i). Moreover, total surplus decreases, relative to the discriminatory FPC.

(iii) The buyer prefers an FPC to the auction.

Whilst the FPC outperforms the auction in some circumstances, we note that the com-

parison between the two is, in general, ambiguous. Consider, for instance, a setting in which

s0 = s1 = 1
2
and the suppliers are equally flexible. As an anonymous FPC cannot induce

greater variety, the buyer awards prizes of zero, and both suppliers produce at their special-

izations. In the auction, the suppliers choose the first-best approaches, and their expected

payoffs are equal. The buyer can therefore attain the first-best by setting a single entry

fee/subsidy, which fully extracts the suppliers’ rent.

6 Conclusion and Discussion

This paper adds to a new literature on the use of contests to encourage product diversity by

exploring an environment in which suppliers are specialized. Our main results show: (1) An
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FPC is an optimal means of eliciting variety when the specializations are sufficiently different

and no supplier is inherently advantaged. (2) If one supplier has an inherent advantage, an

FPC leads to a distortion from the social optimum. In this case, the prizes are chosen

in such a way as to reduce the likelihood that the buyer’s ex post purchasing decision is

socially inefficient. This distortion can be eliminated if the buyer is able to commit to

purchasing the highest-quality innovation ex post. (3) Provided that unequal treatment of

the suppliers is feasible, auctions are an optimal means of eliciting variety. But if the buyer

faces an anonymity constraint, an FPC may be preferable, so long as the specializations are

sufficiently different.

We’ve seen that when the specializations are close, FPCs can be used to induce greater

variety, but their efficacy is limited. In practice, this may not pose a significant hindrance to

their use. This is because buyers often limit participation in the final competition through

an initial screening process (Fullerton & McAfee, 1999). If product variety is a first-order

concern, buyers might use such processes to identify suppliers with different areas of exper-

tise. Indeed, an interesting avenue for future work might be to explore optimal mechanisms

for selecting the ‘right’ set of suppliers in this context.

We now briefly discuss the relevance of some key modeling assumptions:

Unequal treatment of the suppliers: In the baseline model, we allow the prizes/entry-fees

to depend on the identities of the suppliers. This assumption may be more realistic in some

settings than others. Identity-dependent prizes are unlikely to be found in large open-call

contests for a variety of practical reasons. But, as discussed by Lu et al. (2022), in the context

of procurement design competitions, it is entirely reasonable for buyers to offer different prices

to different suppliers.22 Design competitions are also commonly used in the public sector,

and government agencies may face greater scrutiny on the unequal treatment of suppliers.

Nevertheless, it may be legal if based on inherent differences between suppliers. In the UK,

for example, the Procurement Act of 2023 states that, “...a contracting authority must treat

suppliers the same unless a difference between the suppliers justifies different treatment”

(emphasis added).23 Moreover, some countries explicitly grant preferential treatment to

certain firms – namely, small businesses – in the procurement process. In China, for example,

small businesses are granted a price preference between 6-10%, and similar provisions exist

in Mexico and Korea (OECD, 2018). In the U.S., preferential treatment is afforded to small

businesses through the use of targets – which specify a certain fraction of contracts that

22See also Gürtler & Kräkel (2010) for concrete examples in the context of labor market tournaments.
23See, Section 12 https://www.legislation.gov.uk/ukpga/2023/54
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should be awarded to small businesses (currently 23%) – and set-asides – competitions that

are only open to small businesses. However, these practices are country-specific and are

prohibited in some jurisdictions, including the European Union (OECD, 2018).

Entry fees: In our model, the optimal FPC involves entry fees, which are not commonly

observed in practice. Without these entry fees, the buyer cannot extract the suppliers’ rents,

and must then balance the usual trade-off between rent extraction and efficiency.

On the other hand, subsidies are commonly observed, particularly in public procurement

(Lichtenberg, 1990). The fact that entry fees, rather than subsidies, emerge in our model

is driven by our assumption that there are no fixed costs of entry; that is, suppliers can

costlessly produce at their specialization. If we were to introduce positive fixed costs and

allow subsidies (but not entry fees), our results would be unaffected provided that (i) it

is always optimal for the buyer to induce entry from both suppliers; and (ii) the optimal

subsidy is strictly positive for both suppliers.

However, for sufficiently high fixed costs, it may not be optimal for the buyer to subsidize

the entry of both suppliers, and the optimal contest must account for the possibility of

exclusion. Unlike the case with two entrants/one positive prize that emerges in our model,

when one supplier, say j, is excluded entirely from the contest, the buyer loses access to her

default innovation. This eliminates the buyer’s leverage over supplier i, and there is no way

for her to induce i to choose an approach different from her specialization. Hence, if it is

optimal for the buyer to exclude a supplier from the contest, then she simply purchases one

supplier’s default innovation at cost.

Symmetry of the distribution: Symmetry of the distribution is important for our finding

that FPCs induce the first-best approaches when suppliers are symmetric (Corollary 1), but

is not critical for Proposition 6. That is, with an asymmetric distribution, the buyer could

attain the first-best payoff whenever the first-best approaches can be implemented with equal

prizes. If the suppliers were symmetric but the distribution was asymmetric, there would be

no reason to think that the first-best approaches could be induced with equal prizes.

Assumption on costs : Assumption 2(ii) is important for establishing the equivalence be-

tween (P) and (P’) in Lemma 7. In particular, Assumption 2(ii) ensures that, at the solution

to (P’), the equilibrium condition (5) is non-binding. Without this assumption, the Buyer’s

optimal FPC (when s0, 1−s1 < s∗) could be characterized by solving an alternative problem

in which the problem (P’) is augmented by adding the additional constraint corresponding to

(5). In general, it is challenging to determine if and when this constraint binds. Assumption

2(ii) is not relevant for the circumstances under which the FPC implements the first-best,
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nor is it crucial to our conclusion that the buyer can always elicit variety with an FPC.

Indeed, so long as costs are not identically zero, both of these conclusions hold.

Adverse Selection: In this study, we followed L&S and focused on moral hazard as the

primary contracting friction, abstracting from adverse selection. In particular, in our model,

the suppliers’ specializations are known by the buyer. We believe this assumption is most

reasonable in the context of a long-term business relationship, as one would expect a buyer

to have an understanding of the core competencies of their suppliers. In other contexts –

e.g., that of a new business relationship – it is not difficult to imagine that a supplier’s spe-

cialization may be her private information. In this case, we would expect further distortions

from the first-best as a consequence of the usual rent extraction/efficiency trade-off. But

how this trade-off interacts with the ex ante vs. ex post efficiency trade-off that arises in our

model is not obvious, and is an interesting question for future research.
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Gürtler, O., & Kräkel, M. (2010). Optimal tournament contracts for heterogeneous workers.

Journal of Economic Behavior & Organization, 75 (2), 180–191.

Hotelling, H. (1929). Stability in Competition. Economic Journal , 39 (153), 41–57.

Konrad, K. A. (2009). Strategy and Dynamics in Contests . Oxford, UK: Oxford University

Press.

Lazear, E. P., & Rosen, S. (1981). Rank-Order Tournaments as Optimum Labor Contracts.

Journal of Political Economy , 89 (5), 841–864.

Lemus, J., & Temnyalov, E. (2024). Diversification and information in contests. Economic

Theory , 78 (1), 263–294.

Letina, I., & Schmutzler, A. (2019). Inducing Variety: A theory of innovation contests.

International Economic Review , 60 (4), 1757–1780.

Lichtenberg, F. R. (1988). The private R&D investment response to federal design and

technical competitions. The American Economic Review , 78 (3), 550–559.

Lichtenberg, F. R. (1990). Us government subsidies to private military r&d investment:

The defense department’s independent R&D policy. Defence and Peace Economics , 1 (2),

149–158.

Liu, B., Lu, J., Wang, R., & Zhang, J. (2018). Optimal prize allocation in contests: The

role of negative prizes. Journal of Economic Theory , 175 , 291–317.

Lu, J., Wang, Z., & Zhou, L. (2022). Optimal favoritism in contests with identity-contingent

prizes. Journal of Economic Behavior & Organization, 196 , 40–50.

Maskin, E., & Riley, J. (2000). Asymmetric Auctions. Review of Economic Studies , 67 (3),

413–438.

Moldovanu, B., & Sela, A. (2001). The Optimal Allocation of Prizes in Contests. American

Economic Review , 91 (3), 542–558.

Monderer, D., & Shapley, L. S. (1996). Potential games. Games and economic behavior ,

14 (1), 124–143.

Münster, J. (2006). Lobbying contests with endogenous policy proposals. Economics &

Politics , 18 (3), 389–397.

31



OECD (2018). Intervening to support smes in public procurement. In SMEs in Public

Procurement: Practices and Strategies for Shared Benefits , (pp. 83 – 98). Paris: OECD

Publishing.

Olszewski, W., & Siegel, R. (2020). Performance-maximizing large contests. Theoretical

Economics , 15 (1), 57–88.

Osborne, M. J. (1995). Spatial models of political competition under plurality rule: A

survey of some explanations of the number of candidates and the positions they take. The

Canadian Journal of Economics / Revue canadienne d’Economique, 28 (2), 261–301.

Protopappas, K., & Rietzke, D. (2023). Innovation contest design with product and supplier

diversity. Available at SSRN 4391919 .

Reisinger, M., Seel, C., & Stehr, F. (2023). Hotelling revisited-the price-then-location model.

Available at SSRN 4356260 .

Rosen, J. B. (1965). Existence and Uniqueness of Equilibrium Points for Concave N-Person

Games. Econometrica, 33 (3), 520.
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A Proofs

Proof of Lemma 1. We prove parts (ii)-(iii); part (i) follows from Lemma A1 in L&S.

Let d ∈ [0, 1]; see that C ′
j(d) =

∫ d

0
C ′′

j (x)dx >
∫ d

0
2f

(
1
2

)
dx = 2df

(
1
2

)
, where the inequality

holds by Assumption 2(ii). Next, see that, |f ′(y)| < 2f(0) ≤ 2f
(
1
2

)
≤ C ′′

j (d), where the

first inequality holds by Assumption 2(i); the second by Assumption 1 and the third by

Assumption 2(ii).

Proof of Proposition 1. We first show that there is a unique solution to (FB-P). Note

that this problem can be equivalently written, minℓ LFB(ℓ), where

LFB(ℓ) =

∫ ℓ0

0

(ℓ0 − y) dF (y) +

∫ m(ℓ)

ℓ0

(y − ℓ0) dF (y) +

∫ ℓ1

m(ℓ)

(ℓ1 − y) dF (y)

+

∫ 1

ℓ1

(y − ℓ1) dF (y) + C0(ℓ0 − s0) + C1(ℓ1 − s1).

Let H(ℓ) denote the Hessian of LFB evaluated at ℓ:

H(ℓ) =

[
2f(ℓ0)− 1

2
f (m (ℓ)) + C ′′

0 (ℓ0 − s0) −1
2
f (m (ℓ))

−1
2
f (m (ℓ)) 2f(ℓ1)− 1

2
f (m (ℓ)) + C ′′

1 (ℓ1 − s1)

]
.

By Lemma 1, the terms on the main diagonal of H(ℓ) are strictly positive. Lemma 1 also

implies that for each i, 2f(ℓi)− 1
2
f (m (ℓ))+C ′′

i (di) >
1
2
f (m (ℓ)), which, in turn, implies H(ℓ)

is positive definite and, hence, LFB is strictly convex in (ℓ0, ℓ1). Therefore, there is a unique

solution to (FB-P). It is also straightforward to verify that ∂LFB(ℓ)
∂ℓi

|ℓi=0 < 0 < ∂LFB(ℓ)
∂ℓi

|ℓi=1,

which means that ℓFB
0 , 1−ℓFB

1 ∈ (0, 1). Then, the following FOCs are necessary and sufficient

for characterizing ℓFB:

∂LFB

∂ℓ0
= 2F (ℓFB

0 )− F
(
m

(
ℓFB

))
+ C ′

0(ℓ
FB
0 − s0) = 0 (7)

∂LFB

∂ℓ1
= 2F (ℓFB

1 )− 1− F
(
m

(
ℓFB

))
+ C ′

1(ℓ
FB
1 − s1) = 0. (8)

Let

Γ (x, z) = 2F (x) + 2F (z)− 2F (m(x, z))− 1. (9)
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It is useful to note that for all x, z ∈ (0, 1), Γ is strictly increasing in (x, z) and that

sgn(Γ (x, z)) = sgn(x+ z − 1). (10)

Now suppose s0, 1 − s1 < s∗. We show that s0 < ℓFB
0 and ℓFB

1 < s1. Proceeding

by contradiction, first suppose s0 ≥ ℓFB
0 and ℓFB

1 ≥ s1. Then, we have ℓFB
0 < s∗ and

ℓFB
1 > 1−s∗. (7) implies, 0 = 2F (ℓFB

0 )−F (m(ℓFB)+C ′
0(ℓ0−s0) < 2F (s∗)−F

(
1
2

)
= 0, where

the inequality follows by strict convexity of LFB(·, ℓ1) and since ∂LFB

∂ℓ0
is strictly decreasing

in ℓ1. The final equality holds by definition of s∗. We have a contradiction; therefore, we

cannot have s0 ≥ ℓFB
0 and ℓFB

1 ≥ s1.

Next, suppose ℓFB
0 ≤ s0 and ℓFB

1 < s1. Adding (7) and (8), re-arranging, and using the

fact that C ′(x) = −C ′(−x) we have, Γ (ℓ) = C ′
1(s1−ℓFB

1 )+C ′
0(s0−ℓFB

0 ) > 0. (10) then implies

m(ℓFB) > 1
2
. (7) then implies, 0 = 2F (ℓFB

0 )− F (m(ℓFB) + C ′
0(ℓ

FB
0 − s0) < 2F (s∗)− 1

2
= 0,

yielding a contradiction. The logic for the case where ℓFB
0 > s0 and ℓFB

1 ≥ s1 is similar.

This establishes that ℓFB
0 > s0 and ℓFB

1 < s1. The proof for the case where s0, 1− s1 > s∗ is

analogous.

Proofs for Section 3.3

Before proving the main results in this section, we provide two auxiliary results. We also

point out that Proposition 2 follows by Proposition A.1.

Proposition A.1. Let v0, v1 ≥ 0 and suppose ℓ∗ ∈ Φ(v); let d∗i = |ℓ∗i −si|. (i) If |v1−v0| ≥ 1,

then, d∗0 = d∗1 = 0. (ii) If d∗i > 0 for some i, then, |v1−v0| ≤ |ℓ∗1−ℓ∗0|. (iii) If d∗0, d∗1 > 0, then,

|v1 − v0| < ℓ∗1 − ℓ∗0, ℓ
∗
0 ∈ (s0, s0 +

v0
4
), ℓ∗1 ∈ (s1 − v1

4
, s1) and

∂ui(ℓ
∗,v)

∂ℓi
= 0 for i = 0, 1. (iv) If

v0, v1 > 0 and d∗i > 0 = d∗j , then, v0 = v1 and sj =
1
2
= ℓ∗i (v) If v0, v1 > 0, s0, s1 ∈ (0, 1)\

{
1
2

}
and |v1 − v0| ≥ s1 − s0, then d

∗
0 = d∗1 = 0. (vi) If vi > 0 = vj and vi ≥ s1 − s0, then, ℓ

∗
j = sj

and ℓ∗i ∈ {si, sj−vi, sj+vi}. (vii) If d∗0 > 0 [d∗1 > 0], s0, 1−s1 ∈
(
0, 1

2

)
, and |v1−v0| < s1−s0,

then, |v1 − v0| ≤ ℓ∗1 − ℓ∗0 and ∂u0(ℓ∗)
∂ℓ0

≥ 0
[
∂u1(ℓ∗)
∂ℓ1

≤ 0
]
.

Proof. Part (i): Suppose |v1−v0| ≥ 1; let j denote the identity of the player with the smaller

prize. For all ℓ0, ℓ1 ∈ [0, 1] and y ∈ (0, 1), it holds, |ℓj − y|+ vj < |ℓi − y|+ vi, which means

pj(ℓ, v) = 1. It follows that ℓ0 = s0 and ℓ1 = s1 are dominant strategies for suppliers 0 and

1, respectively.

Part (ii): Let ℓ∗ ∈ Φ(v) and suppose d∗i > 0. Proceed by contradiction and suppose

|ℓ∗1 − ℓ∗0| < |v1 − v0|. We will consider the case where v0 ≤ v1; the case where v0 > v1 is
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analogous. First see that |ℓ∗1−ℓ∗0| < v1−v0 implies p1(ℓ
∗) = 0. Suppose d∗1 > 0; since supplier

one wins with probability zero, she has a profitable deviation to ℓ′1 = s1, as this will not

reduce her expected earnings, but will strictly lower her cost. Next, suppose d∗0 > 0. Then,

there exists ℓ′0 ̸= ℓ∗0 such that |ℓ′0−s0| < d∗0 and |ℓ′0−ℓ∗1| < v1−v0. A deviation to ℓ′0 does not

affect supplier zero’s earnings but strictly reduces her cost, and therefore strictly increases

her payoff. At least one player has a profitable deviation, which contradicts the hypothesis

that ℓ∗ ∈ Φ(v).

Part (iii): Let ℓ∗ ∈ Φ(v) with d0, d
∗
1 > 0. We’ll first show that |v1 − v0| < |ℓ∗1 − ℓ∗0|.

WLOG suppose v1 ≥ v0. Proceed by contradiction and suppose v1 − v0 ≥ |ℓ∗1 − ℓ∗0|. Part (ii)
implies v1 − v0 = |ℓ∗1 − ℓ∗0|. Now if ℓ∗1 ∈ {0, 1}, then, p1(ℓ∗, v) = 0, and supplier one has a

profitable deviation to ℓ′1 = s1, as this does not decrease here expected earnings but strictly

reduces her cost. This contradicts the definition of equilibrium, so it must be that ℓ∗1 ∈ (0, 1).

Then, suppose ℓ∗0 ≤ ℓ∗1. Then, p0(ℓ
∗) < 1. And, π0(ℓ

∗) = u0(ℓ
∗) = v0p0(ℓ

∗) − C0(ℓ
∗
0 − s0) <

v0 −C0(ℓ
∗
0 − s0) = limℓ0↓ℓ∗0 π0(ℓ0, ℓ

∗
1), which means supplier zero has a profitable deviation to

some ℓ′0 > ℓ∗0, contradicting the definition of equilibrium. A similar contradiction is reached

if ℓ∗0 > ℓ∗1, as supplier zero has a profitable deviation to some ℓ′0 < ℓ∗0. This establishes that

|v1 − v0| < |ℓ∗1 − ℓ∗0|.
Next, we show that ℓ∗1 ≥ ℓ∗0. Proceed by contradiction and suppose ℓ∗0 > ℓ∗1. Since s0 ≤ s1,

we must have either ℓ∗0 > s0 or ℓ∗1 < s1. Suppose ℓ
∗
1 < s1. By the first part of this proof, we

must have |v1−v0| < ℓ∗0−ℓ∗1 and so in some neighborhood of ℓ∗1, π1(ℓ
∗
0, ℓ1) = v1F (ỹ0(ℓ

∗
0, ℓ1, v))−

C1(ℓ1− s1), where ỹ0(ℓ, v) =
ℓ0+ℓ1+v0−v1

2
. See that ∂π1(ℓ∗,v)

∂ℓ1
= v1

2
f(ỹ0(ℓ

∗, v))−C ′
1(ℓ

∗
1− s1) > 0,

where the inequality follows since ℓ∗1 < s1 =⇒ C ′
1(ℓ

∗
1 − s1) < 0. Hence, supplier one has a

profitable deviation to some ℓ′1 > ℓ∗1, contradicting the definition of equilibrium. If ℓ∗0 > s0,

then a similar line of reasoning reveals that supplier zero has a profitable deviation to some

ℓ′0 < ℓ∗0. This establishes that ℓ
∗
1 ≥ ℓ∗0.

Finally, we show that ℓ∗0 ∈ (s0, s0 +
v0
4
), ℓ∗1 ∈ (s1 − v1

4
, s1) and, for each i, ∂ui(ℓ

∗,v)
∂ℓi

= 0.

Consider supplier zero: We first show that ℓ∗0 ∈ (s0, 1). Obviously, since ℓ∗1− ℓ∗0 > |v1− v0| ≥
0, we have ℓ∗0 < ℓ∗1 ≤ 1. Then, proceeding by contradiction, suppose ℓ∗0 ≤ s0. Since

ℓ∗1 − ℓ∗0 > |v1 − v0|, for ℓ0 in some neighborhood of ℓ∗0, π0(ℓ0, ℓ
∗
1, v) = u0(ℓ0, ℓ

∗
1, v). Then,

∂π0(ℓ∗,v)
∂ℓ0

= v0
2
f(y0(ℓ

∗, v)) − C ′
0(ℓ

∗
0 − s0) > 0, where the inequality holds since ℓ∗0 ≤ s0 implies

C ′
0(ℓ

∗
0 − s0) ≤ 0. This means supplier zero has a profitable deviation to some ℓ′0 > ℓ∗0,

contradicting the definition of equilibrium. Hence, ℓ∗0 ∈ (s0, 1), which means ℓ∗0 ∈ (0, 1). Since

π0(ℓ0, ℓ
∗
1) = u0(ℓ0, ℓ

∗
1) for ℓ0 in some neighborhood of ℓ∗0 and u0(·, ℓ∗1, v) is differentiable, ℓ∗0

must satisfy the FOC, ∂u0(ℓ∗,v)
∂ℓ0

= 0. Finally, see that 0 = ∂u0(ℓ∗,v)
∂ℓ0

= v0
2
f(y0(ℓ

∗))−C ′
0(ℓ

∗
0−s0) <
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v0
2
f(1

2
) − 2f(1

2
)(ℓ∗0 − s0) =⇒ ℓ∗0 < s0 +

v0
4
. Similar reasoning reveals that ℓ∗1 ∈ (s1 − v1

4
, s1)

and that ℓ∗1 must satisfy, ∂u1(ℓ∗,v)
∂ℓ1

= 0.

Part (iv): Let v0, v1 > 0 and suppose ℓ∗ ∈ Φ(v) with d∗i > 0 = d∗j WLOG, suppose

d∗0 > 0 = d∗1. We first show that |ℓ∗1 − ℓ∗0| = |v1 − v0|. Proceed by contradiction and suppose

|ℓ∗1 − ℓ∗0| ≠ |v1 − v0|. Since d∗0 > 0, Part (ii) of this lemma implies |ℓ∗1 − ℓ∗0| > |v1 − v0|.
First suppose ℓ∗1 > ℓ∗0. Then, for ℓ1 in some neighborhood of ℓ∗1, π1(ℓ

∗
0, ℓ1) = u1(ℓ

∗
0, ℓ1),

and ∂π1(ℓ∗)
∂ℓ1

= −v1
2
f(y0(ℓ

∗)) < 0. Then, supplier one has a profitable deviation to some

ℓ′1 < ℓ∗1, contradicting the definition of equilibrium. Next, suppose ℓ∗0 > ℓ∗1. Then, for

ℓ0 in some neighborhood of ℓ∗0, π0(ℓ0, ℓ
∗
1) = v0(1 − F (ỹ0(ℓ

∗))) − C0(ℓ
∗
0 − s0), and

∂π0(ℓ∗)
∂ℓ0

=

−v0
2
f(ỹ0(ℓ

∗)) − C ′
0(ℓ

∗
0 − s0) < 0, where the inequality holds since ℓ∗0 > s1 ≥ s0 implies

C ′
0(ℓ

∗
0−s0) > 0. Then, supplier zero has a profitable deviation to some ℓ′0 < ℓ∗0, contradicting

the definition of equilibrium. We have now established that |ℓ∗1 − ℓ∗0| = |v1 − v0|.
Next, we show that ℓ∗1 = s1 = 1

2
. We proceed by contradiction and suppose, WLOG,

s1 >
1
2
. If v1 = v0, then, since |ℓ∗1 − ℓ∗0| = |v1 − v0| = 0, we must have ℓ∗0 = ℓ∗1 = s1. Then,

π1(ℓ
∗) = v1

2
< v1F (s1) = limℓ1↑ℓ∗1 π1(ℓ

∗
0, ℓ1). So, supplier one has a profitable deviation to

some ℓ′1 < s1, contradicting the definition of equilibrium. Next, suppose v0 < v1. Then,

either p0(ℓ
∗) = F (s1) < 1 (if ℓ∗0 < s1) or p0(ℓ

∗) = 1 − F (s1) < 1 (if ℓ∗0 > s1). In either case,

π0(ℓ
∗) = v0p0(ℓ

∗) − C0(ℓ
∗
0 − s0) < v0 − C0(ℓ

∗
0 − s0) = lim supℓ0→ℓ∗0

π0(ℓ0, ℓ
∗
1); thus supplier

zero has a profitable deviation to some ℓ′0 slightly closer to s1. Finally, suppose v0 > v1.

Since d∗0 > 0, it must be that p0(ℓ
∗) > 0 and so p1(ℓ

∗) < 1. Then, π1(ℓ
∗) = v1p1(ℓ

∗) < v1 =

lim supℓ1→ℓ∗1
π1(ℓ

∗
0, ℓ1) and supplier one has a profitable deviation to some ℓ′1 slightly closer

to ℓ∗0. This establishes that s1 =
1
2
.

Next, we show that ℓ∗0 = 1
2
and v0 = v1. Proceed by contradiction and suppose ℓ∗0 ̸= 1

2
.

Since |ℓ∗1 − ℓ∗0| = |1
2
− ℓ∗0| = |v1 − v0|, we have that v0 ̸= v1. Note that if v0 < v1, then,

p0(ℓ
∗) = 1

2
; it follows that π0(ℓ

∗) = v0
2
−C0(ℓ

∗
0−s0) < v0−C0(ℓ

∗
0−s0) = lim supℓ0→ℓ∗0

π0(ℓ0, ℓ
∗
1),

and supplier zero has a profitable deviation to some ℓ′0 slightly closer to 1
2
. If v1 < v0, then,

since d∗0 > 0, it must be that p0(ℓ
∗) > 0, which means p1(ℓ

∗) < 1. Then, π1(ℓ
∗) = v1p1(ℓ

∗) <

v1 = lim supℓ1→ 1
2
π1(ℓ

∗
0, ℓ1), and supplier one has a profitable deviation to some ℓ′1 slightly

closer to ℓ∗0, which contradicts the definition of equilibrium. This establishes that ℓ∗0 = 1
2
.

Since |ℓ∗1 − ℓ∗0| = |v1 − v0|, this implies v0 = v1, and establishes the lemma.

Part (v): Let v0, v1 > 0, s0, s1 ∈ (0, 1) \
{

1
2

}
and suppose |v1 − v0| ≥ s1 − s0. Let

ℓ∗ ∈ Φ(v) and suppose, contrary to the statement of the lemma, d∗i > 0 for some i. First

note that since s0, s1 ̸= 1
2
, Part (iv) implies that we must have d∗0, d

∗
1 > 0. Then, by Part

(iii), ℓ∗1 − ℓ∗0 > |v1 − v0|, ℓ∗0 > s0 and ℓ∗1 < s1. It follows that s1 − s0 > ℓ∗1 − ℓ∗0 > |v1 − v0|,
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contradicting the hypothesis that |v1 − v0| ≥ s1 − s0.

Part (vi): WLOG, let v1 > 0 = v0 and v1 ≥ s1 − s0. Let ℓ∗ ∈ Φ(v). Obviously,

since v0 = 0, d∗0 = 0. So to establish the lemma it suffices to show that if d∗1 > 0, then

ℓ∗1 ∈ {s0 − v1, s1 + v1}. So suppose d∗1 > 0; part (iii) implies v1 ≤ |ℓ∗1 − s0|. Suppose

v1 < ℓ∗1−s0. Since s1−s0 ≤ v1, we must have ℓ∗1 > s1. Moreover, for ℓ1 in some neighborhood

of ℓ∗1, π1(s0, ℓ1) = u1(s0, ℓ1) and
∂π1(s0,ℓ∗1)

∂ℓ1
= −v1

2
f(y0)−C ′

1(ℓ
∗
1 − s1) < 0, where the inequality

follows since v1 > 0 and ℓ∗1 > s1. This means that supplier one has a profitable deviation

to some ℓ′1 < ℓ∗1, contradicting the definition of equilibrium. Similar reasoning shows that

if v1 < s0 − ℓ∗1, then supplier one has a profitable deviation to some ℓ′1 > ℓ∗1. So, if d∗1 > 0,

then, it must be that v1 = |ℓ∗1 − s0|, which means ℓ∗1 ∈ {s0 − v1, s0 + v1}.
Part (vii): If d∗0, d

∗
1 > 0 the result follows by Part (iii), so suppose, WLOG, d∗0 > 0 = d∗1.

Since s1 ̸= 1
2
, Part (iv) implies that we must have v1 = 0. We now show that ℓ∗0 ∈ [0, s1−v0].

First see that for ℓ0 ∈ (s1−v0, s1+v0), π0(ℓ0, s1) < 0 = π0(s0, s1). Next, note that π0(·, s1) is
strictly decreasing on [s1+v0, 1]; moreover, p0(s1+v0, s1) = 1−F (s1+v0). And since s1 >

1
2
,

symmetry of the distribution implies 1−F (s1+v0) < F (s1−v0) = p0(s1−v0, s1). And since

supplier zero’s cost of choosing the point s1 − v0 is strictly less than the cost of choosing

s1 + v0, we have that π0(s1 − v0, s1) > π0(s1 + v0, s1). Thus, it must be that ℓ∗0 ∈ [0, s1 − v0].

It follows that for any ℓ0 ≤ ℓ∗0, π0(ℓ0, s1) = u0(ℓ0, s1). If it were the case that ∂u0(ℓ∗)
∂ℓ0

< 0,

then, for some ℓ′0 < ℓ∗0, we have π0(ℓ
′
0, ℓ

∗
1) = u0(ℓ

′
0, ℓ

∗
1) > u0(ℓ

∗), contradicting the definition

of equilibrium. Thus, ∂u0(ℓ∗)
∂ℓ0

≥ 0.

Before proving Lemma 2, we state and prove the following.

Lemma A.1. Let s∗ satisfy F (s∗) = 1
4
. Then s∗ < 1

3
.

Proof. See that F
(
1
3

)
− F (s∗) = 1

2

∫ 1
3

0
f(x)dx − 1

2

∫ 1
2
1
3

f(x)dx ≥ 1
6
f(0) − 1

12
f
(
1
2

)
> 0, where

the inequality holds since f is increasing on
[
0, 1

2

]
and by Lemma 1(i).

Proof of Lemma 2. Let s0, s1 and v0, v1 be as given in the lemma. In particular, we

consider the case where 0 < v0 ≤ v1 < 2s1 − s0 − 1; the case where v1 < v0 is similar.

To begin, we will show that any solution to (3) and (4) is unique. Suppose ℓ∗ and ℓ∗∗

satisfy (3) and (4); we will show ℓ∗ = ℓ∗∗. To do so, we follow arguments similar to Rosen

(1965). Let

g(ℓ) =

[
∂u0

∂ℓ0
∂u1

∂ℓ1

]
=

[
v0
2
f (y0 (ℓ))− C ′

0(ℓ0 − s0)

−v1
2
f (y0 (ℓ)) + C ′

1(s1 − ℓ1)

]
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and for ℓ such that y0(ℓ, v) ∈ (0, 1), let Dℓg(ℓ) denote the Jacobian of g(ℓ) with respect to ℓ:

Dℓg(ℓ) =

[
v0
4
f ′ (y0 (ℓ))− C ′′

0 (ℓ0 − s0)
v0
4
f ′ (y0 (ℓ))

−v1
4
f ′ (y0 (ℓ)) −v1

4
f ′ (y0 (ℓ))− C ′′

1 (s1 − ℓ1)

]
.

We show that Dℓg(ℓ) + (Dℓg (ℓ))
T is negative definite for all ℓ. See that

Dℓg(ℓ) + (Dℓg(ℓ))
T =

[
v0
2
f ′ (y0 (ℓ))− 2C ′′

0 (ℓ0 − s0)
f ′(y0(ℓ))

4
(v0 − v1)

f ′(y0(ℓ))
4

(v0 − v1) −v1
2
f ′ (y0 (ℓ))− 2C ′′

1 (s1 − ℓ1)

]
.

Since v0, v1 < 2s1 − s0 − 1 < 1, Lemma 1(iii) implies that the terms on the main diagonal of

Dℓg(ℓ) + (Dℓg(ℓ))
T are strictly negative. Then, see that

|Dℓg(ℓ) + (Dℓg(ℓ))
T | =

[v0
2
f ′ − 2C ′′

0

] [
−v1

2
f ′ − 2C ′′

1

]
−
[
f ′

4
(v0 − v1)

]2
= −(f ′)2

[
v0 + v1

4

]2
+ 4C ′′

0C
′′
1 + f ′v1C

′′
0 − f ′v0C

′′
1

> 3C ′′
0C

′′
1 + f ′v1C

′′
0 − f ′v0C

′′
1

> 3C ′′
0C

′′
1 − C ′′

0C
′′
1

> 0.

The first inequality holds since v0, v1 < 1, together with Lemma 1(iii), imply, −(f ′)2
[
v0+v1

4

]2
>

−(f ′)2 > −C ′′
0C

′′
1 . The second inequality holds since f ′v1C

′′
0 − f ′v0C

′′
1 ≥ −|f ′|max{C ′′

0 , C
′′
1},

and Lemma 1(iii) implies, −|f ′|max{C ′′
0 , C

′′
1} > −min{C ′′

0 , C
′′
1}max{C ′′

0 , C
′′
1} = −C ′′

0C
′′
1 .

The final inequality holds since C ′′
0C

′′
1 > 0. This establishes that Dℓg(ℓ) + (Dℓg(ℓ))

T is

negative definite.

For θ ∈ [0, 1], let ℓθ = θℓ∗ + (1 − θ)ℓ∗∗. As argued in the first part of this proof,

y0(ℓ
∗), y0(ℓ

∗∗) ∈ (0, 1), which means that for all θ, y0(ℓ
θ) ∈ (0, 1). This ensures that g(ℓθ) is

differentiable in θ. See that dg(ℓθ)
dθ

= Dℓg(ℓ
θ)dℓ

θ

dθ
= Dℓg(ℓ

θ)(ℓ∗ − ℓ∗∗) or

0⃗ = g(ℓ∗)− g(ℓ∗∗) =

∫ 1

0

Dℓg(ℓ
θ)(ℓ∗ − ℓ∗∗) dθ.
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Pre-multiplying both sides of the equation above by (ℓ∗ − ℓ∗∗)T :

0⃗ =

∫ 1

0

(ℓ∗ − ℓ∗∗)T Dℓg
(
ℓθ
)
(ℓ∗ − ℓ∗∗) dθ (11)

=
1

2

∫ 1

0

(ℓ∗ − ℓ∗∗)T
[
Dℓg

(
ℓθ
)
+
(
Dℓg

(
ℓθ
))T]

(ℓ∗ − ℓ∗∗) dθ.

Since Dℓg(ℓ) + (Dℓg(ℓ))
T is negative definite for each θ, (11) implies ℓ∗ = ℓ∗∗. We have now

established that any solution to (3) and (4) is unique.

Next, we show that there exists at most one equilibrium. First, we argue that in any

equilibrium d∗0, d
∗
1 > 0. Let ℓ∗ ∈ Φ(v) and, by way of contradiction, suppose d∗i = 0 for

some i. Then since 1 − s1, s0 < s∗ < 1
2
, Proposition A.1(iv) implies that d∗0 = d∗1 = 0.

Then see that v0 ≤ v1 < 2s1 − s0 − 1, implies v1 − v0 < s1 − s0, which means that for ℓ0

in some neighborhood of s0, π0(ℓ0, s1) = u0(ℓ0, s1). Moreover, ∂u0(ℓ0,s1)
∂ℓ0

|ℓ0=s0 = v0f(y0) > 0.

So, supplier zero has a profitable deviation to some ℓ′0 > s0, yielding a contradiction. Thus,

d∗0, d
∗
1 > 0. Proposition A.1(iii) implies that ℓ∗ solves (3) and (4). As we’ve shown, there is

a unique solution to this system and, therefore, there is at most one equilibrium.

Now let ℓ∗ ∈ Φ(v); we show that (ℓ∗, v) satisfies (2)-(5). Since d∗0, d
∗
1 > 0 Proposi-

tion A.1(iii) implies ℓ∗ satisfies (2)-(4). We now show that (5) must hold. So, suppose

v0 < v1. (2) implies π0(ℓ
∗) = u0(ℓ

∗). Moreover, letting ℓ0 = ℓ∗1 + v0 − v1, see that

limℓ0↓ℓ0 π0(ℓ0, ℓ
∗
1) = v0 − C0(ℓ0 − s0). If it were the case that u0(ℓ

∗) < v0 − C0

(
ℓ0 − s0

)
,

then, for some ℓ0 > ℓ0 sufficiently close to ℓ0, π0(ℓ0, ℓ
∗
1) > π0(ℓ

∗), contradicting the definition

of equilibrium. Thus, we must have u0(ℓ
∗) ≥ v0 − C0

(
ℓ0 − s0

)
.

Now let (ℓ∗, v) satisfy (2)-(5); we will show that ℓ∗ ∈ Φ(v). We prove the case where

v0 < v1 < 2s1 − s0 − 1; the proof for the case where v0 = v1 is similar. We point out that

since vi < 1 for each i, ∂2ui

∂ℓ2i
< 0.

We first establish that each ℓ∗i is feasible; i.e., ℓ∗i ∈ [0, 1]. In fact, we will show that

ℓ∗0, 1−ℓ∗1 ∈ (0, 1
2
). To begin, note that we must have y0(ℓ

∗) ∈ [0, 1]; for otherwise, f(y0(ℓ
∗)) =

0 and (3)-(4) imply ℓ∗i = si. But v0 < v1 < 2s1 − s0 − 1 =⇒ v1 − v0 < s1 − s0 =⇒
y0(s0, s1) ∈ (0, 1), yielding a contradiction. Then, it is straightforward to see from (3)-

(4) that ℓ∗0 > s0 > 0 and ℓ∗1 < s1 < 1. Next, we show that ℓ∗0 < s0 + v0
4
. See that

∂u0(ℓ0,ℓ∗1)

∂ℓ0
|ℓ0=s0+

v0
4
≤ v0

2
f
(
1
2

)
− C ′

0

(
v0
4

)
< v0

2
f
(
1
2

)
− 2v0

4
f
(
1
2

)
= 0, where the first inequality

holds since f(x) ≤ f
(
1
2

)
for all x and the second holds by Lemma 1(ii). By strict concavity

of u0(·, ℓ1), it must be that ℓ∗0 < s0 +
v0
4
. Then, s0 +

v0
4
< 3

4
s0 +

s1
2
− 1

4
< 3

4

(
1
3

)
+ 1

2
− 1

4
= 1

2
,

where the first inequality holds since v0 < 2s1−s0−1, and the second holds since s0 < s∗ < 1
3
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and s1 < 1. This establishes that ℓ∗0 ∈
(
0, 1

2

)
; analogous arguments reveal that ℓ∗1 ∈

(
1
2
, 1
)
.

Now let Bi(ℓj) = argmaxℓi∈[0,1] πi(ℓ) denote i’s best reply. We show that ℓ∗0 ∈ B0(ℓ
∗
1). Let

ℓ0 = ℓ∗1+v0−v1, and see that ℓ0 < s1+v0−v1 < 1 and that (2) implies ℓ0 > ℓ∗0. Let ℓ0 ∈ [0, ℓ0].

Then, π0(ℓ0, ℓ
∗
1) = u0(ℓ0, ℓ

∗
1) ≤ u0(ℓ

∗
0, ℓ

∗
1) = π0(ℓ

∗
0, ℓ

∗
1), where the inequality follows since

v0 < 1, which means u0 is strictly concave on [0, 1], so (3) implies ℓ∗0 = argmaxℓ0 u0(ℓ0, ℓ
∗
1).

Next, let ℓ0 ∈ (ℓ0, 1]. We have, π0(ℓ0, ℓ
∗
1) < v0 − C0(ℓ0 − s0) ≤ u0(ℓ

∗
0, ℓ

∗
1) = π0(ℓ

∗
0, ℓ

∗
1), where

the strict inequality holds since p0(ℓ0, ℓ
∗
1) ≤ 1 and ℓ0 > ℓ0 implies C0(ℓ0 − s0) > C0(ℓ0 − s0);

the weak inequality follows by (5). This establishes that ℓ∗0 ∈ B0(ℓ
∗
1).

Next, we show that ℓ∗1 ∈ B1(ℓ
∗
0). Let ℓ1 ∈ [0, 1] be given. If ℓ1 ∈ [ℓ∗0 + v1 − v0, 1] then,

π1(ℓ
∗
0, ℓ1) = u1(ℓ

∗
0, ℓ1) ≤ u1(ℓ

∗
0, ℓ

∗
1) = π1(ℓ

∗
0, ℓ

∗
1), where the inequality follows since strict con-

cavity of u1(ℓ
∗
0, ·) together with (4) imply ℓ∗1 = argmaxℓ1 u1(ℓ

∗
0, ℓ1). If ℓ1 ∈ (ℓ∗0 + v0 − v1, ℓ

∗
0 + v1 − v0)

then, π1(ℓ
∗
0, ℓ1) = −C1(s1 − ℓ1) < 0 < π1(ℓ

∗
0, ℓ

∗
1). Finally, let ℓ1 = ℓ∗0 + v0 − v1, and suppose

ℓ1 ∈ [0, ℓ1]. Then, we have the following string of inequalities:

π1(ℓ
∗
0, ℓ1) ≤ π1(ℓ

∗
0, ℓ1) < π1(ℓ

∗
0, ℓ

∗
0 + v1 − v0) ≤ π1(ℓ

∗
0, ℓ

∗
1)

The first inequality holds since π1(ℓ
∗
0, ·) is strictly increasing on [0, ℓ1]. The second in-

equality holds since ℓ∗0 <
1
2
implies that the approach, ℓ∗0+v1−v0, gives supplier one a strictly

greater probability of victory at strictly lower cost than ℓ1. The final inequality holds since,

as we’ve already shown, π1(ℓ
∗
0, ℓ1) ≤ π1(ℓ

∗
0, ℓ

∗
1) for all ℓ1 ∈ [ℓ∗0 + v1 − v0, 1]. This establishes

that ℓ∗1 ∈ B1(ℓ
∗
0). Therefore, ℓ

∗ ∈ Φ(v).

Proposition A.2. If 1 − s1, s0 < s∗, ∂u0(ℓ∗)
∂ℓ0

= ∂u1(ℓ∗)
∂ℓ1

= 0, and either 0 < v0 ≤ v1 ≤
2ℓ∗1 − ℓ∗0 − 1 or 0 < v1 < v0 < ℓ∗1 − 2ℓ∗0, then ℓ

∗ is the unique equilibrium in stage 2.

Proof. Fix s0, 1 − s1 < s∗, and suppose ℓ∗ satisfies ∂ui(ℓ
∗)

∂ℓi
= 0 for each i. Further, suppose

v0 ≤ v1 ≤ 2ℓ∗1 − ℓ∗0 − 1. We will show that ℓ∗ is the unique equilibrium in stage 2. To do

so, we appeal to Lemma 2. The proof for the case, v1 < v0 < ℓ∗1 − 2ℓ∗0 follows analogous

arguments.

To begin, we show that y0(ℓ
∗) ∈ [0, 1]. If, to the contrary, y0(ℓ

∗) =/∈ [0, 1], then,

f(y0(ℓ
∗)) = 0 and ∂ui(ℓ

∗)
∂ℓi

= 0 implies ℓ∗i = si for each i. However, 0 < v0 ≤ v1 ≤ 2s1 − s0 − 1

implies y0(s0, s1) = s1+s0−v1−v0
2

∈ (0, 1), yielding a contradiction. Thus, we must have

y0(ℓ
∗) ∈ [0, 1].

Now since vif(y0) > 0, ∂u0(ℓ∗)
∂ℓ0

= ∂u1(ℓ∗)
∂ℓ1

= 0 implies ℓ∗0 > s0 and ℓ∗1 < s1. So, v1 <

2ℓ∗1 − ℓ∗0 − 1 < 2s1 − s0 − 1. By Lemma 2, there is at most one equilibrium in stage 2.

Moreover, Lemma 2 implies that ℓ∗ ∈ Φ(v) if (ℓ∗, v) satisfy (2)-(5). Next, we will show that
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this is the case.

First, since (3) and (4) hold by assumption, it suffices to show (2) and (5). Then see

that, v1 − v0 < v1 ≤ ℓ∗1 − ℓ∗0 + ℓ∗1 − 1 < ℓ∗1 − ℓ∗0, which means (2) holds.

Next, we show that (ℓ∗, v) satisfies (5). To this end, it suffices to show that ∆ ≥ 0, where

∆ = v0F (y
∗
0)− C0(ℓ

∗
0 − s0)− v0 + C0(ℓ

∗
1 + v0 − v1 − s0), where y

∗
0 = y0(ℓ

∗, v). See that

∆ =

∫ ℓ∗1+v0−v1

ℓ∗0

C ′
0(x− s0)dx− v0

∫ 1

y∗0

f(x)dx

>

∫ ℓ∗1+v0−v1

ℓ∗0

2(x− s0)f

(
1

2

)
dx− v0

∫ 1

y∗0

f

(
1

2

)
dx

= f

(
1

2

)[
(ℓ∗1 + v0 − v1 − s0)

2 − (ℓ∗0 − s0)
2 − v0

(
1− ℓ∗0 + ℓ∗1 + v1 − v0

2

)]
.

The strict inequality holds since C ′
0(z) > 2zf

(
1
2

)
and since f(x) ≤ f

(
1
2

)
for x ∈ [0, 1]. Now,

for x ≥ 0, let G(x) = (ℓ∗1 + x − v1 − s0)
2 − (ℓ∗0 − s0)

2 − x
(
1− ℓ∗0+ℓ∗1+v1−x

2

)
; the string of

inequalities above shows that ∆ > f
(
1
2

)
G(v0). We will now show that G′(x) > 0:

G′(x) ∝ ℓ∗0 + 5ℓ∗1 − 4s0 + 2x− 3v1 − 2

> 4(ℓ∗0 − s0) + 1− ℓ∗1 + 2x

> 0.

Where the first inequality follows since v1 < 2ℓ∗1 − ℓ∗0 − 1 and the second since ℓ∗0 > s0 and

ℓ∗1 < 1. So we have that, ∆ > f
(
1
2

)
G(v0) > f

(
1
2

)
G(0) = f

(
1
2

)
[(ℓ∗1 − v1 − s0)

2 − (ℓ∗0 − s0)
2].

Using the fact that v1 < 2ℓ∗1− ℓ∗0− 1, it is straightforward to verify that ℓ∗1− v1− s0 > 0. So,

(ℓ∗1 − v1 − s0)
2 > (ℓ∗0 − s0)

2 if and only if ℓ∗1 − ℓ∗0 − v1 > 0. Since v1 < 2ℓ∗1 − ℓ∗0 − 1, we have

that ℓ∗1 − ℓ∗0 − v1 > 1 − ℓ∗1 > 0, which means G(0) > 0, and establishes that ∆ > 0, which

completes the proof.

Proof of Lemma 3. Consider the case where vi = 0 for some i; WLOG, suppose v1 = 0.

Since ℓ1 = s1 is a dominant strategy for supplier one, it suffices to show argmaxℓ0∈[0,1] π0(ℓ0, s1) ̸=
∅. If v0 = 0 or v0 ≥ 1, then s0 = argmaxℓ0∈[0,1] π0(ℓ0, s1), so consider the case v0 ∈ (0, 1).

We will show that π0(·, s1) is upper semicontinuous (usc) on [0, 1].

See that π0(·, s1) is piecewise continuous: For ℓ0 ∈ [0, s1 − v0], π0(ℓ0, s1) = u0(ℓ0, s1);

for ℓ0 ∈ (s1 − v0, s1 + v0), π0(ℓ0, s1) = −C0(ℓ0 − s0); and for ℓ0 ∈ [s1 + v0, 1], π0(ℓ0, s1) =

ũ0(ℓ0, s1) = [1− F (ỹ0 (ℓ, v))] v0 − C0(ℓ0 − s0). Therefore, it suffices to show that π0(·, s1)
is usc at ℓ0 = s1 ± v0. WLOG, assume s1 ± v0 ∈ (0, 1). It holds that u0(s1 − v0, s1) =
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v0F (s1−v0)−C0(s1−v0−s0) > −C0(s1−v0−s0). And for ϵ > 0 sufficiently small, continuity

of u0(·, s1) implies that for all ℓ0 ∈ (s1−v1−ϵ, s1−v0+ϵ)\{s1−v1}, u0(ℓ0, s1) > −C0(ℓ0−s0).
It follows that lim supℓ0→s1−v1 π0(ℓ0, s1) = u0(s1 − v1, s1) = π0(s1 − v1, s1). Similar reasoning

reveals that lim supℓ0→s1+v1 π0(ℓ0, s1) = ũ0(s1 + v1, s1) = π0(s1 + v1, s1). Hence, π0(·, s1) is

usc on the compact set [0, 1]; therefore, argmaxℓ0∈[0,1] π0(ℓ0, s1) ̸= ∅.
Next, fix 0 < s0 < s1 < 1. We will show that there exist v0, v1 > 0 sufficiently small such

that Φ(v0, v1) ̸= ∅ and ℓ∗ ∈ Φ(v0, v1) =⇒ ℓ∗i ̸= si. For each i ∈ {0, 1}, since 0 < Ci(s1 − s0),

continuity implies that there exists ϵi > 0 such that 0 < v < ϵi implies v < Ci

(
s1 − s0 − v

4

)
.

Let v0 = v1 = v∗, such that 0 < v∗ < min{ϵ0, ϵ1, s1 − s0}.
For i ̸= j, let ri(ℓj) = argmaxℓi∈[0,1] u0(ℓ) = argmaxℓi∈[0,1] v

∗F (m(ℓ)) − C0(ℓi − si).

Let r(ℓ) = (r0(ℓ1), r1(ℓ0)). We now show that r is a continuous function and that r0 :[
s0, s0 +

v∗

4

]
×

[
s1 − v∗

4
, s1

]
→

(
s0, s0 +

v∗

4

)
×
(
s1 − v∗

4
, s1

)
.

Let ℓ1 ∈
[
s1 − v∗

4
, s1

]
. Since m(ℓ) ∈ (0, 1) for all ℓ0 ∈ [0, 1], u0(·, ℓ1) is twice differentiable

and strictly concave on [0, 1]. Therefore, r0(·) is a continuous function. Moreover, see that
∂u0(ℓ,v∗)

∂ℓ0
|ℓ0=s0 = v∗

2
f(m(s0, ℓ1)) > 0 and ∂u0(ℓ)

∂ℓ0
|ℓ0=s0+

v∗
4

= v∗

2
f
(
m

(
s0 +

v∗

4
, ℓ1

))
− C ′

0

(
v∗

4

)
<

v∗

2
f
(
1
2

)
− 2v∗

4
f
(
1
2

)
= 0, where the inequality follows since f(x) ≤ f

(
1
2

)
for all x and

by Lemma 1(ii). Thus, r0(ℓ1) ∈
(
s0, s0 +

v∗

4

)
. Analogous arguments reveal that r1(ℓ0) ∈(

s1 − v1
4
, s1

)
for all ℓ0 ∈

[
s0, s0 +

v∗

4

]
. This establishes that r is a continuous function and r :[

s0, s0 +
v∗

4

]
×
[
s1 − v∗

4
, s1

]
→

(
s0, s0 +

v∗

4

)
×
(
s1 − v∗

4
, s1

)
. By Brouwer’s fixed point theorem,

r has a fixed point in
(
s0, s0 +

v∗

4

)
×

(
s1 − v∗

4
, s1

)
; i.e., there exists ℓ∗ ∈

(
s0, s0 +

v∗

4

)
×(

s1 − v∗

4
, s1

)
such that r(ℓ∗) = ℓ∗.

We now show ℓ∗ ∈ Φ(v∗). First, ℓ∗ ∈
(
s0, s0 +

v∗

4

)
×
(
s1 − v∗

4
, s1

)
and v∗ < s1 − s0 imply

ℓ∗0 < ℓ∗1, which means πi(ℓ
∗) = ui(ℓ

∗). We now show that π0(ℓ0, ℓ
∗
1) ≤ u0(ℓ

∗) for all ℓ0 ∈ [0, 1].

Let ℓ0 ∈ [0, 1]. If ℓ0 ∈ [0, ℓ∗1) then π0(ℓ0, ℓ
∗
1) = u0(ℓ0, ℓ

∗
1) ≤ u0(ℓ

∗
0, ℓ

∗
1), where the inequality

follows by definition of ℓ∗0. If ℓ0 ∈ [ℓ∗1, 1] then, π0(ℓ0, ℓ
∗
1) < v∗−C0

(
s1 − v∗

4
− s0

)
< 0 < u0(ℓ

∗).

The first inequality holds since pi(·) ≤ 1 and ℓ0 ≥ ℓ∗1 > s1 − v∗

4
> s0. The second inequality

holds by construction of v∗. We have now established that π0(ℓ
∗
0, ℓ

∗
1) ≥ π0(ℓ0, ℓ

∗
1) for all

ℓ0 ∈ [0, 1]. Analogous reasoning reveals that π1(ℓ
∗
0, ℓ

∗
1) ≥ π1(ℓ

∗
0, ℓ1) for all ℓ1 ∈ [0, 1]. Thus,

ℓ∗ ∈ Φ(v∗).

To complete the proof, we show that there does not exist ℓ̃ ∈ Φ(v∗) with ℓ̃i = si. Pro-

ceeding by contradiction, suppose there is ℓ̃ ∈ Φ(v) with ℓ̃i = si; in particular, and WLOG,

suppose ℓ̃1 = s1. Following similar reasoning as given in the previous paragraph, it holds

that r0(s1) = argmaxℓ0∈[0,1] π0(ℓ0, s1); so, by definition of equilibrium, ℓ̃0 = r0(s1). Since

r0 : [s1 − v∗

4
, s1] → (s0, s0 +

v∗

4
), we have, ℓ̃0 < s0 +

v∗

4
< s1. Then for ℓ1 in some neighbor-
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hood of s1, π1(ℓ̃0, ℓ1) = u1(ℓ̃0, ℓ1); moreover, ∂u1(ℓ̃0,ℓ1)
∂ℓ1

|ℓ1=s1 = −v∗

2
m(ℓ̃0, s1) < 0. This means

that supplier one has a profitable deviation to some ℓ′1 < s1, contradicting the hypothesis

that ℓ̃ ∈ Φ(v∗).

Proofs for Section 4.2

We first state and prove three preliminary results:

Lemma A.2. If (ℓ∗, v∗) ∈ AP , then |v∗1 − v∗0| ≤ |ℓ∗1 − ℓ∗0|.

Proof. Let (ℓ, v) ∈ FP such that |v1−v0| > |ℓ1 − ℓ0|; we will show that (ℓ, v) /∈ AP . Without

loss of generality, let us assume v0 < v1. First note that Proposition A.1(ii) implies ℓi = si.

Moreover, p0(ℓ, v) = 1. It follows that πb(ℓ, v) = E[Q0(s0, y)]. We now show that there exists

(ℓ′, v′) ∈ FP such that πb(ℓ
′, v′) > πb(ℓ, v). We examine separately the case where s0 = s1

and the case where s0 < s1.

First suppose s0 < s1. Let v′0 = v′1 = 0 and ℓ′i = si. See that ℓ′ ∈ Φ(v′) and πb(ℓ
′, v′) =

E [max {Q0 (s0, y) , Q1 (s1, y)}] > E [Q0 (s0, y)] = πb(ℓ, v).

Next, suppose s0 = s1 = s and, WLOG, assume s ≥ 1
2
. Consider any prize profile,

v′ such that v′0 > 0 and v′1 = 0. Proposition A.2 implies that Φ(v′) ̸= ∅. Moreover,

Proposition A.1(vi) implies that if ℓ′ ∈ Φ(v′), then, ℓ′0 ∈ {s, s− v′0, s+ v′0} and ℓ′1 = s. Next,

see that there exists ϵ > 0, such that for all v′0 ∈ (0, ϵ), π0 (s− v′0, ℓ
′
1, v

′
0, v

′
1) = v′0F (s− v′0)−

C0(v
′
0) > 0. Moreover, since s ≥ 1

2
, symmetry of the distribution of y about 1

2
implies that

supplier zero can be no worse off choosing s−v′0 than s+v′0. It follows that for all v′0 ∈ (0, ϵ),

(s− v′0, s) ∈ Φ(v′).

Now, when the buyer offers prizes v′, where 0 = v′1 < v′0, and the suppliers subsequently

choose according to ℓ′ = (s− v′0, s), the buyer’s payoff can be written as

πb(ℓ
′, v′) = G(v′0) = q−

∫ s−v′0

0

(s−v′0−y)dF (y)−
∫ s

s−v′0

(s−y)dF (y)−
∫ 1

s

(y−s)dF (y)−C0(v
′
0).

Note that G(0) = πb(ℓ, v); moreover, G′(0) = F (s) > 0, and hence, there exists ϵ′ > 0 such

that for v′0 ∈ (0, ϵ′), G(v′0) > G(0), which means πb(ℓ
′, v′) > πb(ℓ, v). Now fix a profile of prizes

v′ and a pair of approaches ℓ′ such that v′0 ∈ (0,min{ϵ, ϵ′}), v′1 = 0, ℓ′0 = s− v′0 and ℓ′1 = s.

As we’ve just shown, v′0 < ϵ =⇒ ℓ′ ∈ Φ(v′); moreover, v′0 < ϵ′ =⇒ πb(ℓ
′, v′) > πb(ℓ, v).

This establishes that (ℓ, v) /∈ AP ; hence, (ℓ
∗, v∗) ∈ AP implies |ℓ∗1 − ℓ∗0| ≥ |v∗1 − v∗0|.

Lemma A.3. For some v > 0 let H denote the set,
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H =

{
(ℓ, v) ∈ [0, 1]2 × [0, v]2||ℓ1 − ℓ0| ≥ |v1 − v0|;

∂ui(ℓ, v)

∂ℓi
= 0, i = 0, 1

}
.

Then H is closed.

Proof. Let (ℓn, vn)n∈N be a sequence in H such that (ℓn, vn)n∈N → (ℓ∗, v∗). Clearly, since

(ℓn, vn) ∈ H for each n, it holds that (ℓ∗, v∗) ∈ [0, 1]2 × [0, v]2 and |ℓ∗1 − ℓ∗0| ≥ |v∗1 − v∗0|. We

will now show that ∂ui(ℓ
∗,v∗)

∂ℓi
= 0.

For each n ∈ N let yi,n = ∂ui(ℓn,vn)
∂ℓi

, i = 0, 1. For each n, (ℓn, vn) ∈ H implies yi,n = 0,

which means (yi,n)n∈N → 0. Additionally, for all (ℓ, v) ∈ [0, 1]2×[0, v]2 with |ℓ1−ℓ0| ≥ |v1−v0|,
y0(ℓ, v) ∈ [0, 1]. This implies that ∂ui(·)

∂ℓi
is continuous on H, which means (yi,n)n∈N →

∂ui(ℓ
∗,v∗)

∂ℓi
. Hence, ∂ui(ℓ

∗,v∗)
∂ℓi

= 0, which establishes that H is closed.

Lemma A.4. Let ℓj ∈ [0, 1] and v ∈ R2
+ be given. Suppose y0(si, ℓj, v) ∈ (0, 1) and

∂ui(ℓ
∗
i ,ℓj ,v)

∂ℓi
= 0 for some ℓ∗i ∈ [0, 1]. Then ℓ∗i = argmaxℓi∈[0,1] ui(ℓ, v).

Proof. Consiser supplier zero. Fix ℓ1 ∈ [0, 1] and v ∈ R2
+. As the result is trivial if v0 = 0,

we consider the case v0 > 0. Since ℓ1 and v are fixed throughout this proof, we will suppress

these as arguments from any functions, and will write u0(ℓ0), y0(ℓ0), etc.

First, we show that if y0(ℓ0) ∈ (0, 1) and ∂u0(ℓ0)
∂ℓ0

= 0 for some ℓ0 ∈ [0, 1] then ∂2u0(ℓ0)

∂ℓ20
< 0.

See that ∂u0(ℓ0)
∂ℓ0

= 0 means v0
2
f(y0(ℓ0))− C0(ℓ0 − s0) = 0. Then,

∂2u0(ℓ0)

∂ℓ20
=
v0
4
f ′(y0(ℓ0))− C ′′

0 (ℓ0 − s0)

=
f ′(y0(ℓ0))

2f(y0(ℓ0))
C ′

0(ℓ0 − s0)− C ′′
0 (ℓ0 − s0)

< C ′
0(ℓ0 − s0)− C ′′

0 (ℓ0 − s0)

≤ 0.

The first inequality holds by Assumption 2(i). The second holds since C ′
0(x) − C ′′

0 (x) ≤
C ′

0(x)− xC ′′
0 (x) for all x ∈ [0, 1] and since C ′′′

0 ≥ 0 implies C ′
0(x)− xC ′′

0 (x) ≤ 0.

Next, let ℓ0 = min{1, 2 + v0 − v1 − ℓ1}; i.e., ℓ0 = min{1, ℓ0|y0(ℓ0) = 1}. We will

show argmaxℓ0∈[0,1] u0(ℓ0) = argmaxℓ0∈[s0,ℓ0] u0(ℓ0). To do so, it suffices to show that ℓ0 /∈
[s0, ℓ0] =⇒ ℓ0 /∈ argmaxℓ0∈[0,1] u0(ℓ0). First consider some ℓ0 < s0. Since y0(·) is increasing,
u0(ℓ0) = v0F (y0(ℓ0))−C0(ℓ0 − s0) < v0F (y0(s0)) = u0(s0), and so ℓ0 /∈ argmaxℓ0∈[0,1]. Next,

consider some ℓ0 ∈ [0, 1] such that y0(ℓ0) > 1. There exists ℓ′0 < ℓ0 with y0(ℓ
′
0) > 1, and it
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holds, u0(ℓ0) = v0 − C0(ℓ0 − s0) < v0 − C0(ℓ
′
0 − s0), and hence, ℓ0 /∈ argmaxℓ0∈[0,1] u0(ℓ0).

This establishes that argmaxℓ0∈[0,1] u0(ℓ0) = argmaxℓ0∈[s0,ℓ0] u0(ℓ0).

Now, suppose y0(s0) ∈ (0, 1) and
∂u0(ℓ∗0)

∂ℓ0
= 0 for some ℓ∗0 ∈ [0, 1]. We will show ℓ∗0 =

argmaxℓ0∈[s0,ℓ0] u0(ℓ0). We first establish feasibility: ℓ∗0 ∈ [s0, ℓ0]. See that
∂u0(ℓ∗0)

∂ℓ0
= 0 implies

y0(ℓ
∗
0) ∈ [0, 1]. For if y0(ℓ

∗
0) /∈ [0, 1], then f(y0(ℓ

∗
0)) = 0 and the first-order condition implies

ℓ∗0 = s0. However, since y0(s0) ∈ (0, 1), this yields a contradiction. Therefore, y0(ℓ
∗
0) ∈ [0, 1],

which implies ℓ∗0 ≤ ℓ1. Additionally, since
∂u0(ℓ0)
∂ℓ0

> 0 for all ℓ0 ≤ s0, it must be that ℓ∗0 > s0.

Hence, ℓ∗0 ∈ [s0, ℓ0].

Finally, we show ℓ∗0 = argmaxℓ0∈[s0,ℓ0] u0(ℓ0). For ℓ0 ∈ (s0, ℓ0), we have y0(ℓ) ∈ (0, 1),

which means u0 is twice differentiable on the interior of the choice set; moreover, if ∂u0(ℓ0)
∂ℓ0

= 0

for some ℓ0 ∈ (s0, ℓ1) then
∂2u0(ℓ0)

∂ℓ20
< 0. This means that ∂u0

∂ℓ0
crosses the horizontal axis at

most once in the interval [s0, ℓ1], and from above. Thus, for ℓ0 ∈ [s0, ℓ
∗
0),

∂u0(ℓ0)
∂ℓ0

> 0 and if

ℓ∗0 < ℓ0 then for ℓ0 ∈ (ℓ∗0, ℓ1],
∂u0(ℓ0)
∂ℓ0

< 0. This means ℓ∗0 = argmaxℓ0∈[s0,ℓ1] u0(ℓ0).

Proof of Lemma 5. By Lemma A.2, (ℓ, v) ∈ AP =⇒ |ℓ1 − ℓ0| ≥ |v1 − v0|. Moreover, it

is straightforward to show that there is some v > 0 such that (ℓ, v) ∈ AP =⇒ v0, v1 ≤ v.

We may then equivalently formulate the buyer’s problem as max(ℓ,v)∈F̂P
πb(ℓ, v), where

F̂P = FP ∩ {(ℓ, v) ∈ [0, 1]2 × [0, v]2||ℓ1 − ℓ0| ≥ |v1 − v0|}.

Lemma 3 implies F̂P ̸= ∅. Then, to establish that AP ̸= ∅, it suffices to show that πb(·)
is continuous on F̂P and F̂P is compact. We first show πb is continuous.

For all (ℓ, v) ∈ F̂P , y0(ℓ, v), ỹ0(ℓ, v) ∈ [min{ℓ0, ℓ1},max{ℓ0, ℓ1}] ⊆ [0, 1]. Additionally, if

ℓ0 ≤ ℓ1 then πb(ℓ, v) = q − L(ℓ, v), where L is as defined in Section 4.3. If ℓ1 < ℓ0 then

πb(ℓ, v) = q − L̃(ℓ, v), where

L̃(ℓ, v) =

∫ ỹ0(ℓ,v)

0

|ℓ1 − y|+
∫ 1

ỹ0(ℓ,v)

|ℓ0 − y|+ C0(ℓ0 − s0) + C1(ℓ1 − s1).

Since L(·) and L̃(·) are continuous, and ℓ0 = ℓ1 implies L(ℓ, v) = L̃(ℓ, v), πb(·) is contin-
uous on F̂P .

Next, we show F̂P is compact. Clearly, F̂P is bounded, so it suffices to show that it is

closed. To that end, let (ℓn, vn)n∈N be a sequence in F̂P such that (ℓn, vn)n∈N → (ℓ∗, v∗). We

will show (ℓ∗, v∗) ∈ F̂P .

It is straightforward to establish that (ℓ∗, v∗) ∈ [0, 1]2 × [0, v]2 and |ℓ∗1 − ℓ∗0| ≥ |v∗1 − v∗0|.
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So, in the remainder of the proof, we will show ℓ∗ ∈ Φ(v∗). For this part of the proof, we

consider the case where s0 < s1 and s0, s1 ̸= 1
2
. This helps to limit the number of cases

we need to consider, but the cases where s0 = s1 or si =
1
2
could be handled with similar

arguments.

For each n ∈ N, let di,n = |ℓi,n − si| and note that one of the following must hold:

(a) d0,n, d1,n > 0 infinitely often (i.o.)

(b) 0 = dj,n < di,n i.o.

(c) d0,n = d1,n = 0 i.o.

We will consider each case in turn.

Case (a): d0,n, d1,n > 0 i.o.

To limit the length of this proof, we will assume (in this case only) that v∗0 ̸= v∗1; the case

v∗0 = v∗1 can be handled by similar arguments. Without further loss of generality suppose

v∗0 < v∗1.

Since v∗1 > v∗0, there exists N ∈ N such that for all n > N , v1,n > v0,n. Since, in

addition, d0,n, d1,n > 0 i.o., there exists a subsequence, (ℓk(n), vk(n))n∈N of (ℓn, vn)n∈N such

that v1,k(n) > v0,k(n) and d0,k(n), d1,k(n) > 0 for all n ∈ N (here, k : N → N is a strictly

increasing function). Since any subsequence of a convergent sequence converges to the same

limit as the original sequence, we have that (ℓk(n), vk(n))n∈N → (ℓ∗, v∗).

Moreover, since ℓk(n) ∈ Φ(vk(n)), Proposition A.1(iii) implies that for each n ∈ N,
ℓ0,k(n) > s0, ℓ1,k(n) < s1, ℓ1,k(n) − ℓ0,k(n) > v1,k(n) − v0,k(n) and

∂ui(ℓk(n),vk(n))

∂ℓi
= 0, i = 0, 1.

This means, ℓ∗0 ≥ s0, ℓ
∗
1 ≤ s1, ℓ

∗
1 − ℓ∗0 ≥ v∗1 − v∗0, which implies πi(ℓ

∗, v∗) = ui(ℓ
∗, v∗).

Additionally, Lemma A.3 implies, ∂ui(ℓ
∗,v∗)

∂ℓi
= 0, i = 0, 1; and since yi(si, ℓ

∗
j , v

∗) ∈ (0, 1)

for each i, Lemma A.4 implies, ℓ∗i = argmaxℓi∈[0,1] ui(ℓi, ℓ
∗
j , v

∗). We will now show ℓ∗i ∈
argmaxℓi∈[0,1] πi(ℓi, ℓ

∗
j , v

∗), i = 0, 1.

Consider supplier zero. Let ℓ0 ∈ [0, 1]; we will show π0(ℓ
∗, v∗) ≥ π0(ℓ0, ℓ

∗
1, v

∗). Let

ℓ′0 = ℓ∗1 − (v∗1 − v∗0). If ℓ0 ≤ ℓ′0 then π0(ℓ0, ℓ
∗
1, v

∗) = u0(ℓ0, ℓ
∗
1, v

∗) ≤ u0(ℓ
∗, v∗) = π0(ℓ

∗, v∗),

where the inequality holds since ℓ∗0 = argmaxℓ0∈[0,1] u0(ℓ0, ℓ
∗
1, v

∗).

If ℓ0 > ℓ′0 then π0(ℓ0, ℓ
∗
1, v

∗) < v0 − C0 (ℓ
′
0 − s0). For each n ∈ N, let xn = ℓ1,k(n) −(

v1,k(n) − v0,k(n)
)
. Note that ℓ1,k(n) − ℓ0,k(n) > v1,k(n) − v0,k(n) implies xn ∈ (0, 1) for each

n. Now choose any n ∈ N. For all x ∈
(
xn,max

{
ℓ1,k(n) + v1,k(n) − v0,k(n), 1

})
, ℓk(n) ∈

Φ(vk(n)) implies u0(ℓk(n), vk(n)) ≥ π0(x, ℓ1,k(n), vk(n)) = v0,k(n) − C0(x − s0), which implies,
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u0(ℓk(n), vk(n)) ≥ limx↓xn v0,k(n) − C0(x − s0) = v0,k(n) − C0(xn − s0). Thus, for all n ∈ N,
u0(ℓk(n), vk(n)) ≥ v0,k(n) − C0 (xn − s0). Since (ℓk(n), vk(n))n∈N → (ℓ∗, v∗) and (xn)n∈N → ℓ′0,

continuity of u0 and C0 implies, u0(ℓ
∗, v∗) ≥ v∗0 −C0 (ℓ

′
0 − s0). And since π0(ℓ0, ℓ

∗
1, v

∗) < v∗0 −
C0 (ℓ

′
0 − s0), and u0(ℓ

∗, v∗) = π0(ℓ
∗, v∗), we have π0(ℓ

∗, v∗) > π0(ℓ0, ℓ
∗
1, v

∗), which establishes

that ℓ∗0 ∈ argmaxℓ0 , π0(ℓ0, ℓ
∗
1, v

∗).

Next, consider supplier one. Let ℓ1 ∈ [0, 1]. If ℓ1 ≥ ℓ∗0 + (v∗1 − v∗0), then by analogous

arguments as were made for supplier zero, we have π1(ℓ
∗, v∗) = u1(ℓ

∗, v∗) ≥ u1(ℓ
∗
0, ℓ1, v

∗) =

π1(ℓ
∗
0, ℓ1, v

∗). If ℓ1 ∈ (ℓ∗0 − (v∗1 − v∗0), ℓ
∗
0 + (v∗1 − v∗0)) then π1(ℓ

∗
0, ℓ1, v

∗) = −C1(ℓ1 − s1) < 0 <

π1(ℓ
∗, v∗).

If ℓ1 ≤ ℓ′1 = ℓ∗0 − (v∗1 − v∗0) then π1(ℓ
∗
0, ℓ1, v

∗) = v∗1F (ℓ1) − C1(ℓ1 − s1) ≤ v∗1F (ℓ′1) −
C1 (ℓ

′
1 − s1). For each n ∈ N, let xn = max

{
ℓ0,k(n) −

(
v1,k(n) − v0,k(n)

)
, 0
}
. Since 0 ≤

ℓ1 ≤ ℓ′1, and (xn)n∈N → max{ℓ′1, 0}, we have (xn)n∈N → ℓ′1. Additionally, for each n,

π1(ℓ0,k(n), xn, vk(n)) = v1,k(n)F (xn) − C1(xn − s1). Now choose any n ∈ N . ℓk(n) ∈ Φ(vk(n))

implies π1(ℓk(n), vk(n)) ≥ π1(ℓ0,k(n), xn, vk(n)), which means u1(ℓk(n), vk(n)) ≥ v1,k(n)F (xn) −
C1(xn − s1). Since (ℓk(n), vk(n))n∈N → (ℓ∗, v∗) and (xn)n∈N → ℓ′1, continuity of u1, F , and C1

implies, u1(ℓ
∗, v∗) ≥ v∗1F (ℓ

′
1)− C1(ℓ

′
1 − s1). And since u1(ℓ

∗, v∗) = π1(ℓ
∗, v∗) and v∗1F (ℓ′1)−

C1 (ℓ
′
1 − s1) ≥ π1(ℓ

∗
0, ℓ1, v

∗), this means π1(ℓ
∗, v∗) ≥ π1(ℓ

∗
0, ℓ1, v

∗).

This establishes that ℓ∗ ∈ Φ(v∗).

Case (b): 0 = dj,n < di,n i.o.

In particular, and WLOG, we will suppose that 0 = d1,n < d0,n i.o. Choose any n ∈ N
such that 0 = d1,n < d0,n. We must have v0,n > 0; and since s0, s1 ̸= 1

2
(by Assumption),

Proposition A.1(iv) implies v1,n = 0. Also see that for ℓ0 ∈ (s1−v0,n, s1+v0,n), π0(ℓ0, s1, vn) <
0. Moreover, π0(·, s1, vn) is strictly decreasing on [s1 + v0,n, 1]. So ℓn ∈ Φ(vn) implies that

either ℓ0,n < s1− v0,n or ℓ0,n ∈ {s1− v0,n, s1+ v0,n}. Then, one of the following must be true:

b(i) 0 = d1,n < d0,n, 0 = v1,n < v0,n, and ℓ0,n < s1 − v0,n i.o.

b(ii) 0 = d1,n < d0,n, 0 = v1,n < v0,n, and ℓ0,n = s1 − v0,n i.o.

b(iii) 0 = d1,n < d0,n, 0 = v1,n < v0,n, and ℓ0,n = s1 + v0,n i.o.

We consider each case in turn and we will show ℓ∗ ∈ Φ(v∗). Before proceeding, we point out

that ℓ1,n = s1 and v1,n = 0 i.o. implies ℓ∗1 = s1 and v∗1 = 0. Since, ℓ∗1 = s1 is a dominant

strategy for supplier 1 when v1 = v∗1 = 0, to establish that ℓ∗ ∈ Φ(v∗) it suffices to show

ℓ∗0 ∈ argmaxℓ0∈[0,1] π0(ℓ0, s1, v
∗).
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Subcase b(i): ℓ0,n < s1 − v0,n i.o.

There is a subsequence, (ℓk(n), vk(n))n∈N of (ℓn, vn)n∈N such that for each n ∈ N, ℓ1,k(n) = s1,

0 = v1,k(n) < v0,k(n), ℓ0,k(n) < s1 − v0,k(n), and ℓ0,k(n) ̸= s0.

Take any n ∈ N; since ℓ0,k(n) < s1 − v0,k(n), for all ℓ0 in some neighborhood of ℓ0,k(n),

π0(ℓ0, ℓ1,k(n), vk(n)) ≡ u0(ℓ0, ℓ1,k(n), vk(n)). Since u0(·, ℓ1,k(n), vk(n)) is differentiable in this

neighborhood, ℓ0,k(n) must satisfy the first-order condition,
∂u0(ℓk(n),vk(n))

∂ℓ0
= 0. Thus, for

all n ∈ N, ∂u0(ℓk(n),vk(n))

∂ℓ0
= 0; by Lemma A.3 ∂u0(ℓ∗,v∗)

∂ℓ0
= 0. From this point, the proof that

ℓ∗0 ∈ argmaxℓ0∈[0,1] π0(ℓ0, ℓ
∗
1, v

∗) follows identical arguments as were made in case (a).

Subcase b(ii): ℓ0,n = s1 − v0,n i.o.

There is a subsequence, (ℓk(n), vk(n))n∈N of (ℓn, vn)n∈N such that for each n ∈ N, ℓ1,k(n) = s1,

0 = v1,k(n) < v0,k(n), ℓ0,k(n) = s1 − v0,k(n), and ℓ0,k(n) ̸= s0. Then for each n, π0(ℓk(n), vk(n)) =

u0(ℓk(n), vk(n)). Moreover, see that, (ℓ0,k(n))n∈N → s1 − v∗0, which means ℓ∗0 = s1 − v∗0 and

π0(ℓ
∗, v∗) = u0(ℓ

∗, v∗).

We will now show that π0(ℓ
∗, v∗) ≥ π0(ℓ0, s1, v

∗) for all ℓ0 ∈ [0, 1]. Since π0(ℓ0, s1, v
∗) < 0

for ℓ0 ∈ (s1 − v∗0, s1 + v∗0) and π0(·, s1, v∗) is strictly decreasing on [s1 + v∗0, 1], it suffices to

restrict attention to ℓ0 ∈ [0, s1 − v∗0) ∪ {s1 + v∗0}.
Let ℓ0 ∈ [0, s1 − v∗0). Since (v0,k(n))n∈N → v∗0, there exists N ∈ N such that for all

n > N , ℓ0 ∈ [0, s1 − v0,k(n)), and hence π0(ℓ0, s1, vk(n)) = u0(ℓ0, s1, vk(n)). Then for all n >

N , ℓk(n) ∈ Φ(vk(n)) implies u0(ℓk(n), vk(n)) ≥ u0(ℓ0, s1, vk(n)). Since (ℓk(n), vk(n)) → (ℓ∗, v∗),

continuity of u0 implies, u0(ℓ
∗, v∗) ≥ u0(ℓ0, s1, v

∗). And since, π0(ℓ
∗, v∗) = u0(ℓ

∗, v∗) and

u0(ℓ0, s1, v
∗) = π0(ℓ0, s1, v

∗), we have π0(ℓ
∗, v∗) ≥ π0(ℓ0, s1, v

∗).

Next, let ℓ0 = s1 + v∗0. Then, π0(ℓ0, s1, v
∗) = v∗0(1 − F (ℓ0)) − C0(ℓ0 − s0). For each

n ∈ N let xn = min{s1 + v0,k(n), 1}. Since s1 + v∗0 ≤ 1, (xn)n∈N → s1 + v∗0 = ℓ0; moreover,

π0(xn, s1, vk(n)) = v0,k(n)(1−F (xn))−C0(xn− s0). Choose any n ∈ N. Since ℓk(n) ∈ Φ(vk(n)),

π0(ℓk(n), vk(n)) ≥ π0(xn, s1, vk(n)), which means u0(ℓk(n), vk(n)) ≥ v0,k(n)(1− F (xn))−C0(xn −
s0). Since (ℓk(n), vk(n))n∈N → (ℓ∗, v∗) and (xn)n∈N → ℓ0, continuity of u0, F , and C0 implies,

u0(ℓ
∗, v∗) ≥ v∗0(1−F (ℓ0))−C0(ℓ0−s0), which means π0(ℓ

∗, v∗) ≥ π0(ℓ0, s1, v
∗). This completes

the proof for subcase b(ii).

Subcase b(iii): ℓ0,n = s1 + v0,n i.o.

There is a subsequence, (ℓk(n), vk(n))n∈N of (ℓn, vn)n∈N such that for each n ∈ N, ℓ1,k(n) = s1,

0 = v1,k(n) < v0,k(n), ℓ0,k(n) = s1 + v0,k(n). For each n ∈ N, we have π0(ℓk(n), vk(n)) =
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v0,k(n)(1 − F (ℓ0,k(n))) − C0(ℓ0,k(n) − s0). Moreover, see that, (ℓ0,k(n))n∈N → s1 + v∗0, which

means ℓ∗0 = s1 + v∗0 and π0(ℓ
∗, v∗) = v∗0(1− F (ℓ∗0))− C0(ℓ

∗
0 − s0).

We will now show that π0(ℓ
∗, v∗) ≥ π0(ℓ0, s1, v

∗) for all ℓ0 ∈ [0, 1]. First note that since

π0(ℓ0, s1, v
∗) < 0 for ℓ0 ∈ (s1−v∗0, s1+v∗0) and π0(·, s1, v∗) is strictly decreasing on [s1+v

∗
0, 1],

it suffices to show π0(ℓ
∗, v∗) ≥ π0(ℓ0, s1, v

∗) for all ℓ0 ∈ [0, s1 − v∗0]. As the result is trivial if

s1 − v∗0 ≤ 0, consider the case s1 − v∗0 > 0.

Let ℓ0 ∈ [0, s1−v∗0], and note that π0(ℓ0, s1, v
∗) = u0(ℓ0, s1, v

∗). Define a sequence (xn)n∈N

as follows: For each n ∈ N, let xn = ℓ0 if ℓ0 < s1 − v0,k(n) and xn = max{s1 − v0,k(n), 0}
otherwise. By construction, (xn)n∈N → ℓ0. Moreover, since s1 − v∗0 > 0, there exists N ∈ N
such that for all n > N , s1 − v0,k(n) > 0. Fix n > N . It holds that xn ≤ s1 − v0,k(n),

which means π0(xn, s1, vk(n)) = u0(xn, s1, vk(n)); and since ℓk(n) ∈ Φ(vk(n)), we must have,

π0(ℓk(n), vk(n)) ≥ π0(xn, s1, vk(n)). Thus, for all n > N , v0,k(n)(1−F (ℓ0,k(n)))−C0(ℓ0,k(n)−s0) ≥
u0(xn, s1, vk(n)). Since (ℓk(n), vk(n))n∈N → (ℓ∗, v∗), (xn)n∈N → ℓ0, continuity of F,C0, and u0

implies, v∗0(1 − F (ℓ∗0)) − C0(ℓ
∗
0 − s0) ≥ u0(ℓ0, s1, v

∗), which means π0(ℓ
∗, v∗) ≥ π0(ℓ0, ℓ

∗
1, v

∗).

This establishes that ℓ∗ ∈ Φ(v∗), which completes the proof of case (b).

Case (c): d0,n = d1,n = 0 i.o.

First note that since ℓ0,n = s0 and ℓ1,n = s1 i.o. and (ℓn)n∈N → ℓ∗, it must be that ℓ∗i = si for

each i. If v∗0 = v∗1 = 0 then clearly ℓ∗ ∈ Φ(v∗). So in the remainder of this proof we consider

the case where v∗i > 0 for some i. In particular, and WLOG, we suppose v∗1 > 0.

Since v∗1 > 0, there exists N ∈ N such that for all n > N , v1,n > 0. Since, in addition,

ℓ0,n = s0 and ℓ1,n = s1 i.o., there is a subsequence, (ℓk(n), vk(n))n∈N of (ℓn, vn)n∈N such that

for each n ∈ N, ℓ0,k(n) = s0, ℓ1,k(n) = s1, and v1,k(n) > 0. Before we show that ℓ∗ ∈ Φ(v∗), we

first derive some useful properties of the sequence (ℓk(n), vk(n))n∈N and its limit, (ℓ∗, v∗). To

begin, we show that we must have v0,k(n) = 0 for each n.

By way of contradiction, suppose v0,k(n) > 0 for some n ∈ N. Since (ℓk(n), vk(n)) ∈
F̂P , we have s1 − s0 ≥ |v1,k(n) − v0,k(n)|. If s1 − s0 > |v1,k(n) − v0,k(n)|, then for ℓ0 in

some neighborhood of s0, π0(ℓ0, ℓ1,k(n), vk(n)) ≡ u0(ℓ0, ℓ1,k(n), vk(n)). Since
∂u0(s0,ℓ1,k(n),vk(n))

∂ℓ0
=

v0,k(n)f(y0(ℓk(n), vk(n))) > 0, there is some ℓ′0 > s0 sufficiently close to s0 that π0(ℓ
′
0, s1, vk(n)) >

π0(ℓk(n), vk(n)), which contradicts the hypothesis that ℓk(n) ∈ Φ(vk(n)). So it must be that

s1 − s0 = |v1,k(n) − v0,k(n)|. Since s0 ̸= s1 (by assumption), we have that v0,k(n) ̸= v1,k(n);

in particular, suppose WLOG, 0 < v0,k(n) < v1,k(n). Then π0(ℓk(n), vk(n)) = v0,k(n)F (s1) <

v0,k(n) = limℓ0↓s0 π0(ℓ0, ℓ1,k(n), vk(n)), and so supplier zero has a profitable deviation to some

ℓ′0 > s0 sufficiently close to s0. Again, this contradicts the hypothesis that ℓk(n) ∈ Φ(vk(n)).
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Thus, it must be that v0,k(n) = 0 for each n ∈ N, and so, v∗0 = 0.

We now show that s1 − s0 = v1,k(n) for all n ∈ N. To see this, choose any n ∈ N
and, by way of contradiction, suppose s1 − s0 ̸= v1,k(n). Since (ℓk(n), vk(n)) ∈ F̂P it must

be that s1 − s0 > v1,k(n). Then for ℓ1 in some neighborhood of s1, π1(ℓ0,k(n), ℓ1, vk(n)) ≡
u1(ℓ0,k(n), ℓ1, vk(n)). Since

∂u1(ℓ0,k(n),s1,vk(n))

∂ℓ1
= −v1,k(n)f(y0(ℓk(n), vk(n)) < 0, there is some ℓ′1 <

s1 sufficiently close to s1 that π1(ℓ0,k(n), ℓ
′
1, vk(n)) > π1(ℓk(n), vk(n)), which contradicts the

hypothesis that ℓk(n) ∈ Φ(vk(n)). Therefore, we must have s1 − s0 = v1,k(n) for all n ∈ N.
This means π1(ℓk(n), vk(n)) = u1(ℓk(n), vk(n) for all n ∈ N; moreover, s1 − s0 = v∗1, and so

π1(ℓ
∗, v∗) = u1(ℓ

∗, v∗) = v∗1 (1− F (s1)).

We now show that ℓ∗ ∈ Φ(v∗). Since v∗0 = 0, the approach s0 is a dominant strategy

for supplier zero and so, ℓ∗0 = argmaxℓ0 π0(ℓ0, ℓ
∗
1, v

∗). Then, to establish that ℓ∗ ∈ Φ(v∗), it

suffices to show s1 ∈ argmaxℓ1 π1(ℓ
∗
0, ℓ1, v

∗).

Let ℓ1 ∈ [0, 1]. We will show π1(ℓ
∗, v∗) ≥ π1(ℓ

∗
0, ℓ1, v

∗). First suppose ℓ1 > s1. Then,

π1(ℓ
∗
0, ℓ1, v

∗) = v∗1 (1− F (y0 (ℓ
∗
0, ℓ1, v

∗))) − C1(ℓ1 − s1) < v∗1(1 − F (s1)) = π1(ℓ
∗, v∗). Next,

suppose ℓ1 ∈ (s0 − v∗1, s0 + v∗1). Then π1(ℓ
∗
0, ℓ1, v

∗) = −C1(ℓ1 − s1) < 0 < π1(ℓ
∗, v∗).

Last, suppose ℓ1 ≤ ℓ′1 = s0 − v∗1. Since π1(ℓ
∗
0, ·, v∗) is strictly increasing on [0, ℓ′1], we

have π1(ℓ
∗
0, ℓ1, v

∗) ≤ π1(ℓ
∗
0, ℓ

′
1, v

∗) = v∗1F (ℓ
′
1) − C1(ℓ

′
1 − s1). For each n ∈ N, let xn =

max{s0 − v1,k(n), 0}. Since 0 ≤ s0 − v∗1, we have (xn)n∈N → s0 − v∗1 = ℓ′1. Moreover,

for each n ∈ N, π1(ℓ0,k(n), xn, vk(n)) = v1,k(n)F (xn) − C1(xn − s1). Then ℓk(n) ∈ Φ(vk(n))

implies, π1(ℓk(n), vk(n)) ≥ π1(ℓ0,k(n), xn, vk(n)), which means for all n ∈ N, u1(ℓk(n), vk(n)) ≥
v1,k(n)F (xn)− C1(xn − s1). Since (ℓk(n), vk(n))n∈N → (ℓ∗, v∗) and (xn)n∈N → ℓ′0, continuity of

u1, F , and C1, implies u1(ℓ
∗, v∗) ≥ v∗1F (ℓ

′
1) − C1(ℓ

′
1 − s1). And since u1(ℓ

∗, v∗) = π1(ℓ
∗, v∗)

and π1(ℓ
∗
0, ℓ1, v

∗) ≤ v∗1F (ℓ
′
1)− C1(ℓ

′
1 − s1), we have π1(ℓ

∗, v∗) ≥ π1(ℓ
∗
0, ℓ1, v

∗).

This completes the proof of case (c) and establishes the lemma.

Proof of Lemma 6. Let (ℓ∗, v∗) ∈ AP ; we show that v∗i > 0 if and only if d∗i > 0. The

fact that d∗i > 0 implies v∗i > 0 trivially follows from feasibility. So we show that v∗i > 0

implies d∗i > 0. Consider the case, v∗0 > 0; the case v∗1 > 0 follows analogous arguments.

Proceeding by contradiction, suppose that d∗0 = 0.

Case 1: d∗0 = d∗1 = 0. It must be that |v∗1 − v∗0| ≥ s1 − s0; otherwise, for ℓ0 in

some neighborhood of s0, π0(ℓ0, s1) = u0(ℓ0, s1) and
∂π0(s0,s1)

∂ℓ0
=

v∗0
2
f (y0 (s0, s1)) > 0, which

means supplier zero has a profitable deviation to some ℓ′0 > s0. Then, Lemma A.2 implies,

|v∗1 − v∗0| = s1 − s0.

Consider the case, s0 < s1. Let v′0 = v′1 = 0 and note that (s0, s1) ∈ Φ(v′). Moreover,
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πb(ℓ
∗, v∗) = q−L(ℓ∗, v∗) < q−LFB(ℓ

∗) = πb(ℓ
∗, v′), where the inequality holds since v∗0 ̸= v∗1

implies LFB(ℓ
∗) < L(ℓ∗, v∗). The final equality holds since v′0 = v′1 implies LFB(ℓ

∗) =

L(ℓ∗, v′). This contradicts the hypothesis that (ℓ∗, v∗) ∈ AP .

Next, suppose s0 = s1 = s. Following similar arguments as were made in the proof

of Lemma A.2, there exists v′0 > 0 = v′1 and ℓ′ ∈ Φ(v′) such that πb(ℓ
′, v′) > πb(ℓ

∗, v∗),

contradicting the hypothesis that (ℓ∗, v∗) ∈ AP .

Case 2: d∗1 > 0 = d∗0. Proposition A.1(iv) implies s0 = 1
2
= ℓ∗1 and v∗0 = v∗1. Let

v′0 = v′1 = 0 and ℓ′ = (s0, s1). Then, ℓ′ ∈ Φ(v′) and πb(ℓ
∗, v∗) = E

[
Q0

(
1
2
, y
)]

− C1(d
∗
1) <

E
[
max

{
Q0

(
1
2
, y
)
, Q1(s1, y)

}]
= πb(ℓ

′, v′), contradicting the hypothesis that (ℓ∗, v∗) ∈ AP .

This establishes the lemma.

Lemma A.5. If s0, 1− s1 < s∗, then |v∗1 − v∗0| < s1 − s0.

Proof. Let s0, 1 − s1 < s∗, (ℓ∗, v∗) ∈ AP and let d∗i = |ℓ∗i − si|. Proceed by contradiction

and suppose |v∗1 − v∗0| ≥ s1 − s0. If v
∗
0, v

∗
1 > 0, then Proposition A.1(v) implies, d∗0 = d∗1 = 0,

contradicting Lemma 6. So, we must have v∗i > 0 = v∗j . WLOG, suppose v∗1 > 0 = v∗0.

Lemma 6 implies d∗1 > 0 = d∗0, and so ℓ∗0 = s0. Then, using Proposition A.1(vi), and the

fact that s0 <
1
2
< s1, it is easy to show that we must have ℓ∗1 = s0 + v∗1 > s1, which means

πb(ℓ
∗, v∗) = q − L(ℓ∗, v∗).

Now let ℓ′ = (s0, s1) and v
′ = (0, 0), and see that πb(ℓ

′, v′) = q − κFB(ℓ
′) and ℓ′ ∈ Φ(v′).

We will show that πb(ℓ
′, v′) > πb(ℓ

∗, v∗); equivalently, κFB(ℓ
′) < L(ℓ∗, v∗). First, since

v∗0 ̸= v∗1 and ℓ∗1 ̸= s1, L(ℓ
∗, v∗) > κFB(ℓ

∗). Next, since s1 > 1 − s∗, for all ℓ1 ∈ [s1, 1],
∂κFB(s0,ℓ1)

∂ℓ1
= 2F (ℓ1)−F

(
s0+ℓ1

2

)
− 1 > 2F (1− s∗)−F

(
s∗+1−s∗

2

)
− 1 = 0, where the inequality

follows since and ∂κFB(s0,ℓ1)
∂ℓ1

is strictly increasing in ℓ1 and strictly decreasing in s0. It follows

that κFB(s0, s1) < κFB(s0, ℓ
∗
1), and thus, κFB(ℓ

′) < L(ℓ∗, v∗). Since (ℓ′, v′) ∈ FP , this

contradicts the optimality of (ℓ∗, v∗).

Proof of Proposition 3: Let s0, 1− s1 < s∗ be given and let (ℓ∗, v∗) ∈ AP . We first show

that v∗0, v
∗
1 > 0. Proceed by contradiction and suppose v∗i = 0 for some i; in particular and

WLOG, suppose v∗0 = 0. Obviously, this means ℓ∗0 = s0. Lemmas 6 and A.5 together with

Proposition A.1(vii) imply, ℓ∗1 ≥ s0 + v∗1 and ∂u1(ℓ∗,v∗)
∂ℓ1

≤ 0, which means (ℓ∗, v∗) is feasible in

(AUX 2); moreover, πb(ℓ
∗, v∗) = q − L(ℓ∗, v∗).

We now show that ℓ∗1 > s0 + v∗1 and v∗1 > 0. Proceeding by contradiction, suppose

that either ℓ∗1 = s0 + v∗1 or v∗1 = 0. Let (ℓa1, v
a
1) solve (AUX 2), and let ℓa = (s0, ℓ

a
1) and

va = (0, va1). By Lemma B.6, ℓa ∈ Φ(va); so (ℓa, va) ∈ FP ; moreover, ℓa1 > s0 + va1 , which

means πb(ℓ
a, va) = q−L(ℓa, va). Since (ℓ∗, v∗) ∈ AP , we have L(ℓ

∗, v∗) ≤ L(ℓa, va). However,
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since (ℓ∗, v∗) is feasible in (AUX 2) and ℓ∗1 = v∗1 − s0 or v∗1 = 0, Lemma B.6 implies (ℓ∗, v∗)

cannot solve (AUX 2); so, L(ℓa, va) < L(ℓ∗, v∗). We have a contradiction, and therefore,

v∗1 > 0 and ℓ∗1 > s0 + v∗1.

Now since ℓ∗1 > s0 + v∗1, in some neighborhood of ℓ∗1, π1(ℓ
∗, v∗) = u1(ℓ

∗, v∗). Optimality

of ℓ∗1 implies ∂u1(ℓ∗,v∗)
∂ℓ∗1

= 0. This means, (ℓ∗, v∗) ∈ FP ′ . Now let (ℓ′, v′) ∈ AP ′ . Since

v∗0 = 0, Lemma B.2 implies (ℓ∗, v∗) /∈ AP ′ , which means L(ℓ′, v′) < L(ℓ∗, v∗). However, by

Proposition B.1, ℓ′ ∈ Φ(v′) and πb(ℓ
′, v′) = q − L(ℓ′, v′). By definition of (ℓ∗, v∗), we must

have L(ℓ∗, v∗) ≤ L(ℓ′, v′). This yields a contradiction; therefore, we must have v∗0, v
∗
1 > 0.

By Lemma 6, d∗0, d
∗
1 > 0. And by Proposition A.1(iii), s0 < ℓ∗0 < ℓ∗1 < s1.

Next, let s∗ ≤ s0, 1− s1 and (ℓ∗, v∗) ∈ AP . We will show that v∗i = 0 for some i.

To begin, we show that if s0 < s1 then for all ℓ such that s0 < ℓ0 < ℓ1 < s1, κFB(ℓ) >

κFB(s0, s1). To see this, suppose s0 < s1 and let ℓ be given such that s0 < ℓ0 < ℓ1 < s1.

Convexity of κFB implies, κFB(ℓ) − κFB(s0, s1) ≥ (ℓ0 − s0)
∂κFB(s0,s1)

∂ℓ0
+ (ℓ1 − s1)

∂κFB(s0,s1)
∂ℓ1

.

Then, see that ∂κFB(s0,s1)
∂ℓ0

= 2F (ℓ0) − F
(
s0+s1

2

)
> 2F (s∗) − F

(
s∗+1−s∗

2

)
= 0. A similar

argument reveals that ∂κFB(s0,s1)
∂ℓ1

< 0. Since ℓ0 > s0 and ℓ1 < s1, (ℓ0 − s0)
∂κFB(s0,s1)

∂ℓ0
+ (ℓ1 −

s1)
∂κFB(s0,s1)

∂ℓ1
> 0. Thus, κFB(ℓ) > κFB(s0, s1).

We now show v∗i = 0 for some i. Proceeding by contradiction, suppose v∗0, v
∗
1 > 0. Lemma

6 implies d∗0, d
∗
1 > 0. And by Proposition A.1(iii), s0 < ℓ∗0 < ℓ∗1 < s1 and ℓ∗1 − ℓ∗0 > |v∗1 − v∗0|.

Now let ℓ′ = (s0, s1) and v′0 = v′1 = 0. Then, πb(ℓ
∗, v∗) = q − L(ℓ∗, v∗) < q − κFB(ℓ

∗),

πb(ℓ
′, v′) = q − κFB(ℓ

′). By the argument provided in the previous paragraph, κFB(ℓ
∗) >

κFB(ℓ
′). Hence, πb(ℓ

∗, v∗) < πb(ℓ
′, v′). But since ℓ′ ∈ Φ(v′), this contradicts the definition of

(ℓ∗, v∗).

Proof of Proposition 4: We divide the proof into 3 parts. In Part 0, we provide several

bounds that will be used in the main part of the proof. In Part I, we show that if s0 is

sufficiently close to s1 then (ℓ∗, v∗) ∈ AP implies v∗j = 0 < v∗i . In Part II, we show that

s1 − s0 < |ℓ∗i − si| = v∗i .

For the remainder of the proof, fix s1 ∈ (0, 1), and WLOG, suppose s1 ≥ 1
2
.
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Part 0

For x ∈
[
0, s1

2

]
, let Ψ1(x) be defined, Ψ1(x) = κFB(s1 − x, s1)− κ(s1 − 2x, s1, 2x, 0)− C0(x);

i.e.,

Ψ1(x) =

∫ s1−x
2

0

|s1−x−y|dF (y)+
∫ 1

s1−x
2

|s1−y|dF (y)−
∫ s1−2x

0

(s1−2x−y)dF (y)−
∫ 1

s1−2x

|s1−y|dF (y)−C0(x).

Note that Ψ1(0) = 0 and Ψ ′
1(0) = F (s1) > 0. By continuity, there exists ϵ1 > 0 such

x ∈ (0, ϵ1) implies Ψ1(x) > 0.

Next, for x ∈
[
0, s1

2

]
, let Ψ2(x) = A(x) − max{0, 2x(1 − F (s1 + 2x)) − C0(3x)}, where

A(x) = 2xF (s1 − 2x) − C0(x). We show that Ψ2(x) > 0 for x sufficiently small. To begin,

s1 ≥ 1
2
implies F (s1 − 2x) ≥ 1 − F (s1 + 2x). And since C0(x) ≤ C0(3x), holding strictly

for x > 0, we have A(x) > 2x(1 − F (s1 + 2x)) − C0(3x) for all x > 0. Moreover, see that

A(0) = 0 and A′(0) = 2F (s1) > 0. Thus, there exists ϵ2 > 0 such that x ∈ (0, ϵ2) implies

A(x) > 0. Hence, Ψ2(x) > 0 for all x ∈ (0, ϵ2).

Next, we show that there exists ϵ3 > 0 such that if x ∈ (0, ϵ3), ℓ, ℓ
′ ∈ [s1 − x, s1]

4,

ℓ0 ≤ ℓ′0 ≤ ℓ′1 ≤ ℓ1, and ℓ0 < ℓ1 then κFB(ℓ) < κFB(ℓ
′). First, since 2F (s1) > F (s1) by

continuity of F , there exists ϵ′ > 0 such that 2F (s1 − ϵ′) > F (s1). Similarly, there exists

ϵ′′ > 0 such that 2F (s1) < 1 + F (s1 − ϵ′′). Now let ϵ3 = min{ϵ′, ϵ′′}. And let x ∈ (0, ϵ3).

We now show that for all ℓ ∈ [s1 − x, s1]
2 with ℓ0 ≤ ℓ1,

∂κFB(ℓ)
∂ℓ0

> 0 > κFB(ℓ)
∂ℓ1

. Let

ℓ ∈ [s1 − x, s1]. Then ∂κFB(ℓ)
∂ℓ0

= 2F (ℓ0) − F (m(ℓ)) ≥ 2F (s1 − x) − F (s1) > 0, where the

final inequality holds since x < ϵ′. A similar argument shows that ∂κ(ℓ)
∂ℓ1

< 0. Finally, since
∂κFB(ℓ)

∂ℓ0
> 0 > κFB(ℓ)

∂ℓ1
for all ℓ ∈ [s1−x, s1]2, this implies κFB(ℓ) < κ(ℓ′) for all ℓ, ℓ′ ∈ [s1−x, s1]4

with ℓ0 ≤ ℓ′0 ≤ ℓ′1 ≤ ℓ1 and ℓ0 < ℓ1.

Next, let Ψ3(x) = F (s1−2x)−xf(s1−2x)−C ′
1(2x)−1+F (s1−x), and suppose s1 >

1
2
.

We have Ψ(0) = 2F (s1) − 1 > 0. Continuity implies that there exists ϵ4 > 0 such that

Ψ(x) > 0 for all x ∈ [0, ϵ4).

For the remainder of the proof, let 0 < ϵ < min
{
ϵ1, ϵ2, ϵ3, ϵ4,

s1
2

}
, fix s0 ∈ (s1− ϵ, s1), and

let (ℓ∗, v∗) ∈ AP (s0, s1). We also let δ = s1 − s0. The case where s0 = s1 follows similar, but

distinct, arguments and is omitted for brevity; it is available upon request.

Part I

In this section, we show that show that v∗i > 0 = v∗j .

To begin, we establish that v∗i > 0 for some i. To do so, it suffcices to show that for some
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(ℓ′, v′) ∈ FP , πb(ℓ
′, v′) > πdef

b , where πdef
b is the buyer’s payoff at the default.

Now let v′0 = 2δ, v′1 = 0, ℓ′0 = s1 − 2δ, and ℓ′1 = s1. First we show πb(ℓ
′, v′) > πdef

b . See

that πdef
b = q−κFB(s0, s1) = q−κFB(s1−δ, s1) and πb(ℓ′, v′) = q−κ(s1−2δ, s1, 2δ, 0)−C0(δ).

Hence, πb(ℓ
′, v′) − πdef

b = Ψ1(δ), where Ψ1 is as defined in Part 0. And since δ ∈ (0, ϵ1), we

have Ψ1(δ) > 0. Hence, πb(ℓ
′, v′) > πdef

b .

Next, we show that ℓ′ ∈ FP . First, since δ < ϵ < s1
2
, clearly ℓ′ ∈ (0, 1)2. It remains

to show that ℓ′ ∈ Φ(v′). Since v′1 = 0, clearly s1 ∈ argmaxℓ1 π1(ℓ
′
0, ℓ1, v

′). Next, we show

ℓ′0 ∈ B0(ℓ
′
1) = argmaxℓ0 π0(ℓ0, ℓ

′
1, v

′).

Since v′1 = 0 and v′0 > δ, Proposition A.1(vi) implies B0(ℓ
′
1) ⊆ {s0, s1 − v0, s1 + v0} =

{s0, ℓ′0, s1+2δ}; thus, we need only show that π0(ℓ
′, v′) ≥ max{π0(s0, ℓ′1, v′), π0(s1+2δ, ℓ′1, v

′)}.
See that, π0(ℓ

′, v′) = 2δF (s1 − 2δ)−C0(δ);π0(s0, ℓ
′
1, v

′) = 0; and π0(s1 + 2δ, ℓ′1, v
′) = 2δ(1−

F (s1 +2δ))−C0(3δ). Hence, π0(ℓ
′, v′)−max{π0(s0, ℓ′1, v′), π0(s1 +2δ, ℓ′1, v

′)} = Ψ2(δ), where

Ψ2 is as defined in Part 0. Since δ ∈ (0, ϵ2), Ψ2(δ) > 0. This establishes that (ℓ′, v′) ∈ FP .

We have now established that v∗i > 0 for some i. Next, we show that v∗j = 0 for some j.

By way of contradiction, suppose v∗0, v
∗
1 > 0. Lemma 6 implies d∗0, d

∗
1 > 0. Then, by

Proposition A.1(iii), |v∗1 − v∗0| < ℓ∗1 − ℓ∗0 and s0 < ℓ∗0 < ℓ∗1 < s1, which means πb(ℓ
∗, v∗) =

q − L(ℓ∗, v∗). See that L(ℓ∗, v∗) ≥ κFB(ℓ
∗), s0 < ℓ∗0 < ℓ∗1 < s1 and s0, s1, ℓ

∗
0, ℓ

∗
1 ∈ [s1 − ϵ, s1].

Since ϵ < ϵ3, as shown in Part 0, κFB(ℓ
∗) > κFB(s0, s1). It follows that πb(ℓ

∗, v∗) < πdef
b ,

which contradicts the optimality of (ℓ∗, v∗). This establishes that v∗j = 0 for some j.

We have now established that v∗i > 0 = v∗j . This concludes the proof of Part I.

Part II

In this part of the proof, we show that s1 − s0 < |ℓ∗i − si| = v∗i . To begin, we will show that

v∗i > δ. We proceed by contradiction and suppose v∗i ≤ δ.

First consider the case, v∗1 = 0 < v∗0 ≤ δ. Note that π0(·, s1) is strictly increasing on [0, s0),

so optimality for supplier zero implies ℓ∗0 /∈ [0, s0). Following similar arguments to those used

in the final paragraph of the proof of Part I, it can be shown that optimality for the buyer

implies ℓ∗0 /∈ (s0, s1); moreover, by Lemma 6, ℓ∗0 ̸= s0. And for any ℓ0 ∈ (s1, s1 + v∗0), supplier

zero wins with probability 0; thus, ℓ∗0 /∈ (s1, s1 + v∗0). So we must have, ℓ∗0 ∈ [s1 + v∗0, 1]. On

this interval, π0(·, s1) is strictly decreasing; therefore, ℓ∗0 = s1 + v∗0. However, since s1 ≥ 1
2
,

the approach, s1 − v∗0 gives supplier zero a (weakly) greater likelihood of victory at strictly

lower cost than the approach s1 + v∗0; thus, π0(s1 − v∗0, s1) > π0(s1 + v∗0, s1). This yields a

contradiction and, therefore, we cannot have 0 = v∗1 < v∗0 ≤ δ.

Next, consider the case, v∗0 = 0 < v∗1 ≤ δ. Following analogous arguments to those in the
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preceding paragraph, we must have ℓ∗1 ∈ [0, s0 − v∗1]; but on this interval, π1(s0, ·) is strictly
increasing, and therefore, ℓ∗1 = s0−v∗1. Note that this also implies that we must have s0 >

1
2
,

for if s0 ≤ 1
2
then the approach s0 + v∗1 gives supplier one a (weakly) greater likelihood of

victory at strictly lower cost than the approach s0 − v∗1. In the remainder of this proof, we

show that there is (ℓ′, v′) ∈ FP with v′1 > v∗1 such that πb(ℓ
′, v′) > πb(ℓ

∗, v∗).

As a first step, we show that there is some ∆1 ∈ (0, 1 − s0 − v∗1) such that for all

∆ ∈ (0, ∆1), π1(s0, s0 − v∗1 −∆, 0, v∗1 +∆) > max
{
0,maxℓ1∈[s0+v∗1+∆,1] u1(s0, ℓ1, 0, v

∗
1 +∆)

}
.

That is, if ∆ ∈ (0, ∆1) and supplier one’s prize is v1 = v∗1+∆, then the approach ℓ1 = s0−v1
gives supplier one a strictly positive payoff that is strictly higher than any approach in

[s0 + v1, 1].

For∆ ∈ [0, 1−s0−v∗1), Let r1(∆) = argmaxℓ1∈[s0+v∗1+∆,1] u1(s0, ℓ1, 0, v
∗
1+∆); strict concav-

ity of u1 implies r1 is a continuous single-valued function. Let u∗1(∆) = u1(s0, r1(∆), 0, v∗1+∆),

and let G(∆) = π1(s0, s0 − v∗1 −∆, 0, v∗1 +∆)−max{0, u∗1(∆)}:

G(∆) = (v∗1 +∆)F (s1 − δ − v∗1 −∆)− C1(δ + v∗1 +∆)

−max

{
0, (v∗1 +∆)

[
1− F

(
r1(∆) + s1 − δ + v∗1 +∆

2

)]
+ C1(s1 − r1(∆))

}
.

Note that ℓ∗ ∈ Φ(v∗) implies G(0) ≥ 0. We next show that G′(0) > 0.

First, note that since s1 ∈ [s0 + v∗1, 1), u
∗
1(0) ≥ u1(s0, s1, v

∗) > 0. By continuity of u1,

there is some neighbhoord above zero such that for all ∆ in this neighborhood, u∗(∆) > 0.

Next, we bound u∗
′
(0). Consider the case, r1(0) ∈ (s0 + v∗1, 1). By the Envelope Theorem:

u∗
′
(0) = 1− F

(
r1(0) + s1 − δ + v∗1

2

)
− v∗1

2
f

(
r1(0) + s1 − δ + v∗1

2

)
< 1− F

(
r1(0) + s1 − δ + v∗1

2

)
< 1− F (s1 − δ),

Next, consider the case, r1(0) = s0 + v∗1. It must be that r1(∆) = s0 + v∗1 + ∆ for all

∆ ∈ (0, 1 − s0 − v∗1), for if it is optimal for supplier one to choose the lower bound of the

choice set when the prize is v∗1 then it is also optimal to do so when the prize is v∗1 +∆ > v∗1.

Then,

u∗1(∆) = (v∗1 +∆)[1− F (s1 − δ + v∗1 +∆)]− C1(δ − v∗1 −∆),
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and,

u∗
′
(0) = 1− F (s1 − δ + v∗1)− v∗1f(s1 − δ + v∗1) + C ′

1(δ − v∗1)

≤ 1− F (s1 − δ + v∗1)−
v∗1
2
f(s1 − δ + v∗1)

< 1− F (s1 − δ),

where the first inequality holds since r1(0) = s0+v
∗
1 implies ∂u1(s0,ℓ0,v∗)

∂ℓ1
|ℓ1=s0+v∗1

= −v∗1
2
f (s1 − δ + v∗1)+

C ′
1(δ − v∗1) ≤ 0. We have now established that u∗

′
(0) < 1− F (s1 − δ). We then have,

G′(0) = F (s1 − δ − v∗1)− v∗1f(s1 − δ − v∗1)− C ′
1(δ + v∗1)− u∗

′
(0)

> F (s1 − δ − v∗1)− v∗1f(s1 − δ − v∗1)− C ′
1(δ + v∗1)− 1 + F (s1 − δ)

> F (s1 − 2δ)− δf(s1 − 2δ)− C ′
1(2δ)− 1 + F (s1 − δ)

= Ψ3(δ) > 0.

The first inequality holds since u∗
′
(0) < 1 − F (s1 − δ). The second inequality holds since

v∗1 < δ and the expression F (s1− δ−x)−xf(s1− δ−x)−C ′
1(δ+x) is strictly decreasing in

x. The function Ψ3 on the last line is as defined in Part 0; Ψ3(δ) > 0 since s1 >
1
2
and δ < ϵ4.

Then since G(0) ≥ 0 and G′(0) > 0, there exists ∆1 ∈ (0, 1 − s0 − v∗1) such that G(∆) > 0

for all ∆ ∈ (0, ∆1).

Next, we show that there exists ∆2 ∈ (0, s0−v∗1) such that for all ∆ ∈ (0, ∆2), πb(s0, s0−
v∗1 − ∆, 0, v∗1 + ∆) > πb(ℓ

∗, v∗). That is, for ∆ ∈ (0, ∆2), the buyer is strictly better off

choosing ℓ = (s0, s0 − v∗0 −∆) and v = (0, v∗1 +∆) than choosing (ℓ∗, v∗).

For ∆ ∈ [0, s0−v∗1], let π̂b(∆) = πb(s0, s0−v∗1 −∆, 0, v∗1 +∆). See that π̂b(∆) = q−ν(∆),

where

ν(∆) =

∫ s0−v∗1−∆

0

(s0 − v∗1 −∆− y)dF (y) +

∫ 1

s0−v∗1−∆

|s0 − y|dF (y) + C1(δ + v∗1 +∆).
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We now show π̂′
b(0) > 0; equivalently, ν ′(0) < 0. See that

ν ′(0) = −F (s1 − δ − v∗1) + v∗1f(s1 − δ − v∗1) + C ′
1(δ + v∗1)

≤ −F (s1 − 2δ) + δf(s1 − 2δ) + C ′
1(2δ)

= −Ψ3(δ) + F (s1 − δ)− 1

< 0

The first inequality holds since the expression, −F (s1−δ−x)+v∗1f(s1−δ−x)+C ′
1(δ+x)

is increasing in x and v∗1 < δ. The final inequality holds since Ψ3(δ) > 0. This establishes

that ν ′(0) < 0. Then since π̂b(0) = πb(ℓ
∗, v∗) and π̂′(0) > 0, there exists ∆2 ∈ (0, s0−v∗1) such

that for all ∆ ∈ (0, ∆2), π̂b(∆) > πb(ℓ
∗, v∗); that is, πb(s0, s0− v∗1 −∆, 0, v∗1 +∆) > πb(ℓ

∗, v∗).

Now let ∆ ∈ (0,min{∆1, ∆2}), and let ℓ′1 = s0−v∗0 −∆ and v′1 = v∗1 +∆. Let ℓ′ = (s0, ℓ
′
1)

and v′ = (0, v′1). We first show ℓ′ ∈ Φ(v′). Clearly, ℓ′0 ∈ argmaxℓ0∈[0,1] π0(ℓ0, ℓ
′
1, v

′) so

consider supplier one; we will show ℓ′1 ∈ argmaxℓ1∈[0,1] π1(ℓ
′
0, ℓ1, v

′). Let ℓ1 ∈ [0, 1] be given. If

ℓ1 < s0−v′1 then since π1(ℓ
′
0, ·, v′) is strictly increasing on [0, s0−v′1], π1(ℓ′0, ℓ1, v′) < π1(ℓ

′, v′).

If ℓ1 ∈ (s1 − v′1, s0 + v′1) then supplier one wins with probabilty zero and so, π1(ℓ
′
0, ℓ1, v

′) <

0 < π1(ℓ
′, v′), where the final inequality holds since ∆ < ∆1. Finally, if ℓ1 ∈ (s0 + v′1, 1]

then π1(ℓ
′
0, ℓ1, v

′) = u1(ℓ
′
0, ℓ1, v

′) ≤ u∗(∆) < π1(ℓ
′, v′), where the first inequality follows by

definition of u∗(∆) and the second since ∆ < ∆1. This establishes that ℓ
′ ∈ Φ(v′) and, thus,

(ℓ′, v′) ∈ FP . And since ∆ < ∆2, we have πb(ℓ
∗, v∗) < πb(ℓ

′, v′), and this contradicts the

definition of (ℓ∗, v∗). Therefore, we must have 0 = v∗j < δ < v∗i . Lemma 6 implies ℓ∗i ̸= si

and Proposition A.1(vi) implies |ℓ∗i − sj| = v∗i . This completes the proof.

Proof of Proposition 5: We first prove part (i). Let s0 = 1−δ
2

and s1 = 1+δ
2
; WLOG,

suppose C ′
0 < C ′

1. By Proposition 4 there is ϵ > 0 such that for all δ ∈ (0, ϵ), (ℓ∗, v∗) ∈ AP ,

then, v∗j = 0 < v∗i and δ < |ℓ∗i − sj| = v∗i .

Fix δ ∈ (0, ϵ) and let (ℓ∗, v∗) ∈ AP . Proceed by contradiction and suppose 0 < v∗1;

Proposition 4 implies 0 = v∗0 < δ < v∗1 = |ℓ∗1 − s0|. This means ℓ∗1 ∈ {s0 − v∗1, s0 + v∗1}. And
since s0 <

1
2
< s1, the approach, s0 + v∗1 gives supplier one a strictly greater probability of

victory at strictly lower cost than the approach s0 − v∗1; thus, we must have ℓ∗1 = s0 + v∗1.

Now let ℓ′0 = s1 − v∗1, ℓ
′
1 = s1, v

′
0 = v∗1 and v′1 = 0. See that, πb(ℓ

∗, v∗) = q − L(ℓ∗, v∗),
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πb(ℓ
′, v′) = q − L(ℓ′, v′) and

L(ℓ∗, v∗) =

∫ s0+v∗1

0

|y − s0|f(y)dy +
∫ 1

s0+v∗1

(y − s0 − v∗1)f(z)dz + C1(s0 + v∗1 − s1)

=

∫ s1−v∗1

0

(s1 − v∗1 − z)f(z)dz +

∫ 1

s1−v∗1

|s1 − z|f(z)dz + C1(s1 − s0 − v∗1)

>

∫ s1−v∗1

0

(s1 − v∗1 − z)f(z)dz +

∫ 1

s1−v∗1

|s1 − z|f(z)dz + C0(s1 − s0 − v∗1)

= L(ℓ′, v′).

The second equality follows since C(x) = C(−x) and through a change of variables in which

we let z = 1 − y, dz = −dy and then use the facts that s0 = 1 − s1 and f(z) = f(1 − z).

The strict inequality holds since C ′
0 < C ′

1 implies C0(d) < C1(d) for all d > 0. The string of

inequalities shows that, πb(ℓ
∗, v∗) < πb(ℓ

′, v′).

We now show that ℓ′ ∈ Φ(v′). We focus on supplier zero. Let B0 = argmaxℓ0 π0(ℓ0, ℓ
′
1, v

′)

denote supplier zero’s best-reply when the prizes are v′ and supplier one chooses ℓ′1 = s1.

Since δ = s1 − s0 < v∗1, Proposition A.1 implies B0 ∈ {s0, s1 − v∗1, s1 + v∗1}. Now since

ℓ∗ ∈ Φ(v∗), it must be that π1(ℓ
∗, v∗) ≥ 0. But using symmetry of the distribution/cost

function and the facts that s0 = 1− s1 and C0(d) < C1(d), it is easily shown that π0(ℓ
′, v′) >

π1(ℓ
∗, v∗) ≥ 0 = π0(s0, ℓ

′
1, v

′), which means B0 ̸= s0. Moreover, since s0 <
1
2
< s1, the

approach s1 − v∗1 gives supplier zero a strictly greater probability of victory as strictly lower

cost than the approach s1 + v∗1; hence π0(s1 − v∗1, ℓ
′
1, v

′) > π0(s1 + v∗1, ℓ
′
1, v

′). This establishes

that B0 = s1− v∗1 = ℓ′0, and hence, ℓ′ ∈ Φ(v′), so (ℓ′, v′) ∈ FP . But since L(ℓ
′, v′) < L(ℓ∗, v∗),

this contradicts the hypothesis that (ℓ∗, v∗) ∈ AP .

We now prove Part (ii) for the case 1
2
< s1; the case s1 ≤ 1

2
is symmetric. So let

s1 ∈
(
1
2
, 1
)
. By Proposition 4 there exists ϵ1 > 0 such that s0 ∈ (s1 − ϵ1, s1) implies

0 = v∗j < s1 − s0 < v∗i . Then let ϵ ∈
(
0,min

{
s1 − 1

2
, ϵ1

})
and let s0 ∈ (s1 − ϵ, s1). See that

s0 >
1
2
and s0 − 1

2
< s1 − 1

2
. We will show that (ℓ∗, v∗) ∈ AP implies v∗1 = 0 < v∗0.

Let (ℓ∗, v∗) ∈ AP . Since s1−s0 < ϵ1, Proposition 4 implies that either, v∗1 = 0 < s1−s0 <
v∗0 and ℓ∗0 ∈ {s1 − v∗0, s1 + v∗0} or v∗0 = 0 < s1 − s0 < v∗1 and ℓ∗1 ∈ {s0 − v∗1, s0 + v∗1}. Since

s1 >
1
2
, in the case where v∗0 > 0, it is straightforward to show that we must have ℓ∗0 = s1−v∗1,

as this approach gives supplier zero a strictly greater probability of victory at strictly lower

cost than the approach s1 + v∗1. So, it suffices to compare three scenarios. Below we provide

a sketch of the comparison between the three scenarios. More explicit details are available

upon request.
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Scenario 1: v1 = 0 < v0 and ℓ0 = s1 − v0: For all (ℓ, v) such that v1 = 0 < v0, ℓ1 = s1,

and ℓ0 = s1 − v0, the buyer purchases from supplier zero whenever y ≤ ℓ0, and purchases

from supplier one when y > ℓ0. Consider the problem

min
ℓ0,v0

∫ ℓ0

0

(ℓ0 − y)dy +

∫ s1

ℓ0

(s1 − y)dy +

∫ 1

s1

(y − s1)dy +
c

2
(ℓ0 − s0)

2,

subject to the constraints that ℓ0 = s1− v0 and u0(ℓ, v) = v0F (ℓ0)−C0(ℓ0− s0) ≥ 0. Taking

FOCs and solving, it may be verified that the constraint u0 ≥ 0 is non-binding and that

ℓ∗0 =
cs0+s1
2+c

< s0.

Scenario 2: v0 = 0 < v1 and s0+v1 = ℓ1: In this case, the buyer purchases from supplier

one only when y > ℓ1. Consider the problem

min
ℓ1

∫ s0

0

(s0 − y)dy +

∫ ℓ1

s0

(y − s0)dy +

∫ 1

ℓ1

(y − ℓ1)dy +
c

2
(ℓ1 − s1)

2

subject to the constraints that ℓ1 = s0+ v1 and u1(ℓ, v) ≥ max {0, u1 (s0, s0 − v1, 0, v1)}. For
our purposes, it is sufficient to consider a relaxed problem in which we assume the constraint

u1(ℓ, v) ≥ max {0, u1 (s0, s0 − v1, 0, v1)} is non-binding. Solving this problem, we find that

ℓ∗1 =
1+s0+cs1

2+c
.

Scenario 3: v0 = 0 < v1 and ℓ1 = s0−v1: In this case, the buyer purchases from supplier

one only when y < ℓ1. Consider the problem

min
ℓ1

∫ ℓ1

0

(ℓ1 − y)dy +

∫ s0

ℓ1

(s0 − y)dy +

∫ 1

s0

(y − s0)dy +
c

2
(s1 − ℓ1)

2

subject to the constraints that ℓ1 = s0 − v1 and u1(ℓ, v) ≥ max{0, u1(s0, s0 + v1, 0, v1)}. As

in scenario 2, for our purposes, it is sufficient to consider a relaxed problem in which we

assume the constraint u1(ℓ, v) ≥ max {0, u1 (s0, s0 + v1, 0, v1)} is non-binding. Solving this

problem, we find that ℓ∗1 =
s0+cs1
2+c

.

Plugging in the solutions characterized above and comparing value functions, it is straight-

forward to verify that the buyer is best off in scenario 1.
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Proofs for sections 4.3 – 4.4

Proof of Lemma 7: Let FP ′ =
{
(ℓ, v) |v0, v1 ≥ 0, |v0 − v1| ≤ 1 and ∂ui(ℓ,v)

∂ℓi
= 0, i = 0, 1

}
denote the feasible set in the problem (P’) and let AP ′ = argmin(ℓ,v)∈FP ′ L(ℓ, v) denote the

solution set. We wish to show that AP = AP ′ .

We first show that AP ⊂ FP ′ and AP ′ ⊂ FP . Let (ℓ∗, v∗) ∈ AP . Since 1 − s1, s0 <

s∗, Proposition 3 implies v∗i > 0 for each i. Then, Lemma 6 implies, d∗0, d
∗
1 > 0. And

Proposition A.1(iii) implies ∂ui(ℓ
∗,v∗)

∂ℓi
= 0 and |v∗1 − v∗0| < 1, which means (ℓ∗, v∗) ∈ FP ′ .

Next, let (ℓ′, v′) ∈ AP ′ . By proposition B.1, ℓ′ ∈ Φ(v′), which means (ℓ′, v′) ∈ FP . This

establishes that AP ⊂ FP ′ and AP ′ ⊂ FP .

We now show thatAP = AP ′ . Let (ℓ∗, v∗) ∈ AP and let (ℓ′, v′) ∈ AP ′ . Proposition A.1(iii)

then implies ℓ∗1−ℓ∗0 > |v∗1−v∗0|, which means πb(ℓ
∗, v∗) = q−L(ℓ∗, v∗). Moreover, Proposition

B.1 implies ℓ′1−ℓ′0 > |v′1−v′0|, which means πb(ℓ
′, v′) = q−L(ℓ′, v′). Then, since (ℓ∗, v∗) ∈ FP ′ ,

by definition of (ℓ′, v′), L(ℓ′, v′) ≤ L(ℓ∗, v∗). And since (ℓ′, v′) ∈ FP , we must have L(ℓ′, v′) ≥
L(ℓ∗, v∗). Thus, L(ℓ∗, v∗) = L(ℓ′, v′), which implies (ℓ∗, v∗) ∈ AP ′ and (ℓ′, v′) ∈ AP .

Proof of Proposition 6. We first show (i) ⇐⇒ (iii). Suppose there exists vFB
0 =

vFB
1 such that ℓFB ∈ Φ(vFB). Since vFB

0 = vFB
1 , Qb(·, vFB) = QFB(·); it follows that,

πb(ℓ
FB, vFB) = SFB(ℓ

FB). Next, let (ℓ∗, v∗) ∈ AP and suppose πb(ℓ
∗, v∗) = SFB(ℓ

FB). Since

L(ℓ, v) < LFB(ℓ) if v0 ̸= v1, it must be that v∗0 = v∗1. Moreover, by uniqueness of ℓFB, we

must have ℓ∗ = ℓFB. Then (ℓFB, v∗) ∈ FP implies ℓFB ∈ Φ(v∗).

We now show (ii) =⇒ (iii). Suppose C ′
0(ℓ

FB
0 − s0) = C ′

1(s1 − ℓFB
1 ) > 0; the case where

C ′
0(ℓ

FB
0 −s0) = C ′

1(s1− ℓFB
1 ) = 0 is straightforward and left to the reader. We will show that

there exists vFB
0 = vFB

1 such that ℓFB ∈ Φ(vFB). We first show that s0, 1− s1 < s∗. Adding

(7) and (8) yields, Γ (ℓFB) = 0, so (10) implies, ℓFB
0 = 1− ℓFB

1 . (7) then implies F (ℓFB
0 ) < 1

4
,

which means ℓFB
0 < s∗. Moreover, note that since C ′

0(ℓ
FB
0 − s0) = C ′

1(s1− ℓFB
1 ) > 0, we have

ℓFB
0 > s0 and ℓFB

1 < s1. It follows that s0, 1 − s1 < s∗. Next, let vFB
0 = vFB

1 =
2C′

0(ℓ
FB
0 −s0)

f( 1
2
)

.

By construction, ∂ui(ℓ
FB ,vFB)
∂ℓi

= 0.

We now show vFB
0 < 2ℓFB

1 −ℓFB
0 −1. First note that since ℓFB

1 = 1−ℓFB
0 , 2ℓFB

1 −ℓFB
0 −1 =
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1− 3ℓFB
0 . (7) implies, C ′

0(ℓ
FB
0 − s0) =

1
2
− 2F (ℓFB

0 ), Thus,

vFB
0 =

2

f
(
1
2

) ∫ 1
2

ℓFB
0

f(x)dx− 1

f
(
1
2

) ∫ ℓFB
0

0

2f(x)dx

< 2

(
1

2
− ℓFB

0

)
− ℓFB

0

= 2ℓFB
1 − ℓFB

0 − 1,

where the inequality holds since f(x) ≤ f
(
1
2

)
for all x ∈

[
ℓFB
0 , 1

2

]
and since 2f(x) > f

(
1
2

)
for all x ∈

[
0, ℓFB

0

]
. The final equality holds since 1− ℓFB

1 = ℓFB
0 . Then by Proposition A.2,

ℓFB ∈ Φ(vFB).

Finally, we show (iii) =⇒ (ii). Suppose there exists vFB
0 = vFB

1 ≥ 0 such that ℓFB ∈
Φ(vFB). Proposition 2 implies

∂ui(ℓ
FB ,v∗0)

∂ℓi
= 0. Since v∗0 = v∗1 ≥ 0, these first-order conditions

imply C ′
0(ℓ

FB
0 − s0) = C ′

1(s1 − ℓFB
1 ) ≥ 0.

Proof of Corollary 1. By Proposition 6, it suffices to show that C ′
0(ℓ

FB
0 − s0) = C ′

1(s1 −
ℓFB
1 ) ≥ 0. First, the fact that ℓFB

0 ≥ s0 and ℓFB
1 ≤ s1 follows by Proposition 1. Now

proceeding by contradiction, suppose C ′
0(ℓ

FB
0 −s0) ̸= C ′

1(s1−ℓFB
1 ); in particular, and WLOG,

suppose C ′
0(ℓ

FB
0 − s0) > C ′

1(s1 − ℓFB
1 ). Since C0 ≡ C1, this implies ℓFB

0 + ℓFB
1 > s0 + s1 = 1.

Then, by (10), Γ (ℓFB) > 0. Adding (7) and (8), we have 0 = Γ (ℓFB)+C ′
0(ℓ0− s0)−C ′

1(s1−
ℓFB
1 ), which yields a contradiction since Γ (ℓFB) > 0 and, by assumption, C ′

0(ℓ
FB
0 − s0) >

C ′
1(s1 − ℓFB

1 ).

Proof of Proposition 7. By Lemmas B.3 and B.4, it suffices to show that C ′
i

(∣∣ℓFB
i − si

∣∣) <
C ′

j (|ℓj − sj|) =⇒ v∗i < v∗j . By way of contradiction, suppose C ′
0(ℓ

FB
0 − s0) < C ′

1(s1 − ℓFB
1 ),

but v∗0 ≥ v∗1. Lemma B.4 implies ℓ∗i ≤ ℓFB
i . Then, we have the following string of inequalities:

C ′
1(s1 − ℓ∗1) ≥ C ′

1(s1 − ℓFB
1 ) > C ′

0(ℓ
FB
0 − s0) ≥ C ′

0(ℓ
∗
0 − s0).

But since v∗0 ≥ v∗1 and ∂ui(ℓ
∗,v∗)

∂ℓi
= 0 for each i, this means C ′

0(ℓ
∗
0 − s0) ≥ C ′

1(s1 − ℓ∗1),

which yields a contradiction. Thus, we must have v∗0 < v∗1. The proof for the case where

C ′
1(s1 − ℓFB

1 ) < C ′
0(ℓ

FB
0 − s0) is analogous.

Proof of Corollary 2. WLOG, suppose supplier zero is more flexible and conservative.

That is, suppose 1− s1 ≤ s0 and C
′
0 ≤ C ′

1, where at least one of the two inequalities is strict.

We will show that C ′
0(ℓ

FB
0 − s0) < C ′

1(s1 − ℓFB
1 ). Proceed by contradiction and suppose

C ′
0(ℓ

FB
0 − s0) ≥ C ′

1(s1 − ℓFB
1 ). Since C ′

0(d) ≤ C ′
1(d) for all d ≥ 0, convexity of the cost
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functions implies, ℓFB
0 + ℓFB

1 ≥ s0 + s1 ≥ 1, where either the first (if C ′
0 < C ′

1) or second

(if 1 < s0 + s1) inequality is strict. Then, (10) implies Γ (ℓFB) > 0. Adding (7) and (8),

0 = Γ (ℓFB) + C ′
0(ℓ

FB
0 − s0)− C ′

1(s1 − ℓFB
1 ) > 0, yielding a contradiction.

Proof of Proposition 8. Suppose the buyer commits to purchase the highest quality in-

novation. Now, using the first-order conditions in Proposition 1, it is straightforward to show

that when s0, 1−s1 < s∗, then, ℓFB
0 > s0 and ℓ

FB
1 < s1. Then, suppose the buyer offers the fol-

lowing prizes: vFB
0 =

2C′
0(ℓFB

0 −s0)
f(m(ℓFB))

and vFB
1 =

2C′
1(s1−ℓFB

1 )
f(m(ℓFB))

. Given the buyer’s purchasing rule,

for all ℓ0 ≤ ℓ1, the expected payoff to supplier zero is π0(ℓ, v
FB) = F (m (ℓ)) vFB

0 −C0(ℓ0−s0)
and the expected payoff to supplier one is π1(ℓ, v

FB) = [1− F (m (ℓ))] vFB
1 − C1 (s1 − ℓ1).

Using arguments similar to those given in the proof of Lemma 2, it is straightforward to

confirm that there is a unique equilibrium in the stage-2 game between the suppliers, which

is characterized by the following first-order conditions: ∂π0

∂ℓ0
=

vFB
0

2
f (m (ℓ))−C ′

0 (ℓ0 − s0) = 0

and ∂π1

∂ℓ1
=

−vFB
1

2
f (m (ℓ)) + C ′

1(s1 − ℓ1) = 0. By construction, ℓFB is the unique solution to

this system. Then, if the buyer sets entry fees such that tFB
i = πi

(
ℓFB, vFB

)
, the buyer’s

stage-1 expected payoff is equal to equal to the first-best expected surplus.

Proofs for Section 5

Proof of Proposition 9. Immediate from the text.

Proof of Proposition 10. WLOG, suppose it is supplier zero who has a singular ad-

vantage. In particular, let us suppose she is more conservative so that c0 = c1, and

1 − s1 < s0 < s∗; the steps for the case of a cost advantage are similar. Moreover, the

statements in parts (i) and (ii) of the proposition follow almost immediately if there is a

corner solution (i.e., the optimal prize is zero) in the anonymous FPC, so we initially assume

the solution is interior, but we revisit this issue in the proof of part (iii).

We begin with part (i). Consider the anonymous auction (AAUC). Obviously, since the

menus are unaffected by the constraint, equilibrium behavior in stages 2-4 is as characterized

in Section 5.1: The suppliers choose the first-best approaches, and total surplus is equal to

the first-best. In stage 1, the buyer’s payoff is,

πAAUC
b = QFB(ℓ

FB)− E[σ1(ℓFB, y) + σ0(ℓ
FB, y)] + 2t

The buyer chooses t to maximize πAAUC
b subject to individual rationality constraints, πAAUC

i =

QFB(ℓ
FB)−E

[
Qj

(
ℓFB
j , y

)]
−Ci(ℓ

FB
i −si) ≥ t. Optimality dictates, t = min

{
πAAUC
0 , πAAUC

1

}
.
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And since πAAUC
i > πAAUC

j if i has a singular advantage, part (i) follows.

Now, for use later in this proof, we compute the buyer’s value function and the total

surplus. First, we compute the buyer’s value function. Note that when supplier zero has a

singular advantage, πAAUC
0 > πAAUC

1 ; so, t = πAAUC
1 . And using the fact that E [σi (ℓ, y)] =

QFB(ℓ)− E [Qj (ℓj, y)], as shown in the main body, we may write the buyer’s stage-1 payoff

as

πAAUC
b = QFB(ℓ

FB) + E
[
Q1

(
ℓFB
1 , y

)]
− E

[
Q0

(
ℓFB, y

)]
− 2C1(ℓ

FB
1 − s1).

Using Proposition 1, we can solve for the first-best approaches in the linear/quadratic

model:

ℓFB
0 =

2c2s0 + 3cs0 + cs1 + 1

2(c+ 1)(c+ 2)

ℓFB
1 =

2c2s1 + cs0 + 3cs1 + 2c+ 3

2(c+ 1)(c+ 2)
.

Plugging in these first-best approaches, we find the buyer’s value function:

πAAUC
b =

c
(
c
[
4q + s20 + 2s0 (s1 − 2) + s1 (8− 7s1)− 2

]
+ 12q − 4s0 − 8s21 + 8s1 − 2

)
+ 8q − 1

4(c+ 1)(c+ 2)
.

Total surplus is equal to the first-best and is given by

SAAUC = SFB =
c2

[
4q − 3s20 + 2 (s0 + 2) s1 − 3s21 − 2

]
+ 2c

[
6q − 2s20 + s0 + s1 (3− 2s1)− 2

]
+ 8q − 1

4(c+ 1)(c+ 2)
.

Next, we show part (ii). Consider the anonymous FPC (AFPC). Abusing our earlier

notation, and now letting v and t be scalars (rather than prize and entry-fee profiles), The

buyer’s problem is,

max
(v,t)

QFB(ℓ)− v + 2t s.t. ℓ ∈ Φ(v, v), v ≥ 0.

Following similar logic as in the proof of Lemma 7, we may solve the buyer’s problem by

considering an auxiliary problem in which we replace the equilibrium constraint with the

first-order conditions, ∂ui

∂ℓi
= 0, i = 0, 1. Moreover, as with the auction, the buyer optimally

sets t = min{u0, u1}, and when i has a singular advantage, ∂ui

∂ℓi
= 0 =⇒ ui ≥ uj, holding

strictly whenever v > 0. Assuming it is supplier zero who has a singular advantage, the

Lagrangian associated with AFPC is

L = QFB(ℓ)− v(2F (m(ℓ))− 1)− 2C1(ℓ1 − s1) + λ0
∂u0(ℓ, v)

∂ℓ0
+ λ1

∂u1(ℓ, v)

∂ℓ1
+ µvv.
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In the uniform/quadratic model, we can solve explicitly for the solution to this problem

by taking the FOC. First, note that interiority requires that,

c < c =
2s1 − 2s0 − 1

2(s0 + s1 − 1)
.

Then, at an interior solution,

vAFPC =
c [2s1 − 2s0 − 1− 2c (s0 + s1 − 1)]

2 + c
,

and ℓAFPC
0 = s0 +

vac

2c
and ℓAFPC

1 = s1 − vac

2c
. Computing each ℓAFPC

i and comparing it with

ℓFB
i , we find that s0 < ℓAFPC

0 < ℓFB
0 and ℓFB

1 < ℓAFPC
1 < s1.

24 Total surplus in the AFPC is

SAFPC =
−4c2(s0 + s1 − 1)2 + c

[
4q − 3s20 + 2s0s1 + s1 (4− 3s1)− 2

]
+ 8q − 2(s0 + s1)

2 + 4s0 + 4s1 − 3

4(c+ 2)

and the buyer’s value function is

πAFPC
b = SAFPC − c(1− s0 − s1) [2c (s0 + s1 − 1) + 2s0 − 2s1 + 1]

c+ 2
.

We now compare the total surplus in the AFPC with the total surplus in the discrimina-

tory FPC (DFPC). Using the first-order conditions for (P’) found in Appendix B.1 we solve

explicitly for the solution to the DFPC:

vDFPC
0 =

c [1− 4s0 + c(s1 − 3s0 + 8cs1 − 8cs0 − 4c)]

(2 + c)(4c2 + c+ 1)
,

vDFPC
1 =

c [s1(4 + 3c+ 8c2)− c(2 + s0 + 8cs0 + 4c)− 3]

(2 + c)(4c2 + c+ 1)
,

and ℓDFPC
0 = s0 +

vDFPC
0

2c
and ℓ∗1 = s1 − vDFPC

1

2c
. Then, computing total surplus in the DFPC

and comparing it with total surplus in the AFPC, we find:

SDFCP − SAFPC =
(c(4c+ 1) (4c2 + 1) + 2) (s0 + s1 − 1)2

4(c+ 2) (4c2 + c+ 1)
> 0.

This establishes part (ii).

Finally, we compare the buyer’s payoff in the AFPC with the AAUC. Assuming c < c,

24Throughout this proof, we omit the (messy) algebra pertaining to the comparisons herein, but this can
be provided upon request.
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we have that,

πAFPC
b − πAAUC

b =
(s0 + s1 − 1) (c (4c2(s0 + s1 − 1) + 8cs0 + 3s0 − 5s1 + 7)− 2(s0 + s1 − 1))

4(c+ 1)(c+ 2)
> 0.

When c > c, the optimal prizes in the AFPC are zero, and the buyer’s payoff is the

default:

πAFPC
b = πdef

b =
1

4

(
4q − 3s20 + 2s0s1 + s1(4− 3s1)− 2

)
.

And for c > c, it holds that πAAUC
b < πdef

b = πAFPC
b .

B Auxiliary problems used in proofs

As equilibrium outcomes in the stage-2 subgame need not vary continuously in the prize

values, our proofs characterizing the optimal contest require making some discrete compar-

isons between the payoffs attained by the buyer in different equilibrium configurations. To

facilitate such comparisons, it is useful to derive properties of the solutions to a few auxiliary

problems.

B.1 Analysis of (P’)

In this section, we assume that s0, 1 − s1 < s∗, and we analyze the problem (P’). We let

FP ′ and AP ′ be as defined in the proof of Lemma 7. Let L = L(ℓ, v)− λ0
∂u0(ℓ)
∂ℓ0

− λ1
∂u1(ℓ)
∂ℓ1

−
µ0v0 − µ1v1 + ψ0(v0 − v1 − 1) + ψ1(v1 − v0 − 1) denote the Lagrangian associated with (P’).

The FOCs and complementary slackness conditions are:

∂L
∂ℓ0

= 2F (ℓ0)−F (y0)+
1

2
(v1−v0)f(y0)+C ′

0(ℓ0−s0)−λ0
[v0
4
f ′(y0)− C ′′

0 (ℓ0 − s0)
]
+λ1

v1
4
f ′(y0) = 0

(12)

∂L
∂ℓ1

= 2F (ℓ1)−F (y0)−1+
1

2
(v1−v0)f(y0)+C ′

1(ℓ1−s1)−λ0
v0
4
f ′(y0)+λ1

[v1
4
f ′(y0) + C ′′

1 (ℓ1 − s1)
]
= 0

(13)
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∂L
∂v0

=
1

2
(v0 − v1)f(y0)− λ0

[
1

2
f(y0)−

v0
4
f ′(y0)

]
− λ1

v1
4
f ′(y0)− µ0 + ψ0 − ψ1 = 0 (14)

∂L
∂v1

=
1

2
(v1 − v0)f(y0)− λ0

[v0
4
f ′(y0)

]
+ λ1

[
1

2
f(y0) +

v1
4
f ′(y0)

]
− µ1 − ψ0 + ψ1 = 0 (15)

viµi = 0, vi ≥ 0;ψi(vi − vj − 1) = 0, vi − vj ≤ 1, ψi ≥ 0;
∂ui(ℓ)

∂ℓi
= 0; i = 0, 1 (16)

Lemma B.1. If (ℓ, v) ∈ AP ′, then, y0(ℓ, v) ∈ [0, 1].

Proof. Let (ℓ, v) ∈ FP ′ such that y0(ℓ, v) /∈ [0, 1]; we will show that (ℓ, v) /∈ AP ′ . To begin,

see that f(y0(ℓ, v)) = 0 and ∂ui(ℓ,v)
∂ℓi

= 0 imply ℓi = si. This necessarily means v0 ̸= v1.

Now let v′ = (0, 0) and note that (ℓ, v′) ∈ FP ′ and L(ℓ, v) < LFB(ℓ) = L(ℓ, v′), where the

inequality holds since v0 ̸= v1. Thus, (ℓ, v) /∈ AP ′ .

Lemma B.2. If (ℓ, v) ∈ AP ′, then, v0, v1 ∈ (0, 1), ℓ0 > s0, and ℓ1 < s1.

Proof. It will first be convenient to establish the following claim:

Claim 1. For all ℓ0, ℓ1 ∈ [0, 1], 2F (ℓ0) − F (m(ℓ)) + 1
2
f(m(ℓ)) ≥ 0 ≥ 2F (ℓ1) − F (m(ℓ)) −

1− 1
2
f(m(ℓ)), holding with strict inequalities if ℓ0, ℓ1 ∈ (0, 1).

Proof of Claim 1: We prove that 2F (ℓ0) − F (m(ℓ)) + 1
2
f(m(ℓ)) ≥ 0. The fact that

2F (ℓ1)−F (m(ℓ))−1− 1
2
f(m(ℓ)) ≤ 0 follows by symmetry of the distribution. First suppose

m(ℓ) ≤ 1
2
. Then, 2F (ℓ0) − F (m(ℓ)) + 1

2
f(m(ℓ)) = 2F (ℓ0) +

∫ m

0

[
1
2m
f(m)− f(x)

]
dx ≥

2F (ℓ0) + f(m)
(
1
2
−m(ℓ)

)
≥ 0, where the first inequality follows since f(m) ≥ f(x) for

x ∈ [0,m]. Note that the final inequality is strict if ℓ0 > 0. Next, suppose m(ℓ) > 1
2
. This

means ℓ0 > 1− ℓ1. Note, moreover, that 2F (ℓ0)− F (m(ℓ)) + 1
2
f(m(ℓ)) is strictly increasing

in ℓ0. It follows that 2F (ℓ0) − F (m(ℓ)) + 1
2
f(m(ℓ)) > 2F (1 − ℓ1) − 1

2
+ 1

2
f
(
1
2

)
≥ 0, where

the final inequality holds since f
(
1
2

)
≥ 1. This establishes the claim.

We now show that ψ0 = ψ1 = 0. Proceeding by contradiction, let us suppose ψ1 > 0.

Then, v1 − v0 = 1, which implies v1 > 0, µ1 = 0, and ψ0 = 0. First, suppose v0 = 0.

Then, we have v1 = 1. (15) yields: 1
2
f(y0) + λ1

[
1
2
f(y0) +

1
4
f ′(y0)

]
+ ψ1 = 0, which implies

λ1 < 0. Subtracting (15) from (13) reveals that 0 < 2F (ℓ1)−F (y0)− 1− 1
2
f(y0). And since

F (y0) +
1
2
f(y0) > F (m) + 1

2
f(m), we have 0 < 2F (ℓ1) − F (m) − 1 − 1

2
f(m), contradicting

Claim 1. Thus, if ψ1 > 0 we must have v0 > 0 and so, µ0 = 0.
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Next, adding (14) and (15) reveals that λ0 = λ1 = λ. Equation (14) then yields: 1
2
f(y0)+

λ
[
1
2
f(y0) +

1
4
f ′(y0)

]
+ ψ1 = 0, which implies λ < 0. Adding (12) and (13) reveals that

0 < 2F (ℓ0) + 2F (ℓ1) − 2F (y0) − 1 < Γ (ℓ), where Γ is as defined in (9). Then, by (10),

ℓ0 + ℓ1 > 1. But since v1 − v0 = 1, this implies y0(ℓ, v) = ℓ0+ℓ1+v1−v0
2

> 1, contradicting

Lemma B.1. This establishes that ψ1 = 0; analogous arguments reveal ψ0 = 0.

We now show that v0, v1 > 0. First, suppose v1 > 0 = v0. Then, µ0 ≥ 0 = µ1. (15)

implies λ1 < 0. Adding (14) and (15) reveals that λ1 ≥ λ0. (12) and (15) then imply

2F (ℓ0) − F (y0) = λ1
1
2
f(y0) − λ0C

′′
0 (ℓ0 − s0) ≥ λ0

(
1
2
f(y0)− C ′′

0 (ℓ0 − s0)
)
> 0, where the

first inequality holds since λ1 ≥ λ0; the strict inequality holds since λ0 < 0 and C ′′
0 >

1
2
f .

Thus, we have that 2F (ℓ0) − F (y0) > 0. But see that v0 = 0 and ∂u0

∂ℓ0
= 0 implies ℓ0 = s0.

Moreover, ∂u1

∂ℓ1
= 0 implies ℓ1 > s1 − v1

4
; this means ℓ1 + v1 > s1 > 1 − s∗. It follows

that, 2F (s0) − F
(
s0+ℓ1+v1

2

)
< 2F (s∗) − F

(
1
2

)
= 0, where the first inequality holds since

2F (s0) − F
(
s0+ℓ1+v1

2

)
is strictly increasing in s0 and decreasing in ℓ1. The final equality

holds by definition of s∗. We have a contradiction, and therefore, it cannot be the case

that v1 > 0 = v0. Following analogous arguments, it can be shown that we cannot have

v0 > 0 = v1.

Then, suppose v0 = v1 = 0. (14) implies λ0 ≤ 0. And noting that we must have

ℓi = si for each i, (12) implies 2F (s0) − F
(
s0+s1

2

)
≥ 0. However, since s0, 1 − s1 < s∗,

2F (s0)−F
(
s0+s1

2

)
< 2F (s∗)−F

(
1
2

)
= 0, which yields a contradiction. This establishes that

v0, v1 > 0.

Next, we show that v0, v1 < 1. WLOG, let us suppose v1 ≥ v0; we show that v1 < 1.

Adding (14) and (15) reveals that λ0 = λ1; we drop the subscript and denote λi by λ. (14)

then yields, 1
2
(v0−v1) = λ

[
1
2
f(y0) +

v1−v0
2
f ′(y0)

]
. Since v1−v0 ≤ 1, Assumption 2(i) implies

that the term in square brackets is positive, which means λ ≤ 0. Adding (13) and (14) reveals

2F (ℓ1)− F (y0)− 1− v1
2
f(y0) ≥ 0; it follows that, v1−1

2
f(y0) ≤ 2F (ℓ1)− F (y0)− 1− 1

2
f(y0).

Note that v1 ≥ v0 implies F (y0) +
1
2
f(y0) ≥ F (m) + 1

2
f(m); together with Claim 1 we have,

2F (ℓ1)− F (y0)− 1− 1
2
f(y0) ≤ 2F (ℓ1)− F (m)− 1− 1

2
f(m) < 0. Thus, v1 < 1.

We now show that ℓ0 > s0 and ℓ1 < s1. Since vi > 0 and, by Claim B.1, y0(ℓ, v) ∈ [0, 1],
v1
2
f(y0) > 0. Then, ∂ui(ℓ,v)

∂ℓi
= 0 implies C ′

1(ℓ1 − s1) = −v1
2
f(y0) < 0 < v0

2
f(y0) = C ′

0(ℓ0 − s0),

which means ℓ1 < s1 and ℓ0 > s0. This establishes the result.

Now, by Lemma B.2 and its proof, if (ℓ, v) ∈ AP ′ , then, v0, v1 ∈ (0, 1), µi = ψi = 0, and

λ0 = λ1 = λ. After some manipulation, Equations (12)-(15) yield

2F (ℓ0)− F (y0) + C ′
0(ℓ0 − s0) = λ

[
1

2
f(y0)− C ′′

0 (ℓ0 − s0)

]
(17)
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2F (ℓ1)− F (y0)− 1 + C ′
1(ℓ1 − s1) = λ

[
1

2
f(y0)− C ′′

1 (ℓ1 − s1)

]
(18)

1

2
f(y0)(v0 − v1) = λ

[
1

2
f(y0) +

v1 − v0
4

f ′(y0)

]
(19)

We next establish the following lemma:

Lemma B.3. Let (ℓ, v) ∈ AP ′. Then, sgn(v1 − v0) = sgn(ℓ0 + ℓ1 − 1).

Proof. Adding (17) and (18) and using the fact that ∂ui(ℓ,v)
∂ℓi

= 0, we have that,

2F (ℓ0) + 2F (ℓ1)− 2F (y0)− 1 =
v1 − v0

2
f(y0) + λ[f(y0)− C ′′

0 (ℓ0 − s0)− C ′′
1 (ℓ1 − s1).]

By (19), sgn(v0 − v1) = sgn(λ). Since, f(y0) − C ′′
0 (ℓ0 − s0) − C ′′

1 (ℓ1 − s1) < 0, it follows

that sgn(2F (ℓ0) + 2F (ℓ1) − 2F (y0) − 1) = sgn(v1 − v0). If v1 > [=]v0, then, 0 < [=

]2F (ℓ0) + 2F (ℓ1)− 2F (y0)− 1 < [=]Γ (ℓ), and by (10), ℓ0 + ℓ1 − 1 > [=]0. If v0 > v1, then,

0 > 2F (ℓ0) + 2F (ℓ1)− 2F (y0)− 1 > Γ (ℓ) and (10) implies ℓ0 + ℓ1 − 1 < 0.

Proposition B.1. If (ℓ, v) ∈ AP ′, then, ℓ ∈ Φ(v) and ℓ1 − ℓ0 > |v1 − v0|.

Proof. Let (ℓ, v) ∈ AP ′ ; WLOG, suppose v0 ≤ v1.

We first show that ℓ ∈ Φ(v). By Proposition A.2, it suffices to show that v1 ≤ 2ℓ1 −
ℓ0 − 1. (19) implies λ ≤ 0. Then, using the fact that C ′

1(ℓ1 − s1) = −v1
2
f(y0), (18) implies,

2F (ℓ1)− F (y0)− 1− v1
2
f(y0) ≥ 0; then,

v1 ≤
2

f(y0)

∫ ℓ1

y0

f(x)dx− 2

f(y0)

∫ 1

ℓ1

f(x)dx

≤ 2

f(y0)
(ℓ1 − y0)f(y0)−

2f(1)

f(y0)
(1− ℓ1)

< 2(ℓ1 − y0)− (1− ℓ1)

≤ 2ℓ1 − ℓ0 − 1.

The second inequality holds since f(1) ≤ f(x) for each x ∈ [0, 1] and since f(y0) ≥ f(x)

for x ∈ [y0, ℓ1]. To see this second point, recall that f is decreasing on [1
2
, 1]. And since

v0 ≤ v1, Lemma B.3 implies ℓ0 + ℓ1 ≥ 1, which means y0 ≥ 1
2
. The third inequality holds

since 2f(1) > f(y0), and the final inequality follows since v1 ≥ v0. This establishes that

ℓ ∈ Φ(v).
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Finally, see that v1 − v0 < v1 ≤ 2ℓ1 − ℓ0 − 1 < ℓ1 − ℓ0, where the strict inequalities holds

since Lemma B.2 implies v0 > 0 and ℓ1 < 1.

Lemma B.4. Let (ℓ, v) ∈ AP ′. If v0 < v1, then, ℓFB
i < ℓi, i = 0, 1. If v0 = v1, then,

ℓi = ℓFB
i , i = 0, 1. If v1 < v0, then, ℓi < ℓFB

i , i = 0, 1.

Proof. Let (ℓ, v) ∈ AP ′ . First note that if v0 = v1, then, λ = 0 and (17)-(18) correspond to

the FOCs in (7)-(8), meaning that ℓ = ℓFB. We now show that v0 < v1 =⇒ ℓFB
i < ℓi. The

proof for the case where v1 < v0 is analogous.

Proceeding by contradiction, first suppose that ℓ1 ≤ ℓFB
1 and ℓFB

0 ≤ ℓ0. Since v0 <

v1 =⇒ λ < 0 and m < y0, (18) implies, 0 < 2F (ℓ1) − F (m) − 1 + C ′(ℓ1 − s1) ≤
2F (ℓFB

1 ) − F
(
m(ℓFB)

)
− 1 + C ′(ℓFB

1 − s1) = 0, where the second inequality holds since

ℓ1 ≤ ℓFB
1 and ℓFB

0 ≤ ℓ0; the final equality holds by (8). This yields a contradiction.

Next, suppose ℓ1 ≤ ℓFB
1 and ℓ0 < ℓFB

0 . Adding (17) and (18) and using the fact that

λ < 0 and m < y0, we have, 0 < Γ (ℓ)+C ′
0(ℓ0 − s0)+C ′

1(ℓ1 − s1) < Γ (ℓFB)+C ′
0(ℓ

FB
0 − s0)+

C ′
1(ℓ

FB
1 − s1) = 0, where the second inequality holds since Γ (·) and Ci are strictly increasing

and ℓ1 ≤ ℓFB
1 and ℓ0 < ℓFB

0 . The final equality holds by adding (7) and (8). We have a

contradiction and, this establishes that ℓ1 > ℓFB
1 .

Finally, suppose ℓFB
1 < ℓ1 and ℓ0 ≤ ℓFB

0 . Since λ < 0 and m < y0, (17) implies,

0 < 2F (ℓ0) − F (m) + C ′
0(ℓ0 − s0) < 2F (ℓFB

0 ) − F (m(ℓFB) + C ′
0(ℓ

FB
0 − s0) = 0, where the

second inequality holds since ℓFB
0 ≤ ℓ0 and ℓ

FB
1 < ℓ1 and the final equality holds by (7). We

have a contradiction, and this establishes that ℓ1 > ℓFB
1 and ℓ0 > ℓFB

0 .

Proposition B.2. Suppose 1 − s1 < s0 < s∗ and C0 = C1 = C. If (ℓ, v) ∈ AP ′, then,

v1 > v0, ℓ0 > 1− ℓ1, ℓ0 > ℓFB
0 , and ℓ1 > ℓFB

1 .

Proof. We first show that v1 > v0. Proceed by contradiction and suppose v0 ≥ v1. By Lemma

B.3, ℓ0+ℓ1 ≤ 1. But since ∂u1

∂ℓ1
= ∂u0

∂ℓ0
= 0 and C0 ≡ C1 ≡ C, we have C ′(ℓ0−s0) ≥ C ′(s1−ℓ1),

which means ℓ0 − s0 ≥ s1 − ℓ1; equivalently, ℓ0 + ℓ1 ≥ s0 + s1 > 1. We have a contradiction,

and therefore, we must have v0 > v1; and by Lemma B.3, ℓ0 + ℓ1 > 1.

B.2 Auxiliary Problem 2

Fix ℓ0 = s0, v0 = 0, and consider the following problem:
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min
ℓ1,v1

L(s0, ℓ1, 0, v1) s.t.
∂u1(ℓ)

∂ℓ1
≤ 0, 0 ≤ v1 ≤ ℓ1 − s0 (AUX 2)

Before characterizing the solution to this problem, we state and prove the following

lemma:

Lemma B.5. If s0, 1 − s1 < s∗, vj = 0 < vi,
∂ui(ℓ

∗
i ,sj)

∂ℓi
= 0 and vi < |ℓ∗i − sj|, then,

(ℓ∗i , sj) ∈ Φ(v).

Proof. Suppose WLOG, v1 = 0 < v0. Since supplier one has a dominant strategy to play s1,

we focus on supplier zero. Let ℓ∗0 satisfy,
∂u0(ℓ∗0,s1)

∂ℓ0
= 0 and suppose v0 < |ℓ∗0 − s1|. We will

show that ℓ∗0 ∈ argmaxℓ0 π0(ℓ0, s1).

It is straightforward to verify that v0 < |ℓ∗0 − s1| and ∂u0(ℓ∗0,s1)

∂ℓ0
= 0 imply ℓ∗0 ∈ (s0, s1).

Then, since ℓ∗0 < s1 we have that v0 < s1 − ℓ∗0. It follows that for all ℓ0 ∈ [0, s1 − v0],

π0(ℓ0, s1) = u0(ℓ0, s1). By concavity of u0 in ℓ0, u0(ℓ
∗
0, s1) = maxℓ0∈[0,s1−v0] π0(ℓ0, s1). Next,

note that for ℓ0 ∈ (s1 − v0, s1 + v0), π0(ℓ0, s1) = −C0(ℓ0 − s0) < 0 < u0(ℓ
∗
0, s1). Finally, for

ℓ0 ∈ [s1 + v0, 1],

π0(ℓ0, s1) = v0

(
1− F

(
ℓ0 + s1 + v0

2

))
− C0(ℓ0 − s0)

< v0F (s1 − v0)− C0(s1 − v0 − s0)

= u0(s1 − v0, s1)

< u0(ℓ
∗
0, s1)

= π0(ℓ
∗
0, s1)

The first inequality holds since ℓ0 ≥ s1 + v0 and s1 ≥ 1
2
implies 1 − F

(
ℓ0+s1+v0

2

)
=

F
(
1− ℓ0+s1+v0

2

)
≤ F (s1 − v0) and C0(s1 − v0 − s0) < C0(ℓ0 − s0). The strict inequality

holds by definition of ℓ∗0. We have now established that ℓ∗0 ∈ argmaxℓ0 π0(ℓ0, s1); therefore,

(ℓ∗0, s1) ∈ Φ(v).

The next result characterizes the solution to (AUX 2).

Lemma B.6. Suppose s0, 1 − s1 < s∗. If (ℓa1, v
a
1) solves (AUX 2), then, 0 < va1 < ℓa1 − s0

and
∂u1(s0,ℓa1)

∂ℓ1
= 0; moreover, (s0, ℓ

a
1) ∈ Φ(0, va1).

Proof. The Lagrangian associated with (AUX 2) is, L = L(ℓ, v)−λ
[
v1
2
f(y0) + C ′

1(ℓ1 − s)
]
+

µ [s0 + v1 − ℓ1]− µvv1. The first-order conditions yield,
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∂L
∂ℓ1

=
1

2
v1f(y0)+C

′
1(ℓ1−s1)+2F (ℓ1)−F (y0)−1−λ

[v1
4
f ′(y0) + C ′′

1 (ℓ1 − s1)
]
−µ = 0 (20)

∂L
∂v1

=
1

2
v1f(y0)− λ

[
1

2
f(y0) +

v1
4
f ′(y0)

]
+ µ− µv = 0 (21)

λ
∂u1(ℓ)

∂ℓ1
= 0, λ ≥ 0;µ [s0 + v1 − ℓ1] = 0, µ ≥ 0;µvv = 0, µ ≥ 0 (22)

We will show that at the optimum λ > 0 = µ = µv. Let us first suppose λ = 0 and

v1 > 0. Then, by (22), µv = 0. But then, (21) implies v1
2
f(y0) + µ1 = 0; but since v1 > 0

and µ1 ≥ 0, we have an immediate contradiction. So, if λ = 0, we must have v1 = 0.

(21) then implies µ = µv. Then, note that v1 = 0 and ∂u1

∂ℓ1
≤ 0 implies C ′

1(ℓ1 − s1) ≥ 0,

which means ℓ1 ≥ s1 > s0 = s0 + v1. By (22), we must have µ = 0. (20) then yields,

0 ≤ C ′
1(ℓ1 − s1) = 1 + F (y0)− 2F (ℓ1). But see that,

1 + F (y0)− 2F (ℓ1) = 1 + F

(
s0 + ℓ1

2

)
− 2F (ℓ1) < 1 + F

(
s∗ + 1− s∗

2

)
− 2F (1− s∗) = 0.

The inequality follows since s0 < s∗ and ℓ1 ≥ s1 > 1 − s∗ and since F
(
s0+ℓ1

2

)
− 2F (ℓ1) is

strictly increasing in s0 and strictly decreasing in ℓ1. The final equality holds by definition

of s∗. We have a contradiction; therefore, we must have λ > 0, which means v1
2
f(y0) =

C ′
1(ℓ1−s1). Then, (20) yields, F (ℓ1)−F (y0)−[1−F (ℓ1)] = λ

[
v1
4
f ′(y0) + C ′′

1 (ℓ1 − s1)
]
+µ > 0,

where the inequality holds since λ
[
v1
4
f ′(y0) + C ′′

1 (ℓ1 − s1)
]
> 0 and µ ≥ 0. Since F (ℓ1) ≤ 1,

we must have F (ℓ1) > F (y0), which means ℓ1 > s0+ v1; by (22), µ = 0. Finally, (21) implies
v1
2
f(y0) = λ

[
1
2
f(y0) +

v1
4
f ′(y0)

]
+ µv > 0, which means v1 > 0 and µv = 0. The fact that

(s0, ℓ
a
1) ∈ Φ(0, va1) now follows by Lemma B.5.
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