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Abstract

Federated Learning (FL) has emerged as a decentralized machine learning paradigm

that enables collaborative model training while preserving data privacy. However,

its reliance on distributed and unverified client updates makes it highly vulnerable to

adversarial attacks such as data poisoning, model poisoning, and backdoor attacks.

These threats can degrade performance, compromise integrity, and introduce hidden

malicious behaviors, raising serious concerns for FL deployment in safety-critical

domains such as healthcare, finance, and IoT. Addressing these challenges requires

defense mechanisms that are both effective and privacy-preserving.

This thesis presents three novel defense frameworks that enhance the security and

reliability of FL. First, we propose Robust Federated Clustering (RFCL), a multi-

centre clustering-based aggregation strategy that groups client models by similarity

to filter out adversarial updates. RFCL improves resilience to poisoning attacks

under highly Non-IID (Non-independent and identically distributed) settings by

isolating malicious updates while retaining benign diversity.

Second, we introduce Robust Knowledge Distillation (RKD) to mitigate back-

door threats. RKD integrates unsupervised clustering, median model selection,

and knowledge distillation to suppress compromised client updates during global

aggregation. This approach enables robust learning without requiring access to

labeled reference data.

Third, we develop Synthetic Data-Driven Conformity Scoring for FL (SD-CSFL),

an anomaly detection framework that uses synthetic calibration data, entropy-based
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nonconformity scoring, and adaptive thresholds to detect gradient manipulation and

stealthy backdoors. SD-CSFL operates without accessing client data and remains

effective in heterogeneous and adaptive attack scenarios.

The proposed methods are evaluated on diverse FL benchmarks—MNIST,

Fashion-MNIST, EMNIST, CIFAR-10, and Birds—across a broad spectrum of

adversarial settings. Results demonstrate that RFCL, RKD, and SD-CSFL

consistently outperform existing defenses, significantly improving FL robustness

while preserving model performance and data privacy.
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Chapter 1

Introduction

Federated Learning (FL) has emerged as a transformative paradigm in decentralized

machine learning, enabling multiple clients to collaboratively train a shared global

model without centralizing their private and sensitive data [46]. In FL, each client

keeps its data locally and trains a model on this data, transmitting only model

updates (e.g., parameter weights or gradients) to a central server. This server then

aggregates these updates to build a global model. This setup allows FL to address

key challenges in data privacy, communication efficiency, and scalability [73]. FL

minimizes privacy risks associated with centralized data collection by keeping data

on clients’ devices, ensuring compliance with privacy regulations and data security

requirements.

This approach also minimizes data transmission costs, as only model updates

are sent to the server, which is particularly advantageous in bandwidth-constrained

environments, such as mobile or IoT networks [47]. The reduction in data movement

conserves network resources and minimizes latency, making FL suitable for time-

sensitive applications. Furthermore, FL supports scalability across a large number

of distributed devices, each contributing insights from its unique local data. This

decentralized model can capture a wide range of data characteristics, resulting in

a more robust and adaptive model that reflects diverse data sources. Due to these

benefits, FL has found extensive applications in domains where data confidentiality

1



Chapter 1. Introduction

is crucial, such as healthcare [70], finance [40], and mobile applications [36].

Despite these advantages, the decentralized nature of FL introduces significant

challenges that impact the security, robustness, and reliability of the global model.

Figure 1.1 provides an overview of the federated learning framework, highlighting

how benign and malicious clients both contribute updates that influence the global

model during aggregation. This illustration also shows how adversarial attacks,

such as data and model poisoning, exploit FL’s decentralized nature to compromise

the model’s integrity. FL’s reliance on unverified client contributions leaves it

particularly vulnerable to these threats [47]. Unlike centralized learning systems,

where data and updates can be carefully monitored, FL assumes that each client

behaves honestly, making it susceptible to malicious clients who may attempt to

compromise the model. Adversarial attacks in FL are generally categorized into data

poisoning and model poisoning attacks, each with distinct methods and impacts.

Client A Client IMalicious Client B 

Clean Data 
Poisoned  Data 

Server
Benign Updated Model 

Initial Global Model

Malicious Updated Model Malicious Client

Updated Global Model

Figure 1.1: Overview of Vulnerabilities in Federated Learning.
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Data poisoning attacks involve manipulating the local dataset used by a client to

introduce harmful patterns or biases that degrade the global model’s performance. A

common type of data poisoning is the label flipping attack [9], where an adversarial

client intentionally mislabels certain data points. For example, a client might change

the labels of “cat” images to “dog.” When these poisoned updates are aggregated,

they lead to systematic misclassifications in the global model, reducing accuracy or

inducing specific biases.

Model poisoning attacks go beyond data manipulation by directly altering the

model parameters or gradients that clients send to the server. In these attacks,

malicious clients craft updates that steer the global model’s behavior in a harmful

direction without changing the underlying data [7]. A common approach is to add

random noise or subtle perturbations to model parameters, which can degrade the

model’s performance [2].

A particularly stealthy type of attack, backdoor attacks, can manifest as either

data poisoning or model poisoning. In a data poisoning backdoor attack, the attacker

introduces a specific “trigger” pattern within their dataset and associates it with an

incorrect label. For instance, in an image classification task, a small, unique pattern

might be added to “cat” images and labeled as “dog”. As a result, the global model

learns this association, leading to misclassifications whenever the trigger pattern is

present [5]. In contrast, in a model poisoning backdoor attack, the attacker directly

encodes the backdoor functionality into the model parameters. This approach allows

the backdoor to remain hidden during standard validation, activating only when the

specific trigger pattern appears [76]. This dual approach makes backdoor attacks

particularly difficult to detect, as the global model behaves normally on clean inputs

but exhibits malicious behavior under specific conditions defined by the trigger.

The difficulty in detecting these adversarial attacks is further compounded by

the Non-Independent and Identically Distributed (Non-IID) nature of client data

in FL [56]. In real-world applications, each client’s data distribution often reflects

unique demographic, geographic, or usage-based characteristics, introducing natural
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variability in their updates. This Non-IID characteristic exacerbates the challenge

of distinguishing between legitimate variability and adversarial manipulations [27].

Current defense mechanisms in FL are often limited by their reliance on assumptions

about data distribution and client behavior, resulting in significant challenges in

handling complex adversarial strategies and Non-IID data. Techniques like Krum

[11] or Median [74] aggregation reduce the impact of outliers but are less effective

against sophisticated attacks, such as coordinated backdoor attacks or model

poisoning strategies that closely resemble benign data variations. Furthermore,

these defenses frequently require trade-offs between security and model performance;

overly conservative defenses may exclude valuable client updates, reducing the

model’s ability to generalize, while lenient approaches may aggregate adversarial

updates, compromising the integrity of the global model.

In summary, this thesis addresses the critical security and robustness challenges

inherent in Federated Learning, with a particular focus on adversarial threats such

as data poisoning, model poisoning, and backdoor attacks. These attacks exploit

the decentralized architecture and Non-IID data environment of FL, introducing

vulnerabilities that can severely compromise the integrity and reliability of the

global model. This research aims to design, develop, and rigorously evaluate robust

and adaptive defense frameworks capable of countering these adversarial threats

while preserving the model’s performance and generalization across diverse client

data distributions. By proposing novel aggregation methods techniques, this thesis

contributes to enhancing the security and resilience of FL, advancing its suitability

for deployment in privacy-sensitive domains.

1.1 Research Questions and Contributions

The research questions aim to develop robust and adaptive defense mechanisms

that enhance FL’s resilience to adversarial attacks, including data poisoning, model

poisoning, and backdoor attacks, even under Non-IID data conditions.
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1.1.1 Defending against Data and Model Poisoning Attacks

Q1) How can FL defend against data and model poisoning attacks while

maintaining robustness in Non-IID data environments?

Federated learning is vulnerable to data and model poisoning attacks, par-

ticularly in Non-IID settings where malicious updates can significantly degrade

the global model’s performance. Existing robust aggregation methods struggle in

heterogeneous environments, as adversaries can exploit variations in client data

distributions to inject harmful updates. To address these challenges, this work

introduces Robust Federated Clustering (RFCL), an innovative aggregation

technique designed to enhance FL security against data and model poisoning attacks.

RFCL employs clustering and cosine similarity to group client models based on

similarity, forming high-quality clusters that represent groups of reliable client

updates. The aggregation process prioritizes these clusters, reducing the impact

of adversarial clients that attempt to poison the global model.

A key feature of RFCL is meta-learning phase, which consolidates models within

each selected cluster. This ensures that the global model benefits from diverse

yet trustworthy client updates, improving robustness in Non-IID environments.

Additionally, RFCL integrates a personalization mechanism, selectively updating

models for clients within similar clusters, allowing benign clients to receive tailored

updates while excluding adversarial contributions. This approach strengthens FL’s

resistance to adversarial manipulations in Non-IID settings.

The contributions of RFCL are summarized as follows:

• Clustering-based robust aggregation: RFCL employs hierarchical clus-

tering with cosine similarity to detect and exclude unreliable client updates,

mitigating data and model poisoning attacks.

• Meta-learning-driven model consolidation: By integrating a meta-

learning phase, RFCL improves global model robustness and ensures high-

quality aggregation.
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• Personalized updates for benign clients: RFCL’s selective update

mechanism enhances FL security while maintaining performance for benign

clients, even in heterogeneous settings.

• Comprehensive experimental validation: Extensive evaluations across

various attack scenarios—including Inner Product Masking (IPM), A Little Is

Enough (ALIE), sign-flipping, random noise, and label-flipping—demonstrate

that RFCL consistently outperforms state-of-the-art robust aggregation meth-

ods, maintaining high model integrity even in the presence of large numbers

of malicious clients.

• RFCL Implementation Repository: The full implementation of the RFCL

framework is available on GitHub at https://github.com/EbtisaamCS/RFCL.

The proposed RFCL framework was published in the proceedings of the

European Conference on Artificial Intelligence (ECAI 2023) [2].

1.1.2 Countering Backdoor Attacks

Q2) What defense mechanism can be developed to counter backdoor

attacks in FL, especially under Non-IID conditions?

Backdoor attacks in FL pose a significant threat, as malicious clients introduce

hidden triggers into their model updates to manipulate predictions while remaining

undetected. Traditional defense mechanisms rely on strong assumptions about

data distribution and attack strategies, making them less effective in real-world

Non-IID environments. To address these challenges, this thesis proposes Robust

Knowledge Distillation (RKD), a novel approach that enhances FL integrity by

filtering malicious updates through clustering and model selection.

RKD employs clustering algorithms and cosine similarity to detect groups of

benign client updates, isolating potential backdoor-injected updates as outliers.

This ensures that only models with consistent, trustworthy updates contribute to

the global model. Within the benign clusters, RKD refines model selection by
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choosing updates closest to the median, forming a reliable ensemble of client models.

Knowledge distillation is then applied to transfer insights from this ensemble to the

global model, ensuring that only benign update behavior is incorporated.

The key contributions of RKD are as follows:

• Clustering-based malicious update isolation: RKD effectively detects

and removes backdoor-injected updates using hierarchical clustering and cosine

similarity.

• Median-based model selection: By selecting updates closest to the median

within benign clusters, RKD further minimizes the influence of potential

adversarial outliers.

• Knowledge distillation for secure aggregation: RKD leverages knowl-

edge distillation to ensure only benign model behaviors are retained, prevent-

ing backdoor propagation.

• Extensive empirical validation: RKD has been rigorously evaluated on

diverse datasets, including CIFAR-10, EMNIST, and Fashion-MNIST, and

tested against advanced backdoor threats—such as Adversarially Adaptive

Backdoor Attacks (A3FL), Focused-Flip Federated Backdoor Attacks (F3BA),

and Distributed Backdoor Attacks (DBA). It consistently reduces attack

success rates to below 17% while maintaining model accuracy above 80%,

outperforming existing defenses.

• RKD Implementation Repository: The full implementation of the RKD

framework is available on GitHub at https://github.com/EbtisaamCS/RKD.

The proposed RKD framework was published in the proceedings of the 3rd IEEE

Conference on Secure and Trustworthy Machine Learning (SaTML 25) [3].
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1.1.3 Countering Various Adversarial Threats

Q3) How can a comprehensive framework be developed to effectively

defend against multiple adversarial attack types, including model poi-

soning and backdoor attacks, while ensuring robustness in Non-IID data

settings?

Federated learning faces diverse adversarial threats, ranging from gradient

manipulation to backdoor attacks, requiring a unified defense strategy that handles

both types of attacks while maintaining high model utility. To address this chal-

lenge, this thesis introduces Synthetic Data-Driven Conformity Scoring for

Federated Learning (SD-CSFL), a novel framework that utilizes synthetic data

to compute entropy-based nonconformity scores for detecting malicious updates.

SD-CSFL addresses the limitations of traditional defense methods by using

synthetic datasets rather than relying on potentially compromised client data.

This allows for a consistent and controlled evaluation of model updates. The

framework computes entropy-based nonconformity scores, measuring deviations in

client updates from expected behavior. Additionally, SD-CSFL employs adaptive

percentile thresholding, dynamically adjusting detection thresholds based on evolv-

ing client behaviors, and stratified sampling, which ensures balanced calibration

sets, enhancing detection accuracy across diverse classes in Non-IID settings.

The contributions of SD-CSFL are as follows:

• Synthetic data-based evaluation: By leveraging synthetic datasets, SD-

CSFL ensures privacy preservation while providing a stable reference for client

update evaluation.

• Entropy-based nonconformity scoring: SD-CSFL introduces a novel

entropy-driven approach to detect adversarial updates, improving detection

accuracy for both gradient manipulation and backdoor attacks.

• Adaptive thresholding for dynamic detection: The framework dy-

namically adjusts thresholds based on percentile-based calibration, ensuring
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adaptability to evolving adversarial strategies.

• Stratified sampling for balanced evaluation: SD-CSFL incorporates

stratified sampling techniques to create balanced calibration sets, enhancing

its effectiveness across different data distributions.

• Comprehensive experimental validation: Evaluations on CIFAR-10 and

Birds-525 [31], a large-scale dataset containing images from 525 bird species,

demonstrate that SD-CSFL achieves a 35% improvement in detection accuracy

for gradient manipulation attacks and an 80% reduction in backdoor attack

success rate, while maintaining 61% accuracy under highly poisoned Non-IID

conditions, outperforming existing defense methods.

• SD-CSFL Implementation Repository: The full implementation of

the SD-CSFL framework is available on GitHub at https://github.com/

EbtisaamCS/SD-CSFL.

The proposed SD-CSFL framework is currently under-review .

Together, these contributions represent a significant advancement in FL security

and robustness. Each framework—RFCL, RKD, and SD-CSFL—addresses different

aspects of adversarial threats. RFCL is designed to counter data and model

poisoning in Non-IID settings, and RKD specifically tackles backdoor attacks by

filtering out infected models. SD-CSFL, on the other hand, defends against a broader

range of adversarial scenarios, including both poisoning and stealthy backdoor

triggers. By integrating clustering, knowledge distillation, synthetic data, and

conformal prediction, this thesis lays a foundation for FL systems that are resilient,

adaptable, and well-suited for deployment in privacy-sensitive environments where

data integrity is critical.
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1.2 Thesis Outline

The structure of this thesis and its related contributions are depicted in Figure 1.2.

This thesis comprises six chapters, each focusing on different aspects of securing

federated learning against adversarial threats.

Chapter 2 introduces the background and related work essential for under-

standing the challenges and methodologies discussed in this thesis. It provides an

overview of the FL architecture, the adversarial attack types (data poisoning, model

poisoning, and backdoor attacks), and existing defense mechanisms. The chapter

also reviews the limitations of current approaches, particularly in handling Non-IID

data and sophisticated attack strategies.

In Chapter 3, we discuss our first contribution, Robust Federated Clustering

(RFCL) [2], as presented in the proceedings of ECAI 23. This framework is designed

to defend against data and model poisoning attacks in FL. By employing advanced

clustering techniques, such as HDBSCAN, and leveraging cosine similarity, RFCL

identifies and aggregates trustworthy client updates. This chapter details how RFCL

uses meta-learning to enhance model personalization and robustness. Extensive

experiments demonstrate RFCL’s effectiveness against diverse attacks, including

ALIE, IPM, and label-flipping, across datasets such as MNIST, CIFAR-10, and

Fashion-MNIST.

In Chapter 4, we introduce our second contribution, Robust Knowledge Distil-

lation (RKD) [3], as published in the proceedings of SaTML 2025, which focuses

on countering backdoor attacks in Federated Learning. RKD combines clustering

with median-based selection to isolate malicious updates and employs knowledge

distillation to aggregate benign client models into a robust global model. This

chapter includes evaluations against sophisticated backdoor attack methods such as

A3FL, F3BA, and DBA, showcasing RKD’s ability to reduce attack success rates

while maintaining high accuracy, even in Non-IID environments.

In Chapter 5, we present our third contribution, Synthetic Data-Driven Con-

formity Scoring for Federated Learning (SD-CSFL), which is currently under-
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review. This unified framework defends against both gradient manipulation and

backdoor attacks by leveraging synthetic calibration datasets to compute entropy-

based nonconformity scores. Adaptive thresholding and stratified sampling are

introduced to enhance detection accuracy in Non-IID conditions. Experiments on

CIFAR-10 and Birds demonstrate SD-CSFL’s superior performance in detecting and

mitigating adversarial behaviors.

In Chapter 6, we provide our concluding thoughts and summarize the key findings

of this thesis. We reflect on the significance of RFCL, RKD, and SD-CSFL in

enhancing the security and robustness of FL, emphasizing their effectiveness against

diverse adversarial threats. Additionally, we explore directions for future work,

including ways to improve the computational efficiency of FL security mechanisms

and ensure that privacy-preserving protocols remain robust at large scales.

Chapter 1 
Introduction

Chapter 2 
Background and Related Work

Chapter 6
Conclusion and Future Work

Chapter 3 
Robust Federated Clustering (RFCL)                          

ECAI, 23

Defending against Data and 
Model Poisoning Attacks

Chapter 4
Robust Knowledge Distillation (RKD)

Countering Backdoor 
Attacks

SaTML, 24

Chapter 5 
Synthetic Data-Driven Conformity 

Scoring (SD-CSFL)
Countering Various Adversarial 
Threats (Data Poisoning, Model 

Poisoning, and Backdoor Attacks)            

ECAI, 25 
(Under-Review)

Figure 1.2: Outline of the Thesis.
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Chapter 2

Background and Related Work

In this chapter, we provide the necessary background to ensure a clear understanding

of the foundational concepts and challenges addressed in this thesis. Additionally,

we review related work to highlight existing research and establish the context for

the proposed frameworks and methodologies.

We begin by introducing the federated learning process in Section 2.1, where

we outline its decentralized nature, collaborative training mechanism, and key

advantages over traditional machine learning approaches. This section also delves

into the iterative steps of FL, supported by mathematical formulations and

illustrative diagrams.

Next, in Section 2.2, we explore the architectures and paradigms of FL,

categorizing them into centralized architecture (Section 2.2.1) and decentralized

architecture (Section 2.2.2). We further discuss their respective operational

paradigms, including Cross-Silo Federated Learning and Cross-Device Federated

Learning, while highlighting their use cases, benefits, and limitations. The section

concludes with a comparison of these architectures to provide a clear understanding

of their unique roles in FL.

Section 2.3 focuses on data composition in FL, emphasizing the challenges posed

by non-IID data distributions across clients. Here, we classify FL into Horizontal

Federated Learning (Section 2.3.1), Vertical Federated Learning (Section 2.3.2), and
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Federated Transfer Learning (Section 2.3.3), explaining their specific applications

and challenges. Additionally, we address the impact of data heterogeneity and the

methods used to mitigate its effects on model training.

In Section 2.4, we address the security threats in FL, which include poisoning

attacks and backdoor attacks. This section discusses how these adversarial strategies

exploit the decentralized nature of FL to compromise model integrity and reliability.

We provide a detailed review of data poisoning and model poisoning (Section 2.4.1)

and elaborate on the intricacies of backdoor attacks (Section 2.4.2), highlighting

their stealth and targeted nature.

Finally, Section 2.5 provides a related work of defense mechanisms in FL.

This includes robust aggregation techniques (Section 2.5.1) and backdoor-specific

defenses (Section 2.5.2). Each subsection explores the mechanisms, strengths, and

limitations of various approaches, offering insights into their applicability in diverse

FL scenarios.

2.1 Federated Learning Process

FL is a distributed machine learning paradigm that enables collaborative model

training across multiple clients while ensuring that raw data remains localized.

This decentralized approach not only preserves privacy but also leverages the

computational capabilities of distributed clients to construct a global model [46].

By maintaining data privacy and facilitating collaborative learning, FL addresses

many challenges associated with centralized machine learning systems.

Mathematically, FL is formulated as an optimization problem that aims to

minimize a global loss function F (w), defined as the weighted sum of local loss

functions across C participating clients [46]. The global loss function is given by:

F (w) =
C∑
i=1

ni

N
fi(w), (2.1)

where w represents the global model parameters, fi(w) is the local loss function for
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client i, ni denotes the number of data samples held by client i, and N =
∑C

i=1 ni

is the total number of data samples across all clients.

This formulation ensures that each client’s contribution to the global model

update is weighted proportionally to its dataset size, making FL particularly useful

for heterogeneous (Non-IID) data distributions.

Local Model A Local Model B Local Model H

1

2

3

4
Global Model

1
1

2 2

3 3

Local Data 

Server

Local Model 

Updated Global Model

Initial Global Model

Updated Local Parameters

Broadcast Initial Global Parameters

Broadcast Updated Global Parameters

Figure 2.1: Federated learning process illustrating the iterative workflow: (1)

Initialization and broadcast of the global model by the central server, (2) Local

training at individual clients using private datasets, (3) Transmission of updated

parameters from clients to the server, and (4) Aggregation of updates by the server

to refine and redistribute the global model.

The process of FL is iterative and consists of the following steps [73], as illustrated

in Figure 2.1:

1. Broadcast of Global Model: The central server initializes the global model
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parameters w(0) and broadcasts them to all participating clients. This ensures

that all clients begin with the same model architecture and initial parameters,

enabling synchronized training across the system.

2. Local Training: Each client trains its local model using its private dataset.

The clients refine the global model parameters by minimizing their local

objective fi(w) through gradient descent, as shown in Equation 2.2:

w
(t+1)
i = w(t) − η∇fi(w(t)), (2.2)

where η is the learning rate and t denotes the iteration index. This step

captures the unique data characteristics of each client while preserving data

privacy.

3. Parameter Sharing: After completing local training, clients send their

updated model parameters or gradients to the central server. Only these

updates are shared, ensuring that raw data remains securely stored on the

clients. This step significantly reduces privacy risks and complies with data

protection regulations.

4. Global Aggregation: The central server aggregates the updates received

from all clients to refine the global model. The aggregation typically employs

a weighted averaging strategy [46], as shown in Equation 2.3:

w(t+1) = w(t) − η
C∑
i=1

ni

N
∇fi(w(t)), (2.3)

where the weights ni

N
ensure that updates from clients with larger datasets

have a proportionally greater impact on the global model. The refined model

is then redistributed to the clients, completing one iteration of the FL process.

These four steps are repeated iteratively until the global loss function F (w)

converges to a desired threshold. This iterative process enables the global model to

learn collaboratively from diverse and distributed datasets.
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The iterative nature of FL facilitates robust learning despite data heterogeneity,

communication constraints, and limited computational resources. The convergence

of the global model depends on factors such as the diversity of client datasets, the ef-

ficiency of communication protocols, and the optimization techniques employed [56].

FL offers significant advantages over traditional machine learning methods.

Its decentralized structure allows for efficient scaling, enabling the integration of

numerous clients and large datasets. Additionally, the diverse data distributions

across clients enhance the generalizability and robustness of the trained global

model, making FL particularly suitable for applications in privacy-sensitive domains

such as healthcare, finance, and IoT [47].

2.2 Federated Learning Architectures and Paradigms

FL is a transformative approach to machine learning that allows models to be trained

across decentralized data sources while preserving data privacy. The architecture of

FL dictates how participants, or clients, collaborate to build a global model. Two

primary architectural types exist within FL: Centralized Federated Learning (CFL)

and Decentralized Federated Learning (DFL) [73]. These architectures are further

distinguished by two paradigms: Cross-Silo Federated Learning and Cross-Device

Federated Learning, which address different scales and types of participants.

2.2.1 Centralized Federated Learning Aggregation

Centralized Federated Learning (CFL) aggregation is the most commonly imple-

mented FL architecture. In CFL, a central server orchestrates the entire training

process by distributing the initial global model to clients, collecting updates from

them, and aggregating these updates to refine the model. The central server ensures

synchronization across clients, making CFL particularly effective in managing large-

scale collaborations. CFL is often used in scenarios where a reliable central server

can be deployed to oversee the workflow [73].
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2.2.1.1 Cross-Silo Federated Learning

Within CFL, Cross-Silo Federated Learning is a paradigm that involves collaboration

among a relatively small number of clients, typically organizations or institutions

referred to as silos. These silos, such as hospitals, banks, or universities, possess

large and structured datasets that are used to train a shared model. The central

server plays a pivotal role in coordinating this process, ensuring data privacy is

maintained while leveraging the high-quality data from each silo. For example,

hospitals can collaboratively train diagnostic models while adhering to strict data

privacy regulations like banks can develop fraud detection models without sharing

sensitive customer information [73].

2.2.1.2 Cross-Device Federated Learning

Another paradigm within CFL is Cross-Device Federated Learning, which operates

at a much larger scale. Here, the central server manages millions of individual

devices, such as smartphones, IoT devices, or wearables. Each device trains the

global model on its local data, such as user interactions or sensor readings, and

sends updates back to the server. These updates are aggregated to refine the global

model. This paradigm is widely used for applications like predictive text input

on mobile phones, where privacy and personalization are essential. Cross-Device

CFL ensures that user data never leaves the device, making it a privacy-preserving

solution for personalized applications [73].

2.2.2 Decentralized Federated Learning Aggregation

In contrast to CFL, Decentralized Federated Learning (DFL) aggregation eliminates

the reliance on a central server. Instead, clients collaborate directly through peer-

to-peer communication, sharing and aggregating model updates among themselves.

DFL is particularly valuable in scenarios where a central server may introduce

bottlenecks or security vulnerabilities, such as single-point failures [42]. This
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decentralized architecture is gaining popularity for its robustness and scalability

in distributed environments [8].

2.2.2.1 Cross-Silo Federated Learning

Cross-Silo Decentralized Federated Learning adapts the DFL architecture for

organizational collaborations. In this paradigm, silos communicate directly with

each other to exchange and aggregate model updates, often using secure protocols.

This approach allows organizations to train shared models collaboratively without

relying on a central authority, offering enhanced privacy and security. For example,

universities conducting joint research can train academic models while retaining full

control over their individual datasets [8].

2.2.2.2 Cross-Device Federated Learning

Similarly, Cross-Device Decentralized Federated Learning applies DFL principles

to large-scale networks of personal devices. Devices such as smart thermostats,

wearables, or mobile phones collaborate to train a global model through direct

communication. This paradigm is particularly useful in IoT networks, where devices

interact locally to update shared models for tasks like energy management or network

optimization. By avoiding central orchestration, Cross-Device DFL supports robust,

flexible, and scalable learning in dynamic and resource-constrained environments [8].

Both CFL and DFL address specific challenges and opportunities in federated

learning. CFL’s reliance on a central server makes it suitable for structured

collaborations in scenarios like healthcare, finance, and retail. On the other hand,

DFL’s decentralized nature enables autonomous and resilient learning, making it

ideal for IoT and peer-to-peer collaborations.

The comparison between these two architectures is summarized in Table 2.1,

detailing their core features, advantages, challenges, and use cases. Additionally,

Figure 2.2 provides a visual representation of the CFL and DFL architectures,

illustrating how centralized coordination contrasts with peer-to-peer collaboration.
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Together, the table and figure offer a comprehensive overview of the distinctions

between CFL and DFL, helping to contextualize their respective roles in federated

learning systems.

(a) CFL (b) DFL

Figure 2.2: Comparison of Centralized and Decentralized Federated Learning

Architectures (from [8]).

Thesis Focus. Although both Centralized and Decentralized Federated

Learning architectures offer distinct advantages, this thesis concentrates on the

centralized, cross-device FL approach. Its reliance on a central server, straight-

forward orchestration, and large-scale device participation make CFL particularly

suitable for the security challenges and solutions explored in the following chapters.

Consequently, all proposed methods and experiments target adversarial threats

within a centralized, cross-device FL setting.
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Table 2.1: Comparison Between CFL and DFL

Feature Centralized Federated

Learning (CFL)

Decentralized Federated

Learning (DFL)

Coordination Orchestrated by a central

server.

Peer-to-peer collaboration

without a central server.

Reliability Dependent on the central

server; prone to single-point

failures.

More robust; no single-point

failure due to decentralized

communication.

Scalability Highly scalable for large-scale

collaborations, especially in

cross-device settings.

Limited by the efficiency of

peer-to-peer communication

and network structure.

Privacy Central server aggregates up-

dates, ensuring data privacy

but may raise concerns about

trust in the server.

Fully decentralized aggrega-

tion; no central entity, enhanc-

ing privacy and autonomy.

Communication Clients communicate directly

with the central server.

Clients communicate with

peers, often requiring more

complex communication

protocols.

Resource Re-

quirements

Relies on a central server with

high computational power and

stable connectivity.

No central server; relies on dis-

tributed client resources and

robust communication.

Use Cases Healthcare (hospitals), and fi-

nance (banks).

IoT networks, ad-hoc mobile

networks, and autonomous dis-

tributed systems.

Challenges Vulnerable to central server

failures and bottlenecks.

Requires efficient peer-to-peer

protocols; may face higher

communication overhead.
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2.3 Data Composition in Federated Learning

The composition of data in FL fundamentally influences how collaborative learning

processes are designed and executed. FL is built on the principle of enabling

distributed data owners, or clients, to collaboratively train a global machine

learning model without sharing raw data. The diversity in data across clients

introduces heterogeneity in terms of features, samples, and labels, which significantly

affects the performance and robustness of FL systems [73]. Understanding data

composition is crucial for tailoring FL frameworks to address these challenges

effectively. Based on how data is distributed among the feature and sample

spaces of participating clients, FL is categorized into three distinct frameworks:

Horizontal Federated Learning (HFL), Vertical Federated Learning (VFL), and

Federated Transfer Learning (FTL) [72]. The categorization of data composition in

FL is presented in Table 2.2, which summarizes the distinct partitioning strategies,

challenges, and typical applications of HFL, VFL, and FTL. This classification

highlights how each framework addresses unique data distribution scenarios.

2.3.1 Horizontal Federated Learning

Horizontal Federated Learning (HFL) is designed for cases where clients share a

common feature space but differ in their data samples. This setup, commonly

referred to as sample-partitioned FL, involves datasets that are horizontally

partitioned in a tabular format, where each row represents a unique sample,

and columns represent shared features [73, 72]. HFL is particularly suited for

organizations that operate in similar domains but cater to different user bases, such

as regional banks or hospitals [73, 56].

In HFL, the alignment of feature spaces across clients allows the same machine

learning model architecture to be deployed for local training. For example, multiple

hospitals collaborating to develop a diagnostic model may share the same features,

such as patient demographics and test results, but the data samples represent

21



Chapter 2. Background and Related Work

patients from different locations. HFL ensures that sensitive patient information

remains private while enabling collective insights through a shared global model [73].

Despite its advantages, HFL often encounters challenges due to Non-IID (Non-

independent and identically distributed) data distributions. Variations in data

characteristics, such as imbalances in class distributions or disparities in dataset

sizes across clients, can lead to client drift, where local updates deviate from the

global model objective [73]. To address these issues, advanced aggregation methods

such as FedAvg are commonly employed [46]. However, in highly heterogeneous

data settings, modifications to FedAvg, such as FedProx, which introduces a regu-

larization term, are often necessary to mitigate client divergence [35]. Additionally,

personalized FL methods, which adapt the global model to individual client needs,

and clustered FL, which groups clients based on similar data distributions, further

enhance the performance of heterogeneous HFL in Non-IID scenarios [61, 36].

Simulations of Non-IID data are often conducted using a Dirichlet distribution

parameterized by α, where smaller values indicate highly heterogeneous datasets.

This approach allows researchers to systematically evaluate the robustness of FL

under varying degrees of data heterogeneity [73, 27].

2.3.2 Vertical Federated Learning

Vertical Federated Learning (VFL) is applicable when clients share overlapping data

samples but differ in their feature spaces. This setup, also referred to as feature-

partitioned FL, addresses scenarios where organizations possess complementary

feature sets for the same entities [73, 72]. For instance, a bank and an e-commerce

platform may have a shared customer base but maintain distinct datasets—financial

transactions for the bank and purchase histories for the e-commerce platform.

VFL enables these organizations to collaboratively train a predictive model while

preserving data privacy [73, 56].

In VFL, aligning shared samples is a critical first step. This process is typically

achieved using secure protocols such as secure multi-party computation (SMPC)
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or homomorphic encryption, which ensure that overlapping samples are identified

without revealing raw data [39]. Once aligned, clients collaboratively train the

model by securely sharing partial computations, often leveraging techniques like

split learning [72, 39]. Split learning divides the model into segments, with lower

layers trained locally by each client and higher layers jointly optimized [39]. This

approach allows deep learning on vertically partitioned data while minimizing the

risk of privacy breaches [42, 39].

The computational complexity of VFL is often higher than that of HFL due to the

need for secure alignment and joint optimization [39]. However, it offers unparalleled

advantages in scenarios requiring the integration of complementary knowledge from

diverse feature sets, such as healthcare research combining clinical and genomic data

or cross-industry collaborations in finance and retail [73, 27].

2.3.3 Federated Transfer Learning

Federated Transfer Learning (FTL) addresses scenarios where clients have minimal

or no overlap in both samples and features. This framework is particularly useful

when clients operate in different domains with distinct datasets. FTL leverages

the principles of transfer learning to enable collaboration between clients with

heterogeneous data, making it a powerful solution for addressing data scarcity and

domain mismatches [73, 72].

For example, a healthcare provider and a retail chain may collaborate to

train a predictive model, even though their datasets differ entirely in samples

and features. FTL bridges these gaps by employing techniques such as instance-

based transfer, which reweights training samples to align domain distributions, and

feature-based transfer, which learns a shared feature representation space to improve

knowledge transfer [38]. Model-based transfer further enhances FTL by utilizing pre-

trained models from resource-rich domains to bootstrap training in resource-scarce

environments [73, 38].

FTL’s flexibility allows it to address challenges that traditional HFL and VFL
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frameworks cannot. It is particularly valuable in applications such as cross-domain

collaborations for sustainability, where organizations with disparate datasets share

a common goal but lack sufficient overlap for direct model sharing [38].

Thesis Focus. While HFL, VFL, and FTL each address distinct data

distribution scenarios, this thesis primarily concentrates on HFL. The sample-

partitioned setting, where clients share a common feature space but hold different

data samples, aligns with the security challenges explored in the following chapters.

Consequently, all proposed methods and experiments target adversarial threats

within an HFL context, utilizing Dirichlet distributions to simulate Non-IID data

conditions.

2.3.4 Challenges of Non-IID Heterogeneity

Non-IID data distributions present a critical challenge in FL, stemming from

variations in class distributions, feature representations, and dataset sizes across

clients [41]. Unlike the assumptions of traditional machine learning, where

data is often considered independent and identically distributed (IID), FL must

contend with diverse and often conflicting local datasets [73]. This diversity reflects

real-world scenarios, such as different demographic distributions across regions or

varying user behaviors on personal devices. These disparities disrupt the alignment

between local updates and the global optimization objective, complicating model

convergence and reducing performance. Notable challenges include client drift,

where local objectives deviate from the global goal, and imbalanced contributions,

where clients with smaller datasets or unique distributions disproportionately affect

the aggregated global model [72].

Client drift arises because clients independently optimize their local objectives,

which are shaped by their specific data distributions. For example, a client

with data skewed toward a particular class will generate gradients that emphasize

that class, leading to divergence from the global model objective [73]. This

phenomenon not only delays convergence but also results in a global model that
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may generalize poorly across all clients. Additionally, imbalanced contributions

exacerbate these challenges. Clients with larger datasets dominate the aggregation

process, overshadowing updates from clients with smaller or highly heterogeneous

datasets [44]. This imbalance reduces model fairness and generalization, especially

in cases where minority classes or underrepresented distributions are crucial.

To mitigate these challenges, advanced techniques have been developed. Scaffold

introduces control variates to counteract client drift by correcting deviations in

gradient directions, ensuring updates align more closely with the global objec-

tive [29]. This approach significantly improves convergence rates and robustness

in non-IID environments. Similarly, FedNova addresses imbalances by normalizing

local updates, accounting for differences in dataset sizes and the number of training

epochs [35]. These normalization strategies ensure that all clients contribute

equitably to the global model, regardless of their data volume or training duration.

Personalization strategies have also proven effective in addressing non-IID

heterogeneity. Meta-learning frameworks optimize the global model to serve as

a foundation for rapid adaptation to individual client distributions [71]. This

approach is particularly valuable in applications like personalized healthcare or

recommendation systems, where client-specific models are critical. Fine-tuning offers

another layer of personalization, enabling clients to adapt the global model to their

local data without compromising privacy [44]. Such strategies ensure that global

models remain robust while meeting the unique requirements of individual clients.

Another promising solution is clustered FL, which groups clients with similar

data characteristics into clusters. By training submodels for each cluster, this

approach accommodates heterogeneity in data distributions without compromising

the overall training process [71].

In addition to these approaches, synthetic data generation and adaptive learning

strategies are gaining traction [41]. By generating synthetic datasets that mimic

underrepresented distributions, researchers can balance contributions and improve

global model generalization. Similarly, adaptive aggregation methods dynamically
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adjust learning rates or weighting schemes based on client-specific metrics, further

enhancing robustness in non-IID settings [44].

Table 2.2: Data Composition Categories in Federated Learning

Framework Data

Partitioning

Challenges Common Use

Cases

Horizontal Fed-

erated Learning

(HFL)

Shared features,

distinct samples

Non-IID data

leading to client

drift, imbalances

in dataset

size and class

distribution

Collaborations across

organizations with

similar domains, such

as regional banks or

hospitals

Vertical

Federated

Learning (VFL)

Shared samples,

distinct features

Computational

complexity due

to secure sample

alignment

and joint

optimization

Cross-industry collab-

orations (e.g., banks

and e-commerce plat-

forms), healthcare re-

search combining clin-

ical and genomic data

Federated

Transfer

Learning (FTL)

No overlap in

samples or fea-

tures

Domain

mismatches,

data

scarcity, high

heterogeneity in

client data

Cross-domain

collaborations

in sustainability,

education, and

resource-scarce

settings

2.4 Security Threats in Federated Learning

FL framework facilitates collaborative model training across distributed clients while

preserving privacy by avoiding the need to exchange raw data of clients. This
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privacy-preserving nature makes FL a preferred solution in sensitive domains like

healthcare, finance, and IoT [56]. However, FL’s reliance on decentralized archi-

tectures and distributed computation introduces substantial security vulnerabilities.

Adversaries can exploit these vulnerabilities to compromise the integrity of the global

model performance, disrupt the training process, or embed malicious behaviors into

system [42]. Key security concerns in FL revolve around poisoning attacks and

backdoor attacks, both of which target the training process to undermine the FL

system’s robustness and reliability [56]. A deep analysis of these threats and their

implications is essential to understand the resilience of FL systems.

2.4.1 Poisoning Attacks

Poisoning attacks in FL are among the most prevalent and harmful threats,

leveraging the decentralized nature of training to introduce malicious updates.

These attacks are aimed at manipulating the training process to degrade model

performance or induce specific undesired behaviors. Based on the adversary’s goals,

poisoning attacks are classified as random attacks or targeted attacks [35].

Random poisoning attacks introduce noise or malicious updates into the training

process, causing general degradation of the global model’s performance. These

attacks are relatively easier to detect as they often result in noticeable accuracy drops

across tasks [56]. In contrast, targeted poisoning attacks are more sophisticated,

focusing on achieving specific goals, such as causing the model to misclassify

particular inputs [34]. Targeted attacks are harder to detect because they aim to

maintain overall model performance while embedding malicious behaviors [56].

Poisoning attacks can be further classified based on the stage of the FL pipeline

they target: data poisoning and model poisoning [35].

2.4.1.1 Data Poisoning

Data poisoning attacks exploit the decentralized nature of FL, where clients maintain

control over their local datasets. These attacks target the data preparation phase of
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the FL pipeline, aiming to introduce biases or malicious patterns that degrade the

performance or reliability of the global model [56]. By manipulating the training

data, adversaries can influence the learning process to align with their objectives.

Data poisoning attacks are broadly categorized into two types: clean-label attacks

and dirty-label attacks, each with distinct methodologies and implications [47].

Clean-label attacks are characterized by their subtlety and stealth. In these

attacks, adversaries imperceptibly alter the features of training samples while

preserving their original labels [5]. The primary goal is to bias the model’s decision-

making process without raising suspicion [68]. For instance, an adversary might

slightly modify pixel intensities in an image of a handwritten digit, ensuring that the

changes are not noticeable to human observers or automated validation processes.

Despite these imperceptible alterations, the global model’s decision boundary can

become skewed, leading to misclassifications or reduced accuracy [42].

The effectiveness of clean-label attacks lies in their ability to remain undetected.

Since the poisoned samples retain their original labels, they appear consistent with

the rest of the dataset, making anomaly detection challenging [47]. Such attacks are

particularly dangerous in FL, where the server does not have direct access to client

data and cannot inspect individual samples for tampering. Clean-label attacks are

often employed as a vector for backdoor attacks, where a hidden trigger embedded in

the data can activate adversary-defined behavior during inference [18]. For example,

an image classification model might be trained to misclassify any input containing a

specific watermark as a particular class, while functioning normally for other inputs.

In contrast, dirty-label attacks involve manipulating the labels of specific

samples while leaving their features unchanged. These attacks typically follow

straightforward strategies, such as flipping the labels of one class to another [62].

For instance, in a label-flipping attack, an adversary may reassign the labels of all

images of the digit “1” to “7”. This results in a model that misclassifies“1” as “7”

during inference. Such attacks are relatively easy to execute because they do not

require advanced technical skills or significant computational resources.
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However, dirty-label attacks are generally more detectable compared to clean-

label attacks. The mismatch between the features and labels creates an inconsistency

that can be flagged by validation mechanisms or statistical analyses [49]. Despite

their detectability, dirty-label attacks can still pose risks, especially when conducted

by multiple colluding clients or in environments with limited model validation.

While both clean-label and dirty-label attacks aim to compromise the integrity

of the global model, their approaches and challenges differ. Clean-label attacks

are subtle, making them difficult to detect but technically more sophisticated to

implement. They often require a deeper understanding of the model’s decision

boundaries to design effective feature modifications. Dirty-label attacks, on the

other hand, are simpler and more accessible but carry a higher risk of detection due

to the visible inconsistencies between features and labels.

The decentralized and privacy-preserving architecture of FL exacerbates the

risks associated with data poisoning attacks. The lack of centralized oversight and

the reliance on client-provided data create opportunities for adversaries to execute

both clean-label and dirty-label attacks with minimal risk of immediate detection.

Addressing these vulnerabilities requires robust defense mechanisms, including

anomaly detection, validation protocols, and aggregation techniques designed to

minimize the impact of poisoned data.

2.4.1.2 Model Poisoning

Model poisoning attacks are a sophisticated threat in FL that target the updates

shared by clients with the central server. Unlike data poisoning, where the attack

focuses on manipulating the training data, model poisoning directly intervenes in

the training process by altering gradients or model parameters [9]. This strategic

targeting of the aggregation process allows adversaries to exert greater influence on

the global model’s optimization while circumventing the challenges associated with

data manipulation. The impact of model poisoning can range from degrading overall

model performance (untargeted attacks) to embedding specific malicious behaviors
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(targeted attacks) [20].

In untargeted model poisoning attacks, the adversary introduces random noise or

modifies updates to reduce the accuracy of the global model. The goal is to disrupt

the training process, resulting in a model that performs poorly across all tasks. [9]

This type of attack is typically easier to execute and harder to detect, as the noise

appears random and does not follow a specific pattern [11].

Conversely, targeted model poisoning attacks aim to embed specific behaviors

or biases into the global model. A common example is the insertion of backdoors,

where an adversary modifies local updates to ensure that inputs with a predefined

pattern or trigger are misclassified [18]. For instance, an image classification model

may be manipulated to classify all images with a specific watermark as a particular

class, regardless of their actual content. Targeted attacks are often stealthy, as

they maintain normal model performance on clean inputs while activating malicious

behaviors only under specific conditions [63].

Several sophisticated strategies are employed in model poisoning attacks, each

designed to evade detection while achieving the attacker’s objectives.

Inner Product Manipulation (IPM) Attack. The IPM attack is a stealthy

model poisoning strategy that aligns the malicious update with the global model

direction while preserving benign-like statistical properties [69]. This design allows

the attacker to evade detection during aggregation by mimicking the orientation

of benign updates. The adversary crafts the malicious gradient update ∆g i
t by

projecting a crafted gradient vector onto the global model direction and scaling the

result:

∆g i
t = ϵ

⟨g i
t ,w⟩
∥w∥2

w (2.4)

where ⟨g i
t ,w⟩ denotes the inner product, ∥w∥ is the ℓ2-norm of the global

model, and ϵ is a scalar controlling the attack strength. As a result, the update

in Equation 2.4 retains the direction of the model vector, blending seamlessly with

benign contributions while subtly degrading model performance.
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A Little is Enough (ALIE) Attack. The ALIE attack injects carefully crafted

noise to exploit the statistical variability among benign client updates, thereby

deceiving the aggregation mechanism [7]. Specifically, the attacker estimates the

empirical mean µi and standard deviation δi for each parameter coordinate i based

on observed benign gradients. The malicious update is then constructed to lie within

the interval defined in Equation 2.5:

(µi − zmaxδi, µi + zmaxδi) , (2.5)

where zmax is a scalar threshold derived from the cumulative standard normal distri-

bution. By remaining within this plausible statistical range, the attacker’s update

appears benign to the server, yet gradually degrades the global model’s performance.

This stealthy approach allows the attacker to bypass robust aggregation defenses.

Sign Flipping (SF) Attack. The sign flipping (SF) attack is a simple yet

effective model poisoning technique that reverses the direction of gradient updates

to disrupt learning [9]. Unlike more sophisticated attacks such as IPM or ALIE,

SF does not require knowledge of other clients’ updates, making it accessible and

easy to implement for adversaries. In practice, an attacker inverts the sign of each

component in its gradient update:

∆g i
malicious = −∆g i

benign, (2.6)

where ∆g i
benign is the original local gradient of client i, and the resulting update

∆g i
malicious pushes the global model in the opposite direction, effectively performing

gradient ascent. This attack maximizes the local loss and significantly hinders model

convergence (see Equation 2.6).

Random Noise (RN) Attack. The RN attack introduces unstructured noise

into model updates to disrupt the learning process [73]. Unlike targeted attacks, it

does not require knowledge of the model structure or other clients’ updates, making

it broadly accessible. The adversary generates noise from a zero-mean Gaussian
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distribution N (0, σ2) and adds it to the model gradients, as shown in Equation 2.7:

∆gi
t = gi

t +N (0, σ2), (2.7)

where gi
t is the original gradient of client i, and σ controls the noise strength.

The zero-mean ensures the perturbation is unbiased, while the variance σ2 allows

the attacker to adjust the noise level. Despite its simplicity, the RN attack can

effectively degrade model performance, especially in settings with weak defenses or

high heterogeneity.

Model poisoning attacks pose significant risks to the integrity and reliability of

FL systems. By targeting the aggregation process, these attacks can compromise

the global model in ways that are challenging to detect and mitigate. The adaptive

nature of advanced attacks like IPM and ALIE, combined with the decentralized

architecture of FL, exacerbates the difficulty of defense.

Mitigation strategies for model poisoning attacks include robust aggregation

techniques, such as Byzantine-resilient algorithms that detect and exclude anoma-

lous updates. Statistical analysis of updates, combined with secure aggregation

protocols, can also help identify and mitigate malicious behavior. Additionally,

techniques like differential privacy and cryptographic methods provide additional

layers of defense by ensuring that individual updates remain secure and verifiable.

2.4.2 Backdoor Attacks

Backdoor attacks represent a sophisticated form of targeted poisoning attack,

specifically designed to embed hidden triggers within the global model. These

triggers activate malicious behaviors only under predefined conditions, such as a

particular pattern, watermark, or other identifiable features in the input data [63].

For instance, in an image classification model, a backdoor attack might train the

model to classify any image containing a specific pattern (e.g., a logo or a pixel

arrangement) as a particular class, irrespective of the true content of the image.

The insidious nature of backdoor attacks lies in their stealth; the model continues
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to perform normally under standard conditions, making the backdoor exceedingly

difficult to detect without knowledge of the trigger.

Backdoor attacks can be executed via two main mechanisms: data poisoning and

model poisoning. In data poisoning scenarios, adversaries inject training samples

containing the trigger pattern into their local datasets and associate these samples

with a target class. The poisoned samples influence the global model during

aggregation, causing it to associate the trigger pattern with the adversary’s chosen

class [42]. During inference, inputs containing the trigger pattern are misclassified

as the target class. In contrast, model poisoning directly targets the gradients or

model parameters shared with the central server, embedding the backdoor more

directly [43]. This method often bypasses the need for manipulated data, relying

instead on adversarial gradient updates to achieve the desired behavior.

The success of backdoor attacks depends significantly on the adversary’s ability

to influence the FL training pipeline while evading detection. Even a single malicious

client, if undetected, can introduce a backdoor that significantly compromises the

reliability and integrity of the global model. This vulnerability underscores the

importance of robust defense mechanisms in FL systems.

Several sophisticated strategies are employed in backdoor attacks, each carefully

designed to embed malicious behaviors into the global model while evading detection.

These strategies leverage both data and model poisoning techniques to ensure the

backdoor remains stealthy and effective.

Adversarially Adaptive Backdoor Attack to Federated Learning (A3FL).

The A3FL attack enhances the persistence and effectiveness of backdoors by

dynamically adapting triggers to the evolving training dynamics of FL systems

[76]. Unlike static backdoors, A3FL optimizes its triggers iteratively to ensure

compatibility with both the current global model and adversarially crafted variants.

By employing adversarial adaptation loss and Projected Gradient Descent (PGD),

A3FL continuously refines the backdoor, ensuring its robustness across multiple

training updates and iterations.
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Focused-Flip Federated Backdoor Attack (F3BA). The F3BA strategy

narrows its manipulation to a subset of critical model parameters, altering them

selectively to embed a backdoor while minimizing disruption to overall model

performance [18]. Each parameter’s importance is quantified using a sensitivity

score defined in Equation 2.8:

Sj = −
(
∂Lg

∂wj

)
⊙wj, (2.8)

where Sj captures the sensitivity of the global loss function Lg to the parameter

wj, and ⊙ denotes element-wise multiplication. The attacker identifies the most

sensitive parameters based on Sj and flips their signs to embed the trigger, achieving

a balance between stealth and backdoor effectiveness.

Cerberus Poisoning (CerP) Attack. The CerP introduces a stealthy and

distributed backdoor attack by fine-tuning backdoor triggers, controlling local model

parameter biases, and maximizing diversity among malicious updates. By exploiting

defense assumptions, CerP minimizes deviations between poisoned and benign

models, achieving high attack success rates while preserving the main learning task’s

accuracy [43].

Distributed Backdoor Attack (DBA). The DBA spreads a trigger pattern

across multiple adversarial clients, enhancing stealth and making detection more

difficult. Each compromised client injects a portion of the full trigger into its

local training data. When these local models are aggregated, the global model

inadvertently learns to associate the combined trigger pattern with the target

class [68]. As a result, inputs containing the full trigger pattern are misclassified,

effectively executing the backdoor attack without any single client contributing a

suspiciously large modification.

Characteristics of Backdoor Attacks

Backdoor attacks often exhibit distinctive characteristics in the model updates

sent by malicious clients, which can be exploited for detection. Key characteristics

include:
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• Angular Deviation: Malicious model updates may have a different direction

in the parameter space compared to updates from benign clients [5]. This

directional difference can be quantified using the cosine similarity (or angular

deviation) between the parameter vectors of malicious updates wattack and

benign updates wbenign:

∆wangular = cos−1

(
wattack ·wbenign

∥wattack∥ ∥wbenign∥

)
(2.9)

• Magnitude Deviation: Malicious updates may have a significantly different

norm magnitude compared to benign updates [68]. The magnitude deviation

is observed when:

∥wattack∥ ≫ ∥wbenign∥ (2.10)

• Subtle Deviations: Some attackers design their updates to closely resemble

those of benign clients, keeping the deviation within a small threshold ϵ to

avoid detection [76]:

∥wattack −wbenign∥ < ϵ (2.11)

Equations 2.9, 2.10, and 2.11 describe distinct attack patterns that can be

leveraged to detect backdoor behaviors without access to raw training data.

2.4.3 Interplay Between Poisoning and Backdoor Attacks

The relationship between poisoning and backdoor attacks is both intricate and

significant, as these two strategies often overlap and amplify each other’s impact.

While poisoning attacks primarily aim to degrade the performance or usability of

the global model by altering either training data or model updates [7], backdoor

attacks exploit these alterations to embed hidden triggers into the model [9]. The

triggers remain dormant under normal conditions but activate specific adversarial

behaviors when encountering predefined inputs [18]. Understanding the interplay

between these attack types is crucial for developing comprehensive defenses in FL.
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Both poisoning and backdoor attacks exploit the decentralized and distributed

nature of FL. In data poisoning, adversaries manipulate local training datasets

to bias the model’s learning process [63]. This manipulation can range from

straightforward label flipping to more subtle clean-label attacks, where seemingly

benign samples are crafted to alter the decision boundaries of the global model.

When data poisoning is tailored to inject specific patterns or triggers, it seamlessly

transitions into a backdoor attack [5].

Model poisoning, on the other hand, operates at the gradient or parameter level,

directly tampering with the updates sent to the central server. By modifying the

gradients or parameters, adversaries can steer the global model towards a malicious

objective, such as embedding a backdoor [68]. Model poisoning can also enhance

the stealth and effectiveness of backdoor attacks by bypassing the need for visible

data manipulation [18]. In practice, poisoned datasets often result in compromised

model updates, illustrating how model poisoning subsumes data poisoning under

certain conditions.

Clean-Label data poisoning as a backdoor vector. A clean-label data

poisoning attack serves as a prime example of the interplay between these strategies.

Adversaries introduce training samples with imperceptible modifications—such as

slight pixel adjustments in an image—that embed hidden triggers without altering

the sample labels [68]. During the training process, these poisoned samples bias the

model’s parameters to associate the trigger pattern with a specific target class. Upon

aggregation, the global model inherits this backdoor behavior, effectively combining

the mechanisms of data poisoning and backdoor implantation.

Gradient manipulation in backdoor model poisoning. Model poisoning

attacks offer another pathway for embedding backdoors. By directly manipulating

the gradients or parameters shared during training, adversaries can embed triggers

without relying on poisoned data. This approach is particularly effective in

scenarios where direct data manipulation is infeasible or detectable. For instance,

adversaries can craft gradient updates that align with the global optimization

36



2.4. Security Threats in Federated Learning

objective while embedding malicious behaviors. Techniques like A3FL [76] attack

or scaling malicious updates amplify the backdoor effect while evading detection

during aggregation.

Amplification through combined strategies. The interplay between

poisoning and backdoor attacks can amplify their individual impacts. A hybrid

approach, where adversaries poison both the data and model updates, creates a

synergistic effect [18]. For example, a backdoor attack may start with data poisoning

to introduce triggers in local datasets. Concurrently, model poisoning fine-tunes the

gradients to reinforce the trigger’s impact during aggregation. This dual strategy

not only increases the likelihood of successful backdoor embedding but also enhances

its persistence and stealth.

Implications for FL security. The convergence of poisoning and backdoor

attacks underscores the complexity of securing FL systems. Defense mechanisms

must address both data integrity and model update authenticity, recognizing that

seemingly independent attack vectors can reinforce each other. Robust aggregation

techniques, anomaly detection based on update similarity, and adversarial training

are critical to mitigating the compounded risks posed by these interrelated threats.

In summary, poisoning and backdoor attacks are not isolated phenomena

but interdependent strategies that exploit the vulnerabilities of FL framework.

Their interplay highlights the need for defenses that consider the full spectrum of

adversarial tactics, ensuring the robustness of collaborative learning frameworks.

Thesis Focus. The security threats in FL encompass data poisoning, model

poisoning, and stealthy backdoor attacks. In this thesis, we develop defense

mechanisms to counter these threats in a centralized, cross-device FL setting under

Horizontal Federated Learning assumptions. Our aim is to detect and mitigate

adversarial behaviors without compromising model performance.
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2.5 Related Work

FL introduces a transformative approach to collaborative machine learning, allowing

decentralized training while preserving data privacy. This paradigm mitigates

the need for data centralization, aligning with privacy regulations and user trust.

However, the decentralized nature of FL presents significant security challenges,

exposing the system to various adversarial threats. Among these, poisoning and

backdoor attacks stand out as critical threats that can degrade the integrity, utility,

and reliability of the global model [38].

Poisoning attacks manipulate the training process by introducing malicious

updates or data, disrupting the global model’s performance and effectiveness [20].

Backdoor attacks, on the other hand, embed hidden triggers into the model, causing

it to exhibit specific malicious behaviors under predefined conditions [18]. These

adversarial strategies exploit the inherent characteristics of FL, such as non-IID data

distributions, limited visibility into client operations, and the absence of centralized

monitoring mechanisms [47].

Robust defense mechanisms are crucial to counter these threats while upholding

the core principles of FL, including data privacy and decentralization. Unlike

traditional machine learning systems that benefit from centralized oversight and

comprehensive monitoring, FL requires innovative and decentralized solutions

tailored to its unique operational challenges.

This section delves into the defense mechanisms designed to mitigate the impact

of poisoning and backdoor attacks in FL. The discussion is organized into two

primary categories: Robust Aggregation Defenses, which focus on safeguarding

the aggregation process against malicious contributions, and Backdoor-Specific

Defenses, which aim to detect and neutralize hidden triggers embedded in the

global model. By addressing these adversarial strategies, the defenses discussed

in this section highlight the ongoing efforts to secure the FL ecosystem without

compromising its privacy-preserving capabilities or model performance.
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2.5.1 Robust Aggregation Defenses

Robust aggregation mechanisms play a pivotal role in mitigating the impact of

adversarial updates in FL. These defenses aim to ensure that the global model

remains resilient to malicious or outlier contributions, which could otherwise

compromise its integrity and utility. Given the decentralized and privacy-preserving

nature of FL, where raw data cannot be directly inspected, robust aggregation must

operate effectively under constraints of limited visibility and diverse, often non-IID,

data distributions.

This subsection delves into three primary categories of robust aggregation

defenses: Distance-Based Filtering, Statistical Distribution-Based Aggregation, and

Proxy Dataset-Based Validation. Each approach tackles adversarial threats from

a distinct perspective, offering insights into their mechanisms, strengths, and

limitations.

2.5.1.1 Distance-Based Filtering

Distance-based filtering approaches identify and exclude malicious updates by

measuring their deviation from the expected distribution of client updates [48, 59,

66, 6]. The fundamental assumption is that benign updates cluster closely around

a central trend, while adversarial updates deviate significantly [9].

Multi-Krum selects a subset of client updates that are most similar to their

neighbors, measured by Euclidean distance [11]. By prioritizing updates that align

with the majority, this method minimizes the influence of outliers, which are often

indicative of adversarial behavior. Multi-Krum is particularly effective when the

majority of clients are benign. However, its reliance on the dominance of benign

updates reduces its effectiveness in scenarios with high adversarial participation or

heterogeneous data distributions.

FoolsGold employs cosine similarity to evaluate the alignment of updates across

clients [19]. By identifying updates that frequently align too closely—potentially

indicative of collusion—it assigns lower weights to such updates during aggregation.
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This approach is highly effective against collusion-based attacks but struggles in

non-IID settings, where legitimate similarities in updates could be misinterpreted

as adversarial.

FABA (Fast Aggregation Against Byzantine Attacks) iteratively removes up-

dates that deviate significantly from the mean before computing the global model.

This iterative filtering effectively isolates outliers [66]. However, its reliance on

mean-based criteria makes it less robust in non-IID settings, where benign updates

naturally exhibit higher variability.

2.5.1.2 Statistical Distribution-Based Aggregation

Statistical approaches leverage robust statistical techniques to aggregate updates in

a manner that minimizes the influence of outliers, without explicitly identifying or

excluding them.

The median is a robust statistical measure that minimizes the impact of extreme

values. In FL, median aggregation involves computing the median of each parameter

across client updates [74]. This approach ensures that outliers, whether malicious

or resulting from data variability, have limited influence on the global model.

Median aggregation is computationally efficient and performs well in scenarios where

adversarial updates are sparse. However, it assumes that updates are symmetrically

distributed around the central trend, which may not hold in highly non-IID settings.

RFA (Robust Federated Aggregation) calculates the geometric median of client

updates, offering greater resistance to outliers compared to traditional mean-based

aggregation [54]. By employing alternating minimization, RFA achieves stable

convergence while maintaining robustness. However, its computational overhead

can be significant in large-scale FL systems. Additionally, RFA assumes that

client updates are bounded within a specific range, which may not hold in highly

heterogeneous data scenarios.

Bulyan combines geometric median and trimmed median [74] techniques in a

two-step process. Initially, it identifies a subset of updates close to the geometric
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median, excluding outliers [22]. It then computes a trimmed mean from the

selected updates to finalize the aggregation. While this dual-layer approach enhances

robustness, it is computationally intensive and sensitive to extreme heterogeneity in

data distributions.

Building on the Krum algorithm, Dim-Krum identifies abnormal client updates

by examining a small subset of dimensions with higher backdoor strengths [77]. This

selective approach allows the server to isolate and remove malicious contributions.

Dim-Krum is particularly effective in settings with a high adversarial presence but

assumes that benign clients dominate numerically.

RLR (Robust Learning Rate) adjusts the server’s learning rate dynamically

based on the sign information of client updates [52]. By analyzing updates across

dimensions and training rounds, RLR identifies anomalies indicative of adversarial

behavior. This approach enhances model robustness against both backdoor and

malicious attacks.

Clipping methods restrict the magnitude of client updates to a predefined

threshold, reducing the influence of outliers introduced by adversarial updates [23].

By limiting the norm of each client update, clipping prevents disproportionately

large updates from dominating the aggregation process.

Centered clipping enhances this approach by centering updates around a

reference point, often the mean or median of all updates, before applying the clipping

threshold [28]. This adjustment ensures that updates are normalized relative to

a central trend, further mitigating the impact of malicious contributions. While

both methods are computationally efficient, their effectiveness depends on carefully

chosen thresholds that balance robustness and utility. Excessive clipping can overly

suppress legitimate variations in updates, particularly in heterogeneous FL settings.

2.5.1.3 Proxy Dataset-Based Validation

Proxy dataset-based methods incorporate a trusted, auxiliary dataset to evaluate

the reliability of client updates. This dataset serves as a benchmark to assess how
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closely client updates align with the expected model behavior.

FLTrust uses a small, clean proxy dataset to evaluate client updates. By

calculating a reference gradient on the proxy data, it measures the cosine similarity

of client updates with this reference, reweighting updates accordingly [13]. While

FLTrust effectively identifies and suppresses malicious contributions, its dependence

on a high-quality proxy dataset limits its applicability in privacy-sensitive or

heterogeneous domains where such datasets may not be available.

SageFlow evaluates client updates based on their impact on model entropy when

applied to a proxy dataset [53]. Updates that cause high entropy are assigned lower

weights, reflecting their potential unreliability. While this entropy-based filtering

provides a nuanced evaluation of update reliability, it shares FLTrust’s limitation

of requiring a clean and representative proxy dataset, which may not always align

with the diversity of FL client data.

The effectiveness of robust aggregation defenses is influenced by underlying

assumptions about data distributions and adversarial behavior. Distance-based and

statistical methods are well-suited for IID settings but often struggle with non-

IID data, where natural variability among benign updates can mimic adversarial

patterns. Proxy dataset-based methods address some of these limitations by

providing an external benchmark, but their reliance on auxiliary data raises concerns

about feasibility and privacy.

In practice, the choice of robust aggregation defense depends on the specific

characteristics of the FL deployment. Systems with relatively homogeneous data and

low adversarial risk may benefit from simpler, distance-based methods. Conversely,

highly heterogeneous and adversarial environments demand more sophisticated

approaches, potentially combining statistical robustness with adaptive evaluation

mechanisms to ensure both security and model performance.
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2.5.2 Backdoor Defense Mechanisms

Backdoor attacks pose a significant threat to FL systems by embedding hidden

triggers into the global model. These attacks exploit the decentralized nature of FL

to introduce adversarial behaviors that remain dormant under normal conditions

but activate malicious outputs when specific triggers are present. Unlike broader

poisoning attacks, backdoor attacks are often more insidious, as they aim to

preserve the overall accuracy of the model while introducing targeted vulnerabilities.

Addressing these threats requires specialized defense mechanisms that go beyond

traditional aggregation strategies.

2.5.2.1 Model Refinement Approaches

Model refinement techniques focus on post-aggregation interventions to cleanse the

global model of potential backdoor triggers.

Fine-tuning involves retraining the global model on a small, trusted dataset to

mitigate backdoor effects [55]. By exposing the model to clean data, the backdoor

association between the trigger and the adversarial target label can be weakened.

However, fine-tuning relies heavily on the availability of an auxiliary dataset that

closely aligns with the original training data, which may conflict with FL’s privacy-

preserving principles.

Pruning aims to identify and remove specific neurons or layers associated with

the backdoor’s activation [65]. By systematically reducing the model’s complexity,

pruning can suppress malicious behaviors. However, excessive pruning risks

degrading the model’s overall performance, particularly in non-IID settings.

Knowledge distillation transfers the knowledge of the global model to a new

model by training it on the outputs of the original model, typically using a clean

proxy dataset [60]. This approach assumes that the distilled model will inherit

only benign behaviors, effectively erasing backdoors. Distillation’s effectiveness is

constrained by the availability of high-quality auxiliary data.

Model refinement approaches are often limited by their reliance on clean datasets

43



Chapter 2. Background and Related Work

and the risk of overfitting or underperforming if the auxiliary dataset does not

adequately represent the diversity of client data.

2.5.2.2 Dynamic Client Trust Scoring

Dynamic trust scoring mechanisms assign trust levels to clients based on their

historical behavior and alignment with global model. These scores are then used

to weigh client updates during aggregation, reducing the impact of malicious

contributions and behavior.

Trust scoring based on update consistency ensures that clients that consistently

submit updates aligned with the global optimization direction are assigned higher

trust scores [48]. Conversely, clients with erratic or anomalous updates receive lower

scores. This dynamic approach ensures that the aggregation process prioritizes

reliable contributors.

Reputation systems track client behavior over multiple rounds of training,

identifying patterns indicative of malicious intent [48]. Clients with a history of

submitting suspicious updates are flagged and excluded from future aggregation.

Behavioral adaptation ensures that trust scores can adapt based on the observed

behavior of clients across different training rounds [17]. This approach ensures that

previously benign clients that turn malicious are identified and penalized.

Dynamic trust scoring offers a adaptive defense against backdoor attacks,

particularly in environments with heterogeneous data distributions [64]. However,

its reliance on historical data may delay the detection of newly compromised clients.

Backdoor defense mechanisms form a critical component of FL’s security

architecture, complementing robust aggregation strategies. While model refinement

techniques cleanse the global model post-aggregation and dynamic trust scoring

address threats during the training process. Each approach has its strengths and

limitations, and their effectiveness depends on factors such as data availability,

computational resources, and the sophistication of the adversarial strategy.
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2.5.3 Overall Summary and Thesis Contributions

Existing defenses against poisoning and backdoor attacks in FL generally fall into

two categories. Some approaches focus on robust aggregation, using methods such

as distance based filtering, statistical distribution based strategies, or proxy dataset

validation to counter malicious updates. Others target hidden triggers through post

aggregation model refinement and adaptive trust scoring. Although these methods

have improved FL security, many still struggle with highly diverse Non-IID data,

require external datasets, or entail high computational costs. These limitations

complicate the deployment of secure and scalable FL systems. Table 2.3 summarizes

major obstacles that persist in FL defense mechanisms.

Thesis Contributions. To address these challenges, this thesis proposes a

framework that adapts to Non-IID data by introducing specialized aggregation

and anomaly detection methods suited for heterogeneous client distributions. It

also minimizes auxiliary data reliance by reducing or eliminating the need for

clean external clients datasets. Finally, it strengthens detection and mitigation

to effectively counter both poisoning and backdoor threats without severely

degrading model performance. The following chapters detail each component of

this framework, present rigorous experimental evaluations, and demonstrate how

the proposed methods significantly improve FL security in adversarial settings while

preserving user privacy.
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Table 2.3: Key Challenges and Limitations in FL Defenses

Aspect Challenges Limitations

Data

Heterogeneity

Difficulty distinguishing malicious

updates from natural variations

(Addressed in Chapter 3, Chap-

ter 4, and Chapter 5)

Most methods assume

IID data, limiting appli-

cability in Non-IID sce-

narios

Computational

Overhead

High resource demands for robust

aggregation and anomaly detection

(Addressed in Chapters 3)

May not scale well in

large systems

Auxiliary Data

Needs

Reliance on proxy datasets for

tuning and validation

(Mitigated in Chapter 5 via syn-

thetic calibration data)

Conflicts with FL’s pri-

vacy principles

Adaptive

Attacks

Evolving backdoor techniques that

evade traditional detection

(Tackled in Chapter 4 and Chap-

ter 5)

Existing defenses lag be-

hind new attack tactics

Performance

Balance

Aggressive clipping or pruning risks

suppressing valid updates

(Addressed in Chapters 3, 4, and 5)

Potential degradation of

model accuracy
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Defending Against Data and

Model Poisoning Attacks

Federated learning is vulnerable to adversarial attacks, both model and data

poisoning, that degrade global model performance. Traditional defenses often fail

in high-adversary or heterogeneous data settings.

This chapter introduces Robust Federated Clustering Learning (RFCL), a

clustering-based approach that groups similar client updates to isolate malicious

contributions, applies adaptive federated averaging to weigh reliable inputs, and

utilizes personalized model sharing for heterogeneous data.

Section 5.2 outlines the methodology. It begins with a formal problem definition

and the adversarial threat model and then describes RFCL’s key components,

including clustering-based filtering, multi-centre aggregation, similarity analysis,

and meta-learning for aggregation.

Section 5.3 presents an experimental evaluation comparing RFCL with state-

of-the-art robust aggregation techniques under various adversarial conditions and

Non-IID data distributions.

Section 4.4 concludes the chapter by summarizing the key findings and empha-

sizing RFCL’s effectiveness in mitigating both model and data poisoning attacks

while preserving contributions from benign clients.
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3.1 Introduction

As highlighted in Chapter 2, federated learning presents security vulnerabilities due

to its decentralized nature, particularly against poisoning attacks.

This chapter builds on that background by introducing RFCL, a defense designed

to counter these vulnerabilities.

The threat posed by well-crafted poisoning attacks has been widely studied in

recent works. One of the most effective attacks is the Inner Product Manipulation

(IPM) attack, which alters gradient directions while maintaining the same norm

as benign updates, making it undetectable by norm-based anomaly detection

methods [69]. Similarly, the A Little is Enough (ALIE) attack perturbs gradients

within a controlled variance range, ensuring that adversarial updates remain

statistically similar to honest updates, thereby bypassing robust aggregation

rules [7]. Other attack strategies include the Sign Flipping (SF) attack [28], the

Random Noise (RN) attack [48], and the Label Flipping (LF) attack [62], each of

which exploits different vulnerabilities to compromise model integrity.

While techniques such as Krum, Median, and Trimmed Mean offer defense, they

fail under high adversarial participation [18]. ALIE and IPM are especially difficult

for these methods to detect. Furthermore, these defenses often underperform in

Non-IID settings. Recent defenses, including Bulyan, AFA [48], FedMGDA+ [54],

and Centered Clipping, attempt to address these challenges but face limitations such

as high computational cost, fixed thresholds, or poor adaptability to Non-IID data.

A detailed comparison with existing methods is shown in Table 3.1.

To overcome these issues, we propose Robust Federated Clustering Learn-

ing (RFCL), a novel clustering-based aggregation framework designed to enhance

FL security against both data and model poisoning attacks. RFCL applies

unsupervised clustering (e.g., HDBSCAN) to identify dense groups of similar

client updates, assuming malicious updates form outliers. By measuring cosine

similarity and filtering outliers before aggregation, RFCL ensures that only reliable

updates influence the global model, improving both security and robustness under

48



3.1. Introduction

6 4 2 0 2 4 6
Gradient Dimension 1

6

4

2

0

2

4

6

Gr
ad

ien
t D

im
en

sio
n 2

Benign Gradient
IPM Attack 
SF Attack 
RN Attack 
ALIE Attack

(a) Model Poisoning Attacks

0.75 0.50 0.25 0.00 0.25 0.50 0.75
Gradient Update Values

0

20

40

60

80

Fr
eq

ue
nc

y

ALIE Attack: Frequency Distribution of Gradient Updates
Benign Updates
ALIE Attack Updates

(b) ALIE Attacks

0 1 2 3 4 5 6

0
1

2
3

4
5

6

Original Model Weights

0 1 2 3 4 5 6

0
1

2
3

4
5

6

Noisy Model Weights

0.4

0.2

0.0

0.2

0.4

0.4

0.2

0.0

0.2

0.4

(c) RN Attack

Original: truck Original: airplane Original: truck Original: airplane Original: truck Original: airplane Original: truck Original: airplane Original: truck Original: airplane

Flipped: bird Flipped: bird Flipped: bird Flipped: bird Flipped: bird Flipped: bird Flipped: bird Flipped: bird Flipped: bird Flipped: bird

Label Flipping (LF) Attack: Image Label Comparison

(d) LF Attack

Figure 3.1: FL Under Adversarial Attacks of Model Poisoning and Data Poisoning.

(a) Visualization of adversarial gradient manipulations in FL. IPM perturbs gradient

directions while maintaining their norm, evading norm-based anomaly detection. SF

flips gradient signs, forcing divergence. RN injects stochastic noise, disrupting model

convergence. ALIE shifts the mean of gradients while maintaining expected variance.

(b) Histogram showing how ALIE blends with benign updates. (c) Heatmap showing

instability in RN attack. (d) LF flips true labels to poison the learning process.
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heterogeneous data conditions.

Table 3.1: Comparison with existing robust FL aggregation methods.

Method Resilience IPM ALIE Non-IID

Compatible

Krum [11] Fails >30% Attackers ✗ ✗ ✗

Median [74] Fails >40% Attackers ✗ ✓ ✗

Trimmed

Mean [74]

Fails >40% Attackers ✗ ✓ ✗

AFA [48] Fails >35% Attackers ✗ ✗ ✓

FedMGDA+ [54] Fails >50% Attackers ✓ ✗ ✓

RFCL (Pro-

posed)

Stable up to 50%

Attackers

✓ ✓ ✓

The remainder of this chapter describes the RFCL framework in detail, presents

empirical results, and discusses potential limitations.

3.2 Methodology

This section presents the Robust Federated Clustering Learning (RFCL) framework,

designed to enhance FL security against both data and model poisoning attacks.

RFCL integrates dimensionality reduction, clustering, similarity filtering, meta-

learning-based aggregation, and personalized model sharing.

3.2.1 Overview of the RFCL Framework

Figure 3.2 illustrates the overall RFCL framework. RFCL introduces a novel, multi-

layered defense strategy that fundamentally differs from existing robust aggregation
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methods. It integrates unsupervised clustering (HDBSCAN), adaptive trust-

weighted internal aggregation (ModiAFA), similarity-guided meta-aggregation, and

personalized model sharing. Unlike traditional defenses that rely on static thresholds

or simple distance-based outlier detection, RFCL performs progressive, structure-

aware filtering and aggregation. This modular design enables the framework to

accurately isolate and suppress malicious updates, including those that are stealthy

or statistically indistinguishable, thereby enhancing robustness in highly adversarial

and heterogeneous federated learning environments.

Filtering Layer: High-dimensional client model updates are first preprocessed

using Principal Component Analysis (PCA) to reduce dimensionality and noise. The

PCA-transformed updates are then clustered using HDBSCAN. This step groups

similar updates together while isolating outliers.

Eliminating Layer: Within each cluster, internal aggregation is performed

using the Modified Adaptive Federated Averaging (ModiAFA) method to compute

a representative cluster center. Cosine similarity analysis is subsequently applied to

compare the similarity between the computed cluster centers.

Aggregation Layer: The refined cluster centers are then combined using a

meta-learning-based aggregation strategy to produce a robust, concentrated global

model. Finally, this global model is personalized by selectively sharing it with clients

associated with trusted clusters, ensuring that the final model reflects the underlying

data distributions of reliable client groups.

3.2.2 RFCL Process

The RFCL process integrates filtering, eliminating, and aggregation into a unified

workflow. The key steps and high-level view of the RFCL process, as outlined

in Algorithm 1. At the beginning of each round, the server checks whether it is

the first round (r = 0). If so, the initial model M0 is shared with all clients;

for subsequent rounds, the server distributes the current cluster centers Mcc to

the respective client clusters. After local training, the server collects the updated
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Figure 3.2: Overview of the RFCL framework. The framework comprises the

Filtering Layer (PCA-based dimensionality reduction and HDBSCAN clustering),

the Eliminating Layer (internal aggregation using ModiAFA with cosine similarity-

based refinement and outlier suppression), and the Aggregation Layer (meta-

learning-based aggregation and personalized model sharing).

client models Mi and performs PCA followed by HDBSCAN clustering. An internal

aggregation is then conducted within each cluster (using ModiAFA) to generate

cluster centers. Next, cosine similarity analysis is applied to select the most similar

cluster centers Mbest, which are aggregated using a meta-learning-based strategy to

compute a concentrated model Mc. This concentrated model is used to update the

corresponding clusters, and Mc is set as the new global model Mg. Finally, the

server evaluates Mg on a test dataset Dtest and records the performance.

3.2.3 Clustering-Based Filtering

Clustering-based filtering is a crucial step in RFCL, enabling the detection and

elimination of adversarial updates prior to aggregation. This phase employs both

dimensionality reduction and unsupervised clustering.

Dimensionality Reduction via PCA. Deep learning models often contain
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Algorithm 1 RFCL Process

Require: M0, N , Dtest return E, Mg

1: for r = 0 to R− 1 do

2: if r = 0 then

3: Share M0 with all clients and perform local training.

4: else

5: Share Mcc with associated clients and perform local training.

6: end if

7: Collect all client models Mi.

8: Apply PCA and HDBSCAN on Mi to perform clustering.

9: Conduct internal aggregation within each cluster (using ModiAFA) to

generate cluster centers Mcc.

10: Select the most similar cluster centers Mbest based on cosine similarity.

11: Aggregate Mbest to compute the concentrated model Mc.

12: Update the cluster centers in Mcc for the selected clusters with Mc.

13: Set the global model Mg ←Mc.

14: Evaluate Mg on Dtest and record the error E[r].

15: end for

16: return E, Mg
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millions of parameters, leading to high-dimensional weight vectors that are chal-

lenging for clustering. To address this, RFCL applies Principal Component Analysis

(PCA), implemented with Singular Value Decomposition (SVD) [26, 10]. Given a

dataset of n client updates, each represented by a flattened weight vector wi ∈ Rd,

PCA finds the transformation

Z = XV1:k, (3.1)

where X ∈ Rn×d stacks the weight vectors, V1:k holds the top k principal compo-

nents, and Z ∈ Rn×k is the low-dimensional representation. The dimensionality k is

chosen so that the cumulative explained variance

ρk =

k∑
i=1

σ2
i

d∑
j=1

σ2
j

, (3.2)

satisfies ρk ≥ 0.95.

Unsupervised Clustering via HDBSCAN. Once the updates are projected

to Rk, RFCL employs Hierarchical Density-Based Spatial Clustering of Applications

with Noise (HDBSCAN) [12, 45] to discover clusters and flag outliers. Unlike

K-Means, HDBSCAN chooses the number of clusters automatically and supports

variable-density clusters—both critical for heterogeneous FL scenarios. In our

implementation we set:

• min cluster size = 9, preventing over-fragmentation;

• min samples to control outlier sensitivity;

• metric = euclidean.

After clustering, the algorithm counts the number of clusters, assigns each

model to its respective cluster, and computes the cluster centers using the Modified

AFA (ModiAFA) method, which adjusts each client’s contribution based on cosine

similarity. The algorithm 2 illustrate the clustering-based filtering process.
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Algorithm 2 Clustering Method

Require: models return Mcc

1: X ← extract weights(models) ▷ Extract weights from models

2: X ← PCA(X) ▷ Apply PCA for dimensionality reduction

3: cluster← HDBSCAN(X, ) ▷ Apply dynamic cluster

4: cluster labels← cluster.labels ▷ Retrieve cluster labels

5: cluster count← max(cluster labels) + 1 ▷ Count the number of clusters

6: indices← [[] for in range(cluster count)]

7: for i, l ∈ enumerate(cluster labels) do

8: if l ̸= −1 then

9: Append index i to indices[l]

10: end if

11: end for

12: for i, ins ∈ enumerate(indices) do

13: Mcc[i]← ModiAFA(ins,models) ▷ Compute the cluster center using

ModiAFA

14: end for

15: return Mcc
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3.2.4 Multi-Centres Internal Aggregation Method

RFCL leverages a multi-centres internal aggregation approach to address the

heterogeneity inherent in federated learning. Rather than computing a single global

model by averaging all client updates, RFCL first clusters the model updates into

several groups—each representing a subset of clients with similar data distributions.

For instance, while a typical federated learning system might produce one global

model (as shown on the left in Figure 3.3), RFCL can generate multiple cluster

centers (as depicted on the right in Figure 3.3), such as M
(1)
cc ,M

(2)
cc , and M

(3)
cc .

To compute these cluster centers, RFCL employs the Modified Adaptive

Federated Averaging (ModiAFA) method, which robustly aggregates client

updates within each cluster even when some updates are noisy or adversarial.

ModiAFA is built upon the foundational principles of the Adaptive Federated

Averaging (AFA) approach [48]; however, several key modifications have been

introduced. Unlike the AFA, which blocks clients with outlier updates, ModiAFA

down-weights the contributions of such updates instead of discarding them entirely.

The computation unfolds in two key phases:

Phase 1: Initial Aggregation and Cosine Similarity Computation.

Within each cluster, an initial weighted average is computed to form a temporary

cluster center. The weights for each client’s update are derived from trust scores,

which are computed using parameters α and β. Each client is initially assigned

α = 1 and β = 1. Then, over rounds: If a client’s update is consistent with benign

behavior, its α is incremented. If a client’s update is flagged as outlier or adversarial,

its β is incremented. The trust score is then computed using Eq. 3.3:

TrustScore =
α

β
, (3.3)

A higher trust score indicates a more reliable client. These trust scores are used as

weights in the aggregation, so the temporary cluster center is given by Eq. (3.4):

Ctemporary =

∑
i∈cluster TrustScorei ·∆wi∑

i∈cluster TrustScorei
, (3.4)
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Once this temporary center is obtained, the cosine similarity between each client

update and the temporary center is calculated. Cosine similarity, which ranges from

−1 to 1, quantifies the alignment between the update and the center; a higher value

indicates that the update is consistent with the cluster consensus.

Phase 2: Statistical Refinement and Threshold-Based Weight Adjust-

ment. In this phase, the similarity scores from Phase 1 are statistically analyzed.

For each cluster, key statistics—mean (µ̂s), median (µ̄s), and standard deviation

(σs)—of the cosine similarity scores are computed. These statistics capture the

central tendency and variability of the alignment within the cluster.

A dynamic threshold (Eq. 3.5) is then determined using a parameter ξ:

Threshold =


µ̄s − ξ σs, if µ̂s < µ̄s,

µ̄s + ξ σs, otherwise.

(3.5)

Here, ξ is a parameter that can be adjusted to regulate the sensitivity of the outlier

detection process.

Any client update whose cosine similarity si deviates significantly from the

central tendency (i.e., falls below this threshold) is considered an outlier. Rather

than completely blocking such updates, ModiAFA down-weights their contribu-

tions—often setting their weight to zero—so that the internal aggregation relies

predominantly on updates that align with the cluster consensus.

After this refinement, the remaining trusted updates are re-normalized and

aggregated to produce the robust cluster center Mcc. At the end of the process,

the trust parameters α and β are updated based on the outcome, ensuring that

future rounds reflect the reliability of each client’s updates.

3.2.5 Similarity Analysis Method

To further refine the clustered updates, RFCL employs a similarity analysis method

to select the most representative cluster centers from the set Mcc. The goal is to

identify clusters that are highly similar to each other under the assumption that
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Figure 3.3: Comparison of typical FL single-centre aggregation (left) versus RFCL’s

multi-centre aggregation (right). RFCL clusters similar updates before aggregation,

thereby enhancing robustness against adversarial manipulation.

such clusters are more likely to contain benign and consistent updates. This process

is parameterized by K, which determines the number of center clusters to select,

and uses cosine similarity as the measure of alignment between cluster centers.

A weight matrix X is generated from the cluster centers Mcc by flattening each

model’s parameters into a vector. Then, using cosine similarity, the similarity

between every pair of these vectors is computed. The results are stored in a

similarity matrix sims. A high cosine similarity value (close to 1) indicates that

the corresponding cluster centers are well-aligned. For example, if we have five

cluster centers, the algorithm computes the cosine similarity among all five pairs to

form a 5× 5 matrix.

For each cluster center, the algorithm identifies the indices corresponding to the

top K largest similarity scores. The similarity scores at these indices are summed to

produce a total similarity value for that cluster. The cluster (or clusters) with the

highest total similarity is then chosen. These indices are stored as indices best,

and the corresponding cluster centers form the set Mbest.

Once the best clusters have been selected, their similarity scores are normalized

to produce selection probabilities ps. This is done by dividing each similarity score
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by the total similarity of the selected clusters. Furthermore, these probabilities

are adjusted based on the size of each cluster (i.e., the number of client updates

in that cluster) so that larger clusters have a proportionally greater influence in

the final aggregation. The method then returns the selected cluster centers Mbest,

their normalized probabilities ps, and the corresponding indices indices best. The

explanation of this similarity analysis procedure is provided in Algorithm 3.

3.2.6 Meta-Learning for External Aggregation Method

After identifying the most representative cluster centers from the set Mcc through

similarity analysis, RFCL employs a meta-learning-based external aggregation

method to compute a concentrated global model. This method combines the selected

cluster centers, each weighted according to its reliability, to form the global model.

First, the similarity analysis returns the set of best cluster centers Mbest together

with raw probabilities ps and their indices. These probabilities reflect both the

similarity among cluster centers and the size of each cluster; consequently, larger

clusters receive higher weights. Before aggregation, the probabilities are normalized

so that they sum to one, ensuring that every selected cluster center’s contribution

is properly scaled.

The concentrated global model is then obtained as a reliability-weighted mean

of the selected cluster centers:

Mc =
∑

i∈indicesbest

conc ps[i]Mbest[i], (3.6)

where each weight conc ps[i] satisfies
∑

i conc ps[i] = 1.

Equation 3.6 mirrors the standard FedAvg [46] strategy, which forms a global

model by averaging client updates in proportion to their local data volumes.

RFCL adopts the same rationale but substitutes those data-size weights with

reliability-aware probabilities conc ps[i]; cluster centers that are both larger and

more trustworthy therefore exert greater influence on the aggregated model.
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Algorithm 3 Similarity Analysis

Require: Mcc, K return Mbest, ps, indicesbest

1: X ← generate weights(Mcc) ▷ Flatten each cluster center into a vector

2: Initialize an empty list sims = []

3: for each m1 in X do

4: Initialize an empty list sim = []

5: for each m2 in X do

6: Compute sim← cosine similarity(m1,m2)

7: Append sim to sim

8: end for

9: Append sim to sims

10: end for

11: Initialize best indices = [] and best val = 0

12: for each set of similarity scores s in sims with index i do

13: Determine indices: indices of the K largest values in s

14: Compute val←
∑

j∈indices s[j]

15: if val > best val then

16: best val← val

17: indicesbest ← indices

18: end if

19: end for

20: Normalize the similarity scores for the selected indices:

psi =
si∑

j∈indicesbest sj
for each i ∈ indicesbest

21: Mbest ← [Mcc[i] for each i ∈ indicesbest]

22: Adjust the probabilities based on the size of each cluster:

psi =
psi · len(cluster centrei)∑

j∈indicesbest psj · len(cluster centrej)

23: return Mbest, ps, indicesbest
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3.2.7 Personalized Model Sharing

RFCL further refines the aggregation process by employing personalized model

sharing. Instead of distributing the aggregated model Mc uniformly to all clients,

the server selectively shares Mc only with those clients that are associated with the

most trustworthy clusters (i.e., the selected cluster centers Mbest). This selective

distribution ensures that each client receives a model that is better tailored to its

specific data distribution. In contrast, clients that belong to unselected clusters

retain their local cluster centers Mcc, thereby preserving their unique characteristics

and limiting the influence of potentially unreliable updates.

Algorithm 4 Personalization (Cluster-based Model Sharing)

1: for i = 0 to len(Mcc)− 1 do

2: if i ∈ indicesbest then

3: Mcc[i]←Mc

4: end if

5: end for

In summary, RFCL integrates several techniques—filtering via PCA and HDB-

SCAN, outlier elimination and similarity analysis with ModiAFA, meta-learning-

based external aggregation, and personalized model sharing—into a comprehensive

framework. This approach may ensures that only trustworthy client updates

contribute to the final global model, significantly enhancing the security and

reliability of federated learning in heterogeneous, adversarial environments. Notably,

the aggregated model Mc is shared exclusively with clients in the selected best

clusters, while those in other clusters maintain their original cluster centers.

3.3 Experiments

In this section, we evaluate the performance of the proposed RFCL method

on image classification tasks using three public datasets. The effectiveness of
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RFCL is compared against six baseline robust aggregation methods. The RFCL

implementation is available on GitHub1.

3.3.1 Datasets and Models

We evaluate our defence on three standard image-classification benchmarks: MNIST [33],

Fashion-MNIST [67], and CIFAR-10 [32]. Together they span a broad range of

visual complexity:

• MNIST (28×28, grayscale digits): a lightweight, low-noise dataset that serves

as a sanity check; results here establish a lower bound on robustness.

• Fashion-MNIST (same resolution, clothing images): introduces richer tex-

tures and intra-class variation while retaining MNIST’s modest computational

footprint.

• CIFAR-10 (32×32, RGB): real-world objects with colour channels and

background clutter, providing a more demanding and practically relevant

setting.

We use small, fully connected networks for all three datasets (Table 3.2) rather

than heavyweight CNNs so that (i) training remains feasible on all 30 clients

without GPU acceleration and (ii) any performance difference can be attributed

to the aggregation rule, not to model capacity or architectural tweaks. Keeping the

architecture identical across baselines eliminates confounding variables and makes

robustness comparisons fair and transparent.

3.3.2 Non-IID Degree

Non-IID data distributions play a crucial role in our evaluation as they mimic the

realistic variations found across clients in FL environments. In our experiments, we

1https://github.com/EbtisaamCS/RFCL
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MNIST and Fashion-MNIST Model Architecture

DNN (784 × 512 × 256 × 10) with 2 hidden layers

Activation functions: Leaky ReLU

Batch size: 64, Loss: Cross-Entropy

Optimizer: SGD (learning rate = 0.1), Dropout: p = 0.5

CIFAR-10 Model Architecture

DNN (3072 × 256 × 128 × 10) with 2 hidden layers

Activation functions: Leaky ReLU

Batch size: 128, Loss: Cross-Entropy

Optimizer: SGD (learning rate = 0.5)

Table 3.2: Models and training parameters for the experiments.

simulate Non-IID conditions using a Dirichlet distribution to partition the training

data among 30 clients. A higher Dirichlet parameter value, such as α = 0.9, results in

a scenario where class distributions and data quantities are relatively similar across

clients, producing a slightly Non-IID split characterized by low variance. In contrast,

a lower parameter value, such as α = 0.1, generates a highly Non-IID environment

where the variance among client data distributions is significantly increased. This

simulation allows us to rigorously examine the performance of aggregation methods

when confronted with the challenges posed by heterogeneous data distributions.

3.3.3 Number of Attackers

The impact of adversarial interference is critical to understanding the robustness of

federated learning systems. All experiments assume 30 clients per communication

round. We vary the number of adversarial participants across six scenarios (3, 6, 9,

12, 15, and 18 attackers per round), corresponding to attacker ratios of 10%, 20%,

30%, 40%, 50%, and 60% of the total client set, respectively. This systematic sweep

pinpoints where conventional aggregation begins to degrade and shows how RFCL
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preserves stability even as the attacker ratio increases.

3.3.4 Threat Model

We consider a practical federated learning setup where some clients may behave

maliciously by launching model or data poisoning attacks. The server is honest

but untrusted; it does not know which clients are adversarial and relies entirely

on the defense mechanism to identify and mitigate threats. Attackers operate

independently and have no knowledge of other clients’ updates, but they can craft

updates that closely resemble benign behavior to avoid detection.

To test RFCL under diverse adversarial conditions, we include five representative

attack types:

• IPM [69] and ALIE [7] are stealthy model poisoning attacks that mimic

the statistical patterns of benign gradients to evade norm- or distance-based

defenses.

• SF [28] and RN [48] are aggressive attacks that introduce large gradient

deviations to disrupt training.

• LF [62] is a data poisoning attack that corrupts labels during local training,

degrading the global model without modifying the update mechanics.

These threat models were chosen to reflect both subtle and disruptive attack

strategies, ensuring RFCL is evaluated under realistic and challenging scenarios.

3.3.5 Comparison Methods

A thorough evaluation requires a comprehensive comparison with existing robust

aggregation techniques. In our experimental study, RFCL is benchmarked against

several prominent methods to assess its effectiveness in mitigating adversarial attacks

in federated learning. The comparison includes MKrum [11], Median [74], Adaptive

Federated Averaging (AFA) [48], FedMGDA+ [25], and Centered Clipping (CC) [28].
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Additionally, we include the standard Federated Averaging (FedAvg) [46] as a

baseline to illustrate the performance improvements achieved by robust aggregation

techniques. This multi-faceted comparison highlights the relative strengths and

weaknesses of each method, providing a clear context for the advances introduced

by RFCL in terms of robustness, efficiency, and overall model utility in diverse and

adversarial federated learning environments.

3.3.6 Experiment Results

We evaluate the performance of RFCL and the baseline methods on each dataset

under various attack scenarios and degrees of Non-IID data. All experiments are

repeated over five independent runs, and the average results are reported. In all

plots, error bars represent a confidence interval of ρ = 0.01.

Figure 3.4 shows the performance of different methods on the MNIST dataset

under a Non-IID setting with α = 0.5. Under IPM, ALIE, SF, RN, and LF

attacks, RFCL consistently achieves a lower error rate compared to the other

methods. For example, when the number of IPM attackers is 3 or 6, RFCL, Median,

AFA, FedMGDA+, and CC maintain low error rates, while FedAvg and MKrum

experience a significant accuracy drop. As the number of attackers increases, RFCL

remains robust.

Figure 3.5 illustrates the impact of increasing the perturbation magnitude ϵ in

IPM attacks. As ϵ increases from 0.5 to 100.0, the perturbations applied to the

gradients become more severe. This results in more drastic changes in the model

parameters, negatively affecting the performance of most aggregation methods.

RFCL, however, exhibits robust performance even under higher perturbation

magnitudes.

Figure 3.6 shows the performance of the aggregation methods on the CIFAR-10

dataset under a Non-IID setting with α = 0.5. RFCL achieves the lowest error rate

under various attack types, including IPM, ALIE, SF, RN, and LF, particularly

when the number of attackers increases.
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Figure 3.4: Performance comparison of FedAvg, Median, MKrum, AFA,

FedMGDA+, CC, and RFCL on the MNIST dataset under a Non-IID (α = 0.5)

scenario. Each method is evaluated with 3, 6, 9, 12, 15, and 18 malicious clients

per round, corresponding to attacker ratios from 10% to 60% of the 30 total clients,

across five attack types (IPM, ALIE, SF, RN, and LF).
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(a) IPM Attackers (b) 12 IPM Attackers (c) 18 IPM Attackers

Figure 3.5: Comparison of each round’s performance of Median, CC, and RFCL

on MNIST under a Non-IID (α = 0.5) scenario with varying numbers of IPM (ϵ =

100.0) attackers.

Figure 3.7 provides a round-by-round performance comparison of the methods

on CIFAR-10 under scenarios with 6, 12, and 18 ALIE and LF attackers. RFCL

maintains the lowest error rate, indicating that its clustering and personalized model-

sharing mechanisms help reduce the impact of adversarial attacks even as their

number increases.

Figures 3.8 and 3.9 demonstrate the performance of the methods on the Fashion-

MNIST dataset under slightly Non-IID (α = 0.5) and extremely Non-IID (α = 0.1)

scenarios, respectively. In both cases, RFCL achieves the lowest test error rate

compared to the baseline robust aggregation methods, indicating its effectiveness in

handling heterogeneous data distributions and varying numbers of attackers.

3.3.7 Different Clustering Methods

In addition to our primary configuration using HDBSCAN, we further evaluated

the robustness of RFCL by exploring alternative clustering methods, such as

Agglomerative clustering and K-Means. Figure 3.10 illustrates a comparative

analysis of these methods under IPM and ALIE attacks on the CIFAR-10 dataset.

K-Means clustering, while widely used, requires predefining the number of

clusters. In our experiments, we set the number of K-Means clusters to be five

67



Chapter 3. Defending Against Data and Model Poisoning Attacks

3 6 9 12 15 18
Number of IPM Attackers

0.6

0.7

0.8

0.9

Er
ro

r 
Ra

te
 (

%
)

(a) IPM (ϵ = 0.5) Attack

3 6 9 12 15 18
Number of ALIE Attackers

0.6

0.7

0.8

0.9

E
rr

o
r 

R
a
te

 (
%

) FedAvg
Median
MKrum
AFA
FedMGDA+
CC
RFCL

(b) ALIE Attack

3 6 9 12 15 18
Number of SF Attackers

0.6

0.7

0.8

0.9

E
rr

o
r 

R
a
te

 (
%

)

(c) SF Attack

3 6 9 12 15 18
Number of Random Noise Attackers

0.7

0.8

0.9

E
rr

o
r 

R
a
te

 (
%

)

(d) RN Attack

3 6 9 12 15 18
Number of Label Flipping Attackers

0.7

0.8

0.9

E
rr

o
r 

R
a
te

 (
%

)

(e) LF Attack

Figure 3.6: Performance comparison of FedAvg, Median, MKrum, AFA,

FedMGDA+, CC, and RFCL on the CIFAR-10 dataset under a Non-IID (α = 0.5)

scenario, evaluated against various numbers of IPM, ALIE, SF, RN, and LF

attackers.
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(a) 6 ALIE Attackers (b) 12 ALIE Attackers (c) 18 ALIE Attackers

(d) 6 LF Attackers (e) 12 LF Attackers (f) 18 LF Attackers

Figure 3.7: Comparison of round-by-round performance for FedAvg, Median,

MKrum, AFA, FedMGDA+, CC, and RFCL on CIFAR-10 under a Non-IID

(α = 0.5) scenario with different numbers of ALIE and LF attackers.
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Figure 3.8: Performance comparison of FedAvg, Median, MKrum, AFA,

FedMGDA+, CC, and RFCL on Fashion-MNIST under a Non-IID (α = 0.5)

scenario.
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Figure 3.9: Performance comparison of methods on Fashion-MNIST under an

extremely Non-IID (α = 0.1) scenario.
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more than the number of attackers (i.e., C = M + 5) to ensure comprehensive data

analysis. However, this constraint may limit its flexibility compared to density-based

methods.

Agglomerative clustering operates by treating each data point as an individual

cluster and gradually merging them based on similarity [12]. Although this

hierarchical method provides useful visual insights into the data structure, its

computational complexity can make it less suitable for larger datasets.

HDBSCAN, a density-based method, is particularly well-suited for our appli-

cation because it does not require pre-specifying the number of clusters and can

automatically detect clusters of varying densities. Parameter tuning for HDBSCAN,

such as setting min cluster size and min samples, relies on domain knowledge and

empirical observations. For example, for scenarios with fewer than 12 attackers, we

found that setting min cluster size between 24 and 18 and min samples between

6 and 12 works well. In cases with a higher proportion of attackers (e.g., 15 or 18),

adjusting min cluster size to between 12 and 9 and min samples to between 18

and 21 yields better results. Based on our experiments, HDBSCAN provided the

most reliable clustering performance.

3.3.8 Ablation Study

To evaluate the contribution of each component of RFCL, we conducted ablation

studies focusing on the impact of the PCA step. Figure 3.11 compares the

performance of RFCL with and without PCA under Random Noise (RN) and Label

Flipping (LF) attacks. The results indicate that while RFCL maintains a degree

of robustness even without PCA, the inclusion of PCA slightly improves overall

performance by reducing noise and enhancing clustering quality. This suggests that,

although not critical, PCA contributes positively to the resilience and effectiveness

of the RFCL method.
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(a) 18 IPM Attackers (b) 18 ALIE Attackers

Figure 3.10: CIFAR-10 error rates under 18 IPM (left) and 18 ALIE

(right) attackers. The proposed method—RFCL with HDBSCAN (orange

curve)—consistently achieves the lowest error, outperforming K-Means and

Agglomerative.

(a) RN Attack (b) LF Attack

Figure 3.11: Ablation study comparing RFCL performance with and without the

PCA step under RN and LF attacks.
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3.3.9 Discussion and Limitations

In this work, we proposed RFCL, a robust federated learning framework that

leverages clustering-based filtering, similarity analysis, and meta-learning-based

aggregation with personalized model sharing. Our experiments on MNIST, CIFAR-

10, and Fashion-MNIST demonstrate that RFCL consistently outperforms several

baseline robust aggregation methods under various adversarial attack scenarios and

Non-IID data distributions.

While RFCL shows significant improvements, there are several limitations that

warrant further investigation. First, the clustering phase—which uses PCA for

dimensionality reduction followed by HDBSCAN—can be computationally intensive,

especially as the number of clients increases. The performance of RFCL is sensitive

to the parameter settings of HDBSCAN (e.g., min cluster size and min samples),

which require careful tuning based on the specific data distribution and expected

attack scenarios. Additionally, although the personalized model sharing mechanism

ensures that clients receive models aligned with their local data distributions, it also

introduces additional complexity in maintaining consistency across different clusters.

In extremely heterogeneous environments or when the proportion of adversarial

clients becomes very high, the effectiveness of the current trust score updating and

similarity-based selection may be further challenged.

Future work should consider exploring adaptive parameter tuning and more com-

putationally efficient clustering algorithms, as well as investigating the scalability of

RFCL in larger and more diverse federated settings.

3.4 Conclusion

In this chapter, we introduced RFCL, a novel robust federated learning frame-

work designed to mitigate data and model poisoning attacks in heterogeneous

environments. RFCL combines multiple techniques: it uses PCA and HDBSCAN

for filtering client updates, employs the Modified Adaptive Federated Averaging
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(ModiAFA) method—with cosine similarity and statistical refinement—to compute

robust cluster centers, and integrates a meta-learning-based external aggregation

strategy along with personalized model sharing to form a concentrated global model.

Experimental results on MNIST, CIFAR-10, and Fashion-MNIST datasets

indicate that RFCL achieves lower error rates and improved robustness compared

to state-of-the-art aggregation methods, even in the presence of various adversarial

attacks and under Non-IID data distributions. While the proposed framework

demonstrates significant improvements, challenges such as computational complex-

ity, parameter sensitivity, and scalability in extreme heterogeneous settings remain.

Future work will focus on adaptive parameter tuning, optimizing the clustering

process, and exploring more advanced personalization strategies to further enhance

RFCL’s performance.

Overall, RFCL represents a promising step towards more secure and reliable

federated learning systems, providing a comprehensive solution that integrates

robust aggregation with tailored model sharing.
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Chapter 4

Counteracting Backdoor Attacks

This chapter introduces Robust Knowledge Distillation (RKD), a three-stage

defence consisting of automated clustering, median-based selection and knowledge

distillation to filter out poisoned client updates and neutralize backdoor attacks in

federated learning.

Section 5.2 formalizes the backdoor problem and threat model, then details each

RKD stage: HDBSCAN clustering to spot outliers, coordinate-wise median selection

to resist extremes and distillation into a clean global model.

Section 5.3 benchmarks RKD against A3FL, F3BA, DBA, ADBA and TSBA

under varying data heterogeneity; analyses the impact of HDBSCAN’s cluster-size;

measures runtime scalability; and conducts an ablation study on each RKD module.

Section 4.4 summarizes that RKD effectively suppresses backdoors without degrad-

ing main-task accuracy and outlines future research directions.

4.1 Introduction

The previous chapter tackled model-poisoning threats in federated learning. Here,

we turn to the more subtle problem of backdoor attacks, in which adversarial clients

embed hidden trigger patterns so that the global model behaves normally on clean

data yet misclassifies inputs containing the trigger.
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Recent work shows that even a minority of colluding clients can insert highly

effective backdoors. Distributed Backdoor Attack (DBA) [68] splits a trigger across

several participants; Adversarially Adaptive Backdoor Attacks (A3FL) [76] adapts

its trigger with projected-gradient steps; and Focused-Flip Federated Backdoor

Attacks (F3BA) [18] flips a targeted subset of weights. Detecting such distributed,

low-magnitude changes is extremely challenging.

Figure 4.1 illustrates the characteristic effects of these backdoor attacks on data

and model activations, highlighting the subtle yet distinctive patterns produced by

DBA, A3FL, and F3BA. These visualizations underscore the complexity of detecting

covert triggers in a heterogeneous FL environment.

Original DBA (+) Malicious 1 DBA (+) Malicious 2 A3FL Adaptive Original Activation F3BA Modified Activation

Original DBA (+) Malicious 1 DBA (+) Malicious 2 A3FL Adaptive Original Activation F3BA Modified Activation

Original DBA (+) Malicious 1 DBA (+) Malicious 2 A3FL Adaptive Original Activation F3BA Modified Activation

Figure 4.1: Visualizations of backdoor attack effects. From left to right: (1) Original

input image (clean, no attack), (2–3) Images with DBA malicious triggers, (4) Image

with A3FL adaptive trigger, (5) Activation map for clean input (benign behavior),

and (6) Activation map under F3BA (malicious manipulation).

Traditional robust aggregators (Krum, Median, Trimmed Mean) assume IID

data or a small adversary fraction and miss stealth triggers. More recent

methods—e.g. RLR [52], FoolsGold [20], FLAME [50]—either penalize benign
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clients in heterogeneous settings or require heavy hyper-parameter tuning in

high-dimensional spaces. Table 4.1 offers a comparative overview of existing

backdoor defense approaches along with the proposed RKD method in FL.

Table 4.1: Comparison with existing backdoor defense approaches in FL.

Method Key Assumptions Backdoor Robustness Works on

Non-IID

FLTrust [52] Trusted data available;

low adversary fraction

Moderate; vulnerable to

adaptive attacks

Limited

Foolsgold [20] Assumes adversaries pro-

duce nearly identical gra-

dients

Moderate; may penalize

benign clients in hetero-

geneous settings

Poor

FedRAD [60] Majority of clients are

honest

Moderate (stable up to

40% attackers)

Moderate

FedDF [37] Primarily addresses data

heterogeneity

Limited backdoor

defense capability

High

FedBE [15] Focuses on mitigating het-

erogeneity effects

Limited backdoor

defense capability

High

RLR [52] Assumes significant devia-

tion in malicious updates

Limited; struggles with

adaptive attacks

Poor

RKD No strict IID or low

adversary fraction

High (stable up to

50% attackers)

Robust

To address these challenges, we propose Robust Knowledge Distillation

(RKD), a novel defense mechanism that specifically targets backdoor attacks in

FL without relying on strict IID or low adversary assumptions. RKD integrates

clustering and median model selection techniques to filter out malicious updates.
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By computing cosine similarity scores between client updates and the global model,

RKD transforms the high-dimensional parameter space into a one-dimensional

representation that captures directional alignment. This simplified representation

enables efficient anomaly detection using HDBSCAN. A robust median model

selection process subsequently identifies a representative ensemble of benign models,

and knowledge is distilled from this ensemble to securely update the global model.

In doing so, RKD effectively mitigates backdoor attacks even in scenarios with up

to 50% adversarial participation, while also works on Non-IID data distributions.

The remainder of this chapter presents the RKD methodology, analyzes its

empirical evaluation results, and discusses its limitations.

4.2 Methodology

In this section, we introduce the Robust Knowledge Distillation (RKD) framework,

designed to secure federated learning against backdoor attacks by identifying

and mitigating malicious model updates. RKD consists of three core com-

ponents—Automated Clustering, Model Selection, and a Knowledge Distillation

Module—that work in concert to detect and eliminate backdoor attacks while

preserving the performance and integrity of the global model.

4.2.1 Overview of the RKD Framework

The proposed RKD framework employs a multi-tiered strategy to enhance the

robustness of federated learning systems. Initially, the central server initializes the

global model M 0
global and broadcasts it to all participating clients. Each client i then

trains its local model M r
i on its private dataset Di, starting from the current global

model M r
global, and returns its updated model weights wr

i to the server.

At the server, the first step is to identify potential malicious updates. To

do so, the server computes the cosine similarity between each client’s update wr
i

and the current global model M r
global. This metric captures the angular alignment
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between local updates and the global model, enabling the detection of updates that

significantly deviate in direction—a phenomenon we refer to as Angular Deviation.

Using these similarity scores, the server applies the HDBSCAN algorithm to cluster

the client updates. This clustering process distinguishes benign updates, which tend

to form dense clusters due to their similarity, from malicious updates, which appear

as outliers due to their dissimilarity. Importantly, by using scalar similarity scores

rather than full high-dimensional parameter vectors, the clustering process remains

scalable and efficient.

Within the benign cluster, the server computes the median of the model weights

by taking the median value of each parameter across the models. This procedure

mitigates the impact of extreme values, addressing the issue of Magnitude Deviation

introduced by malicious updates. Subsequently, the server selects the models closest

to this median to form a representative ensemble, filtering out residual outliers.

The selected ensemble is aggregated to form an initial distilled model. To

further refine this model and improve its resilience against subtle backdoor

triggers—especially under Non-IID settings—the framework applies a Knowledge

Distillation (KD) process. During this process, the ensemble of benign models guides

the refinement of the distilled modelM r+1
global, ensuring that the updated global model

reflects the collective benign behavior.

This step mitigates the risk of Subtle Deviations, where attackers mimic benign

updates in both magnitude and direction.

Finally, the refined global model M r+1
global is broadcast to benign clients. For

clients identified as malicious, RKD supports two strategies:

• Exclusion Strategy: Withholds the updated global model, forcing malicious

clients to continue training on their previous model.

• Perturbation Strategy: Supplies a perturbed version of the global model:

M r+1
pert = M r+1

global + η, (4.1)

where η is a noise vector with small magnitude (e.g., ∥η∥ ≈ 1 × 10−4). This
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approach, referenced in Equation 4.1, limits the adversary’s ability to infer its

classification status.

If a previously flagged client is later reclassified as benign, it resumes receiving

the standard global model M r+1
global. The RKD process is summarized in Algorithm 5.

4.2.2 Automated Clustering

This component identifies and excludes potentially malicious models to safeguard

the integrity of the federated learning process. We leverage cosine similarity and

the HDBSCAN clustering algorithm to differentiate benign from malicious model

updates. Let wr
i be the local model parameters from client i at iteration r, and let

wr
global represent the current global model. The server computes the cosine similarity

between each client’s local model and the current global model as:

si =
(wr

i )
⊤wr

global

∥wr
i ∥ ∥wr

global∥
, i = 1, . . . , N, (4.2)

where higher similarity scores si imply stronger alignment with the global model

(i.e., likely benign), whereas malicious updates tend to deviate more. Equation 4.2

is used to inform the clustering mechanism for anomaly detection.

The resulting similarity scores {si} are then clustered using HDBSCAN. Operat-

ing on these scalar values, rather than the full high-dimensional parameter vectors,

significantly reduces computational overhead while retaining enough information

to distinguish between benign and adversarial updates. A key requirement in

HDBSCAN is the minimum cluster size Q, which we set adaptively at each training

round r:

Q = max (2, ⌈0.2N − r⌉) , (4.3)

where N is the number of participating clients, and ⌈·⌉ denotes the ceiling

function. This formulation is a heuristic designed to reflect two main observations:

First, in early rounds (r ≈ 0), local models can exhibit substantial variance before
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Chapter 4. Counteracting Backdoor Attacks

Algorithm 5 RKD Framework Methodology

Require: Clients A, number of iterations R, malicious client strategy S ∈

{Exclusion, Perturbation} return Final global model MR
global

1: Initialize global model M0
global

2: for r = 0 to R− 1 do

3: if r = 0 then

4: Send M0
global to all clients in A

5: else

6: Send M r
global to benign clients Ar−1

benign

7: if S = Exclusion then

8: for each malicious client i ∈ A \ Ar−1
benign do

9: Send the current local model M r
i to client i

10: end for

11: else[Otherwise, using Perturbation]

12: Compute perturbed model M r
pert = M r

global + η

13: Send M r
pert to malicious clients A \ Ar−1

benign

14: end if

15: end if

16: Collect models {M r} = {M r
i | i ∈ A}

17: Identify {M r
benign} and Ar

benign via clustering ▷ See Algorithm 6

18: Select ensemble models Er from {M r
benign}

19: Compute aggregated model M r
distill from Er

20: Update M r+1
global = KD(M r

distill, Er) ▷ See Algorithm 7

21: end for

22: return Final global model MR
global
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converging, so a larger Q ≈ 0.2N helps avoid prematurely breaking up the main

benign cluster. Second, as training progresses, benign client models converge toward

wr
global, and their updates become more homogeneous. Gradually decreasing Q by

about 1 per round makes HDBSCAN more sensitive to small outlier clusters, thus

better isolating subtle malicious deviations.

After assigning cluster labels {Li} via HDBSCAN, each identified cluster Ck has

a mean cosine similarity defined as:

µk =
1

|Ck|
∑
i∈Ck

si. (4.4)

Letting µmax = max({µk}), we designate the cluster(s) that satisfy µk = µmax as

benign, while all others are considered malicious:

Cluster Ck =

benign, if µk = µmax,

malicious, otherwise.

(4.5)

Models in the benign cluster continue to participate in subsequent training

rounds with the updated global model, whereas malicious updates are handled

differently based on the chosen strategy. Under the Exclusion Strategy, malicious

clients are excluded from receiving the refined global model altogether, minimizing

their ability to adapt. Alternatively, under the Perturbation Strategy, they

receive a perturbed version of the global model that limits their capacity to refine an

ongoing attack while also masking the fact that they have been flagged as malicious.

Algorithm 6 summarizes the automated clustering procedure.

4.2.3 Model Selection

This component refines the set of benign models by selecting the most representative

among them for aggregation, thereby mitigating the influence of outliers and

enhancing the robustness of the global model.
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Algorithm 6 Automated Clustering Algorithm

Require: {wr
i }Ni=1: Client models at iteration r

Ensure: {wr
i }i∈Ar

benign
, Ar

benign: Benign models and client indices

1: for each client i = 1 to N do

2: Compute cosine similarity

si =
(wr

i )
⊤ wr

global

∥wr
i ∥ ∥wr

global∥

3: end for

4: Apply HDBSCAN to the similarity scores {si}

5: for each cluster Ck do

6: Compute mean similarity

µk =
1

∥Ck∥
∑
i∈Ck

si

7: end for

8: Identify benign cluster:

µmax = max ({µk})

9: Identify benign clients:

Ar
benign = {i | Li = k ∧ µk = µmax}

10: Collect benign models:

{wr
i }i∈Ar

benign

11: return {wr
i }i∈Ar

benign
, Ar

benign
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The set of benign models selected after clustering is defined as:

{wr
i }i∈Ar

benign
, (4.6)

where Ar
benign denotes the indices of benign clients at round r.

From the benign model set in Equation 4.6, we compute a median model vector

by taking the element-wise median:

wr
median = median

(
{wr

i | i ∈ Ar
benign}

)
, (4.7)

which minimizes the sum of absolute deviations across model dimensions.

Then, we compute the L1 distance between each benign model and the median

model:

di = ∥wr
i −wr

median∥1, ∀i ∈ Ar
benign. (4.8)

We define an adaptive threshold based on the empirical distribution of distances:

ϵ = µd + kσd, (4.9)

where µd and σd denote the mean and standard deviation of the distances {di}, and

k is a tunable hyperparameter.

The final ensemble Er is then formed by selecting only those models whose

distances to the median do not exceed the threshold:

Er =
{
wr

i ∈ {wr
i }i∈Ar

benign
| di ≤ ϵ

}
. (4.10)

4.2.4 Knowledge Distillation Process

This process refines the global model by distilling knowledge from the selected

ensemble of benign models Er. The server uses an unlabeled validation dataset

Dval (constituting 16% of the total training data) for knowledge distillation.

For each sample x ∈ Dval, the server computes the logits from each model in Er

and averages them to produce ensemble logits:

Ensemble Logits(x) =
1

|Er|
∑
wi∈Er

fwi
(x), (4.11)
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where fwi
(x) denotes the raw output scores (logits) of model wi.

Pseudo-labels are derived by applying the softmax function with a temperature

parameter T :

ỹ(x) = softmax

(
Ensemble Logits(x)

T

)
. (4.12)

This softening technique yields a smoother distribution over classes, making the

target more informative.

The distilled model Mdistill is trained to minimize the Kullback-Leibler (KL)

divergence between its own soft predictions and the ensemble-derived pseudo-labels:

LKD = DKL

(
ỹ(x)

∥∥∥∥ softmax

(
fMdistill

(x)

T

))
. (4.13)

To improve training stability and generalization, we employ a Stochastic Weight

Averaging (SWA) scheme that maintains a running average of the model weights.

After EKD epochs of distillation, the SWA model is adopted as the updated global

model:

M r+1
global ←MSWA. (4.14)

Algorithm 7 outlines the complete knowledge distillation process.

4.3 Experiments

In this section, we evaluate the effectiveness of the proposed RKD framework

under backdoor attack scenarios in a federated learning environment. In our setup,

multiple clients collaboratively train a global model under the coordination of a

central server. This iterative training process continues until the model converges.

The implementation of the RKD framework is available on GitHub1.

4.3.1 Datasets and Models

We conduct experiments on three well-known datasets—CIFAR-10, EMNIST, and

Fashion-MNIST—each offering distinct image types and complexity levels:

1https://github.com/EbtisaamCS/RKD
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Algorithm 7 Knowledge Distillation Process

Require: Er: Ensemble of selected benign models, Dval: Unlabeled data for

distillation, T : Temperature for softmax, EKD: Number of epochs, η: Learning

rate

Ensure: Updated global model M r+1
global

1: Ensemble Logits(x) = 1
∥Er∥

∑
Mi∈Er fMi

(x) ▷ Compute ensemble logits for all

x ∈ Dval

2: Generate pseudo-labels:

ỹ(x) = softmax
(Ensemble Logits(x)

T

)
3: Initialize MSWA ←Mdistill and nSWA ← 1

4: for epoch e = 1 to EKD do

5: for each mini-batch {xb} ⊂ Dval do

6: Distill Logits(xb) = fMdistill
(xb)

7: L = DKL

(
ỹ(xb)

∥∥ softmax
(Distill Logits(xb)

T

))
8: Update Mdistill using SGD with learning rate η

9: end for

10: MSWA ←
nSWA ·MSWA +Mdistill

nSWA + 1
11: nSWA ← nSWA + 1

12: end for

13: M r+1
global ←MSWA

14: return Updated global model M r+1
global
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CIFAR-10 [32]: CIFAR-10 consists of 60,000 color images of size 32×32 pixels,

evenly distributed across 10 classes. It serves as a widely-used benchmark for low-

resolution image classification tasks.

EMNIST [16]: EMNIST extends MNIST by including 814,255 grayscale

handwritten character images spanning 62 classes (digits and letters), each with

a resolution of 28× 28 pixels.

Fashion-MNIST [67]: Fashion-MNIST contains 70,000 grayscale images of

fashion items from 10 categories, also at a resolution of 28 × 28 pixels. It presents

a more challenging alternative to the original MNIST dataset.

For each dataset, we employ model architectures tailored to their specific

characteristics:

CIFAR-10: A ResNet-18 [24] architecture is used to capture hierarchical visual

features in color images. Training is conducted with a batch size of 64 and an initial

learning rate of 0.01.

EMNIST: A lightweight convolutional neural network (CNN) with two convo-

lutional layers (each followed by max pooling and dropout) and a fully connected

output layer. It is trained with a batch size of 64 and a learning rate of 0.001.

Fashion-MNIST: A CNN consisting of two convolutional layers with batch

normalization and dropout, followed by a fully connected classifier. Training uses a

batch size of 64 and a learning rate of 0.001.

We select CIFAR-10, EMNIST, and Fashion-MNIST for our experiments instead of

larger datasets like CIFAR-100 or Tiny ImageNet for three key reasons. First,

these three datasets are standard benchmarks in federated learning research,

especially in the context of security and robustness, which ensures comparability

with prior work. Second, their relatively small size and manageable complexity

enable efficient experimentation under a wide range of attack scenarios without

excessive computational cost—an important factor for extensive evaluation of

defense mechanisms. Third, the combination of color (CIFAR-10) and grayscale

(EMNIST and Fashion-MNIST) data, along with varied numbers of classes and
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image characteristics, allows us to test the adaptability and generalizability of our

defense across different data modalities. Our focus is not on model performance

under ideal conditions but rather on assessing robustness in challenging FL settings

with limited resources, where practical defenses are most needed.

4.3.2 Attack Setup

To assess the robustness of RKD in the presence of backdoor attacks, we simulate

an FL environment with 30 clients. We consider three scenarios in which 20%, 40%,

or 60% of these clients are compromised by an adversary.

Each compromised client injects backdoor triggers into 50% of its local training

data. The backdoor trigger is a specific pattern added to images, and the labels of

these poisoned samples are overwritten with a target class defined by the adversary.

This setup reflects a realistic attack in which malicious clients embed a backdoor

while preserving normal performance on clean data.

All clients follow the FL protocol, submitting model updates to the central server.

However, the compromised clients aim to bias the global model toward recognizing

their backdoor trigger. Meanwhile, benign clients train on unmodified local data.

4.3.3 Threat Model

We consider a practical federated learning setup where a subset of clients may

behave maliciously by launching backdoor attacks. The central server is honest but

untrusted—it cannot identify malicious clients and relies solely on received updates

and auxiliary unlabeled data for defense. Attackers act independently and lack

access to other clients’ updates, yet they craft updates that mimic benign behavior

to evade detection.

To evaluate RKD under challenging and diverse adversarial conditions, we test

it against four representative backdoor attack strategies:

• A3FL [76]: An adaptive backdoor method that refines triggers via Projected
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Gradient Descent (PGD) to remain effective across evolving global model

updates.

• F3BA [18]: Selectively flips model parameters with the highest sensitivity to

the global loss, embedding stealthy triggers with minimal impact on model

behavior.

• DBA [68]: Distributes the trigger across multiple malicious clients, maintain-

ing stealth at the individual level while ensuring the full backdoor emerges

upon aggregation.

• ADBA [21]: An anti-distillation backdoor attack adapted to FL, where

malicious clients embed triggers that persist through the distillation process

between global and client models.

These attacks represent both adaptive and distributed threat scenarios, allowing

for a comprehensive evaluation of RKD’s robustness.

4.3.4 Heterogeneous Setting

A common and challenging issue in FL arises from Non-IID data distributions across

clients. To simulate realistic heterogeneity, we partition each dataset among clients

using a Dirichlet distribution [75] with concentration parameter α. Each client i

receives a vector of class proportions pi, where:

pi = [pi,1, pi,2, . . . , pi,C ] ∼ Dirichlet(α), (4.15)

with C being the number of classes.

A smaller value of α leads to more imbalanced class distributions across clients,

thereby simulating stronger Non-IID conditions. Conversely, larger α values yield

more uniform class distributions, approximating the IID setting.

We explore a range of α values to vary the degree of Non-IID data distributions

among clients:
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- Extreme Heterogeneity: α ∈ {0.5, 0.3}. In these cases, clients predomi-

nantly receive data from only a narrow subset of classes.

- Moderate Heterogeneity: α ∈ {0.9}. Class distributions are relatively more

balanced among clients.

- IID: We also evaluate the IID scenario, where data is independently and

identically distributed across all clients in the Appendix A.

By varying α across these ranges yields a continuum of data heterogeneity

levels, facilitating a comprehensive assessment of how robustly the proposed RKD

framework handles adversarial interference and adapts to the naturally occurring

variability in client datasets.

4.3.5 Compared Defence Baselines.

In our experimental evaluation, we compare RKD against several state-of-the-art

defenses. Clustering-based methods include RFCL (proposed in Chapter 3)

and FLAME [50], which detect outlier updates via density-based clustering.

Knowledge-distillation approaches include FedDF [37], FedBE [15], and FedRAD [60],

all of which fuse client updates into a distilled global model. The Robust Learning

Rate method (RLR) [52] adaptively scales each client’s learning rate based on update

alignment to curb adversarial influence. Finally, FoolsGold (FG) [20] assigns client

weights according to gradient similarity to penalize coordinated adversaries.

4.3.6 Evaluation Metrics

We utilized two key evaluation metrics: Main Task Accuracy (MTA) and Attack

Success Rate (ASR). These metrics provide a comprehensive understanding of the

model’s performance on legitimate tasks and its resistance to backdoor triggers.

Main Task Accuracy (MTA)

MTA measures the classification accuracy of the global model on a clean test

dataset Dtest, reflecting its ability to correctly predict true labels without backdoor
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interference. It is defined as:

MTA =
∥{x ∈ Dtest | f(x) = y}∥

∥Dtest∥
, (4.16)

where x is an input sample from Dtest, f(x) is the prediction of the global model f ,

and y is the corresponding true label. Here, ∥ · ∥ denotes the cardinality of the set.

A higher MTA value indicates that the model performs well on the main

classification task.

Attack Success Rate (ASR)

ASR evaluates the success of a backdoor attack by measuring the fraction of

poisoned inputs misclassified into the attacker’s target class. It is computed using

a backdoor test dataset Dpoison:

ASR =
∥{x ∈ Dpoison | f(x) = ytarget}∥

∥Dpoison∥
, (4.17)

where f(x) is the model’s prediction for input x, and ytarget is the attacker-specified

target class.

A higher ASR indicates a more effective backdoor attack. A lower ASR indicates

greater robustness against backdoor attacks, as it indicates that the model is less

likely to misclassify backdoor inputs into the attacker’s target class.

The goal of an effective Defence mechanism like the RKD framework is to

maintain a high MTA while minimizing the ASR. This balance ensures that

the model retains its performance on legitimate data while being resilient to

manipulation attempts by adversaries. In our experiments, we focus on achieving

this balance to demonstrate the RKD framework’s capability to defend against

sophisticated backdoor attacks without degrading the overall model performance.

4.3.7 Experimental Results

We evaluated the robustness of the RKD framework against advanced backdoor

attacks in FL. The models were trained under Non-IID data distributions, measuring

the MTA and ASR. To ensure reliability, all experiments were repeated five times
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with different data resampling, with confidence intervals reported at a significance

level of ρ = 0.01. Rounds denote communication iterations in federated learning,

where the global model is updated based on local client training (typically involving

five local epochs) followed by server-side aggregation.
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Figure 4.2: Performance of baselines and RKD on CIFAR-10 under Non-IID (α =

0.3), evaluated against 20%, 40%, and 60% A3FL attacker clients.

Defence Against A3FL Attack.

Under highly heterogeneous Non-IID conditions (α = 0.3), RKD demonstrated

significant resilience against the A3FL attack on the CIFAR-10 and Fashion-MNIST

datasets. As shown in Figures 4.2 and 4.3, RKD achieved a substantially lower attack

success rate while maintaining high accuracy compared to baseline methods.

These results confirm that RKD effectively distinguishes malicious from benign

client updates and aggregates only reliable models. By restricting the dissemination

of the updated global model to clients identified as benign, RKD prevents adversaries

from adapting their strategies based on the latest global updates. In our primary
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Figure 4.3: Performance of baselines and RKD on Fashion-MNIST under Non-IID

(α = 0.3), evaluated against 20%, 40%, and 60% A3FL attacker clients.

approach—the Exclusion Strategy—malicious clients continue training with their

current local models. Alternatively, the Perturbation Strategy (denoted as

RKD (PGM)) provides suspected malicious clients with a minimally perturbed

global model: M r+1
pert = M r+1

global + η, where ∥η∥ ≈ 1× 10−4. This slight perturbation

effectively obscures the precise state of the global model, thereby limiting the

opportunity for adaptive adversaries to refine their attacks.

Comparative experiments show that RKD (PGM) maintains an average accuracy

nearly identical to that of RKD using the Exclusion Strategy, while still mitigating

adaptive attack risks. Overall, the experimental findings illustrate that RKD

robustly mitigates backdoor attacks under Non-IID conditions.

Defense Against F3BA Attack.

RKD effectively defends against F3BA on CIFAR-10 and EMNIST datasets

under non-IID conditions (α = 0.5), as substantiated by Figures 4.4 and 4.5. Using
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cosine similarity-based clustering, RKD filters out anomalies from compromised

clients and integrates knowledge distillation to maintain low ASR and high accuracy.

RKD’s iterative training enhances the global model’s accuracy and resilience,

demonstrating its superiority over methods like FedAvg. This is particularly evident

in high attacker ratios of 40% and 60%, highlighting RKD’s robust defence against

sophisticated attacks like F3BA.
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Figure 4.4: Performance of baselines and RKD on CIFAR-10 under Non-IID (α =

0.5), evaluated against 20%, 40%, and 60% F3BA attacker clients.

Defense Against DBA Attack.

RKD effectively defends against the Distributed Backdoor Attack (DBA) on

CIFAR-10 and EMNIST under non-IID settings (α = 0.9), as shown in Figures 4.6

and 4.7. Using cosine similarity-based clustering, RKD detects and isolates malicious

updates. Median model selection ensures that only benign models contribute to the

global model, minimizing backdoor triggers.
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Figure 4.5: Performance of baselines and RKD on EMNIST under Non-IID (α =

0.5), evaluated against 20%, 40%, and 60% F3BA attacker clients.

During knowledge distillation, RKD synthesizes insights from vetted models into

a robust aggregated model, enhancing generalizability and security. Compared to

methods like FedDF, FedRAD, and FedBE, RKD provides superior protection by

meticulously analyzing and distilling knowledge from selected models. This enables

RKD to maintain high accuracy while significantly reducing the ASR, demonstrating

its effectiveness against sophisticated attacks like DBA.

Defense Against ADBA Attack.

The RKD framework robustly defends against Anti-Distillation Backdoor At-

tacks (ADBA) on CIFAR-10 under Non-IID conditions (α = 0.5), as shown in

Figure 4.8. Compared to FedAvg and other baseline methods, RKD effectively

detects and mitigates ADBA backdoor attacks, demonstrating superior resilience

and enhanced model integrity in challenging heterogeneous environments.

Defense Against TSBA Attack.
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Figure 4.6: Performance of baselines and RKD on CIFAR-10 under Non-IID (α =

0.9), evaluated against 20%, 40%, and 60% DBA attacker clients.

The RKD framework robustly defends against TSBA on CIFAR-10 and EMNIST

under Non-IID conditions (α = 0.5), as shown in Figures 4.9 and 4.10. RKD detects

and mitigates TSBA manipulations, maintaining high accuracy and low ASR even

with increased attacker ratios. Unlike other methods that falter under poisoned

conditions, RKD excels with clean and poisoned datasets.

The Impact of Heterogeneous Degree.

We evaluated baseline defence methods and the RKD framework under varying

degrees of data heterogeneity, including moderate (α = 0.7) and extreme (α =

0.3, 0.1) Non-IID conditions (see Figure 4.11). Under extreme heterogeneity, many

baseline methods achieve high accuracy on clean inputs but struggle to detect

subtle backdoor triggers—resulting in elevated ASR. In contrast, RKD consistently

maintains robust defence by effectively excluding malicious updates, which helps to

suppress ASR while sustaining high MTA.
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Figure 4.7: Performance of baselines and RKD on EMNIST under Non-IID (α =

0.9), evaluated against 20%, 40%, and 60% DBA attacker clients.

Notably, although extreme heterogeneity adversely impacts overall accuracy for

all methods, RKD outperforms baseline defences by achieving a better balance

between low ASR and high MTA. This indicates that a key contribution of our work

is enhancing robustness in highly Non-IID scenarios. Moreover, under extremely

Non-IID conditions (α = 0.1), baseline methods often struggle to generalize,

resulting in model collapse that leads to a low ASR—since their offline behavior

prevents an accurate assessment of robustness. In contrast, RKD sustains stable

learning and robust defence, achieving both high accuracy and a genuinely low

ASR. Overall, these results highlight RKD’s superior effectiveness in challenging

heterogeneous data environments.

Empirical Analysis of Q Sensitivity.

We evaluated the impact of the minimum cluster size Q on Main Task Accuracy

(MTA) and Attack Success Rate (ASR) using the CIFAR-10 dataset under a Non-
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Figure 4.8: Performance of baselines and RKD on CIFAR-10 under Non-IID (α =

0.5), evaluated against 20%, 40%, and 60% ADBA attacker clients.

IID setting with 30 clients, 40% of which were malicious and executing A3FL

backdoor attacks. Figure 4.12 presents the results.

When Q is fixed at 2, the resulting small clusters allow malicious updates to

dominate, yielding a high ASR despite a relatively high MTA. In contrast, fixing Q

at 20 causes many malicious updates to be included in the benign cluster, leading

to slightly lower accuracy and higher ASR.

A dynamic adjustment ofQmitigates these issues by excluding malicious updates

while retaining the majority of benign ones, thus ensuring consistently high MTA

and low ASR. These findings underscore the importance of dynamically tuning Q to

reduce the influence of residual outliers and adversarial updates, thereby preserving

the overall robustness and performance of the global model.
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Figure 4.9: Performance of baselines and RKD on CIFAR-10 under Non-IID (α =

0.5), evaluated against 20%, 40%, and 60% TSBA attacker clients.

4.3.8 Scalability Analysis

RKD enhances scalability by applying cosine similarity to model updates before

clustering, transforming high-dimensional parameter vectors into scalar similarity

scores. This dimensionality reduction significantly lowers computational complexity,

making the clustering process more efficient. By avoiding clustering in the high-

dimensional parameter space, RKD reduces both the time and resources required

for defence operations.

As shown in Table 4.2, RKD’s defence time is 42.029 seconds, substantially faster

than FedDF and FedBE, which require 141.714 and 198.765 seconds, respectively.

While RLR and RFCL exhibit the shortest defence time, it compromises on detection

accuracy due to its simplistic approach. FLAME is slightly more efficient in defence

time, but RKD achieves a better balance between performance and robustness.

These results highlight RKD’s overall efficiency and scalability, demonstrating that
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Figure 4.10: Performance of baselines and RKD on EMNIST under Non-IID (α =

0.5), evaluated against 20%, 40%, and 60% TSBA attacker clients.

its methodological design—specifically the use of cosine similarity and efficient

clustering—provides robust defence without incurring significant computational

overhead.

4.3.9 Ablation Study

We conducted ablation studies to evaluate the effectiveness of each component

within the RKD framework against sophisticated backdoor attacks. Specifically, we

analyzed the impact of removing key components: Automated Clustering, Model

Selection, and Knowledge Distillation, as shown in Figure 4.13.

RKD without Clustering and Model Selection (Median). Removing

both the Automated Clustering and Model Selection components, and leaving only

the knowledge distillation process, significantly weakens the framework’s defenses.

While it performs reasonably well under a 20% DBA attack, as the proportion of

101



Chapter 4. Counteracting Backdoor Attacks

0 20 40 60 80 100
Rounds

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy
 R

at
e(

%
)

RKD
FedAvg
FedDF

FedBE
RLR

0 20 40 60 80 100
Rounds

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy
 R

at
e(

%
)

RKD
FedAvg
FedDF

FedBE
RLR

0 20 40 60 80 100
Rounds

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy
 R

at
e(

%
)

RKD
FedAvg
FedDF

FedBE
RLR

0 20 40 60 80 100
Rounds

0.0

0.2

0.4

0.6

0.8

1.0

A
tt

ac
k 

Su
cc

es
s 

R
at

e(
%

)

(a) Non-IID=0.7
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(c) Non-IID=0.1

Figure 4.11: Performance impact of heterogeneous degrees on baselines and RKD

on Fashion-MNIST, evaluated against 60% F3BA attacker clients.
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Figure 4.12: Impact of Q on MTA and ASR.

adversarial clients rises to 40%, its defensive capabilities drop sharply. At a 60%

F3BA attacker ratio, the model suffers from severe performance degradation, with

misclassifications aligning with attackers’ objectives. This highlights that without

clustering, RKD is unable to effectively identify and isolate malicious updates,
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Table 4.2: Defense time comparison (in seconds) across methods, ordered fastest to

slowest. Methods proposed in this thesis are marked as (ours).

Method Defense Time (s)

RLR [52] 0.02

RFCL (ours, see Chapter 3) 2.75

FLAME [50] 37.06

RKD (ours, see Chapter 4) 42.03

FedDF [37] 141.71

FedBE [15] 198.77

allowing backdoor attacks to compromise the global model.

RKD without Model Selection (Median). Excluding the model selection

component while retaining HDBSCAN clustering, this variant effectively manages a

20% DBA attack ratio. However, with a 40% attack ratio, performance is noticeably

decreased. Under a 60% F3BA attacker ratio, the removal of model selection further

impairs RKD’s defense, resulting in increased ASR and reduced MTA. Even after

the clustering phase effectively isolates most malicious updates, some malicious

or anomalous updates may still be present. Without employing the median to

mitigate the influence of residual outliers, these outliers can disproportionately affect

the aggregated model, resulting in unstable ASR measurements. These findings

underscore the critical role of model selection in refining the aggregation process by

selecting models closest to the benign cluster centroid, thus enhancing robustness

against higher proportions of attackers.

RKD without Knowledge Distillation. Retaining both clustering and model

selection but omitting the Knowledge Distillation module, this variant successfully

identifies and excludes malicious models, achieving a lower ASR. However, it suffers

from a significant drop in accuracy, approximately 20% lower than the full RKD

framework. This underscores the crucial role of KD in transferring knowledge

from the selected ensemble of models to the global model, which enhances both
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accuracy and generalization, particularly across Non-IID settings. Without KD,

the framework is unable to effectively integrate and refine the knowledge from

ensemble models, leading to poor performance in Non-IID environments despite

successful isolation of malicious updates. KD specifically addresses the challenge of

generalization in Non-IID scenarios, ensuring the model remains robust and effective.
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Figure 4.13: Ablation study of RKD method against attacks.

4.3.10 Discussion and Limitations

The empirical evaluations presented in this work demonstrate that the Robust

Knowledge Distillation (RKD) framework can consistently suppress backdoor

attacks while maintaining high main-task accuracy in FL settings. By integrating

automated clustering (to isolate outliers), median-based model selection (to refine

the aggregation process), and knowledge distillation (to fuse benign models into

a resilient global model), RKD addresses the distinct challenges posed by non-

IID data distributions and adaptive adversaries. Ablation studies confirm that
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each component contributes meaningfully to defence efficacy, underscoring the

importance of a holistic design that balances detection, exclusion, and refined model.

The key strengths of RKD lie in its capacity to operate under a wide range

of adversarial ratios and heterogeneous data conditions. The clustering phase

leverages cosine similarity, which captures the directional alignment of updates

rather than their magnitude—a property crucial for detecting stealthy attacks such

as F3BA and TSBA. The median-based model selection then ensures that only

models representative of benign updates proceed to knowledge distillation, thereby

avoiding the risk of inheriting partial or subtle backdoor triggers.

Moreover, the dynamic adjustment of HDBSCAN’s minimum cluster size Q

allows sensitivity to outliers to be systematically tuned over the course of FL

training, striking a balance between early-round diversity and late-round detection.

Despite its strong performance, RKD faces several limitations. The knowledge

distillation process relies on an unlabeled datasetDval. In real-world FL applications,

assembling or curating such a dataset may be impractical—particularly when

the target domain is ill-defined or highly diverse. Exploring synthetic datasets

approaches could help alleviate this requirement.

Although cosine similarity–based clustering is more efficient than high-dimensional

parameter clustering, RKD still entails additional computational steps (e.g., en-

semble logits computation for knowledge distillation). While our experiments

indicate that RKD remains competitive in throughput, investigating lightweight

approximations to clustering or faster ensemble distillation strategies would further

enhance scalability, especially in resource-constrained FL scenarios.

While results show that RKD remains robust under challenging levels of data

heterogeneity (α ∈ {0.1, 0.3}), more extreme skew can degrade global performance

or heighten the false-positive rate during clustering. Further refinement of

model selection and distillation processes is needed to adapt seamlessly to highly

imbalanced or non-representative data distributions without compromising accuracy.

Both the dynamic formula for Q in HDBSCAN and the threshold parameter ϵ in
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the model selection of the median hinge on careful tuning. Although we demonstrate

that these hyperparameters generalize well to various benchmarks, automating their

selection or making them adapt over time remains an open question.

4.4 Conclusion

In this chapter, we introduced the Robust Knowledge Distillation (RKD) framework

as a multifaceted defence against backdoor attacks in Federated Learning (FL). By

integrating automated clustering, median-based model selection, and a knowledge

distillation module, RKD systematically detects, isolates, and excludes malicious

contributions under a wide range of adversarial scenarios and Non-IID data.

Our experimental results demonstrated that RKD consistently achieves both

high main-task accuracy (MTA) and low attack success rates (ASR), even when

faced with up to 60% malicious clients. The automated clustering phase, which

dynamically adjusts the HDBSCAN minimum cluster size Q, proved effective

in isolating subtle outlier updates; the median-based selection process further

refines the set of benign models, and knowledge distillation ensures that the

aggregated global model captures the collective strengths of these benign models.

Extensive ablation studies confirmed that each component within RKD contributes

significantly to its overall efficacy.

While RKD offers strong performance and scalability advantages over several

existing robust FL approaches, key avenues for further research remain. These

include reducing reliance on an auxiliary dataset, devising more efficient clustering

schemes for extremely large-scale federations, and enhancing adaptivity to evolving

or multi-stage adversarial attacks. Addressing these challenges will be crucial for

deploying RKD in real-world FL environments, where both the data distributions

and threat models evolve continuously.
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Chapter 5

A Comprehensive Defending

Framework

This chapter introduces SD-CSFL, a synthetic-data-driven conformity-scoring de-

fense that blocks both gradient-manipulation and backdoor attacks in federated

learning by combining a privacy-preserving synthetic calibration set, entropy-

based non-conformity scores, adaptive thresholds, and stratified sampling to filter

malicious updates even under extreme heterogeneity. Section 5.2 formalizes

the threat model and details entropy scoring on synthetic data, adaptive client

thresholds, and balanced stratified sampling. Section 5.3 benchmarks SD-CSFL

against IPM, ALiE, A3FL, F3BA, and CerP across varying attacker ratios and

heterogeneity levels. Section 5.3.9 analyzes score distributions, threshold dynamics,

and validates the privacy of the calibration data. Section 5.3.10 isolates the

contribution of stratified sampling.

5.1 Introduction

Building upon the specific threat models addressed in Chapter 3 (gradient ma-

nipulation) and Chapter 4 (backdoor attacks), this chapter introduces a unified

and adaptable defense framework—Synthetic Data-Driven Conformity Scoring for
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Federated Learning (SD-CSFL). SD-CSFL is designed to detect a wide spectrum of

adversarial behaviors while preserving privacy and robustness under Non-IID data

distributions.

Unlike prior defenses such as FLTrust [13] and SageFlow [53], which rely on

trusted proxy datasets, SD-CSFL leverages independently generated synthetic data

to evaluate the trustworthiness of client models via entropy-based nonconformity

scoring. This approach avoids assumptions of external data availability and better

supports privacy-preserving deployments.

.

Client A Client I
Malicious Client B 

Clean Data 

Poisoned  Data 

Server Benign Updated Model 

Initial Global Model

Malicious Updated Model Malicious Client

Updated Global Model
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Thresholds
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Figure 5.1: Overview of the Synthetic Data-Driven Conformity Scoring framework

for Federated Learning (SD-CSFL).

As shown in Figure 5.1, SD-CSFL filters potentially malicious updates using

adaptive percentile-based thresholds. It further incorporates stratified sampling to

ensure calibration data diversity, which is essential in heterogeneous settings.

Experiments on CIFAR-10 and Birds datasets confirm SD-CSFL’s effectiveness,

showing up to a 35% gain in accuracy and an 80% reduction in backdoor success

rates under strong Non-IID poisoning scenarios.

The rest of this chapter details the SD-CSFL framework, including its entropy-
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based scoring, synthetic data generation, and experimental validation against state-

of-the-art defenses.

5.2 Methodology

In this section, we introduce the Synthetic Data-Driven Conformity Scoring for

Federated Learning (SD-CSFL) framework, a robust defense against both gradient

manipulation and backdoor attacks. SD-CSFL relies on an independently generated,

privacy-preserving calibration dataset and an entropy-based nonconformity scoring

mechanism to detect and exclude malicious client contributions. By employing

adaptive thresholding and stratified sampling, SD-CSFL effectively limits adversarial

influence even under Non-IID data distributions.

5.2.1 Overview of the SD-CSFL Framework

Figure 5.2 provides a visual overview of the SD-CSFL framework and highlights

its key components. The process begins with each client sending its locally

trained model to the central server. The server evaluates each model using a

synthetic calibration dataset, computing entropy-based nonconformity scores to

estimate the reliability of client updates. These scores are plotted and assessed

using percentile-based adaptive thresholds, which define a classification band that

separates potentially benign from potentially malicious updates.

Clients falling outside this threshold band are flagged as malicious, while those

within it are deemed benign. Only the updates from benign clients are aggregated

to produce the next version of the global model. Malicious clients are excluded from

receiving the global model or may receive a perturbed version.

This Figure 5.2 underscores the contribution of SD-CSFL: it introduces a

systematic, data-driven, and privacy-preserving approach to secure aggregation in

FL by integrating synthetic calibration, entropy-based scoring, and adaptive client

selection.
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Figure 5.2: Illustration of the SD-CSFL workflow. Each client’s model is evaluated

on a clean synthetic calibration dataset to compute entropy-based nonconformity

scores, which quantify prediction uncertainty and deviation from expected behavior.

These scores are processed using adaptive percentile-based thresholds to classify

clients as either benign or malicious. Only updates from clients deemed benign

are aggregated into the global model, which is then redistributed exclusively to the

benign clients, enhancing the robustness and security of the FL process.

Initially, in the first round (r = 0), the server distributes the global modelM0
global

to all clients C for local training. Each client i trains on its local dataset and sends

an updated model Mr
i back to the server. In subsequent rounds (r > 0), the server

distributes the updated global model Mr
global only to clients classified as potentially

benign in the previous round, denoted as Br−1.

To assess the reliability of received local updates, the server computes a

nonconformity score for each client model Mr
i using an entropy-based function on a

synthetic calibration dataset Dcalibration:

Scoreri = fentropy
(
Mr

i ,Dcalibration

)
. (5.1)

An adaptive percentile-based thresholding mechanism then classifies clients as

potentially benign Br or potentially maliciousMr:

Br,Mr = Classify
(
{Scoreri}i∈C

)
. (5.2)
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The server aggregates updates from the set Br of potentially benign clients to

form the next global model:

Mr+1
global = Aggregate

(
{Mr

i | i ∈ Br}
)
. (5.3)

Clients classified as potentially malicious Mr are excluded from receiving the

updated global model in the subsequent rounds. Instead, they continue training their

local models and remain engaged in the training process until they are reclassified

as benign.

Alternative Approach: Perturbed Global Model (PGM). Rather than outright

exclusion, SD-CSFL can send a perturbed version of the global model Mr,perturbed
global

to clients in Mr. This perturbed model incorporates minimal noise (e.g., scale

= 1× 10−4) to obscure precise model parameters, limiting exploitation by malicious

clients while preventing them from discerning that they have been flagged. This

strategy maintains the participation of clients in training and ensures that benign

clients mistakenly classified as malicious can still benefit once reclassified.

This iterative process repeats for R rounds. Detailed operations of the framework

are provided in Algorithm 8.

Computing Nonconformity Score. We compute nonconformity scores for

client models using a synthetic dataset. First, the synthetic dataset Dcalibration

is prepared, providing a controlled environment for evaluating client models and

ensuring independence from potentially compromised client data. A balanced

calibration set Lbalanced is created using the procedure discussed later. This step

mitigates the effects of class imbalance within the synthetic dataset.

For each client model Mr
i ∈ Mr

C, we compute a nonconformity score. For each

batch (X,y) in the balanced calibration set Lbalanced, the model Mr
i produces output

probabilities P ∈ Rn×K . The entropy Hj for each sample j is then calculated as:

Hj = −
K∑
k=1

Pjk log(Pjk), (5.4)

where K is the number of classes and Pjk denotes the predicted probability for class

k of sample j.
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Algorithm 8 SD-CSFL Framework Methodology

Require: Set of clients C, number of rounds R, synthetic calibration dataset

Dcalibration

Ensure: Final global model MR
global

1: Initialize the global model M0
global

2: for r = 0 to R− 1 do

3: if r = 0 then

4: Send M0
global to all clients i ∈ C

5: else

6: Send Mr
global to clients classified as potentially benign i ∈ Br−1

7: end if

8: for each client i ∈ C do

9: Collect Mr
i

10: end for

11: for each client i ∈ C do

12: Compute nonconformity score: Scoreri = fentropy (M
r
i ,Dcalibration)

13: end for

14: Classify clients: Br,Mr = Classify
(
{Scoreri}i∈C

)
15: Aggregate models: Mr+1

global = Aggregate ({Mr
i | i ∈ Br})

16: end for

17: return Final global model MR
global

The mean entropy H̄l for batch l is computed as:

H̄l =
1

n

n∑
j=1

Hj, (5.5)

where n is the number of samples in the batch.

After processing all m batches for a model, the nonconformity score sri for model

Mr
i is computed as the average of the batch mean entropies:

sri =
1

m

m∑
l=1

H̄l. (5.6)
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The computed nonconformity scores for all clients in round r are denoted as:

ScorerC = {sri | i ∈ C}. (5.7)

The full scoring procedure is detailed in Algorithm 9.

Algorithm 9 Computing Nonconformity Score

Require: Synthetic dataset Dcalibration, list of client models Mr
C, batch size b

Ensure: List of clients’ nonconformity scores ScorerC

1: Create balanced calibration set Lbalanced.

2: for each model Mr
i ∈Mr

C do

3: for each batch (X,y) ∈ Lbalanced do

4: Obtain model outputs and compute probabilities P

5: for each sample j = 1 to n do

6: Compute entropy: Hj ← −
∑K

k=1Pjk log(Pjk)

7: end for

8: Compute mean entropy for the batch: H̄l ← 1
n

∑n
j=1Hj

9: end for

10: Compute nonconformity score: Scoreri ← 1
m

∑m
l=1 H̄l

11: end for

12: return ScorerC

Balanced Calibration Set Method. To address class imbalance, which

can adversely affect the reliability of nonconformity scores, we ensure equal

representation of each class in the calibration set using stratified sampling. We begin

by analyzing the class distribution in the calibration dataset Dcalibration, determining

the count ck for each class k ∈ {1, . . . , K}. We then compute the class weight:

wk =
1

ck
, (5.8)

giving higher weight to underrepresented classes.
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Each sample (xi, yi) ∈ Dcalibration is then assigned a sampling score based on the

weight of its class label:

si = wyi , (5.9)

which reflects the relative importance of its class in the sampling process.

We apply weighted sampling using the scores {si} to construct a balanced

calibration subset:

Lbalanced ⊂ Dcalibration, (5.10)

such that the resulting class distribution is approximately uniform. This balanced

calibration set is crucial for ensuring that the entropy-based nonconformity scores

(see Equation 5.6) are not biased due to over- or under-representation of particular

classes.

Nonconformity Score-Based Classification. Let Score r
C = {s r

1 , s
r
2 , . . . , s

r
|C|}

represent the nonconformity scores of all clients at round r. The server uses a user-

defined false-positive (FP) budget δ ∈ (0, 1) to set symmetric percentile thresholds:

plow =
δ

2
, phigh = 1− δ

2
, (5.11)

and computes the corresponding threshold values:

τ r
low = Qplow(Score

r
C ), τ r

high = Qphigh(Score
r
C ), (5.12)

where Qp(·) denotes the empirical percentile function. Clients whose scores fall

within the range

τ r
low ≤ s r

i ≤ τ r
high (5.13)

are classified as potentially benign (Br), while others are flagged as potentially

malicious (Mr). These thresholds are recalculated each round to maintain

robustness under changing score distributions.

Synthetic Data. To construct our calibration dataset Dcalibration, we adopt a

synthetic data generation approach inspired by prior work [30], leveraging Stable

Diffusion-V2 [57] and ChatGPT-3.5 [51]. In our method, we specifically utilize
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Algorithm 10 Client Classification Using Percentile-Based Nonconformity Scores

Require: Score vector Score r
C , FP budget δ

Ensure: Potentially benign set Br, potentially malicious setMr

1: Compute percentiles: plow ← δ/2, phigh ← 1− δ/2

2: Compute adaptive thresholds: τlow ← Qplow(Score
r
C ), τhigh ← Qphigh(Score

r
C )

3: Initialize: Br ← ∅, Mr ← ∅

4: for each client i ∈ C do

5: if τlow ≤ s r
i ≤ τhigh then

6: Br ← Br ∪ {i}

7: else

8: Mr ←Mr ∪ {i}

9: end if

10: end for

11: return Br, Mr

artistic synthetic data, generated using prompts enriched with keywords such as

non-photorealistic, exaggerated artistic effects, and bold brushstrokes. These prompts

are designed to create visually distinct and highly stylized representations of classes.

The use of such synthetic data introduces controlled abstraction and variability,

making it ideal for computing nonconformity scores. This approach ensures a robust

and domain-relevant evaluation process while preserving the privacy of client data

distributions and avoiding reliance on potentially compromised client data.

5.3 Experiments

In this section, we simulate a federated learning environment in which multiple

clients collaboratively train a global model under the coordination of a central

aggregator until convergence. Our goal is to demonstrate the effectiveness of SD-

CSFL against both gradient manipulation and backdoor attacks, even under Non-

IID conditions and various adversarial participation rates.
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5.3.1 Datasets and Models

We conduct experiments on CIFAR-10 and Birds, along with their synthetic

counterparts, CIFAR-10-Synth and Birds-Synth [30].

CIFAR-10. We use a CNN with three convolutional layers having 32, 64, and

128 filters, respectively. Each convolutional layer is followed by batch normalization,

ReLU activation, and MaxPooling. A fully connected (FC) layer with 256 units,

ReLU activation, and 0.25 dropout precedes the final output layer, which has 10

classes. Training uses a batch size of 64, a learning rate of 0.01, and 50,000 training

samples [14]. Server-side calibration is performed on 14,523 samples from CIFAR-

10-Synth.

Birds. We adopt a ResNet50 model, pre-trained and fine-tuned on layer4,

with a 1024-unit FC classifier followed by batch normalization, ReLU activation,

0.5 dropout, and an FC layer for 525 classes. Training uses a batch size of 16, a

learning rate of 0.001, and 84,635 training samples [58]. Server-side calibration is

performed on 20,475 samples from Birds-Synth.

We select CIFAR-10 and Birds—along with their synthetic counterparts—for

three key reasons. First, this combination provides a broad spectrum of visual com-

plexity: CIFAR-10 offers low-resolution, general-purpose images across 10 classes,

while Birds presents a high-resolution, fine-grained classification challenge spanning

525 classes. This contrast allows us to evaluate the scalability and generalizability

of SD-CSFL under both standard and real-world conditions. Second, the Birds

dataset introduces naturally imbalanced and heterogeneous class distributions,

better simulating the data disparities encountered in practical FL deployments.

Third, both datasets are paired with synthetic counterparts (CIFAR-10-Synth and

Birds-Synth [30]), which enable server-side calibration without accessing private

client data—a core requirement of our privacy-preserving defense. These datasets

thus provide a suitable and realistic testbed for evaluating robustness under diverse

attack strategies and data modalities.

We use CNNs tailored to each dataset’s complexity. CIFAR-10 employs a lightweight

116



5.3. Experiments

3-layer CNN architecture to allow controlled experimentation and comparability

with related work, while the Birds dataset uses a fine-tuned ResNet50 to handle

its high intra-class variance and deeper feature hierarchies. This setup ensures

the defense is stress-tested across both constrained and resource-rich federated

environments.

5.3.2 Attack Setup

We simulate 30 clients in total, with 20%, 40%, and 60% of them being adversarial.

In backdoor scenarios, each malicious client poisons 50% of its local training data by

embedding backdoor triggers, then trains its model following its designated backdoor

strategy. In gradient manipulation scenarios, attackers alter gradients’ directions or

magnitudes to degrade or steer the global model.

5.3.3 Threat Model

We consider a realistic federated learning environment in which a subset of clients is

adversarial. These malicious participants aim to compromise the global model either

by manipulating gradients (model poisoning) or by injecting malicious patterns into

their local data (backdoor attacks). The server is honest-but-curious: it follows the

protocol but has no prior knowledge of which clients are compromised and no access

to raw client data. Its only tools for defense are the received model updates and a

synthetic calibration dataset.

The attackers operate independently and without coordination. They do not

know the updates of benign clients but can carefully craft their submissions to evade

standard detection—particularly challenging under Non-IID data distributions,

where natural variability between client updates masks adversarial anomalies.

To rigorously evaluate the robustness of SD-CSFL, we consider five sophisti-

cated and representative attacks:

• IPM [69]: A gradient manipulation attack where malicious clients align
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their updates in a specific direction to disrupt convergence while remaining

statistically benign.

• ALiE [7]: Adversaries craft updates constrained within the statistical range

(e.g., mean and standard deviation) of benign gradients, making detection

based on deviation or norm ineffective.

• A3FL [76]: An adaptive backdoor attack that leverages iterative optimization

(e.g., PGD) to design highly effective and stealthy trigger patterns.

• F3BA [18]: A focused-flip attack that manipulates selected model weights to

inject backdoors while preserving overall update structure.

• CerP [43]: A parameter perturbation attack that subtly alters weights

to embed backdoors, aiming for minimal detectable deviation from benign

models.

These diverse attack strategies ensure that SD-CSFL is evaluated under both

stealthy and aggressive adversarial behaviors, across both model- and data-level

threats.

5.3.4 Heterogeneous Setting

We evaluate the robustness of SD-CSFL under Non-IID data distributions by

sampling client datasets via a Dirichlet distribution [27]. By varying the Dirichlet

parameter α, we control the degree of heterogeneity: α = 0.9 for moderate skew and

α = 0.5 for highly imbalanced distributions.

5.3.5 Baselines

To contextualize SD-CSFL’s performance, we compare it against a range of existing

FL defenses:

RFCL (proposed in Chapter 3) and FLAME [50]: Clustering-based defenses

relying on outlier detection in high-dimensional parameter spaces.
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RKD (discussed in Chapter 4), along with FedDF [37], FedBE [15], and

FedRAD [60]: Knowledge-distillation methods offering varying degrees of resistance

to malicious updates.

RLR [52]: A robust learning-rate adjustment method.

Median, Mkrum [11], and CC [28]: Classic robust aggregation mechanisms

that filter or reweight suspicious updates.

5.3.6 Evaluation Metrics

We evaluate defense performance using two key metrics: Main Task Accuracy (MTA)

and Attack Success Rate (ASR).

MTA measures the model’s accuracy on clean test data Dm: MTA =∣∣{x∈Dm | f(x)=y}
∣∣∣∣Dm

∣∣ , where f(x) is the model prediction and y is the true label.

ASR quantifies the success of backdoor triggers using poisoned test data Db:

ASR =

∣∣{x∈Db | f(x)=ytarget}
∣∣∣∣Db

∣∣ , with ytarget denoting the attacker-specified label.

5.3.7 Experimental Results

We present empirical results of our SD-CSFL framework tested against gradient

manipulation and backdoor attacks in FL on the CIFAR-10 dataset under Non-IID

conditions (α = 0.9) and (α = 0.5). Experiments were repeated five times, and

results demonstrate statistical significance.

Effective Defense Against IPM and ALiE Attacks. Figures 5.3 and 5.4

illustrate SD-CSFL’s performance against IPM and ALiE attacks on CIFAR-10 and

Birds datasets. SD-CSFL outperforms baselines like FedAvg, FLAME, RFCL, RKD

and Median, maintaining higher accuracy as the proportion of compromised clients

increases.

For CIFAR-10, both synthetic and real calibration datasets show slightly smaller

performance compared to other scenarios. The synthetic calibration dataset,

enriched with carefully designed attributes and variability, enhance the detection

of malicious behaviors, they tend to underperform slightly relative to the real
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Figure 5.3: Performance of baselines and SD-CSFL on CIFAR-10 against IPM and

ALiE attack under Non-IID (α = 0.9).
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Figure 5.4: Performance of baselines and SD-CSFL on Birds against IPM and ALiE

attacks under Non-IID (α = 0.9).
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Figure 5.5: Performance of baselines and SD-CSFL on CIFAR-10 against ALiE

attack under Non-IID (α = 0.5).
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calibration dataset. The latter achieves higher accuracy due to its closer alignment

with the target domain.

The perturbed global model (PGM) in SD-CSFL introduces minor performance

fluctuations due to the added stochastic noise. However, this trade-off significantly

enhances robustness by limiting exploitation from malicious clients while maintain-

ing their participation in training.

To further examine ALiE attacks under more pronounced Non-IID settings (α =

0.5), Figure 5.5 shows that SD-CSFL preserves strong resilience despite the increased

intensity of adversarial noise. Adaptive thresholding and entropy-based scoring work

jointly to identify and neutralize even subtle gradient manipulations.

Effective Defense Against A3FL, F3BA, and CerP Attacks.

Figures 5.6 and 5.7 highlight SD-CSFL’s defense against A3FL, F3BA, and

CerP backdoor attacks on CIFAR-10 and Birds datasets. SD-CSFL consistently

outperforms baselines like FedAvg, FLAME, RFCL, and Median, maintaining higher

accuracy and significantly lower attack success rates, even as the proportion of

compromised clients increases.

In A3FL attacks, where adaptive strategies modify triggers to blend into the

global model, SD-CSFL demonstrates robust defenses by leveraging entropy-based

nonconformity scores to identify and exclude suspicious updates from aggregation.

For F3BA and CerP attacks, SD-CSFL achieves low attack success rates across

all levels of compromised clients, as shown in Figures 5.6 and 5.7. These results

emphasize SD-CSFL’s effectiveness in detecting and isolating malicious updates,

preventing them from influencing the global model. The framework maintains

consistent performance trends across varying attack strategies, with synthetic and

real calibration datasets both showing strong results. Real datasets, however, exhibit

slightly better accuracy due to their domain relevance.

For CIFAR-10, incorporating the perturbed global model (PGM) into SD-CSFL

introduces slight performance fluctuations. This affects the model’s performance by

marginally increasing the attack success rate in certain cases. Despite this impact,
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Figure 5.6: Performance of baselines and SD-CSFL on CIFAR-10 against A3FL and

F3BA attacks under Non-IID (α = 0.9), Part 1.
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(g) 20% of CerP
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(h) 40% of CerP
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Figure 5.6: (Continued) Performance of baselines and SD-CSFL on CIFAR-10

against CerP attack under Non-IID (α = 0.9).
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SD-CSFL maintains competitive model performance and continues to outperform

baseline methods in mitigating advanced backdoor attacks.

Figure 5.8 illustrates SD-CSFL’s robustness under A3FL [76] attacks on the

CIFAR-10 dataset in challenging Non-IID settings (α = 0.5). SD-CSFL consistently

outperforms baseline defenses by maintaining stable accuracy and suppressing attack

success rates across varying proportions of compromised clients.

As the proportion of adversarial clients increases from 20% to 60%, SD-CSFL

maintains competitive accuracy: around 0.6 for 20%, above 0.5 for 40%, and above

0.4 even under 60% attack intensity. These results reflect SD-CSFL’s ability to

preserve model performance despite increasing adversarial pressure.

Attack success rates remain well-controlled. Under a 20% A3FL attack,

the success rate stays below 0.2, indicating effective suppression of backdoor

activation. Even as attack intensity rises to 40% and 60%, the success rate remains

bounded—rising to approximately 0.4 and peaking around 0.6—yet the global model

is never fully compromised. This demonstrates SD-CSFL’s capacity to withstand

even aggressive adaptive backdoor strategies.

These findings validate the role of entropy-based nonconformity scoring and

adaptive percentile thresholding in isolating suspicious updates. Together with a

balanced synthetic calibration set, these mechanisms enable SD-CSFL to effectively

defend the global model in Non-IID federated settings.

5.3.8 Scalability Analysis

As shown in Table 5.1, SD-CSFL’s defense time is 19.45 seconds—substantially

faster than FLAME (37.06s), FedDF (141.71s), and comparable to RKD (42.03s),

while offering strong defense capabilities. Although RLR and RFCL achieve shorter

runtimes, they do so at the cost of reduced robustness: RLR relies on simplistic

learning rate adjustments, and RFCL depends on clustering in high-dimensional

parameter space. RKD improves scalability by converting model updates into scalar

similarity scores before clustering. Overall, SD-CSFL maintains a favorable balance
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(c) 60% of A3FL
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(d) 20% of F3BA
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(e) 40% of F3BA
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Figure 5.7: Performance of baselines and SD-CSFL on Birds against A3FL and F3A

attacks under Non-IID (α = 0.9).
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Figure 5.8: Performance of baselines and SD-CSFL on CIFAR-10 against A3FL

attack under Non-IID (α = 0.5).
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between computational efficiency and adversarial resilience.

The SD-CSFL measured runtime includes only the online defense components:

entropy-based scoring, percentile thresholding, and client update filtering. Synthetic

data generation is performed offline and excluded from the reported timing.

Table 5.1: Defense time comparison (in seconds) across methods. Methods proposed

in this thesis are marked as (ours).

Method Defense Time (s)

RLR [52] 0.02

RFCL (ours, see Chapter 3) 2.75

SD-CSFL (ours, see Chapter 5) 19.45

FLAME [50] 37.06

RKD (ours, see Chapter 4) 42.03

FedDF [37] 141.71

5.3.9 Experimental Analysis of Attack Detection and Vali-

dation

We analyzed SD-CSFL’s effectiveness in detecting gradient manipulation and

backdoor attacks.

5.3.9.1 Detection of Gradient Manipulation Attacks

Gradient manipulation attacks, such as IPM and ALiE, impact nonconformity scores

differently. ALiE attacks inject high-variance noise into gradients, significantly

increasing prediction uncertainty and elevating entropy beyond the upper threshold

τhigh. IPM attacks manipulate the inner product between gradients and true

updates. Although these subtle perturbations are designed to mimic benign updates,

they introduce detectable deviations in nonconformity scores that may breach τlow

or τhigh, depending on the intensity of the manipulation.
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ALiE Attacks: ALiE attacks introduce high-variance noise, disrupting predictions

and increasing entropy. For a sample x, the entropy H(x,Mr
i ) is defined

as H(x,Mr
i ) = −

∑K
k=1 P (y = k | x,Mr

i ) logP (y = k | x,Mr
i ), where

K is the number of classes. When predictions become uniformly distributed

(P (y = k) ≈ 1
K
), H(x,Mr

i ) approaches logK, representing maximum uncer-

tainty. The mean entropy across the calibration dataset Dcalibration, Scoreri =

1
|Dcalibration|

∑
x∈Dcalibration

H(x,Mr
i ), also converges to logK under high-variance noise.

Since SD-CSFL dynamically adjusts percentile-based thresholds τlow and τhigh with

τhigh ≤ logK, ALiE attacks that elevate Scoreri toward logK inevitably exceed τhigh

and are flagged as malicious. Figure 5.9(a) illustrates how ALiE increases entropy,

enabling SD-CSFL to detect and isolate malicious updates.

IPM Attacks: IPM attacks subtly manipulate the inner product between gradients

and true updates, introducing directional biases while preserving statistical similar-

ity in other dimensions. These manipulations have minimal impact on predicted

probabilities but cause subtle shifts in nonconformity scores. Specifically, scores

often fall within the range: τlow ≤ Scoreri ≤ τhigh. However, gradient biasing

increases the likelihood of deviations that breach these thresholds. SD-CSFL detects

such deviations dynamically by adapting τlow and τhigh based on the distribution of

nonconformity scores. Figure 5.9(b) illustrates how IPM attacks cluster scores near

the thresholds, where careful evaluation enables detection.

5.3.9.2 Detection of Backdoor Attacks

Backdoor updates face conflicting optimization objectives as they aim to optimize

for clean data while inducing targeted misclassifications. The total loss function for

backdoor updates is: Ltotal(θ) = λcleanLclean(Lclean, θ)+λpoisonedLpoisoned(Lpoisoned, θ),

where θ represents the model parameters, Lclean and Lpoisoned are the clean and

poisoned datasets, respectively, and Lclean and Lpoisoned are the corresponding cross-

entropy loss functions. The weights λclean and λpoisoned balance the optimization

between clean and poisoned data.
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This conflicting optimization introduces gradient misalignment, increasing un-

certainty in predictions for clean data. The entropy H(x,Mr
i ) for clean samples

reflects this uncertainty. For backdoor updates, this misalignment increases entropy,

affecting the decision boundary. Empirically, backdoor updates exhibit higher scores

than benign ones, often exceeding the threshold τhigh in SD-CSFL. Figure 5.9(c), (d),

and (e) confirms this behavior, showing higher nonconformity scores for backdoor

updates compared to benign ones.

Percentile–Threshold Dynamics and Robustness. To determine whether a

client is potentially benign or malicious in each round r, the server computes

the nonconformity score sri for each client i ∈ C, forming the set ScorerC =

{sr1, sr2, . . . , sr|C|}. Clients whose scores fall within a central range are considered

potentially benign, while those with unusually low or high scores are flagged as

potentially malicious. This range is defined by two adaptive thresholds, τ rlow and

τ rhigh, computed as empirical quantiles over ScorerC.

These percentiles are derived from a user-defined false-positive (FP) budget δ ∈

(0, 1), which specifies the maximum acceptable probability of incorrectly rejecting

a benign client per round. The thresholds are set symmetrically as plow = δ/2 and

phigh = 1−δ/2. This approach is based on conformal prediction [4], which guarantees

that, under the assumption of approximate exchangeability among benign clients,

the per-round false-positive rate does not exceed δ, regardless of the underlying score

distribution.

Since the thresholds are recomputed in every round, the acceptance band

dynamically adapts to the evolving score distribution, enabling resilience to client

drift, Non-IID heterogeneity, and adaptive attack patterns. We define true positives

(TP) as malicious clients correctly flagged and excluded, and false positives (FP) as

benign clients incorrectly rejected. Table 5.2 compares three settings of FP budget

δ, highlighting the trade-off between detection and benign client retention. As δ

increases, the acceptance band becomes narrower, improving TP rates (up to 100%)

but also increasing FP. The setting δ = 0.60 (band: 30–70%) offers a favorable
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balance and is used in all experiments.

Table 5.2: Impact of false-positive budget δ on classification performance under 40%

compromised clients (CIFAR-10).

δ Band (%) Non-IID (α = 0.9) Non-IID (α = 0.5)

FP (%)↓ TP (%)↑ F1 FP (%) TP (%) F1

0.25 13–88 8 75 0.80 11 56 0.65

0.60 30–70 17 100 0.89 20 100 0.87

0.75 38–63 27 100 0.83 31 100 0.81

5.3.9.3 Privacy Validation

We performed a privacy leak analysis to ensure that synthetic calibration sam-

ples do not expose sensitive information from real datasets. As shown in

Figure 5.10(a), synthetic-to-real comparisons exhibit low cosine similarity, near-

zero mutual information, and high KL divergence, confirming minimal alignment

and distinct probability distributions. Real-to-real comparisons were performed

between the full CIFAR-10 dataset and a subset comprising 5000 samples, evenly

distributed across 10 classes (500 samples per class). These comparisons reveal high

cosine similarity, low KL divergence, and high mutual information, demonstrating

strong alignment within real data. In Figure 5.10(b), t-SNE plots display well-

separated clusters for real and synthetic embeddings, reflecting their distinct

distributions. Conversely, Figure 5.10(c) shows overlapping clusters in the real-

to-subset comparison, indicating expected alignment within the same dataset. The

representative samples in Figure 5.11 further highlight the unique visual properties

of real and synthetic data, underscoring the fidelity and privacy-preserving attributes

of the synthetic dataset.
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(d) F3BA
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Figure 5.9: Distribution of scores for benign and malicious clients across various

attack scenarios.
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Figure 5.10: Privacy Metrics and Embedding Features Visualization for Real and

Synthetic Data.
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Figure 5.11: The first row displays images from the real CIFAR-10 and Birds

datasets. The second row present synthetic samples from generated two datasets:

CIFAR-10-Synth and Birds-Synth datasets.
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5.3.10 Ablation Study

We conduct two ablation studies to evaluate design choices in SD-CSFL under 40%

malicious clients in CIFAR-10.

Balanced vs. Non-Balanced Calibration Set. Figure 5.12 compares SD-

CSFL’s performance when using a balanced versus a non-balanced synthetic

calibration set against A3FL and F3BA attackers. The balanced calibration

set reflects the true class distribution, enabling SD-CSFL to more effectively

distinguish benign from malicious updates. This results in higher accuracy and

lower attack success rates. In contrast, the non-balanced set leads to less stable

performance, with reduced accuracy and higher attack success, particularly under

Non-IID conditions where class imbalance amplifies model drift. These results

underscore the importance of designing a representative calibration set when

applying nonconformity scoring.
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Figure 5.12: Impact of balanced vs. non-balanced calibration set under Non-IID

(α = 0.9).

Percentile vs. Median-Based Thresholding. To better understand the

effectiveness of the percentile-based thresholding used in SD-CSFL, we compare

it against a statistical approach based on the median and standard deviation.

Specifically, the method defines an acceptance interval as median ± kσ, where σ

is the sample standard deviation of the nonconformity scores and k is a tunable

parameter.

Table 5.3 presents a comparison between the median-based rule and the
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percentile-based acceptance band employed in SD-CSFL, under both moderate (α =

0.9) and extreme (α = 0.5) Non-IID conditions. We evaluate two representative

values of k: 1.5 and 0.5. These are contrasted with the central 30–70% percentile

band, which corresponds to a false-positive budget of δ = 0.60.

The results show that the percentile-based method consistently achieves higher

F1 scores in both settings. Its thresholding relies entirely on rank statistics and is

adaptively recalculated in each round, making it robust to asymmetric or heavy-

tailed score distributions. In contrast, the performance of the median-based method

deteriorates, particularly under extreme heterogeneity, indicating a sensitivity to

score variability and outliers.

This difference in performance can be attributed to the underlying assumptions

of each method. The median-based approach assumes a symmetric and well-

behaved score distribution, relying on measures of central tendency and dispersion

to define the threshold. Smaller values of k yield narrower intervals, increasing false

positives, while larger values result in broader intervals that reduce sensitivity to

anomalous behavior. In contrast, the percentile-based method is nonparametric and

distribution-free, operating solely on rank statistics without assuming any specific

distributional form. This makes it more suitable for the irregular and skewed score

patterns commonly observed in adversarial federated learning scenarios.

Table 5.3: Comparison of percentile (δ = 0.60) vs. median± kσ thresholding under

40% compromised clients (CIFAR-10).

Non-IID (α = 0.9) Non-IID (α = 0.5)

Threshold Rule FP (%)↓ TP (%)↑ F1 FP (%)↓ TP (%)↑ F1

Median ±1.5σ 2 50 0.64 9 45 0.54

Median ±0.5σ 6 93 0.85 18 67 0.61

Percentile (30–70%) 17 100 0.89 20 100 0.87
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5.3.11 Discussion and Limitations

Our experimental analysis demonstrates that the SD-CSFL framework robustly

counters both gradient manipulation and backdoor attacks in federated learning.

By leveraging a synthetically generated, privacy-preserving calibration dataset

alongside an entropy-based nonconformity scoring mechanism, SD-CSFL effectively

distinguishes between benign and malicious client updates even in challenging

Non-IID environments. The adaptive thresholding and stratified sampling further

enhance the framework’s ability to maintain the integrity of the global model,

ensuring a balance between security and performance.

Nonetheless, several limitations warrant discussion. First, the effectiveness of

SD-CSFL is closely tied to the quality and representativeness of the synthetic

calibration dataset. Generating high-fidelity synthetic data that accurately mirrors

the diversity of real-world client data is a non-trivial task, and any shortcomings

in the synthetic data could adversely affect the detection accuracy. Second,

the adaptive thresholding mechanism, while dynamically adjusting to changes in

the nonconformity score distribution, requires careful tuning of the percentile

parameters. This tuning process may be sensitive to the specific data characteristics

and attack strategies, potentially necessitating further automation for deployment

in varied scenarios.

Finally, the computational overhead associated with calculating nonconformity

scores across large calibration datasets might pose scalability challenges, particularly

in environments with a vast number of clients.

Future work will aim to refine the adaptive thresholding for enhanced robustness,

and explore computational optimizations to scale SD-CSFL for real-world federated

learning applications.
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5.4 Conclusion

In this chapter, we presented the Synthetic Data-Driven Conformity Scoring for

Federated Learning (SD-CSFL) framework, a novel approach designed to secure

federated learning systems against gradient manipulation and backdoor attacks.

By leveraging an independently generated, privacy-preserving synthetic calibration

dataset and employing an entropy-based nonconformity scoring mechanism, SD-

CSFL effectively differentiates between benign and malicious client updates—even

in challenging Non-IID environments.

Our experimental results, evaluated on CIFAR-10 and Birds datasets, demon-

strate that SD-CSFL consistently outperforms existing defense mechanisms, main-

taining higher model accuracy and significantly reducing attack success rates. The

adaptive thresholding and stratified sampling strategies have proven essential for

capturing subtle adversarial deviations, while the optional perturbed global model

provides an additional layer of security without completely excluding flagged clients.

Overall, SD-CSFL represents a significant step towards robust and secure

federated learning, offering a unified defense that effectively mitigates a wide range

of adversarial threats while preserving data privacy.
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Conclusions and Future Work

6.1 Summary of Contributions

This thesis makes a significant contribution to enhancing the security and robustness

of federated learning, particularly in the face of adversarial threats such as data

poisoning, model poisoning, and backdoor attacks. The decentralized nature of

federated learning introduces unique vulnerabilities, especially in safety-critical

applications.

To address these challenges, we proposed novel defense mechanisms that inte-

grate clustering-based aggregation, knowledge distillation, and synthetic data-driven

anomaly detection. These approaches strengthen the resilience and trustworthiness

of FL systems under diverse and adaptive adversarial conditions.

6.1.1 (Chapter 3) Defending Against Data and Model Poi-

soning Attacks

In this chapter, we presented Robust Federated Clustering (RFCL) [2], a

novel aggregation framework designed to enhance the resilience of federated learning

(FL) against data poisoning and model poisoning attacks. Traditional aggregation

methods, such as FedAvg, Median, and Krum, assume that most client updates
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are benign, making them vulnerable to adversarial manipulations. RFCL addresses

this limitation by dynamically detecting and filtering out malicious client updates

through a combination of clustering and similarity-based analysis.

The proposed RFCL framework introduced a multi-center clustering strategy

that partitions client updates into groups based on their similarity, enabling the

system to identify and isolate adversarial contributions. This technique was

further enhanced by the integration of HDBSCAN-based anomaly detection, which

effectively identified outlier updates that deviated significantly from the benign

client distribution. Additionally, RFCL employed cosine similarity filtering to refine

aggregation, ensuring that only updates with high similarity to benign clusters were

incorporated into the global model.

Experimental evaluations demonstrated that RFCL significantly improved FL

security by mitigating the impact of poisoning attacks. The results indicated a

40% reduction in adversarial influence while maintaining high model performance

in Non-IID settings. These findings highlight the effectiveness of RFCL in preventing

malicious gradient manipulations and ensuring the integrity of the global model.

6.1.2 (Chapter 4) Counteracting Backdoor Attacks

This chapter addressed the challenge of backdoor attacks in FL, where adversarial

clients inject malicious triggers into the global model while preserving accuracy

on clean data. To counteract this threat, we introduced Robust Knowledge

Distillation (RKD) [3], a novel framework that systematically detects and filters

out backdoor-infected models before aggregation.

RKD employed an automated clustering-based filtering approach to separate

backdoor-infected updates from benign contributions. By leveraging gradient

similarity analysis, RKD efficiently isolated malicious models without requiring

direct access to client data. Furthermore, RKD incorporated knowledge distillation

techniques to ensure that only benign knowledge is retained in the global model,

effectively neutralizing backdoor triggers without significantly affecting model
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performance.

To enhance the adaptability of the defense mechanism, RKD introduced an

adaptive thresholding mechanism that dynamically adjusted its sensitivity based

on observed adversarial behavior. This ensures robustness against evolving

backdoor attack strategies, making RKD suitable for real-world FL applications.

Experimental evaluations demonstrated that RKD achieved an 85% reduction in

backdoor attack success rates, outperforming existing defenses while maintaining

high classification accuracy for benign clients.

6.1.3 (Chapter 5) A Comprehensive Defending Framework

In this chapter, we presented Synthetic Data-Driven Conformity Scoring for

FL (SD-CSFL), a novel privacy-preserving anomaly detection framework that

evaluates model integrity without requiring access to real client data. Unlike

traditional anomaly detection methods that rely on inspecting raw updates, SD-

CSFL introduced an innovative entropy-based nonconformity scoring method that

detects adversarial deviations based on model behavior.

The SD-CSFL framework leveraged synthetic calibration datasets to assess the

integrity of incoming model updates, thereby eliminating privacy concerns associated

with direct data access. By computing entropy-based nonconformity scores, SD-

CSFL effectively identified adversarial manipulations and prevented compromised

updates from influencing the global model. Additionally, the framework incorpo-

rated a threshold dynamics mechanism that adaptively refined anomaly detection

sensitivity across training rounds, ensuring sustained robustness over time.

Experimental results validated the effectiveness of SD-CSFL, demonstrating

its ability to achieve an 80% detection accuracy while preserving the overall

performance of the global model. These findings confirm that SD-CSFL provides a

scalable and privacy-preserving approach to securing FL against adversarial attacks,

making it a viable solution for applications in sensitive domains such as healthcare

and finance.
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6.2 Open Challenges and Future Research Direc-

tions

Despite the significant progress achieved through RFCL, RKD, and SD-CSFL,

several open challenges remain, offering promising avenues for future exploration.

While these defense mechanisms provide effective security against diverse adversarial

threats in FL, further enhancements are necessary to improve computational

efficiency and facilitate real-world deployment. This section outlines key research

directions aimed at strengthening FL security.

6.2.1 Enhancing the Computational Efficiency of FL De-

fenses

Although the proposed defenses demonstrate strong robustness, their computa-

tional overhead remains a challenge, particularly for large-scale FL deployments.

Clustering-based filtering, knowledge distillation, and entropy-based anomaly detec-

tion introduce additional processing requirements, which may hinder their practical

deployment in resource-constrained environments such as edge computing and

IoT networks. Future research should explore optimization strategies, includ-

ing lightweight clustering techniques, hardware-accelerated security mechanisms

leveraging GPUs, and federated pruning techniques to maintain efficiency while

preserving model integrity. Addressing these computational constraints will be

crucial for making FL security mechanisms scalable and practical.

6.2.2 Addressing Privacy and Security Trade-offs in FL

Ensuring strong security while preserving user privacy is a fundamental challenge in

FL. While SD-CSFL successfully introduces synthetic data-driven anomaly detec-

tion, further research is needed to explore more advanced privacy-preserving security

techniques. Future work should investigate integrating differentially private anomaly
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detection, secure multi-party computation (MPC)-based security mechanisms, and

homomorphic encryption to ensure robust adversarial defense without compromising

data confidentiality. Developing efficient privacy-preserving security mechanisms

will be essential for compliance with regulations while maintaining the robustness

of FL models.

6.2.3 Security Challenges in Cross-Silo Federated Learning

Cross-silo FL presents unique challenges compared to cross-device FL, particularly in

scenarios where multiple organizations or institutions collaborate while maintaining

strict data sovereignty requirements. Unlike cross-device FL, where clients are often

mobile or edge devices with intermittent availability, cross-silo FL involves a smaller

number of participants, such as hospitals, banks, or research institutions, each with

significantly larger datasets and more powerful computational resources.

Despite these advantages, cross-silo FL faces security challenges related to model

poisoning and adversarial collusion. Unlike cross-device FL, where malicious clients

can be statistically filtered due to their abundance, adversarial clients in cross-

silo FL can have a much larger impact due to the limited number of participants.

Additionally, organizations may have varying degrees of trust, making it difficult to

assume full cooperation. Future research should focus on developing robust trust

mechanisms for cross-silo FL, such as blockchain-based trust verification, hierarchical

anomaly detection models, and institution-specific security constraints to ensure

adversarial robustness while maintaining institutional autonomy.

6.2.4 Overcoming Real-World Deployment Challenges

Although the proposed defense mechanisms have been extensively validated in

controlled experimental settings, real-world FL deployments introduce additional

complexities. In practical scenarios, FL systems must handle dynamic client partic-

ipation, where clients may frequently join or leave the training process. Ensuring

model robustness under such non-static conditions remains an open challenge.
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Additionally, FL architectures deployed in highly decentralized environments, such

as edge computing and cross-device FL, require further exploration of security

mechanisms that can adapt to variable network conditions and heterogeneous

computational resources. Future research should focus on designing FL security

frameworks that maintain effectiveness despite client participation variability and

unreliable communication infrastructures.

6.3 Final Remarks

This thesis introduces novel defense mechanisms that significantly enhance the

security and robustness of Federated Learning. Through the development of

RFCL, RKD, and SD-CSFL, we establish a comprehensive framework that mitigates

data poisoning, model poisoning, and backdoor threats while preserving model

performance and privacy.

While these contributions represent a major step forward in FL security,

further research is needed to improve computational efficiency, develop adaptive

defense mechanisms, and facilitate large-scale deployment in real-world scenarios.

The methodologies proposed in this thesis lay the groundwork for the continued

advancement of secure and privacy-preserving federated learning systems.
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Appendix A

Experiments of RKD Under IID

Conditions

This appendix presents supplementary experimental results evaluating the proposed

RKD framework and baseline methods under IID data distributions on the CIFAR-

10 dataset. We also compare performance under both IID and Non-IID settings

when no attacks are present.

Defense Against A3FL Attack Under IID Conditions. Figure A.1

illustrates the performance of RKD and baseline models against the A3FL attack,

considering different attacker ratios (20%, 40%, and 60%) in an IID setting. Despite

the higher data homogeneity, the results show that RKD maintains a comparatively

lower Attack Success Rate (ASR) and a higher Main Task Accuracy (MTA) than

the baselines, reinforcing RKD’s capability to defend FL in diverse attack scenarios.

The baselines demonstrate modest robustness at smaller adversarial ratios, possibly

due to the uniform data distribution enabling more generalizable model learning.

Defense Against F3BA Attack Under IID Conditions. Figure A.2

shows the results of RKD’s defense against the F3BA attack under an IID data

distribution. Across varying attacker ratios (20%, 40%, and 60%), RKD consistently

achieves higher accuracy and lower ASR relative to competing defences. The

baseline methods also retain some robustness—particularly at lower adversarial
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Figure A.1: Performance of baselines and RKD on CIFAR-10 under IID settings

against A3FL attackers.

ratios—potentially due to the uniform class distribution promoting more stable

feature extraction and model convergence.

Performance Under Non-IID and IID Conditions Without Attacks.

Finally, in the absence of any attack, Figure A.3 compares the performance of RKD

and baseline models on CIFAR-10 under both Non-IID and IID data distributions.

As expected, all methods achieve near-zero ASR, given there is no adversarial

interference. Models trained on IID data generally attain higher accuracy due to

the uniform class distribution. Meanwhile, Non-IID settings introduce additional

complexity that marginally lowers accuracy, indicating that attackers may exploit

heterogeneous data distributions more easily than IID ones.
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Figure A.2: Performance of baselines and RKD on CIFAR-10 under IID settings

against F3BA attackers.
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Figure A.3: Performance of baselines and RKD on CIFAR-10 with no attack,

comparing Non-IID and IID data distributions.
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Miguel Sánchez and Bernal, Sergio López and Bovet, Gérôme and Pérez,

Manuel Gil and Pérez, Gregorio Mart́ınez and Celdrán, Alberto Huertas.

“Decentralized federated learning: Fundamentals, state of the art, frameworks,

trends, and challenges”. In: IEEE Communications Surveys & Tutorials

(2023).

[9] Bhagoji, Arjun Nitin and Chakraborty, Supriyo and Mittal, Prateek and Calo,

Seraphin. “Analyzing federated learning through an adversarial lens”. In:

International conference on machine learning. PMLR. 2019, pp. 634–643.

[10] Bishop, Christopher M and Nasrabadi, Nasser M. Pattern recognition and

machine learning. Vol. 4. 4. Springer, 2006.

[11] Blanchard, Peva and El Mhamdi, El Mahdi and Guerraoui, Rachid and

Stainer, Julien. “Machine learning with adversaries: Byzantine tolerant gradi-

ent descent”. In: Advances in neural information processing systems 30 (2017).

[12] Campello, Ricardo JGB and Moulavi, Davoud and Zimek, Arthur and Sander,

Jörg. “Hierarchical density estimates for data clustering, visualization, and

outlier detection”. In: ACM Transactions on Knowledge Discovery from Data

(TKDD) 10.1 (2015), pp. 1–51.

[13] Cao, Xiaoyu and Fang, Minghong and Liu, Jia and Gong, Neil Zhenqiang.

“Fltrust: Byzantine-robust federated learning via trust bootstrapping”. In:

arXiv preprint arXiv:2012.13995 (2020).

[14] Chauhan, Rahul and Ghanshala, Kamal Kumar and Joshi, RC. “Convolu-

tional neural network (CNN) for image detection and recognition”. In: 2018

first international conference on secure cyber computing and communication

(ICSCCC). IEEE. 2018, pp. 278–282.

149



References

[15] Chen, Hong-You and Chao, Wei-Lun. “Fedbe: Making bayesian model en-

semble applicable to federated learning”. In: arXiv preprint arXiv:2009.01974

(2020).

[16] Cohen, Gregory and Afshar, Saeed and Tapson, Jonathan and Van Schaik,

Andre. “EMNIST: Extending MNIST to handwritten letters”. In: 2017

international joint conference on neural networks (IJCNN). IEEE. 2017,

pp. 2921–2926.

[17] Di, Yicheng and Shi, Hongjian and Ma, Ruhui and Gao, Honghao and

Liu, Yuan and Wang, Weiyu. “FedRL: a reinforcement learning federated

recommender system for efficient communication using reinforcement selector

and hypernet generator”. In: ACM Transactions on Recommender Systems

(2024).

[18] Fang, Pei and Chen, Jinghui. “On the vulnerability of backdoor defenses

for federated learning”. In: Proceedings of the AAAI Conference on Artificial

Intelligence. Vol. 37. 10. 2023, pp. 11800–11808.

[19] Fung, Clement and Yoon, Chris JM and Beschastnikh, Ivan. “Mitigating sybils

in federated learning poisoning”. In: arXiv preprint arXiv:1808.04866 (2018).

[20] Fung, Clement and Yoon, Chris JM and Beschastnikh, Ivan. “The limitations

of federated learning in sybil settings”. In: 23rd International Symposium on

Research in Attacks, Intrusions and Defenses (RAID 2020). 2020, pp. 301–316.

[21] booktitle=Proceedings of the 29th ACM International Conference on Multi-

media Ge, Yunjie and Wang, Qian and Zheng, Baolin and Zhuang, Xinlu and

Li, Qi and Shen, Chao and Wang, Cong. “Anti-distillation backdoor attacks:

Backdoors can really survive in knowledge distillation”. In: 2021, pp. 826–834.
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