
Implementing Video Monitoring Capabilities by using

hardware-based Encoders of the Raspberry Pi Zero 2 W

Thomas Ederer , a, Igor Ivkić , a,b

aUniversity of Applied Sciences Burgenland, Eisenstadt, Austria
bLancaster University, Lancaster, UK

Abstract

Single-board computers, with their wide range of external interfaces, pro-
vide a cost-effective solution for studying animals and plants in their natural
habitat. With the introduction of the Raspberry Pi Zero 2 W, which pro-
vides hardware-based image and video encoders, it is now possible to extend
this application area to include video surveillance capabilities. This paper
demonstrates a solution that offloads video stream generation from the Cen-
tral Processing Unit (CPU) to hardware-based encoders. The flow of data
through an encoding application is described, followed by a method of ac-
celerating image processing by reducing the number of memory copies. The
paper concludes with an example use case demonstrating the application of
this new feature in an underwater camera.

Keywords: Raspberry Pi, GPU, Video, Encoder, Monitoring

Metadata

Nr. Code metadata description Please fill in this column

C1 Current code version v0.4.0

C2 Permanent link to repository https://github.com/tederer/octowatch-videoservice

C3 Permanent link to Reproducible Capsule https://github.com/tederer/octowatch-

videoservice/tree/v0.4.0

C4 Legal Code License MIT License

C5 Code versioning system used git

C6 Software code languages, tools, and services used C++

C7 Compilation requirements, operating environments &

dependencies

Raspbian GNU/Linux 12(bookworm)

C8 Link to developer documentation/manual https://underwater-camera-project.github.io

C9 Support email for questions thomas@orchideenvermehrung.at

Table 1: Code metadata

Preprint submitted to SoftwareX June 8, 2025

https://orcid.org/0009-0005-1335-948X
mailto:thomas@orchideenvermehrung.at
https://orcid.org/0000-0003-3037-7813
mailto:i.ivkic@lancaster.ac.uk
https://github.com/tederer/octowatch-videoservice
https://github.com/tederer/octowatch-videoservice/tree/v0.4.0
https://github.com/tederer/octowatch-videoservice/tree/v0.4.0
https://underwater-camera-project.github.io


1. Motivation and Significance

The study of animals and plants in their natural habitat requires undisturbed
observation, as this is the only way to ensure the collection of reliable data.
The observational data collected helps to better understand how they func-
tion within the ecosystem and can be used to advocate for the protection
of threatened environments. To achieve this goal, researchers in the field of
biology [1, 2] are already using inexpensive single-board computers such as
the Raspberry Pi [3, 4] to build measurement and control systems. Previ-
ous publications [5–18] demonstrate the wide range of applications for the
Raspberry Pi. These projects have in common the connection of a camera
module to a single-board computer. Software executing on the CPU of the
computer is responsible for converting the camera’s raw images into a video
stream. However, this type of video generation consumes computing time of
the CPU, which cannot be used for other tasks. The following figure shows
a comparison of software- and hardware-based Joint Photographic Experts
Group (JPEG) encoders.

Figure 1: Comparing the Encoding Time required for Converting Raw Camera Images
(YUV420, 800 x 600 pixels) to JPEG Format using various Encoding Methods.

The performance of the encoding was evaluated by measuring the time taken
to encode 1,000 images. Before using the images, they were converted to
the output format (YUV420) of the camera module, and then each image
was encoded 100 times. The time required for this process was measured,
and the results demonstrated that the speed of libjpeg9 is not sufficient to
produce a video stream with 30 frames per second. Using libjpeg62-turbo

2



is a viable option; however, it occupies one CPU core almost entirely. The
optimal solution is to perform the encoding of the images in hardware, as
this is fast (approximately 4 milliseconds per image) and reduces the load on
the CPU.
In our previous publication [19], we demonstrated a way to overcome this
limitation by using the hardware-based image and video encoders of the
Raspberry Pi Zero 2 W for video stream generation. An underwater camera
for remote monitoring of octopuses in the northern Adriatic Sea was devel-
oped to generate two video streams: one for local recording and another
integrated into a web page for remote access via the Internet. This elimi-
nates the necessity of observers being on-site, thereby reducing the on-site
presence and assisting research projects in undertaking their observations in
a more cost-effective manner. The following figure shows the housing (made
of water pipes) of the underwater camera and its components mounted in an
adaptable installation framework:

Figure 2: Underwater Camera using the hardware-based Image and Video Encoders of the
Raspberry Pi Zero 2 W for Video Stream Generation.

This paper is a continuation of [19] and shows how to use the hardware-
based video and image encoders of the Raspberry Pi Zero 2 W to integrate
video surveillance capabilities into existing measurement and control tasks.
First, we present the overall software architecture of the video service and
explain how the data flow is used to generate two video streams from a
sequence of raw images. Next, we discuss the effectiveness of the underlying
framework in minimizing image copying. Finally, we show how a combination
of implemented software and freely available hardware components can be
used to provide two independent video streams in an underwater camera.

3



2. Software description

The purpose of the Video Service is to convert the images from the camera
module into two independent video streams and make them available over
the network. At startup, the service configures the camera module and then
waits for images from the scene in front of the camera. Each image received is
passed to the hardware-based encoders for conversion to H.264 and Multipart
JPEG (MPJPEG) formats, which generate a sequence of Network Abstrac-
tion Layer (NAL) packets (for H.264) and JPEG images (for MPJPEG).
Before the packets are sent, each JPEG image must be augmented with ad-
ditional data so that it can be processed by the receiver as a MPJPEG video
stream. The converted data can be consumed independently of each other
via separate network ports.

2.1. Software architecture

The software is designed as a Linux service implemented in the programming
language C++ on top of the libraries libcamera (v0.4.0), Boost.Asio (1.82.0)
and the Video for Linux API Version 2 (V4L2) Application Programming
Interface (API) (linux-libc-dev:6.1.140-1). The object-oriented interface of
libcamera reduces the time taken to integrate camera modules into applica-
tions by hiding device-specific implementation details. Figure 3 illustrates
the software stack of the Video Service consisting of existing components
(light grey) and those to be implemented (dark grey).

Figure 3: Software stack of the Video Service, consisting of existing Components (light
grey) and those to be implemented (dark grey).

As hardware-based encoders are not yet supported by the libcamera library,
the underlying V4L2 API had to be used for this part of the implementation.
The network communication components are based on Boost.Asio, which is a
cross-platform C++ library for network and low-level I/O programming. It
is possible to modify camera settings during runtime by utilizing the Remote
Control Interface of the service. The core of the Video Service is a game
loop [20], which uses a number of components. At the consuming end the
service receives two images in different resolutions from the camera module

4



and transfers them to the corresponding encoder. This offloads image scaling
from the CPU to the camera module. Images with a high resolution (1920 x
1080 pixels) are used to generate the H.264 video stream [21], while those with
a lower resolution (800 x 600 pixels) are used to generate the MPJPEG video
stream. Furthermore, the multipart streamer component adds metadata [22]
to each JPEG image to enable web browsers to render the MPJPEG stream as
part of a web page. In order to facilitate the delivery of the two video streams
via the network, two TCP servers are used, each accepting connections on
a distinct port. The following figure illustrates the data flow in the Video
Service:

Figure 4: Data flow in the Video Service used to Produce two Video Streams from a
Sequence of Raw Images.

To convert the sequence of images (provided by the camera module) into a
video stream, each image has to be processed by different components of the
Video Service. In the worst case, images have to be copied when they are
provided to, for example, the encoder. Such copy operations take a long time
and have a large impact on the maximum throughput. To reduce copying
to a minimum, V4L2 uses the DMABUF method. When a new image is
downloaded from the camera module, the consumer of the image receives
two integer numbers, a file descriptor and a memory offset. With these two
values it is possible to map the memory of the image to the memory of the
current process without copying data. This reduces the number of copies to
one, as the network interface is the only one that requires a copy of the data
due to the asynchronous nature of the data transfer.

2.2. Software functionalities

The video service presented can be used to integrate video surveillance capa-
bilities into control and measurement systems using a low-cost Raspberry Pi
Zero 2 W and a camera module. By using the service, the camera module
gets configured to provide two images with different resolutions to generate
two video streams: one in H.264 format and another in MPJPEG format.
There is also an interface to modify the properties of the camera module.

5



2.2.1. H.264 video stream

The video stream is provided by the service via network port 8888, with a
resolution of 1920 x 1080 pixels. Using H.264 encoding with its ability to
compress data over multiple frames in the video stream ensures a bandwidth
requirement of 10 MBit/s. The encoded video data is transmitted using
NAL packets, which can be stored locally or on a server in the cloud for later
playback and processing. Real-time playback can be facilitated by using the
free and open source cross-platform multimedia player VLC, for example.
Free tools such as FFmpeg can be used for recording the video stream.

2.2.2. MPJPEG video stream

Network port 8887 is used by the service for the transmission of the stream,
with a resolution of 800 x 600 pixels. MPJPEG encoding enables the in-
tegration of the stream into web pages, and by adjusting the image com-
pression rate to its maximum, a bandwidth requirement of 2.5 MBit/s can
be achieved. The combination of H.264 for local recording and MPJPEG
for internet transmission can reduce the on-site presence, thereby assisting
research projects in conducting their observations in a more cost-effective
manner. Environment variables can be used to configure the compression
rate and the type (Graphics Processing Unit (GPU) or CPU) of the JPEG
encoder used.

2.2.3. Required Network Bandwidth

In order to measure the required network bandwidth (Figure 5) for the trans-
mission of the described video streams, three scenarios were selected for the
MPJPEG video stream, covering the range of supported image quality values
(0 – 95). Two scenarios were used to evaluate the network bandwidth of the
H.264 video stream: (1) with no activity in front of the camera, and (2) with
activity in the recorded scene.

Figure 5: Required Network Bandwidth depending on Encoding and Image Quality.

6



3. Illustrative example

In the context of the Octopus Intelligence project of Mare Mundi, an un-
derwater camera was constructed for the observation of octopuses in the
northern Adriatic Sea [19]. The video streams were generated using a Rasp-
berry Pi Zero 2 W, a camera module and the Video Service presented in this
paper. Given the high compression rate, the H.264 format was used to record
the camera output on-site for later processing. In order to facilitate real-time
observation, additional services had to be developed and are available for free
at the Underwater Camera Project. A web server was used to provide
a web page [23] containing the MPJPEG video stream available from any
location with internet access, as well as controls for modifying the camera
settings (e.g. brightness). The following figure illustrates the architecture of
the video-related components of the underwater camera:

Figure 6: Video Related Part of the Architecture used to Monitor Octopuses in the north-
ern Adriatic Sea.

A proxy is required to make the content of the Video Service and the web
server available on the same port. Direct access to the web server is tech-
nically possible, but it makes it impossible for web browsers to determine
whether the content on the website is from the same source as the video.
As a result, the video download is blocked by the browser. A proxy (like
nginx ) or application gateway hides both services behind a single interface
to avoid requests getting blocked. All those services were configured to run
as Linux services. This enables the operating system of the Raspberry Pi
to start them at system boot and to collect their log output in the system
journal. To reduce the risk of getting attacked, the firewall was configured
to drop all incoming connections to port which are different to those of the
H.264 video stream and the proxy.

7

https://mare-mundi.org/
https://underwater-camera-project.github.io/


4. Impact

The Video Service presented was developed as part of the implementation of a
low-cost underwater camera used by Mare Mundi to study the intelligence
of octopuses in the northern Adriatic Sea [19]. The findings demonstrate
that the hardware-based video and image encoders of the Raspberry Pi Zero
2 W possess sufficient capabilities to concurrently generate two video streams
(H.264 and MPJPEG) with differing transmission bandwidth requirements.
This facilitates the transmission of the video stream over the internet and its
local recording. In contrast, commercially available camera systems generally
provide a single video stream, without the possibility of customization, such
as adding additional sensors or actors. The proposed solution overcomes
these limitations by leveraging the Raspberry Pi’s ability to provide a variety
of external interfaces for connecting devices, and its software can be modified
and extended by anyone. From a financial perspective, the transmission of
video content via the internet, in conjunction with local recording, has the
potential to reduce the necessity for on-site researchers, thereby leading to
cost reductions while maintaining the capacity to conduct observations. The
local recording of video output is another potential cost-saving measure, as
it allows users to access videos when they have time to do so.
In the context of future projects, the potential exists for detecting activity in
the video and providing users with the corresponding sequences from the high
quality local recording for later analysis. The elimination of time-consuming
viewing of the recording further reduces project costs.

5. Conclusions

The use of video surveillance presents certain challenges for research projects,
as the acquisition of cameras is expensive and the devices cannot be extended
with sensors and actuators. Low-cost single-board computers such as the
Raspberry Pi have demonstrated their efficacy for measurement and control
tasks in numerous publications. With the Raspberry Pi Zero 2 W’s new
hardware-based video and image encoders, it is now possible to produce
high quality video at low cost. In this paper, we use a practical example to
show how the efficient use of encoders has turned the Raspberry Pi into an
underwater camera that generates two video streams. One stream (H.264)
is used for on-site recording, while the other video stream (MPJPEG) is
embedded in a website that can be accessed via the Internet. Using these
two video streams allows researchers to observe the underwater environment
without disturbing it with their presence, also eliminating the need to be
present on site and reducing the costs.

8

https://mare-mundi.org/


References

[1] J. W. Jolles, Broad-scale applications of the Raspberry Pi: A review and
guide for biologists, Methods in Ecology and Evolution 12 (9) (2021)
1562–1579. doi:10.1111/2041-210X.13652.

[2] B. M. Allan, D. G. Nimmo, D. Ierodiaconou, J. VanDerWal, L. P. Koh,
E. G. Ritchie, Futurecasting ecological research: The rise of technoecol-
ogy, Ecosphere 9 (5) (2018) e02163. doi:10.1002/ecs2.2163.

[3] S. E. Mathe, H. K. Kondaveeti, S. Vappangi, S. D. Vanambathina, N. K.
Kumaravelu, A comprehensive review on applications of Raspberry Pi,
Computer Science Review 52 (2024) 100636. doi:10.1016/j.cosrev.

2024.100636.

[4] A. Nayyar, V. Puri, Raspberry pi-a small, powerful, cost effective
and efficient form factor computer: A review, International Journal
of Advanced Research in Computer Science and Software Engineering
(IJARCSSE) 5 (2015) 720–737.

[5] V. J. D. Almero, M. G. B. Palconit, J. D. Alejandrino, R. S. Concepcion,
R. R. P. Vicerra, E. Sybingco, A. A. Bandala, E. P. Dadios, Development
of a Raspberry Pi-based Underwater Camera System for Inland Fresh-
water Aquaculture, in: 2021 IEEE 13th International Conference on Hu-
manoid, Nanotechnology, Information Technology, Communication and
Control, Environment, and Management (HNICEM), IEEE, Manila,
Philippines, 2021, pp. 1–6. doi:10.1109/HNICEM54116.2021.9731987.

[6] F. Cazenave, C. Kecy, M. Risi, S. H. D. Haddock, SeeStar: A low-
cost, modular and open-source camera system for subsea observations,
in: 2014 Oceans - St. John’s, IEEE, St. John’s, NL, 2014, pp. 1–7.
doi:10.1109/OCEANS.2014.7003077.

[7] G. Coro, M. Bjerregaard Walsh, An intelligent and cost-effective remote
underwater video device for fish size monitoring, Ecological Informatics
63 (2021) 101311. doi:10.1016/j.ecoinf.2021.101311.

[8] E. P. Dadios, V. J. Almero, R. S. C. Ii, R. R. P. Vicerra, A. A. Ban-
dala, E. Sybingco, Department of Manufacturing Engineering and Man-
agement, De La Salle University (DLSU) 2401 Taft Avenue, Malate,
Manila 1004, Philippines, Center for Engineering and Sustainability
Development Research, De La Salle University (DLSU) 2401 Taft Av-
enue, Malate, Manila 1004, Philippines, Department of Electronics and

9

https://doi.org/10.1111/2041-210X.13652
https://doi.org/10.1002/ecs2.2163
https://doi.org/10.1016/j.cosrev.2024.100636
https://doi.org/10.1016/j.cosrev.2024.100636
https://doi.org/10.1109/HNICEM54116.2021.9731987
https://doi.org/10.1109/OCEANS.2014.7003077
https://doi.org/10.1016/j.ecoinf.2021.101311


Computer Engineering, De La Salle University (DLSU) 2401 Taft Av-
enue, Malate, Manila 1004, Philippines, Low-Cost Underwater Cam-
era: Design and Development, Journal of Advanced Computational
Intelligence and Intelligent Informatics 26 (5) (2022) 851–858. doi:

10.20965/jaciii.2022.p0851.

[9] I.-J. Huang, C.-C. Hung, S.-R. Kuang, Y.-N. Chang, K.-Y. Huang, C.-
R. Tsai, K.-L. Feng, The Prototype of a Smart Underwater Surveillance
System for Shrimp Farming, in: 2018 IEEE International Conference
on Advanced Manufacturing (ICAM), IEEE, Yunlin, 2018, pp. 177–180.
doi:10.1109/AMCON.2018.8614976.

[10] S. H. Jury, H. Howell, D. F. O’Grady, W. H. Watson Iii, Lobster trap
video: In situ video surveillance of the behaviour of Homarus americanus
in and around traps, Marine and Freshwater Research 52 (8) (2001) 1125.
doi:10.1071/MF01096.

[11] X. Mouy, M. Black, K. Cox, J. Qualley, C. Mireault, S. Dosso, F. Juanes,
FishCam: A low-cost open source autonomous camera for aquatic
research, HardwareX 8 (2020) e00110. doi:10.1016/j.ohx.2020.

e00110.

[12] D. Novy, L. Kawasumi, J. Ferguson, M. Sullivan, P. Bell, J. S. Chow,
J. B. de Sousa, K. A. Cantner, B. Woodward, A. Adams, K. L. Bell,
Maka Niu: A low-cost, modular imaging and sensor platform to increase
observation capabilities of the deep ocean, Frontiers in Marine Science
9 (2022). doi:10.3389/fmars.2022.986237.

[13] B. T. Phillips, S. Licht, K. S. Haiat, J. Bonney, J. Allder, N. Chaloux,
R. Shomberg, T. J. Noyes, DEEPi: A miniaturized, robust, and eco-
nomical camera and computer system for deep-sea exploration, Deep
Sea Research Part I: Oceanographic Research Papers 153 (2019) 103136.
doi:10.1016/j.dsr.2019.103136.

[14] A. Purser, U. Hoge, J. Lemburg, Y. Bodur, E. Schiller, J. Ludszuweit,
J. Greinert, S. Dreutter, B. Dorschel, F. Wenzhöfer, PlasPI marine
cameras: Open-source, affordable camera systems for time series ma-
rine studies, HardwareX 7 (2020) e00102. doi:10.1016/j.ohx.2020.

e00102.

[15] J. Giddens, A. Turchik, W. Goodell, M. Rodriguez, D. Delaney, The
National Geographic Society Deep-Sea Camera System: A Low-Cost
Remote Video Survey Instrument to Advance Biodiversity Observation

10

https://doi.org/10.20965/jaciii.2022.p0851
https://doi.org/10.20965/jaciii.2022.p0851
https://doi.org/10.1109/AMCON.2018.8614976
https://doi.org/10.1071/MF01096
https://doi.org/10.1016/j.ohx.2020.e00110
https://doi.org/10.1016/j.ohx.2020.e00110
https://doi.org/10.3389/fmars.2022.986237
https://doi.org/10.1016/j.dsr.2019.103136
https://doi.org/10.1016/j.ohx.2020.e00102
https://doi.org/10.1016/j.ohx.2020.e00102


in the Deep Ocean, Frontiers in Marine Science 7 (2021) 601411. doi:

10.3389/fmars.2020.601411.

[16] P. Lertvilai, The In situ Plankton Assemblage eXplorer (IPAX): An
inexpensive underwater imaging system for zooplankton study, Meth-
ods in Ecology and Evolution 11 (9) (2020) 1042–1048. doi:10.1111/

2041-210X.13441.

[17] M. Ambrož, Raspberry Pi as a low-cost data acquisition system for
human powered vehicles, Measurement 100 (2017) 7–18. doi:10.1016/
j.measurement.2016.12.037.

[18] H. Baghdadi, K. Rhofir, M. Lamhamdi, Smart portable system for mon-
itoring vibration based on the Raspberry Pi microcomputer and the
MEMS accelerometer, International Journal of Informatics and Com-
munication Technology (IJ-ICT) 12 (3) (2023) 261. doi:10.11591/

ijict.v12i3.pp261-271.

[19] T. Ederer, W. Slany, I. Ivkić, Reducing Underwater Observation Costs
by Leveraging Cloud Technology (Accepted for Publication, 2024, De-
cember), 11th International Conference on Computational Science and
Computational Intelligence (2024).

[20] L. Valente, A. Conci, B. Feijó, Real time game loop models for single-
player computer games, Proceedings of the IV Brazilian Symposium on
Computer Games and Digital Entertainment (2005) 89–99.

[21] ITU-T, H.264 : Advanced video coding for generic audiovisual services
(Aug. 2021). doi:11.1002/1000/11830.

[22] N. Borenstein, N. Freed, MIME (Multipurpose Internet Mail Exten-
sions): Mechanisms for Specifying and Describing the Format of In-
ternet Message Bodies, Tech. Rep. RFC1341, RFC Editor (Jun. 1992).
doi:10.17487/rfc1341.

[23] M. S. Mikowski, J. C. Powell, Single Page Web Applications: JavaScript
End-to-End, Manning, Shelter Island, NY, 2014.

11

https://doi.org/10.3389/fmars.2020.601411
https://doi.org/10.3389/fmars.2020.601411
https://doi.org/10.1111/2041-210X.13441
https://doi.org/10.1111/2041-210X.13441
https://doi.org/10.1016/j.measurement.2016.12.037
https://doi.org/10.1016/j.measurement.2016.12.037
https://doi.org/10.11591/ijict.v12i3.pp261-271
https://doi.org/10.11591/ijict.v12i3.pp261-271
https://doi.org/11.1002/1000/11830
https://doi.org/10.17487/rfc1341

	Motivation and Significance
	Software description
	Software architecture
	Software functionalities
	H.264 video stream
	MPJPEG video stream
	Required Network Bandwidth


	Illustrative example
	Impact
	Conclusions

