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Abstract

Accurate estimation of the upper tail of a distribution is crucial in seismology, where

estimating the probability of extreme earthquake magnitudes is vital for risk assessment

and mitigation. Traditional statistical methods often overlook expert knowledge, par-

ticularly regarding physical upper bounds on earthquake magnitudes. This paper intro-

duces a novel methodology for estimating the upper tail distribution, integrating experts’

knowledge on the physical processes through a conservative bound on the worst possi-

ble earthquakes. The methodology combines rigorous statistical techniques with expert

judgement, creating a hybrid model that complements existing data-driven methods and

enhances the reliability of tail estimates. We demonstrate the benefits of incorporating

experts’ knowledge through the application to data on human-induced earthquakes in the

Netherlands. Within this paper, we focus on seismological magnitude modelling, however,

the proposed methodology has the potential to be implemented as a generic extreme value

approach for multiple problem settings.

Keywords— Earthquake Modelling, Extreme Value Theory, Generalised Pareto Distribution (GPD),

Magnitude of Completeness, Maximum Possible Earthquake Magnitude (Mmax).

1 Introduction

The rise in human-induced seismicity, particularly in regions undergoing extensive industrial activi-

ties such as gas extraction or the injection of captured carbon dioxide for storage, presents significant

challenges for public safety and infrastructure integrity (Ellsworth 2013, Evans et al. 2012). One such

region is the Groningen gas field in the Netherlands, where increased seismic activity within the area

has been attributed to natural gas extraction. Concerns have since been raised about the potential for

severe earthquakes and the subsequent impact on buildings, pipelines, and other critical infrastructure

(Vlek 2019). Accurate inference and modelling of these earthquakes are essential to mitigate risks,
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inform public policy, determine potential cash reserves needed to mitigate against future earthquake

damage, and to ensure the safety and resilience of the affected communities.

Statistical modelling of earthquake magnitudes plays a pivotal role in understanding and predicting

the behaviour of human-induced earthquakes. Due to constant monitoring of seismic sites, there are

often large data sets that can be used to inform our models. However, as policyholders and risk

analysts are often interested in determining the upper tail and the worst case scenario, inference often

focuses on the extreme events with the largest magnitudes.

Seismic experts generally assume that actual earthquake magnitudes are independent and iden-

tically distributed (IID) over time (Ogata 1988). Many researchers (Aki 1965, Kagan 2002) have

adopted the exponential distribution to model earthquake magnitude based on the Gutenberg-Richter

law (Gutenberg & Richter 1944), which postulates a logarithmic relationship between earthquake

magnitude and frequency. There are problems with implementing this exponential distribution in

both tails. The smallest earthquakes cannot be guaranteed to be measured due to the quality of the

recording network, which varies spatially, so there is a level for any given region, termed the magni-

tude of completeness Mc, below which earthquake data may be partially missing. Hence, observed

earthquakes are inconsistent with an exponential distribution below Mc. To overcome this, the mag-

nitudes’ excesses over an estimated magnitude of completeness Mc are modelled as exponential, which

is consistent with the Gutenberg-Richter law due to the lack of memory property of the exponential

distribution. On the other hand, the lack of a finite upper endpoint of the exponential is at odds

with the knowledge that the seismic energy stored in any region must have an upper bound and this

imposes a finite upper bound, termed Mmax, on the largest possible earthquake in that region (Brune

1968, Chinnery 1969). To bridge this gap, a truncated exponential distribution has been proposed

(Raschke 2015), with density function:

f(x; θ, τ) =
θ exp(−θx)

1− exp(−θτ)
0 ≤ x ≤ τ, (1)

and 0 otherwise, where θ > 0. This model introduces a step change in the density at the unknown upper

endpoint τ , where τ ≤ Mmax. However, there are drawbacks to this strategy as well. The maximum

likelihood estimate (MLE) for τ is simply the largest value in the dataset, making the estimated

model unreliable for magnitudes beyond the observed data. This inherent limitation highlights the

need for more flexible models in capturing extreme seismic events. To address the limitations of a

sharp cut-off in the large-event distribution tail of the truncated exponential, some researchers have

introduced a gradual continuous ‘taper’ to the density function relative to an exponential density,

which aligns more realistically with physical dynamic systems. An example of this approach is the

tapered Gutenburg-Ritcher distribution (Vere-Jones et al. 2001). However, tapering introduces its own

challenges, requiring the choice of the form of the taper function and the estimation of the associated

additional unknown parameters. These choices are typically difficult to justify rigorously.

Statistical approaches have also been developed to estimate Mmax directly as the endpoint of a

distribution, along with associated measures of uncertainty (Beirlant et al. 2019). However, these

methods often yield confidence intervals that are unrealistically narrow—much tighter than those

provided by seismic experts. This suggests they may not adequately capture the uncertainty in the

extreme tail. Moreover, such approaches typically lack empirical diagnostics to assess the validity of

their underlying assumptions. For these reasons, we do not adopt this type of method in our analysis.
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A flexible statistical alternative is provided by the Generalised Pareto distribution (GPD) from

peaks-over-threshold extreme value theory (Coles 2001, Embrechts et al. 2013). Applied to magnitudes

exceeding a sufficiently high threshold u, the GPD introduces a shape parameter ξ that controls the

tail behaviour: it reduces to the exponential case underlying the Gutenberg-Richter relationship when

ξ = 0, but yields a finite upper endpoint xe when ξ < 0, thereby accommodating physically bounded

maximum magnitudes; heavier-than-exponential tails (ξ > 0) are also permitted if supported by the

data. This approach, which we will follow, has been taken by Varty et al. (2021) with promising

results for Groningen magnitude data.

Geophysicists have explored the upper limits of earthquake magnitudes from a physical perspective

(McGarr 2014, Galis et al. 2017, Weng et al. 2021). These approaches leverage geophysical principles

to estimate the maximum possible magnitude, i.e., Mmax, based on underlying processes such as

fault mechanics and energy release. Different physical models do not always agree with one another

regarding the value of Mmax, resulting in a distribution of values for Mmax across seismic experts and

their methodologies. A complication is that there is no public statement of the relative confidence the

experts have in their estimates and some of theMmax estimates may be negatively biased (Mmax < xe).

We propose a novel approach to address these challenges by incorporating experts’ physical knowl-

edge of the maximum possible earthquake magnitude (Mmax) into GPD modelling. Rather than di-

rectly letting Mmax dictate the upper endpoint, we treat the distribution of Mmax as a constraint that

bounds the GPD upper endpoint from above, ensuring that the model respects physical limits without

over-restricting statistical inference. With this construction, the knowledge of Mmax cannot simply be

incorporated into the analysis as a prior for the GPD parameters, as the relationship between Mmax

and xe does not provide a simple functional form for use in the prior. By combining the flexibility

of the GPD with a bounded upper limit derived from the Mmax distribution, our approach aims to

reduce the risk of overestimation of events in the upper tail while retaining the ability to model rare,

high-magnitude events in a statistically robust and physically informed manner. As noted above, some

estimates of Mmax may be negatively biased so we also explore the effect of using the experts’ Mmax

distribution as a prior for xe. This leads to estimates of xe that are above the smallest of the experts’

Mmax estimates, in contrast to the constrained Mmax approach where xe can be smaller than this

level. Ultimately the best of these two approaches will come down to what operational risk managers

prefer to believe, an underestimation or an overestimation of the experts’ claimed worst-case risks.

Their decision has to be driven by their beliefs about the reliability of the geophysical experts. Our

role, as statisticians, is simply to provide to the managers with the best possible statistical inferences

conditional on the different perspectives taken on the views of the experts’ performance.

The paper is structured as follows. Section 2 presents the data for the Groningen gas field and the

value of Mc and how it changes over time, as well as giving the distribution of Mmax derived by seismo-

logical practitioners for this region. In Section 3 we introduce the GPD properties as well as its specific

features for modelling earthquake magnitudes with a varying threshold to account for time-variation

in Mc. Section 4 outlines our proposed methodology for incorporating expert beliefs into an extreme

value framework, with a focus on estimating the upper tail of the magnitude distribution. This is

approached using both likelihood-based estimation (Section 5) and Bayesian inference (Section 6), the

latter including both a penalised-likelihood formulation and the use of expert-informed Mmax distri-

bution as a prior on for the GPD endpoint. Results for Groningen catalogue from the likelihood-based
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methods are presented in Section 5, while Section 6.4 summarises the Bayesian results. Concluding

remarks are given in Section 7.

2 Groningen Data Catalogue

2.1 Earthquake Catalogue and Magnitude of Completeness

The Groningen region in the Netherlands has one of the largest natural gas reserves, globally. Extensive

gas extraction since 1963 from these deep reserves has significantly altered underground pressures as

the remaining gas re-distributes itself across the region, causing subsidence and increased seismic

activity. Starting in the mid-1990s, the Royal Netherlands Meteorological Institute (KNMI) has

been measuring and monitoring earthquake occurrences in the Netherlands through a network of

geophones (KNMI 2020). This induced earthquake dataset comprises detailed records of seismic

events, including the time, location, magnitude, and depth of each earthquake; it is a critical resource

for understanding the seismic activity in the Groningen region. The magnitude recorded for each

seismic event is expressed on a logarithmic scale with units of local magnitude ML. Here, we have a

precise set of magnitudes, which avoids issues linked to rounded data that previous analyses of these

data encountered. Figure 1 shows the values of earthquake magnitudes over time from April 1995

to 2024, capturing a total of 1859 recorded earthquakes during this period. A large number of small

earthquakes in this region have not been recorded due to their magnitudes being below the magnitude

of completeness at the time of their occurrence.

It is widely accepted that since 1995, a conservative estimate for the Mc in the Groningen region

has been 1.5 ML (Dost & Kraaijpoel 2013), with only excesses over time of this constant being used

for estimation of the upper endpoint of the distribution of magnitudes by Beirlant et al. (2019). In

Figure 1, the rate of recorded earthquake occurrences shows a clear upward trend over time for the

majority of the period. Even if this rate change was accounted for, the figure also shows more small

magnitude earthquakes occur at the later dates. This change reflects the investment in improving

and expanding the geophone network in 2014-2017. As noted by Paleja et al. (2016), we now possess

the ability to be more certain to detect smaller magnitude events, i.e., the magnitude of completeness

needs to be a function of time, t, i.e., Mc(t), which decreases through the observation period.

The distribution of excesses above Mc(t) is well described by the Gutenberg-Richter law, i.e., the

exponential distribution, and it is likely to be contained in the GPD family. Hence, we can estimate

Mc(t) as the temporally varying threshold for the GPD. This is exactly the approach Varty et al. (2021)

took in estimating Mc(t) for the Groningen catalogue. They adopted a sigmoid threshold function and

optimised its parameters. Inference for this function showed that there was considerable uncertainty in

the rate of transition from one asymptote to the other, but reliable estimates for the other parameters.

For simplicity within our study, we adopt the special case of their estimated function, i.e., the step

function for t, between 1995-04-01 and 2024-01-04,

Mc(t) = u11{t ≤ t0}+ u21{t > t0}, (2)

where 1(A) is the indicator function of event A, (û1, û2) = (1.15, 0.76) and t̂0 = 2015-12-25. Before

and after the change in M̂c(t), there were 1159 and 700 earthquake events observed, within which,
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there were 593 and 396 exceedances above the thresholds respectively. This threshold function is

shown in Figure 1. Subsequently, we treat the M̂c(t) as known and we drop the estimate notation.

Critically, for our purposes, the excesses of this estimated threshold function are fitted excellently by

a GPD, as found through a QQ plot in later data analysis, see Figure 3 (top left panel).

We are confident in the use of threshold function (2), which was estimated using an automated op-

timising technique for extreme value threshold selection developed by Varty et al. (2021). Specifically,

the parameters of a flexible class of threshold functions are estimated simultaneously with likelihood

inference for the GPD model for excesses of this threshold function.The method uses a data-driven

estimation approach that optimises the GPD fit by taking into account both bias and variance of the

estimators. Murphy et al. (2025) have illustrated that, for IID variables, this approach systemati-

cally outperforms the leading established automated threshold methods as well as the well-established

visual methods popularised by Coles (2001).
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Figure 1: Groningen induced seismicity catalogues from April 1995 to January 2024 in units

ML. The step change in Mc(t), given by expression (2), is shown by the horizontal black lines.

2.2 Expert View on Mmax Distribution for Groningen

The maximum possible magnitude Mmax, represents the largest possible earthquake that can occur

in a specific seismic region or along a particular fault system. This concept is crucial in seismol-

ogy and earthquake engineering for various reasons. For several years, NAM (Nederlandse Aardolie

Maatschappij) has been working on improving a seismic hazard and risk model in response to the

induced earthquakes in the Groningen gas field. In line with these efforts, a workshop considering

the statistical/hybrid and physical dimensions approaches was held in 2022 to determine Mmax for

the Groningen region with recommendations reported by NAM (2022). The resulting distribution for

Mmax, ranging from 4.0 ML to 6.5 ML, was then obtained by combining across all elements from the

two approaches (statistical and physical). The proposed Mmax distribution is represented discretely by

a probability mass function with values centred in 0.5 magnitude unit bins. The corresponding contin-

uous cumulative distribution function (CDF) is illustrated in Table 1, where the CDF is constructed

by assigning the probability mass in each discrete magnitude bin uniformly over the 0.5 magnitude

unit bin width centred on the magnitudes.
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Mmax(in ML) 3.75 4.25 4.75 5.25 5.75 6.25 6.75

Cumulative Probability 0 0.27 0.675 0.8625 0.97 0.995 1

Table 1: The cumulative distribution function (CDF) of the assessedMmax distribution provided

by the Mmax report (NAM 2022).

To facilitate later analysis, where a differentiable model for the distribution of Mmax is needed, we

use a shifted truncated Gamma distribution over the interval [a, b] = [3.75, 6.75] to approximate the

true underlying distribution of the experts’ views. Its distribution function, denoted by FMmax(x), can

be expressed in terms of the Gamma distribution function, FG, as follows:

FMmax(x;α, β) =


0, x < a,

FG(x−a;α,β)
FG(b−a,α,β) , a ≤ x ≤ b,

1, x > b,

(3)

where α and β are the shape and scale parameters of a Gamma distribution. We use the estimates

(α̂, β̂) = (1.64, 1.79), which were obtained by a maximum likelihood fit of distribution (3) using a large

sample simulated from the piecewise linear distribution function of the discrete Mmax distribution of

Table 1. In the supplementary materials, we show that there are very little differences in the results

of Section 5 when using either a different fitting method or with the above fitting method with b = ∞.

2.3 Strategy for Incorporating the Mmax Distribution into Statistical Inferences

We can use estimates of Mmax in our inference for the magnitude distribution based on the arguments

in Section 1. Firstly we assume that underestimation of Mmax, i.e., that Mmax < xe, is not an issue.

Under this assumption, it is reasonable to treat Mmax as an upper bound for the endpoint of the GPD

used to model earthquake magnitudes, such that xe ≤ Mmax. If the distribution of the data generating

mechanism is taken to follow a GPD above a fixed threshold and Mmax has a known finite value, then

the GPD shape parameter necessarily must satisfy ξ < 0.

Complexity comes from there not being a consensus on a single value for Mmax, as seen in Sec-

tion 2.2, so a distribution of possible values forMmax exists for any region. While theMmax distribution

is derived from experts’ assessments, it is important to recognise that experts’ judgements may vary

due to different assumptions and methods. If we assumed that all experts were correct in their assess-

ments, the minimum value from the distribution of Mmax would provide a conservative upper bound

for xe, ensuring that it remains below the limit suggested by any expert. However, this is not a prac-

tical assumption. By having a distribution for Mmax, we account for the variability in expert opinions

and allow for a probabilistic representation of the upper magnitude limit, which better reflects the

uncertainty and enables more robust inference.

How we incorporate the experts’ views into a statistical analysis must hinge of how much we trust

that they do not under-estimate Mmax, because if they do then our bounding of xe by these Mmax

values will lead to bias. So we also exploit the Mmax distribution as a prior for xe, but this risks over-

estimation of the tail of the magnitude distribution as xe must necessarily exceed the experts’ smallest

Mmax value. These two approaches reflect different levels of trust in the experts’ collective views. As
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noted in Section 1, our role is to provide the best inferences possible based on these varying levels of

confidence in experts’ judgement and to leave the decision of how to the trade-off between under- and

over-estimation to the policymakers based on their own confidence in the experts’ reliability.

3 Magnitude modelling for Varying Threshold

3.1 Generalised Pareto Distribution

The focus on extreme events intuitively leads to the application of extreme value theory (Coles 2001,

Embrechts et al. 2013), which provides a robust framework for modelling the tails of the earthquake

magnitude distribution, where these rare, but high-impact, events occur. In particular, extreme

value methods consider a continuous random variable with distribution function F . Under weak

assumptions, an asymptotic argument justifies the use of the generalised Pareto distribution (GPD)

as a model for the conditional distribution function, Fu(x) = [F (u+ x)− F (u)] / [1− F (u)] for x > 0,

of excesses by the random variable over a high threshold u. Specifically, as u tends to the upper

endpoint of F , if there exists a function a(u) > 0 such that Fu(a(u)x) is non-degenerate for x > 0,

then Fu(a(u)x) converges to a GPD (Pickands 1975, Davison & Smith 1990). Applying this limit

distribution for the excesses over a threshold u, which is a high quantile of F , leads to the following

model. For x > 0, the distribution function for Fu(x) with threshold u is modelled by:

Fu(x;σu, ξ) = 1−
(
1 +

ξx

σu

)−1/ξ

+

, (4)

where ξ ∈ R is the shape parameter, σu > 0 is the scale parameter, and x+ = max (x, 0). Unlike

the truncated exponential, the GPD allows for the modelling of extreme events beyond the largest

observed magnitudes, offering a more natural framework for tail inference. In contrast to the tapered

Gutenburg-Ritcher distribution, the GPD has a theoretical basis for its taper function. The upper

endpoint, xe, for the GPD is defined by

xe = u− σu
ξ

when ξ < 0, (5)

while xe = ∞ when ξ ≥ 0. In the case where ξ = 0, the GPD is an exponential distribution (with

θ = 1/σu, τ = ∞ in distribution (1)), which satisfies the Gutenberg-Richter law. This makes the GPD

an apt choice of model as it can be arbitrary close to the exponential whilst having a finite upper

endpoint when ξ < 0, with the value of ξ also determining the rate of decay of the taper. Establishing

an appropriate threshold, u, is crucial, as it serves as the cutoff point for considering only the extreme

events (Murphy et al. 2025).

3.2 GPD with Varying Threshold

Let Xt > 0 be an earthquake magnitude at time t. Following Ogata (1988), we assume the set {Xt}
consists of IID realisations of a random variable. Further we assume that Xt ∼ GPD(σ0, ξ), where

σ0 > 0. However, due to the partially missing data of Xt below the time changing magnitude of

completeness, Mc(t), we could only fit this distributional model conditionally on Xt > Mc(t) for any

7



t. Given the GPD threshold u(t) = Mc(t), we have the property that

{Xt − u(t)}|{Xt > u(t)} ∼ GPD(σu(t), ξ), (6)

where σu(t) = σ0 + ξu(t), and this distribution is found by using the property of closure of the GPD

to conditioning (Coles 2001). Property (6) ensures that the GPD remains consistent across different

thresholds, with identical shape parameters and linked scale parameters determined entirely by σ0

and ξ. Additionally, the upper endpoint xe remains unaffected by the change in the threshold, so

xe = xe(σ0, ξ) = −σ0/ξ, for ξ < 0 for all t. Although Xt are IID, property (6) shows that the excesses

of Xt over u(t) are no longer identically distributed but, of course, remain independent.

For Groningen earthquake data, we have u(t) given by expression (2), which is piecewise constant

with threshold uj > 0 for periods j = {1, 2}, corresponding to the time period {t ≤ t0} and {t > t0}
respectively. Hence, following property (6), the excesses of the threshold are identically distributed

within each period but not between periods, with scale parameter σuj = σ0 + ξuj in period j (j =

{1, 2}). For period j, denote the nj excesses of uj denoted by yj,1, yj,2, . . . , yj,nj . The likelihood

function for σ0 and ξ is therefore given by:

L(σ0, ξ) =
2∏

j=1

nj∏
i=1

fuj (yj,i;σuj , ξ), (7)

where fuj is the density function for GPD with threshold uj derived from the CDF in expression (4).

Understanding the behaviour of this likelihood function is crucial for inference on the model param-

eters σ0 and ξ, which in turn provides inference for the distribution of the upper tail. However, relying

solely on the likelihood function can have limitations, as it does not account for expert knowledge or

prior beliefs about the GPD parameters or about features of the distribution of magnitude, which can

provide valuable insights and improve the accuracy of estimates. As discussed in Section 2.3, there

are two core methodologies considered in this paper to incorporate expert knowledge depending on

the different levels of trust in the experts’ view.

One approach is to treat the expert-informed distribution for Mmax as an upper bound for xe, the

upper endpoint of the GPD. In the field of biochemistry, Dryden & Zempléni (2006) explored how the

presence of a known upper bound, influences the shape parameter of the distribution, when applied

to muscle and DNA data. In their framework, xe is unknown but constrained by a known constant

upper bound. To address such scenarios, Dryden & Zempléni (2006) proposed two methods: fixed

endpoint and constrained MLEs. In our seismology setting, the unknown upper endpoint xe of the

GPD satisfies xe ≤ Mmax and we have knowledge about Mmax through its distribution, so Mmax is

not a known constant as required by Dryden & Zempléni (2006). In Sections 5- 6, using likelihood

and Bayesian inference paradigms respectively, we explore how to incorporate this expert-informed

distribution of Mmax into the GPD inference process using a penalised likelihood approach, which will

enable us to account for the uncertainty in Mmax.

The other approach is by considering the Mmax distribution as a prior for the upper endpoint of

GPD (i.e., assume xe = Mmax). As noted by Coles & Tawn (1996), including prior knowledge about

a set of extreme quantiles (that may not correspond to the upper endpoint) can enhance the fitted

model’s performance by incorporating information that is not contained within the raw data.
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4 Methodology

4.1 Penalised Likelihood Function

To incorporate the experts’ belief about Mmax being an upper bound for xe into the inference approach

for the GPD, we propose a novel method to use a penalty function within the likelihood estimation

framework. Specifically, the experts’ belief about the upper endpoint xe := xe(σ0, ξ), given by ex-

pression (5), can be represented through a penalty function S(·). This penalty function must possess

certain properties to adequately capture the characteristics of Mmax: (i) no penalty should be applied

when xe is below the minimum plausible value of Mmax, as such xe is consistent with the experts’

beliefs on Mmax; (ii) the degree of penalty should increase monotonically with xe across the range of

the expert’s distribution for Mmax, reflecting a growing deviation from the experts’ beliefs; and (iii)

the penalty should make it impossible for estimates of xe to be larger than the maximum plausible

value of Mmax.

Given the requirements on S(·), it is natural to think of the survival function of the experts’ views

over the distribution of Mmax as the penalty function. Using the approximated distribution FMmax

given by expression (3) and the original likelihood function based on σ0 (scale) and ξ (shape) by

L(σ0, ξ) in expression (7), the penalised likelihood function Lp is expressed as

Lp(σ0, ξ;λ) = L(σ0, ξ)×
[
1− FMmax(xe(σ0, ξ); α̂, β̂)

]λ
. (8)

where λ ≥ 0 is a tuning parameter that controls the weight of the penalty function in the overall

penalised likelihood. A higher value of λ places more emphasis on adhering to the experts’ belief

about Mmax, while a lower value of λ reduces this emphasis, and no penalty is applied to the original

likelihood function when λ = 0.

Figure 2 illustrates examples of the penalty function
[
1− FMmax(x; α̂, β̂)

]λ
, with different values of

the weight parameter λ to the approximated Groningen Mmax distribution. The figure shows that, for

small values of λ, such as λ = 0.1, the penalty is relatively mild, allowing the likelihood to be driven

primarily by the observed data apart from at the very upper endpoint of the Mmax distribution. As λ

increases to values like λ = 1 or λ = 2, the penalty function exerts a stronger influence, increasingly

discouraging estimates of xe that deviate toward the upper range of the Mmax distribution, and even

increasingly penalising values of xe closer to the lower endpoint of the Mmax distribution. By using

this penalised likelihood approach, we are able to blend empirical data with expert opinion, leading to

a more robust and informed estimation of the model and its corresponding upper tail. The selection of

λ, which is critical for balancing the influence of empirical data and expert opinion, will be discussed

at the end of Section 4.2 and in Section 5.2.

4.2 Fit Analysis and Penalty Weight Selection

To assess how well the resulting GPD model fits the data, we quantify goodness of fit via the expected

quantile discrepancy (EQD) metric of Murphy et al. (2025). The EQD is defined as the expected value

of the absolute differences between the observed quantiles and the corresponding theoretical quantiles

from a specified distribution. For the GPD for threshold excesses of uj , corresponding to the period

j in our data, the theoretical quantiles qp,j with respect to the probability p = P(Xt < qp,j |Xt > uj),
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Figure 2: The multiplicative penalty function
[
1− FMmax(x; α̂, β̂)

]λ
with different λ values.

Here S is the survival function of the approximated Mmax distribution for Groningen (given by

the Section 2.2) and λ = 0.1 (solid); λ = 1 (dashed); λ = 2 (dotted).

for all t in period j, can be written as

qp,j = uj +
σuj

ξ

[
(1− p)−ξ − 1

]
.

Since both uj and σuj vary over j = 1, 2 in our application, to assess fit over all threshold excesses, we

need to standardise the two distributions to a common form so that we can pool information on the fit

of the model across all the data. The excesses above the time-varying threshold uj of the observation

magnitude data denoted by yj,i (for j = 1, 2 and i = 1, 2, . . . , nj) need to first be transformed onto

same marginal distribution. Like Varty et al. (2021), in our analysis, this shared marginal distribution

is selected to be the standard exponential distribution.

The transformed excesses can be derived using the inverse probability integral transform zj,i =

−log[1 − Fuj (yj,i; σ̂uj , ξ̂)], where Fu(·) is the GPD distribution function (4). When pooling the z

values together, we denote {zj,i : j = 1, 2; i = 1, . . . , nj} as z = {z1, z2, . . . , zn} with zi > zi−1, for

all i = 2, . . . , n and where n = n1 + n2. The sample quantile function Q(·, z) is obtained by linear

interpolations of the ordered empirical sample z. The formulation described above applies to the EQD

metric for a single realization, but to obtain a robust fit measure, following Murphy et al. (2025), we

average this metric across the set of non-parametric bootstrapped datasets y = {y(1),y(2), . . . ,y(k)},
where y(b) = {y(b)j,i : j = 1, 2; i = 1, . . . , nj} represents the b-th bootstrap sample (b = 1, 2, . . . , k).

Given the estimated GPD parameters, σ̂
(b,λ)
uj and ξ̂(b,λ), obtained from the penalised likelihood function

with penalty weight λ, each transformed excess associated with threshold uj is computed as:

z
(b,λ)
j,i = −log[1− Fuj (y

(b)
j,i ; σ̂

(b,λ)
uj

, ξ̂(b,λ))].

For a set of equally-spaced evaluation probabilities pℓ = ℓ/(m+ 1) : ℓ = 1, . . . ,m, the EQD metric

d̂(λ) for the bootstrap excesses dataset y(b) is calculated as:

d̂(λ) =
1

k

k∑
b=1

d̂b(λ), where d̂b(λ) =
1

m

m∑
ℓ=1

∣∣∣− log(1− pℓ)−Q
(
pℓ, z

(b,λ)
)∣∣∣ (9)
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and z(b,λ) = {z(b,λ)j,i : j = 1, 2; i = 1, . . . , nj} with (m, k) = (500, 1000), i.e., values at least as large

as Murphy et al. (2025) recommended. This metric allows us to capture both the fit of individual

bootstrap realisations and the stability of fit across samples, ensuring that the EQD reflects both local

and overall fit performance for the GPD model.

We guide the selection of an appropriate penalty weight λ by identifying the range of λ values

(λ > 0) which have the benefit of incorporating the expert information about Mmax but do not deviate

substantially the quality of fit much relative to the fit when λ = λ0 = 0. To determine an upper bound

to this range of λ values, we use the metric,

T (λ) = 2[logL(σ̂0(λ0), ξ̂(λ0))− logL(σ̂0(λ), ξ̂(λ))], (10)

where ξ̂(λ) and σ̂0(λ) are the penalised likelihood estimators of ξ and σ0 respectively when the penalty

weight value is λ and L is given by expression (7), so T (λ) corresponds to the likelihood ratio for two

choices of penalty weight λ and 0. This metric is analogous to the Akaike Information Criterion (AIC)

as a function of λ. To guide this selection, we consider two specific critical values for the T (λ) of: 3.84

and 6.64, which correspond to significance levels of 0.05 and 0.01, respectively, for 1 degree of freedom

in a chi-squared test. The λ values that achieve these critical values for T (λ) we denote by λ0.95 and

λ0.99. These λ values provide a practical upper bound for controlling the degree of distortion of the

GPD that it is reasonable to accept to incorporate the expert belief on Mmax.

5 Application of the Groningen Catalogue

5.1 Upper Tail Estimation

We use the piecewise constant threshold function (2) with u1 > u2, with its values being treated as

known. Excesses of this time varying threshold will have a GPD with a time-varying scale parameter.

To aid inference, we exploit the link between the scale parameters mentioned in Section 3.2 to give

σu1 := σu2 + ξ(u1 − u2) and reparameterise the penalised likelihood (8) from (σ0, ξ) to (σu2 , ξ).

Before exploring the effect of penalty weighting λ on the GPD parameters estimation, we examine

the MLE results obtained from the observed sample without any penalisation on the upper endpoint

(i.e., λ = 0). We get ξ̂ = −0.12 with 95% confidence interval for ξ̂ of [−0.17,−0.08], obtained using

asymptotic normality. This indicates that the shape parameter is almost certain to be negative, and

hence the distribution has a finite upper endpoint but, as anticipated, the tail is not far from an

exponential. The fact that we can draw such strong conclusions about the estimated value of ξ arises

from the work of Varty et al. (2021) in optimising the threshold function to use as many excesses as

possible, without diminishing the quality of the GPD fit.

5.2 Goodness of Fit and Selection of λ

To evaluate the goodness of fit for the Groningen dataset, we computed the EQD and T (λ) metrics

for the penalised GPD model fits for five different values of λ, with Table 2 giving the results. As λ

increases, d̂(λ) and T (λ) both gradually grow, indicating a deviation in the model’s overall fit to the

data, reflecting the increased influence of the penalty. As T (0.5) = 3.86 and λ = 0.5 ≈ λ0.95, similarly

as T (1) = 6.61, then λ0.99 ≈ 1. These values for λ provide the largest penalty values weighting in
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λ 0 0.1 λ0.95 ≈ 0.5 λ0.99 ≈ 1 2

d̂(λ) 0.03 0.03 0.04 0.04 0.05

T (λ) 0 1.03 3.85 6.61 9.98

Table 2: Goodness of fit metric values for a range of λ values.

favour of the expert information while maintaining a reasonable fit the data. For λ = 2, we observe a

significant distortion in the model fit, as evidenced by the larger d̂(2) = 0.05 and T (2) = 9.98 values.

This substantial degradation highlights that overly strong penalties can force the fitted model to be

too biased in favour of the expert information at the cost of distorting the GPD fit to data above

Mc(t). Therefore, the choice of λ involves a trade-off: ensuring consistency with expert-informed tail

constraints while avoiding excessive distortion of the data-driven GPD fit. Our goal is not simply to

minimise EQD, but to strike a balance that yields tail estimates consistent with physical knowledge

without sacrificing the model fit.

Both EQD and T (λ) provide information only on the overall fit of the distribution and so not about

the fit quality at specific quantiles (e.g., far into the upper tail). A more comprehensive evaluation

includes examining Q-Q and P-P plots. Figure 3 provides the Q-Q plots for the Groningen dataset with

both 95% pointwise confidence intervals and tolerance intervals. They are of more use for assessing

upper tail fit than P-P plots, which we present in the supplementary materials. Both sets of plots

show that for both λ = 0 and 0.1, the model slightly overestimates extreme values at higher quantiles,

as indicated by deviations of sample quantiles below the diagonal. When λ is increased to 0.5 and 1,

corresponding to λ0.95 and λ0.99 respectively, the higher quantile fit improves, with confidence intervals

aligning more closely to the diagonal. When λ = 2, the model fit has sample quantiles exceeding model

quantiles at the higher end, reflecting the risk of over-regularisation when placing too much emphasis

on experts’ beliefs. Additionally, penalising the upper endpoint with increasing λ distorts the fit in

the body of the distribution with reduced overlap between the 95% confidence interval and tolerance

bounds. For the rest of the results shown in this paper, we will only present cases with λ = 0, 0.1, 0.5,

and 1, i.e., in the range λ ∈ [0, λ0.99], as they represent a practically feasible range of penalty values.
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Figure 3: Quantile-Quantile plots of the model fit for different λ, the quantile values are in

an exponential scale: pointwise 95% confidence intervals (vertical black bars); 95% tolerance

intervals (orange shaded region).

5.3 Results of MLE

We applied the nonparametric bootstrap method with 1000 replicate samples {y(1),y(2), . . . ,y(1000)}.
These replicates were generated by randomly sampling data with replacement from the original excess

data above the corresponding thresholds uj , j ∈ {1, 2}. For each bootstrap sample, the penalised

MLEs for the GPD scale, shape parameters and the upper endpoint are evaluated, with ξ̂(b) < 0 and

so x̂
(b)
e is finite and is given by expression (5), i.e., x̂

(b)
e = u2 − σ̂

(b)
u2 /ξ̂

(b), for all bootstrap datasets

b = 1, . . . , 1000.

Figure 4 shows the resulting bootstrap estimate of the sampling distribution for x̂e with different

λ choices (λ = {0.1, 0.5, 1}). For comparison, we include the case where no expert information on

the distribution for Mmax is applied (λ = 0), as well as when λ > 0 so that the approximated expert

distribution for the Mmax is used, with this imposing an upper limit of b = 6.75 on the sampling

distribution. We observe that the sampling distribution when λ = 0 gives values of xe noticeably

larger than the expert-informed Mmax distribution. From the bootstrap results, we find that 14% of

the estimated upper endpoints (x̂
(b)
e ) exceed the upper bound of the Mmax distribution. As λ increases,

the penalty term exerts a stronger influence on the estimation process resulting in the densities of

the sampling distribution becoming more concentrated, as well as the sampling distribution mean

decreasing, approaching the mean of Mmax distribution which is around 4.6 ML when λ = 1.
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Figure 4: The bootstrap estimate of the sampling distribution of x̂e (ML), from the penalised

GPD model, based on 1000 bootstraps. Penalty weighting values are shown for λ = 0 (black);

λ = 0.1 (blue); λ = 0.5 (green); λ = 1 (red). The approximated expert Mmax distribution is

denoted in dashed black line.

As discussed earlier, the focus of our analysis is not solely on estimating xe, but on understanding

the entire upper tail of the magnitude distribution. This is particularly critical for long-term seismic

hazard assessments, where rare, extreme events play a central role. Specifically, the 475-year return

level is widely used in engineering and policy contexts to design structures as then, in the case of IID

earthquake processes, such structures can withstand earthquakes with a 90% probability of occurrence

over a 50−year span (Code 2005). In our dataset, the annual number of exceedances of a level u in

year y, denoted by mu(y), varies with y due to changes in extraction rates, however, the magnitudes of

excesses over any threshold u, with u ≥ maxtMc(t) = u1, are IID. Following (Coles 2001), the N -year

return level, denoted by qN (y), satisfies

q̂N (y) =

u2 +
σ̂u2

ξ̂

[
(Nmu2(y))

ξ̂ − 1
]
, ξ̂ ̸= 0;

u2 + σ̂u2 log [Nmu2(y)] , ξ̂ = 0.
(11)

We focus on presenting a conservative estimate of the return level, by studying the estimate for

y = 2017, the year with largest number of exceedances of u1 and u2, with mu(2017) = 78.

For different λ, Figure 5 plots the return level estimates against return periods (years) on a

logarithmic scale, together with the interquartile ranges of the sampling distribution of the estimates.

As λ increases from 0.01, the return level at the 475-year period sharply drops from 4.47 ML to the

values estimated at λ values of interest, i.e., λ0.95 (q̂N = 4.28ML) and λ0.99 (q̂N = 4.16ML). For

any given return period, we observe the mean of the estimated return level and the uncertainty both

decrease as λ increases, indicating that the more we trust the experts on Mmax the more confident we

are about the upper tail in general.
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Figure 5: Estimated return level plot for different λ: λ = 0 (black); λ = 0.1 (blue); λ0.95 = 0.5

(green); λ0.99 = 1 (red). Solid lines represent the mean and the dashed lines denote the 25th

and 75th percentiles of the sampling distribution of the return level estimates. The 475 year

return level estimation is indicated with the dotted vertical line.

5.4 Simulation Study

To validate our inference procedures, we conducted a simulation study based on parameter estimates

derived from our fit to the Groningen earthquake catalogue and using the experts’ distribution for

Mmax. Synthetic datasets were generated under conditions replicating the observed earthquake envi-

ronment, using piecewise constant thresholds (u1 = 1.15 and u2 = 0.76), with 593 exceedances above

u1 and 396 exceedances above u2. For the GPD model, the parameters used were ξ = −0.12 and

σu2 = 0.64. These parameter choices reflect the MLEs obtained when no penalty was applied. The

GPD endpoint used in the simulation is 5.74, which lies within the domain of the Mmax distribution,

[a, b] = [3.75, 6.75]. We conducted 1000 replicate simulations. Using these simulated data, we found

that 15% of the estimated upper endpoints (x̂e) exceed the upper bound of the Mmax distribution

when using MLE without any penalty. This coincides with the 14% observed in the analysis of the

Groningen data in the previous sections, indicating that the simulated data reflects the real data

bootstraps quite well. These datasets were analysed and compared using three different approaches:

MLE without incorporating expert knowledge on Mmax, the penalised likelihood method incorporating

experts’ knowledge on Mmax with varying penalty weights (λ = 0.1, 0.5, 1), and using the truncated

exponential distribution (1).

We assess the accuracy of the upper endpoint estimates (x̂e) and high quantile estimates, focusing

on the 100-year and 475-year return levels. A boxplot comparison of the upper endpoint estimates

is provided in Figure 6. We observe that as the penalty weight increases, the penalised likelihood

method tends to underestimate the upper endpoint. However, the variance of the estimates decreases

significantly once we put any weight on the penalty compared to when λ = 0. The estimates obtained

by using truncated exponential show the worst deviation from the true upper endpoint.
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Figure 6: Comparison of the estimated upper endpoint for different approaches and penalty

weights λ, the truncated exponential approach is denoted as tExp. The true upper endpoint is

indicated by the horizontal dashed line.

The accuracy of these estimates is further quantified in terms of root mean squared error (RMSE),

summarised in Table 3. For x̂e, the penalised likelihood methods yield lower RMSE compared to the

MLE approach (λ = 0) for all choices of the penalty weight (λ = 0.1, 0.5, 1), demonstrating the value

of incorporating experts’ knowledge. The truncated exponential approach shows the highest RMSE

for xe, indicating its limited performance relative to the other methods.

For the return level estimates we considered two scenarios: one based on recent threshold excess

rates in the Groningen region during 2023 and another on the highest annual threshold excess rates,

i.e., in 2017. These scenarios represent a more conservative case, using the worst excess rates, and a

more recent trend reflecting current conditions. The boxplots for the 100-year and 475-year return

level estimates are provided in the supplementary materials. From Table 3, we observe the penalised

likelihood methods with a small penalty weight (λ = 0.1) performed best, achieving the smallest RMSE

across both scenarios. Conversely, methods with larger penalty weights (λ = 0.5, 1) underestimated the

return levels, particularly under the worst-case scenario, leading to higher RMSE values. This pattern

is consistent across both return periods, underscoring the sensitivity of the penalised likelihood method

to the choice of λ. The truncated exponential method also performed poorly, with higher RMSE values

than the penalised likelihood approach for most estimates.

No Penalty λ = 0.1 λ = 0.5 λ = 1 tExp

RMSE x̂e 1.05 0.67 0.94 1.15 1.84

RMSE q̂100 (Recent) 0.18 0.16 0.27 0.29 0.26

RMSE q̂100 (Worst) 0.22 0.20 0.29 0.36 0.38

RMSE q̂475 (Recent) 0.24 0.21 0.36 0.40 0.45

RMSE q̂475 (Worst) 0.29 0.24 0.37 0.46 0.61

Table 3: RMSE for the estimated upper endpoint x̂e and estimated return levels. Recent: using

the threshold excess rates for 2023. Worst: using the highest threshold excess rates since 1995.
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6 Bayesian Inference for the Groningen Catalogue

6.1 Overview of Strategy

In addition to the frequentist approach introduced in Section 5, we adopt a Bayesian inference frame-

work. This approach offers several advantages, including the flexibility to incorporate prior information

on the GPD parameters σ0 and ξ, as well as on the upper endpoint xe. Such flexibility is particu-

larly valuable in extreme value contexts, where data are typically scarce in the tail and uncertainty is

high. As emphasised by Coles & Tawn (1996), prior assumptions can substantially influence posterior

inference in these settings, making a well-justified prior specification especially important.

In this context, we again make use of expert knowledge regarding the Mmax. As discussed in Sec-

tion 2.2, NAM (2022) provide a subjective distribution for Mmax based on expert judgements, which

may be viewed with varying degrees of confidence depending on the end user’s needs and their assess-

ment of the reliability of the experts’ assessments. To accommodate this, we consider two different

Bayesian inference strategies that reflect different ways of incorporating the expert information. In

Section 6.2, we retain the penalised-likelihood formulation from the frequentist analysis, but carry

out inference under a Bayesian framework by placing a prior on the GPD parameters (σ0, ξ). The

expert-informed distribution over Mmax is incorporated indirectly via a penalty term in the likelihood,

while the prior remains otherwise uninformative. In contrast, in Section 6.3 we take a fully Bayesian

approach in which the endpoint xe is treated explicitly as a model parameter and assigned the expert-

informed distribution for Mmax as its prior. Thus the penalty term of the penalised-likelihood is

replaced by the prior on xe, providing an alternative way to incorporate expert knowledge within

the Bayesian framework. In both approaches, we implement inference using a Metropolis-Hastings

(MH) algorithm within a Gibbs sampling framework. The full details of the sampling algorithms are

provided in the supplementary materials. Section 6.4 presents the posterior inference results under

both formulations for the Groningen earthquake catalogue.

6.2 Penalised-Likelihood With Principled Prior

The posterior distribution we aim to sample from is proportional to the product of the penalised

likelihood function Lp(σ0, ξ;λ), as defined in expression (8), and a principled prior distribution π(σ0, ξ)

for the parameters σ0 > 0 and ξ ∈ R. To account for the uncertainty in both the shape and scale

parameters of the GPD, we adopt the prior structure π(σ0, ξ) = π(ξ)π(σ0|ξ), where π(ξ) represents

the prior on the shape parameter ξ, and π(σ0|ξ) denotes the conditional prior on σ0, given ξ. The

remainder of this section is devoted to developing principled prior forms for these two components of

the joint prior, which reflect our lack of additional understanding about these parameters given our

knowledge about the GPD endpoint xe being less than Mmax is already accounted for in Lp(σ0, ξ;λ).

First consider the specification of π(ξ). Although we have no specific prior knowledge about

ξ for the Groningen data, as discussed in Section 1, in earthquake modelling the magnitudes are

often modelled using the exponential distribution. So, although the GPD offers greater flexibility

for capturing tail behaviour than the exponential, from the context we believe that ξ is more likely

to be near zero than far away from it. To quantify the increased complexity from using the GPD

instead of the exponential distribution, we employ the Kullback-Leibler divergence (DKL) (Kullback
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& Leibler 1951), which motivates the use of a penalised complexity (PC) prior (Simpson et al. 2017).

A PC prior incorporates a DKL-based penalty term that favors simpler, more interpretable models. By

balancing model complexity and data-driven inference, the PC prior helps to achieve a more robust

and interpretable analysis. We denote fξ as the density function for the GPD with shape parameter

ξ and f0 as the density function for the exponential distribution (i.e., a GPD with ξ = 0). Then DKL

can be calculated as follows, with its derivation provided in the supplementary materials:

DKL (fξ∥fξ0) =
∫

fξ(x;σ, ξ)log

(
fξ(x;σ, ξ)

f0(x;σ)

)
dx =

ξ2

1− ξ
for ξ < 1, (12)

and DKL = 0 otherwise. The distance between two models is then defined as

d(fξ, f0) = {2DKL(fξ∥f0)}1/2 =
√
2|ξ|(1− ξ)−1/2 for ξ < 1.

By penalising the deviation from the exponential model by the distance d(fξ, f0), the PC prior employs

a constant decay rate (Simpson et al. 2017). Therefore, d(fξ, f0) follows an exponential distribution

with rate ϕD, where ϕD controls the shape of the prior: πd(fξ,f0)(d) = ϕD exp(−ϕDd) for d > 0 and

ϕD > 0. Transforming the prior to the ξ−scale, we have the exact PC prior:

πξ(ξ) ∝ exp

{
−ϕ

|ξ|
(1− ξ)1/2

}{
1− ξ/2

(1− ξ)3/2

}
, for ξ < 1, (13)

where the penalisation rate parameter ϕ =
√
2ϕD, is the hyper-parameter of this prior. Increasing ϕ

leads to a stronger penalisation of ξ values away from 0, ultimately favouring values of ξ closer to 0.

We also explore an approximation of DKL function by ξ2, which is the first order behaviour of DKL,

given by expression (12), as |ξ| → 0 (Opitz et al. 2018). Therefore, we have d(fξ, f0) =
√
2|ξ| and the

approximated PC prior corresponds to a Laplace distribution prior as follows:

πξ(ξ) =
ϕ

2
exp(−ϕ|ξ|), for ξ ∈ R. (14)

The PC prior using the exact DKL gives zero probability to ξ ≥ 1, while the approximated PC prior

gives positive density to all ξ ∈ R but locally around ξ = 0 the two PC priors (with densities (13)

and (14)) are approximately the same. These features are illustrated in Figure 7 for different choices

of the hyper-parameter ϕ. When ξ is negative, these two priors have very similar shapes. Additionally,

when ϕ is large and ξ is in the range (−1/2, 1/2), the priors also exhibit a similar behaviour. For

both of the priors, they pull the posterior distribution mass for tail index ξ towards ξ = 0, relative

to a posterior with a flat prior to ξ. As a consequence of the strong prior weight near 0, posterior

mass for large values of |ξ| will only be observed if the data strongly indicate heavy tails (ξ ≥ 0), or

the bulk of the distribution appears to be near the upper bound (ξ < 0), with the penalty function[
1− FMmax(x; α̂, β̂)

]λ
ruling out the former in our case due to our Mmax knowledge when λ > 0.

When using the exact PC prior model, we notice that the prior distribution becomes increasingly

concentrated around ξ = 1 as ϕ tends to 0, which is counterintuitive. To avoid this issue, we opt

for the approximate PC prior for ξ in the rest of the study, as it maintains a similar shape in most

areas and prevents these undesirable behaviours near ξ = 1, though in practice it would make little

difference as the data pulls the posterior mass to ξ < 0.

When selecting a value of the hyper-parameter ϕ > 0 we need to be aware of the potential for a

trade-off between ϕ and the penalty weight λ. An increase in the former concentrates more posterior
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mass near ξ = 0 while increasing the latter enforces a stronger upper bound and ξ < 0 further from

zero. We explored how these two components jointly influence the posterior inference. While both

parameters affect the posterior inferences, we found that their interaction is weak when studying the

Groningen data, suggesting that in our analysis each parameter can be adjusted without needing

to compensate for changes in the other. Further illustrations of this behaviour are provided in the

supplementary materials, including contour plots of posterior summaries over a (λ, ϕ) grid.
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Figure 7: PC prior for ξ using exact KLD function ξ2/(1 − ξ) (left) and approximate KLD

function ξ2 (right) with different values of the hyper-parameter ϕ: ϕ = (0.5, 1, 2, 10) (light →
dark).

As there is no prior knowledge about the GPD scale parameter σ0, a Jeffreys non-informative

prior is used as it reflects prior ignorance which is invariant under reparameterisation. Leonelli &

Gamerman (2020) derived the Jeffreys prior for σ0 given ξ to be:

π(σ0|ξ) ∝
1

σ0
√
1 + 2ξ

for σ0 > 0 when− 1

2
< ξ <

1

2
, (15)

and π(σ0|ξ) = 0 outside this domain range. The range limits for ξ reflects the requirement for a finite

variance for GPD, which exists only if ξ < 1/2, and it corresponds to insights in Smith (1985) on

non-regular likelihood inference asymptotics when ξ ≤ −1/2. Combining the priors π(ξ) and π(σ0|ξ),
our joint prior density for σ0 and ξ gives:

π(σ0, ξ) ∝
1

σ0
√
1 + 2ξ

exp(−ϕ|ξ|) for σ0 > 0 and− 1

2
< ξ <

1

2
, (16)

which corresponds to independent priors for σ0 and ξ. A slice of the joint prior distribution with

respect to ξ is illustrated in the supplementary materials, with this highlighting the behaviour of the

joint prior under varying levels of ϕ.
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6.3 Experts’ Endpoint Prior

Now suppose that we apply the experts’ beliefs about Mmax directly to the GPD upper endpoint

xe, so that the prior density for xe is fMmax(xe; α̂, β̂), corresponding to the density function for the

expert-informed Mmax distribution function (3). This formulation enables a direct regularisation of

the upper tail of the magnitude distribution by embedding expert uncertainty within the prior for the

endpoint, thus allowing use of the GPD likelihood, without needing the penalised-likelihood. Under

this prior, we know that a < xe < b, so when b < ∞, it follows that ξ < 0, with xe = −σ0/ξ, where

σ0 > 0 is the GPD scale parameter for a threshold of zero.

As Dryden & Zempléni (2006) did for MLE, we consider a reparameterised GPD model with the

endpoint as one of the specified parameters but implemented within a Bayesian framework. Specifi-

cally, we reparameterise in terms of (ξ, xe), with σ0 = −ξxe. Under this formulation, the threshold-

specific GPD scale parameters become

σuj (ξ, xe) = σ0 − ξ(xe − uj), for j = 1, 2,

corresponding to the two periods of the Groningen catalogue with thresholds u1 and u2. In this

context, the reparameterisation of likelihood (7) becomes:

LR(ξ, xe) =

2∏
j=1

nj∏
i=1

fuj (yj,i;σuj (ξ, xe), ξ) =

2∏
j=1

nj∏
i=1

1

|ξ|(xe − uj)

(
1− yj,i

xe − uj

)−1/ξ−1

+

. (17)

We additionally take the prior for ξ as the approximated PC prior (14) restricted to ξ < 0. It is

reasonable to assume that the priors for (ξ, xe) are independent as knowing xe < ∞ provides no

information about ξ other than ξ < 0. The posterior joint density of (ξ, xe) is then proportional to

LR(ξ, xe) · πξ(ξ) · fMmax(xe; α̂, β̂) for σ0 > 0 and ξ < 0.

6.4 Bayesian Results

We apply the Bayesian approaches of Sections 6.2 and 6.3 to the Groningen earthquake catalogue. To

ensure robust posterior estimation, we use a Metropolis-within-Gibbs sampler with a burn-in period of

2000 iterations, followed by 150,000 further iterations, from which every 30th sample is retained. This

yields effectively independent draws from the posterior. For both Bayesian approaches, in Figure 8

we present results for posterior distributions of xe and of the 475-year return level, corresponding to

a prior for the GPD shape parameter with hyper-parameter ϕ = 10. Further details of the MCMC

mixing, insensitivity to starting values, the posterior distributions of other parameters, and the lack

of sensitivity to our choice of ϕ are given in the supplementary materials.

For the penalised likelihood formulation (Section 6.2), we use the principled joint prior π(σu2 , ξ) (16)

(with the prior for σu2 identical to that derived for σ0) for a range of choices of Mmax penalty weight,

λ = {0, 0.1, 0.5, 1}. Figure 8 shows that the posterior distributions for xe match the sampling dis-

tribution using MLEs for the associated λ values. For λ = 0, the posterior distribution, based only

on the data and the principled prior, excluding any information on the distribution of Mmax, extends

far beyond the range of the experts’ Mmax distribution. This indicates a lack of constraint on the

upper tail, which is also reflected in higher and more uncertain posterior for 475-year return level.

For λ = 0.1, the posterior distributions illustrate how putting a relatively small weight on the penalty
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term changes the posterior distribution for xe, particularly in its upper tail. Increasing λ also results

in a more constrained return level estimates. For λ0.95 ≈ 0.5 and λ0.99 ≈ 1, a stronger regularisation

effect is observed in the posterior distributions, resulting in lower estimates of the upper endpoint and

reduced variability, with similarly findings for the 475-year return level. Posterior inferences for the

standard GPD likelihood combined with experts’ endpoint prior (Section 6.3) and the PC prior for ξ

are also shown for the Groningen data in Figure 8. The posterior distributions for both the estimated

endpoint and the 475-year return level are very closely aligned with those from the penalised model

when λ = 0.5 (i.e., λ0.95), with the most surprising feature being that both posterior densities are

so similar in the lower tail, given that the penalised likelihood and the experts’ endpoint prior push

xe < a and xe > a respectively. This similarity in the two types of posteriors indicates that moderate

penalisation yields posterior inferences that are broadly consistent with those obtained through direct

incorporation of expert beliefs as a prior for xe, suggesting a convergence between the two approaches

under certain regularisation levels.
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Figure 8: The estimated posterior distributions: density of xe (left) and boxplots of the 475-

year return level (right), for penalty weights λ = 0, 0.1, 0.5, 1 (black, blue, green, red). The

purple curve and box correspond to the expert-informed beliefs about Mmax, being used as the

prior for the endpoint xe.

7 Conclusion and Discussion

This paper presents a methodology for enhancing the estimation of the upper tail of a distribution by

incorporating experts’ beliefs about an upper bound on the endpoint of the distribution of interest. The

use of the GPD has been explored extensively due to its effectiveness in modelling the tail behaviour of

extreme events. In the context of human-induced earthquakes, we find that by incorporating experts’

opinions into the statistical framework, our approach refines the upper tail estimates of the magnitude

distribution, which is crucial for seismic hazard assessments.

The proposed methodology integrates expert beliefs over Mmax (a physical upper bound on earth-

quake magnitudes) into the likelihood function by penalising overestimated values of the GPD upper

endpoint xe. This approach leverages trust in expert knowledge about potential physical upper limits

of earthquake magnitudes, contributing to more robust estimates of the upper tail of the magnitude

distribution. Additionally, the Bayesian implementation using the penalised likelihood framework
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allows the incorporation of prior distributions for the GPD parameters, in addition to incorporat-

ing information about Mmax. To further account for uncertainty in expert-specified bounds, we also

explored the use of the expert-informed Mmax distribution as a prior for xe. This provides a com-

plementary strategy for incorporating expert beliefs within the Bayesian framework, where we place

greater trust in the expert’s ability to produce tight bounds for xe but at the risk of each of these

experts’ bounds is higher than the true endpoint.

A crucial aspect of this study is bridging the gap between expert-informed Mmax constraints

and empirical approaches based on the asymptotically justified GPD statistical model. While expert

knowledge provides valuable insights into physical limits, relying solely on Mmax without data-driven

validation can lead to overconfidence in extreme magnitude estimates. Conversely, the empirical

approach without upper constraints may lead to bias estimates of the risk of extreme earthquakes. By

integrating experts’ constraints into the statistical framework, our methodology provides a balanced

solution that maintains empirical flexibility while preventing unrealistic extrapolations. Furthermore,

our use of the two different ways to incorporate the experts’ knowledge enables an assessment of the

sensitivity to the results to the level of trust we place on expert judgement.

Application to the Groningen earthquake catalogue illustrates the practical utility of the method-

ology. Using both likelihood and Bayesian inferences, we obtained estimates for xe and return levels.

As the penalty weight λ given to the experts’ beliefs about Mmax increases, both the posterior distribu-

tion for xe and the 475-year return level becomes more concentrated with decreasing mean values. We

observed that the results obtained using MLE and Bayesian inference were very similar, even for high

quantiles and endpoints. This similarity can be attributed to the use of bootstrap methods for MLE,

rather than using the more typically used asymptotic normality results. When applying the Mmax dis-

tribution as a prior for xe, the resulting posterior estimates closely matched those from the penalised

likelihood method with moderate regularisation (λ = 0.5). This suggests that the conclusions are not

overly sensitive to the specific formulation used to incorporate expert knowledge.

To guide the selection of the penalty weight λ, we propose methods for determining a maximum

degree of distortion for the model fit to include the experts’ beliefs. The results from the simulation

study highlight the importance of selecting an appropriate λ > 0 value when using penalised likeli-

hood methods. Smaller values of λ provide a balance between incorporating expert knowledge and

maintaining flexibility in the model, resulting in more accurate estimates for high quantiles and the

upper endpoint. Conversely, larger λ values overly constrain the model, leading to underestimation of

key parameters. This suggests that careful calibration of the penalty weight is critical for achieving

reliable results in practical applications. Related to the choice of λ is the choice of threshold. Here we

used a threshold function found by Varty et al. (2021), which was found to optimal in terms of EQD

fit, see Section 4.2, for the GPD, i.e., when λ = 0 and provided an excellent fit for the GPD. Finding

the optimal threshold function whilst allowing for λ > 0 is an interesting line of future research.

While our analysis assumes that the magnitude records are free from measurement error, this

assumption does not hold in practice. Measurement error, which may vary over time/space due to

changes in detection systems, could significantly influence the results (Lin & Newberry 2023). In future

work, we aim to address this issue by incorporating a model for measurement error into the magni-

tude estimation process. By accounting for the temporal/spatial variation in the detection system’s

sensitivity, we could refine the analysis and improve the robustness of the magnitude modelling.
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Overall, the proposed methodology contributes to the field of seismic risk assessment by demon-

strating the value of incorporating expert knowledge into statistical modelling. Its applicability, how-

ever, extends beyond seismology. For instance, probable maximum precipitation in hydrology and

meteorology plays a role analogous to Mmax in seismology, representing the physical upper limit for

extreme rainfall events. By applying this methodology to rainfall studies, experts’ belief distributions

could be incorporated to improve the assessment of extreme precipitation (Papalexiou & Koutsoyiannis

2006, Kunkel et al. 2013), demonstrating the potential for multi-disciplinary applications.
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