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Abstract

Random graphs have been widely used in statistics, for example in network anal-

ysis and graphical models. In some applications, the data may contain an inherent

hierarchical ordering among its vertices, which prevents directed edges between pairs

of vertices that do not respect this order. For example, in bibliometrics, older papers

cannot cite newer ones. In such situations, the resulting graph forms a Directed Acyclic

Graph. In this article, we extend the Stochastic Block Model (SBM) to account for the

presence of such ordering in the data, ignoring which can lead to biased estimates of

the number of blocks. The proposed approach includes in the model likelihood a topo-

logical ordering, which is treated as an unknown parameter and endowed with a prior

distribution. We describe how to formalise the model and perform posterior inference

for a Bayesian nonparametric version of the SBM in which both the hierarchical order-

ing and the number of latent blocks are learnt from the data. Finally, an illustration

with real-world datasets from bibliometrics is presented. Additional supplementary

materials are available online.
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1 Introduction

Random graphs have been widely used in statistics and computer science over the last years

to model network, interaction and bibliometric data, just to mention a few among many fields

of applications. For example, in social networks, friendships or message exchanges among

users can be modelled as random graphs, having users as vertices, and edges between two

users if they are friends or have exchanged messages. As another example, citation datasets

in bibliometrics analysis can be modelled as random graphs, having articles as vertices, and

directed edges from citing articles to cited articles.

In some applications, the dataset and the corresponding graph can contain an inherent

hierarchical order among its vertices. This means that directed edges can be present only

from vertices that appear earlier in this order to ones that appear later. As an example,

when modelling citation networks among journal articles, e.g. Ji and Jin (2016), articles

can cite only articles that were published earlier. As another example, in a network having

the employees of a big company as vertices and directed edges from the supervisor to the

supervisee, a directed path from one vertex to another can be present only if the former is

higher than the latter one in the company hierarchy. Similarly, the same structure appears

in a dataset having directed edges from PhD supervisors to their students. In all these

applications, the observed graph is a Directed Acyclic Graph (DAG), i.e. it cannot display

any directed cycles (any directed path having the same initial and final vertex). Moreover,

it respects a latent topological ordering among its vertices, i.e. a linear ordering ≺ of the

vertex set V such that every pair (p, q) ∈ V × V can belong to the edge set E only if p ≺ q.

In general, the topological ordering is not unique, i.e. for a DAG there can be multiple

orderings that satisfy the definition above.
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When analysing a given network dataset that is a DAG, if the latent topological ordering

is not properly accounted for, the statistical models can assign positive probability to ‘impos-

sible’ edges, i.e. directed edges in which the first vertex appears later than the second one in

the topological ordering. If this is the case for many edges, the resulting estimates from the

model can deteriorate dramatically. The same phenomenon arises other statistical contexts,

for example in presence of structural zeros when modelling tabular data (Manrique-Vallier

and Reiter, 2014), in which assigning, whatever small, positive probability to ‘impossible’

cells can deteriorate estimates and bias results.

In this work, we propose an approach to extending the popular Stochastic Block Model

(SBM) (Holland et al., 1983) for random graphs in general to graphs that are specifically

DAGs. The SBM, being among the most popular random graph models for vertex clustering

and community detection, was initially introduced by Holland et al. (1983) and Wang and

Wong (1987), then formalised as latent models by Snijders and Nowicki (1997) and Nowicki

and Snijders (2001), and has further gained popularity with the incorporation of degree cor-

rection by Karrer and Newman (2011). In online Appendices A.1 and A.2, we provide a brief

review of this model, its generalisations and approaches to posterior inference. For recent

comprehensive reviews, the reader is also referred to Abbe (2018) and Lee and Wilkinson

(2019), which focus on theoretical results and modelling approaches, respectively. When

extending the SBM to model a given DAG, the underlying topological ordering is unknown

and not necessarily unique. Furthermore, ignoring the ordering can lead to dramatic un-

derestimates or overestimates of the number of blocks, as the simulations in Section 3.1

demonstrate. Therefore, it will be included in the likelihood of the model as a parameter,

endowed with a prior and inferred a posteriori, together with the community memberships

and other parameters of the model.

The background literature regarding the use of the SBM for DAGs is quite limited and

mainly consists of an unpublished technical report by Lee and Wilkinson (2018), which only

presents a preliminary data analysis of a DAG using a SBM. Not only was degree correction
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not incorporated, but there was also no formal consideration of the issue of the number of

blocks. Instead, the model was merely fitted with different numbers of blocks separately

with no model selection, thus not justifying the interpretations of their results.

The issue of the number of communities or blocks is common with SBMs and clustering

in general, and has been reviewed in Table 1 of Lee and Wilkinson (2019). One common

approach to this issue is the use of Bayesian nonparametrics, which assigns a prior for the

allocation vector and allows the posterior sampler to infer the number of blocks from the data.

Kemp et al. (2006) and Schmidt and Mørup (2013) initially considered the infinite relational

model, which is a variant of the plain SBM, using a Dirichlet process prior, while Geng et al.

(2019) extends this model by the use of a finite regime Pitman-Yor (PY) process (Pitman

and Yor, 1997), which is reviewed in the online Appendix A.3. A further generalisation is

in Legramanti et al. (2022), in which the Gibbs-type prior formulation is used instead of the

PY prior, for an application to criminal networks.

In the proposed model, we also use a Bayesian nonparametric version of the SBM, but

by adopting the PY process in a different way. This process allows two possible regimes:

one in which the total number of blocks is finite (and unknown) and another one in which

it increases with the sample size. While other works such as Geng et al. (2019) have used

Bayesian nonparametric formulation for the block membership, they usually focused only on

the first of the two regimes. As these two regimes imply different asymptotic behaviours of

the number of blocks, the model might be misspecified if only one regime is assumed before

fitting to the data. To circumvent this, the choice of regime becomes another part of the

proposed model, with a model selection step based on Gibbs variable selection (Carlin and

Chib, 1995) embedded in the Markov chain Monte Carlo (MCMC) sampler.

The proposed approach is illustrated using both simulated data and real datasets from

bibliometrics. In the simulation study, where the proposed model is compared to a SBM

for directed graphs, which does not account for the latent order in the likelihood, the latter

brings about the aforementioned issue of assigning positive probability to many ‘impossible’
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edges, as well as substantial biases in the estimates of the overall number of blocks. In the

applications to two datasets of citation networks, it is shown that the model can infer the

community structure and latent hierarchical order among vertices.

The rest of this article is organised as follows. The SBM for DAGs is presented in

Section 2. Section 3 presents both simulated (Section 3.1) and real data (Sections 3.2 and

3.3) illustrations. A final discussion in Section 4 concludes the article. The online appendices

contain reviews of the SBM and PY process, a detailed description of the MCMC sampler to

perform posterior inference for the SBM for DAG, additional information on the likelihood

derivations, and plots from the real-data illustrations.

2 Model

To introduce the model and notation used throughout the rest of the paper, let us consider

a directed network to be represented as a directed multi-graph G = (V , E), where V is the

vertex set and E is the edge set. The size of V , denoted by n := |V|, is the number of vertices

of G. The n× n adjacency matrix of the graph is denoted by Y := (Ypq)1≤p,q≤n. If there are

y directed edges from vertex p to vertex q, i.e. y copies of (p, q) in E , then Ypq = y, otherwise

Ypq = 0. We also assume no self-loops, i.e. Ypp = 0 for all p = 1, 2, . . . , n. Next, we define

Zn := (Z1, . . . , Zn) to be the allocation vector of length n, where Zp is a label associated to

vertex p. Two vertices, p and q, belong to the same group if and only if Zp = Zq. Essentially,

Zn represents the group memberships of the vertices. We assume there are Kn > 1 unique

labels displayed in Zn, denoted (Z∗1 , . . . , Z
∗
Kn

) hence Kn groups of vertices. When whether

Z∗i is the label associated with vertex p is of concern, for notational convenience, hereafter

we write I(Zp = i) in place of I(Zp = Z∗i ), where I(A) denotes the indicator function of the

event A, i.e. I(A) = 1 if A is true, 0 otherwise. We also define C := (Cij)1≤i,j≤Kn to be the

block matrix, where Cij represents the general connectivity between blocks i and j. Similar

to above, given C and Zp = Z∗k , CZpj will denote element Ckj.

5



The main idea of the classic SBM is that the number of edges Ypq from vertex p to

vertex q is independent of that of any other dyad, conditional on their group memberships

Zp and Zq (Holland et al., 1983, Nowicki and Snijders, 2001). Moreover, we will consider the

degree-corrected version of the SBM (Karrer and Newman, 2011), which takes into account

the degree heterogeneity of the vertices within the same group, by introducing the vector

ξ = (ξ1, . . . , ξn) of vertex-specific parameters, where ξp > 0 is the degree correction factor

for vertex p. Namely, the number of edges between vertex p and q is modelled as

Ypq|C,Zn, ξ
ind∼ Poisson(ξpξqCZpZq). (1)

To introduce the proposed model, we restrict G to be a DAG for the rest of this section.

To utilise a unique feature of DAGs, as discussed in Section 1, we define σ := (σ1, . . . , σn) as

the random vector that represents the ordering of G, with the collection of all permutations

of {1, 2, . . . , n} as the sample space. A value of σ is deemed topological with respect to G

if it satisfies the definition of topological ordering, i.e. if vertex p precedes vertex q in the

ordering, then there cannot be edges from q to p. We define several quantities implied from

σ. First, φ := (φ1, . . . , φn) is the “inverse” of σ, which means that if vertex p is the r-th

vertex in the topological ordering, we have σr = p and φp = r. Essentially, φ contains the

position of each vertex in σ. Second, we define Zσ
n := (Zσ

1 , Z
σ
2 , . . . , Z

σ
n ) as the reordered

allocation vector, where Zσ
p = Zσp and Zσp comes from Zn. In the same way, we define

ξσ := (ξσ1 , ξ
σ
2 , . . . , ξ

σ
n ) as the reordered version of ξ. Lastly, Yσ is the adjacency matrix

reordered by σ for the columns and rows of Y simultaneously, such that Y σ
pq = Yσpσq .

The central component of the SBM is the distribution assumption about each dyad of

G, essentially each element of Y. Due to the acyclic natrue of G, the combinations of the

possible values of (Ypq, Yqp) are restricted to be (0, 0), (0, y) or (y, 0), for some positive integer

y ∈ N. Equivalently, as Yσ is upper triangular for a σ that is topological, we require that,
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for all dyads (p, q) where 1 ≤ p < q ≤ n,

Y σ
qp = 0, Y σ

pq |C,Zn,σ, ξ
ind∼ Poisson

(
ξσp ξ

σ
q CZσ

p Z
σ
q

)
. (2)

2.1 Likelihood

With the model established in Equation 2, we can proceed to compute the likelihood. As

Zn is unknown prior to fitting the model, it will be treated as a vector of latent variables

and assigned a prior, of which the parametrisation will be detailed in Section 2.2. However,

given this prior choice, several quantities can be defined to facilitate the likelihood deriva-

tions. First, there will be Kn distinct values (Z∗1 , . . . , Z
∗
Kn

) appearing in Zn with respective

frequencies N := (N1, . . . , NKn). The i-th element of N, i.e. Ni =
∑n

p=1 I(Zp = Z∗i ) =∑n
p=1 I(Zp = i) is then the number of vertices in group i. Second, we derive from Zn and Y

(or Yσ) two Kn ×Kn matrices E := (Eij)1≤i,j≤Kn and M := (Mij)1≤i,j≤Kn . The matrix E

is the edge matrix between the groups, where

Eij =
n∑
p=1

n∑
q=1

YpqI(Zp = i, Zq = j) =
n−1∑
p=1

n∑
q=p+1

Y σ
pq I(Zσ

p = i, Zσ
q = j), (3)

while in the matrix M, Mij is the number of dyads (p, q) between groups i and j such that

vertex p is topologically in front of vertex q. Mathematically,

Mij =
n−1∑
p=1

n∑
q=p+1

ξσp ξ
σ
q I
(
Zσp = i, Zσq = j

)
=

n−1∑
p=1

n∑
q=p+1

ξσp ξ
σ
q I
(
Zσ
p = i, Zσ

q = j
)
. (4)

With all required quantities defined, we will derive the likelihood with observed Y given

Zn and σ. We first check that σ is topological, or equivalently Yσ is upper triangular, i.e.

Y σ
qp = 0 for all dyads (p, q) where 1 ≤ p < q ≤ n, otherwise the likelihood is 0. Once σ is
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checked to be topological, using Equation (2), the observed data likelihood is

P(Y|C,Zn,σ, ξ) = I(Yσ upper tri.)× Ȳ ×
n∏
p=1

n∏
q=1

(ξpξq)
Ypq ×

Kn∏
i=1

Kn∏
j=1

e−CijMijC
Eij

ij , (5)

where Ȳ =
∏n−1

p=1

∏n
q=p+1

(
Y σ
pq !
)−1

, and Eij and Mij are given by Equations 3 and 4, respec-

tively. Detailed derivations are in the online Appendix B. Likelihood (5) is influenced by Zn

and σ through the two matrices E and M.

2.2 Priors and posterior density

We shall assign independent priors one by one to C, Zn, σ and ξ, in order to carry out

inference within the Bayesian framework. In the subsequent calculations, some additional

parameters of the priors used will be included in the notation.

For C, we assume each Cij is a priori independent and identically distributed according

to the Gamma(a, b) distribution, where a and b are the positive shape and rate parameters,

respectively. This enables C to be integrated out, to obtain

P(Y|Zn,σ, ξ, a, b) =

∫
P(Y|C,Zn,σ, ξ)P(C|a, b)dC

= I(Yσ upper tri.)× Ȳ ×
n∏
p=1

n∏
q=1

(ξpξq)
Ypq ×

(
ba

Γ(a)

)K2
n
Kn∏
i=1

Kn∏
j=1

Γ(Eij + a)

(Mij + b)Eij+a
. (6)

Independent and relatively uninformative gamma prior distributions are assigned to the

parameters a and b, as well as the components of ξ.

For σ, we assign a uniform prior to all permutations of {1, 2, . . . , n}, i.e. π(σ) = (n!)−1.

There is no issue with an ordering that is not topological having a positive prior probability,

as such an ordering will result in I(Yσ upper tri.) and the likelihood (6) being equal to 0.

For Zn, we assume that its components are the first n elements of an exchangeable

sequence (Zp)p∈N driven by a Pitman-Yor (PY) process (Pitman and Yor, 1997), i.e. Zp|P
iid∼
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P for all p ∈ N and P ∼ PY(α, θ, P0). The PY process, reviewed in the online Appendix

A.3, is a distribution for an unknown probability distribution P and is parametrised by three

hyperparameters (α, θ, P0), where P0, called base distribution, is a distribution on the sample

space, and α and θ are two scalars satisfying either: 1) 0 ≤ α < 1 and θ ≥ −α; 2) α < 0

and θ = k|α| for k ∈ N. The Dirichlet process corresponds to the special case α = 0.

2.3 Bayesian model selection

The PY process prior for Zn helps select the number of blocks and distinguish between the

infinite and finite regimes. Specifically, in the infinite regime, corresponding to 0 ≤ α < 1

and θ ≥ −α, P has an infinite number of support points, and the sequence (Zp)p∈N will

display an infinite number of distinct values. In the finite regime, corresponding to α < 0

and θ = k|α| for k ∈ N, P has k support points, which is also the total number of distinct

values in (Zp)p∈N. When considering the finite regime, i.e. when α < 0, we apply the re-

parametrisation (α, θ)→ (γ, k), with γ := |α| > 0 and k := θ/|α| ∈ N, and assign a prior to

(γ, k) ∈ R+ × N.

As detailed in the online Appendix A.3, it is possible to compute the marginal likelihood

(when P is marginalised out) of a sample Zn driven by the PY process, which we denoted

by P(Zn|ηr), where ηr is a parameter vector of length 2, dependent on the choice of regime

r ∈ {0, 1}, either infinite η0 = (α, θ) or finite η1 = (γ, k). This in turn requires the

specification of the prior of ηr under both regimes. Under the infinite regime, r = 0 and

ηr = η0 = (α, θ), and we assume that α ∼ Uniform[0, 1] and θ + α follows a Gamma

distribution. This choice of dependent priors for α and θ is done in order to include all

possible values in parameter space. Under the finite regime, r = 1 and ηr = η1 = (γ, k), and

we assume that γ and k are independent a priori, γ follows a Gamma distribution, and k

follows a truncated negative binomial distribution, with parameters ak and bk, and density

P(k = k′|ak, bk) = (1− bakk )−1 × Γ(k′ + ak)

Γ(ak)k′!
bakk (1− bk)k

′
, k′ = 1, 2, . . .
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where Γ(·) is the gamma function. The factor (1 − bakk )−1 is due to the truncation of 0

from the original support of the negative binomial distribution. The negative binomial is

over-dispersed, allowing possibly high variance, hence high prior uncertainty of the value

of k.

The regime-dependent parameters and their priors are introduced this way because, ul-

timately, we want to enable model selection of the regime, which in turn requires the prior

of r, denoted by P(r). The boundary cases P(r = 0) = 1 and P(r = 1) = 1 represent staying

within the infinite and finite regimes, respectively, while model selection takes place when

0 < P(r = 0) < 1, allowing the data to select the more suitable among the two regimes.

The model selection step, implemented within the MCMC sampler, follows the algorithm of

Carlin and Chib (1995). Moreover, the prior choice for r allows unbalanced weights between

models, as this may improve mixing of the model selection step, as shown in Friel and Pet-

titt (2008), in the context of reversible jump MCMC. At the end of Section 3.1, in Table 1,

we show results from a simulated study in which the posterior sampler in general recovers

the correct regime between the finite and infinite ones. A detailed description of the model

selection step can be found in the online Appendix C.2.

As all priors required have been specified, the joint posterior of Zn, σ, ηr, a and b (and

r), up to a proportionality constant, is

P(Zn,σ, ξ,ηr, a, b, r|Y) ∝ P(Y|Zn,σ, ξ, a, b)P(Zn|ηr)P(σ)P(ξ)P(ηr|r)P(a)P(b)P(r). (7)

We sample from this joint posterior using MCMC, of which the detailed description is avail-

able in the online Appendix C.1.

2.4 Posterior point estimate of Zn

To provide a posterior point estimate of Zn, we follow the clustering approach introduced in

Meilă (2007) and further discussed in Wade and Ghahramani (2018). Specifically, the point
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estimate, denoted by Ẑn, is obtained using a decision theoretic approach, by minimizing

with respect to the posterior distribution a loss function on the space of allocation vectors,

Ẑn = argmin
Z̃n

E
[
L(Zn, Z̃n)|Y

]
= argmin

Z̃n

∑
Zn

L(Zn, Z̃n)P(Zn|Y). (8)

For the loss function L(Zn, Z̃n), Meilă (2007) chose the Variation of Information (VI), de-

fined as

VI(Zn, Z̃n) =
Kn∑
i=1

ni+
n

log
(ni+
n

)
+

K̃n∑
j=1

n+j

n
log
(n+j

n

)
− 2

Kn∑
i=1

K̃n∑
j=1

nij
n

log
(nij
n

)
,

where nij =
∑n

p=1 I(Zp = i, Z̃p = j), ni+ =
∑K̃n

j=1 nij, and n+j =
∑Kn

j=1 nij. The loss function

L(Zn, Z̃n) can be seen as a distance between Zn and Z̃n, which can be computed even if

Kn 6= K̃n, i.e. the numbers of groups implied by Zn and Z̃n are different.

2.5 Identifiability of Zn and σ

Our inference approach does not raise any concern of identifiability issues. For Zn, the

problem of label switching in Bayesian MCMC estimation of finite mixture models and

related models is indeed less common in nonparametric models, given that the prior of the

block weights is not symmetric (Jasra et al., 2005, Papaspiliopoulos and Roberts, 2008).

This issue is further avoided through obtaining the posterior point estimate of Zn defined in

Equation 8, which minimizes the posterior expectation of a well-chosen loss function. For σ,

or equivalently φ, the likelihood is not invariant to its permutations as it is an ordering. The

absence of identifiability issues for σ is further evidenced in our applications in Section 3,

where the posterior estimates closely approximate the known true topological ordering in the

simulated examples (Figure 3), and the posterior distributions of φ do not look particularly

flat for a real dataset (Figure 7).
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3 Application

3.1 Simulated data

This section presents an illustrative simulation study in which the proposed DAG-SBM

(Equation (2)) is compared with the SBM for a directed graph (Equation (1), referred to as

the directed SBM). The purpose of this study is to show how fitting the directed SBM without

considering the inherent hierarchical ordering among vertices can result in assigning positive

posterior probability to many “impossible” edges, and substantial bias in the estimate of the

overall number of blocks in the model.

Upon sampling the parameters from their priors specified in Section 2.2, adjacency ma-

trices are sampled from the DAG-SBM for different sample sizes n = {250,500,1000} and

combinations of the PY parameters, (α, θ) = {(−1, 10), (0, 1), (0.1, 1), (0.6, 1)}, thus includ-

ing both finite and infinite regimes. Both the DAG-SBM and directed SBM are fitted to the

resulting adjacency matrices, also under both regimes.

Figure 1 plots the actual adjacency matrix Yσ with n = 250 (not shown for n = 500 and

n = 1000), ordered according to the true topological ordering, alongside with the posterior

point estimates of Yσ , for each simulated dataset fit by the directed SBM. The true adjacency

matrices in the first column are necessarily upper triangular, as they are reordered according

to the true σ. However, from the second and third columns, it is evident that many edges

in the lower triangular sections have positive posterior probability, while it should be equal

to zero. This is especially true for vertices having either high in-degree or out-degree counts.

This is due to the fact that the directed SBM is row and column exchangeable, and vertices

with high in-degrees tend to also have high out-degree counts. However, when a hierarchical

ordering is present, the model is not exchangeable anymore and the out- and in-degrees

of each vertex are negatively correlated, with vertices at the beginning of σ having higher

out-degree than in-degree counts, and the opposite for vertices at the end of σ.

Figure 2 displays the posterior histograms of the number of blocks Kn estimated using
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alpha = −1, theta = 10 finite regime infinite regime

alpha = 0, theta = 1 finite regime infinite regime

alpha = 0.1, theta = 1 finite regime infinite regime

alpha = 0.6, theta = 1 finite regime infinite regime

Figure 1: Actual adjacency matrix (left) for data simulated from the DAG-SBM (Equa-
tion (2)) with n = 250 and different values of (α, θ), and estimated probabilities by the
directed SBM (Equation (1)) under the finite (middle column) and infinite (right) regime,
ordered by true σ. The middle and right plots correspond to the results in finite and infinite
regimes in the corresponding bottom left panels of Figure 2. The dashed line is the major
diagonal.
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Figure 2: Posterior histogram of Kn for data simulated from the DAG-SBM (Equation (2)),
with different values of (α, θ, n), fitted by both the DAG-SBM (top row) and directed SBM
(Equation (1), bottom row), under the finite (solid) and infinite (stripe) regimes. The vertical
dashed line is the true value of Kn.
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α θ Regime n = 250 n = 500 n = 1000
−1 10 Finite 8.30 612.58 2.72
0 1 Infinite: Logarithm growth 2.56 0.85 19.12

0.1 1 Infinite: Polynomial growth 1.11 0.40 0.89
0.6 1 Infinite: Polynomial growth 7.93× 10−4 7.62× 10−7 1.92× 10−11

Table 1: Estimated Bayes factor for the finite regime to the infinite regime when applying
the model selection in the MCMC sampler for the DAG-SBM to the simulated data, for
different values of (α, θ, n). A value above (below) 1 favours the finite (infinite) regime.

the DAG-SBM and the directed SBM, for the same sets of simulated data. On one hand,

the directed SBM, which does not include the topological ordering in the likelihood, has

the tendency of heavily underestimating or overestimating Kn. The increase in the number

of blocks also negatively affects the computational costs of the algorithm, compared to the

DAG-SBM. A comparison of the computational times between the two models is provided in

the online Appendix D.1. On the other hand, the DAG-SBM provides reasonable estimates

of Kn across different sample sizes and for both regimes of the PY parameters. Furthermore,

for the DAG-SBM, the model selection step in the MCMC sampler successfully recovers

the true regime of the PY parameters. Indeed, Table 1 displays the estimated Bayes factor

for the model selection step between the finite and infinite regime, for a range of different

values of the hyperparameters of the PY process, including both logarithm (corresponding

to the Dirichlet Process, α = 0) and polynomial growth (0 < α < 1) for Kn. The estimated

Bayes factor suggests that the posterior sampler is capable of recovering the correct regime

from the data, particularly when α is far from 0, and being generally indifferent between the

regimes when α is close to 0, and Kn grows logarithmically, hence very slowly.

Finally, we look at the posterior of σ, or equivalently the positions of the vertices in

the topological ordering, φ. The mixing of the MCMC is good, and the trace plots are

available for some components of φ in the online Appendix D. The posterior density of each

component of φ is plotted as a row in Figure 3, with the rows in the true topological ordering.

The concentration of posterior mass on the main diagonal suggests that this latent ordering

can be well recovered without identifiability issues.
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Figure 3: The posterior density of the positions of the vertices in σ for n = 250 and different
values of (α, θ) for data simulated from the DAG-SBM (Equation (2)), fitted by the DAG-
SBM under the true regime according to α. Each row represents the posterior density of a
component of φ.
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3.2 SNA citation network

Next, we look at the citation network analysed by Lee and Wilkinson (2018). It contains

1118 citations (edges) between 135 articles (vertices) which are related to social network

analysis (SNA). We shall call this data the SNA citation network hereafter.

The MCMC sampler for the DAG-SBM outlined in the online Appendix C was applied,

with 20000 iterations obtained after a burn-in period of 100000 and thinning of 2000, i.e.

keeping 1 sample every 2000 iterations, with a ∼ Gamma(1, 0.01), b ∼ Gamma(1, 0.01).

Such settings were used three times, once assuming the infinite regime (r = 0) with θ+α ∼

Gamma(1, 0.01), once assuming the finite regime (r = 1) with γ ∼ Gamma(1, 0.01) and k ∼

truncated negative binomial(1, 0.01), and once for model selection with P(r = 1) = 0.2, i.e.

P(r = 0) = 0.8. All three runs were performed on a Linux machine with Intel Core i7-7700

Processor (3.6GHz), and took 0.0089, 0.0077, and 0.0083 seconds per iteration, respectively.

Figures 4 to 8 show some key inference results, except for the trace plots of the parameters,

which are in the online Appendix D.2. Of more importance is the posterior density (or mass

function in the case of Kn and k) in Figures 4 and 5. On one hand, in the panels for k

and γ, the infinite regime is naturally missing, while the results for the finite regime and

model selection coincide as expected. Similarly, in the panels for θ and α, the finite regime

is naturally missing, while the results for the infinite regime and model selection coincide as

expected. On the other hand, the panels for Kn, a and b illustrate that the posterior density

from model selection is essentially a weighted average of that of the two regimes.

The departure of the posterior densities of α and γ from 0 suggests that either the

infinite regime or the finite regime is preferred to their shared boundary, i.e. the Dirichlet

process when α = γ = 0. Between the two regimes, with P(r = 1) = 0.2 resulting in

P(r = 1|Y) = 0.5474, the Bayes factor B10 =
P(r = 1|Y)

P(r = 0|Y)

/
P(r = 1)

P(r = 0)
= 4.8368, suggesting

a slight preference for the finite regime, for this citation network.

The high number of thinning is mainly due to the Markov chain for the finite regime

occasionally getting stuck at Kn = 4, which is in turn due to the mixing of k and γ, and
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of the DAG-SBM, and model selection (crosshatch), for the SNA citation network. The right
panel is for finite regime and model selection only as k does not exist in the infinite regime.
For readability, values of k above 12 are not shown.
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Figure 6: Joint posterior of log γ and log k for the finite regime of the DAG-SBM, for the
SNA citation network.
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Figure 7: The posterior density of the positions of the vertices in σ for the infinite (left) and
finite (right) regime of the DAG-SBM, for the SNA citation network. Each row represents
the posterior density of a component of φ. The coloured dots are the mean positions.
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Figure 8: The co-clustering matrix (spectrum) and the adjacency matrix (dots) for the
infinite (left) and finite (right) regime of the DAG-SBM, for the SNA citation network. The
vertices are clustered (dashed lines) according to the point estimate Ẑn.
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the skewness of their joint posterior, which is plotted on log scale in Figure 6. There is a

dense cloud of points towards the bottom right of the plot, indicating high posterior density

around small values of k (and high values of γ), thus limiting Kn to grow. However, such

issue of getting stuck at small values of k and Kn does not exist for either the infinite regime

or the application to the larger dataset in the next subsection.

Next, we look at the posterior of σ, or equivalently the positions of the vertices in the

topological ordering, φ. The mixing of the MCMC is good, and the trace plots for some

components of φ are shown in the online Appendix D.2. The posterior density of each

component of φ is plotted as a row in Figure 7, with the rows themselves in an arbitrary

topological ordering. As the citations, i.e. the edges in the DAG in general go from more

recent works to older ones, the top (bottom) rows, which correspond to topologically earlier

(later) vertices, are generally the more recent (older) articles in the network. The coloured

part of each row represents the support of the posterior of the corresponding article, and in

general is narrower towards the bottom. An interpretation is that generally chronologically

older works are likely to cite between themselves and get cited by later ones, thus limiting

their positions in σ. Lastly, using Equation 8 and the SALSO algorithm (Dahl et al., 2022)

to minimise the loss function, the point estimate Ẑn is obtained, with the co-clustering and

adjacency matrices plotted in Figure 8.

3.3 Statistics citation network

We apply the model to a second citation network. The original data analysed by Ji and Jin

(2016) contains 5722 citations between 3248 articles in the top statistics journals, from 2003

to the first half of 2012. We only consider the largest connected component, and remove one

of the two edges in every pair of cyclic citations (there were only 9 pairs of these). Upon

the data cleaning, we arrive at a citation network that is a DAG and contains 5563 citations

between 2248 articles. We refer to this data as the statistics citation network hereafter.

The MCMC sampler was applied with 1.5×104 iterations obtained after a burn-in period
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of 5.5 × 104 and thinning of 10, with the same priors for a, b, α, θ, k and γ as those in

Section 3.2. For model selection, even with P(r = 0) = 0.99, the whole chain stays in the

finite regime, i.e. P(r = 1|Y) = 1. Therefore, we shall report the results under the finite

regime only, as it is heavily preferred to the infinite counterpart for this network. The trace

plots and posterior densities are provided in the online Appendix D.3. The posterior of Kn

ranges from 92 to 124, which seems reasonable with around 30 articles per cluster.

Similar to Figure 8, the adjacency matrix for the statistics citation network is plotted

in Figure 9, with the vertices clustered according to the point estimate. The co-clustering

matrix is not being overlaid here to preserve the figure readability. The concentration of the

black dots along the major block diagonal suggests that most groups are closely knitted. On

the other hand, there are some concentrated blocks which are off-diagonal and asymmetric,

indicating high number of one-way citations from one group to another.

We report several groups of top articles according to median topological ordering for

Figure 9: The adjacency matrix (black dots) for the finite regime, for the statistics citation
network. The vertices are clustered (dashed lines) according to the point estimate Ẑn.
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some large groups in Table 2. Specifically, for a selection of blocks, we report the top 5

articles in topological ordering within the block. From the article titles, groups seem to

roughly correspond to various topics in statistics. For example, group 18 seems to cover

false discovery rates, group 45 design and randomisation, group 2 wavelets, group 71 miss-

ing/perturbed data, group 25 functional linear regression, and group 65 spatial processes.

However, note that the reported group memberships are just point estimates obtained from

the MCMC draws, and therefore there might be some possibly large posterior uncertainty

Table 2: Titles of top articles according to topological ordering for selected groups.

Group Article

18 “False Discovery” Genovese and Wasserman (AoS, 2004)

18 “False Discovery” Storey (AoS, 2003)

18 “False Discovery” Johnstone (AoS, 2008)

18 “False Discovery” Black (JRSSB, 2004)

18 “False Discovery” Cox and Wong (JRSSB, 2004)

45 “Design and Randomization” Lockwood, Schervish, Gurian and Small (JASA, 2004)

45 “Design and Randomization” Montanari and Ranalli (JASA, 2005)

45 “Design and Randomization” Rubin (JASA, 2005)

45 “Design and Randomization” Barnard, Frangakis, Hill and Rubin (JASA, 2003)

45 “Design and Randomization” Greevy, Silber, Cnaan and Rosenbaum (JASA, 2004)

2 “Wavelet techniques” Averkamp and Houdré (AoS, 2005)

2 “Wavelet techniques” Morris, Vannucci, Brown and Carroll (JASA, 2003)

2 “Wavelet techniques” Yu and Jones (JASA, 2004)

2 “Wavelet techniques” Foster and Stine (JASA, 2004)

2 “Wavelet techniques” Signorini and Jone (JASA, 2004)

71 “Missing Data” Rao, Mingo, Speicher and Edelman (AoS, 2008)

71 “Missing Data” Li, Aragon, Shedden and Agnan (JASA, 2003)

71 “Missing Data” Stute, Xue and Zhu (JASA, 2007)

71 “Missing Data” Liang, Wang, Robins and Carroll (JASA, 2004)

71 “Missing Data” Chen, Leung and Qin (JASA, 2003)

25 “Functional Regression” Crambes, Kneip and Sarda (AoS, 2009)

25 “Functional Regression” Hall and Horowitz (AoS, 2007)

25 “Functional Regression” Cai and Hall (AoS, 2006)

25 “Functional Regression” Wu and Liu (JASA, 2007)

25 “Functional Regression” Mammen and Nielsen (Biometrika, 2003)

65 “Spatial Processes” Wang and Carey (JASA, 2004)

65 “Spatial Processes” Schmidt and O’Hagan (JRSSB, 2003)

65 “Spatial Processes” Schlather, Ribeiro Jr and Diggle (JRSSB, 2004)

65 “Spatial Processes” McElroy and Politis (AoS, 2007)

65 “Spatial Processes” Gelfand, Kim, Sirmans and Banerjee (JASA, 2003)
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in the topological ordering for some of these articles.

Lastly, we report in Table 3 some top articles according to the median topological order-

ing, this time without the group memberships. In general, these articles have high number

of citations. However, we also notice that some of these articles might not have a very high

number of citations. This is due to the fact that these articles are cited by some other

influential articles towards the end of the topological ordering.

4 Discussion

In this article, we proposed a Bayesian nonparametric SBM for DAGs. By conditioning on a

latent topological ordering, the likelihood of the data (which is composed of directed edges)

becomes that of an upper diagonal adjacency matrix. The topological ordering is treated as

an unknown parameter, endowed with a prior and inferred a posteriori within the MCMC

Table 3: Titles of top 20 articles according to topological ordering.

Article

Johnstone (AoS, 2008)

Genovese and Wasserman (AoS, 2005)

Zhang, Siegmund, Ji and Li (Biometrika, 2010)

Averkamp and Houdré (AoS, 2005)

Ishwaran and Rao (JASA, 2003)

Zeng (AoS, 2004)

Beskos, Papaspiliopoulos and Roberts (AoS, 2009)

Schlather and Tawn (Biometrika, 2003)

Mammen and Nielsen (Biometrika, 2003)

Wang and Carey (Biometrika, 2003)

Zhang (JASA, 2003)

Huang (AoS, 2004)

Hu and Rosenberger (JASA, 2003)

Ramsay, Hooker, Campbell and Cao (JRSSB, 2007)

Storey (AoS, 2003)

Lee and Pun (JASA, 2006)

Zhu, Miao and Peng (JASA, 2006)

Barnard, Frangakis, Hill and Rubin (JASA, 2003)

Foster and Stine (JASA, 2004)

Lue (Biometrika, 2004)
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sampler, using a modified leap-and-shift proposal, previously used for the ranking in the

Mallows model by Vitelli et al. (2018). The use of the PY process prior for the allocation

vector Zn allows the model to infer the number of groups Kn from the data. Moreover, a

model selection step for the two regimes of the PY process (one in which the total number

of blocks is finite and unknown, and another one in which it increases with the sample size)

is incorporated in the MCMC sampler.

The model can be generalised in different ways. For example, it can be extended by

introducing covariate information, such as the keywords of each document or its publication

year. This could be achieved by modelling the degree correction factors with a covariate

dependent distribution. Also, in terms of parametrisation, the two regimes of the PY process

could be unified so that γ and α become one parameter that can take a value between −∞

and 1, with its posterior density directly implying which regime is preferred. The main

obstacle to overcome here would be the sampling from the non-standard joint parameter

space of θ and α across the two regimes. Another issue to be resolved is the inference of k,

which is naturally highly correlated with Kn, under the finite regime. This is apparent in

the parameter trace plots (in online Appendix D.3) for the statistics citation network, while

for the SNA citation network the model selection improves the mixing of k in the MCMC.

Ideally k is integrated out, but the computations required mean that this is feasible only

under certain special cases. Such issue with k remains to be resolved.

There are potential extensions regarding inference procedure and results. Similar to how

Ẑn is computed for Zn, a point estimate could be provided for σ, but the distance function

for the ordering has to be carefully considered. Relatedly, a Mallow’s model prior (Vitelli

et al., 2018) could be used for σ, as opposed to the uniform prior used here, to potentially

provide more information to facilitate the inference. Lastly, the derivation of an efficient

Variational Bayes algorithm (Blei et al., 2017) would possibly allow the applicability of the

proposed model to much larger datasets.
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