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Abstract

The infinitesimal rigidity of symmetric (bar-joint) frameworks has been studied

extensively for over two decades. The area splits into the research of forced and

incidental symmetric rigidity. Whereas forced symmetric rigidity only considers

infinitesimal motions which maintain the symmetry of the framework, incidental

symmetric rigidity allows infinitesimal motions that break symmetry.

In both settings and for various symmetry groups, combinatorial characteri-

sations have been obtained for ‘symmetry-generic’ frameworks, i.e. frameworks

which are as generic as possible subject to being symmetric. Assuming that the

symmetry group acts freely on the joints, forced symmetric infinitesimally rigid

frameworks have been characterised for all cyclic groups, and for dihedral groups Ckv,

where k ≥ 3 is odd. With the same free-action assumption, incidentally symmetric

infinitesimally rigid frameworks have been characterised for cyclic groups of order

2,4,6, and of odd order less than 1000.

A limitation of these results is the assumption that the symmetry group acts

freely on the joints of the framework. In this thesis, we fill this mathematical gap.

This is also motivated by problems in applied areas such as structural engineering

or formation control, where symmetric frameworks are frequently studied, and

frameworks may contain joints fixed by the point group (e.g. joints on the symmetry

line of a reflection-symmetric framework, or in the centre of rotation of a rotationally-

symmetric framework).

We consider plane frameworks which are symmetric with respect to cyclic groups

or dihedral groups. We provide necessary conditions for incidentally infinitesimally

rigid frameworks for all cyclic groups, and for the dihedral group of order 4; we also

show that such conditions are sufficient for cyclic groups of order 2,4,6, or of odd

order less than 1000. For cyclic groups of even order, we present counterexamples

to show that the expected sparsity count is necessary, but not sufficient. We also

give necessary conditions for the forced infinitesimal rigidity of frameworks that are

symmetric with respect to dihedral groups of arbitrary finite order.
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In order to do so, we introduce a generalisation of tools commonly used in the

study of symmetric frameworks, known as ‘orbit matrices’ and ‘gain graphs’. Orbit

matrices are symmetry-adapted rigidity matrices, whose underlying combinatorial

structures are gain graphs, directed multigraphs whose edges are labelled with group

elements. A generalisation of gain graphs, and hence of orbit rigidity matrices,

is needed when working with joints which are fixed by the symmetry group. A

further generalisation is required if some joints are neither free nor fixed by the

symmetry group (when working, say, with dihedral groups). We introduce such

a generalisation, and show how some of the properties of usual gain graphs hold

for this new definition, whilst others do not. This generalisation of gain graph is

expected to be useful in future research, for the combinatorial characterisation of

infinitesimally rigid dihedral-symmetric frameworks.
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Chapter 1

Introduction

1.1 Rigidity theory

Rigidity theory is a research area which uses combinatorial and geometric tools

to analyse whether a given structure is flexible or rigid in a given space. Rigid

and flexible structures have received significant interest from mathematicians for

centuries. ‘Rigidity theory’, though it was not always recognised as such, was studied

as far back as the eighteenth century, when L. Euler conjectured that “a closed spatial

figure allows no change, as long as it is not ripped apart” [18].

Contributions from the nineteenth century include A.-L. Cauchy’s theorem on

the uniqueness of convex triangulated polyhedra whose edge lengths are fixed [7]

and R. Bricard’s construction of the first family of flexible polyhedra, the Bricard

octahedra [6]. Work continued through the twentieth century. One noteworthy

contributor is A.D. Alexandrov, with his work on the unique realisability of convex

polyhedra [2] (see also [10]). Following J.C. Maxwell’s necessary counting conditions

for structures to be ‘infinitesimally rigid’ [41], in 1927, H. Pollaczek-Geiringer proved

one of the central results in rigidity theory, which characterises rigid frameworks in

the Euclidean plane, under genericity assumptions [46]. The same result was proved

independently in 1970 by G. Laman [38]. It is now referred to as the Geiringer-

Laman theorem.
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Chapter 1. Introduction

The term rigidity started being used in the 1970’s, when a series of strong papers

in the topic were published, including G. Laman’s characterisation. In 1975, H.

Gluck refined Euler’s rigidity conjecture [22]. In 1977, R. Connelly provided a

counterexample, the Connelly sphere, to show that Euler’s conjecture was incorrect.

In 1978 and 1979, L. Asimow and B. Roth published a pair of papers in which

they showed that, under genericity assumptions, rigidity can be treated as a graph

theoretic property, and in which they presented a counterexample to show that the

Geiringer-Laman Theorem does not hold for dimensions d ≥ 3, the famous double

banana [3, 4].

Since frameworks are a good mathematical model for physical structures,

engineers have also played a key role in the developments of rigidity theory. One

of the most notable contributors is L. Henneberg, who developed engineering

techniques for generating rigid structures [26], the Henneberg moves. The Henneberg

moves were converted into mathematical methods in 1985 by T.-S. Tay and W.J.

Whiteley [69].

Over the last 50 years, rigidity theory has undergone significant mathematical

development, and it has received interest from various areas of applied sciences.

Now, geometric rigidity is a strong research area, both from a mathematical and an

application-driven prospective: as a mathematical theory, it increasingly connects

to other areas, including geometry, homotopy theory, tropical geometry, algebra,

group theory, and others. For instance, the combinatorial characterisations of rigid

graphs usually induce count matroids, which may be of interest in matroid theory;

Results in geometric rigidity also have applications to a variety of sciences, ranging

from mechanical and structural engineering and robotics to biophysics (flexibility of

molecules), material sciences, formation control and Computer Aided Design (CAD).

A strong bridge between pure mathematical rigidity and real life applications

is given by graphic statics, a geometric theory originating in structural engineering

that provides visual information about the relation between forces and forms of a

structure, and which often adopts results from rigidity theory. A classical result

2



1.1. Rigidity theory

is the Maxwell-Cremona correspondence, linking self-stressed frameworks with dual

(force) diagrams and polyhedral liftings [33, 40]. The recent paper [55] by B. Schulze

and C. Millar provides a way of using the combinatorial results on rigid symmetric

frameworks to study the forces of a structure.

In fact, symmetric structures have received significant interest for over two

decades, as symmetry occurs naturally in many application areas. (See, for instance,

[20] and [76] for a description on how symmetric rigidity can be used in CAD and

formation control, respectively.) Exploiting symmetry is beneficial in engineering,

and structure design should take into consideration fully-symmetric and anti-

symmetric loads, i.e. loads which, respectively, maintain and break the symmetry

of a structure [62]. Therefore, the research of symmetric rigidity splits in the study

of forced and incidental symmetric rigidity. In both cases, the framework starts

in a symmetric position. However, in the former, the symmetry of the framework

must be maintained throughout its motions, whereas in the latter the framework

can move in unrestricted ways [12, 60].

Since the study of symmetric frameworks is strongly motivated by its applica-

tions, some of the first strong contributors to the theory were engineers: in 2000, R.

Kangwai and S. Guest made the breakthrough observation that the rigidity matrix

of a symmetric frameworks block-diagonalises in a way that each block corresponds

to exactly one irreducible representation of the symmetry group [31]. This was

followed by a series of further observations on symmetric frameworks, again in an

engineering setting (see. e.g., [19] and [30]).

These conclusions started being translated into mathematical results in 2010,

when B. Schulze gave a rigorous proof to show that the observation given in [31]

does in fact hold mathematically [49]. The same result was proved by J.C. Owen

and S.C. Power, using different techniques [45]. One outcome of the result is the

introduction of the orbit rigidity matrix, a tool used to study the forced rigidity

properties of a symmetric structure [61]. However, the block-diagonalisation of

the rigidity matrix is much stronger, as it also allows for a rigorous mathematical
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study of incidentally rigid symmetric frameworks: the problem of characterising

the infinitesimal rigidity of a symmetric framework reduces into sub-problems, one

for each irreducible representation of the symmetry group, which can be solved

separately (see e.g. [50]).

Though symmetric frameworks are often non-generic, we can still make symmetry

adapted genericity assumptions and, under these assumptions, rigidity (both forced

and incidental) can be treated as graph theoretic properties. Moreover, assuming

‘symmetry-genericity’, forced symmetric infinitesimal rigidity and forced symmetric

continuous rigidity coincide [54]. There are now many papers which provide rigidity

characterisations for symmetry-generic frameworks for both forced [5, 16, 29, 39, 39,

42, 52, 53, 57] and incidental [9, 13, 27, 36, 37, 43, 56] rigidity, in various settings.

The conditions are often given in terms of sparsity counts on group-labelled quotient

graphs, which induce new types of count matroids [28, 64], and the sufficiency proofs

use Henneberg-type inductive constructions.

So far, most of the results in symmetric rigidity make the assumption that the

point group acts freely on the joints of the symmetric framework. Joints that are

fixed by non-trivial symmetries make the theory substantially more difficult, but

it is important to understand this for a variety of applications, as such framework

configurations naturally appear in areas such as structural engineering or formation

control. Notably, positioning joints on a line, such as a reflection line, can be

beneficial in engineering structures, e.g. to avoid torsion.

In this thesis, we drop this free action requirement, in order to fill a gap

in the existing knowledge. This requires a generalisation of algebraic (phase-

symmetric orbit rigidity matrices) and combinatorial (gain graphs) objects which

are central tools in the study of symmetric rigidity. The main results of the thesis

are combinatorial characterisations of incidentally infinitesimally rigid symmetry-

generic plane frameworks for which the symmetry group is either the reflection group

Cs or a rotation group Ck, where k ≤ 7 or 7 < k < 1000 is odd. The counts that we

provide can be checked in polynomial time by combinatorial algorithms. We also
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provide necessary conditions for the incidental infinitesimal rigidity of ‘Ck-generic’

plane frameworks for all k ≥ 8 and counterexamples to show that such conditions

are not sufficient. For these groups, we provide a combinatorial characterisation

of forced infinitesimally rigid symmetry-generic plane frameworks. Moreover, we

explore frameworks which are symmetric with respect to a dihedral group Ckv (where

k ≥ 2): when k = 2, we provide necessary conditions for the incidental infinitesimal

rigidity of symmetry-generic plane frameworks; for all k ≥ 3, we provide necessary

conditions for the forced infinitesimal rigidity of symmetry-generic plane frameworks.

1.2 Outline of the thesis

In this thesis, we consider symmetric bar-joint frameworks in R2, whose joints may

be free, fixed, or neither. We assume throughout the thesis that the frameworks

satisfy some genericity condition, and we restrict the study to finite frameworks.

Therefore, the symmetry groups we consider are the reflection group Cs, rotation

groups Ck, and dihedral groups Ckv, where k ≥ 2 is finite.

In Chapter 2 we present some important concepts in graph theory and in rigidity

theory, while reviewing some key results and setting the terminology which will be

used throughout the thesis. We introduce three distinct but connected notions

of rigidity: continuous rigidity, infinitesimal rigidity and generic rigidity. We also

formalise the notions of symmetric framework and symmetric rigidity. We conclude

the chapter by setting the symmetry notation which will be used for the rest of the

thesis.

In Chapter 3 we present the notion of gain graph, a widely used tool in the study

of symmetric frameworks whose joints are free under the symmetry group action. In

order to use this tool in the setting where the symmetry group need not act freely

on the joints of the framework, we generalise the notion of gain graph in two steps:

first to consider cyclic groups; then to consider all groups. We also generalise some

key results concerning gain graphs.
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In Chapter 4 we examine the rigidity matrix, the main tool in the study of

infinitesimal rigidity. We present the main result in [49], which asserts that the

rigidity matrix of a symmetric framework may be block-diagonalised. We then

utilise this result to construct ‘phase-symmetric orbit rigidity matrices’, which will

be used in later chapters to find a combinatorial characterisation of infinitesimally

rigid symmetry-generic frameworks.

In Chapter 5 we provide necessary conditions for the infinitesimal rigidity of

frameworks whose symmetry group is either a cyclic group or a dihedral group of

order 4. We also provide necessary conditions for the forced infinitesimal rigidity of

frameworks which are symmetric with respect to a dihedral group of arbitrary but

finite order. A summarised version of the arguments in Chapter 5 for cyclic groups

can also be found in [48].

In Chapters 6 and 7 we show that the necessary conditions given in Chapter 5 for

infinitesimally rigid frameworks which are symmetric with respect to a cyclic group

are also sufficient, provided the group has order 2,4,6, or odd order less than 1000.

We give explanation on the restrictions on the group order. Namely, we provide

counterexamples to show that such conditions are not sufficient for cyclic groups of

even order k ≥ 8. Chapters 6 and 7 are based on [48] and [47], respectively.

In Chapter 8 we explore ways in which the research of symmetric frameworks

with joints fixed by the symmetry action can be further developed. Namely, we

expand on the difficulties which arise when we consider certain cyclic and dihedral

groups, and we offer possible solutions. We also briefly present some ways in which

the techniques presented in this thesis can be adopted in different settings.
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Chapter 2

Graphs, frameworks and

symmetry

2.1 Graphs: undirected, directed and symmetric

We start by recalling some graph theoretic concepts. The main purpose of this

section is to set the notation which will be used throughout the thesis, as well as to

remind the expert reader of concepts in graph theory, which are crucial for a good

understanding of the thesis.

2.1.1 Basic concepts and notation

We start by recalling the notions of undirected and directed graphs. Both play a

key role in the thesis.

Definition 2.1.1. An undirected graph is a pair G = (V,E), where V is a finite

set of objects called vertices, and E is a multiset of unordered pairs of vertices of G

called edges. Given two vertices u, v ∈ V , an edge e ∈ E between u and v is denoted

uv.

A directed graph is a pair G = (V,E), where V is a finite set of objects called

vertices, and E is a multiset of ordered pairs of vertices of G called edges. Given
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two vertices u, v ∈ V , an edge e ∈ E from u to v is denoted (u, v).

Given e = uv ∈ E (if G is undirected) or e = (u, v) ∈ E (if G is directed), we say

u, v are the end-vertices of e, that u, v are adjacent, and that u and e are incident,

as are v and e.

When clear from the context, we use the term graph for both a directed and

undirected graph. We denote the vertex set of a graph G by V (G), and its edge set

by E(G). All notions given for the rest of the section are defined for both directed

and undirected graphs.

Definition 2.1.2. Given a graph G, we define:

(i) A loop at a vertex u ∈ V (G) to be an edge whose end-vertices are both u.

(ii) Two parallel edges to be edges e, f ∈ E(G) which share the same end-vertices.

If E(G) contains no loops and no parallel edges, then we say G is simple. Otherwise,

we say G is a multigraph. Note, when G is simple, E(G) is a set of pairs of vertices.

Definition 2.1.3. Let G be a graph with a vertex u. A neighbour of u is a vertex

v which is adjacent to u. The neighbourhood of u is the set of all neighbours of u,

and is denoted NG(u).

Definition 2.1.4. Let G be a graph with a vertex u. The degree of u is the number

of edges incident to u, and is denoted by degG(u). If e is a loop at u, then e

contributes two to the degree of u.

Definition 2.1.5. A bipartite graph (or bigraph) is a graph G whose vertex set may

be partitioned into two sets U and V , called partite sets, such that for every edge

e ∈ E(G), one end-vertex of e lies in U and the other lies in V .

Definition 2.1.6. Let G be a graph, and U ⊆ V (G). The graph induced by U is

the graph whose vertex set is U and whose edge set is the set of all edges in E(G)

that have both end vertices in U . We denote such a graph by [U ]G.
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2.1. Graphs: undirected, directed and symmetric

Definition 2.1.7. Let G be a graph. A graph H is a subgraph of G if V (H) ⊆ V (G)

and E(H) ⊆ E(G). If H is a subgraph of G, we write H ⊆ G. We say a subgraph

H of G is proper if E(H) ⊊ E(G), in which case we write H ⊊ G. A subgraph H

of G is called spanning if V (H) = V (G).

Let G be a graph. A simple way of obtaining subgraphs of G is by recursively

removing vertices and/or edges from G.

(i) For some e ∈ E(G), we use G − e to denote the graph obtained from G by

removing e. For some F ⊆ E(G), we use G−F to denote the graph obtained

from G by removing all edges in F .

(ii) For some u ∈ V (G), we use G − u to denote the graph obtained from G by

removing u, together with all edges incident to u. For some U ⊆ V (G), we

use G−U to denote the graph obtained from G by removing all vertices in U ,

together with all edges incident to the vertices in U .

In a similar way, one can obtain graphs by recursively adding vertices and/or

edges to a graph. Let G be a graph and H ⊊ G.

(i) For some e ∈ E(G) \ E(H) such that both end vertices of e lie in V (H),

we use H + e to denote the graph obtained from H by adding e. For some

F ⊆ E(G) \ E(H) such that both end vertices of each edge in F lie in V (H),

we use H + F to denote the graph obtained from G by adding all edges in F .

(ii) For some u ∈ V (G) \ V (H) (if it exists), we use H +G u to denote the graph

obtained from H by adding u, together with all edges in G which are incident

to u and some v ∈ V (H), as well as all loops at u in G. If there is some

non-empty U ⊆ V (G) \ V (H), we use H +G U to denote the graph obtained

from H by adding all vertices in U , together with all edges in G incident to

two vertices in U ∪ V (H), as well as all loops in G adjacent to the vertices in

U . When G is clear from the context, we write H + u and H + U for H +G u

and H +G U , respectively.
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Chapter 2. Graphs, frameworks and symmetry

Another very simple way of building graphs is by taking the union and the

intersection of two different graphs.

Definition 2.1.8. Let G1 and G2 be two graphs. The union G1 ∪ G2 of G1 and

G2 is the graph whose vertex set is V (G1) ∪ V (G2) and whose edge set is the set

E(G1) ∪ E(G2). The intersection G1 ∩G2 of G1 and G2 is the graph whose vertex

set is V (G1) ∩ V (G2) and whose edge set is E(G1) ∩ E(G2).

Definition 2.1.9. Let G be graph and u, v ∈ V (G). A u − v walk W in G is

a finite sequence e1, . . . , ek of edges of G for which there is a sequence of vertices

u = u1, . . . , uk+1 = v such that, for each 1 ≤ i ≤ k, ei has end-vertices ui and ui+1.

The vertices u2, . . . , uk are called the internal vertices of W . We say W is a u − v

path if v1, . . . , vk are all distinct. A closed walk is a u − v walk with u = v, and a

cycle is a closed path.

Definition 2.1.10. We say a graph G is connected if, for all u ̸= v ∈ V (G), there

is a u − v path in G. Otherwise, G is disconnected. Given a connected graph G,

we say a subset U ⊆ V (G) is a separating set of G if G − U is disconnected. If a

singleton U is a separating set of G, we call its unique element a separating vertex

of G. Given k ≥ 2, we say a connected graph G with |V (G)| > k is k-connected if

it has no separating set of size k. For k ≥ 2, a k-connected component (respectively,

a connected component) of a graph G with |V (G)| > k is a k-connected subgraph

(respectively, a connected subgraph) H of G such that H = H ′ for all k-connected

graphs (respectively, all connected graphs) H ′ with H ⊆ H ′ ⊆ G.

Definition 2.1.11. A graph with no cycles is called a forest, and a connected forest

is called a tree. A spanning subgraph of G is called a spanning forest of G it if is a

forest, and it is called a spanning tree of G if it is a tree.

2.1.2 Symmetric graphs

In this section, we define symmetric graphs. For the purpose of this thesis, symmetric

graphs are simple, undirected graphs.
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2.1. Graphs: undirected, directed and symmetric

Definition 2.1.12. An automorphism of an undirected graph G is a permutation π

of V (G) such that uv ∈ E(G) if and only if π(u)π(v) ∈ E(G). The automorphisms

of G form a group under composition, called the automorphism group of G, which

we denote Aut(G).

Definition 2.1.13. Let Γ be an (abstract) group and G be a simple undirected

graph. If there is a homomorphism θ : Γ → Aut(G), we say G is Γ-symmetric with

respect to the group action θ.

Definition 2.1.14. Let Γ be a group, G be a Γ-symmetric graph with respect to

an action θ, and u ∈ V (G), e ∈ E(G). The (vertex) Γ-orbit of u with respect to θ is

the set θ(Γ)u = {θ(γ)(u) : γ ∈ Γ}, and the (edge) Γ-orbit of e with respect to θ is

the set θ(Γ)e = {θ(γ)(e) : γ ∈ Γ}. The sets of vertex Γ-orbits and edge Γ-orbits of

G with respect to θ are denoted by θ(Γ)V (G) and θ(Γ)E(G), respectively.

Example 2.1.15. Let G be the graph in Figure 2.1(a). The automorphism group

of G is Aut(G) = ⟨γ⟩, where γ = (123)(456)(789). See Figure 2.1(a,b,c) for all

automorphisms in Aut(G) applied to G. So, G is Z3-symmetric with respect to the

isomorphism θ : Z3 → Aut(G) which maps the generator 1 of Z3 to γ.
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6

9

4

7

(b)

Figure 2.1: A Z3-symmetric graph G. (a,b,c) are, respectively, the graphs

obtained from G by applying the automorphisms (1)(2) . . . (9), (123)(456)(789) and

(132)(465)(798).
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Definition 2.1.16. Let Γ be a group and G be a Γ-symmetric graph with respect

to a group action θ. We say an element γ ∈ Γ fixes a vertex u ∈ V (G) with respect

to θ if θ(γ)(u) = u, and it fixes a subset U of V (G) with respect to θ if, for all u ∈ U ,

it fixes u with respect to θ. The stabiliser of u ∈ V (G) with respect to Γ and θ is

the set SΓ,θ(u) = {γ ∈ Γ : γ fixes u with respect to θ}. A vertex u ∈ V (G) is:

(i) fixed by (or under) Γ with respect to θ if SΓ,θ(u) = Γ. Equivalently, we can say

Γ fixes u with respect to θ. The set of all vertices of G which are fixed by Γ

with respect to θ is denoted by V|Γ|(G)Γ,θ.

(ii) free under Γ with respect to θ if SΓ,θ(u) = {idΓ}. Equivalently, we can say Γ

acts freely on u with respect to θ. The set of all vertices of G which are free

under Γ with respect to θ is denoted by V1(G)Γ,θ.

(iii) semi-free under Γ with respect to θ if it is neither free nor fixed under Γ with

respect to θ. For 2 ≤ i ≤ |Γ| − 1, the set of all vertices of G whose stabiliser

with respect to Γ and θ has size i is denoted by Vi(G)Γ,θ. Notice that the set of

semi-free vertices of G under Γ with respect to θ is V2(G)Γ,θ ∪̇ . . . ∪̇V|Γ|−1(G)Γ,θ,

where A ∪̇B denotes the disjoint union of two sets A and B.

When the group Γ and the action θ are clear from the context, we say a vertex

is fixed/free/semi-free, and we write V1(G), V2(G), . . . V|Γ|(G).

Definition 2.1.17. Let Γ be a group and G be a Γ-symmetric graph with respect

to a group action θ. We say an element γ ∈ Γ fixes an edge e ∈ E(G) with respect

to θ if θ(γ)(e) = e, and it fixes a subset F of E(G) with respect to θ if, for all e ∈ F ,

it fixes e with respect to θ. The stabiliser of e ∈ E(G) with respect to Γ and θ is the

set SΓ,θ(e) = {γ ∈ Γ : γ fixes e with respect to θ}. An edge e ∈ E(G) is:

(i) fixed by (or under) Γ with respect to θ if SΓ,θ(e) = Γ. Equivalently, we can say

Γ fixes e with respect to θ. The set of all edges of G which are fixed by Γ with

respect to θ is denoted by E|Γ|(G)Γ,θ.
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(ii) free under Γ with respect to θ if SΓ,θ(e) = {idΓ}. Equivalently, we can say Γ

acts freely on e with respect to θ. The set of all edges of G which are free under

Γ with respect to θ is denoted by E1(G)Γ,θ.

(iii) semi-free under Γ with respect to θ if it is neither free nor fixed under Γ with

respect to θ. For 2 ≤ i ≤ |Γ| − 1, the set of all edges of G whose stabiliser

with respect to Γ and θ has size i is denoted by Ei(G)Γ,θ. The set of semi-free

edges of G under Γ with respect to θ is E2(G)Γ,θ ∪̇ . . . ∪̇E|Γ|−1(G)Γ,θ.

When the group Γ and the action θ are clear from the context, we say an edge

is fixed/free/semi-free, and we write E1(G), E2(G), . . . E|Γ|(G). For the purposes of

this thesis, we assume that whenever Γ is cyclic V (G) = V1(G) ∪̇V|Γ|(G) and that

E(G) = E1(G) ∪̇E(G). (See Subsection 2.3.1 for an explanation.)

Example 2.1.18. Let W5 be the wheel graph on 5 vertices, i.e. the graph which

connects a single vertex to all vertices of a cycle on 4 vertices, as shown in

Figure 2.2. Let D8 denote the dihedral group ⟨s, r : s2 = r4 = (sr)2 = id⟩. With

the same notation as in Figure 2.2, W5 is D8-symmetric with respect to the action

θ : D8 → Aut(W5) which maps r to (1234) and s to (13). Note that 1, 2, 3, 4 are all

semi-free under D8 with respect to θ, and 0 is fixed by D8 with respect to θ. Note

also that the edge 12 is semi-free under D8 with respect to θ, since it is fixed by

(12)(34), but not by (14)(23).

0 1

2

3

4

Figure 2.2: The D8-symmetric graph W5.

We conclude this section by recalling the notion of quotient graph. This thesis
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uses G when referring to the quotient of a graph, and it uses G̃ when referring to

the ‘lifting’ of a graph.

Definition 2.1.19. Let Γ be a group and G̃ = (Ṽ , Ẽ) be a Γ-symmetric graph

with respect to a group action θ. The Γ-quotient graph of G̃ with respect to θ is an

(undirected) multigraph G = (V,E). The vertex set V is the set of vertex orbits of

G̃ with respect to Γ and θ, and the edge set E is the set of edge orbits of G̃ with

respect to Γ and θ. G is indeed a graph, since each edge orbits correspond to a pair

of vertex orbits. The graph G̃ is the Γ-lifting of G with respect to the action θ.

Example 2.1.20. Let K4 be the complete graph on the 4 vertices Ṽ = {1̃, 2̃, 3̃, 4̃},

as shown in Figure 2.3(a). View K4 as a Z2-symmetric graph with respect to the

action θ1 : Z2 → Aut(G) which maps the non-identity element 1 of Z2 to (1̃2̃)(3̃4̃).

The vertex orbits of G̃ with respect to Z2 and θ1 are 1 := {1̃, 2̃} and 4 := {3̃, 4̃},

and the edge orbits of G̃ with respect to Z2 and θ1 are e12 = {1̃2̃}, e13 = {1̃3̃, 2̃4̃},

e14 = {1̃4̃, 2̃3̃} and e34 = {3̃4̃}. So, the Z2-quotient graph of G̃ with respect to θ1 has

vertex set {1, 4} and edge set {e12, e13, e14, e34} (see Figure 2.3(b)). Now, view K4

as a Z4-symmetric graph with respect to the action θ2 : Z4 → Aut(G) which maps 1

to (1̃2̃3̃4̃). The only vertex orbit of G̃ with respect to Z4 and θ2 is Ṽ itself. The edge

orbits of G̃ with respect to Z4 and θ2 are f12 = {1̃2̃, 2̃3̃, 3̃4̃, 4̃1̃} and f13 = {1̃3̃, 2̃4̃}.

So, the Z4-quotient graph of G̃ with respect to θ2 has vertex set {Ṽ } and edge set

{f12, f13} (see Figure 2.3(c)).

1̃2̃

3̃ 4̃

(a)

1

4

e14e13

e12

e34

(b)

Ṽ
f12 f13

(c)

Figure 2.3: Two different quotient graphs of K4.
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Though Example 2.1.18 shows that the action θ cannot be neglected, it is

sometimes clear from the context. In such cases we abbreviate θ(γ)(v), θ(γ)(e)

to γv, γe, respectively, and Γ-symmetric graphs with respect to θ are referred to

as Γ-symmetric graphs. Notice that the partitioning V (G̃) = V1(G̃) ∪̇ . . . ∪̇V|Γ|(G̃)

induces a partition of V (G) into the sets Vi(G) = {Γv ∈ V (G) : |Γ| = i} for all

1 ≤ i ≤ k.

2.2 Rigidity theory

In this section, we introduce some base concepts in rigidity theory [12, 23, 60].

Throughout this section, we fix a dimension d. We will later fix d to be 2.

2.2.1 Basic concepts in rigidity theory

One of the main objects of interest in geometric rigidity is the bar-joint framework,

which is comprised of flexible joints connected by straight bars of fixed length.

Definition 2.2.1. A (bar-joint) framework in Rd (equivalently, d-framework) is a

pair (G, p) where G is a simple undirected graph and p : V (G) → Rd is a map.

Alternatively, (G, p) is known as a d-realisation of the underlying graph G. The

map p is known as a d-configuration of G.

When the dimension d is clear, d-framework, d-realisation and d-configuration

may be abbreviated to framework, realisation and configuration, respectively. By

ordering the vertices of G so that V (G) = {1, . . . , n}, we may identify p with the

column vector in Rdn that has the vector p(k) on the entries d(k−1)+i for 1 ≤ i ≤ d

and 1 ≤ k ≤ n.

We call the realisation p(u) of a vertex u ∈ V (G) a joint of (G, p). Realising the

vertices of G implicitly realises its edges. The realisation of an edge e = uv ∈ E

is the straight line segment between p(u) and p(v), and so its length is defined to

be ||p(u) − p(v)||, where || · || denotes the Euclidean norm. We allow an abuse of
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Chapter 2. Graphs, frameworks and symmetry

notation, and use p(e) to denote the realisation of e. We call the realisation p(e) of

an edge e ∈ E(G) a bar of (G, p). We sometimes abbreviate the notation of a joint

from p(u) to pu, and the notation of a bar from p(e) to pe.

The main interest in rigidity theory is to decide whether a given framework is

rigid or flexible. We introduce three distinct, but related definitions of rigidity.

2.2.2 Continuous rigidity

We start by presenting the definition of (continuous) rigidity. A continuous motion

of a framework is a smooth displacement of its joints, as shown in Figure 2.4.

Definition 2.2.2. Let G = (V,E) be a graph with vertex set V = {1, . . . , n}, and

let (G, p) be a d-realisation of G. A continuous motion of (G, p) is a collection

{Pi}ni=1 of n continuous maps Pi : [0, 1] → Rd, each corresponding to a vertex of G,

such that

(i) Pi(0) = pi for all 1 ≤ i ≤ n;

(ii) Pi(t) is differentiable on the interval [0, 1] for all 1 ≤ i ≤ n;

(iii) ||Pi(t)− Pj(t)||2 = ||pi − pj||2 for all t ∈ [0, 1] and all edges ij ∈ E.

Figure 2.4: Continuous motion of a 2-framework.

Definition 2.2.3. Let (G, p) be a framework with V (G) = {1, . . . , n}, and {Pi}ni=1

be a continuous motion of (G, p). We say {Pi}ni=1 is trivial (or rigid) if, for all

t ∈ [0, 1] and all pairs of vertices i, j ∈ V ,

||Pi(t)− Pj(t)||2 = ||pi − pj||2.
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2.2. Rigidity theory

Definition 2.2.4. We say (G, p) is continuously rigid if all of its continuous motions

are trivial. Otherwise, we say (G, p) is continuously flexible. We say (G, p) is

minimally continuously rigid if it is continuously rigid, and there is some e ∈ E

such that (G− e, p) is continuously flexible.

Figure 2.5 shows three examples of 2-frameworks: (a) is continuously flexible,

(b) is minimally continuously rigid, and (c) is (not minimally) continuously rigid.

As 3-frameworks, (b) and (c) are, respectively, continuously flexible and minimally

continuously rigid.

(a) (b) (c)

Figure 2.5: Three different examples of 2-frameworks.

The trivial continuous motions of a framework (G, p) are exactly the motions

composed of rotations and translations of (G, p).

2.2.3 Infinitesimal rigidity

Determining whether a framework is continuously rigid is NP-hard, as it requires

solving a system of quadratic equations [1]. We simplify the theory by linearising

it: instead of studying continuous motions, we consider velocity vectors assigned

to the joints of a framework. Infinitesimal rigidity implies continuous rigidity (see,

e.g., the frameworks in Figure 2.6), and it is strongly connected to static rigidity, a

useful theory in engineering.

Definition 2.2.5. An infinitesimal motion of a d-framework (G, p) is a function

m : V (G) → Rd such that for all uv ∈ E(G),

(pu − pv)
T (mu −mv) = 0, (2.1)

where mu and mv denote m(u) and m(v), respectively.

17



Chapter 2. Graphs, frameworks and symmetry

Let V (G) = {1, . . . , n}. If (G, p) has a continuous motion {Pi}ni=1, then one can

check that the map m : V → Rd defined by letting m(i) = P ′
i (0) is an infinitesimal

motion. We say an infinitesimal motion m of (G, p) is trivial (or rigid) if there is a

trivial continuous motion {Pi}ni=1 such that m(i) = P ′
i (0). Otherwise, we say m is

an infinitesimal flex. The following definition is equivalent.

Definition 2.2.6. An infinitesimal motion m of a framework (G, p) is trivial (or,

rigid) if there is a skew-symmetric matrix M ∈Md(R) and a d-dimensional vector t

such that m(u) =Mpu+ t for all u ∈ V (G). Otherwise, m is called an infinitesimal

flex.

Definition 2.2.7. We say (G, p) is infinitesimally rigid if all of its infinitesimal

motions are trivial. Otherwise, we say (G, p) is infinitesimally flexible. We say (G, p)

is minimally infinitesimally rigid (equivalently, isostatic) if it is infinitesimally rigid,

and there is some e ∈ E(G) such that (G− e, p) is infinitesimally flexible.

Since all differentiable continuous motions can be differentiated into infinitesimal

motions, and since the spaces of trivial continuous motions and of trivial infinitesimal

motions of a framework have the same dimension, we expect all infinitesimally rigid

frameworks to also be continuously rigid. This is, in fact, true. Though the idea

seems intuitive, the proof is quite elaborate. [[11], Theorem 2.54] has three different

proofs of the following statement.

Theorem 2.2.8. Let (G, p) be a d-framework. If (G, p) is infinitesimally rigid, then

it is continuously rigid.

Figure 2.6: 2-frameworks which are continuously rigid, but not infinitesimally rigid.

As we will see in Subsection 2.2.4, under certain genericity conditions, continuous

and infinitesimal rigidity coincide. However, this is not generally true. Figure 2.6
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2.2. Rigidity theory

shows two examples of frameworks which are continuously rigid, but infinitesimally

flexible.

We conclude the section by introducing the main tool used in the study of

infinitesimal rigidity, the rigidity matrix.

Definition 2.2.9. Let (G, p) be a d-framework (G, p) with V (G) = {1, . . . , n}. The

rigidity matrix R(G, p) of (G, p) is the |E(G)| × (dn) matrix

R(G, p) =

1 i j n
...

0 . . . 0 [pi − pj]
T 0 . . . 0 [pj − pi]

T 0 . . . 0
...

 (ij ∈ E(G)),

where the d-dimensional row vector [pi−pj]T appears in the d columns corresponding

to i, the d-dimensional row vector [pj − pi]
T appears in the columns corresponding

to j, and the other entries in the row corresponding to the edge ij are zero.

By ordering the vertices of G, we may identify an infinitesimal motion m of

(G, p) with a vector in Rdn that has the vector m(k) on the entries d(k − 1) + i

for 1 ≤ i ≤ d and for 1 ≤ k ≤ n. By Equation 2.1, the right kernel of R(G, p)

is the space of infinitesimal motions of (G, p). By Definition 2.2.6, it follows that

the rigidity matrix of a framework (G, p) (such that p(V ) spans Rd) has nullity at

least (d+1
2 ), and (G, p) is infinitesimally rigid if and only if nullityR(G, p) = (d+1

2 ) or

equivalently, rankR(G, p) = d|V (G)| − (d+1
2 ). (For a formal proof, see [[3], Section

3].)

The rigidity matrix is also strongly connected to an important concept in rigidity

theory, known as equilibrium stress.

Definition 2.2.10. An equilibrium stress of a framework (G, p) is a map ω : E(G) →

R such that for all u ∈ V (G), it satisfies

∑
v:uv∈E(G)

ω(uv)(pu − pv) = 0.

19



Chapter 2. Graphs, frameworks and symmetry

Notice that ω is an equilibrium stress if and only if R(G, p)Tω = 0. So a

framework (G, p) has a non-zero equilibrium stress if and only if there is a non-

trivial row dependency in R(G, p).

2.2.4 Generic rigidity

Definition 2.2.11. Let G be a graph. A d-configuration p of G is said to be generic

if p(V (G)) is algebraically independent over Q. If p is generic, we say the framework

(G, p) is generic.

Continuous and infinitesimal rigidity coincide for all generic frameworks. More-

over, if G has an infinitesimally rigid generic d-realisation, then all generic d-

realisations of G are infinitesimally rigid [59].

Theorem 2.2.12 ([3], Theorem 1). Let (G, p) be a generic d-framework. Then,

(G, p) is infinitesimally rigid if and only if it is continuously rigid.

Lemma 2.2.13 ([3], Lemma 1). Let G be a graph and (G, p) be a generic d-

realisation of G. If (G, p) is continuously rigid, then (G, q) is continuously rigid for

all generic d-configurations q of G. If (G, p) is infinitesimally rigid, then (G, q) is

infinitesimally rigid for all generic d-configurations q of G.

In particular, Lemma 2.2.13 implies that rigidity becomes a property of the

underlying graph if we only consider generic configurations.

Definition 2.2.14. A graph G is said to be (generically) d-rigid if (G, p) is

infinitesimally rigid for some (equivalently, for all) generic d-realisation (G, p) of G.

Otherwise, we say G is (generically) d-flexible. We say G is minimally (generically)

d-rigid if it is generically d-rigid, and there is an edge e ∈ E(G) such that G− e is

generically d-flexible.

Intuitively, a graph on n vertices is generically d-rigid if it has sufficient edges,

which are ‘adequately’ distributed. Formally, this idea is translated in the notion of

sparsity count.
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2.2. Rigidity theory

Definition 2.2.15. Let m, l be non-negative integers with m ≤ l. A graph G

is (m, l)-sparse if, for all subgraphs H of G with E(H) ̸= ∅ and m|V (H)| ≥ l,

|E(H)| ≤ m|V (H)| − l. The graph G is said to be (m, l)-tight if it is (m, l)-sparse

and |E(G)| = m|V (G)| − l.

Recall that a framework (G, p) (where p(V ) spans Rd) is infinitesimally d-rigid if

and only if the rank of its rigidity matrix is d|V (G)| −
(
d+1
2

)
[40]. This implies that

any generically d-rigid graph has a
(
d,
(
d+1
2

))
-tight spanning subgraph. It was first

shown by H. Pollaczek-Geiringer [46], and later by G. Laman [38], that, in the case

where d = 2, such sparsity conditions are not only necessary, but also sufficient, to

determine the generic rigidity of G.

Theorem 2.2.16 (Geiringer-Laman Theorem). A graph G is minimally generically

2-rigid if and only if it is (2, 3)-tight.

1

2

3

4

5

6

(a)

1

2

3

4

5

6

(b)

1

2

3

4

5

6

(c)

Figure 2.7: Three graphs. (a) is (2, 3)-sparse, but not (2, 3)-tight, (b) is not (2, 3)-

sparse, and (c) is (2, 3)-tight.

Consider the graphs in Figure 2.7. Graphs (a,b) do not have a (2, 3)-tight

spanning subgraph. Any generic 2-realisation of both graphs is continuously flexible,

and hence infinitesimally flexible: in both cases, pinning the joints corresponding

to the vertices 1,2,3,4, and sliding the joints corresponding to 5,6 upwards gives a

continuous motion. Graph (c) is minimally generically 2-rigid, and is (2, 3)-tight.

Significant efforts have been made to obtain analogous results to the Geiringer-

Laman Theorem for d ≥ 3. An expected result would be that a graph G is minimally
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Chapter 2. Graphs, frameworks and symmetry

generically d-rigid if and only if it is
(
d,
(
d+1
2

))
-tight. However, though these sparsity

conditions are necessary, there are counterexamples to show they are not sufficient

for generic d-rigidity. The most commonly used example is the ‘double banana’, a

(3, 6)-tight graph which is not generically 3-rigid (see Figure 2.8). In this example,

given a d-configuration p of G, the line through p(u) and p(v) acts as a pivot,

around which either ‘banana’ may rotate [12, 23]. Many similar examples may be

constructed in all dimensions [67].

u

v

Figure 2.8: The double banana.

This thesis examines symmetric frameworks which are non-generic by definition.

However, we consider frameworks which are as generic as possible subject to given

symmetry constraints. Both the Geiringer-Laman Theorem itself and the general

idea of its proof play a key role in the proofs of the main results of the thesis.

2.3 Symmetry in rigidity

In this section we introduce the main object of interest of this thesis, the symmetric

framework. We give a formal definition of symmetric framework and we establish

some fundamental concepts. Throughout the rest of the thesis, we assume that all

configurations of a graph are injective.
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2.3. Symmetry in rigidity

2.3.1 Symmetric frameworks

Definition 2.3.1. A symmetry group on Rd is a subgroup of the orthogonal group

O(Rd).

Definition 2.3.2. Let G be symmetry group on Rd. We say a point x ∈ Rd is fixed

by an element g ∈ G if gx = x. The symmetry element corresponding to g is the

linear subspace Fg of Rd which consists of all points x ∈ Rd fixed by g. We define

the space

U(x) =
⋂

g∈G:gx=x

Fg.

Definition 2.3.3. Let Γ be a group, G be a Γ-symmetric graph and τ : Γ → O(Rd)

be an injective homomorphism. A framework (G, p) is τ(Γ)-symmetric if, for all

γ ∈ Γ, v ∈ V (G), we have τ(γ)p(v) = p(γv).

Notice that the image τ(Γ) of Γ under τ , when equipped with composition, forms

a symmetry group on Rd. Recall that an element of τ(Γ) may also be seen as a d×d

orthogonal matrix in O(Rd). When clear, we interchange the notions of τ(γ) ∈ τ(Γ)

as a map and as a matrix.

Definition 2.3.4. Let Γ be a group, G be a Γ-symmetric graph and τ : Γ → O(Rd)

be an injective homomorphism. Let (G, p) be a τ(Γ)-symmetric framework, and pu

be a joint of (G, p). We say pu is fixed by an element τ(γ) ∈ τ(Γ) if, as a point in

Rd, pu is fixed by τ(γ). We say that pu is:

(i) fixed by (or under) τ(Γ) if it is fixed by all elements of τ(Γ).

(i) free under τ(Γ) if the only element in τ(Γ) which fixes pu is idτ(Γ).

(iii) semi-free under τ(Γ) if it is neither free nor fixed under τ(Γ).

Definition 2.3.5. Let Γ be a group, G be a Γ-symmetric graph and τ : Γ → O(Rd)

be an injective homomorphism. Let (G, p) be a τ(Γ)-symmetric framework, and pe

be a bar of (G, p). We say pe is fixed by an element τ(γ) ∈ τ(Γ) if τ(γ)pe = pe. We

say that pe is:
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Chapter 2. Graphs, frameworks and symmetry

(i) fixed by (or under) τ(Γ) if it is fixed by all elements of τ(Γ).

(i) free under τ(Γ) if the only element in τ(Γ) which fixes pe is idτ(Γ).

(iii) semi-free under τ(Γ) if it is neither free nor fixed under τ(Γ).

Figure 2.9 shows three examples of τ(Γ)-symmetric frameworks which have non-

free bars. The Cs-symmetric framework in (a) contains two fixed bars coloured in

red. The C2-symmetric framework in (b) contains a fixed bar coloured in red. The

C8-symmetric framework in (c) contains four semi-free bars coloured in red. For all

even k ≥ 4, there is a Ck-symmetric framework analogous to the framework in (c),

which contains k/2 semi-free edges.

(a) (b) (c)

Figure 2.9: A Cs-symmetric framework, a C2-symmetric framework, and a C8-

symmetric framework, all showing non-free bars in red.

Let Γ be a group, G be a Γ-symmetric graph and τ : Γ → O(Rd) be an injective

homomorphism. Consider a τ(Γ)-symmetric realisation (G, p) of G. If a vertex

v ∈ V (G) (respectively, an edge e ∈ E(G)) is not free, then neither is the joint p(v)

(respectively, the bar p(e)). Moreover, if v (respectively, e) is fixed, then so is p(v)

(respectively, p(e)). Since we assume throughout the thesis that p is injective, the

converse is also true: each fixed vertex corresponds to a fixed joint; each semi-free

vertex corresponds to a semi-free joint; each free vertex corresponds to a free joint.

In this thesis, we will derive Geiringer-Laman type results for some symmetric

frameworks, and hence we need a symmetry-adapted notion of genericity.
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2.3. Symmetry in rigidity

Definition 2.3.6. Let (G, p) be a τ(Γ)-symmetric framework for some group Γ and

some injective homomorphism τ : Γ → O(Rd). The d-configuration p is τ(Γ)-generic

if rankR(G, p) ≥ rankR(G, q) for all τ(Γ)-symmetric realisations (G, q) of G. The

framework (G, p) is τ(Γ)-generic if p is τ(Γ)-generic.

The set of all τ(Γ)-generic configurations of G is a dense, open subset of the set

of τ(Γ)-symmetric configurations of G.

2.3.2 Forced and incidental symmetric rigidity

In this thesis, we consider all infinitesimal motions of a symmetric framework,

including those which break the symmetry of the framework. This area of research

is commonly known as incidental rigidity in the rigidity community.

A number of combinatorial characterisations of symmetry-generic infinitesimally

rigid frameworks have been obtained. Notably, [56] characterises plane τ(Γ)-generic

infinitesimally rigid frameworks with no fixed joints, where τ(Γ) is the reflection

group, the half-turn group, or the three-fold rotation group. In his Master Thesis,

R. Ikeshita (in collaboration with S. Tanigawa) extends these results to the case

where τ(Γ) is any cyclic group of odd order less than 1000, with a free group action

on the joints [27].

Alternatively, one could restrict the study of a symmetric framework to consider

solely its “fully-symmetric” motions, i.e. those motions which maintain the

symmetry of the framework. Figure 2.10 shows a fully-symmetric motion of a plane

Cs-symmetric framework, where Cs is the cyclic group of order 2 generated by the

reflection along the y-axis. (We will look at this symmetry group more in detail in

Section 2.4.) Formally, we give the following definition.

Definition 2.3.7. Let (G, p) be a τ(Γ)-symmetric framework, for some group Γ and

some injective homomorphism τ : Γ → Rd. We say an infinitesimal motion m of

(G, p) is τ(Γ)-fully symmetric if, for all γ ∈ Γ and all u ∈ V (G), m(γu) = τ(γ)m(u).
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Chapter 2. Graphs, frameworks and symmetry

Figure 2.10: Example of a Cs-fully symmetric motion of a Cs-symmetric framework.

The study of fully-symmetric infinitesimal motions is commonly referred to as

forced symmetric rigidity [12, 60, 61].

Definition 2.3.8. Let (G, p) be a τ(Γ)-symmetric framework for some group Γ

and some injective homomorphism τ : Γ → Rd. We say (G, p) is τ(Γ)-fully

symmetrically infinitesimally rigid (or τ(Γ)-forced rigid) if all of its τ(Γ)-symmetric

infinitesimal motions are trivial. Otherwise, we say (G, p) is τ(Γ)-fully symmetrically

infinitesimally flexible (or τ(Γ)-forced flexible). We say (G, p) is minimally τ(Γ)-

fully symmetrically infinitesimally rigid (or minimally τ(Γ)-forced rigid, τ(Γ)-forced

isostatic) if it is τ(Γ)-forced rigid and there is an edge e ∈ E(G) such that (G−e, p)

is τ(Γ)-forced flexible.

A powerful tool in the area of forced symmetric rigidity is the orbit rigidity

matrix (see Section 4.1), which was used to combinatorially characterise various

classes of frameworks. In [29], there is a combinatorial characterisation of forced

symmetrically rigid frameworks, where the symmetry group is either a cyclic group

or a dihedral groups Ckv, where k is odd, and it acts freely on the joints of the

framework.

2.4 Symmetry groups in the plane

We work on the plane, and we only consider finite groups. Hence, we work with

reflection, rotation and dihedral groups. We establish the notation which will be

used throughout the thesis, in order to avoid any confusion.

Let k ≥ 2 be an integer. For notational convenience, we often identify the

additive group Zk with the multiplicative group Γ = ⟨γ⟩ of order k via the

isomorphism defined by 1 7→ γ.
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2.4.1 Reflection symmetry group

Throughout the thesis, we use the notation Cs := {id, σ}, where σ is a reflection

whose mirror line passes through the origin. By conjugating by a rotation, we may

always assume that the mirror line is the y-axis. Notice that the underlying graph

of a Cs-symmetric framework is Z2-symmetric.

1

2

{1}

{2}
1 2

{1, 2}
{12}

{12}

(a) (b) (c) (d)

Figure 2.11: Fixed bars of a Cs-symmetric framework, and the Z2-quotient graphs

of their underlying Z2-symmetric graphs.

Let (G, p) be a Cs-symmetric framework and let θ : Z2 → Aut(G) be an injective

homomorphism. Choose a joint pv of (G, p). If pv lies on the symmetry line x = 0,

then pv is fixed by Cs. Otherwise, pv is free under Cs.

Now, choose a bar pe of (G, p). If pe lies on the symmetry line x = 0, then p(e)

is fixed by Cs (see Figure 2.11(a)). Moreover, if pe is normal to the symmetry line

x = 0 on its mid-point, then pe is fixed by Cs (see Figure 2.11(c)). In every other

instance, pe is free under Cs.

Let (G, p) be a Cs-symmetric framework, andm be a fully-symmetric infinitesimal

motion of (G, p). We investigate the effect of m on an arbitrary vertex v ∈ V (G).

Recall that the underlying graph G is Z2-symmetric. We identify Z2 with a

multiplicative cyclic group Γ = ⟨γ⟩ or order 2. By definition, for all v ∈ V (G)

m(γv) = τ(γ)m(v) = diag(−1, 1)m(v).

So, for each vertex orbit Γv = {v, γv} ∈ ΓV (G), the vectors that m assigns to

v, γv share the same y-coordinate, and their x-coordinates share the same size, but

differ in sign. In particular, if pv lies on the symmetry line, then γv = v and so
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m(v) = diag(−1, 1)m(v). This implies that m(v) has zero x-coordinate. As one

would expect, this means that all fully-symmetric infinitesimal motions of a Cs-

symmetric framework do not move the fixed vertices from the symmetry line.

2.4.2 Rotation symmetry groups

Let k ≥ 2 be an integer. Throughout the thesis, we use the notation Ck := ⟨Ck⟩,

where Ck is a counterclockwise rotation about the origin by 2π/k. Notice that the

underlying graph of a Ck-symmetric framework is Zk-symmetric.

Let (G, p) be a Ck-symmetric framework and let θ : Zk → Aut(G) be an injective

homomorphism. Choose a joint pv of (G, p). If pv lies at the origin, then pv is fixed

by Ck. Otherwise, pv is free under Ck. Since p is injective, v is either fixed or free

under Zk, and V (G) = V1(G) ∪̇Vk(G). By injectivity, we may also assume that

|Vk(G)| ≤ 1.

Now, choose a bar pe of (G, p). If k is even and the mid-point of pe lies at the

origin, then pe is fixed by the subgroup C2 of Ck, though it is not fixed by Ck if k ≥ 4

(see Figure 2.12(a,c)). Otherwise, pe is free under Ck. So E(G) = E1(G) ∪̇E2(G).

In particular, if k ≥ 3 then (G, p) has no fixed bars, and if k is odd then all bars of

(G, p) are free.

1

2

(0, 0)

(a)

{1, 2}

{12}

(b)

1 2

34

(0, 0)

(c)

{1, 2, 3, 4}

{13, 24}

(d)

Figure 2.12: (a,b) are, respectively, the fixed bar of a C2-symmetric framework and

the Z2-quotient graph of its underlying Z2-symmetric graph. (c,d) are, respectively,

the semi-free bars of a C4-symmetric framework and the Z4-quotient graph of its

underlying Z4-symmetric graph.

Let (G, p) be a Ck-symmetric framework, and m be a fully-symmetric infinitesi-
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mal motion of (G, p). Similarly as with the reflection group, we investigate the effect

of m on an arbitrary vertex v ∈ V (G). The graph G is Zk-symmetric. We identify

Zk with a multiplicative cyclic group Γ = ⟨γ⟩ or order k, by the isomorphism which

maps the 1 in Zk to γ. By definition, for all v ∈ V (G) and all 0 ≤ j ≤ k − 1, we

have

m(γjv) = τ(γj)m(v) =

cos(2πj/k) − sin(2πj/k)

sin(2πj/k) cos(2πj/k)

m(v).

So, for each vertex orbit Γv = {γjv : 0 ≤ j ≤ k − 1} ∈ ΓV (G), the infinitesimal

motion m assigns a vector t to v and, for 1 ≤ i ≤ k − 1, it assigns the same vector

to γjv, but rotated anti-clockwise by the angle 2πj/k. In particular, if pv lies at the

origin, then γv = v and so

m(v) =

cos(2πj/k) − sin(2πj/k)

sin(2πj/k) cos(2πj/k)

m(v).

Since k ≥ 2, this implies thatm(v) = 0. So, all fully-symmetric infinitesimal motions

of a Ck-symmetric framework do not have any effect on the joints at the origin.

2.4.3 Dihedral symmetry groups

Let k ≥ 2 be an integer. Throughout the thesis, we use the notation Ckv := ⟨σ,Ck⟩,

where σ and Ck are defined as in Subsections 2.4.1 and 2.4.2, respectively. Notice

that the underlying graph of a Ckv-symmetric framework is D2k-symmetric, where

D2k is the Dihedral group
〈
s, r : s2 = rk = (sr)2 = id

〉
.

Let (G, p) be a Ckv-symmetric framework and let θ : D2k → Aut(G) be an

injective homomorphism. Let l be the y-axis. Choose a joint pv of (G, p). If pv lies

on a line obtained from l by applying a counterclockwise rotation around the origin

by 2πj/k for some 0 ≤ j ≤ k − 1, then pv is fixed by a reflection group. Otherwise,

pv is free under Ckv. If pv lies at the origin, then pv is fixed by Ckv. Since p is

injective, it follows that V (G) = V1(G) ∪̇V2(G) ∪̇V2k(G).
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Figure 2.13: Semi-free bars of a C2v-symmetric framework, and the D4-quotient

graphs of their underlying D4-symmetric graphs.

Now, choose a bar pe of (G, p). If pe lies on the anti-clockwise rotation of l around

the origin by 2πj/k for some 0 ≤ j ≤ k − 1, then pe is fixed by a reflection group

(see Figure 2.13(a)). Moreover, if k is even and the mid-point of pe lies at the origin,

then pe is fixed by the subgroup C2 of Ckv (see Figure 2.13(c)). In particular, if k is

even, pe lies on the anti-clockwise rotation of l around the origin by 2πj/k for some

0 ≤ j ≤ k − 1, and its mid-point lies at the origin, then pe is fixed by the subgroup

C2v of Ckv. In all other cases pe is free under Ckv. So E(G) = E1(G) ∪̇E2(G) ∪̇E4(G).

Let (G, p) be a Ckv-symmetric framework, and m be a fully-symmetric infinites-

imal motion of (G, p). We investigate the effect of m on a vertex v ∈ V (G). Recall

that D2k is the Dihedral group
〈
s, r : s2 = rk = (sr)2 = id

〉
. G is D2k-symmetric.

By definition, for all v ∈ V (G) and all 0 ≤ j ≤ k − 1, we have

m(rjv) = τ(rj)m(v) =

cos(2πj/k) − sin(2πj/k)

sin(2πj/k) cos(2πj/k)

m(v)

and

m(srjv) = τ(s)τ(rj)m(v) =

−1 0

0 1

cos(2πj/k) − sin(2πj/k)

sin(2πj/k) cos(2πj/k)

m(v).

So, for each vertex orbit Γv = {rjv, srjv : 0 ≤ j ≤ k−1} ∈ ΓV (G), the infinitesimal

motion m assigns a vector t to v and, for 1 ≤ i ≤ k−1, it assigns the same vector to

30



2.4. Symmetry groups in the plane

rjv, but rotated anti-clockwise by the angle 2πj/k, and it assigns the same vector

to srjv, but rotated anti-clockwise by the angle 2πj/k and then reflected along the

y-axis. In particular, if pv lies at the origin, then rv = v and so

m(v) =

cos(2πj/k) − sin(2πj/k)

sin(2πj/k) cos(2πj/k)

m(v).

Since k ≥ 2, this implies that m(v) = 0. If, for some 0 ≤ j ≤ k − 1, pv lies on the

line lj obtained by rotating l anti-clockwise around the origin by an angle 2πj/k,

then

m(v) = τ(s)τ(rj)m(v) =

−1 0

0 1

cos(2πj/k) − sin(2πj/k)

sin(2πj/k) cos(2πj/k)

m(v).

So, m assigns a vector t to v which is parallel to the symmetry line lj.
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Generalised gain graphs

Let Γ be a non-trivial abstract group, τ : Γ → O(R2) be an injective homomorphism

and (G̃, p̃) be a τ(Γ)-symmetric realisation of some Γ-symmetric graph G̃ = (Ṽ , Ẽ).

Consider a joint p̃(u) of (G̃, p̃). By Definition 2.3.3, we know the position p̃(γu) of

γu for all γ ∈ Γ. Similarly, given a bar p̃(e) of (G̃, p̃), we may deduce p̃(γe) for all

γ ∈ Γ. This suggests that a significant amount of information contained in (G̃, p̃)

is redundant. A convenient way to discard this information is through the use of a

combinatorial tool known as gain graph.

A Γ-gain graph is a directed multigraph whose edges are labelled with elements

of the group Γ. This notion was first introduced and developed by J. Gross under

the title of ‘voltage graphs’ as a tool to study the embeddings of graphs in a surface

[24]. Gain graphs were substantially developed by T. Zaslavsky, due to his interest

in biased graphs, special cases of gain graphs [75]. Whereas J. Gross was interested

in how gain graphs could aid topological studies, T. Zaslavsky took a matroidal

approach and developed the study of balanced gain graphs.

There is a bijective correspondence between Γ-symmetric graphs whose vertex

set is free under Γ and Γ-gain graphs. Therefore, over time, gain graphs became an

important tool in the study of infinitesimally rigid symmetric frameworks, with the

assumption that the symmetry group acts freely on the joints of a given framework

(see, e.g., [5, 8, 15, 27, 28, 34, 36, 39, 42, 57, 56, 60, 64]). As a result, the theory of
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gain graphs as a rigidity tool has developed greatly.

Currently, many papers on forced and incidental symmetric rigidity treat the

gain graph as a central combinatorial object. A large amount of results in the area

characterise infinitesimally rigid symmetric frameworks based on a sparsity count

applied to gain graphs, which is analogous to (but more complex than) that given

in Definition 2.2.15.

If we allow Γ-symmetric graphs to have vertices which are not free under Γ, then

the bijective correspondence between Γ-gain graphs and Γ-symmetric graphs fails.

However, by generalising the notion of Γ-gain graph, we are able to re-establish

such a correspondence. Moreover, our generalised definition of Γ-gain graph can be

simplified in the case where each vertex is either free or fixed under Γ (for instance,

if Γ is a cyclic group). This allows for a better understanding of the gain graph

structure.

We start this chapter by introducing the usual notion of gain graph, as well as

some linked notions, and by presenting some important results (see Section 3.1). We

then generalise the notion of gain graph, surrounding notions and crucial results, in

order to study Γ-symmetric graphs whose vertex sets are not necessarily free under

the group Γ. Since such concepts simplify when Γ is cyclic, we start by considering

cyclic groups in Section 3.2. In Section 3.3 we consider all groups Γ.

3.1 The usual notion of gain graph

Throughout this section we will assume that, for any group Γ and any Γ-symmetric

graph G̃ = (Ṽ , Ẽ), ṽ is free under Γ for all ṽ ∈ Ṽ .

Definition 3.1.1. Let Γ be an abstract group. A Γ-gain graph is a pair (G,ψ),

where G is a directed multigraph and ψ : E(G) → Γ is a map such that:

1. If e, f ∈ E(G) are parallel and have the same orientation, then ψ(e) ̸= ψ(f).

If they are parallel and have the opposite orientation, then ψ(e) ̸= ψ(f)−1.

2. If e ∈ E(G) is a loop, then ψ(e) ̸= id.
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Chapter 3. Generalised gain graphs

The map ψ is known as gain map or labelling of G (equivalently, of (G,ψ)). We say

an edge e ∈ E(G) has gain or label ψ(e).

Given a group Γ, let (G,ψ) be a Γ-gain graph and suppose an edge e = (u, v) in

E(G) has gain ψ(e) = g. We may redirect e and change its label to g−1.

Let G̃ be a Γ-symmetric graph for some group Γ, and let G be the Γ-quotient

of G̃, with some fixed vertex orbit representatives. We may direct the edges of

G and label them with elements of Γ in order to obtain a Γ-gain graph. The

process described in [56] gives a unique way of doing so, up to redirecting edges and

relabelling them with the inverse of their original gain. (A generalised version of this

process will be described in Section 3.2, and again in Section 3.3.) This establishes

a bijective correspondence between Γ-symmetric graphs and Γ-gain graphs, up to

the choice of the edge orientations and of the vertex orbit representatives. The

choice of a vertex orbit representative u⋆ affects the labels of the edges incident to

the vertex u := Γu⋆ ∈ V (G). However, it is important to note that, once the orbit

representative u⋆ is chosen, the process in [56] gives a unique labelling of each edge

incident to u. (This is not the case for our generalised version of the process.) In

Subsections 3.2.1 and 3.3.1 we will see that the choice of vertex orbit representatives

is closely related to well-known gain graph operations known as switchings.

We call the Γ-gain graph (G,ψ) obtained from G̃ by applying the process

described in [56] the Γ-gain graph of G̃ and, with a slight abuse of notation, we

call G̃ the Γ-lifting of (G,ψ). If two Γ-gain graphs (G1, ψ1), (G2, ψ2) are obtained

from the same Γ-symmetric graph, we say (G1, ψ1) and (G2, ψ2) are equivalent.

Notice a connected graph with non-empty edge set E can be fully described by

E. Since the gain map ψ is defined on the edges of a gain graph, this allows us to

define the gain of a walk and of a connected graph with non-empty edge set.

Definition 3.1.2. Let Γ be a group and (G,ψ) be a Γ-gain graph. Let W be a

walk in G of the form W = e1, . . . , et, where ei has end-vertices vi, vi+1 ∈ V (G) for

all 1 ≤ i ≤ t. We say the gain of W under ψ is ψ(W ) =
∏t

i=1 ψ(ei)
sign(ei), where

sign(ei) = 1 if ei is directed from vi to vi+1, and sign(ei) = −1 otherwise.

34



3.1. The usual notion of gain graph

Given a connected subgraph H of G with E(H) ̸= ∅ and a vertex v ∈ V (H), the

gain of H under ψ with base vertex v (equivalently, the gain of E(H) under ψ with

base vertex v) is the group generated by

{ψ(W ) : W is a closed walk in H starting at v}.

We denote such a group by ⟨E(H)⟩v,ψ (or ⟨H⟩v,ψ).

The following useful results allow us to drop v, ψ from the notation of ⟨H⟩v,ψ
whenever the gain graph (G,ψ) is clear from the context and Γ is abelian.

Proposition 3.1.3 ([29], Proposition 2.1). Let Γ be a group and (G,ψ) be a Γ-gain

graph. Given a connected subgraph H of G with E(H) ̸= ∅ and some u, v ∈ V (H),

⟨H⟩u,ψ and ⟨H⟩v,ψ are conjugate.

Proposition 3.1.4 ([29], Proposition 2.2). Let Γ be a group and (G,ψ), (G,ψ′) be

equivalent Γ-gain graphs. Given a connected subgraph H of G with E(H) ̸= ∅ and

some v ∈ V (H), ⟨H⟩v,ψ and ⟨H⟩v,ψ′ are conjugate.

An important sub-class of gain graphs is the class of balanced gain graphs, which

was studied extensively by T. Zaslavsky [75].

Definition 3.1.5. Let Γ be a group and (G,ψ) be a Γ-gain graph. We say a

connected subgraph H of G (equivalently, E(H), (H,ψ|E(H))) is balanced under ψ

if every closed walk in H has gain id under ψ. Otherwise, we say H (equivalently,

E(H), (H,ψ|E(H))) is unbalanced under ψ. We say a (not necessarily connected)

subgraph H of G is balanced if all of its connected components are balanced.

Otherwise, we say it is unbalanced.

As mentioned in the introductory paragraph of this chapter, τ(Γ)-generic

infinitesimally rigid frameworks may be combinatorially characterised by a sparsity

count applied to the Γ-gain graphs of the underlying Γ-symmetric graphs. However,

the notions of sparsity counts for gain graphs are slightly more refined than those

given in Definition 2.2.15, as they take into account balanced subgraphs, as well as

other types of subgraphs in certain versions.

35



Chapter 3. Generalised gain graphs

Definition 3.1.6. Let Γ be a group, let (G,ψ) be a Γ-gain graph, and let 0 ≤ l ≤ 3

be an integer. We say (G,ψ) is (2, 3, l)-gain sparse if

• for all H ⊆ G with E(H) ̸= ∅, H is (2, l)-sparse.

• for all balanced H ⊆ G with non-empty edge set, H is (2, 3)-sparse.

We say (G,ψ) is (2, 3, l)-gain tight if it is (2, 3, l)-gain sparse and (2, l)-tight.

Let k ≥ 2 be an integer and G̃ be a Zk-symmetric graph. For an injective

homomorphism τ : Zk → O(R2), let (G̃, p̃) be a τ(Zk)-generic realisation of G̃. In

[39], J. Malestein and L. Theran show that (G̃, p̃) is fully-symmetrically isostatic

if and only if the Zk-gain graph (G,ψ) of G̃ is (2, 3, 1)-gain tight. This was

done independently for the case of rotational-symmetry in [29] by T. Jordán, V.

Kaszanitsky and S. Tanigawa. In [56], B. Schulze and S. Tanigawa extend these

results to consider incidental infinitesimal rigidity, in the case where k = 2, 3.

Theorem 3.1.7 ([56], Theorem 6.4). Let (G̃, p̃) be a Cs-generic framework, and

let (G,ψ) be the Z2-gain graph of G̃. (G̃, p̃) is infinitesimally rigid if and only if

(G,ψ) has a (2, 3, 1)-gain tight spanning subgraph and a (2, 3, 2)-gain tight spanning

subgraph.

Theorem 3.1.8 ([56], Theorem 6.9). Let (G̃, p̃) be a C2-generic framework, and

let (G,ψ) be the Z2-gain graph of G̃. (G̃, p̃) is infinitesimally rigid if and only if

(G,ψ) has a (2, 3, 1)-gain tight spanning subgraph and a (2, 3, 2)-gain tight spanning

subgraph.

Theorem 3.1.9 ([56], Theorem 6.11). Let (G̃, p̃) be a C3-generic framework, and

let (G,ψ) be the Z3-gain graph of G̃. (G̃, p̃) is infinitesimally rigid if and only if

(G,ψ) has a (2, 3, 1)-gain tight spanning subgraph.

If k ≥ 4, then (G,ψ) must have a (2, 3, 0)-gain tight spanning subgraph and

a (2, 3, 1)-tight spanning subgraph in order for (G̃, p̃) to be infinitesimally rigid.

However, such conditions are not sufficient, and we need a notion of sparsity which
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3.2. Gain graphs for cyclic groups

is more refined than that given in Definition 3.1.6. In [27], R. Ikeshita and S.

Tanigawa combinatorially characterise Ck-generic infinitesimally rigid frameworks,

under the assumption that 4 < k < 1000 is odd. These results are extended by K.

Clinch and S. Tanigawa in [8] to consider the cases where k = 4, 6. In Section 3.2

we will give the refined count described in [8] and [27], with a generalisation which

allows a joint to lie at the centre of rotation.

In [29], T. Jordán, V. Kaszanitzky and S. Tanigawa combinatorially characterise

forced infinitesimally rigid Ckv-generic frameworks, where k ≥ 3 is odd. The sparsity

conditions described in [29] are also more refined than that given in Definition 3.1.6.

We will describe such conditions in Section 3.3, with a generalisation which allows

joints to lie on the reflection lines of Ckv (including the origin).

3.2 Gain graphs for cyclic groups

Throughout this section we let Γ be a cyclic group of finite order. Recall that, in

this setting, for all Γ-symmetric graphs G̃, we assume that V (G̃) = V1(G̃) ∪̇V|Γ|(G̃).

Let G̃ be a Γ-symmetric graph, and G = (V,E) be the quotient of G̃ with respect

to Γ. We orient the edges of G and assign them a group label. We do so in the

following way.

For each vertex orbit v := Γv⋆ we fix a representative vertex v⋆. We also fix

an orientation on the edges of the quotient graph G. For each directed edge e =

(u, v) in the directed quotient graph, let u = Γu⋆ and v = Γv⋆ have vertex orbit

representatives u⋆ and v⋆ respectively. We assign the following labelling (or “gain”)

to e:

• If u⋆, v⋆ are free under Γ, then there exists a unique γ ∈ Γ such that u⋆v⋆γ ∈ uv,

where v⋆γ denotes γv⋆. We let γ be the gain on e.

• If at least one of u⋆, v⋆ is fixed under Γ, say u⋆ is fixed under Γ, then uv is the

set {u⋆v⋆γ| γ ∈ Γ, v⋆γ := γv⋆}. We define the gain on e to be any γ ∈ Γ.
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Chapter 3. Generalised gain graphs

In each of the cases above, we could re-direct e from v to u and re-label it with

the group inverse of the original label chosen. The process gives rise to a class of

group-labelled, directed multigraphs, which are a generalisation of the Γ-gain graphs

given in Section 3.1.

Definition 3.2.1. Let Γ be a cyclic group. A Γ-gain graph is a pair (G,ψ), where

G is a directed multigraph and ψ : E(G) → Γ is a map that assigns a label to

each edge such that, for some partition V (G) = V1(G) ∪̇V|Γ|(G), where no vertex

in V|Γ|(G) has a loop or is incident to parallel edges, the following conditions are

satisfied:

1. If e, f ∈ E(G) are parallel and have the same orientation, then ψ(e) ̸= ψ(f).

If they are parallel and have opposite orientations, then ψ(e) ̸= ψ(f)−1.

2. If e ∈ E(G) is a loop, then ψ(e) ̸= id.

We call ψ the gain map of (G,ψ). For each e ∈ E(G), we call ψ(e) the gain or

label of e. The elements of V1(G) and V|Γ|(G) are called the free and fixed vertices

of (G,ψ), respectively.

If V (G) = V1(G), then Definitions 3.1.1 and 3.2.1 coincide. Therefore, given a

cyclic group Γ, we will henceforth use the terminology Γ-gain graph and the notation

(G,ψ) to refer to the combinatorial object given in Definition 3.2.10.

When drawing a Γ-gain graph (G,ψ) it is important to distinguish between the

fixed and free vertices of (G,ψ). We will be doing so by representing the elements

of V1(G) and V|Γ|(G) by circles and squares, respectively. In Figure 3.1 we consider

a cyclic group Γ = ⟨γ⟩ ≃ Z6 of order 6, and we give an example of a Γ-symmetric

graph G̃ with a Γ-gain graph obtained from G̃ by applying the process described

above.

For a cyclic group Γ = ⟨γ⟩ of finite order k, let G̃ be a Γ-symmetric graph and

(G,ψ) be a Γ-gain graph obtained from G̃ by applying the process described above.

Take an edge e = (u, v) ∈ E(G), where u⋆, v⋆ are the vertex representatives of
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v⋆0

u⋆γu⋆

γ2u⋆

γ3u⋆ γ4u⋆

γ5u⋆

v⋆

γv⋆

γ2v⋆

γ3v⋆

γ4v⋆

γ5v⋆
γ

γ

u

v0

v

Figure 3.1: A Γ-symmetric graph G̃ and a Γ-gain graph constructed from G̃, where

Γ = ⟨γ⟩ is a cyclic group of order 6. Here, the unlabelled edges have gain id.

u, v, respectively. Suppose that u⋆v⋆ψ(e) (where v
⋆
ψ(e) = ψ(e)v⋆) is not free under Γ.

Recall from Subsections 2.4.1 and 2.4.2 that, since we are interested in geometric

realisations of G̃, we may always assume that one of the following holds:

(i) Γ = {id, γ}, and u⋆v⋆ψ(e) is fixed (see Figure 3.2(a,b)).

(ii) k ≥ 4 is even, u⋆v⋆ψ(e) is semi-free, and u⋆, v⋆ψ(e) are free (see Figure 3.2(c)).

Note that, in both cases, ψ(e) = γk/2.

(a) (b) (c)

Figure 3.2: Non-free edges of Γ-symmetric graph, where Γ is a cyclic group. (a)

and (b) show fixed bars of Z2-symmetric graphs, and (c) shows semi-free edges of a

Z4-symmetric graph.

Therefore, we will assume throughout the rest of the thesis, that one of the

following holds: k = 2 and u⋆, v⋆ are both fixed by Γ; k is even (possibly k = 2),
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u⋆ = v⋆ and ψ(e) = γk/2. We define E2(G) := {e = (u, v) ∈ E(G) : u, v ∈

Vk(G) or u = v, ψ(e) = γk/2} and E1(G) := E(G) \ E2(G). An edge e ∈ E(G) is

said to be free if e ∈ E1(G). Otherwise, we say it is fixed when k = 2, and we say

it is semi-free when k ≥ 4 is even.

Conversely, given a Γ-gain graph (G,ψ), we may construct a Γ-symmetric graph

G̃. We do so in the following way. For each v ∈ V|Γ|(G), V|Γ|(G̃) contains v, and

for each v ∈ V1(G), V1(G̃) contains the vertices in {vγ : γ ∈ Γ}. Given an edge

e = (u, v) ∈ E(G), E(G̃) contains the following edges:

• If u, v ∈ V|Γ|(G), then E(G̃) contains uv.

• If u ∈ V|Γ|(G), v ∈ V1(G), then E(G̃) contains the edges uvγ for all γ ∈ Γ.

• If u, v ∈ V1(G), E(G̃) contains uγvγψ(e) for all γ ∈ Γ.

The graph obtained by applying this process is simple and it is unique up to

isomorphism. Moreover, given any Γ-symmetric graph G̃, if we construct a Γ-gain

graph (G,ψ) from G̃ using the process described at the beginning of the section,

and we then construct a Γ-symmetric graph H̃ from (G,ψ) by applying the process

just described, then G̃ ≃ H̃. Hence, with a slight abuse of terminology, we call

(G,ψ) the (quotient) Γ-gain graph of G̃ and we call G̃ ≃ H̃ the Γ-covering graph

(or Γ-lifting) of (G,ψ). Figure 3.3 gives an example of the construction applied to

a Γ-gain graph, where Γ = ⟨γ⟩ is a cyclic group of order 2.

vu

v0
id

id

γ

vγ

viduid

uγ

v0

Figure 3.3: A Γ-gain graph and its lifting, where Γ = {id, γ}.
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3.2. Gain graphs for cyclic groups

3.2.1 Switchings

Let Γ be a cyclic group, G̃ be a Γ-symmetric graph and (G,ψ) be the quotient

Γ-gain graph of G̃. Consider v ∈ V (G), and let v⋆ ∈ V (G̃) be the vertex orbit

representative of v chosen when constructing (G,ψ). Given any γ ∈ Γ, we could

have instead chosen γv⋆ as a vertex orbit representative of v when constructing

(G,ψ). Changing the choice of vertex orbit representative from v⋆ to γv⋆ when

constructing (G,ψ) is equivalent to applying an operation called switching at v

induced by γ. We give a formal definition of switching at a vertex.

Definition 3.2.2. For a cyclic group Γ, let (G,ψ) be a Γ-gain graph. Let v ∈ V (G).

A (type I) switching at v induced by γ ∈ Γ is an operation which generates a new

gain map ψ′ by letting

ψ′(e) =



γψ(e)γ−1 if e is a loop incident to v

γψ(e) if e is a non-loop edge directed from v

ψ(e)γ−1 if e is a non-loop edge directed to v

ψ(e) otherwise

for all e ∈ E(G).

Consider again the Γ-symmetric graph G̃ and its quotient Γ-gain graph (G,ψ),

and fix the vertex orbit representatives chosen when constructing (G,ψ). Suppose

that there is an edge e = (u, v) ∈ E(G) such that u ∈ V|Γ|(G), and let g := ψ(e).

For all γ ∈ Γ we could have instead chosen ψ(e) to be γ when constructing (G,ψ).

Changing the choice of ψ(e) when constructing (G,ψ) is equivalent to applying an

operation called switching at e induced by the element γg−1. We now give a formal

definition of switching at an edge.

Definition 3.2.3. For a cyclic group Γ, let (G,ψ) be a Γ-gain graph. Let e = (u, v)

be an edge in E(G) such that u ∈ V|Γ|(G). A (type II) switching at e induced by

the element γ ∈ Γ is an operation which generates a new gain map ψ′ by letting

ψ′(e) = γψ(e) and ψ′(f) = ψ(f) for all edges f ̸= e of G.
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Definition 3.2.4. Given a cyclic group Γ and a Γ-gain graph (G,ψ), we define a

switching of (G,ψ) to be any type I switching at a vertex v ∈ V (G) or type II

switching at an edge e ∈ E(G).

Notice that applying a series of switchings to a Γ-gain graph defines an

equivalence relation. We give a formal definition of equivalent Γ-gain graphs.

Definition 3.2.5. For a cyclic group Γ, let (G,ψ1), (G,ψ2) be two Γ-gain graphs.

We say ψ1 and ψ2 are equivalent/type I equivalent/type II equivalent if one can be

obtained from the other by applying a sequence of switchings/type I switchings/type

II switchings. We say (G,ψ1) and (G,ψ2) are equivalent/type I equivalent/type II

equivalent if ψ1 and ψ2 are equivalent/type I equivalent/type II equivalent.

Let Γ be a finite cyclic group. Take a tree T in a Γ-gain graph (G,ψ), and choose

a root v of E(T ). Let e1, . . . , et ∈ T be the edges incident to v in T , and assume

that each such edge is directed from v. For 1 ≤ i ≤ t, let ei = (v, vi) and gi = ψ(ei).

Then, for each 1 ≤ i ≤ t, we may apply a switching at vi induced by gi in order to

obtain a Γ-gain graph (G,ψ′) type I equivalent to (G,ψ) such that ψ′(ei) = id for all

1 ≤ i ≤ t. We may then apply similar switching operations to all neighbours of vi in

T for 1 ≤ i ≤ t, so that all edges incident to a vertex in {v, v1, . . . , vt} have identity

gain. Applying this process recursively, we obtain a gain graph type I equivalent

to (G,ψ) which assigns the identity gain to all edges in T . Taking a forest F in

(G,ψ), we may apply this process to each connected component of F . This was the

argument used in [29] to prove the following result.

Proposition 3.2.6 ([29], Proposition 2.2). Let Γ be a cyclic group and (G,ψ) be

a Γ-gain graph with V (G) = V1(G). For any forest F in G, there is a Γ-gain graph

(G,ψ′) type I equivalent to (G,ψ) such that ψ′(e) = id for all e ∈ E(F ).

3.2.2 Balanced subgraphs

Recall the notion of balancedness given in Definition 3.1.5. In this section, we give

a slight generalisation of this definition, and we explain the intuition behind the
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concept of balanced gain graph. We start by generalising Definition 3.1.2.

Definition 3.2.7. Let Γ be a cyclic group and (G,ψ) be a Γ-gain graph. Let W be

a walk in G of the form W = e1, . . . , et, where ei has end-vertices vi, vi+1 ∈ V (G)

for all 1 ≤ i ≤ t. We say the gain of W under ψ is ψ(W ) =
∏t

i=1 ψ(ei)
sign(ei), where

sign(ei) = 1 if ei is directed from vi to vi+1, and sign(ei) = −1 otherwise.

Given a connected subgraph H of G with E(H) ̸= ∅ and a vertex v ∈ V1(H),

the gain of H under ψ with base vertex v (equivalently, the gain of E(H) under ψ

with base vertex v) is the group generated by

{ψ(W ) : W is a closed walk starting at v and not containing fixed vertices}.

We denote this group by ⟨E(H)⟩v,ψ (or ⟨H⟩v,ψ).

Notice that the definition of ⟨H⟩v,ψ does not take into account walks which

contain fixed vertices of H. This is because, by applying a type II switching, a

closed walk W in H which contains a fixed vertex can have any gain. For example,

the Γ-symmetric graph in Figure 3.4(a) can have the two different type II equivalent

Γ-gain graphs given in Figure 3.4(b,c). (Here, Γ = ⟨γ⟩ ≃ Z2, v4 = γv⋆1, v5 = γv⋆2,

and v6 = γv⋆3.) In (b), the cycle (v0, v1), (v1, v2), (v0, v2) has gain id, whereas in (c)

it has gain γ.

v⋆0

v6v⋆1

v⋆3 v4

v⋆2 v5

(a) (b) (c)

v0

v1

v2

v3

γ

v0

v1

v2

v3

Figure 3.4: Two different Γ-gain graphs (b,c) of the same Γ-symmetric graph, where

Γ = ⟨γ⟩ ≃ Z2. Here, the unlabelled edges have identity gain.

The proofs given in [29] to prove Propositions 3.1.3 and 3.1.4 for the case where

V (G) = V1(G) extends to our setting, and show the following two results.
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Chapter 3. Generalised gain graphs

Proposition 3.2.8. For a cyclic group Γ, let (G,ψ) be a Γ-gain graph. For any

connected subgraph H of G such that H − V|Γ|(H) is also connected, and for all

vertices u, v ∈ V1(H), we have ⟨H⟩u,ψ = ⟨H⟩v,ψ.

Proof. Since H − V|Γ|(H) is connected, there exists a u − v path P in H which

does not contain fixed vertices. Given a closed walk W in H starting at u and not

containing fixed vertices, P−1 ◦W ◦ P is a closed walk in H starting at v and not

containing fixed vertices. Hence, ψ(P )ψ(W )ψ(P )−1 ∈ ⟨H⟩v,ψ. The result follows

from the fact that Γ is abelian.

Proposition 3.2.9. Let Γ be a cyclic group and (G,ψ), (G,ψ′) be equivalent Γ-

gain graphs. For all connected subgraphs H of G and all v ∈ V1(H), we have

⟨H⟩v,ψ = ⟨H⟩v,ψ′ .

Proof. It suffices to show that the result holds if (G,ψ′) is obtained from (G,ψ)

by applying a switching operation at a vertex v ∈ V (G) with some gain γ ∈ Γ,

since type II switchings only effect edges incident to a fixed vertex. Hence, assume

that this is the case. Notice that ψ′(e)ψ′(f) = ψ(e)ψ(f) for all pairs of edges e, f ,

where e is directed to v and f is directed from v. Notice also that ψ′(e) = ψ(e) for

all edges e not incident to v. Then, for all closed walks W starting at v, we have

ψ′(W ) = γψ(W )γ−1. Moreover, for all closed walks W not starting at v, we have

ψ′(W ) = ψ(W ). The result follows from the fact that Γ is abelian.

Proposition 3.2.8 need not hold ifH is connected butH−V|Γ|(H) is disconnected:

let Γ = ⟨γ⟩ be a (non-trivial) group and consider the Γ-gain graph (G,ψ) in

Figure 3.5. Here ⟨G⟩u,ψ = Γ, whereas ⟨G⟩v,ψ = {id}.

u v

γ

Figure 3.5: Connected Γ-gain graph (G,ψ) such that G − V|Γ|(G) is disconnected.

Here, all unlabelled edges have identity gain.
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3.2. Gain graphs for cyclic groups

However, provided that H − V|Γ|(H) is connected Propositions 3.2.8 and 3.2.9

allow us to drop v, ψ from the notation of ⟨H⟩v,ψ whenever the gain graph (G,ψ)

is clear from the context. If H − V|Γ|(H) is not connected (but H is), and (G,ψ)

is clear from the context, we let ⟨H⟩ (and ⟨E(H)⟩) denote the group generated by

⟨H1⟩ , . . . , ⟨Ht⟩, where H1, . . . , Ht are the connected components of H − V|Γ|(H).

Definition 3.2.10. Let Γ be a group and (G,ψ) be a Γ-gain graph. We say a

connected subgraph H of G (equivalently, E(H), (H,ψ|E(H))) is balanced (under

ψ) if all closed walks in H only containing free vertices have identity gain under

ψ. Otherwise, we say H (equivalently, E(H), (H,ψ|E(H))) is unbalanced (under ψ).

We say a disconnected graph H is balanced if all of its connected components are

balanced.

Notice that H is balanced under ψ if and only if it is balanced under ψ′ for all

ψ′ which are equivalent to ψ. Hence, we sometimes drop ψ and simply say that H

(equivalently, E(H), (H,ψ|E(H))) is balanced.

The usual notion of balancedness forces all closed walks in H to have identity

gain, whereas here we allow closed walks which contain fixed vertices to have any

gain. For instance, both Γ-gain graphs given in Figure 3.4 are balanced, even though

the Γ-gain graph in Figure 3.4(c) contains the cycle (v0, v1), (v1, v2), (v0, v2) of non-

identity gain.

Given a group Γ, let (G,ψ) be a Γ-gain graph with Γ-lifting G̃. Let τ : Γ → O(R2)

be an injective homomorphism and (G̃, p̃) be a τ(Γ)-generic realisation of G̃. Given

a balanced subgraph H of G which is not (2, 3)-sparse, (H̃, p̃|V (H̃)) has a non-zero

equilibrium stress, regardless of the size of V|Γ|(G). (Here, H̃ denotes the Γ-lifting

of H.) In fact, if |V|Γ|(G)| ≤ 1, then (G̃, p̃) has at least |Γ| non-zero equilibrium

stresses with mutually disjoint support. See e.g. Figure 3.6 (a) and (b).

Consider a connected Γ-gain graph (G,ψ) with V (G) = V1(G), and take a

spanning tree T of G. By Proposition 3.2.6, there is a gain map ψ′ equivalent

to ψ such that ψ′(e) = id for all e ∈ E(T ). [29] provides a useful way to deduce the

gain of a connected subgraph H of G (under ψ′), by considering only the edges of
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(a) (b)

Figure 3.6: Balanced Γ-gain graph and its Γ-lifting, where Γ = ⟨γ⟩ ≃ Z5. Here, all

edges in the Γ-gain graphs are labelled id.

H which are not contained in T .

Lemma 3.2.11 ([29], Lemma 2.4). Let Γ be a cyclic group and (G,ψ) be a Γ-gain

graph with V (G) = V1(G). Let H be a connected subgraph of G with non-empty

edge set, and let T be a spanning tree of H. Assume that ψ(e) = id for all e ∈ E(T ).

Then, ⟨H⟩ = ⟨ψ(e) : e ∈ E(H − T )⟩.

id

id

γ

id

(a)

id

id

γ

id

(b)

Figure 3.7: Two connected Γ-gain graphs, each with a spanning tree given in red.

If we allow T to have a fixed vertex v, Lemma 3.2.11 is not generally true. For

example, let Γ be an arbitrary group with some non-identity element γ ∈ Γ, and

consider the Γ-gain graphs (G1, ψ1), (G2, ψ2) in Figure 3.7(a) and (b), respectively.

For 1 ≤ i ≤ 2, let Ti be the spanning tree of Gi given by the edges in red. Both

graphs are balanced, since they do not contain cycles with only free vertices. Hence,

⟨G1⟩ = ⟨G2⟩ = {id}. However, for 1 ≤ i ≤ 2, Gi−Ti has an edge ei with ψi(ei) ̸= id.
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(Note, e1 is incident to a fixed vertex, and so we could directly apply a type II

switching at e1 induced by γ−1.)

Let (G,ψ) be a Γ-gain graph for some group Γ. Let H1, . . . , Ht be the connected

components of G − V|Γ|(G) and for each 1 ≤ i ≤ t let Ti be a spanning tree of

Hi. Take a gain map ψ′ which is equivalent to ψ and such that ψ′(e) = id for all

e ∈ E(Ti), 1 ≤ i ≤ t. Take an edge e ∈ E(G− (T1 ∪ · · · ∪ Tt)). If both end-vertices

of e are free, then e ∈ E(Hi − T ) for some 1 ≤ i ≤ t. Since ⟨Hi⟩v,ψ′ ≤ ⟨G⟩v,ψ′

for all v ∈ V (Hi), it follows from Lemma 3.2.11 that ψ′(e) ∈ ⟨G⟩v,ψ′ . If one of the

end-vertices of e is fixed, then we may apply a type II switching at e induced by

ψ′(e)−1, so that e has identity gain. In particular, if (G,ψ) is balanced, then there

is always a gain map ψ′′ equivalent to ψ such that ψ′′(e) = id for all e ∈ E(G).

Therefore, by Lemma 3.2.11, the following result holds.

Lemma 3.2.12. Let Γ be a cyclic group and (G,ψ) be a Γ-gain graph with V (G) =

V1(G). Let H be a connected subgraph of G with non-empty edge set. There is a

gain map ψ′ equivalent to ψ such that ψ′(e) ∈ ⟨H⟩ for all e ∈ E(H).

Lemma 3.2.11 was used in [29] to show the following.

Lemma 3.2.13 ([29], Lemma 2.5). For a cyclic group Γ, let (G,ψ) be a Γ-gain

graph with V (G) = V1(G). Let H1, H2 be connected subgraphs of G such that

H1 ∩ H2 is connected. If H1 is balanced, then ⟨H1 ∪H2⟩ = ⟨H2⟩. In particular, if

H2 is balanced, then so is H1 ∪H2.

γ

H1 H2

γ

H := H1 ∪H2

Figure 3.8: Unbalanced union of two connected balanced Γ-gain graphs, whose

intersection is also connected. Here Γ is a cyclic group and γ ∈ Γ is not the identity.

All unlabelled edges have identity gain.
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In general, this is not true if V (G) ̸= V1(G), as shown in Figure 3.8. However,

if we force H1 ∩H2 − V|Γ|(H1 ∩H2) to be connected, we may use Lemma 3.2.11 (in

an analogous way as was done in [29]) to show the following.

Lemma 3.2.14. Let Γ be a cyclic group and (G,ψ) be a Γ-gain graph. Let H1, H2

be connected subgraphs of G. If the graph H1 ∩ H2 − V|Γ|(H1 ∩ H2) is connected

and H1 is balanced, then ⟨H1 ∪H2⟩ = ⟨H2⟩. In particular, if H2 is balanced, then

so is H1 ∪H2.

Proof. Let H ′ be the graph obtained from H1 ∪ H2 by removing its fixed vertices.

Since H1 ∩H2 − V|Γ|(H1 ∩H2) is connected, there is a connected component of H ′

which contains H1 ∩ H2. Use H to denote such a connected component, and take

a spanning tree T of H such that T ∩ H1 is a spanning tree for H1 ∩ H, T ∩ H2

is a spanning tree for H2 ∩ H and T ∩ H1 ∩ H2 is a spanning tree for H1 ∩ H2.

By Proposition 3.2.6, there is a Γ-gain map ψ′ type I equivalent to ψ such that

ψ′(e) = id for all e ∈ E(T ). By Lemma 3.2.11, for all edges e ∈ E(H − T ),

ψ′(e) = id if e ∈ E(H1) and ψ′(e) ∈ ⟨H2⟩ if e ∈ E(H2). Hence, ⟨H⟩ = ⟨H2⟩ by

Lemma 3.2.11. Note that all connected components of H ′ which are not H are either

in H1 or in H2. Hence, the result follows.

We conclude the subsection with another useful result. Here, we adapt a proof

which was given in [27] for the free action case.

Lemma 3.2.15. Let Γ be a cyclic group, (G,ψ) be a Γ-gain graph, and H1, H2 be

connected subgraphs ofG such thatH1∩H2 is unbalanced andH1∩H2−V|Γ|(H1∩H2)

is connected. Suppose that ⟨H2⟩ ≃ Zp for some prime p. Then, ⟨H2⟩ = ⟨H1 ∩H2⟩

and ⟨H1⟩ = ⟨H1 ∪H2⟩.

Proof. Let H ′ be the graph obtained from H1 ∪ H2 by removing its fixed vertices.

Since H1 ∩H2 − V|Γ|(H1 ∩H2) is connected, there is a connected component of H ′

which contains H1 ∩ H2. Use H to denote such a connected component, and take

a spanning tree T of H such that T ∩ H1 is a spanning tree for H1 ∩ H, T ∩ H2
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is a spanning tree for H2 ∩ H and T ∩ H1 ∩ H2 is a spanning tree for H1 ∩ H2.

By Proposition 3.2.6, there is a Γ-gain map ψ′ type I equivalent to ψ such that

ψ′(e) = id for all e ∈ E(T ). By Proposition 3.2.11, there is some γ ∈ Γ such

that ψ′(e) ∈ {id, γ, . . . , γp−1} for all e ∈ E(H2). Since H1 ∩ H2 is unbalanced,

ψ′(e) = γk for some e ∈ E(H1 ∩H2) \E(T ) and some 1 ≤ k ≤ p− 1. It follows that

⟨H2⟩ = ⟨H1 ∩H2⟩. Therefore, ⟨H2⟩ ⊆ ⟨H1⟩. It then follows that ⟨H1⟩ = ⟨H1 ∪H2⟩,

as required.

3.2.3 Near-balanced subgraphs

In this subsection we present the notion of near-balancedness. The first example of

how near-balancedness effects the infinitesimal rigidity of a symmetric framework

can be found in [[56], Section 6.2.3]. The notion of near-balancedness was later

developed by R. Ikeshita and S. Tanigawa in [27] and [28]. All results stated in this

subsection were proved in R. Ikeshita’s thesis (see [27]) for the case where the group

acts freely on the vertex set. As we will see, we define near-balancedness only for

graphs with no fixed vertices. This allows us to directly apply the existing proofs.

Since R. Ikeshita’s thesis is hard to access, we include all proofs in Appendix A using

our terminology.

Definition 3.2.16. Let Γ be a cyclic group and (G,ψ) be a Γ-gain graph. Suppose

H is a connected subgraph of G with V (H) = V1(H) and E(H) ̸= ∅. We say H

(equivalently, E(H), (H,ψ|E(H))) is near-balanced (under ψ) if it is unbalanced, and

there exists a vertex v of H, called the base vertex of H, and γ ∈ Γ such that,

for all closed walks W in H starting from v and not containing v as an internal

vertex, ψ(W ) ∈ {id, γ, γ−1}. We also say H (equivalently, E(H), (H,ψ|E(H))) is

near-balanced (under ψ) with base vertex v and gain γ (and γ−1).

If ⟨H⟩ ≃ Z2 or ⟨H⟩ ≃ Z3, then it is easy to see that H is always near-balanced.

Hence, we say H (equivalently, E(H)) is proper near-balanced if it is near-balanced

and ⟨H⟩ ̸≃ Z2,Z3.
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γ γ

γ

(a) (b)

γ γ

(c) (d)

Figure 3.9: (a) is a proper near-balanced Γ-gain graph with Γ-lifting (b). (c) is a

proper near-balanced Γ-gain graph with an additional fixed vertex, and (d) is its

Γ-lifting. In (a,c), the unlabelled edges have gain id.

Given a cyclic group Γ, let (G,ψ) be a Γ-gain graph with Γ-lifting G̃. For some

injective homomorphism τ : Γ → O(R2), let (G̃, p̃) be a τ(Γ)-generic realisation of

G̃. Given a near-balanced subgraph H of G which is not (2, 1)-sparse, (H̃, p̃|V (H))

has a non-zero equilibrium stress (see Figure 3.9(a,b)). Similarly, if we add a fixed

vertex to a near-balanced graph, resulting in a graph H with |E(H)| ≥ 2|V (H)|,

then its lifting has a non-zero equilibrium stress (see Figure 3.9(c,d)). The graph in

Figure 3.9(c) is not (2, 1)-sparse and contains an equilibrium stress. However, this

equilibrium stress is already detected by the fact that it contains a balanced K4.

So, at least in this example, the near-balanced condition is not necessary. Though

this is just an example, we will see in Subsection 3.2.5 that near-balancedness need

not be defined on graphs with fixed vertices.

For some cyclic group Γ, let (G,ψ) be a Γ-gain graph, and H a proper near-

balanced subgraph of G with base vertex v and gain γ ∈ Γ. It is easy to see that

all unbalanced cycles must pass through v, and that γ is uniquely determined up to

taking its multiplicative inverse. Moreover, the following result gives a useful way

to see proper near-balanced gain graphs.

Lemma 3.2.17 ([27], Lemma 4.1). Let Γ be a group, (G,ψ) be a connected proper

near-balanced Γ-gain graph. Then, G is unbalanced and there is some γ ∈ Γ and a

gain map ψ′ equivalent to ψ such that ψ′(e) ∈ {id, γ} for all edges e ∈ E(G) directed
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u

γ
k1/2
1

γ
k1/2
1 γ

k1/2
1

(a)

v

γ
k2/3
2 γ

k2/3
2

γ
k2/3
2

(b)

Figure 3.10: (a) is a near-balanced Γ1-gain graph (G,ψ), where Γ1 = ⟨γ1⟩ ≃ Zk1
for some even integer k1 ≥ 2. (b) is a near-balanced Γ2-gain graph (G,ψ), where

Γ2 = ⟨γ2⟩ ≃ Zk2 for some integer k2 ≥ 3 divisible by 3.

to v, and ψ′(e) = id for all edges e ∈ E(G) not directed to v.

Suppose that (G,ψ) is a Γ-gain graph for some group Γ, and that there are

v ∈ V (G), γ ∈ Γ such that ψ(e) ∈ {id, γ} for all edges e ∈ E(G) directed to v, and

ψ(e) = id for all edges e ∈ E(G) not incident to v. Then, every closed walk W

containing v as an initial vertex but not as an internal vertex clearly has gain id, γ

or γ−1. Hence, the converse to Lemma 3.2.17 is also true. Notice this is also true

if ⟨γ⟩ ≃ Z2 or ⟨γ⟩ ≃ Z3. However, Lemma 3.2.17 need not hold if G is not proper

near-balanced. In Figure 3.10, we show two examples of non-proper near-balanced

graphs: (a) shows a Γ1-gain graph (G1, ψ1) where ⟨G1⟩ ≃ Z2; (b) shows a Γ2-gain

graph (G2, ψ2) where ⟨G2⟩ ≃ Z3. We can take u and v to be the base vertices of

near-balancedness of the graphs in (a) and (b), respectively. In both cases, there is

a non-identity loop not incident to a base vertex.

It is important to note that, in both graphs given in Figure 3.10, every vertex may

be considered as a base vertex of near-balancedness. In general, the base vertex of

near-balancedness is not unique. However, the base vertex of a proper near-balanced

graph is unique, provided the graph contains sufficiently many edges and all of its

balanced subgraphs are (2, 3)-sparse.

Lemma 3.2.18 ([27], Lemma 4.2). Let Γ be a group and (G,ψ) be a proper near-
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balanced Γ-gain graph which satisfies |E(G)| ≥ 2|V (G)| − 1. Suppose that all

balanced subgraphs of (G,ψ) are (2, 3)-sparse. Then, the base vertex of G is unique.

Moreover, for all near-balanced subgraphs H of G with |E(H)| = 2|V (H)| − 1, the

unique base vertex of H coincides with the base vertex of G.

Lemmas 4.4 to 4.10 in [27] study the union of a proper near-balanced graph H1

together with some other graph H2. (Except for Lemma 4.6, which shows that the

union of two balanced graphs is near-balanced under certain conditions.) All such

results are fundamental for the proofs in Chapter 7. Whereas [27] takes a matroidal

approach, the arguments in this thesis will not. Hence, we slightly modify the

statements given in [27] to fit our setting. Even though the statements given in [27]

differ from ours, the same proofs apply.

Lemma 3.2.19 ([27], Lemma 4.4). Let Γ be a group, (G,ψ) be a Γ-gain graph and

H1, H2 be proper near-balanced subgraphs of G such that H1 ∩ H2 is (2, 1)-tight

and proper near-balanced. Assume that for 1 ≤ i ≤ 2 there is an edge fi ∈ E(Hi)

such that Hi − fi is (2, 1)-tight. Assume further that every balanced subgraph of

H1 − f1, H2 − f2 is (2, 3)-sparse. Then H1 ∪H2 is proper near-balanced.

Lemma 3.2.20 ([27], Lemma 4.5). Let Γ be a group, (G,ψ) be a Γ-gain graph and

H1, H2 be subgraphs of G such that H1∩H2 is connected, balanced and (2, 3)-tight.

Assume that there is an edge f1 ∈ E(H1) such that H1 − f1 is (2, 1)-tight and that

H1 is proper near-balanced. Assume further that H2 is connected and balanced, and

that V|Γ|(H2) = ∅. Then H1 ∪H2 is proper near-balanced.

Lemma 3.2.21 ([27], Lemma 4.6). Let Γ be a group, (G,ψ) be a Γ-gain graph and

H1, H2 be balanced subgraphs of G such that H1 ∩ H2 consists of two connected

components, one of which is an isolated vertex v. Suppose that there is an edge

f1 ∈ E(H1) such that H1 − f1 is (2, 3)-tight, and that H2 is connected. Suppose

further that V|Γ|(H1 ∪H2) = ∅. Then H1 ∪H2 is near-balanced with base vertex v.

Lemma 3.2.22. Let Γ be a group, (G,ψ) be a Γ-gain graph andH1, H2 be connected

subgraphs of G such that H1 ∩ H2 is connected and unbalanced. Assume that H1
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is proper near-balanced and that ⟨H2⟩ ≃ Zp for some prime p. Then, we have

⟨H1⟩ = ⟨H2⟩ = ⟨H1 ∩H2⟩ = ⟨H1 ∪H2⟩.

3.2.4 Subgroups of a cyclic group

Let G̃ be a Γ-symmetric graph for some cyclic group Γ of non-prime order k ≥ 4.

So, G̃ is Zk-symmetric. For all n|k, Zn is a subgroup of Zk, and so G̃ is also Zn-

symmetric. It follows that the Zk-gain graph (G,ψ) of G̃ can also be considered as

a Zn-gain graph.

For example, let Γ1 = ⟨γ1⟩ ,Γ2 = ⟨γ2⟩ be cyclic groups of order 9 and 15,

respectively. Consider the Γ1-gain graph (G1, ψ1) given in Figure 3.11(a). Its Γ1-

lifting (b) is also a Z3-symmetric graph: the triangle in red is rotated by 2π/3 and

4π/3 anti-clockwise around the origin. In fact, replacing the gain γ31 in Figure 3.11(a)

with the generator of Z3, we obtain the Z3-gain graph of the Z3-symmetric graph

in Figure 3.11(b). Similarly, the Γ2-lifting of the Γ2-gain graph (G2, ψ2) given in

Figure 3.11(c) can be seen as a Z3-symmetric graph: the star in red is rotated by

2π/3 and 4π/3 anti-clockwise around the origin.

γ31

(a)

v⋆

γ1v
⋆

γ21v
⋆

(b)

γ62

(c) (d)

Figure 3.11: (a) is a Γ1-gain graph with Γ1-lifting (b), where Γ1 = ⟨γ1⟩ is a cyclic

group of order 9. (c) is a Γ2-gain graph with Γ2-lifting (d), where Γ2 = ⟨γ2⟩ is a

cyclic group of order 15.

Similarly, any Ck-symmetric framework may be seen as a Cn-symmetric frame-

work for all n|k. As we will see in Chapter 4, infinitesimal motions can be classified:
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for all 0 ≤ j ≤ k− 1, we will define ρj-symmetric infinitesimal motions, i.e. motions

which exhibit symmetry described by the irreducible representation ρj of Ck. (In

particular, if ρj is the trivial representation, then the ρj-symmetric infinitesimal

motions are the fully-symmetric infinitesimal motions.) Each class can be studied

separately. However, for some 0 ≤ j ≤ k − 1, 0 ≤ i ≤ n − 1, a ρj-symmetric

infinitesimal motion of a Ck-symmetric framework (G̃, p̃) may also be a ρi-symmetric

infinitesimal motion of (G̃, p̃) when this is seen as a Cn-symmetric framework. When

we combinatorially characterise Ck-generic frameworks, we must take this fact into

account. If ⟨G⟩ ̸≃ Z2 or j is even, we do so through the notion of Si(k, j) gain

graphs, which may also be found in [[28], Section 2]. (We will consider the case

where ⟨G⟩ ≃ Z2 and j is odd separately.) Unless 2 ≤ j ≤ k − 2 and −1 ≤ i ≤ 1,

and unless ⟨G⟩ ≃ Z2 and j is odd, the combinatorial counts corresponding to

the ρj-symmetric infinitesimal motions of a Ck-generic framework coincide with the

combinatorial counts corresponding to the ρi-symmetric infinitesimal motions of a

Cn-generic framework. Hence, we need only define Si(k, j) for 2 ≤ j ≤ k − 2 and

−1 ≤ i ≤ 1.

Definition 3.2.23. Let (G,ψ) be a Γ-gain graph for some cyclic group Γ of order

k ≥ 4. For 2 ≤ j ≤ k − 2,−1 ≤ i ≤ 1, we define the following sets:

Si(k, j) =

{n ∈ N : 2 ≤ n, n|k, j ≡ i(mod n)} if j is even

{n ∈ N : 2 < n, n|k, j ≡ i(mod n)} if j is odd

We say a connected subset F of E(G) (equivalently, a connected subgraph H of G)

is S0(k, j) if ⟨F ⟩ ≃ Zn (equivalently, ⟨H⟩ ≃ Zn) for some n ∈ S0(k, j). Similarly, we

say F (equivalently, H) is S±1(k, j) if ⟨F ⟩ ≃ Zn (equivalently, ⟨H⟩ ≃ Zn) for some

n ∈ S−1(k, j) ∪ S1(k, j). We say F (equivalently, H) is S(k, j) if it is either S0(k, j)

or S±1(k, j).

Example 3.2.24. We consider the case where k = 6, and we compute Si(6, j) for

all 2 ≤ j ≤ 4 and all −1 ≤ i ≤ 1. Since the only divisors of 6 are 1, 2, 3 and 6, we

know that Si(6, j) ⊆ {2, 3} for all 2 ≤ j ≤ 4 and all −1 ≤ i ≤ 1. When j = 2,
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we have j ≡ 0(mod 2) and j ≡ −1(mod 3). So, S0(6, 2) = {2}, S1(6, 2) = ∅ and

S−1(6, 2) = {3}. When j = 3, we have j ≡ 0(mod 3) and j ≡ 1(mod 2). However,

since j = 3 is odd, we do not include 2 in S1(6, 3). Hence, S0(6, 3) = {3}, and

S1(6, 3) = S−1(6, 3) = ∅. When j = 4, we have j ≡ 0(mod 2) and j ≡ 1(mod 3).

So, S0(6, 2) = {2}, S1(6, 2) = {3} and S−1(6, 2) = ∅.

If k is even, then the Γ-lifting G̃ of (G,ψ) is Z2-symmetric. Moreover, if j is

odd, then j ≡ 1(mod 2). This implies that the ρj-symmetric infinitesimal motions

of a Ck-symmetric realisation (G̃, p̃) of G̃ can be seen as ρ1-symmetric infinitesimal

motions of (G̃, p̃), when seen as a C2-symmetric framework. However, 2 ̸∈ S±1(k, j)

for odd j. This is because the combinatorial count that a Z2-gain graph must satisfy

in order for its lifting to have an infinitesimally rigid C2-generic realisation differs

from the count that a Zk-gain graph must satisfy in order for its lifting to have

an infinitesimally rigid Ck-generic realisation for all k ≥ 3. Hence, when defining a

combinatorial count of a Zk-gain graph for k ≥ 4, we let S±1(k, j) gain graphs have

different counts than the gain graphs (G,ψ) with ⟨G⟩ ≃ Z2.

Lemma 3.2.25. Let k ≥ 4, 2 ≤ j ≤ k−2. Let n,m ∈ S−1(k, j)∪S0(k, j)∪S1(k, j).

If gcd(n,m) ̸= 1, then n,m ∈ Si(k, j) for some −1 ≤ i ≤ 1.

Proof. For all integers n′ ≥ 1, gcd(n′, n′ + 1) = 1, gcd(n′, n′ + 2) = 1 if n′ is

odd, and gcd(n′, n′ + 2) = 2 if n′ is even. It follows that Si1(k, j) ∩ Si2(k, j) = ∅

for all −1 ≤ i1 ̸= i2 ≤ 1. Then, since gcd(n,m) ̸= 1, n,m ∈ Si(k, j) for some

−1 ≤ j ≤ 1.

Corollary 3.2.26. Let k ≥ 4, 2 ≤ j ≤ k − 2 and let (G,ψ) be a Γ-gain graph for

some cyclic group Γ of order k. Let H1 ≤ H2 ≤ G. If H1, H2 are S(k, j), then

H1, H2 are either both S±1(k, j) or they are both S0(k, j).

Proof. There are some i1, i2 ∈ {−1, 0, 1}, and some n ∈ Si1(k, j),m ∈ Si2(k, j) such

that ⟨H1⟩ ≃ Zn and ⟨H2⟩ ≃ Zm. Since H1 ≤ H2, Zn ≤ Zm. By Lagrange’s Theorem

n|m, so gcd(n,m) = n ̸= 1. By Lemma 3.2.25, i1 = i2. This proves our result.
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Lemma 3.2.27. Let (G,ψ) be a Γ-gain graph for some cyclic group Γ of order

k ≥ 4. Let H1, H2 ≤ G be such that H1 ∩ H2 − V|Γ|(H1 ∩ H2) is connected with

non-empty edge set. Then the following hold:

(i) if H1, H2 are S0(k, j) (respectively, S±1(k, j)), then so is H1 ∪H2; and

(ii) if H1 is S0(k, j) (respectively, S±1(k, j)), H2 is near-balanced and H1 ∩H2 is

unbalanced, then H1 ∪H2 is S0(k, j) (respectively, S±1(k, j)).

Proof. Since H1 ∩H2 − V|Γ|(H1 ∩H2) is connected, each closed walk W in H1 ∪H2

only containing free vertices can be decomposed into W = W1 ◦ · · · ◦Wn such that

eachWi is a closed walk in H1 or H2 only containing free vertices. Hence, ⟨H1 ∪H2⟩

is the group generated by the elements of ⟨H1⟩ ∪ ⟨H2⟩, and (i) holds.

For (ii), suppose that ⟨H1⟩ ≃ Zn for some n ∈ S−1(k, j)∪S0(k, j)∪S1(k, j), that

H2 is near balanced with base vertex v and gain γ, and that H1 ∩H2 is unbalanced.

Since H1 ∩ H2 is unbalanced, γ ∈ ⟨H1 ∩H2⟩ ≤ ⟨H1⟩. Hence, ⟨H2⟩ ≤ ⟨H1⟩ and so

⟨H1 ∪H2⟩ ≃ Zn, as required.

3.2.5 Gain sparsity

In this section we will introduce the criteria we will use to characterise infinitesimally

rigid Γ-symmetric graphs. Depending on the symmetry group τ(Γ), the sparsity

count required for a full characterisation of τ(Γ)-generic infinitesimally rigid

frameworks is more or less complex. If τ(Γ) is one of Cs, C2 and C3, the

following definition of sparsity suffices to describe τ(Γ)-generic infinitesimally rigid

frameworks.

Definition 3.2.28. Let Γ be a cyclic group and (G,ψ) be a Γ-gain graph. Let m, l

be integers such that 0 ≤ m ≤ 2, 0 ≤ l ≤ 3,m ≤ l. (G,ψ) is called (2,m, 3, l)-gain

sparse if the following hold:

• Any balanced subgraph H of (G,ψ) with non-empty edge set is (2, 3)-sparse.
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• For any subgraph H (G,ψ) with E(H) ̸= ∅, we have

|E(H)| ≤ 2|V1(H)|+m|V|Γ|(H)| − l. (3.1)

(G,ψ) is called (2,m, 3, l)-gain tight if it is (2,m, 3, l)-gain sparse and it satisfies

|E(G)| = 2|V1(G)|+m|V|Γ|(G)| − l.

Let (G,ψ) be a Γ-gain graph for some cyclic group Γ. Suppose that (G,ψ) is

(2,m, 3, l)-gain sparse for some integers m, l such that 0 ≤ m ≤ 2, 0 ≤ l ≤ 3,m ≤ l,

and let H be a balanced subgraph of G with non-empty edge set. Then, in addition

to H being (2, 3)-sparse, Equation (3.1) must also hold for H. If V|Γ|(H) = ∅,

then (2, 3)-sparsity is always a stronger condition than that given in Equation 3.1.

However, this need not be the case if V|Γ|(H) ̸= ∅.

Lemma 3.2.29. Let Γ be a cyclic group and (G,ψ) be a Γ-gain graph. Let m, l

be integers such that 0 ≤ m ≤ 2, 0 ≤ l ≤ 3,m ≤ l, and let H be a subgraph of G.

Then, 2|V1(H)|+m|V|Γ|(H)|− l ≤ 2|V (H)|−3 if and only if 3− l ≤ (2−m)|V|Γ|(H)|.

Proof. Recall that V (H) = V1(H) ∪̇V|Γ|(H). Hence,

2|V1(H)|+m|V|Γ|(H)| − l ≤ 2|V (H)| − 3 = 2|V1(H)|+ 2|V|Γ|(H)| − 3

if and only if m|V|Γ|(H)|− l ≤ 2|V|Γ|(H)|−3. Rearranging, we obtain the result.

An argument similar to the proof of [[27], Lemma 4.13] shows the following.

Lemma 3.2.30. For 0 ≤ m ≤ 2, 1 ≤ l ≤ 3 such that m ≤ l, any (2,m, 3, l)-gain

tight graph G with non-empty edge-set has exactly one connected component with

non-empty edge set, and it has no isolated free vertex. Moreover, if m ≥ 1, then G

has no isolated fixed vertex.

Proof. Fix 0 ≤ m ≤ 2, 1 ≤ l ≤ 3 such that m ≤ l. Let c0 ≥ 0, c ≥ 1 be integers

such that c − c0 ≥ 1, and (G,ψ) be a (2,m, 3, l)-gain tight graph with connected

componentsH1, . . . , Hc, of whichH1, . . . , Hc0 are isolated vertices, andHc0+1, . . . , Hc
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have non-empty edge sets. Notice that c − c0 = 1 if and only if G has exactly one

connected component with non-empty edge set. We have

|E(G)| =
c∑

i=c0+1

|E(Hi)|

≤ 2
c∑

i=c0+1

|V1(Hi)|+m

c∑
i=c0+1

|V|Γ|(Hi)| − (c− c0)l

= 2(|V1(G)| −
c0∑
i=1

|V1(Hi)|) +m(|V|Γ|(G)| −
c0∑
i=1

|V|Γ|(Hi)|)− (c− c0)l.

By (2,m, 3, l)-gain tightness, this is not strictly less than 2|V1(G)|+m|V|Γ|(G)| − l.

Since l ≥ 1, it follows that |V1(Hi)| = 0 for all 1 ≤ i ≤ c0 and that c − c0 = 1.

Moreover, if m ≥ 1 then V|Γ|(Hi) must be empty for all 1 ≤ i ≤ c0. Hence, the result

holds.

Now, let |Γ| ≥ 4, and τ : Γ → O(R2) be an injective homomorphism. In this

case, the sparsity count given in Definition 3.2.28 does not suffice to characterise

the infinitesimal rigidity of τ(Γ)-generic frameworks. Hence, we introduce the more

refined notions of (2,m, 3, l)′-gain sparsity and Zjk-gain sparsity. Both consider

subgraphs which may be seen as Z2-gain graphs. In addition, Zjk-gain sparsity

considers near-balanced and S(k, j) subgraphs. We start with the simpler notion of

(2,m, 3, l)′-gain sparsity.

Definition 3.2.31. Let k ≥ 4 be even and Γ be a cyclic group of order k. Let m, l

be integers such that 0 ≤ m ≤ 2, 0 ≤ l ≤ 3,m ≤ l. We say a Γ-gain graph (G,ψ)

is (2,m, 3, l)′-gain tight if it is (2,m, 3, l)-gain tight and for all connected subgraphs

H of G with E(H) ̸= ∅ and ⟨H⟩ ≃ Z2, H is (2, 2)-sparse.

Let Γ be a cyclic group of order k ≥ 4, let (G,ψ) be a Γ-gain graph with non-

empty edge set, and recall that |V|Γ|(G)| ≤ 1. Let 2 ≤ j ≤ k − 2. We now define

the notion of Zjk-gain sparsity. In order to do so, we first define the function f jk on

2E(G) by

f jk(F ) =
∑

X∈C(F )

{
2|V (X)| − 3 + αjk(X)

}
,
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where F is a subset of E(G), C(F ) denotes the set of connected components of the

graph spanned by F , and

αjk(X) =



0 if X is balanced,

1 if j is odd and ⟨X⟩ ≃ Z2,

2− |V|Γ|(X)| if X is S±1(k, j),

2− 2|V|Γ|(X)| if X is S0(k, j) or X is proper near-balanced,

3− 2|V|Γ|(X)| otherwise.

Since αjk depends on |V|Γ|(X)|, it is not straightforward to see that αjk and f jk

are well-defined functions. In the following result we show that both αjk and f jk are

well-defined, and that f jk is monotone.

Lemma 3.2.32. Let k ≥ 4, 2 ≤ j ≤ k − 2, and Γ be a cyclic group of order k. For

any Γ-gain graph (G,ψ), f jk is a monotone function.

Proof. We first show that f jk is a well-defined function. To do so, it suffices to

show that αjk is well-defined. So, take an arbitrary connected non-empty subset

X of E(G). We show that αjk(X) can take exactly one value in the set {0, 1, 2 −

|V|Γ|(X)|, 2− 2|V|Γ|(X)|, 3− 2|V|Γ|(X)|}.

If X is balanced, then it is neither near-balanced nor S(k, j). Moreover, if j

is odd, then 2 ̸∈ S(k, j) by definition, and if ⟨X⟩ ≃ Z2, then X is near-balanced

but not proper near-balanced. Hence, we may assume that αjk(X) lies in the set

{2− |V|Γ|(X)|, 2− 2|V|Γ|(X)|, 3− 2|V|Γ|(X)|}.

Suppose that X is S(k, j). If V|Γ|(X) = ∅, then 2 − |V|Γ|(X)| = 2 − 2|V|Γ|(X)|.

Hence, we may assume that V|Γ|(X) ̸= ∅. In particular, this implies that X is not

near-balanced. By Corollary 3.2.26, X can be either S0(k, j) or S±1(k, j), but it

cannot be both. Hence, αjk, f
j
k are well-defined.

Now, we show that f jk is monotone. It suffices to show that, for all connected

non-empty subsets X ⊆ Y of E(G),

f jk(X) ≤ f jk(Y ). (3.2)
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Hence, take any two such subsets X, Y of E(G). If V|Γ|(Y ) = V|Γ|(X) = ∅, this is

clearly true. So, assume that |V|Γ|(Y )| = 1. In particular, this implies that Y is not

proper near-balanced. If Y is balanced, then so is X and so Equation (3.2) holds

since |V (X)| ≤ |V (Y )|. Similarly, if j is odd and ⟨Y ⟩ ≃ Z2, then eitherX is balanced

or ⟨X⟩ ≃ Z2. In both cases f jk(X) ≤ 2|V (X)|− 2 and so Equation (3.2) holds, since

|V (X)| ≤ |V (Y )|. Hence, we may assume that Y is not balanced and that ⟨Y ⟩ ̸≃ Z2

whenever j is odd. Since |VΓ(X)| ≤ 1, it is easy to see that f jk(X) ≤ 2|V1(X)|

whether X is balanced, near-balanced, S(k, j), or ⟨X⟩ ≃ Z2 and j is odd. Hence,

f jk(X) ≤ 2|V1(X)| ≤ 2|V1(Y )|.

In particular, if f jk(Y ) = 2|V1(Y )|, then Equation (3.2) holds. Therefore, we may

assume that Y is S(k, j).

So, let ⟨Y ⟩ ≃ Zn for some n ∈ S(k, j). If X is also S(k, j), then Equation (3.2)

holds by Corollary 3.2.26 and the fact that V (X) ⊆ V (Y ). If n ∈ S−1(k, j)∪S1(k, j),

by the fact that |V|Γ|(Y )| = 1, we have f jk(Y ) = 2|V1(Y )|+ |V|Γ|(Y )| − 1 = 2|V1(Y )|.

If n ∈ S0(k, j), then f
j
k(Y ) = 2|V1(Y )| − 1. If X is balanced, then

f jk(X) = 2|V (X)| − 3 ≤ 2|V1(X)| − 1 ≤ 2|V1(Y )| − 1 < 2|V1(Y )|.

Hence, whether Y is S±1(k, j) or S0(k, j), Equation (3.2) holds. Similarly, if X is

proper near-balanced then f jk(X) = 2|V1(X)| − 1 ≤ 2|V1(Y )| − 1 and Equation (3.2)

holds. Hence, we may assume that j is odd and ⟨X⟩ ≃ Z2.

In particular, f jk(X) = 2|V (X)| − 2. We show that n ∈ S−1(k, j) ∪ S1(k, j). To

see this, assume for a contradiction that n ∈ S0(k, j). Since X ⊆ Y , we know that

Z2 ≃ ⟨X⟩ ≤ ⟨Y ⟩ ≃ Zn. Hence, n is even. By the definition of S0(k, j), n|j, and so

j is even, a contradiction. Hence, n ∈ S−1(k, j) ∪ S1(k, j). We have

f jk(X) = 2|V (X)| − 2 ≤ 2|V1(X)| ≤ 2|V1(Y )| = f jk(Y ),

Therefore, Equation (3.2) holds, as required.

Definition 3.2.33. Let Γ be a cyclic group of order k ≥ 4 and let (G,ψ) be a Γ-gain

graph. For 2 ≤ j ≤ k− 2, we say (G,ψ) is Zjk-gain sparse if |E(H)| ≤ f jk(E(H)) for
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all subgraphs H of G with non-empty edge set. We say (G,ψ) is Zjk-gain tight if it

is Zjk-gain sparse and |E(G)| = f jk(E(G)).

Recall that Lemma 3.2.32 says f jk is a monotone function. In particular, this

implies that any connected subgraph H of G with non-empty edge set must satisfy

|E(H)| ≤ 2|V1(H)|, whether it is balanced, near-balanced, S(k, j) or ⟨H⟩ψ ≃ Z2.

Recall also that the concept of near-balancedness is only defined on graphs with no

fixed vertices. This is because, if there is some connectedH with a fixed vertex v such

that H − v is near-balanced, then |E(H)| ≤ 2|V1(H)| = 2|V (H)| − 2 ≤ 2|V (H)| − 1

is always true. Hence, if X is near-balanced, we assume by default that it has no

fixed vertices.

It will follow from one of the main results of this thesis (see Theorem 7.3.3) that

f jk induces a matroid for all odd 4 ≤ k < 1000 or k = 4, 6. We expect that the

same is true for all other symmetry groups in the plane. By Lemma 3.2.32 f jk is

monotone. Hence, only the submodularity of f jk must be checked.

3.3 Gain graphs for all groups

In this section we further generalise the notion of gain graph. For the rest of the

chapter we allow Γ to be any abstract group of finite order, unless stated otherwise.

In Section 3.2 we defined a gain graph as a directed multigraph with labelled edges

and whose vertex set is the disjoint union of two sets, one corresponding to the free

vertices of a symmetric graph, and one corresponding to its fixed vertices. This

definition fits the setting where the group Γ is cyclic because knowing if a joint is

free/fixed under τ(Γ) also tells us exactly the stabiliser of the joint. In general, joints

with different stabilisers have different degrees of freedom. It follows that knowing

the stabiliser of a given vertex is crucial. In this section we introduce a new notion

of gain graph, which also retains information on the stabilisers of the vertices of G̃.

In this section, and for the rest of the thesis, we let Sub(Γ) denote the set of all

subgroups of Γ.
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Let G̃ be a Γ-symmetric graph, and G = (V,E) be the quotient of G̃ with respect

to Γ. We label the vertices in V , and we orient and label the edges in E. We do so

in the following way.

For each vertex orbit v := Γv⋆ we fix a vertex orbit representative v⋆, and we

define the map φ : V → Sub(Γ) by letting φ(v) = StabΓ(v
⋆). We also fix an

orientation on the edges of G. Pick an arbitrary directed edge e = (u, v) in the

directed quotient graph, and let u⋆, v⋆ be the vertex orbit representatives of u = Γu⋆

and v = Γv⋆, respectively. For all γ ∈ Γ, let u⋆γ := γu⋆ and v⋆γ := γv⋆.

There is some γ ∈ Γ such that the edge u⋆v⋆γ lies in the edge orbit uv. Hence,

we may write uv as Γu⋆v⋆γ. Then, for all α ∈ φ(u), β ∈ φ(v), u⋆v⋆αγβ = u⋆αv
⋆
αγ ∈ uv.

Conversely, if uv = Γu⋆v⋆γ = Γu⋆v⋆δ for some δ ∈ Γ, then there is some g ∈ Γ

such that u⋆v⋆γ = u⋆gv
⋆
gδ, i.e. u

⋆ = gu⋆ and γv⋆ = gδv⋆. So, α := g−1 ∈ φ(u) and

β := γ−1gδ ∈ φ(v). Hence, δ = g−1γ(γ−1gδ) = αγβ for some α ∈ φ(u), β ∈ φ(v).

We define the gain on e to be any element in φ(u)γφ(v).

In the construction above, we could re-direct e from v to u and re-label it with

the group inverse of the original label chosen. Up to this operation, and up to the

choice of representatives, and of the gains for edges incident to a non-free vertex

as described above, this process gives a unique directed multigraph with labels on

its vertices and on its edges. The process gives rise to a new class of directed

multigraphs with labelled vertices and edges, which are a generalisation of the Γ-

gain graphs given both in Section 3.1 and in Section 3.2.

Definition 3.3.1. Let Γ be an abstract group. A Γ-gain graph is a triple (G,φ, ψ),

where G is a directed multigraph, and φ : V (G) → Sub(Γ), ψ : E(G) → Γ are maps

such that the following conditions are satisfied:

1. For all parallel edges e = (u, v), f ∈ E(G) and elements γu ∈ φ(u), γv ∈ φ(v),

we have ψ(e) ̸= γuψ(f)γv whenever f = (u, v), and ψ(e) ̸= [γuψ(f)γv]
−1

whenever f = (v, u).

2. If e ∈ E(G) is a loop at a vertex u ∈ V (G), then ψ(e) ̸∈ φ(u).
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See Figure 3.12 for examples of parallel edges which are not allowed. We call φ

and ψ the vertex-gain map and edge-gain map of (G,φ, ψ), respectively. For each

u ∈ V (G), e ∈ E(G), we call φ(u), ψ(e) the gains or labels of u, e, respectively.

Since for all u ∈ V (G), φ(u) is a group, id ∈ φ(u), and so |φ(u)| ≥ 1. For

1 ≤ i ≤ |Γ|, we define Vi(G) to be the subset {u ∈ V (G) : |φ(u)| = i} of V (G). As

already defined in Section 3.2, we call the vertices in V1(G) and V|Γ|(G) the free and

fixed vertices of G, respectively. For 2 ≤ i ≤ |Γ|−1, we call the vertices in Vi(G) the

semi-free vertices of G. When drawing a Γ-gain graph, we use squares to represent

the fixed vertices, white circles to represent the free vertices, and black circles to

represent the semi-free vertices.

{id, s} {id}
id

s

(a)

{id, s} {id, sr}
id

r

(b)

Γ {id}
id

γ

(c)

Figure 3.12: Three examples of labelling which are not allowed by the definition of

Γ-gain graph. In (a,b), Γ = D2k for some k ≥ 2. In (c), Γ is any group and γ ∈ Γ is

arbitrary.

Given a group Γ and a Γ-gain graph (G,φ, ψ), Definitions 3.3.1 and 3.1.1 are

equivalent whenever V (G) = V1(G), and Definitions 3.3.1 and 3.2.1 are equivalent

whenever V (G) = V1(G) ∪̇V|Γ|(G). Therefore, given a group Γ, we will henceforth

use the terminology Γ-gain graph to refer to the combinatorial object given in

Definition 3.3.11. If Γ is cyclic, then we will abbreviate the notation (G,φ, ψ) to

(G,ψ).

Conversely, given a Γ-gain graph (G,φ, ψ), we may construct a Γ-symmetric

graph G̃. We do so in the following way. For each v ∈ V (G), V (G̃) contains the

vertices γv for all γ ∈ Γ. For all δ ∈ φ(v), γ ∈ Γ, we let the vertices γv and γδv

coincide. For each edge e = (u, v) ∈ E(G) and for all γ ∈ Γ, E(G̃) contains the edge

uγvγψ(e), where uγ := γu and vγψ(e) := γψ(e)v.

The graph obtained by applying this process is simple and it is unique up to
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isomorphism. Moreover, given any Γ-symmetric graph G̃, if we construct a Γ-gain

graph (G,φ, ψ) from G̃ using the process described at the beginning of the section,

and we then construct a Γ-symmetric graph H̃ from (G,φ, ψ) by applying the process

just described, then G̃ ≃ H̃. Hence, with a slight abuse of terminology, we call

(G,φ, ψ) the (quotient) Γ-gain graph of G̃ and we call G̃ ≃ H̃ the Γ-covering graph

(or Γ-lifting) of (G,φ, ψ).

3.3.1 Switchings

u⋆

v⋆

w⋆

(a)

φ(u) = {id, s}

id

(b)

φ′(u) = {id, sr2}

r

(c)

Figure 3.13: (a) is a D8-symmetric graph with two different D8-gain graphs (b,c).

The representatives chosen for (b) are u⋆ and v⋆. The graph in (c) can be obtained

from the graph in (b) by applying a switching at u induced by r.

We now generalise Definitions 3.2.2 and 3.2.3 of switchings. Similarly as described

in Subsection 3.2.1, switchings of type I and of type II correspond to changing the

choice of vertex orbit representatives and the choice of edge labels, respectively,

during the construction of a Γ-gain graph.

Definition 3.3.2. For a group Γ, let (G,φ, ψ) be a Γ-gain graph. Let v ∈ V (G). A

(type I) switching at v induced by the element γ ∈ Γ is an operation which generates
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new gain maps φ′, ψ′ by letting φ′(v) = γφ(v)γ−1 and

ψ′(e) =



γψ(e)γ−1 if e is a loop incident to v

γψ(e) if e is a non-loop edge directed from v

ψ(e)γ−1 if e is a non-loop edge directed to v

ψ(e) otherwise

for all e ∈ E(G).

Figure 3.13 shows an example of a type I switching applied to a vertex of a

D8-gain graph. (Note, the conjugacy classes of s and sr are distinct in D8.) The

D8-gain graph (G,φ, ψ) in (b) is obtained from the D8-symmetric graph in (a) by

choosing the vertex orbit representatives u⋆ and v⋆. Applying a type I switching

at u induced by r, we obtain the D8-gain graph (G,φ′, ψ′) in Figure 3.13(c), where

φ′(u) = r{id, s}r−1 = {id, sr2}. Note that (c) can also be obtained directly from (a)

by choosing the vertex orbit representatives w⋆ (i.e. ru⋆) and v⋆.

Definition 3.3.3. For a group Γ, let (G,φ, ψ) be a Γ-gain graph. A (type II)

switching at an edge e = (u, v) ∈ E(G) induced by the elements γu ∈ φ(u) and

γv ∈ φ(v) is an operation which generates a new gain map ψ′ : E(G) → Γ defined

by letting ψ′(e) = γuψ(e)γv and ψ
′(f) = ψ(f) for all other f ∈ E(G).

Sometimes we apply type II switchings at edges of the form e = (u, v) induced

by elements γ ∈ φ(u) and id ∈ φ(v), or induced by id ∈ φ(v) and γ ∈ φ(v) (e.g., if

one of u, v is free). In these cases, if clear from the context, we simply say that we

apply a type II switching at e induced by γ.

Definition 3.3.4. Given a group Γ and a Γ-gain graph (G,φ, ψ), we define a

switching of (G,φ, ψ) to be any type I switching at a vertex v ∈ V (G) or type

II switching at an edge e ∈ E(G).

Similarly as in the case where Γ is a cyclic group, applying a series of switchings

to a Γ-gain graph defines an equivalence relation. More precisely, we have the

following.
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Definition 3.3.5. For a group Γ, let (G,φ1, ψ1), (G,φ2, ψ2) be two Γ-gain graphs.

We say ψ1, ψ2 (or (φ1, ψ1), (φ2, ψ2)) are equivalent/type I equivalent/type II equiva-

lent if one can be obtained from the other by applying a series of switchings/type

I switchings/type II switchings. We say (G,φ1, ψ1) and (G,φ2, ψ2) are equiva-

lent/type I equivalent/type II equivalent if (ψ1, φ1)(ψ2, φ2) are equivalent/type I

equivalent/type II equivalent.

Given a group Γ and a Γ-gain graph (G,φ, ψ) with V (G) = V1(G) ∪̇V|Γ|(G),

Definitions 3.3.2 and 3.2.2 are equivalent, as are Definitions 3.3.3 and 3.2.3. If

V|Γ|(G) = ∅, Definition 3.3.2 is also equivalent to the definition of switching given in

[29]. However, type II switchings are only defined in this thesis.

Let Γ be a group and (G,φ, ψ) be a Γ-gain graph. Suppose there are vertices

u, v ∈ V (G) with conjugate labels. It is easy to see that φ′(u) = φ′(v) for some

vertex-gain map φ′ equivalent to φ: since φ(u) = δ−1φ(v)δ for some δ ∈ Γ, applying

a type I switching at u induced by δ generates the desired vertex-gain map.

In Subsection 3.2.1 we showed how to obtain an edge-gain map which assigns

the identity gain to all edges of a forest (see Proposition 3.2.6, and the paragraph

just before), provided Γ is cyclic. It is easy to see that the same process can be used

also when Γ is not cyclic. Moreover, by applying the same process while avoiding

switchings at semi-free vertices, we may obtain an edge-gain map which assigns the

identity gain to all edges not directed to a semi-free vertex, without altering the

vertex-gain map.

Proposition 3.3.6. Let Γ be a group and (G,φ, ψ) be a Γ-gain graph. For any

forest F in G, there is a Γ-gain graph (G,φ′, ψ′) type I equivalent to (G,φ, ψ) such

that ψ′(e) = id for all e ∈ E(F ).

Proposition 3.3.7. Let Γ be a group and (G,φ, ψ) be a Γ-gain graph. For any

forest F in G, there is a Γ-gain graph (G,φ′, ψ′) type I equivalent to (G,φ, ψ) such

that φ′(v) = φ(v) for all v ∈ V (G) and ψ′(e) = id for all e ∈ E(F ) not directed to

a semi-free vertex.
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3.3.2 Balanced subgraphs

In this section we further generalise the notion of balancedness given in Section 3.1

for gain graphs containing only free vertices and in Subsection 3.2.2 for Γ-gain graphs

where Γ is cyclic.

Definition 3.3.8. Let Γ be a group and (G,φ, ψ) be a Γ-gain graph. Let W be a

walk in G of the form W = e1, . . . , et, where ei has end-vertices vi, vi+1 ∈ V (G) for

all 1 ≤ i ≤ t. We say the gain of W under ψ is ψ(W ) =
∏t

i=1 ψ(ei)
sign(ei), where

sign(ei) = 1 if ei is directed from vi to vi+1, and sign(ei) = −1 otherwise.

Given a connected subgraph H of G with E(H) ̸= ∅ and a non-fixed vertex

v ∈ V (H), the gain of H under ψ with base vertex v (equivalently, the gain of E(H)

under ψ with base vertex v) is the group generated by

{ψ(W ) : W is a closed walk starting at v and not containing fixed vertices}.

We denote such a group by ⟨E(H)⟩v,ψ (or ⟨H⟩v,ψ).

Notice that, unlike for the case where V (G) = V1(G) or Γ is cyclic, this definition

strongly depends on the gain map ψ. In fact, given two equivalent Γ-gain graphs

(G,φ1, ψ1), (G,φ2, ψ2), a connected subgraph H of G, and some non-fixed vertex

v ∈ V (H) \ V|Γ|(H), ⟨H⟩v,ψ1
and ⟨H⟩v,ψ2

need not coincide, or even be conjugate.

For example, let Γ be any group, and let (G,φ1, ψ1) and (G,φ2, ψ2) be the Γ-gain

graphs in Figure 3.4(a,b), respectively. Here we let Γ′ be a non trivial subgroup of

Γ which contains some non-trivial element γ ∈ Γ. Then (G,φ1, ψ1) and (G,φ2, ψ2)

are equivalent, but ⟨G⟩v,ψ1
= {id} ≠ ⟨γ⟩ = ⟨G⟩v,ψ2

for any v ∈ V (G).

{id} {id}

Γ′

id

id id

(a)

{id} {id}

Γ′

id

γ id

(b)

Figure 3.14: Two Γ-gain graphs which are type II equivalent.
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However, some results which hold for the case where V (G) = V1(G) or Γ is

cyclic extend to our new setting. For instance, the same proofs as Proposition 3.2.8

and 3.2.9 can be used to show that the following two results hold.

Proposition 3.3.9. For a group Γ, let (G,φ, ψ) be Γ-gain graph. For any connected

subgraph H of G such that H − V|Γ|(H) is connected and for all non-fixed u, v ∈

V (H), ⟨H⟩u,ψ and ⟨H⟩v,ψ are conjugate.

Proposition 3.3.10. Let Γ be a group and (G,φ, ψ), (G,φ′, ψ′) be type I equivalent

Γ-gain graphs. For any connected subgraph H of G and any non-fixed v ∈ V (H),

⟨H⟩v,ψ and ⟨H⟩v,ψ′ are conjugate.

Definition 3.3.11. Let Γ be a group and (G,φ, ψ) be a Γ-gain graph. We say

a connected subgraph H of G (equivalently, E(H), (H,φ|V (H), ψ|E(H))) is balanced

under ψ if all closed walks in H only containing free and semi-free vertices have

identity gain under ψ. We say H,E(H) are balanced if there is some edge-gain

map ψ′ type II equivalent to ψ such that H is balanced under ψ′. Otherwise, we

say H,E(H) are unbalanced. We say a graph is balanced if all of its connected

components are balanced.

By Proposition 3.3.10, given two type I equivalent Γ-gain graphs (G,φ1, ψ1) and

(G,φ2, ψ2) and given a connected subgraph H of G, H is balanced under ψ1 if and

only if it is balanced under ψ2. Hence, in Definition 3.3.11, we may also say that

H,E(H) are balanced if there is some edge-gain map ψ′ equivalent to ψ such that

H is balanced under ψ′.

Since ⟨H⟩v,ψ now changes when applying type II switchings, some of the results

from Section 3.2 which hold for cyclic groups do not automatically transfer to our

new setting. Notably, given a Γ-gain graph (G,φ, ψ), we cannot determine whether

G is balanced just by looking at the spanning trees of the connected components of

G− V|Γ|(G). For example, consider the Γ-gain graph (G,φ, ψ) given in Figure 3.15.

The spanning tree T of G given by the edges in red is such that ψ(e) = id for all

e ∈ E(T ), and the edge which does not lie in T has non-identity gain. However, we
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may apply a type II switching at one of the edges incident to the semi-free vertex

induced by γ ∈ Γ′ so that the only closed cycle in (G,φ, ψ) has gain id.

γ

Γ′ {id}{id}

{id}

Figure 3.15: Connected Γ-gain graph (G,φ, ψ) and a spanning tree of G, given in

red. Here Γ′ < Γ is non-trivial, γ ∈ Γ′ and all unlabelled edges have identity gain.

However, Lemma 3.2.11 still holds in our setting, as the same proof can be applied

to show Lemma 3.3.12. In particular, this implies that for all balanced Γ-gain graphs

(G,φ, ψ), there is an equivalent Γ-gain graph (G,φ′, ψ′) such that ψ′(e) = id for all

e ∈ E(G).

Lemma 3.3.12. For a group Γ, let (G,φ, ψ) be a Γ-gain graph with V|Γ|(G) = ∅.

Let H be a connected subgraph of G with non-empty edge set, and let T be a

spanning tree of H. Assume that ψ(e) = id for all e ∈ E(T ). Then, for all vertices

v ∈ V (H), ⟨H⟩v,ψ = ⟨ψ(e) : e ∈ E(H − T )⟩.

It is still not straightforward to determine whether a given Γ-gain graph is

balanced or not, since there might be an edge e ∈ E(H − T ) with non-identity

gain even if (G,φ, ψ) is balanced (see Figure 3.15).

3.3.3 Dihedral groups

Let k ≥ 2 be an integer and G̃ be a D2k-symmetric graph. Recall that, given

a v⋆ ∈ V (G̃), we assume that v⋆ is either free under D2k, fixed by D2k or fixed

exactly by id and srj for some 0 ≤ j ≤ k − 1. Hence, the construction given at

the beginning of this section gives a D2k-gain graph (G,φ, ψ) such that V (G) =

V1(G) ∪̇V2(G) ∪̇V2k(G). (See Figure 3.16 for an example of the construction applied

to a D6-symmetric graph.)
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Whenever k is odd, for all u⋆, v⋆ ∈ V2(G̃), StabD2k
(u⋆) and StabD2k

(v⋆) are

conjugate. In particular, when constructing (G,φ, ψ), we may always choose vertex

orbit representatives in a way that gives φ(u) = {id, s} for all u ∈ V2(G). This will

sometimes be useful when studying such gain graphs.

u⋆0

u⋆1

u⋆2
u⋆3

u0

u1

u2u3

Figure 3.16: D6-symmetric graph and its corresponding D6-gain graph. Here, all

edges have identity gain.

For the rest of the chapter we consider D2k-gain graphs for all integers k ≥ 2.

For k ≥ 2, the group D2k has at least k + 1 subgroups: the subgroup ⟨r⟩; and

for 0 ≤ j ≤ k − 1, the subgroups ⟨srj⟩ = {id, srj}. As we will see in Chapter 5,

the infinitesimal rigidity of a D2k-symmetric framework (G̃, p̃) also depends on the

‘sub-frameworks’ of (G̃, p̃) which are symmetric with respect to Cs and Ck. Hence,

we define the rotational and reflectional subgraphs of a D2k-gain graph. We start

by defining rotational gain graphs.

Definition 3.3.13. Let k ≥ 2 be an integer, and (G,φ, ψ) be a connected D2k-

gain graph. We say G is rotational if there is a type II equivalent D2k-gain graph

(G,φ′, ψ′) of (G,φ, ψ) such that ψ′(W ) ∈ ⟨r⟩ for all closed walks W in G not

containing fixed vertices.

Definition 3.3.13 is independent of the fixed vertices. Moreover, Lemma 3.3.14

shows that Definition 3.3.13 is also independent of the semi-free vertices.
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Lemma 3.3.14. For some k ≥ 2, let (G,φ, ψ) be a connected D2k-gain graph.

Suppose that there is some v ∈ V (G) such that φ(v) = ⟨id, srt⟩ for some 0 ≤ t ≤

k−1. G is rotational if and only if each connected component of G−v is rotational.

Proof. Clearly, each connected component of G − v is rotational whenever G is

rotational. So, we assume that each connected component of G−v is rotational and

show that G is also rotational. For some m ≥ 1, let G1, . . . , Gm be the connected

components of G − v. Since each neighbour of v lies in exactly one connected

component of G, it is enough to show that Gi +G v is rotational for an arbitrary

1 ≤ i ≤ m. Without loss of generality, we show that G1 +G v is rotational.

Write the vertices incident to v in G1 +G v as v1, . . . , vn and, for 1 ≤ i ≤ n,

let ei := (v, vi). Since G1 is rotational, there is a Γ-gain graph (G,φ, ψ′) type II

equivalent to (G,φ, ψ) such that every closed walk in G1 containing no fixed vertex

has gain in ⟨r⟩ under ψ′. Fix some 1 ≤ i ̸= j ≤ n and suppose there are two vi − vj

walks W 1
ij,W

2
ij in G1.

By assumption, there are some 0 ≤ a, b ≤ k − 1 such that either ψ′(W 1
ij) = ra

and ψ′(W 2
ij) = rb or ψ′(W 1

ij) = sra and ψ′(Wij) = srb. Since G1 is connected, we

may define the map f : {2, . . . , n} → {id, s} by letting

f(i) =

id for some 0 ≤ m ≤ k − 1 and a v1 − vj walk W1,i, ψ
′(W1,i) = rm

s for some 0 ≤ m ≤ k − 1 and a v1 − vj walk W1,i, ψ
′(W1,i) = srm.

Clearly, f 2(i) = id for all 2 ≤ i ≤ n. If ψ(e1) = sra for some 0 ≤ a ≤ k − 1, then

we may apply a type II switching at e1 induced by srj and id such that e1 has gain

(srj)(sra) = ra−j. Hence, we may always apply a (possibly trivial) type II switching

at e1 such that e1 has gain ra1 for some integer 0 ≤ a1 ≤ k − 1. Similarly, for all

2 ≤ i ≤ n, we may apply type II switchings at ei such that ei has gain f(i)r
ai . Let

ψ′′ be the edge-gain map obtained from ψ′ by applying such switchings.

Notice that for all 2 ≤ i ̸= j ≤ n and all vi− vj walks Wij, ψ
′′(Wij) has the form

f(i)f(j)raij for some 0 ≤ aij ≤ k− 1. Take a closed walk W starting at v. For some

indices {i1, . . . , it} ⊆ {1, . . . , n}, W has the form (u, vi1)◦Wi1i2 ◦· · ·◦Wit−1it ◦(vit , u),
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where Wij denotes a vi − vj walk in G1. Hence, for some a, b, a1, . . . , at ,

ψ′′(W ) = ψ′′(ei1)ψ
′′(Wi1i2)ψ

′′(Wi2i3) . . . ψ
′′(Wit−iit)ψ

′′(eit)
−1

= f(i1)r
a(f(i1)f(i2)r

a1) . . . (f(it−1)f(it)r
at)rbf(it),

which equals rm for some 0 ≤ m ≤ k − 1. Since W was arbitrary, G1 +G v is

rotational, as required.

Lemma 3.3.14 allows us to redefine rotational gain graphs independently of

the semi-free vertices. Therefore, we have the following equivalent definition of

rotational.

Definition 3.3.15. Let k ≥ 2 be an integer, and (G,φ, ψ) be a connected D2k-gain

graph. We say G is rotational if every closed walk in G only containing free vertices

has gain rj for some 0 ≤ j ≤ k − 1.

We now define reflectional gain graphs.

Definition 3.3.16. Let k ≥ 2 be an integer and (G,φ, ψ) be a connected D2k-gain

graph. We say G is reflectional (with reflection srj and base vertex v ∈ V (G)) if v

is not fixed and there is an integer 0 ≤ j ≤ k − 1 and a D2k-gain graph (G,φ, ψ′)

type II equivalent to (G,φ, ψ) such that ⟨G⟩v,ψ′ ∈ ⟨srj⟩.

Let G be reflectional with reflection srj and base vertex v. By Proposition 3.3.7

and Lemma 3.3.12, there is always a D2k-gain graph (G,φ′, ψ′) equivalent to (G,φ, ψ)

such that a ψ′(e) ∈ {id, s} for all e ∈ E(G) and φ′(v) = φ(v) (the root of any

spanning tree can be chosen to be v). We define Vsrj(G) = {v ∈ V (G) : φ′(v) =

D2k or φ′(v) = {id, srj}}.

When realising the D2k-lifting of (G,φ, ψ) as a Ckv-symmetric framework (G̃, p̃),

it can also be seen as a Cs-symmetric framework, for which the reflection line l is the

y-axis rotated anti-clockwise by the angle 2πj/k. The joints fixed by the symmetry

group Cs are exactly the joints which correspond to representatives of the vertices

in Vsrj(G). All joints of (G̃, p̃) which correspond to the vertex representatives of
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vertices in V2(G− Vsrj(G)) are free joints of the Cs-symmetric (G̃, p̃), since they lie

on a reflection line but not the reflection line l. (We will see this more in detail in

Section 5.2.)

Definition 3.3.17. Let k ≥ 2 and let (G,φ, ψ) be a D2k-gain graph. We say

(G,φ, ψ) is D2k-gain sparse if for all subgraphs H of G with non-empty edge set we

have:

(i) |E(H)| ≤ 2|V1(H)|+ |V2(H)|.

(ii) |E(H)| ≤ 2|V (H)| − 3 if H is balanced.

(iii) |E(H)| ≤ 2|V1(H)|+ 2|V2(H)| − 1 if H is rotational.

(iv) |E(H)| ≤ 2|V (H−Vsrj(H))|+ |Vsrj(H)|−1, if H is reflectional with reflection

srj for some 0 ≤ j ≤ k − 1.

(G,φ, ψ) is D2k-gain tight if it is D2k-gain sparse and |E(G)| = 2|V1(H)|+ |V2(H)|.

Let (G,φ, ψ) be a D2k-gain tight graph for some k ≥ 2. Then, a subgraph

H of G must satisfy |E(H)| ≤ 2|V1(H)| + |V2(H)|, regardless of whether it is

balanced, rotational, reflectional, or none of these. Similarly, if H is balanced,

then it is also rotational and reflectional. Therefore, it must satisfy all four

counts given in Definition 3.3.17. Using the fact that V (H) is the disjoint union

V1(H) ∪̇V2(H) ∪̇V2k(H), it is easy to show the following lemma, and see how the

strength of the counts depends on V2(H) and V2k(H).

Lemma 3.3.18. Let k ≥ 2 be an integer and (G,ψ) be a D2k-gain tight graph, and

let H be a subgraph of G. Then,

(i) 2|V (H)| − 3 ≤ 2|V1(H)|+ |V2(H)| if and only if |V2(H)|+ 2|V2k(H)| ≤ 3.

(ii) 2|V1(H)|+ 2|V2(H)| − 1 ≤ 2|V1(H)|+ |V2(H)| if and only if |V2(H)| ≤ 1.

(iii) For all 0 ≤ j ≤ k− 1, 2|V (H − Vsrj(H))|+ |Vsrj(H)| − 1 ≤ 2|V1(H)|+ |V2(H)|

if and only if (|V2(H)| − |Vsrj(H)|) + 2|V2k(H)| ≤ 1.
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Chapter 4

Orbit rigidity matrices

In this chapter we consider the rigidity matrix of a symmetric framework. Since

symmetric frameworks may not be generic, introducing symmetry to a generic

framework may drop the rank of its rigidity matrix.

For the forced symmetric case, B. Schulze and W.J. Whiteley introduced the

orbit rigidity matrix, a matrix whose kernel is isomorphic to the space of fully-

symmetric infinitesimal motions of the framework [61]. The orbit rigidity matrix is

defined in terms of vertex and edge orbits, rather than vertices and edges. Hence, it

loses all redundancies which are inherent of the symmetry. Moreover, it was defined

in arbitrary dimension and for any symmetry group. Most interesting for this thesis,

it does not assume that the group action is free on the vertex set of the underlying

graph. Hence, it can be applied directly to our setting.

In 2000, engineers R.D. Kangwai and S. Guest observed that the rigidity matrix

of a symmetric framework can be block-diagonalised in such a way that each block

corresponds to an irreducible representation of the symmetry group which acts on

the framework [19]. The result was later proved by B. Schulze [56]. The same result

was proved independently by J.C. Owen and S. Power [45]. This was a breakthrough

result, as it implied that the rigidity properties of a symmetric framework can be

studied by considering each block separately, at least in theory.

In practice, the entries of each block of the rigidity matrix are not explicit.
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However, the dimension, rank and kernel of each block can be deduced. Hence,

we may define ‘phase-symmetric’ orbit rigidity matrices, one corresponding to

each irreducible representation of the symmetry group. The orbit rigidity matrix

corresponding to an irreducible representation ρ of the symmetry group has the same

dimension, rank and nullity as the block in the (block-diagonalised) rigidity matrix

corresponding to ρ. Moreover, as we will see, the orbit rigidity matrix corresponding

to the trivial representation coincides with the orbit rigidity matrix defined in [61] for

the study of forced symmetric rigidity. Phase-symmetric orbit rigidity matrices were

defined in [56] for the case where the symmetry group is abelian and it acts freely

on the joints of the framework. This chapter is aimed at extending the definition

given in [56] to the case where the symmetry group need not act freely on the joints

of the framework.

If the symmetry group is not abelian, e.g. if it is a dihedral group of order at least

6, then it has 2-dimensional irreducible representations. For such representations, it

is still unclear how to define phase-symmetric orbit matrices in an explicit way which

allows us to characterise the infinitesimal rigidity of symmetry-generic frameworks.

We structure the chapter as follows. In Section 4.1 we consider the forced

symmetric case, and we present the orbit rigidity matrix which was introduced

in [61], together with some key results. In Section 4.2 we give some background on

representation theory, which is crucial to understand the block-diagonalisation of

the rigidity matrix. In Section 4.3 we present the main result given in [19] and [49],

which asserts that the rigidity matrix may be block-diagonalised. In Section 4.4,

we study the dimension and kernel of each block in the rigidity matrix for the case

where the symmetry group is cyclic, in order to construct phase-symmetric orbit

rigidity matrices. In Section 4.5, we use the information gathered in Section 4.4 to

introduce a generalisation of the phase-symmetric orbit matrices for cyclic groups

given in [56], which does not assume that the symmetry group acts freely on the

joints of the framework. We also prove some results which will be useful for the

characterisation of infinitesimally rigid symmetric frameworks. In Section 4.6 we
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use the same ideas used in Sections 4.4 and 4.5 to define phase-symmetric orbit

rigidity matrices for the dihedral group of order 4.

4.1 The orbit rigidity matrix

Definition 4.1.1. Let Γ be a group, τ : Γ → O(Rd) be an injective homomorphism

and (G̃, p̃) be a τ(Γ)-symmetric framework. Let (G,φ, ψ) be the Γ-gain graph of

G̃, and define the map p : V (G) → Rd by letting p(v) = p̃(v⋆) for all v ∈ V (G)

with vertex orbit representative v⋆ ∈ V (G̃). We say (G,φ, ψ, p) is the τ(Γ)-gain

framework of (G̃, p̃). If Γ is cyclic, we simply write (G,ψ, p).

Recall Definition 2.3.2 of U(x) for x ∈ Rd and consider a τ(Γ)-gain framework

(G,φ, ψ, p). Notice that, for all γ, δ ∈ Γ, we have

τ(γ)Fτ(δ) = {x ∈ Rd : x = τ(γ)y, τ(δ)y = y} = {x ∈ Rd : τ(δ)τ(γ−1)x = τ(γ−1)x}

= {x ∈ Rd : τ(γδγ−1)x = x} = Fτ(γδγ−1),

and so

U(τ(γ)p(v)) =
⋂

τ(δ)∈τ(Γ)
τ(δγ)p(v)=τ(γ)p(v)

Fτ(δ) =
⋂

τ(δ)∈τ(Γ)
τ(γ−1δγ)p(v)=p(v)

Fτ(δ)

=
⋂

τ(δ)∈τ(Γ)
τ(δ)p(v)=p(v)

Fτ(γδγ−1) =
⋂

τ(δ)∈τ(Γ)
τ(δ)p(v)=p(v)

τ(γ)Fτ(δ) = τ(γ)U(p(v)). (4.1)

We now present the orbit rigidity matrix which was introduced in [61]. Here, we

use the terminology ‘ρ0-orbit rigidity matrix’, in order to be consistent with a more

general definition given in Section 4.5. We will later see that ρ0 refers to the ‘trivial

representation’ of Γ, i.e. the injective homomorphism which maps each element of

Γ to the 1× 1 identity matrix.

Definition 4.1.2. Let Γ be a group, τ : Γ → O(Rd) be an injective homomorphism,

and (G̃, p̃) be a τ(Γ)-symmetric framework with τ(Γ)-gain framework (G,φ, ψ, p).

For each v ∈ V (G), choose a basis B0
v of U(p(v)) and let M0

v be the matrix whose
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columns are the coordinate vectors of B0
v relative to the canonical basis of Rd. The

ρ0-orbit rigidity matrix of (G,φ, ψ, p) is a matrix denoted by O0(G,φ, ψ, p) which

has exactly |E(G)| rows and exactly c0v := dimU(p(v)) columns for each v ∈ V (G).

The row representing an edge e = (u, v) ∈ E(G) in O0(G,φ, ψ, p) is

u v(
0 . . . [p(u)− τ(ψ(e))p(v)]TM0

u . . . [p(v)− τ(ψ(e)−1)p(u)]TM0
v . . . 0

)
if u ̸= v, and it is

u(
0 . . . [2p(v)− τ(ψ(e))p(v)− τ(ψ(e)−1)p(v)]TM0

v . . . 0
)

otherwise. If Γ is cyclic, we abbreviate O0(G,φ, ψ, p) to O0(G,ψ, p).

The rank of the orbit rigidity matrix is independent of the choice of the bases B0
v

for v ∈ V (G). Moreover, if τ(Γ) acts freely on the joints of (G̃, p̃), then O0(G,φ, ψ, p)

is an |E(G)|×d|V (G)|matrix, and eachM0
v may be chosen to be the identity matrix.

Theorem 4.1.3 ([61], Theorem 6.1). For a group Γ and an injective homomorphism

τ : Γ → O(Rd), let (G̃, p̃) be a τ(Γ)-symmetric framework with τ(Γ)-gain framework

(G,φ, ψ, p). Then kerO0(G,φ, ψ, p) is isomorphic to the space of fully-symmetric

infinitesimal motions of (G̃, p̃).

Since equivalent Γ-gain graphs have the same Γ-lifting, we expect that, for all

equivalent Γ-gain graphs (G,φ, ψ), (G′, φ′, ψ′) and for some configurations p, p′ of

G in Rd, O0(G,φ, ψ, p) and O0(G,φ
′, ψ′, p′) share the same rank. We show this in

Propositions 4.1.4 and 4.1.5.

Proposition 4.1.4. Let (G,φ, ψ, p) be a τ(Γ)-gain framework for some group Γ

and some injective homomorphism τ : Γ → O(Rd). Let v ∈ V (G), γ ∈ Γ, and let

(G,φ′, ψ′) be obtained from (G,φ, ψ) by applying a switching at v induced by γ.

Then, there is a map p′ : V (G) → Rd such that O0(G,φ, ψ, p) and O0(G,φ
′, ψ′, p′)

share the same rank.
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Proof. Let p′ : V (G) → Rd be defined by letting p′(v) = τ(γ)p(v) and p′(u) = p(u)

for all other u ∈ V (G). For each u ∈ V (G), choose a basis B0
u for U(p(u)) and let

M0
u be the matrix whose columns are the coordinate vectors of B0

u relative to the

canonical basis of Rd. Notice that for each u ∈ V (G) with u ̸= v, we may choose

the same basis B0
u for U(p

′(u)). Moreover, by Equation (4.1), we may choose a basis

B′
v for U(p′(v)) such that τ(γ)M0

v is the matrix whose columns are the coordinate

vectors of B′
v relative to the canonical basis of Rd.

We use such bases to construct O0(G,φ, ψ, p) and O0(G,φ
′, ψ′, p′). Since all rows

corresponding to edges not incident to v are the same in O0(G,φ, ψ, p) as they are in

O0(G,φ
′, ψ′, p′), it suffices to consider the rows in O0(G,φ, ψ, p) and O0(G,φ

′, ψ′, p′)

which represents edges incident to v. Moreover, we may assume that each edge

incident to v is directed to v. So, consider an arbitrary edge e = (u, v) ∈ E(G), and

let r, r′ be the rows representing e in O0(G,φ, ψ, p) and O0(G,φ
′, ψ′, p′), respectively.

Let ψ(e) = δ. If u = v, then ψ′(e) = γδγ−1 and, since p′v = τ(γ)pv,

r′ =
(
0 . . . [2τ(γ)pv − τ(γδ)pv − τ(γδ)pv]

T τ(γ)M0
v . . . 0

)
=
(
0 . . . [2pv − τ(δ)pv − τ(δ)pv]

T τ(γ)T τ(γ)M0
v . . . 0

)
=
(
0 . . . [2pu − τ(δ)pu − τ(δ)pu]

TM0
u . . . 0

)
= r,

where the second to last equality follows from the fact that τ(γ) is orthogonal. If

u ̸= v, then ψ′(e) = δγ−1 and, since p′v = τ(γ)pv

r′ =
(
0 . . . [pu − τ(δ)pv]

TM0
u . . . [τ(γ)pv − τ(γδ−1)pu]

T τ(γ)M0
v . . . 0

)
=
(
0 . . . [pu − τ(δ)pv]

TM0
u . . . [pv − τ(δ−1)pu]

T τ(γ)T τ(γ)M0
v . . . 0

)
=
(
0 . . . [pu − τ(δ)pv]

TM0
u . . . [pv − τ(δ−1)pu]

TM0
v . . . 0

)
= r.

Since the rank of O0(G,φ, ψ, p) and O0(G,φ
′, ψ′, p′) is independent of the choice of

bases for U(p(u)) and U(p′(u)) for all u ∈ V (G), the result follows.

Proposition 4.1.5. Let (G,φ, ψ, p) be a τ(Γ)-gain framework for some group Γ

and some injective homomorphism τ : Γ → O(Rd). Let e = (u, v) ∈ E(G) for
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some u, v ∈ V (G), and let g ∈ φ(u), h ∈ φ(v). Further, let ψ′ : V (G) → Γ be

obtained by applying a switching at e induced by g and h. Then, O0(G,φ, ψ, p) and

O0(G,φ, ψ
′, p) share the same rank.

Proof. For each w ∈ V (G), choose a basis B0
w for U(p(w)) and let M0

w be the matrix

whose columns are the coordinate vectors of B0
w relative to the canonical basis of

Rd. Use such bases to construct O0(G,φ, ψ, p) and O0(G,φ, ψ
′, p). Since g ∈ φ(u),

τ(g−1)pu = pu and so τ(g−1)q = q for all q ∈ U(p(u)). In particular, this implies

that τ(g)TM0
u =M0

u . Similarly, τ(h)M0
v =M0

v .

Let r and r′ be the rows which represent e in O0(G,φ, ψ, p) and O0(G,φ, ψ
′, p),

respectively. Since the rank of O0(G,φ, ψ, p) and O0(G,φ, ψ
′, p) is independent of

the bases chosen for U(p(w)) for all w ∈ V (G), it suffices to show that r = r′. If

u = v, since pu = τ(g)−1pu = τ(h)pu and τ(g), τ(h) are orthogonal, we have

r′ =
(
. . . [2pu − τ(gψ(e)h)pu − τ(gψ(e)h)−1pu]

TM0
u . . .

)
=
(
. . . [2pu − τ(ψ(e))pu]

T τ(g)TM0
u − [τ(ψ(e))−1pu]

T τ(h)M0
u . . .

)
=
(
. . . [2pu − τ(ψ(e))pu − τ(ψ(e))−1pu]

TM0
u . . .

)
= r.

Similarly, if u ̸= v, then we have

r′ =
(
. . . [pu − τ(gψ(e)h)pv]

TM0
u . . . [pv − τ(gψ(e)h)−1pu]

TM0
v . . .

)
=
(
. . . pTuM

0
u − [τ(ψ(e))pv]

T τ(g)TM0
u . . . [pv − τ(ψ(e))−1pu]

T τ(h)M0
v . . .

)
=
(
. . . pTuM

0
u − [τ(ψ(e))pv]

TM0
u . . . [pv − τ(ψ(e))−1pu]

TM0
v . . .

)
=
(
. . . [pu − τ(ψ(e))pv]

TM0
u . . . [pv − τ(ψ(e))−1pu]

TM0
v . . .

)
= r.

This concludes the proof.

Proposition 4.1.4 and 4.1.5 imply that, given a τ(Γ)-symmetric framework (G̃, p̃)

with two (equivalent) τ(Γ)-gain frameworks (G1, φ1, ψ1, p1) and (G2, φ2, ψ2, p2), the

orbit matrices O0(G1, φ1, ψ1, p1) and O0(G1, φ1, ψ1, p1) share the same dimension,

rank and nullity. Hence, we may define the following.
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Definition 4.1.6. Let (G̃, p̃) be a τ(Γ)-symmetric framework for some group Γ

and some injective homomorphism τ : Γ → O(Rd). Let (G,φ, ψ, p) be a τ(Γ)-gain

framework of (G̃, p̃). We say that (G,φ, ψ, p) is fully-symmetrically isostatic if (G̃, p̃)

is fully-symmetrically isostatic.

4.2 Group representation theory

In this section we give a review of basic representation theory. Unless stated

otherwise, all notions in this section can be found in any representation theory

book (see e.g. [21]). Throughout the section we use Gl(Cd) and Gl(d,C) to denote

the (isomorphic) general linear group of Cd and general linear group of degree d over

C, respectively.

Definition 4.2.1. Let d ≥ 1 and Γ be a finite group.

(i) A linear representation of Γ on Cd is a homomorphism ρ : Γ → Gl(Cd).

(ii) A matrix representation of Γ in C is a homomorphism ρ : Γ → Gl(d,C).

The degree (or dimension), denoted by dim ρ, of ρ is d.

Given a linear representation ρ of a group Γ on Cd and an ordered basis B for

Cd, the map ρB : Γ → Gl(d,C) defined by letting ρB(γ) = [ρ(γ)]B for all γ ∈ Γ is

a d-dimensional matrix representation of Γ. We call ρB the matrix representation

corresponding to ρ with respect to B. Conversely, if ρM is a d-dimensional matrix

representation of Γ, the map ρ : Γ → Gl(Cd) defined by letting ρ(γ)v = ρM(γ)v

for all γ ∈ Γ, v ∈ Cd, is a linear representation of Γ on Cd. We call ρ the

linear representation corresponding to ρM . Due to this bijective correspondence,

all notions defined in terms of linear representations may be defined in terms of

matrix representations, and vice versa (see, e.g., Definition 4.2.2). We therefore

sometimes refer to linear representations and/or matrix representations simply as

representations.
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Definition 4.2.2. Given an integer d ≥ 1 and a group Γ, let ρ1 : Γ → Gl(d,C) and

ρ2 : Γ → Gl(Cd) be a matrix and a linear representation of Γ, respectively.

(i) The character of ρ1 is the map χ1 : Γ → C defined by letting χ1(γ) = Tr(ρ1(γ))

for all γ ∈ Γ.

(ii) Given two bases B1,B2 for Cd, the characters of the matrix representations

corresponding to ρ2 with respect to B1 and B2 coincide. The character of ρ2

is the map χ2 : Γ → F defined by letting χ2(γ) = Tr(ρB(γ)) for all γ ∈ Γ,

where ρB is the matrix representation corresponding to ρ2 with respect to an

arbitrary basis B for V .

We will sometimes define certain notions only in terms of linear (or matrix)

representations. This idea may be used to extend all definitions to consider both

linear and matrix representations.

If A is an n×mmatrix and B is an p×q matrix, we use A⊗B to denote Kronecker

product of A and B, i.e. the np × mq matrix obtained from B by replacing its

(i, j)th entry aij with aijA. Given integers n,m ≥ 1 and a group Γ with two matrix

representations ρ1 : Γ → Gl(n,C) and ρ2 : Γ → Gl(m,C), the homomorphism

ρ1 ⊗ ρ2 : Γ → Gl(nm,C) defined by letting (ρ1 ⊗ ρ2)(γ) = ρ1(γ) ⊗ ρ2(γ) for all

γ ∈ Γ is a matrix representation of Γ. In the following definitions, we let δij be the

Kronecker delta symbol.

Definition 4.2.3 ([49], Definition 3.1). Let d ≥ 1 be an integer, Γ be a group and

G = (V,E) be a Γ-symmetric graph with respect to an action θ.

Let PV : Γ → Gl(|V |,C) be the permutation representation induced by the

action of Γ on V , i.e. the representation which maps an element γ ∈ Γ to the

matrix
[
δu,θ(γ)(v)

]
u,v

, where u, v are elements of V . Given a homomorphism τ : Γ →

O(Rd) ⊆ Gl(d,C), the external representation of Γ (with respect to G, θ and τ) is

the homomorphism τ ⊗ PV : Γ → Gl(d|V |,C).

The internal representation of Γ (with respect to G and θ) is the permutation

representation PE : Γ → Gl(|E|,C) induced by the action of Γ on E, i.e. the
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representation which maps an element γ ∈ Γ to the matrix
[
δe,θ(γ)(f)

]
e,f
, where e, f

are elements of E.

We will often drop the action θ when referring to internal and external

representations of a group Γ.

Example 4.2.4. Let Γ = {id, γ}, and τ : Γ → be the homomorphism which maps

γ to σ = diag(−1, 1), so that τ(Γ) = Cs is the group which describes the reflection

with reflection line x = 0. We let (G̃, p̃) be the Cs-symmetric framework given in

Figure 4.1, and we describe the internal representation of Γ with respect to G̃ and

τ . So, define an 8× 8 matrix A to be

A :=



0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



.

Then PV (G̃) : Γ → Gl(8,C) is the representation which maps id to I8 and γ to A.

(Here, the jth row/column of A corresponds to the vertex j.) Therefore, the external

representation of Γ with respect to G̃ and τ is defined by letting τ ⊗PV (G̃)(id) = I16,

and by letting τ ⊗PV (G̃)(γ) be the matrix obtained from A by replacing each 0 with

a 4× 4 zero matrix and each 1 with diag(−1, 1).
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Figure 4.1: Cs-symmetric framework.

Definition 4.2.5. Let Γ be a group of order k. The regular representation of Γ

is the map ρreg : Γ → GL(k,C) which maps γ ∈ Γ to the matrix [δg,γh]g,h, where

g, h ∈ Γ.

Most of the information about a group lies in its irreducible representations.

Loosely speaking, a group representation is irreducible if it cannot be decomposed

into representations of smaller dimension (in any non-trivial way). To formalise

this concept, the notions of equivalent representations and invariant subspaces are

required.

Definition 4.2.6. Let ρ1, ρ2 be linear representations of Γ on Cn,Cm, respectively.

We say ρ1 and ρ2 are equivalent if there is an isomorphism f : Cn → Cm such that,

for all γ ∈ Γ, f ◦ ρ1(γ) ◦ f−1 = ρ2(γ).

Definition 4.2.7. For a group Γ, let ρ be a linear representation of Γ on Cd. We

say a subspace U of Cd is ρ-invariant if, for all γ ∈ Γ, ρ(γ)(U) ⊆ U . The restriction

of ρ to U is a linear representation, and is called a subrepresentation of ρ. If the

only ρ-invariant subspaces of Cd are the trivial space {0} and Cd itself, then ρ is

said to be irreducible.

A matrix representation ρ of a group Γ is irreducible if the only matrix

representations ρ1, ρ2 of Γ in C such that ρ = ρ1 ⊕ ρ2 are the trivial representation

ρ0 : Γ → Gl(1,R) defined by letting ρ0(γ) = (1) for all γ ∈ Γ, and ρ itself.
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Example 4.2.8. A cyclic group Γ = ⟨γ⟩ of finite order k ≥ 1 has exactly k pairwise

non-equivalent irreducible representations ρ0, . . . , ρk−1 where, for 0 ≤ j ≤ k− 1, ρj :

Γ → Gl(1,C) is defined by letting ρj(γ) =
(
exp(2π

√
−1j/k)

)
(see also Appendix B).

Example 4.2.9. Let k ≥ 2 be an integer, and consider the group D2k. For all

1 ≤ j ≤ ⌊(k − 1)/2⌋, define a representation µj : D2k → Gl(2,C) by letting

µj(s) :=

0 1

1 0

 , µj(r) =

exp(2π
√
−1j
k

) 0

0 exp(−2π
√
−1j

k
)

 .

Each µj is an irreducible representation of D2k. Also, the following hold:

(i) If k is odd, D2k has 2 irreducible representations of order 1, the trivial

representation and ρ1 which maps s to (−1) and r to (1).

(ii) If k is even, D2k has 4 irreducible representations of order 1: the trivial

representation; the representation ρ1 which maps s to (1) and r to (−1); the

representation ρ2 which maps both s and r to (−1); and the representation ρ3

which maps s to (−1) and r to (1).

The group D2k has no other irreducible representation (see also Appendix B).

Theorem 4.2.10. (Maschke’s Theorem) Let Γ be a group and ρ be a linear

representation of Γ on Cd. Given a subrepresentation ρ1 of ρ, there is another

subrepresentation ρ2 of ρ such that ρ ≃ ρ1 ⊕ ρ2.

A direct consequence of Maschke’s Theorem is that, given a group Γ with irre-

ducible representations ρ1, . . . , ρr, any representation ρ is isomorphic to
⊕r

j=1 ajρj

for some a1, . . . , ar ∈ Z≥0. For 0 ≤ j ≤ k, aj is known as the multiplicity of ρj in ρ.

Theorem 4.2.11. Let Γ be a group and let ρ1 be a representation of Γ with

character χ1. Let ρ2 be an irreducible representation of Γ with character χ2. The

multiplicity of ρ2 in ρ1 is

⟨χ2, χ1⟩ =
1

|Γ|
∑
γ∈Γ

χ2(γ)χ1(γ).
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Corollary 4.2.12. Let Γ be a group with irreducible representations ρ1, . . . , ρr.

The regular representation of Γ can be written as ρreg =
⊕r

j=1(dim ρj)ρj.

Definition 4.2.13. Let Γ be a group, and ρ1, ρ2 be two matrix representations of

Γ of order n,m, respectively. A matrix M : Rn → Rm is called a Γ-linear map of ρ1

and ρ2 if Mρ1(γ) = ρ2(γ)M for all γ ∈ Γ. The set of all Γ-linear maps of ρ1 and ρ2

forms a linear space, which we denote HomΓ(ρ1, ρ2).

Lemma 4.2.14 (Schur’s Lemma). Let Γ be a group and ρ1, ρ2 be irreducible

representations of Γ. If there is a Γ-linear map M of ρ1 and ρ2, then either M = 0

or M is an invertible square matrix. If ρ1 = ρ2, any Γ-linear map of ρ1 and ρ2 is a

scalar multiple of the identity.

Often times, we will work with one-dimensional irreducible representations. Since

such representations are simply 1× 1 matrices, we sometimes treat them as scalars.

Remark 4.2.15. The theory of group representations is not restricted to considering

complex numbers. All notions that we defined in this section, can defined

analogously by substituting C with R (or any other field F). Therefore, research

in representation theory often distinguishes between representations over R, and

representations over C. Note, for instance, that internal and external representations

in Definition 4.2.3 can also be seen as representations over R, as can the trivial

representation of any group.

Clearly, each representation over R is also a representation over C, since R is a

subspace of C. Given a group Γ, the irreducible representations of Γ over R may

further decompose as representations over C. For instance, Z3 has two irreducible

representations over R: the trivial representation, and τ : Z3 → Gl(d,R) which maps

the non-identity element of Z3 to

−1/2 −
√
3/2

√
3/2 −1/2

. Through a complexification

of the Euclidean plane, one can see that τ = ρ1 ⊕ ρ2 (see, e.g., Section 4.4).

Therefore, working with representations over C gives us a further decomposition

of certain representations over R, and therefore allows us to study subspaces of Rd

(for arbitrary d ≥ 1) more in detail.
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In previous literature, rigidity theorists have used irreducible representations over

C to study symmetric frameworks in Euclidean space. Though this choice may seem

counter-intuitive at first sight, it is in fact advantageous: for all abelian groups,

all irreducible representations over C are one-dimensional. Since 1 × 1 matrices

can be treated as scalars (through a slight abuse of notation), the theory simplifies

significantly when considering irreducible representations over C.

Therefore, in this Thesis we follow the past literature, and we assume that each

representation is a representation over C.

4.3 Block-diagonalisation of the rigidity matrix

Let (G̃, p̃) be a τ(Γ)-generic framework for some finite group Γ and some injective

homomorphism τ : Γ → O(Rd). A result in [49, 51] allows us to add structure to

the rigidity matrix. We present it here as Theorem 4.3.1.

Theorem 4.3.1 ([49], Theorem 3.2). For a group Γ and an injective homomorphism

τ : Γ → O(Rd), let (G̃, p̃) be a τ(Γ)-symmetric framework. The rigidity matrix

R(G̃, p̃) is a Γ-linear map of τ ⊗ PV (G̃) and PE(G̃).

Let ρ1, . . . , ρr be the irreducible representations of Γ over C. By Maschke’s

Theorem and Schur’s Lemma, this implies that the rigidity matrix of (G̃, p̃) block-

decomposes with respect to suitable symmetry-adapted bases, which subdivide the

column space into the direct sum of the spaces V 1, . . . , V r, where each V j is the

(τ⊗PE(Ṽ ))-invariant subspace corresponding to an irreducible representation ρj of Γ.

Similarly, the row space can be written as the direct sum of the spaces W 1, . . . ,W r,

each W j being the PE(G̃)-invariant subspace corresponding to ρj (for details, see

[[49], Section 3.2] and [[51], Section 4.1.3]). Hence, we can write the rigidity matrix

in the form

R̃(G̃, p̃) =


R̃1(G̃, p̃) 0

. . .

0 R̃r(G̃, p̃)

,
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where each R̃j(G̃, p̃) is determined by the irreducible representation ρj. Since

the multiplicity of each irreducible representation in the internal and external

representation can be 0, we allow some blocks to have dimension 0. This

decomposition into subspaces also allows us to define the following.

Definition 4.3.2. With the notation above, fix some 1 ≤ j ≤ r. We say an

infinitesimal motion m̃ of (G̃, p̃) is symmetric with respect to ρj (or simply ρj-

symmetric) if it lies in V j. We say (G̃, p̃) is ρj-symmetrically infinitesimally rigid (or

simply ρj-rigid) if all of its ρj-symmetric infinitesimal motions are trivial. Otherwise,

we say (G̃, p̃) is ρj-symmetrically infinitesimally flexible (or simply ρj-flexible). It is

ρj-symmetrically isostatic (or simply ρj-isostatic) if it is ρj-rigid and removing any

bar would make it ρj-flexible.

Due to the block-diagonalisation of the rigidity matrix, the infinitesimal motions

of the framework (G̃, p̃) can be decomposed as a direct sum of its ρj-symmetric

infinitesimal motions. Hence, (G̃, p̃) is infinitesimally rigid if and only if it is ρj-

rigid for all 1 ≤ j ≤ r. Though the entries of each block R̃j(G̃, p̃) are tedious to

compute, its dimension and kernel (and therefore its rank) are understood. For the

case where τ(Γ) is abelian and it acts freely on the joints of (G̃, p̃), [56] constructed

phase-symmetric orbit matrices, generalisations of the orbit rigidity matrix: for all

1 ≤ j ≤ r, the ρj-orbit matrix is a matrix dependent on the τ(Γ)-gain framework

(G,φ, ψ, p) of (G̃, p̃) which shares the same dimension, rank and nullity as R̃j(G̃, p̃).

For cyclic groups and the dihedral group of order 4, we will generalise the notion

of phase-symmetric orbit matrices defined in [56] to the case where the symmetry

group need not act freely on the joints of the framework.

4.4 Dimensions of each block for cyclic groups

In order to construct phase-symmetric orbit rigidity matrices, it is crucial to

understand the dimensions and kernels of each block in the rigidity matrix. We

do so by considering the decomposition of the internal and external representations
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into irreducible representations. In this section we only consider finite cyclic groups.

Throughout the section, let k ≥ 2 be an integer and Γ = ⟨γ⟩ be a cyclic group of order

k and let ω = exp(2π
√
−1/k). We let τ : Γ → O(Rd) be an injective homomorphism

and (G̃, p̃) be a τ(Γ)-symmetric framework with τ(Γ)-gain framework (G,ψ, p).

Recall that the irreducible representations of Γ over C are ρ0, ρ1, . . . , ρk−1, where

each ρj maps γ to the 1 × 1 matrix (ωj). By Maschke’s Theorem, Theorem 4.2.11

and Corollary 4.2.12, τ ⊗ ρreg ≃
⊕k−1

j=0 dρj. By definition, PV (G̃) is the direct sum of

|V1(G)| copies of ρreg and |Vk(G)| copies of the trivial representation and so

τ ⊗ PV (G̃) ≃ |V1(G)|[τ ⊗ ρreg]⊕ |Vk(G)|τ ≃
k−1⊕
j=0

d|V1(G)|ρj ⊕ |Vk(G)|τ. (4.2)

So, for each free vertex v ∈ V1(G), every block R̃j(G̃, p̃) contains d columns. Where

the columns corresponding to the fixed vertices lie depends on the homomorphism

τ : Γ → O(Rd). For d = 2, we have the following result.

Proposition 4.4.1. Let Γ = ⟨γ⟩ be a cyclic group of finite order k and let (G̃, p̃)

be a τ(Γ)-symmetric framework for some injective homomorphism τ : Γ → O(R2).

Let (G,ψ) be the Γ-gain graph of G̃. The following statements hold:

(i) If τ(Γ) = Cs, R̃0(G̃, p̃) and R̃1(G̃, p̃) both have 2|V1(G)|+ |V2(G)| columns.

(ii) If τ(Γ) = C2, R̃0(G̃, p̃) has 2|V1(G)| columns and R̃1(G̃, p̃) has 2|V (G)| columns.

(iii) If τ(Γ) = Ck for some k ≥ 3, R̃1(G̃, p̃), R̃k−1(G̃, p̃) have 2|V1(G)| + |Vk(G)|

columns, and all the other blocks have 2|V (G)| columns.

Proof. First, let |Γ| = 2 (so, τ(Γ) is either Cs or C2), and recall that Γ has irreducible

representations ρ0, ρ1, where ρ0 is the identity representation, and ρ1 maps the

non-identity element γ of Γ to (−1). Let τref : Γ → O(R2) be the reflection

homomorphism that maps γ to diag(−1, 1) and let τrot : Γ → O(R2) be the two-

fold rotation homomorphism that maps γ to diag(−1,−1). It is easy to see that

τref = ρ0 ⊕ ρ1 and so

τref ⊗ PV (G̃) ≃
⊕
j=0,1

2|V1(G)|ρj ⊕ |V2(G)|τref ≃
⊕
j=0,1

(2|V1(G)|+ |V2(G)|)ρj.
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Similarly, we have τrot = ρ1 ⊕ ρ1. So

τrot ⊗ PV (G̃) ≃
⊕
j=0,1

2|V1(G)|ρj ⊕ |V2(G)|τrot ≃ (2|V1(G)|)ρ0 ⊕ (2|V (G)|)ρ1.

(i) and (ii) follow.

Now, let |Γ| = k ≥ 3, so that τ(Γ) = Ck. Let α = 2π/k. The standard k-fold

rotation homomorphism τ : Γ → O(R2) is given by

τ (γ) =

cos(α) − sin(α)

sin(α) cos(α)

 .

We apply a complexification of the Euclidean plane through a change of basis

from the canonical Euclidean basis B1 =
{
(1 0)T , (0 1)T

}
to the basis B2 ={

1/2
(
−1−

√
−1 1−

√
−1
)T
, 1/2

(
−1 +

√
−1 1 +

√
−1
)T}

, which has change of

basis matrix

M1→2 =
1

2

−1−
√
−1 −1 +

√
−1

1−
√
−1 1 +

√
−1

 .

Then, τ(γ)B2 is

M1→2τ(γ)B1M
−1
1→2 =

cos(α)−
√
−1 sin(α) 0

0 cos(α) +
√
−1 sin(α)

 =

ω 0

0 ω

 .

It follows that τ = ρ1 ⊕ ρk−1. Hence,

τ ⊗ PV (G̃) ≃
⊕k−1

j=0 2|V1(G)|ρj ⊕ |Vk(G)|(ρ1 ⊕ ρk−1).

and (iii) holds.

Equation (4.2) also gives us information on the ρj-symmetric infinitesimal

motions of (G̃, p̃) for all 0 ≤ j ≤ k − 1. For all such j, the d-dimensional space

J
(1)
j =




τ(id)

ρj(γ)τ(γ
j)

...

ρj(γ)
k−1

τ(γj(k−1))

x : x ∈ Cd


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is the τ⊗ρreg-invariant subspace of Cdk corresponding to ρj [56]. For all 0 ≤ j ≤ k−1,

define the subspace J
(k)
j of Cd by

J
(k)
j =

{
x ∈ Cd : x = ρj(δ)τ(δ)x for all δ ∈ Γ

}
.

Since Γ is abelian, for all g, h ∈ Γ, 0 ≤ j ≤ k − 1 and all x ∈ J
(k)
j we have

ρj(g)τ(g)(τ(h)x) = τ(h)(ρj(g)τ(g)x) = τ(h)x,

and so τ(h)x ∈ J
(k)
j . Therefore, for all 0 ≤ j ≤ k−1, J

(k)
j is the τ -invariant subspace

of Cd corresponding to ρj. It follows that Jmo
j := [

⊕
v∈V1(G) J

(1)
j ] ⊕ [

⊕
v∈Vk(G) J

(k)
j ]

is the τ ⊗ PV (G̃)-invariant subspace of Cdk|V1(G)|+d|Vk(G)| = Cd|V (G̃)| corresponding to

ρj. By Definition 4.3.2, for all 0 ≤ j ≤ k − 1, an infinitesimal motion m̃ of (G̃, p̃) is

ρj-symmetric if and only if it lies in Jmo
j .

By the definition of Jmo
j , an infinitesimal motion m̃ of (G̃, p̃) is ρj-symmetric if

and only if satisfies the equation

m̃(δv) = ρj(γ)τ(δ)m̃(v) (4.3)

for each 0 ≤ j ≤ k − 1, v ∈ V (G̃) and δ ∈ Γ. (See also [56] for the free action case.)

For each 0 ≤ j ≤ k − 1, we will use the notation Mj(G̃, p̃) to denote the space of

ρj-symmetric infinitesimal motions of (G̃, p̃). Notice that M0(G̃, p̃) coincides with

the space of fully-symmetric infinitesimal motions of (G̃, p̃).

Suppose k = 2, so that the irreducible representations of Γ are ρ0 and ρ1.

Then, the ρ1-symmetric infinitesimal motion vectors of (G̃, p̃) are reversed by the

non-trivial element of the group. Hence, we call the ρ1-symmetric infinitesimal

motions of (G̃, p̃) anti-symmetric. We say (G̃, p̃) is anti-symmetrically infinitesi-

mally rigid/infinitesimally flexible/isostatic if it is ρ1-symmetrically infinitesimally

rigid/infinitesimally flexible/isostatic.

Recall from Section 2.4 that E(G̃) = E1(G̃) ∪̇E2(G̃), and that the only elements

of Γ which can fix an edge are id and δ := γk/2. (Note, if k is odd then Γ acts freely

on E(G̃).) It was shown in [[56], Section 4.3] that for each edge orbit of G̃ of size

k/2, all the blocks R̃j(G̃, p̃) such that ρj(δ) = 1 have one row, and all the other
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blocks have no rows. It was also shown that each block R̃j(G̃, p̃) has a row for each

edge orbit of G̃ of size k. This argument does not use the fact that the action is free

on the vertex set. Since ρj(δ) = ρj(γ
k/2) = exp(2π

√
−1kj/(2k)) = exp(π

√
−1j), it

follows that ρj(δ) is (1) if and only if j is even. Hence, for all even j, R̃j(G̃, p̃) has

|E(G)| rows, and for all odd j, R̃j(G̃, p̃) has 1 row for each edge orbit of G̃ of size

k. Explicitly, we have

PE(G̃) =

[
k−1⊕
j=0

|E(G)|ρj

]
⊕

⌈ k−1
2

⌉⊕
j=0

|E1(G)|ρ2j

 .
In Figure 4.2 we show realisations of non-free edges in Cs-symmetric (a,b,c) and

C2-symmetric frameworks (d). Figures (a,b,d) show anti-symmetric infinitesimal

motions of such bars, whereas (c) shows a fully-symmetric infinitesimal motion. For

any anti-symmetric velocity assignment m̃ to the vertices, the equation

(m̃(v)− m̃(u)) · (p̃(v)− p̃(u)) = 0

always holds. Hence, the edge e constitutes no constraint for anti-symmetric

infinitesimal rigidity. This is not the case for a fully-symmetric velocity assignment.

(Note that in (c) the equation only holds because the velocities are parallel to the

mirror line.) The edge in (d) can also be seen as a subgraph of a Ck-symmetric

framework (G̃, p̃), where k ≥ 4 is even. Given an odd j with 2 ≤ j ≤ k − 2, (d)

shows a ρj-symmetric infinitesimal motion of (G̃, p̃), restricted to that edge.

u

v

(a)

u
v

(b)

u v

(c)

u

v

(0, 0)

(d)

Figure 4.2: (a,b) Fixed bars of Cs-symmetric frameworks with anti-symmetric

infinitesimal motions. (c) Fixed bar of a Cs-symmetric framework with a fully-

symmetric infinitesimal motion. (d) Fixed bar of a C2-symmetric framework and an

anti-symmetric infinitesimal motion of (G̃, p̃) applied to the bar.
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4.5 Phase-symmetric orbit rigidity matrices for

cyclic groups

Let Γ = ⟨γ⟩ be a cyclic group of finite order k and, for all 0 ≤ j ≤ k − 1, let

ρj be the irreducible representation of Γ which maps γ to the 1 × 1 matrix (ωj).

Let τ : Γ → O(Rd) be an injective homomorphism and (G̃, p̃) be a τ(Γ)-symmetric

framework with τ(Γ)-gain framework (G,ψ, p). Write R(G̃, p̃) as

R(G̃, p̃) =


R̃0(G̃, p̃)

. . .

R̃k−1(G̃, p̃)


For each 0 ≤ j ≤ k−1 we construct a matrix whose dimension coincides with the

dimension of Rj(G̃, p̃), and whose kernel is isomorphic to the space of ρj-symmetric

infinitesimal motions of (G̃, p̃).

For a cyclic group Γ of finite order and an injective homomorphism τ : Γ → Rd,

let (G̃, p̃) be a τ(Γ)-symmetric framework with τ(Γ)-gain framework (G,ψ, p). In

[[56], Section 4.1.2], phase-symmetric orbit matrices were defined for the special case

where V (G) = V1(G). We model our definition of ρj-orbit matrices based on this

definition. For v ∈ V (G) with representative v⋆ ∈ V (G̃), we let Mj(p(v)) denote

the space {m̃(v⋆) : m̃ ∈ Mj(G̃, p̃)} and we let cjv denote the dimension of Mj(p(v)).

Definition 4.5.1. With the same notation as above, fix some 0 ≤ j ≤ k − 1. For

all v ∈ V (G), choose a basis Bjv for Mj(p(v)) and let M j
v be the matrix whose

columns are the coordinate vectors of Bjv relative to the canonical basis of Rd. The

ρj-orbit rigidity matrix Oj(G,ψ, p) of (G,ψ, p) is a matrix with cjv columns for each

v ∈ V (G). If j is even Oj(G,ψ, p) has |E(G)| rows. Otherwise, it has |E1(G)| rows.

Given an edge e = (u, v) ∈ E(G), the row representing e in Oj(G,ψ, p) is

u v(
. . . (pu − τ(ψ(e))pv)

T M j
u . . . ρj(ψ(e))(pv − τ(ψ−1(e))pu)

TM j
v . . .

)
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if u ̸= v, and it is

u(
. . . (pu + ρj(ψ(e))pu − τ(ψ(e))pu − ρj(ψ(e))τ(ψ

−1(e))pu)
T

. . .
)
.

otherwise. If cju = 0 (respectively, cjv = 0), then the columns corresponding to u

(respectively, v) vanish.

Example 4.5.2. Let (G,ψ, p) be a Cs-gain framework. Suppose that (G,ψ) is

a single loop e at a vertex v. By the definition of gain graph, ψ(e) is not the

identity. Therefore, τ(ψ(e)) = diag(−1, 1). It follows that O0(G,ψ, p) =
(
4x 0

)
and O1(G,ψ, p) is the empty matrix, where x denote the x-coordinate of p(v).

For all 0 ≤ j ≤ k − 1, dimOj(G,ψ, p) = dim R̃j(G̃, p̃), as Oj(G,ψ, p) contains

exactly cjv columns for each vertex v ∈ V (G), exactly one column for each e ∈ E(G)

if j is even and exactly one column for each e ∈ E1(G) if j is odd.

For all 0 ≤ j ≤ k − 1 the rank of Oj(G,ψ, p) is independent of the choice of the

bases Bjv for v ∈ V (G). If v ∈ V1(G), Bjv can be chosen to be the identity matrix.

Hence, if V (G) = V1(G), then Definition 4.5.1 coincides with the definition of the

phase-symmetric orbit matrix Oj(G,ψ, p) given in [56], for all 0 ≤ j ≤ k − 1. In

the same paper, it was shown that kerOj(G,ψ, p) ≃ Mj(G̃, p̃) for all such j (with

V (G) = V1(G)).

Note that for all v ∈ V (G), an element x ∈ Rd lies in U(p(v)) if and only if

τ(γ)x = x for all τ(γ) ∈ τ(Γ) such that τ(γ)p(v) = p(v). By injectivity of p, this

is equivalent to saying that x ∈ U(p(v)) if and only if τ(γ)x = x for all γ ∈ Γ

such that γ ∈ φ(v). Therefore, by Equation (4.3), the spaces U(p(v)) and M0(p(v))

coincide. Hence, when j = 0, Definition 4.5.1 coincides with the definition of the

orbit matrix given in [61] (see Definition 4.1.2). Since M0(G̃, p̃) coincides with the

space of fully-symmetric infinitesimal motions of (G̃, p̃), Theorem 4.1.3 implies that

kerO0(G,ψ, p) and M0(G̃, p̃) are isomorphic. We now extend the results in [56] and

[61] to the case where V (G) need not be V1(G) and j need not be 0.

For the rest of the section, we make the following assumptions: we let Γ denote a

cyclic group of finite order k ≥ 2 with irreducible representations ρ0, ρ1, . . . , ρk−1; we
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let τ : Γ → O(R2) be an injective homomorphism, and (G̃, p̃) be a τ(Γ)-symmetric

framework with τ(Γ)-gain framework (G,ψ, p).

Let O denote the set of vertex orbit representatives of G̃. Define the subset

O′ ⊆ Vk(G̃) to be Vk(G̃) if τ(Γ) = Ck and 0 ≤ j ≤ k − 2, j ̸= 1, and ∅ otherwise.

For some fixed u⋆ ∈ O and some free v⋆ ∈ O, let u⋆v⋆ ∈ E(G̃). For each γ ∈ Γ, let

(G,ψγ, p) be a Γ-gain framework of (G̃, p̃) such that the edge e = (u, v) has gain γ

under ψγ.

Lemma 4.5.3. Let γ ∈ Γ. A vector m lies in kerOj(G,ψγ, p) if and only if m̃′ :

O \ O′ → R2 defined by m̃′(w⋆) = M j
wm(w) is the restriction of a ρj-symmetric

infinitesimal motion m̃ of (G̃, p̃) to O \ O′.

Proof. Let m̃ : V (G̃) → C2 be defined by

m̃(δw⋆) =

ρj(δ)τ(δ)m̃
′(w⋆) for all w⋆ ∈ O \ O′, δ ∈ Γ

(0 0)T for all w⋆ ∈ O′, δ ∈ Γ.

Clearly, m̃′ is a restriction of m̃ to O \ O′. Moreover, it is easy to see that m̃ is

a ρj-symmetric infinitesimal motion of (G̃, p̃) if and only if it is an infinitesimal

infinitesimal motion of (G̃, p̃), by Equation (4.3).

View m as a column vector. For each row r in Oj(G,ψγ, p) that represents

an edge e = (u1, u2) ∈ E(G), we check that rm is zero if and only if m̃ satisfies

the conditions of being an infinitesimal motion of the framework on the subgraph

induced by the elements of the orbit e. Let u⋆1, u
⋆
2 be the vertex orbit representatives

of u1, u2, respectively.

If u1, u2 ∈ V1(G), this has been shown in [[56], Section 4.1.2]. If u1, u2 ∈ Vk(G),

then τ(Γ) = Cs, since τ(Γ) = Ck implies |Vk(G)| ≤ 1 by definition of a framework.

Since R̃1(G̃, p̃) has no row corresponding to u⋆1u
⋆
2, we need only consider the case

where j = 0. However, since O0(G,ψ, p) is the orbit rigidity matrix, this case was

already proven in [61]. Hence, we may assume that u1 ∈ Vk(G), u2 ∈ V1(G). Without

loss of generality, we consider the edge e = (u, v), where u⋆, v⋆ are as defined in the
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statement. Note that the orbit of e is {u⋆v⋆δ : δ ∈ Γ, v⋆δ = δv⋆}. Let r be the row of

e in Oj(G,ψγ, p).

The map m̃ satisfies the conditions of being an infinitesimal motion of the

framework on the subgraph induced by the elements of the orbit e if and only

if, for all δ ∈ Γ

⟨p̃(u⋆)− p̃(δv⋆), m̃(u⋆)− m̃(δv⋆)⟩ = 0.

Since δ runs through all the elements of Γ, so does δγ. Hence, this is equivalent to

saying that, for all δ ∈ Γ,

⟨p̃(u⋆)− p̃(δγv⋆), m̃(u⋆)− m̃(δγv⋆)⟩ = 0.

Since u is fixed, m̃(u⋆) = m̃(δu⋆) and so, by the definitions of m̃ and a τ(Γ)-

symmetric framework, this is equivalent to saying that for all δ ∈ Γ〈
pu − τ(δγ)pv, ρj(δ)τ(δ)M

j
um(u)− ρj(δγ)τ(δγ)m(v)

〉
= 0.

(If M j
u has dimension 0, we ignore terms involving M j

u.) This is equivalent to saying

that for all δ ∈ Γ

ρj(δ)
(〈
pu − τ(δγ)pv, τ(δ)M

j
um(u)

〉
+
〈
τ(δγ)pv − pu, ρj(γ)τ(δγ)m(v)

〉)
= 0.

Notice that, since u is fixed, pu = τ(δ)pu for all δ ∈ Γ. Hence, since each τ(δ) is an

orthogonal matrix, we may remove the τ(δ)’s from the inner products, and multiply

each equation by ρj(δ), to see that this set of equations holds if and only if〈
pu − τ(γ)pv,M

j
um(u)

〉
+
〈
τ(γ)pv − pu, ρj(γ)τ(γ)m(v)

〉
= 0.

Similarly, since u is fixed, pu = τ(γ)pu, and so we may remove τ(γ) from the second

inner product, and move the factor of ρj(γ) in the second inner product to the left,

to obtain the equivalent equation〈
pu − τ(γ)pv,M

j
um(u)

〉
+ ⟨ρj(γ),m(v)⟩ = 0.

Again, since u is fixed, pu = τ(γ−1)pu, and hence the above equation is equivalent

to

[pu − τ(γ)pv]
TM j

um(u) + ρj(γ)[pv − τ(γ−1)pu]
Tm(v) = 0,
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i.e. rm = 0, as required.

Lemma 4.5.3 also shows that the nullity of Oj(G,ψ, p) is independent of type

II switchings. By the Rank-nullity Theorem, so is the rank of Oj(G,ψ, p) (see

Corollary 4.5.4).

Corollary 4.5.4. For some u ∈ Vk(G) and some v ∈ V1(G), let e = (u, v) ∈ E(G).

For all γ ∈ Γ, let (G,ψγ, p) be a Γ-gain framework of (G̃, p̃) with ψγ(e) = γ. For all

0 ≤ j ≤ k − 1, γ ∈ Γ, rankOj(G,ψγ, p) = rank R̃j(G̃, p̃).

The rank (and hence nullity) of Oj(G,ψ, p) is also independent of type I

switchings for all 0 ≤ j ≤ k − 1 (see Proposition 4.5.5).

Proposition 4.5.5. Take an element γ ∈ Γ and let ψ′ be obtained from ψ by

applying a switching at a vertex v with γ. Let p′ : V (G) → R2 be defined by

p′v = τ(γ)pv and p
′
u = pu for all u ̸= v in V (G). Then for all 0 ≤ j ≤ k − 1,

rank Oj(G,ψ, p) = rank Oj(G,ψ
′, p′).

Proof. For each u ∈ V (G), choose a basis Bju for Mj(p(u)) and letM j
u be the matrix

whose columns are the coordinate vectors of Bju with respect to the canonical basis

of R2. Notice that for each u ̸= v, we may choose the same basis Bju for Mj(p
′(u)),

and hence the same M j
u. Moreover, we may choose a basis B′

v for Mj(p
′(v)) such

that τ(γ)M j
v is the matrix whose columns are the coordinate vectors for B′

v relative

to the canonical basis of R2. We choose such bases to construct Oj(G,ψ, p) and

Oj(G,ψ
′, p′).

Clearly, any edge non-incident with v has the same row in Oj(G,ψ, p) as in

Oj(G,ψ
′, p′). Let e := (u, v) ∈ E(G) with ψ(e) = δ for some δ ∈ Γ and, for

0 ≤ j ≤ k − 1, let rj be the row representing e in Oj(G,ψ
′, p′). Notice that

ψ′(e) = ψ(e)γ−1 = δγ−1. Therefore,

τ(ψ′(e))p′v = τ(δγ−1)τ(γ)pv = τ(δ)pv,
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and so, if u ̸= v,

rj =
(
. . . (pu − τ(δ)pv)

TM j
u . . . ρj(δγ

−1)[τ(γ)pv − τ((δγ−1)−1)pu)]
T . . .

)
=
(
. . . (pu − τ(δ)pv)

TM j
u . . . ρj(γ

−1)ρj(δ)[τ(γ)(pv − τ(δ−1)pu)]
T . . .

)
.

(If cju = 0, then there are no columns representing u.) If u = v, then ψ′(δ) = ψ(δ),

and so

rj =
(
. . . [τ(γ)pv − τ(δγ)pv + ρj(δ)τ(γ)pv − ρj(δ)τ(δ

−1γ)pv]
T . . .

)
=
(
. . . [pv − τ(δ)pv + ρj(δ)pv − ρj(δ)τ(δ

−1)pv]
T τ(γ)T . . .

)
Multiply each row representing a loop at v by the scalar ρj(γ

−1). Let s be the number

of columns of Oj(G,ψ, p), and t, t+ 1 be the columns representing v in Oj(G,ψ, p).

Define A to be the square matrix of dimension s such that the 2× 2 submatrix with

entries At,t, At,t+1, At+1,t, At+1,t+1 is ρj(γ)τ(γ), all other diagonal entries of A are 1,

and all other entries 0. Then, Oj(G,ψ
′, p′)A = Oj(G,ψ, p). Since A is an orthogonal

matrix, this implies that rank Oj(G,ψ, p) = rank Oj(G,ψ
′, p′), as required.

Hence, given a τ(Γ)-symmetric framework (G̃, p̃) with two (equivalent) τ(Γ)-gain

frameworks (G1, ψ1, p1) and (G2, ψ2, p2), Oj(G1, ψ1, p1) and Oj(G1, ψ1, p1) share the

same rank, dimension and nullity. Therefore, we may define the following.

Definition 4.5.6. We say that (G,ψ, p) is ρj-symmetrically isostatic (or simply

ρj-isostatic) if (G̃, p̃) is ρj-isostatic.

Though the rank, nullity and dimension of Oj(G,ψ, p) are independent of the

choice of bases Bjv for a vertex v ∈ V (G), it is useful to set the matrices M j
v which

will be used throughout the thesis. For any free vertex v ∈ V1(G), we may always

choose M j
v to be the identity matrix. We conclude the section by studying the

infinitesimal motions and phase-symmetric rigidity matrices for the specific cases

where the symmetry groups are Cs, C2 and Ck for k ≥ 3, and hence setting the

matrices M j
v which will be used throughout the rest of the thesis. For all such

groups, we also investigate the trivial infinitesimal motions of frameworks which

manifest the symmetry, in order to understand which blocks of the rigidity matrix

they correspond to.
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4.5.1 Reflection group

Let Γ = {id, γ} be a cyclic group of order 2. Let τ : Γ → O(R2) be

the injective homomorphism which maps γ to diag(−1, 1), and consider a τ(Γ)-

symmetric framework (G̃, p̃) with τ(Γ)-gain framework (G,ψ, p). Recall that Γ has

two irreducible representations: the trivial representation ρ0 and the representation

ρ1 which maps γ to (−1). Fix some j = 0, 1 and let m̃ be a ρj-symmetric infinitesimal

motion of (G̃, p̃). For all v ∈ V (G̃), we have

m̃(γv) = (−1)jdiag(−1, 1)m̃(v).

In particular, if v ∈ V2(G̃), then γv = v, and so m̃(v) = (−1)jdiag(−1, 1)m̃(v).

If j = 0, m̃(v) = diag(−1, 1)m̃(v) and so m̃(v) has the form (0 x)T for some

x ∈ R. (Recall also Subsection 2.4.1.) If j = 1, then m̃ has the form (x 0)T

for some x ∈ R. As we would expect, the fully-symmetric infinitesimal motions of

(G̃, p̃) assign velocity vectors on the symmetry line to all joints on the symmetry

line (see Figure 4.3(a)), whereas the anti-symmetric infinitesimal motions of (G̃, p̃)

assign vectors normal to the symmetry line to all joints on the symmetry line (see

Figure 4.3(b)).

u

(a)

u

(b)

Figure 4.3: Cs-symmetric framework consisting of a single fixed joint. (a) shows

a fully-symmetric infinitesimal motion of the framework and (b) shows an anti-

symmetric infinitesimal motion of the framework.

Hence, given a fixed vertex v ∈ V2(G), M
0
v can be chosen to be (0 1)T and M1

v

can be chosen to be (1 0)T . Throughout the rest of the thesis, we will assume that

M0
v = (0 1)T and M1

v = (1 0)T for all v ∈ V2(G). Take an edge e = (u, v) ∈ E(G)
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4.5. Phase-symmetric orbit rigidity matrices for cyclic groups

such that u ∈ V2(G). Let p(u) = (0 yu)
T and p(v) = (xv yv)

T . Since u is fixed, we

may choose the label of e to be id (whether v is fixed or free). Then, the ρ0-orbit

rigidity matrix of (G̃, p̃) has row

u v(
. . . yu − yv . . . xv yv − yu

)
,

where the column corresponding to v with entry xv disappears if v ∈ V2(G). If e

also has a column in O1(G,ψ, p), then v ∈ V1(G) and the row representing e in

O1(G,ψ, p) is

u v(
. . . −xv . . . xv yv − yu

)
.

Using Equation (4.3), it is easy to see that the infinitesimal translation mt1 :

V (G̃) → R2 given by mt1(v) = (1 0)T for all v ∈ V (G̃) is anti-symmetric, whereas

the infinitesimal translation mt2 : V (G̃) → R2 given by mt2(v) = (0 1)T for all

v ∈ V (G̃) is fully-symmetric. The infinitesimal rotation mr : V (G̃) → R2 given by

m̃(v) = (−y x)T for all v ∈ V (G̃) with p̃(v) = (x y)T is anti-symmetric. Hence,

we have the following (see also Figure 4.4).

Figure 4.4: Trivial infinitesimal motions of a Cs-symmetric framework (G̃, p̃). From

left to right (G̃, p̃) is rotated, translated in the direction of the symmetry line

and translated in the direction perpendicular to the symmetry line. The second

infinitesimal motion maintains symmetry, the other two break the symmetry.

Lemma 4.5.7. For any Cs-symmetric framework (G̃, p̃) with Cs-gain framework

(G,ψ, p), if p̃(V (G̃)) spans R2, then the following hold:

(i) nullO0(G,ψ, p) ≥ 1 with equality if and only if (G̃, p̃) is fully-symmetrically

infinitesimally rigid.
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(ii) nullO1(G,ψ, p) ≥ 2 with equality if and only if (G̃, p̃) is anti-symmetrically

infinitesimally rigid.

4.5.2 2-fold rotation group

Again, let Γ = {id, γ} be a cyclic group of order 2. Let τ : Γ → O(R2) be the injective

homomorphism which maps γ to −I2, and consider a τ(Γ)-symmetric framework

(G̃, p̃) with τ(Γ)-gain framework (G,ψ, p). Fix some j = 0, 1 and let m̃ be a ρj-

symmetric infinitesimal motion of (G̃, p̃). For all v ∈ V (G), we have

m̃(γv) = (−1)j(−I2)m̃(v) = (−1)j+1m̃(v).

In particular, if v ∈ V2(G), then γv = v, and so m̃(v) = (−1)j+1m̃(v). This is always

true if j = 1, whereas, when j = 0, it is only true if m̃ is the zero vector. (Recall also

Subsection 2.4.2) Hence, any non-zero infinitesimal motion of a joint at the origin is

anti-symmetric. Therefore, given a fixed vertex v ∈ V2(G), M
0
v is the empty matrix

and M1
v can be chosen to be I2. Throughout the rest of the thesis, we let M1

v = I2

for all v ∈ V (G). Take an edge e = (u, v) ∈ E(G) such that u ∈ V2(G), and notice

that v ∈ V1(G), since |V2(G)| ≤ 1. Let p(v) = (x y)T . Since u is fixed, we may

choose the label of e to be id. Then, the row corresponding to e in the ρ0-orbit

rigidity matrix of (G̃, p̃) is

v(
. . . x y . . .

)
,

whereas the row corresponding to e in the ρ1-orbit rigidity matrix of (G̃, p̃) is

u v(
. . . −x −y . . . x y . . .

)
.

The infinitesimal translations mt1 : V (G) → R2 and mt2 : V (G) → R2 given by

mt1(v) = (1 0)T and mt2(v) = (0 1)T for all v ∈ V (G), are both anti-symmetric.

The infinitesimal rotation mr : V (G) → R2 given by mr(v) = (−y x)T for all

v ∈ V (G̃) with p̃(v) = (x y)T is fully-symmetric. Therefore, we have the following

(see also Figure 4.5).
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Figure 4.5: Trivial infinitesimal motions of a C2-symmetric framework (G̃, p̃). From

left to right (G̃, p̃) is rotated around the origin, translated in the direction of the

x-axis and translated in the direction of the y-axis. The first infinitesimal motion

maintains symmetry, the other two break the symmetry.

Lemma 4.5.8. For any C2-symmetric framework (G̃, p̃) with C2-gain framework

(G,ψ, p), if p̃(V (G̃)) spans R2, then the following hold:

(i) nullO0(G,ψ, p) ≥ 1 with equality if and only if (G̃, p̃) is fully-symmetrically

infinitesimally rigid.

(ii) nullO1(G,ψ, p) ≥ 2 with equality if and only if (G̃, p̃) is anti-symmetrically

infinitesimally rigid.

4.5.3 Rotation group of order 3 or higher

Now, let Γ = ⟨γ⟩ be a cyclic group of finite order k ≥ 3. Let α = 2π/k, ω =

2π
√
−1/k and let τ : Γ → O(R2) be the injective homomorphism which maps γ to

the matrix

Rα =

cosα − sinα

sinα cosα

 .

Consider a τ(Γ)-symmetric framework (G̃, p̃) with τ(Γ)-gain framework (G,ψ, p).

Let ρ0, ρ1, . . . , ρk−1 denote the irreducible representations of Γ as defined in

Example 4.2.8. Fix j = 1, k − 1 and let m̃ be a ρj-symmetric infinitesimal motion

of (G̃, p̃). If there is a fixed vertex v ∈ Vk(G), then for all 0 ≤ t ≤ k − 1 we have

m̃(v) = ωjtRt
αm̃(v) (4.4)
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Let m̃(v) = (m1 m2)
T . Equation (4.4) gives the system of two equationsm1 = ωjt [cos(αt)m1 − sin(αt)m2]

m2 = ωjt [sin(αt)m1 + cos(αt)m2]

Noticing that ωt = cos(αt)−
√
−1 sin(αt) and ω(k−1)t = ωt = cos(αt)+

√
−1 sin(αt),

and using the identity sin2(α) + cos2(α) = 1, these equations can be rearranged in

the following way:m1

[
− sin2(α)∓

√
−1 sin(αt) cos(αt)

]
= m2

[
sin(αt) cos(αt)∓

√
−1 sin2(αt)

]
m2

[
sin2(α)±

√
−1 sin(α) cos(α)

]
= m1

[
sin(α) cos(α)∓

√
−1 sin2(α)

]
(Here, ±,∓ depend on j: if j = 1, we take + from ± and − from ∓; if j = k − 1,

we take − from ± and + from ∓.) Taking out a factor of −
√
−1 on the left side

of both equations, and dividing both sides of both equations by sin(α)[cos(α) ∓
√
−1 sin(α)] we obtain m2 = ∓

√
−1m1. Hence, M

1
v can be chosen to be the matrix

(1 −
√
−1)T and Mk−1

v can be chosen to be the matrix (1
√
−1)T . Throughout

the rest of the thesis we let M1
v = (1 −

√
−1)T and Mk−1

v = (1
√
−1)T if there is

a vertex v ∈ Vk(G). Since
{
(1 −

√
−1)T , (1

√
−1)T

}
forms a basis for R2 (under

a complexification of the Euclidean space), it follows that M j
v is the empty matrix

for all j ∈ {0, 2, 3, . . . , k − 2} and v ∈ Vk(G). Let e = (u, v) ∈ E(G) for some

u ∈ Vk(G), v ∈ V1(G), and let p(v) = (x y)T . Since u is fixed, we may assume that

ψ(e) = id. The row representing e in O1(G,ψ, p) is

u v(
. . . −x+

√
−1y . . . x y . . .

)
,

whereas the row representing e in Ok−1(G,ψ, p) is

u v(
. . . −x−

√
−1y . . . x y . . .

)
.

For j ∈ {0, 2, . . . , k − 2}, the row representing e in Oj(G,ψ, p) is obtained from the

row representing e in O1(G,ψ, p) (equivalently, in Ok−1(G,ψ, p)) by removing the

column corresponding to u.
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Using Equation (4.3), it is easy to see that the infinitesimal translations mt1 :

V (G) → R2 given by mt1(v) = (1 −
√
−1)T for all v ∈ V (G̃) is ρ1-symmetric,

whereas the infinitesimal translationmt2 : V (G) → R2 given bymt2(v) = (1
√
−1)T

for all v ∈ V (G̃) is ρk−1-symmetric. The infinitesimal rotation mr : V (G) → R2

given by mr(v) = (−y x)T for all v ∈ V (G̃) with p̃(v) = (x y)T is fully-symmetric.

Therefore, we have the following (see also Figure 4.6).

Figure 4.6: Trivial infinitesimal motions of a C4-symmetric framework (G̃, p̃). From

left to right (G̃, p̃) is rotated around the origin, translated in the direction of the

x-axis and translated in the direction of the y-axis. The first infinitesimal motion

maintains symmetry, the other two break the symmetry.

Lemma 4.5.9. Let k ≥ 3 be an integer. For any Ck-symmetric framework (G̃, p̃)

with Ck-gain framework (G,ψ, p), if p̃(V (G̃)) spans R2, then the following hold:

(i) For j = 0, 1, k − 1, nullOj(G,ψ, p) ≥ 1 with equality if and only if (G̃, p̃) is

ρj-rigid.

(ii) If k ≥ 4, 2 ≤ j ≤ k − 2, (G̃, p̃) is ρj-rigid if and only if nullOj(G,ψ, p) = 0.

4.6 The dihedral group of order 4

The blocks of the rigidity matrices are easier to understand for cyclic groups simply

because all irreducible representations of cyclic groups over the complex numbers

are 1-dimensional. In fact, the arguments in Sections 4.4 and 4.5 can be generalised

to all abelian groups, as the irreducible representations of abelian groups are all

103



Chapter 4. Orbit rigidity matrices

1-dimensional. This was done in [56] for the case where the symmetry group acts

freely on the joints of the framework. Since the only non-cyclic abelian point group

in R2 is C2v, we only consider C2v-symmetric frameworks in this section. For such

frameworks, we extend the arguments in Sections 4.4 and 4.5, and define phase-

symmetric orbit rigidity matrices. So, let D4 = {id, s, r, sr}. D4 has four pair-wise

non equivalent irreducible representations ρ0, ρ1, ρ2, ρ3 over C, defined as follows: ρ0

is the trivial representation; ρ1 maps id, s to (1) and r, sr to (−1); ρ2 maps id, sr to

(1) and s, r to (−1); ρ3 maps id, r to (1) and s, sr to (−1).

Let τ : D4 → O(R2) be the injective homomorphism which maps s to diag(−1, 1)

and r to −I2, so that τ(D4) = C2v. Use τ to define a C2v-symmetric framework (G̃, p̃)

with C2v-gain framework (G,φ, ψ, p). By Theorem 4.3.1, R(G̃, p̃) may be written as
R̃0(G̃, p̃) 0 0 0

0 R̃1(G̃, p̃) 0 0

0 0 R̃2(G̃, p̃) 0

0 0 0 R̃3(G̃, p̃)


where each matrix R̃j(G̃, p̃) corresponds to an irreducible representation ρj of D4.

Definition 4.6.1. Define τs : D4 → O(R2) to be the homomorphism which maps s

to I2 and r to

0 1

1 0

. Define τsr : D4 → O(R2) to be the homomorphism which

maps s and r to

0 1

1 0

.

Let Vs := {v ∈ V2(G) : φ(v) = {id, s}} and Vsr := {v ∈ V2(G) : φ(v) = {id, sr}}.

(So Vs = Vs(G − V4(G)) and Vsr = Vsr(G − V4(G)), where Vs(G) and Vsr(G) are

as given in Subsection 3.3.3.) Then PV (G̃) is the direct sum of |V1(G)| copies of

ρreg, of |Vs| copies of τs, of |Vsr| copies of τsr, and of |V4(G)| copies of the trivial

representation. Hence,

τ ⊗ PV (G̃) ≃ |V1(G)| [τ ⊗ ρreg]⊕ |Vs| [τ ⊗ τs]⊕ |Vsr| [τ ⊗ τsr]⊕ |V4(G)|τ.
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Recall that τ ⊗ ρreg ≃
⊕3

j=0 2ρj and notice that τ ≃ ρ2 ⊕ ρ1. We apply a change

of basis of R2 from B1 =
{
(1 0)T , (0 1)T

}
to B2 =

{
1/
√
2(−1 1)T , 1/

√
2(1 1)T

}
with the change of basis matrix

M1→2 =
1

2

−1 1

1 1

 ,

so that 0 1

1 0


B2

=M1→2

0 1

1 0

M−1
1→2 =

−1 0

0 1

 .

Hence, τs ≃ ρ1 ⊕ ρ0 and τsr ≃ ρ2 ⊕ ρ0. Since ρ0, ρ1, ρ2, ρ3 are 1-dimensional, they

can be treated as scalars and so

τ ⊗ τs ≃ (ρ2 ⊕ ρ1)⊗ (ρ1 ⊕ ρ0) = ρ2ρ1 ⊕ ρ1ρ1 ⊕ ρ2ρ0 ⊕ ρ1ρ0 = ρ3 ⊕ ρ0 ⊕ ρ2 ⊕ ρ1

and

τ ⊗ τsr ≃ (ρ2 ⊕ ρ1)⊗ (ρ2 ⊕ ρ0) = ρ2ρ2 ⊕ ρ1ρ2 ⊕ ρ2ρ0 ⊕ ρ1ρ0 = ρ0 ⊕ ρ3 ⊕ ρ2 ⊕ ρ1.

Therefore

τ ⊗ PV (G̃) ≃

[
3⊕
j=0

2|V1(G)|ρj

]
⊕

[
3⊕
j=0

|Vs|ρj

]
⊕

[
3⊕
j=0

|Vsr|ρj

]
⊕ |V4(G)|[ρ2 ⊕ ρ1]

≃

[
3⊕
j=0

2|V1(G)|+ |V2(G)|

]
⊕ |V4(G)|[ρ1 ⊕ ρ2]

It follows that each block of the rigidity matrix has two columns corresponding to

each free vertex of G and 1 column for each semi-free vertex of G and that, if G

has a fixed vertex v, then the columns corresponding to v split evenly between the

block R̃1(G̃, p̃) and R̃2(G̃, p̃). For all 0 ≤ j ≤ 3, the subspace

J
(1)
j =




τ(id)

ρj(s)τ(s)

ρj(r)τ(r)

ρj(sr)τ(sr)

x : x ∈ C2


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is the τ ⊗ ρreg-invariant subspace of C8 corresponding to ρj [56]. Moreover, in the

same way as we did in Section 4.4, we can see that for all 0 ≤ j ≤ 3 the space J
(4)
j

defined by {x : C2 : x = ρj(s)τ(s)x = ρj(r)τ(r)x = ρj(sr)τ(sr)x} is the τ -invariant

subspace of C2 corresponding to ρj, since D4 is abelian. Define the subspace J
(s)
j of

C4 to be

J
(s)
j =


 τ(id)

ρj(r)τ(r)

x : x ∈ C2, x = ρj(s)τ(s)x

 .

For 0 ≤ j ≤ 3, let x ∈ J
(s)
j . Some simple calculations show the following:

(i) If j = 0, then x = (0 a 0 −a)T for some a ∈ C, and so (τ⊗τs)(γ)x = x ∈ J
(s)
0

for all γ ∈ D4.

(ii) If j = 1, then x = (0 a 0 a)T for some a ∈ C, and so (τ ⊗ τs)(id)x =

(τ ⊗ τs)(s)x = x ∈ J
(s)
1 and (τ ⊗ τs)(sr)x = (τ ⊗ τs)(r)x = −x ∈ J

(s)
1 .

(iii) If j = 2, then x = (a 0 a 0)T for some a ∈ C, and so (τ ⊗ τs)(id)x =

(τ ⊗ τs)(sr)x = x ∈ J
(s)
2 and (τ ⊗ τs)(s)x = (τ ⊗ τs)(r)x = −x ∈ J

(s)
2 .

(iv) If j = 3, then x = (a 0 − a 0)T for some a ∈ C, and so (τ ⊗ τs)(id)x =

(τ ⊗ τs)(r)x = x ∈ J
(s)
3 and (τ ⊗ τs)(s)x = (τ ⊗ τs)(sr)x = −x ∈ J

(s)
3 .

In all such cases, J
(s)
j is the τ ⊗ τs-invariant subspace of C4 corresponding to ρj.

Similarly, it is easy to see that

J
(sr)
j =


 τ(id)

ρj(r)τ(r)

x : x ∈ C2, x = ρj(sr)τ(sr)x


is the τ ⊗ τsr-invariant subspace of C4 corresponding to ρj. Hence, the space

Jmo
j := [

⊕
v∈V1(G)

J
(1)
j ]⊕ [

⊕
v∈Vs

J
(s)
j ]⊕ [

⊕
v∈Vsr

J
(sr)
j ]⊕ [

⊕
v∈V4(G)

J
(4)
j ]

is a τ ⊗ PV (G̃)-invariant subspace of CV (G̃). Therefore, in a similar way as for the

cyclic group case, we have that an infinitesimal motion m̃ of (G̃, p̃) is ρj-symmetric

if and only if for all v ∈ V (G), γ ∈ Γ, it satisfies

m̃(γv) = ρj(γ)τ(γ)m̃(v). (4.5)
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For 0 ≤ j ≤ 3, we use Mj(G̃, p̃) to denote the space of ρj-symmetric infinitesimal

motions of (G̃, p̃). Similarly as with the case of cyclic groups, M0(G̃, p̃) coincides

with the space of fully-symmetric infinitesimal motions of (G̃, p̃). (For a visual

representation of ρj-symmetric infinitesimal motions on free, semi-free and fixed

joints, see Figure 4.7.)

(a) (b) (c) (d)

Figure 4.7: Different infinitesimal motions applied to the same C2v-symmetric

framework. The infinitesimal motions in (a,b,c,d) are, respectively, ρ0-symmetric,

ρ1-symmetric, ρ2-symmetric and ρ3-symmetric.

Using Equation (4.5), it is easy to see that the infinitesimal translation mt1 :

V (G̃) → R2 given by mt1(v) = (1 0)T for all v ∈ V (G̃) is ρ2-symmetric, whereas

the infinitesimal translation mt2 : V (G̃) → R2 given by mt2(v) = (0 1)T for all

v ∈ V (G̃) is ρ1-symmetric. The infinitesimal rotation mr : V (G̃) → R2 given by

m̃(v) = (−y x)T for all v ∈ V (G̃) with p̃(v) = (x y)T is ρ3-symmetric. Hence, we

have the following.

Lemma 4.6.2. For any C2v-symmetric framework (G̃, p̃) with C2v-gain framework

(G,φ, ψ, p), the following hold:

(i) For 0 < j ≤ 3, nullOj(G,φ, ψ, p) ≥ 1 with equality if and only if (G̃, p̃) is

ρj-rigid.

(ii) The framework (G̃, p̃) is fully-symmetrically infinitesimally rigid if and only

nullO0(G,φ, ψ, p) = 0.

Let (G̃, p̃) be a C2v-symmetric framework with C2v-gain framework (G,φ, ψ, p).

We now consider the edge sets of G̃ and of G.
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Recall from Subsection 2.4.3 that E(G̃) = E1(G̃) ∪̇E2(G̃) ∪̇E4(G̃). Define the

subsets Es(G̃) = {e ∈ E2(G̃) : se = e}, Esr(G̃) = {e ∈ E(G̃) : (sr)e = e}

and Er(G̃) = {e ∈ E2(G̃) : re = e} of V2(G̃). For i = 1, 2, 4, let Ei(G)

denote {e = (u, v) ∈ E(G) : u⋆v⋆ψ(e) ∈ Ei(G̃)}, where u⋆, v⋆ denote the vertex

orbit representatives of u, v, respectively, and v⋆ψ(e) denotes ψ(e)v⋆. Further, for

γ ∈ {s, sr, r}, define the set Eγ := {e = (u, v) ∈ E2(G) : u
⋆v⋆ψ(e) ∈ Eγ(G̃)}. It was

shown in [[56], Section 4.3] that for each e ∈ Eγ, γ ∈ {s, sr, r}, all the blocks R̃j(G̃, p̃)

such that ρj(γ) = (1) have one row, and all the other blocks have no rows. Hence,

for all e ∈ Eγ, R̃0(G̃, p̃) and R̃j(G̃, p̃) have one row, where j = 1 if γ = s, j = 2 if

γ = sr, and j = 3 if γ = r. Further, it follows from Definition 4.1.2 that R̃0(G̃, p̃)

has one row for each e ∈ E4(G). For all e ∈ E1(G) and all 0 ≤ j ≤ 3, R̃j(G̃, p̃) has

one row. For v ∈ V (G) with representative v⋆ ∈ V (G̃), we let Mj(p(v)) denote the

space {m̃(v⋆) : m̃ ∈ Mj(G̃, p̃)} and we let cjv denote the dimension of Mj(p(v)).

Definition 4.6.3. With the same notation as above, fix some 0 ≤ j ≤ 3. For

all v ∈ V (G), choose a basis Bjv for Mj(p(v)) and let M j
v be the matrix whose

columns are the coordinate vectors of Bjv relative to the canonical basis of R2. The

ρj-orbit rigidity matrix Oj(G,φ, ψ, p) of (G,φ, ψ, p) is a matrix with cjv columns

for each v ∈ V (G). For each edge e ∈ E1(G), Oj(G,φ, ψ, p) has one row; for each

γ ∈ {s, sr, r} and each e ∈ Eγ, O0(G,φ, ψ, p) and Oj(G,φ, ψ, p) have one row, where

j = 1 if γ = s, j = 2 if γ = sr, and j = 3 if γ = r; in all other cases, Oj(G,φ, ψ, p)

has no rows corresponding to an edge e ∈ E(G). Given an edge e = (u, v) ∈ E(G),

the row representing e in Oj(G,φ, ψ, p) (provided it exists) is

u v(
. . . (pu − τ(ψ(e))pv)

T M j
u . . . ρj(ψ(e))(pv − τ(ψ−1(e))pu)

TM j
v . . .

)
if u ̸= v, and it is

u(
. . . (pu + ρj(ψ(e))pu − τ(ψ(e))pu − ρj(ψ(e))τ(ψ

−1(e))pu)
T

. . .
)

otherwise. If cju = 0 (respectively, cjv = 0), then the columns corresponding to u

(respectively, v) vanish.
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For 0 ≤ j ≤ 3, dimOj(G,φ, ψ, p) = dim R̃j(G̃, p̃) and the rank of Oj(G,φ, ψ, p)

is independent of the choice of the bases Bjv for v ∈ V (G). Moreover, when

j = 0, Definitions 4.1.2 and 4.6.3 coincide. Therefore, Theorem 4.1.3 implies that

kerO0(G,ψ, p) and kerM0(G̃, p̃) are isomorphic. Let (G̃, p̃) be a C2v-symmetric

framework with C2v-gain framework (G,φ, ψ, p). Choose some v ∈ V2(G). By

Equation (4.5), we may always choose bases Bjv for Mj(p(v)) such that

M j
v =

(0 1)T if j = 0, 1 and φ(v) = {id, s}, or if j = 1, 3 and φ(v) = {id, sr}

(1 0)T if j = 2, 3 and φ(v) = {id, s}, or if j = 0, 2 and φ(v) = {id, sr}

Moreover, if V4(G) = {u}, then we may always choose a basis Bju for Mj(p(v)) such

that

M j
u =


(0 1)T if j = 1

(1 0)T if j = 2

0 else

For simplicity, we will always choose these M j
v ,M

j
u.

Lemma 4.6.4. Let (G̃, p̃) be a C2v-symmetric framework, and letO denote the set of

vertex orbit representatives of G̃. Fix some 0 ≤ j ≤ 3. Define the subset O′ ⊆ V4(G̃)

to be V4(G̃) if j = 0, 3, and ∅ otherwise. For some u⋆, v⋆ ∈ O, let u⋆v⋆ ∈ E(G̃).

Let (G,φ, ψ, p) be the C2v-gain framework of (G̃, p̃). For each g ∈ φ(u), h ∈ φ(v),

let (G,φ, ψg,h, p) be obtained from (G,φ, ψ, p) by applying a type II switching at

e induced by g and h. Fix g ∈ φ(u) and h ∈ φ(v). Then a vector m lies in

kerOj(G,φ, ψg,h, p) if and only if m̃′ : O \ O′ → R2 defined by m̃′(w⋆) = M j
wm(w)

is the restriction of a ρj-symmetric infinitesimal motion m̃ of (G̃, p̃) to O \ O′.

Proof. Let m̃ : V (G̃) → C2 be defined by

m̃(δw⋆) =

ρj(γ)τ(γ)m̃
′(w⋆) for all w⋆ ∈ O \ O′, γ ∈ D4

(0 0)T for all w⋆ ∈ O′, γ ∈ D4.

Then, m̃′ is a restriction of m̃ to O \ O′ and m̃ is a ρj-symmetric infinitesimal

motion of (G̃, p̃) if and only if it is an infinitesimal infinitesimal motion of (G̃, p̃).
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View m as a column vector. For each row r in Oj(G,φ, ψg,h, p) that represents

an edge e = (u1, u2) ∈ E(G), we check that rm is zero if and only if m̃ satisfies

the conditions of being an infinitesimal motion of the framework on the subgraph

induced by the elements of the orbit e. Without loss of generality, we consider the

edge e = (u, v), where u⋆, v⋆ are as defined in the statement. Let ψ(e) = γ. The

orbit of e is D4{u⋆v⋆γ : v⋆γ = γv⋆}. Let r be the row of e in Oj(G,ψg,h, p).

The map m̃ satisfies the conditions of being an infinitesimal motion of the

framework on the subgraph induced by the elements of the orbit e if and only

if, for all δ ∈ D4

⟨p̃(δu⋆)− p̃(δγv⋆), m̃(δu⋆)− m̃(δγv⋆)⟩ = 0.

Since δ runs through all the elements of D4, so does gδh. Hence, this is equivalent

to saying that for all δ ∈ D4

⟨p̃(gδhu⋆)− p̃(gδhγv⋆), m̃(gδhu⋆)− m̃(gδhγv⋆)⟩ = 0.

Since g ∈ φ(u), h ∈ φ(v) and D4 is abelian, we know that m̃(gδhu⋆) = m̃(δhu⋆)

and m̃(gδhγv⋆) = m̃(gδγv⋆). Hence, by the definitions of m̃ and C2v-symmetric

framework, this is equivalent to saying that for all δ ∈ D4〈
τ(gδh)pu − τ(gδhγ)pv, ρj(δh)τ(δh)M

j
um(u)− ρj(gδγ)τ(gδγ)M

j
vm(v)

〉
= 0.

Since τ(δ) is orthogonal and C2v is abelian, we may remove τ(δ) from the inner

product. Moreover, we may take a factor of ρj(hδ) outside of the inner product, and

divide both sides of the equation by ρj(hδ) to see that this is equivalent to〈
τ(gh)pu − τ(ghγ)pv, τ(h)M

j
um(u)− ρj(gγh)τ(gγ)M

j
vm(v)

〉
= 0.

(Note that ρj(h) = ρj(h)
−1, since every element of D4 is its own inverse.) Since

τ(gh)pu = τ(h)pu and τ(ghγ)pv = τ(gγ)pv, multiplying both terms of the inner

product by the orthogonal matrix τ(h), we obtain〈
pu − τ(gγh)pv,M

j
um(u)− ρj(gγh)τ(gγh)M

j
vm(v)

〉
= 0,

which is equivalent to rm = 0. This completes the proof.
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A direct consequence of Lemma 4.6.4 is that the nullity (and hence the rank) of

Oj(G,ψ, p) is independent of type II switchings. The same proof as that used for

Proposition 4.1.4 shows that Oj(G,ψ, p) is also independent of type I switchings,

provided the configuration p of G is chosen adequately. Hence, we have the following.

Proposition 4.6.5. Let (G,φ, ψ, p) be a C2v-gain framework, and let (G,φ′, ψ′) be

a D4-gain graph equivalent to (G,φ, ψ). There is a map p′ : V (G) → R2 such that

rank Oj(G,φ, ψ, p) = rank Oj(G,φ
′, ψ′, p′).

Hence, given a C2v-symmetric framework (G̃, p̃) with two (equivalent) C2v-gain

frameworks (G1, φ1, ψ1, p1) and (G2, φ2, ψ2, p2), the matrices Oj(G1, φ1, ψ1, p1) and

Oj(G2, φ2, ψ2, p2) share the same rank, dimension and nullity. Hence, we may define

the following.

Definition 4.6.6. Let (G̃, p̃) be a C2v-symmetric framework. Let (G,φ, ψ, p) be a

C2v-gain framework of (G̃, p̃). We say that (G,φ, ψ, p) is ρj-symmetrically isostatic

(or simply ρj-isostatic) if (G̃, p̃) is ρj-isostatic.
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Chapter 5

Necessary conditions and graph

extensions

Having defined phase-symmetric orbit rigidity matrices, we can establish necessary

conditions for the infinitesimal rigidity of a τ(Γ)-symmetric bar-joint framework

(G̃, p̃), where Γ is a finite group and τ : Γ → O(R2) is an injective homomorphism.

In Section 5.1, we do so for the case where Γ is a cyclic group. In Section 5.2, we

consider the case where Γ = D2k for some k ≥ 2. When k = 2, we provide necessary

sparsity conditions for the infinitesimal rigidity of (G̃, p̃). For k ≥ 3, we provide the

necessary sparsity conditions for the forced symmetric rigidity of (G̃, p̃).

In Chapters 6 and 7 we will use combinatorial arguments to show that the

conditions given in Section 5.1 are also sufficient, under genericity conditions and

under some restrictions on the order of the group Γ. When proving the sufficiency of

the sparsity conditions, we use an inductive argument on the order of the gain graph.

To do so, we introduce certain operations on gain graphs, called extensions. For

the inductive arguments to hold, extensions must maintain the symmetry-generic

isostatic properties of a gain graph. In order to prove that this is the case, we

adopt algebraic arguments, rather than combinatorial ones. We therefore present

extensions in this chapter (see Section 5.3). In this chapter, and for the rest of the

thesis, we work in R2.
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5.1 Necessary conditions for cyclic symmetry

First, consider the case where Γ is a non-trivial cyclic group. Since we work in R2,

the symmetry group τ(Γ) is either a reflection group Cs or a rotation group Ck for

some k ≥ 2. We consider the two cases separately, starting with the case where

τ(Γ) = Cs (see Subsection 5.1.1). If τ(Γ) is a rotation group, we consider the case

where k = 2 and the case where k ≥ 3 separately (see Subsections 5.1.2 and 5.1.3).

5.1.1 Reflection

Let (G,ψ, p) be a Cs-gain framework and recall, from Subsection 4.5.1, that

O0(G,ψ, p) and O1(G,ψ, p) both have exactly two columns for each v ∈ V1(G) and

exactly one column for each v ∈ V2(G). Recall also that O0(G,ψ, p) has exactly one

row for each e ∈ E(G), and that O1(G,ψ, p) has exactly one row for each e ∈ E1(G).

Proposition 5.1.1. Let (G̃, p̃) be a Cs-symmetric framework with Cs-gain frame-

work (G,ψ, p). The following hold:

(1) If (G̃, p̃) is fully-symmetrically isostatic, then (G,ψ) is (2, 1, 3, 1)-gain tight.

(2) If (G̃, p̃) is anti-symmetrically isostatic, then (G,ψ) is (2, 1, 3, 2)-gain tight.

Proof. If (G̃, p̃) is fully-symmetrically isostatic, then nullO0(G,ψ, p) = 1 by

Lemma 4.5.7. Since O0(G,ψ, p) is an |E(G)| × (2|V1(G)| + |V2(G)|) matrix, by the

Rank-Nullity Theorem, we deduce that |E(G)| = 2|V1(G)|+ |V2(G)| − 1. Moreover,

there is no subgraph
(
H,ψ|E(H)

)
of (G,ψ) with non-empty edge set such that

|E(H)| > 2|V1(H)| + |V2(H)| − 1 as this would imply a row dependency in the ρ0-

orbit rigidity matrix of (G,ψ, p). Similarly, if (G̃, p̃) is anti-symmetrically isostatic,

then |E1(G)| = 2|V1(G)| + |V2(G)| − 2 and |E1(H)| ≤ 2|V1(H)| + |V2(H)| − 2, for

all subgraphs
(
H,ψ|E(H)

)
of (G,ψ) with E(H) ̸= ∅. Moreover, if (G̃, p̃) is anti-

symmetrically isostatic, then all of its bars are free, since removing any fixed bar

from (G̃, p̃) does not change the rank of O1(G,ψ, p) (recall that O1(G,ψ, p) contains

no rows corresponding to fixed bars). Therefore, if (G̃, p̃) is anti-symmetrically
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isostatic, then |E(G)| = 2|V1(G)|+ |V2(G)|− 2 and, for all subgraphs
(
H,ψ|E(H)

)
of

(G,ψ) with non-empty edge set, |E(H)| ≤ 2|V1(H)|+ |V2(H)| − 2.

Now, let j = 0, 1 and suppose for a contradiction that (G̃, p̃) is ρj-symmetrically

isostatic and there is a balanced subgraph
(
H,ψ|E(H)

)
of (G,ψ) with non-empty

edge set which satisfies |E(H)| > 2|V (H)| − 3. Let M be the submatrix of

Oj (G,ψ, p) obtained by removing all columns corresponding to the elements of

V (G) \ V (H), together with the rows corresponding to their incident edges. By

Proposition 3.2.6, Lemma 3.2.11, Corollary 4.5.4 and Proposition 4.5.5, we can

assume that ψ(e) = id for all e ∈ E(H). M is a submatrix of a standard rigidity

matrix for a graph F with |E(F )| > 2|V (F )|−3, obtained by removing zero or more

columns (depending on |V2(H)|: one column is removed for each vertex in V2(H)).

But, by row independence, F must be (2, 3)-sparse, a contradiction. Hence, the

result holds.

In the proof of Proposition 5.1.1, we noted that if (G̃, p̃) is anti-symmetrically

isostatic, then it has no fixed bars. This also reflects on the sparsity of (G,ψ). To see

this, recall that a fixed edge of (G,ψ) is either an edge e = (u, v) between two fixed

vertices u, v ∈ V2(G) or a loop at a free vertex w ∈ V1(G). If (G,ψ) is (2, 1, 3, 2)-gain

sparse, then G contains no edges whose end-points are both fixed, and it contains

no loops.

5.1.2 2-fold rotation

Now, let (G,ψ, p) be a C2-gain framework. Recall from Subsection 4.5.2, that

O0(G,ψ, p) is an |E(G)| × 2|V1(G)| matrix and O1(G,ψ, p) is an |E1(G)| × 2|V (G)|

matrix. A similar proof as that for Proposition 5.1.1 shows the following.

Proposition 5.1.2. Let (G̃, p̃) be a C2-symmetric framework with C2-gain frame-

work (G,ψ, p). The following hold:

(1) If (G̃, p̃) is fully-symmetrically isostatic, then (G,ψ) is (2, 0, 3, 1)-gain tight.

(2) If (G̃, p̃) is anti-symmetrically isostatic, then (G,ψ) is (2, 2, 3, 2)-gain tight.
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Proof. If (G̃, p̃) is fully-symmetrically isostatic, then nullO0(G,ψ, p) = 1, by

Lemma 4.5.8. Since O0(G,ψ, p) is an |E(G)|×2|V1(G)| matrix, by the Rank-Nullity

Theorem, we deduce that |E(G)| = 2|V1(G)| − 1. Moreover, there is no subgraph(
H,ψ|E(H)

)
of (G,ψ) such that |E(H)| > 2|V1(H)| − 1 as this would imply a row

dependency in the ρ0-orbit rigidity matrix of (G,ψ, p). Similarly, if (G̃, p̃) is anti-

symmetrically isostatic, then |E1(G)| = 2|V (G)| − 2 and |E1(H)| ≤ 2|V (H)| − 2,

for all subgraphs
(
H,ψ|E(H)

)
of (G,ψ) with E(H) ̸= ∅. Moreover, if (G̃, p̃) is anti-

symmetrically isostatic, then all of its bars are free, since removing fixed bars from

(G̃, p̃) does not change the rank of O1(G,ψ, p). Hence, |E(G)| = 2|V (G)| − 2 and

|E(H)| ≤ 2|V (H)| − 2, for all subgraphs
(
H,ψ|E(H)

)
of (G,ψ) with E(H) ̸= ∅.

Now, let j = 0, 1 and suppose for a contradiction that (G̃, p̃) is ρj-symmetrically

isostatic and there is a balanced subgraph
(
H,ψ|E(H)

)
of (G,ψ) with non-empty edge

set which satisfies |E(H)| > 2|V (H)| − 3. Let M be the submatrix of Oj (G,ψ, p)

obtained by removing all columns corresponding to the elements of V (G) \ V (H),

together with the rows corresponding to their incident edges. By Proposition 3.2.6,

Lemma 3.2.11, Corollary 4.5.4 and Proposition 4.5.5, we can assume that ψ(e) = id

for all e ∈ E(H). M is a submatrix of a standard rigidity matrix for a graph

F with |E(F )| > 2|V (F )| − 3, obtained by removing zero or two columns. (If

|V2(H)| = 1 and j = 1, two column are removed from O1(G,ψ, p); if j = 0 or

V2(H) = ∅, no columns are removed.) By row independence, F must be (2, 3)-

sparse, a contradiction. Hence, the result holds.

Note that the proof for (1) does not use the fact that the rotation group which

acts on the framework has order 2: for all k ≥ 2, the ρ0-orbit matrix of a Ck-gain

framework is an |E(G)|×2|V1(G)| matrix, and the only trivial infinitesimal motions

which maintain symmetry of the framework are infinitesimal rotations around the

origin. In fact, the exact same proof used for Proposition 5.1.1 shows the following.

Lemma 5.1.3. Let k ≥ 2 be an integer and (G̃, p̃) be a Ck-symmetric framework

with Ck-gain framework (G,ψ, p). If (G̃, p̃) is fully-symmetrically isostatic, then

(G,ψ) is (2, 0, 3, 1)-gain tight.
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Note also that if (G,ψ) is (2, 2, 3, 2)-gain tight, then G has no loops at a vertex.

Since |V2(G)| ≤ 1, the only fixed bars of a C2-symmetric framework are the bars

connecting two joints in the same orbit. It follows that, if (G,ψ) is (2, 2, 3, 2)-gain

tight, then all the bars of (G̃, p̃) are free.

5.1.3 Higher order rotation

Let k ≥ 3. Lemma 5.1.3 gives us necessary conditions for the ρ0-rigidity of Ck-

symmetric frameworks. For all 1 ≤ j ≤ k − 1, we provide necessary conditions that

a Ck-symmetric framework must satisfy in order to be ρj-isostatic. We start with

the cases where j = 1 or j = k−1. Recall from Subsection 4.5.3 that for such j, the

ρj-orbit rigidity Oj(G,ψ, p) of a Ck-gain framework has 2|V1(G)|+ |Vk(G)| columns

and that Oj(G,ψ, p) has |E(G)| rows if j is even, and it has |E1(G)| rows if j is odd.

Lemma 5.1.4. For k ≥ 3, let (G̃, p̃) be a Ck-symmetric framework with Ck-gain

framework (G,ψ, p). Suppose that (G̃, p̃) is ρj-isostatic for some j ∈ {1, k − 1}.

Then, (G,ψ) is (2, 1, 3, 1)-gain tight. In addition, if k ≥ 4 is even, then (G,ψ) is

(2, 1, 3, 1)′-gain tight.

Proof. Fix some j ∈ {1, k − 1} and suppose that (G̃, p̃) is ρj-rigid. If Oj(G,ψ, p)

has |E1(G)| rows, then |E(G)| = |E1(G)|, since removing any fixed edge would not

change Oj(G,ψ, p). By Lemma 4.5.9 and the Rank-Nullity Theorem, it follows that

|E(G)| = 2|V1(G)| + |Vk(G)| − 1 and for all subgraphs H of G with E(H) ̸= ∅,

|E(H)| ≤ 2|V1(H)|+ |Vk(H)| − 1.

Assume, for a contradiction, that there is a balanced subgraph
(
H,ψ|E(H)

)
of

(G,ψ) with non-empty edge set such that |E(H)| > 2|V (H)| − 3. Let M be the

submatrix of Oj (G,ψ, p) obtained by removing all the columns representing the

vertices that are not in V (H), together with the rows corresponding to their incident

edges. By Proposition 3.2.6, Lemma 3.2.11, Corollary 4.5.4 and Proposition 4.5.5,

we can assume that ψ(e) = id for all e ∈ E(H). If H has no fixed vertex, M is a

standard rigidity matrix for a graph F with |E(F )| > 2|V (F )| − 3, contradicting
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the row independence of Oj(G,ψ, p). So, we may assume that H has exactly one

fixed vertex v0. Let v1, . . . , vt be the vertices that are incident with v0 in H and, for

1 ≤ i ≤ t, let pi := p(vi) = (xi yi)
T . Then, M has the form

−x1 +
√
−1y1

...

−xt +
√
−1yt

p1 . . . 0
...

. . .
...

0 . . . pt

0 . . . 0
...

. . .
...

0 . . . 0

0
...

0

...
...

. . . pi − pj . . . pj − pi . . .
...

...


if j = 1. (If j = k − 1, it has the exact same form, except that all entries of the

form −xi + yi in the first column are replaced by −xi − yi.) Let M ′ be the matrix

obtained from M by replacing the first column with the following two columns:

x1 y1
...

...

xt yt

0 0
...

...

0 0


.

SinceM is row independent, so isM ′ (both when j = 1 and when j = k−1). ButM ′

is a standard rigidity matrix for a graph F with |E(F )| > 2|V (F )|−3, contradicting

the row independence of O1(G,ψ, p). This proves the result when k ≥ 3 is odd.

Therefore, let k ≥ 4 be even and assume, for a contradiction, that there is a

subgraph (H,ψE(H)) of (G,ψ) such that ⟨H⟩ ≃ Z2 and |E(H)| > 2|V (H)|−2. Since

(G,ψ, p) is a Ck-gain framework, (G,ψ) is a Γ-gain graph for some cyclic group

Γ = ⟨γ⟩ of order k, where Γ ≃ Zk through the isomorphism which maps γ to 1. So

⟨H⟩ is the group Γ′ of order 2 generated by γk/2.

Let ρ′1 be the non-trivial irreducible representation of Γ′, and let τ ′ : Γ′ → C2
be the homomorphism which maps γk/2 to the rotation C2. Let e = (u, v) ∈ E(H).
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By Proposition 3.2.6, Lemma 3.2.11, Corollary 4.5.4 and Proposition 4.5.5, we can

assume that ψ(e) ∈ {id, γk/2}. Therefore, since j = 1, k − 1 is odd, we have

ρj(ψ(e)) = exp
(2π√−1j

k

k

2

)
= exp(π

√
−1j) = −1 = ρ′1(ψ(e)).

Note that τ(ψ(e)) = τ ′(ψ(e)). It follows that Oj(H,ψ|E(H), p|V (H)) is the ρ1-orbit

matrix of a C2-symmetric framework. Then, by Proposition 5.1.2(2), we have a

contradiction.

In the statement of Lemma 5.1.4 (and with the same notation as in the proof),

we do not allow any loop at a free vertex to have gain γk/2 whenever k is even. Such

edges lift to semi-free edges. Therefore, since 1, k− 1 are odd, the ρ1 and ρk−1-orbit

matrices of (G,ψ, p) do not have rows corresponding to all such edges, as expected.

Lemmas 5.1.3 and 5.1.4 give the necessary conditions for the infinitesimal rigidity

of C3-symmetric frameworks (see Proposition 5.1.5).

Proposition 5.1.5. Let (G̃, p̃) be a C3-symmetric framework with C3-gain frame-

work (G,ψ, p). The following hold:

(1) If (G̃, p̃) is fully-symmetrically isostatic, then (G,ψ) is (2, 0, 3, 1)-gain tight.

(2) If (G̃, p̃) is ρ1-isostatic or ρ2-isostatic, then (G,ψ) is (2, 1, 3, 1)-gain tight.

If k ≥ 4, we must also consider the ρj-rigidity of a Ck-symmetric framework,

where 2 ≤ j ≤ k− 2. For all 2 ≤ j ≤ k− 2, we show that the underlying gain graph

of a ρj-isostatic Ck-gain framework is Zjk-gain sparse. Recall that Zjk-gain sparsity

relies on the notion of near-balancedness, which is only defined for gain graphs with

no fixed vertices. The following result was given in [27]. (See Lemma A.0.8 in

Appendix A for a proof.)

Lemma 5.1.6 ([27], Lemma 5.5). Let k := |Γ| ≥ 4, 2 ≤ j ≤ k − 2, τ : Γ → Ck
be an injective homomorphism, (G,ψ) be a Γ-gain graph, and p : V (G) → R2.

If Oj(G,ψ, p) is row independent, |E(H)| ≤ 2|V (H)| − 1 for any near-balanced

subgraph H of G with non-empty edge set.
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For k ≥ 4, let (G,ψ, p) be a Ck-gain framework. For the following result, recall

that for all 2 ≤ j ≤ k − 2, Oj(G,ψ, p) has 2|V1(G)| columns and it has |E(G)| rows

if j is even, and |E1(G)| rows if j is odd.

Lemma 5.1.7. For k ≥ 4, 2 ≤ j ≤ k − 2, let (G̃, p̃) be a ρj-isostatic Ck-symmetric

framework with Ck-gain framework (G,ψ, p). Then, (G,ψ) is Zjk-gain sparse.

Proof. Similarly as in the proof of Lemma 5.1.4, we may assume that G has no

fixed edges if j is odd. Hence, by the Rank-Nullity Theorem and Lemma 4.5.9,

|E(G)| = 2|V1(G)| and |E(H)| ≤ 2|V1(H)| for all subgraphs H of G with E(H) ̸= ∅.

Now, suppose for a contradiction that there is a balanced subgraph
(
H,ψ|E(H)

)
of (G,ψ) with non-empty edge set which satisfies |E(H)| > 2|V (H)| − 3. Let M

be the submatrix of Oj (G,ψ, p) obtained by removing all columns corresponding to

the elements of V (G)\V (H), together with the rows corresponding to their incident

edges. By Proposition 3.2.6, Lemma 3.2.11, Corollary 4.5.4 and Proposition 4.5.5,

we can assume that ψ(e) = id for all e ∈ E(H). M is a submatrix of a standard

rigidity matrix for a graph F with |E(F )| > 2|V (F )|−3, obtained by removing zero

or two columns. (If |V2(H)| = 1, two column are removed; otherwise, no columns are

removed.) By row independence, F must be (2, 3)-sparse, a contradiction. Hence,

all balanced subgraphs of (G,ψ) with non-empty edge set are (2, 3)-sparse. By

Lemma 5.1.6, all near-balanced subgraphs of G with non-empty edge set are (2, 1)-

sparse. So we only need to consider the subgraphs of G which are S(k, j) and, in

the case where j is odd, the subgraphs H of G with ⟨H⟩ ≃ Z2.

So, suppose that H is a subgraph of G with non-empty edge set such that

⟨H⟩ ≃ Zn for some n ∈ S0(k, j) ∪ S−1(k, j) ∪ S1(k, j) ∪ {2}, where n = 2 only if

j is odd. Since (G,ψ, p) is a Ck-gain framework, (G,ψ) is a Γ-gain graph for some

cyclic group Γ = ⟨γ⟩ of order k. Note that Zk ≃ Γ with the isomorphism mapping

1 to γ. So the group ⟨H⟩ is the group Γ′ of order n generated by γk/n. Moreover,

j ≡ i(mod n), where i = 0 if n ∈ S0(k, j) and i = ±1 otherwise. Hence, there is

some integer m ≥ 1 such that j = i+mn.

Let ρ′i be the irreducible representation of Γ′ which sends the generator γk/n to
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exp
(
2πi

√
−1/n

)
, and let τ ′ : Γ′ → Cn be the homomorphism which sends γk/n to

the rotation Cn. Let e = (u, v) ∈ E(H). Then, ψ(e) = γsk/n for some 0 ≤ s ≤ n−1.

Since j = i+mn, we have

ρj(ψ(e)) = exp
(2π(i+mn)

√
−1

k

sk

n

)
= exp

(2πi√−1

n
s
)
exp
(
2πms

√
−1
)

= exp
(2πi√−1

n
s
)
= ρ′i(ψ(e)).

Thus, we have

pu − τ(ψ(e))pv = pu − τ ′(ψ(e))pv

and

ρj(ψ(e))(pv − τ(ψ(e))−1pu) = ρ′i(ψ(e))(pv − τ ′(ψ(e))−1pu).

(See also the proofs of [[27], Lemma 5.4] and [[56], Lemma 6.13] for the free

action case.) Hence, Oj(H,ψ|E(H), p|V (H)) is the ρ
′
i-orbit matrix of a Cn-symmetric

framework. If i ≡ 0 mod n, this implies that H must satisfy |E(H)| ≤ 2|V1(H)| − 1

by Lemma 5.1.3. If i ≡ ±1 mod n and n = 2, this implies that H must satisfy

|E(H)| ≤ 2|V (H)| − 2 by Proposition 5.1.2(2). If i ≡ ±1 mod n and n ≥ 3, this

implies that H must satisfy |E(H)| ≤ 2|V1(H)|+ |Vk(H)| − 1 by Lemma 5.1.4. This

gives the result.

We conclude the section by combining Lemmas 5.1.3, 5.1.4 and 5.1.7 in order

to obtain the necessary conditions for the infinitesimal rigidity of Ck-symmetric

frameworks, where k ≥ 4 (see Proposition 5.1.8).

Proposition 5.1.8. Let k ≥ 4 be an integer and (G̃, p̃) be a Ck-symmetric

framework with Ck-gain framework (G,ψ, p). The following hold:

(1) If (G̃, p̃) is fully-symmetrically isostatic, then (G,ψ) is (2, 0, 3, 1)-gain tight.

(2) If (G̃, p̃) is ρ1-isostatic or ρk−1-isostatic, then (G,ψ) is (2, 1, 3, 1)′-gain tight.

(3) If (G̃, p̃) is ρj-isostatic for some 2 ≤ j ≤ k − 2, then (G,ψ) is Zjk-gain tight.
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5.2 Necessary conditions for dihedral symmetry

We now consider dihedral groups. Since the dihedral group of order 4 is the only

dihedral group for which we defined all phase-symmetric orbit matrices in Chapter 4,

we start by considering C2v.

5.2.1 Dihedral group of order 4

Recall from Section 4.6 that, for a C2v-gain framework (G,φ, ψ, p), O1(G,φ, ψ, p)

and O2(G,φ, ψ, p) have 2|V1(G)|+ |V2(G)|+ |V4(G)| columns, whereas O0(G,φ, ψ, p)

and O3(G,φ, ψ, p) have 2|V1(G)|+ |V2(G)| columns.

Lemma 5.2.1. Let (G̃, p̃) be a C2v-symmetric framework with C2v-gain framework

(G,φ, ψ, p). Suppose that (G̃, p̃) is ρj-isostatic for some 0 ≤ j ≤ 3.

(1) If j = 0, then |E(G)| = 2|V1(G)|+ |V2(G)| and for all subgraphs H of G with

E(H) ̸= ∅ we have |E(H)| ≤ 2|V1(H)|+ |V2(H)|.

(2) If j = 1, 2, then |E(G)| = 2|V1(G)|+ |V2(G)|+ |V4(G)|−1 and for all subgraphs

H of G with E(H) ̸= ∅ we have |E(H)| ≤ 2|V1(H)|+ |V2(H)|+ |V4(H)| − 1.

(3) If j = 3, then |E(G)| = 2|V1(G)| + |V2(G)| − 1 and for all subgraphs H of G

with E(H) ̸= ∅ we have |E(H)| ≤ 2|V1(H)|+ |V2(H)| − 1.

(4) All balanced subgraphs of G with non-empty edge set are (2, 3)-sparse.

Proof. Fix some 0 ≤ j ≤ 3 and suppose that (G̃, p̃) is ρj-isostatic. Since (G̃, p̃)

is ρj-isostatic, E(G) does not contain any edge which does not have a row in

Oj(G,φ, ψ, p). Hence, by Lemma 4.6.2 and the Rank-Nullity Theorem, (1),(2) and

(3) hold. (See, e.g., the proof of Proposition 5.1.2.) We prove (4).

So, assume for a contradiction that there is a balanced subgraph H of G with

non-empty edge set such that |E(H)| > 2|V (H)|−3. By Propositions 3.3.6 and 4.6.5,

and by Lemma 3.3.12, we may assume that ψ(e) = id for all e ∈ E(H). Let M be

the matrix obtained from Oj(G,φ, ψ, p) by removing all vertices in G which are
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not in H, together with the rows corresponding to their incident edges. M is a

submatrix of a standard rigidity matrix for a graph F with |E(F )| > 2|V (F )| − 3,

obtained by removing zero or more columns. (Depending on |V2(H)|, |V4(H)|: one

column is removed for each vertex in V2(H); and one column is removed if j = 1, 2

and V4(H) ̸= ∅.) By row independence, F must be (2, 3)-sparse, a contradiction.

Hence, the result holds.

Recall the notions of rotational and reflectional subgraphs given in Chap-

ter 3. With the same notation as above, given a rotational subgraph H of G,(
H,φ|V (H), ψ|E(H), p|V (H)

)
can also be seen as a C2-gain framework. Since the

conditions for C2-symmetric frameworks to be infinitesimally rigid can be stronger

that the conditions for C2v-symmetric frameworks to be infinitesimally rigid, it is

important to consider rotational subgraphs of G. Similarly, given a reflectional

subgraph H of G with reflection s (or sr),
(
H,φ|V (H), ψ|E(H), p|V (H)

)
can be seen as

a Cs-gain framework. Note, in this case, every vertex in Vs(H) (or Vsr(H)) is seen as

a fixed vertex of a Cs-symmetric framework, and all other vertices are seen as free.

Figure 5.1 shows a C2v-symmetric framework (G̃, p̃) and its C2v-gain framework

(G,φ, ψ, p). The graph (G,φ, ψ) is reflectional with reflection s, and (G̃, p̃) can be

seen as a Cs-symmetric framework with symmetry line x = 0. Note that u⋆1, ru
⋆
1

do not lie on this symmetry line. So, they are treated as free vertices of the Cs-

framework (G̃, p̃).

Γ {id, sr}

{id, s}

{id}
s

u⋆0 u⋆1ru⋆1

u⋆2

ru⋆2

u⋆3su⋆3

ru⋆3 sru⋆3

Figure 5.1: D4-gain graph and its corresponding D4-lifting. Here, the unlabelled

edges have identity gain.
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Lemma 5.2.2. Let (G̃, p̃) be a C2v-symmetric framework with C2v-gain framework

(G,φ, ψ, p). If (G̃, p̃) is fully-symmetrically isostatic, then all rotational subgroups

H of G with E(H) ̸= ∅ satisfy |E(H)| ≤ 2|V1(H)|+ 2|V2(H)| − 1.

Proof. Assume, for a contradiction, that (G̃, p̃) is fully-symmetrically isostatic and

that |E(H)| > 2|V1(H)|+2|V2(H)|−1 for some rotational subgraphH of G with non-

empty edge set. Note that V2(H) = ∅, as otherwise |E(H)| > 2|V1(H)| + |V2(H)|,

contradicting Lemma 5.2.1(1). Let ψ′ be the edge-gain map equivalent to ψ such

that ⟨H⟩ψ′ = {id, r}. By Propositions 3.3.6 and 4.6.5, and by Lemma 3.3.12, we

may assume that ψ′(e) ∈ {id, r} for all e ∈ E(H). Let M be the submatrix of

O0(G,φ, ψ, p) obtained by removing the columns corresponding to the vertices in

V (G) \ V (H), together with the rows corresponding to their incident edges. Then,

M is the ρ0-orbit rigidity matrix for a C2-symmetric framework whose underlying

graph F satisfies |E(F )| > 2|V1(F )| − 1. By Proposition 5.1.2(1), this contradicts

the row independence of O0(G,φ, ψ, p). Hence, the result holds.

Lemma 5.2.3. Let (G̃, p̃) be a C2v-symmetric framework with C2v-gain framework

(G,φ, ψ, p). Suppose that (G̃, p̃) is ρj-isostatic for some 0 ≤ j ≤ 3. For some i = 0, 1,

let H be a reflectional subgraph of G with reflection sri and with non-empty edge

set. The following hold:

(1) If j = 0, then |E(H)| ≤ 2|V (H − Vsri(H))|+ |Vsri(H)| − 1.

(2) If j = 2, 3 and i = 0, then |E(H)| ≤ 2|V (H − Vs(H))|+ |Vs(H)| − 2.

(3) If j = 1, 3 and i = 1, then |E(H)| ≤ 2|V (H − Vsr(H))|+ |Vsr(H)| − 2.

Proof. First, suppose that i = 0, and let j be one of 0, 2, 3. By Propositions 3.3.6

and 4.6.5, and by Lemma 3.3.12, we may assume that ψ(e) ∈ {id, s} for all e ∈ E(H).

Moreover, we know that φ(v) is either {id, s} or D4 for all v ∈ Vs(H). Hence,

M j
v = (0 1)T for all v ∈ V2(H) ∩ Vs(H). Let M be the submatrix of Oj(G,φ, ψ, p)

obtained by removing the columns corresponding to the vertices in V (G)\V (H) and

rows corresponding to their incident edges. If j = 0, then ρj(s) = (1), and M is a
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submatrix of the ρ0-orbit rigidity matrix for a Cs-gain framework with |V (H−Vs(H))|

free vertices and |Vs(H)| fixed vertices obtained by removing zero or more columns.

(For each v ∈ V1(H − Vs(H)) a column is removed; if v ∈ Vs(H) is fixed, a column

is removed.)

Otherwise, ρj(s) = (−1), and M is a submatrix of the ρ1-orbit rigidity matrix

for a Cs-gain framework with |V (H−Vs(H))| free vertices and |Vs(H)| fixed vertices

obtained by removing zero or more columns. (For each v ∈ V1(H−Vs(H)) a column

is removed; if v ∈ Vs(H) is fixed, a column is removed.) Since Oj(G,φ, ψ, p) has no

row dependence, it follows that H has at most 2|V (H −Vs(H))|+ |Vs(H)| − 1 edges

if j = 0, and it has at most 2|V (H − Vs(H))|+ |Vs(H)| − 2 edges if j = 2, 3.

Now, suppose that i = 1, and let j be one of 0, 1, 3. By Propositions 3.3.6

and 4.6.5, and by Lemma 3.3.12, we may assume that ψ(e) ∈ {id, sr} for all e ∈

E(H). Moreover, we know that φ(v) is either {id, sr} or D4 for all v ∈ Vs(H).

Apply a clockwise rotation of the Euclidean plane around the origin with angle π/2.

Then, M j
v becomes (0 1)T and τ(sr) becomes diag(−1, 1). LetM be the submatrix

of Oj(G,φ, ψ, p) obtained by removing the columns corresponding to the vertices in

V (G) \ V (H) and the rows corresponding to their incident edges. If j = 0, then

ρj(s) = (1), and M is a submatrix of the ρ0-orbit rigidity matrix for a Cs-gain

framework with |V (H − Vsr(H))| free vertices and |Vsr(H)| fixed vertices obtained

by removing zero or more columns. (For each v ∈ V1(H − Vsr(H)) a column is

removed; if v ∈ Vsr(H) is fixed, two columns are removed.)

Otherwise, ρj(sr) = (−1), and M is a submatrix of the ρ1-orbit rigidity matrix

for a Cs-gain framework with |V (H−Vsr(H))| free vertices and |Vsr(H)| fixed vertices

obtained by removing zero or more columns. (For each v ∈ V1(H−Vsr(H)) a column

is removed; if v ∈ Vsr(H) is fixed, a column is removed.) Since Oj(G,φ, ψ, p) has

no row dependence, H has at most 2|V (H − Vsr(H))|+ |Vsr(H)| − 1 edges if j = 0,

and it has at most 2|V (H − Vsr(H))|+ |Vsr(H)| − 2 edges if j = 1, 3.

Notice that in the proofs of Lemma 5.2.1(1) and of Lemma 5.2.2, we did not use

the fact that the symmetry group has order 4. In fact the exact same proofs show
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the following.

Lemma 5.2.4. Let k ≥ 2 be an integer and (G̃, p̃) be a Ckv-symmetric framework

with Ckv-gain framework (G,φ, ψ, p). If (G̃, p̃) is fully-symmetrically isostatic, then

the following hold:

(1) |E(G)| = 2|V1(G)|+ |V2(G)| and for all subgraphs H of G with E(H) ̸= ∅ we

have |E(H)| ≤ 2|V1(H)|+ |V2(H)|.

(2) |E(H)| ≤ 2|V1(H)| + 2|V2(H)| − 1 for all rotational subgraphs H of G with

non-empty edge set.

5.2.2 Dihedral groups of higher order

We conclude the section by considering Ckv, where k ≥ 3. For all such groups, we

have not defined phase-symmetric orbit rigidity matrices. However, [61] provided

the ρ0-orbit rigidity matrix, which can be used to study the forced symmetric rigidity

of Ckv-symmetric frameworks (recall Section 4.1). Therefore, we provide necessary

conditions for the infinitesimal rigidity of a Ckv-symmetric frameworks. First, we

need the following result.

Lemma 5.2.5. Let k ≥ 3, and (G̃, p̃) be a Ckv-symmetric framework with Ckv-gain

framework (G,φ, ψ, p). Let H be a reflectional subgraph of G with reflection srj

(where 0 ≤ j ≤ k − 1). Suppose that (G̃, p̃) is fully-symmetrically isostatic. Then,

|E(H)| ≤ 2|V (H − Vsrj(H))|+ |Vsrj(H)| − 1.

Proof. By Propositions 3.3.6, 4.1.4 and 4.1.5, and by Lemma 3.3.12, we may assume

that ψ(e) ∈ {id, srj} for all e ∈ E(H). Without loss of generality, we may assume

that j = 0. (If j ̸= 0, we can apply a rotation of the plane around the origin with the

angle 2πj/k.) Let M be the matrix obtained from O0(G,φ, ψ, p) by removing the

columns corresponding to the vertices in V (G)\V (H) and the rows corresponding to

their incident edges. If V2(H) = ∅, then M is the submatrix of the ρ0-orbit rigidity

matrix of a Cs-gain framework with |V (H−V2k(H))| free vertices and |V2k(H)| fixed
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vertices obtained by removing zero or one columns. (If there is a fixed vertex in G,

a column is removed; otherwise no column is removed.) Then, the result follows by

Proposition 5.1.1(1). Therefore we may assume that V2(H) ̸= ∅.

Let v ∈ V2(H). Then, p(v) lies on a reflection line, and so there are some 0 ≤

j ≤ k − 1, a ∈ R such that p(v) = a(− sinαj cosαj)
T , where αj := 2πj/k. Hence,

we may choose B0
v = {M0

v = (− sinαj cosαj)
T} as a basis for U(p(v)). Choose

such a basis to construct O0(G,φ, ψ, p). Let v1, . . . , vt be the vertices adjacent to v

in H and, for 1 ≤ i ≤ t, let p(vi) = (xi yi)
T . We may assume that all edges incident

to v are directed from v. So, for 1 ≤ i ≤ t, let ei := (v, vi). For each 1 ≤ i ≤ t, the

row in M corresponding to ei has the form

ei =
(
. . . [p(v)− τ(ψ(ei))p(vi)]

TM0
v . . . [p(vi)− τ(ψ(ei))p(v)]

TM0
vi

. . .
)

=
(
. . . a− τ(ψ(ei))p(vi)

TM0
v . . . [p(vi)− τ(ψ(ei))p(v)]

TM0
vi

. . .
)

=
(
. . . a± sinαjxi − cosαjyi . . .

(
xi ± a sinαj yi − a cosαj

)
M0

vi
. . .
)
.

(Here, ± depends on ψ(ei): if ψ(ei) = id, we choose +; otherwise, we choose −.)

Order the rows of M such that, for all 1 ≤ i ≤ t, the ith row in M is the row

corresponding to ei. If j ̸= 0, substitute the columns corresponding to v in M with

the following two columns:

−a sinαj ∓ x1 a cosαj − y1
...

...

−a sinαj ∓ xt a cosαj − yt

0 0
...

...

0 0


=



[p(v)− τ(ψ(e1))p(v1)]
T

...

[p(v)− τ(ψ(et))p(vt)]
T

0
...

0


(Here, ∓ depends on ψ(ei): if ψ(ei) = id, we choose −; otherwise, we choose +.)

Let M ′ be the matrix obtained by applying this change. We show that a row

dependency in M ′ implies a row dependency in M . Since we are only changing

the columns corresponding to v, it suffices to show that for all a1, . . . , at such that
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∑t
i=0 ai(−a sinαj ∓ xi) =

∑t
i=0 ai(a cosαj − yi) = 0, we have

A :=
t∑
i=0

ai[a± sinαjxi − cosαjyi] = 0.

So, let a1, . . . , at be such integers. Since
∑t

i=0 ai(−a sinαj ∓ xi) = 0, we have

± sinαj

t∑
i=0

aixi = −a sin2 αj

t∑
i=0

ai (5.1)

Similarly, since
∑t

i=0 ai(a cosαj − yi) = 0, we have

cosαj

t∑
i=0

aiyi = a cos2 αj

t∑
i=0

ai. (5.2)

Then, by Equations (5.1) and (5.2), we have

A =
t∑
i=0

ai[a± sinαjxi − cosαjyi] = a
t∑
i=0

ai ± sinαj

t∑
i=0

aixi − cosαj

t∑
i=0

aiyi

= a
t∑
i=0

ai − a sin2 αj

t∑
i=0

ai − a cos2 αj

t∑
i=0

ai = a
t∑
i=1

ai[1− sin2 αj − cos2 αj] = 0.

Hence, a row dependence in M ′ implies a row dependence in M . Since M is row

independent by assumption, it follows that M ′ is row independent. Apply this

process to all semi-free vertices of H−Vs(H). The resulting matrix is the submatrix

of the ρ0-orbit rigidity matrix of a Cs-gain framework with |V (H − Vs(H))| free

vertices and |Vs(H)| fixed vertices obtained by removing zero or one columns. (If

V2k(H) = ∅, no columns are removed; otherwise, one column is removed.) The result

follows by Proposition 5.1.1(1).

Proposition 5.2.6. Let k ≥ 3, and (G̃, p̃) be a Ckv-symmetric framework with Ckv-

gain framework (G,φ, ψ, p). If (G̃, p̃) is fully-symmetrically isostatic, then (G,φ, ψ)

is D2k-gain tight.

Proof. By Lemmas 5.2.4 and 5.2.5, we need only show that all balanced subgraphsH

of G with non-empty edge set are (2, 3)-sparse whenever (G̃, p̃) is fully-symmetrically

isostatic. So assume, for a contradiction, that (G̃, p̃) is fully-symmetrically isostatic
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and that G has a balanced subgraph H with non-empty edge set with |E(H)| >

2|V (H)| − 3. By Propositions 3.3.6, 4.1.4 and 4.1.5, and by Lemma 3.3.12, we may

assume that ψ(e) = id for all e ∈ E(H).

Let M be the matrix obtained from O0(G,φ, ψ, p) by removing the columns

which correspond to vertices in V (G) \V (H), together with the rows corresponding

to their incident edges. If V2(H) = ∅, thenM is the submatrix of a standard rigidity

matrix for a graph F with |E(F )| > 2|V (F )| − 3, obtained by removing zero or two

columns. (If V2k(H) = ∅, no columns are removed; if |V2k(H)| = 1, two columns are

removed.) By row independence, this implies thatH is (2, 3)-sparse, a contradiction.

Hence, we may assume that V2(H) ̸= ∅.

For v ∈ V2(H), let 0 ≤ j ≤ k−1, a ∈ R be such that p(v) = a(− sinαj cosαj)
T ,

where αj := 2πj/k. Choose B0
v = {M0

v = (− sinαj cosαj)
T} as a basis for U(p(v))

when constructing O0(G,φ, ψ, p). Let v1, . . . , vt be the vertices incident to v in H

and, for 1 ≤ i ≤ t, let p(vi) = (xi yi)
T . For 1 ≤ i ≤ t, let ei := (v, vi). For each

1 ≤ i ≤ t, the row in M corresponding to ei has the form

ei =
(
. . . a+ sinαjxi − cosαjyi . . .

(
xi + a sinαj yi − a cosαj

)
M0

vi
. . .
)
.

Order the rows of M such that, for all 1 ≤ i ≤ t, the ith row in M is the row

corresponding to ei. Then, substitute the columns corresponding to v in M with

the following two columns:

−a sinαj − x1 a cosαj − y1
...

...

−a sinαj − xt a cosαj − yt

0 0
...

...

0 0


=



[p(v)− p(v1)]
T

...

[p(v)− p(vt)]
T

0
...

0


Let M ′ be the matrix obtained by applying this change. Apply this change to all

semi-free vertices of M . Similarly as in the proof of Lemma 5.2.5, we can see that

the matrix obtained has full rank. However, the resulting matrix is the submatrix

128
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of the standard rigidity matrix for a graph F with |E(F )| > 2|V (F )| − 3, obtained

by removing zero or two columns. (If V2k(H) = ∅, no columns are removed; if

V2k(H) ̸= ∅, two columns are removed.) This is a contradiction, so the result

holds.

5.3 Gain graph extensions

We conclude the chapter by presenting some gain graph operations known as

extensions, which will be used in Chapters 6 and 7 to prove the sufficiency of the

conditions given in Subsections 5.1.1, 5.1.2 and, in some cases, 5.1.3. As the name

suggests, extensions add vertices to the gain graph. Each extension has (at least) one

inverse operation, called a reduction. Throughout this section, we let Γ be a cyclic

group and (G,ψ) be a Γ-gain graph. We will construct a Γ-gain graph (G′, ψ′) by

applying an extension to (G,ψ). Depending on the extension we are working with,

we may apply restrictions on the order of Γ, in which case we will specify it.

5.3.1 Adding a vertex of degree 1

u

(G,ψ)
Extension

Reduction u

v

α (G′, ψ′)

Figure 5.2: Example of a fix-0-extension, where u is free and α is an arbitrary gain.

The following move will only be used to study the infinitesimal rigidity of frameworks

which are symmetric with respect to the reflection group Cs. Hence, in this

subsection, we let |Γ| = 2.

Definition 5.3.1. A fix-0-extension chooses a vertex u ∈ V (G), adds a new fixed

vertex v to V2(G), and connects it to u with a new edge e. We label e arbitrarily,
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Chapter 5. Necessary conditions and graph extensions

unless u ∈ V2(G), in which case ψ′(e) = id, and we let ψ′(f) = ψ(f) for all f ∈ E(G).

The inverse operation of a fix-0-extension is called a fix-0-reduction. See Figure 5.2

for an illustration.

Lemma 5.3.2. For 0 ≤ j ≤ 1, let (G,ψ, p) be a ρj-isostatic Cs-gain framework.

Suppose (G′, ψ′) is obtained by applying a fix-0-extension to (G,ψ). Suppose further

that, whenever j = 1, the fix-0-extension from which we obtain (G′, ψ′) connects

the new fixed vertex to a free vertex. Then there is a map p′ : V (G′) → R2 such

that (G′, ψ′, p′) is a ρj-isostatic Cs-gain framework.

Proof. With the same notation as in Definition 5.3.1, we define p′ : V (G′) → R2 so

that p′w = pw for all w ∈ V (G), p′v lies on the y-axis, and the y-coordinates of p′v, pu

differ. Let p′v = (0 yv)
T and p′u = (xu yu)

T . If j = 1, then xu ̸= 0 since u ∈ V1(G).

We have

O0 (G
′, ψ′, p′) =

 yv − yu 0

0 O0 (G,ψ, p)


and

O1 (G
′, φ′, ψ′, p′) =

 − xu 0

0 O1 (G,φ, ψ, p)

 .

For j = 0, 1, we have added one row and one column to Oj(G,ψ, p). Hence, it

suffices to show that the rows of the new matrices are independent. This follows

from the fact that yu ̸= yv and xu ̸= 0.

Note that Lemma 5.3.2 does not take into consideration the case where j = 1 and

u ∈ V2(G). This is because, by Proposition 5.1.1 (2), if (G̃, p̃) is a ρ1-symmetrically

isostatic Cs-symmetric framework, then its Γ-gain graph (G,ψ) is (2, 1, 3, 2)-gain

tight. In particular, any two vertices in V2(G) cannot be joined by an edge. Hence,

when proving the sufficiency of the sparsity conditions for this case, if we apply a

fix-0-reduction at a fixed vertex v ∈ V2(G), we may always assume that the vertex

v adjacent to it is free.

130



5.3. Gain graph extensions

5.3.2 Adding a vertex of degree 2

v1 = v2

(G,ψ)
Extension

Reduction v1 = v2

v

α β
(G′, ψ′)

Figure 5.3: Example of a 0-extension where v1 and v2 coincide. Here we must have

α ̸= β.

v1 v2

(G,ψ)
Extension

Reduction v1 v2

v

α β
(G′, ψ′)

Figure 5.4: Example of a 0-extension where v1 is free and v2 is fixed. Here the gains

α and β are arbitrary. (The cases where v1 and v2 are both free or both fixed are

also allowed.)

Definition 5.3.3. A 0-extension chooses two vertices v1, v2 ∈ V (G) (we may choose

v1 = v2 provided that v1 ∈ V1(G)) and adds a free vertex v, together with two edges

e1 = (v, v1), e2 = (v, v2). We let ψ′(e) = ψ(e) for all e ∈ E(G). If v1, v2 coincide, we

choose ψ′ such that ψ′(e1) ̸= ψ′(e2). In all other cases, we label e1, e2 freely. The

inverse operation of a 0-extension is called a 0-reduction. See Figures 5.3 and 5.4

for illustrations.

Lemma 5.3.4. Given an irreducible representation ρ of Γ and an injective

homomorphism τ : Γ → O(R2), let (G,ψ, p) be a ρ-isostatic τ(Γ)-gain framework.

If (G′, φ′, ψ′) is obtained by applying a 0-extension to (G,ψ), then there is a map

p′ : V (G′) → R2 such that (G′, ψ′, p′) is a ρ-isostatic τ(Γ)-gain framework.

Proof. With the same notation as in Definition 5.3.3, we define p′ : V (G′) → R2

such that p′w = pw for all w ∈ V (G) for all w ∈ V (G) and p′v does not lie on the line
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Chapter 5. Necessary conditions and graph extensions

through τ(ψ(e1))p(v1) and τ(ψ(e2))p(v2). Then, the ρ-orbit matrix of (G′, ψ′, p′) is

the matrix

M ′ =


[p′v − τ(ψ(e1))p(v1)]

TM j
v

[p′v − τ(ψ(e2))p(v2)]
TM j

v

⋆

⋆

0 M

 ,

where M denotes the ρ-orbit matrix of (G,ψ, p). Since M is row independent by

assumption, it suffices to show that the first two rows in M are row independent.

This follows from the fact that p′v does not lie on the line between τ(ψ(e1))p(v1) and

τ(ψ(e1))p(v1).

v1 v2

(G,ψ)
Extension

Reduction v1 v2

v

α β
(G′, ψ′)

Figure 5.5: Example of a fix-1-extension, where α and β are arbitrary gains. The

vertices v1, v2 are allowed to be fixed, although for a ρ1-isostatic framework, there

is no edge joining fixed vertices.

v1 v2

(G,ψ)
Extension

Reduction v1 v2

v

α β
(G′, ψ′)

Figure 5.6: Example of a fix-1-extension, where α and β are arbitrary gains. The

vertex v2 is allowed to be fixed.

The following extension will only be used to study the infinitesimal rigidity of

Cs-symmetric frameworks.
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Definition 5.3.5. A fix-1-extension chooses two distinct vertices u1, u2 ∈ E(G) and

an edge e ∈ E(G) which can either be (v1, v2) or, if v1 (respectively, v2) is free, a loop

at v1 (respectively, v2). It removes e, and adds a fixed vertex v, together with the

edges e1 = (v, v1), e2 = (v, v2). We label e1 and e2 freely, and we let ψ′(f) = ψ(f) for

all f ∈ E(G). The inverse operation of a fix-1-extension is called a fix-1-reduction.

See Figures 5.5 and 5.6 for illustrations.

Lemma 5.3.6. Let Γ = ⟨γ⟩ be the cyclic group of order 2, 0 ≤ j ≤ 1, and

let (G,ψ, p) be a ρj-symmetrically isostatic Cs-gain framework. Let (G′, ψ′) be

obtained by applying a fix-1-extension to (G,ψ). With the same notation as in

Definition 5.3.5, assume that if e = (v1, v2), then the line through p(v1) and

τ(ψ(e))p(v2) and the line through σp(v1) and στ(ψ(e))p(v2) meet in at least one

point. Assume further that if e is a loop, then p(v1), p(v2) do not share the same

y-coordinate. Then there is a map p′ : V (G′) → R2 such that (G′, ψ′, p′) is a

ρj-symmetrically isostatic Cs-gain framework.

Proof. Throughout the proof, we use the same notation as that in Definition 5.3.5

and, for 1 ≤ i ≤ 2, we let xi and yi be, respectively, the x-coordinate and y-

coordinate of p(vi). We let H be the subgraph obtained from G by removing e.

Since v is fixed, we may assume that ψ(e1) = ψ(e2) = id.

We first show the result holds when e is a loop. Assume, without loss of

generality, that v1 is free and that e is a loop at v1, and notice that ψ(e) = γ.

By assumption, y1 − y2 ̸= 0. Moreover, since (G,ψ) is ρj-symmetrically isostatic

and G contains a loop edge, we can use Proposition 5.1.1(2) to deduce that j = 0.

Define p′ : V (G′) → R2 such that p′w = pw for all w ∈ V (G) and p′v be the mid-point

of the line segment between p(v1) and σp(v1). Then, p′v lies on the y-axis and has

y-coordinate y1, so that

O0(G
′, ψ′, p′) =


0

y1 − y2

x1 0 0

0 0 [p(u2)− p′v]
TM0

v2

0 O0

(
H,ψ|E(H), p|V (H)

)
 .
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Multiplying the first row by 4, we obtain the row corresponding to e which, added to

the bottom right block, forms O0(G,ψ, p). Since O0(G
′, ψ′, p′) is obtained by adding

one row and one column to O0(G,ψ, p), it suffices to show that the additional row

does not add a dependence. This follows from the fact that y1 − y2 ̸= 0. Hence, the

result holds whenever e is a loop.

Now, assume that e = (v1, v2). Let t := 0 if ψ(e) = γ and t := 1 if ψ(e) =

id. Since the line through p(v1) and τ(ψ(e))p(v2) and the line through σp(v1) and

στ(ψ(e))p(v2) meet, they must meet in a point P that lies on the y-axis. Simple

calculations show that the y-coordinate of P is

y = − y1 − y2
x1 + (−1)tx2

x1 + y1 = (−1)t+1 y2 − y1
x1 + (−1)tx2

x2 + y2. (5.3)

Define p′ : V (G′) → R2 such that p′w = pw for all w ∈ V (G) and p′v = P . Then, we

have

Oj(G
′, ψ′, p′) =


(
−x1 y − y1

)
M j

v(
−x2 y − y2

)
M j

v

[p(v1)− P ]TM j
v1

0

0 [p(v2)− P ]TM j
v2

0 Oj

(
H,ψ|E(H), p|V (H)

)

.

So, multiplying the row corresponding to ei by (x1 + (−1)tx2)/xi for 1 ≤ i ≤ 2,

and using (5.3), we see that Oj(G
′, ψ′, p′) is

a

b

x1 + (−1)tx2 y1 − y2 0 0

0 0 x1 + (−1)tx2 (−1)t(y2 − y1)

0 Oj

(
H,ψ|E(H), p|V (H)

)
,

where the first column corresponding to v1 (respectively, v2) in O0(G
′, ψ′, p′)

vanishes if v1 (respectively, v2) is fixed, and the second column corresponding to v1

(respectively, v2) in O1(G
′, ψ′, p′) vanishes if v1 (respectively, v2) is fixed, and where

a = (−x1 + (−1)t+1x2 y2 − y1)M
j
v , b = (−x1 + (−1)t+1x2 (−1)t+1(y2 − y1))M

j
v .

Apply the following row operations: if j = t = 0, add the second row to the first;

in all other cases, subtract the second row from the first. Then, we obtain the

row corresponding to e which, added to the bottom right block, forms Oj(G,ψ, p).
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Similarly as in the case where e is a loop, it suffices to show that the second row

does not add a dependence to Oj(G,ψ, p). This follows from the fact that the line

through p(v1) and τ(ψ(e))p(v2) and the line through σp(v1) and στ(ψ(e))p(v2) meet

at a point, which implies that the entry in the leftmost column is not zero.

5.3.3 Adding a vertex of degree 3

u

(G,ψ)
Extension

Reduction u

v

β

α

(G′, ψ′)

Figure 5.7: Example of a loop-1-extension, where α is a non-identity gain, and β is

an arbitrary gain. (The case where u is not free is also allowed.)

Definition 5.3.7. A loop-1-extension adds a free vertex v to V (G) together with an

edge e = (v, u) for some u ∈ V (G) and a loop eL = (v, v). We let ψ′(f) = ψ(f) for all

f ∈ E(G). We let ψ′(eL) be any non-identity element of Γ, and ψ′(e) can be chosen

freely. The inverse operation of a loop-1-extension is called a loop-1-reduction. See

Figure 5.7 for an illustration.

Lemma 5.3.8. Let Γ be a cyclic group of order k ≥ 2, τ : Γ → O(R2) be an

injective homomorphism and (G,ψ, p) be a ρj-isostatic τ(Γ)-gain framework for

some 0 ≤ j ≤ k− 1 such that j = 0 when k = 2. Let γ ∈ Γ correspond to the k-fold

rotation (or the reflection) under τ . Let (G′, ψ′) be obtained from (G,ψ) by applying

a loop-1-extension. With the same notation as Definition 5.3.7, let g := ψ′(eL) and

h := ψ′(e). Assume the following hold:

(i) If k is even and j is odd, then g ̸= γk/2.

(ii) If τ(Γ) = Ck and j = 0, then u is free.
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(iii) If k ≥ 4, 2 ≤ j ≤ k − 2 and u is fixed, then there is no n ∈ S0(k, j) such that

⟨g⟩ ≃ Zn.

Then there is a map p′ : V (G′) → R2 such that (G′, ψ′, p′) is a ρj-isostatic τ(Γ)-gain

framework.

Proof. With the same notation as in Definition 5.3.7, let p′ : V (G′) → R2 be defined

such that p′w = pw for all w ∈ V (G). We have

Oj(G
′, ψ′, p′) =


[I2 + ρj(g)I2 − τ(g)− ρj(g)τ(g

−1)](p′v)
T

[p′v − τ(h)pu]
T

0

⋆

0 Oj (G,ψ, p)

.

So Oj(G
′, ψ′, p′) is obtained from Oj(G,ψ, p) by adding two rows and two columns.

Since Oj(G,ψ, p) has full rank by assumption, it is enough to show that the first

two rows of Oj(G
′, ψ′, p′) are linearly independent for some choice of p′v. Let A be

the matrix I2 + ρj(g)I2 − τ(g)− ρj(g)τ(g
−1). If τ(Γ) = Cs, then j = 0 and τ(g) = σ

by assumption, so A is the 2 × 2 matrix whose only non-zero entry is (A)1,1 = 4.

If we choose p′v such that it does not share the same y-coordinate as p′u, it is then

easy to see that the first two rows of the matrix are linearly independent. Hence,

Oj(G
′, ψ′, p′) has full rank, as required.

So, we may assume that τ(Γ) = Ck. Let g = γt for some 1 ≤ t ≤ k−1, α = 2πt/k,

and ω = exp(2π
√
−1/k). Then,

A =

(1− cos(α))(1 + ωjt) sin(α)(1− ωjt)

− sin(α)(1− ωjt) (1− cos(α))(1 + ωjt)

 .

We show that A is not the zero matrix. Assume, for a contradiction, that A is the

zero matrix. Since 1 ≤ t ≤ k− 1, we know cos(α) ̸= 1 and so ωjt = −1, i.e. there is

some odd integer m such that 2πjt/k = mπ. Moreover, sin(α)(1−ωjt) = 2 sin(α) =

0. Since 1 ≤ t ≤ k − 1, α = π, and so t = k/2. It follows that j = m, and so j is

odd. This contradicts (i), so, as claimed, A is not the zero matrix.

If u is free, then, by the injectivity of p, the vector pu, and hence also the

vector τ(h)pu, cannot be zero. So unless q is a multiple of τ(h)pu, the affine map
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q 7→ q − τ(h)pu applied to λq gives vectors of different directions for each scalar λ.

The linear map A applied to λq, however, only produces vectors that are multiples

of the vector Aq. This implies that {Aq, q−τ(h)pu} is linearly independent for some

q, and so we may choose p′v to be such q. Then Oj(G
′, ψ′, p′) is linearly independent,

as required.

So, assume that u is fixed. By (ii), we may also assume that 1 ≤ j ≤ k − 1. In

particular, this implies, by assumption, that k ̸= 2. Assume, for a contradiction,

that there is no choice of p′v such that the first two rows of Oj(G
′, ψ′, p′) are linearly

independent. This implies that A is a scalar multiple of I2. This happens exactly

when sin(α)(1 − ωjt) = 0. If sin(α) = 0, then α = π, and t = k/2. Hence,

ωjt = exp(πij). By (i), j must be even, and so ωjt = 1. If sin(α) ̸= 0, then clearly

ωjt = 1. Hence, in both cases we have ωjt = 1, i.e. jt = mk for some integer m. If

j = 1, this implies that t is a multiple of k, contradicting the fact that 1 ≤ t ≤ k−1.

Hence, j ̸= 1. Similarly, j ̸= k − 1: if j = k − 1, then ωjt = ω−t. Since ωjt is real,

this equals ωt = 1, and so t = k, a contradiction. Hence, k ≥ 4 and 2 ≤ j ≤ k − 2.

We show that there is an integer n ∈ S0(k, j) such that ⟨g⟩ ≃ Zn, contradicting (iii).

Let n = k/ gcd(k, t) = lcm (k, t)/t. Then, we know from group theory (see e.g.

[17]) that ⟨g⟩ = ⟨γt⟩ ≃ Zn, and that m′ = mk/lcm (k, t) is an integer (since mk is

a multiple of both k and t), and so, since j = mk/t = nm′, we have j ≡ 0 mod n.

Moreover, k = n gcd(k, t), so n|k. Hence, n ∈ S0(k, j), as required. This contradicts

(iii). Thus, there is a choice of p′v such that the first two rows of Oj(G
′, ψ′, p′) are

linearly independent. It follows that Oj(G
′, ψ′, p′) has full rank.

Remark 5.3.9. It was shown in [[39], Section 4.3] that for the Γ-gain graph of a

rotationally symmetric framework in the plane, an edge joining the fixed vertex u

with a free vertex v gives the same constraint in the fully-symmetric orbit rigidity

matrix as a loop edge on v which corresponds to a regular |Γ|-polygon in the covering

framework. Hence we have condition (ii) in Lemma 5.3.8. This is clear geometrically,

because both of these edges force the vertices in the orbit of v to keep their distance to

the origin in any symmetry-preserving motion. Thus, for analysing fully-symmetric
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Chapter 5. Necessary conditions and graph extensions

infinitesimal rigidity, one may always reduce the problem to the case when the group

acts freely on the vertices. However, Lemma 5.3.8 shows that this simple reduction

is not possible for the reflection group nor for analysing “incidentally symmetric”

infinitesimal rigidity for any rotational group.

v1 = v2 = u

(G,ψ)
α Extension

Reduction

v

v1 = v2 = u

(G′, ψ′)
δβ γ

Figure 5.8: Example of a 1-extension, where α = βγ−1 and δ is an arbitrary gain.

In this example, we can see that v1, v2, u are allowed to coincide.

u

(G,ψ)

v1 = v2

α Extension

Reduction

v

v1 = v2 u

(G′, ψ′)
δβ

γ

Figure 5.9: Example of a 1-extension, where α = βγ−1 and δ is an arbitrary gain.

In this example, we can see that v1 and v2 are allowed to coincide. We also allow u

to be free.

v2

(G,ψ)

v1

u

α Extension

Reduction

v1

u

v

v2

(G′, ψ′)
γβ

δ

Figure 5.10: Example of a 1-extension, where α = βγ−1 and δ is an arbitrary gain.

Any vertex in {v1, v2, v3} is allowed to be fixed.
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5.3. Gain graph extensions

Definition 5.3.10. A 1-extension chooses a vertex u ∈ V (G) and an edge e =

(v1, v2) ∈ E(G) (any pair of free vertices in {v1, v2, u} are allowed to coincide; further,

v1, v2, u are all allowed to coincide, provided they are not fixed and |Γ| ≥ 3), removes

e and adds a new free vertex v to V (G), together with three edges e1 = (v, v1), e2 =

(v, v2), e3 = (v, u). We let ψ′(f) = ψ(f) for all f ∈ E(G). The edges e1, e2 are

labelled such that ψ′(e1)
−1ψ′(e2) = ψ(e). The label of e3 is chosen such that it is

locally unbalanced, i.e. every two-cycle eie
−1
j , if it exists, is unbalanced. The inverse

operation of a 1-extension is called a 1-reduction. See Figures 5.8, 5.9 and 5.10 for

illustrations.

Lemma 5.3.11. Let Γ be a cyclic group of order k, τ : Γ → O(R2) be an injective

homomorphism, and (G,ψ, p) be a ρj-symmetrically isostatic τ(Γ)-gain framework

for some 0 ≤ j ≤ k − 1. With the same notation as in Definition 5.3.10, assume

that the points τ(ψ(e1))p(v1), τ(ψ(e2))p(v2) and τ(ψ(e3))p(u) do not lie on the same

line. If (G′, ψ′) is obtained from (G,ψ) by applying a 1-extension, then there is a

map p′ : V (G′) → R2 such that (G′, ψ′, p′) is a ρj-isostatic τ(Γ)-gain framework.

Proof. With the same notation as that of Definition 5.3.10, let H be the subgraph

of G obtained by removing e. If v1, v2 are free, then an analogous proof to that

of [[56], Lemma 6.1] gives the result. So, without loss of generality, assume v1 is

fixed. In particular, v1 cannot coincide with either v2 or u, and we may assume

ψ(e1) = ψ(e2) = ψ(e) = id. Let ψ(e3) = δ.

Define p′ : V (G′) → R2 such that p′w = pw for all w ∈ V (G) and p′v lies on the

midpoint of the line through p(v1) and p(v2). Then, Oj(G
′, ψ′, p′) is the matrix

ρj(δ)[p
′
v − τ(δ)pu]

T

1/2[p(v2)− p(v1)]
T

1/2[p(v1)− p(v2)]
T

0 ⋆ ⋆

1/2[p(v1)− p(v2)]
TM j

v1
0 0

0 1/2[p(v2)− p(v1)]
TM j

v2
0

0 Oj

(
H,ψE(H), p|V (H)

)
.


.

Adding the second row to the third, and multiplying the result by 2, we obtain

the row representing e in Oj

(
H,ψE(H), p|V (H)

)
. Now, Oj(G

′, ψ′, p′) is obtained by
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Chapter 5. Necessary conditions and graph extensions

adding two rows and two columns to Oj(G,ψ, p), so it suffices to show that the first

two entries of the two added rows are independent. Since p(v1), p(v2) and τ(δ)pu

do not lie on the same line, the line through p′v and τ(δ)pu is not parallel to the

line through p(v1) and p(v2). Hence, the upper left 2× 2 matrix has full rank, and

Oj(G
′, ψ′, p′) has full rank. If τ(Γ) = Cs, and p(v1), p(v2) both lie on the symmetry

line, then p′v also lies on the symmetry line. In such a case, we may perturb p′v

slightly without changing the rank of Oj(G
′, ψ′, p′), in order to avoid placing the

free vertex v on the symmetry line.

5.3.4 Adding two vertices of degree 3

v0

(G,ψ)
Extension

Reduction v0

(G′, ψ′)
αβ

v1 v2

γk/2

id

Figure 5.11: Example of a 2-vertex extension, where α, β are arbitrary gains.

The following extension is defined on Γ-gain graphs with |V|Γ|(G)| = 1 and with

|Γ| ≥ 2 even. Recall that, for k := |Γ|, the cyclic group Γ = ⟨γ⟩ is isomorphic to Zk,

through the isomorphism which maps γ to 1.

Definition 5.3.12. A 2-vertex-extension adds two free vertices v1, v2 and connects

them to the fixed vertex. Then, it adds two parallel edges e1, e2 = (v1, v2) between

v1 and v2. We define ψ′ such that ψ′(e) = ψ(e) for all e ∈ E(G), the new edges

incident with the fixed vertex are labelled arbitrarily, and ψ′(e1) = id, ψ′(e1) = γk/2.

The inverse operation of a 2-vertex-extension is called a 2-vertex-reduction. See

Figure 5.11 for an illustration.

Lemma 5.3.13. Let k ≥ 2 be even and 1 ≤ j ≤ k − 1. Let (G,ψ, p) be a ρj-

symmetrically isostatic Ck-gain framework with V2(G) = {v0}. If (G′, ψ′) is obtained
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5.3. Gain graph extensions

by applying a 2-vertex-extension to (G,ψ), then there is a map p′ : V (G′) → R2

such that (G′, ψ′, p′) is a ρj-symmetrically isostatic Ck-gain framework.

Proof. With the same notation as that of Definition 5.3.12, let p′ : V (G′) → R2

be defined by letting p′w = pw for all w ∈ V (G) and such that p′(v1) and p′(v2)

are not scalar multiples of each other. Note that ρj(k/2) = exp(π
√
−1j) = (−1)j.

Moreover, since v0 is fixed, we may assume that the new edges incident to the fixed

vertex are labelled id. Then, Oj(G
′, ψ′, p′) is

[p′(v1)− p′(v2)]
T [p′(v2)− p′(v1)]

T

[p′(v1) + p′(v2)]
T (−1)j[p′(v1) + p′(v2)]

T

[p′(v1)]
T 0

[p′(v2)]
T 0

0

0

⋆

⋆

0 Oj (G,ψ, p)


,

where the first two columns correspond to v1 and the second two columns correspond

to v2. Since Oj(G,ψ, p) is row independent, it suffices to show that the rows of the

new matrix are independent. This follows from the fact that p′(v1) and p′(v2) are

not scalar multiples of each other.
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Chapter 6

Sufficient conditions for groups of

order 2 and 3

In this chapter we establish the characterisations of symmetry-generic infinitesimally

rigid bar-joint frameworks, where the symmetry group is cyclic and has order 2 or

3. Namely, given a τ(Γ)-generic framework (G̃, p̃) where τ(Γ) is one of Cs, C2 and

C3, we show that the conditions of Section 5.1 which the Γ-gain graph (G,ψ) of G̃

must satisfy in order for (G̃, p̃) to be infinitesimally rigid are also sufficient (recall

Propositions 5.1.1, 5.1.2 and 5.1.5). As mentioned in Chapter 5, we adopt a proof

by induction on the order of (G,ψ), for which we employ reduction operations, i.e.

inverse operations as the extensions given in Section 5.3.

We structure the chapter as follows. In Section 6.1, we give some preliminary

results which we need for a full characterisation of infinitesimally rigid Cs-generic,

C2-generic and C3-generic frameworks. In Section 6.2 we show that, under certain

conditions, a free vertex of (G,ψ) can always be reduced in a way that the sparsity

conditions of (G,ψ) do not break. This will be crucial for the inductive arguments

which we use to prove the main results of the chapter. The final combinatorial results

are given in Sections 6.3, 6.4 and 6.5, in which we will consider the groups Cs, C2
and C3, respectively. As we will see, the notion of (2,m, 3, l)-gain sparsity suffices to

combinatorially characterise infinitesimally rigid Cs-generic frameworks, C2-generic
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6.1. General combinatorial results

frameworks and C3-generic frameworks. However, we often work with the slightly

stronger notion of (2,m, 3, l)′-gain sparsity, since the results concerning (2,m, 3, l)-

gain tight graphs in this chapter easily generalise to (2,m, 3, l)′-gain tight graphs.

This slight generalisation will be useful in Chapter 7 when we combinatorially

characterise infinitesimally rigid C4-generic frameworks and C6-generic frameworks.

6.1 General combinatorial results

Lemma 6.1.1. Let 0 ≤ m, l ≤ 2 be such that 0 ≤ l − m ≤ 1. Let Γ be a cyclic

group of order k ≥ 2 and (G,ψ) be a Γ-gain graph with at least one free vertex,

and let s, t ∈ N be the number of free vertices in G of degree 2 and 3, respectively.

Assume (G,ψ) is (2,m, 3, l)-gain tight. The following hold:

(i) Each free vertex has degree at least 2, each fixed vertex has degree at least m.

(ii) Suppose that there is some d ≥ 0 such that deg(v) ≥ d for all v ∈ Vk(G).

Then 2s+ t ≥ |Vk(G)|(d− 2m) + 2l.

Proof. For (i), let v ∈ V (G). By the sparsity of (G,ψ), the subgraph H obtained

from G by removing v satisfies

|E(H)| ≤

2|V1(G)|+m|Vk(G)| − l − 2 if v is free

2|V1(G)|+m|Vk(G)| − l −m if v is fixed.

But |E(G)| = 2|V1(G)| +m|Vk(G)| − l. So there are at least 2 edges in G that are

not in H when v is free, and there are at least m edges in G that are not in H when

v is fixed. (i) follows.

For (ii), the average degree of G is

ρ̂ =
2|E(G)|
|V (G)|

=
4|V1(G)|+ 2m|Vk(G)| − 2l

|V (G)|
.

The minimum average degree ρmin of G is attained when all free vertices, which are

not the s and t vertices of degree 2 and 3, have degree 4, and all fixed vertices have
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Chapter 6. Sufficient conditions for groups of order 2 and 3

degree d. So

ρmin =
2s+ 3t+ d |Vk (G)|+ 4(|V1(G)| − s− t)

|V (G)|
.

By minimality, ρmin ≤ ρ̂, and (ii) follows.

Proposition 6.1.2. Let 0 ≤ m ≤ 2, 0 ≤ l ≤ 3. Let Γ be a cyclic group of order k

and let (G,ψ) be a Γ-gain graph. Suppose there is some v ∈ V1(G) of degree 3 with

no incident loops. If G is (2,m, l)-sparse, then there is no (2,m, l)-tight subgraph of

G− v which contains all neighbours of v (the neighbours of v need not be distinct).

Proof. Suppose such a subgraph H exists. Then the subgraph H ′ of G obtained

from H by adding v and its incident edges satisfies

|E(H ′)| = |E(H)|+3 = 2|V1(H)|+m|Vk(H)|− l+3 = 2|V1(H ′)|+m|Vk(H ′)|− l+1,

a contradiction. Therefore, the result holds.

It is straightforward to check that all except two of the reductions are admissible,

i.e. they maintain the relevant sparsity counts. However, when applying a 1-

reduction or a fix-1-reduction, we add an edge. This edge might give rise to a

subgraph that violates the sparsity count.

Definition 6.1.3. Let Γ be a cyclic group and (G,ψ) be a Γ-gain graph. Let

0 ≤ m ≤ l ≤ 3 be such that m ≤ 2 and suppose that (G,ψ) is (2,m, 3, l)-gain tight

(respectively, (2,m, 3, l)′-gain tight). We say a Γ-gain graph (G′, ψ′) obtained from

(G,ψ) is admissible if (G′, ψ′) is (2,m, 3, l)-gain tight (respectively, (2,m, 3, l)′-gain

tight). Equivalently, we say (G,ψ) admits a reduction.

Definition 6.1.4. Let Γ be a cyclic group and (G,ψ) be a Γ-gain graph. Let

0 ≤ m ≤ l ≤ 3 be such that m ≤ 2 and suppose (G,ψ) is (2,m, 3, l)-gain tight. Let

v ∈ V (G) be a free vertex of degree 3, or a fixed vertex of degree 2. Let (G′, ψ′)

be obtained from (G,ψ) by applying a 1-reduction or a fix-1-reduction at v, and let

e = (v1, v2) be the edge we add when we apply such reduction. Let H be a subgraph

of G− v with v1, v2 ∈ E(H) and E(H) ̸= ∅.
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(i) We say H is a general-count blocker of v1, v2 (equivalently, of (G
′, ψ′)) if H+ e

is connected and H is (2,m, l)-tight.

(ii) We say H is a balanced blocker of e (equivalently, of (G′, ψ′)) if H is (2, 3)-tight

and H + e is balanced.

(iii) If (G,ψ) is also (2,m, 3, l)′-gain tight, we say H is a Z2-blocker of e

(equivalently, of (G′, ψ′)) if H is (2, 2)-tight and ⟨H + e⟩ ≃ Z2.

General-count blockers, balanced blockers and Z2-blockers are simply referred to as

blockers of (G′, ψ′).

The following result states that, given two blockers H1, H2 with E(H1∩H2) ̸= ∅,

their union H1 ∪H2 can also be seen as a blocker. It will be used in Section 6.2 to

show that a vertex of degree 3 always admits a 1-reduction, except for special cases

(see Theorem 6.2.1).

Lemma 6.1.5. Let 0 ≤ m ≤ l ≤ 2 be such that l ≥ 1, let Γ be a cyclic group

of order k, and (G,ψ) be a (2,m, 3, l)-gain tight or (2,m, 3, l)′-gain tight Γ-gain

graph. Suppose there is some v ∈ V1(G) of degree 3 with no incident loops. Let

(G1, ψ1), (G2, ψ2) be obtained from (G,ψ) by applying two different 1-reductions at

v, which add the edges f1 and f2, respectively. Assume that, for i = 1, 2, (Gi, ψi)

has a blocker Hi, and that E(H1∩H2) ̸= ∅. Suppose that if |Vk(G)| ≥ 1 then m = 1

and H1, H2 are not Z2-blockers. Let H := H1 ∪H2. The following hold:

(i) The blockers H1, H2 are not general-count blockers.

(ii) Either H+f1+f2 is balanced and H is (2, 3)-tight or (G,ψ) is (2,m, 3, l)′-gain

tight, ⟨H⟩ ≃ Z2 and H is (2, 2)-tight.

Proof. Notice that H1 ∪ H2 always contains all neighbours of v. To see this, we

consider |NG(v)|. If |NG(v)| = 1 this is clear. If |NG(v)| = 2, let v1, v2 be

the neighbours of v and e1 = (v, v1), e
′
1 = (v, v1), e2 = (v, v2) ∈ E(G). By

Propositions 3.2.6 and 3.2.9, we may assume that ψ(e1) = ψ(e2) = id and that
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Chapter 6. Sufficient conditions for groups of order 2 and 3

ψ(e′1) ̸= id. Then, at most one 1-reduction at v adds a loop at v1 (with gain ψ(e′1))

and no 1-reduction at v adds a loop at v2. It follows that one of H1, H2 contains

v1 and v2, and so v1, v2 ∈ V (H1 ∪ H2). Finally, let |NG(v)| = 3. For 1 ≤ i ≤ 3,

let ei = (v, vi) ∈ E(G). By Propositions 3.2.6 and 3.2.9, we may assume that

ψ(ei) = id for all 1 ≤ i ≤ 3. Then, for each pair 1 ≤ i ̸= j ≤ 3, there is at most one

1-reduction at v which adds an edge between vi and vj (with gain id). It follows

that v1, v2, v3 ∈ V (H1 ∪H2).

Throughout the proof, we let H ′ = H1 ∩ H2 and we let H ′
1, . . . , H

′
c be the

connected components of H ′. Let c0 ≤ c − 1 be the number of isolated vertices

of H ′, so that H ′
1, . . . , H

′
c0

are the isolated vertices of H ′, and H ′
c0+1, . . . , H

′
c are the

connected components of H ′ with non-empty edge set.

We first prove (i). Assume, for a contradiction, that one of H1, H2 is a general-

count blocker. Without loss of generality, let it be H1. If H2 is also a general-count

blocker then, since |E(H ′)| ≤ 2|V1(H ′)|+m|Vk(H ′)| − l, it is easy to check that

|E(H)| = |E(H1)|+ |E(H2)| − |E(H ′)| ≥ 2|V1(H)|+m|Vk(H)| − l.

By Proposition 6.1.2, this is a contradiction. Hence, we may assume that H2 is

either a balanced blocker or, in the case where (G,ψ) is (2,m, 3, l)′-gain tight, a

Z2-blocker. So, let 2 ≤ l2 ≤ 3 be the integer such that H is (2, l2)-tight. Since H
′ is

a subgraph of H2, for each c0 + 1 ≤ i ≤ c, H ′
i must be (2, l2)-sparse, and so

|E(H ′)| =
c∑
i=1

|E(H ′
i)| ≤

c0∑
i=1

[2|V (H ′
i)| − 2] +

c∑
i=c0+1

[2|V (H ′
i)| − l2]

= 2|V (H ′)| − (2c0 + l2(c− c0)).

Therefore, letting g = 2c0 + l2(c− c0) and recalling that V (G) = V1(G) ∪̇Vk(G),

|E(H)| = |E(H1)|+ |E(H2)| − |E(H ′)|

≥ (2|V1(H1)|+m|Vk(H1)| − l) + (2|V (H2)| − l2)− (2|V (H ′)| − g)

= 2|V1(H)|+m|Vk(H)| − l + (2−m)(|Vk(H2)| − |Vk(H ′)|) + g − l2

≥ 2|V1(H)|+m|Vk(H)| − l,
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where the last inequality holds because 0 ≤ c0 ≤ c− 1,m ≤ 2 and V (H ′) ⊆ V (H2).

By Proposition 6.1.2, this is a contradiction. So H1, H2 cannot be general count

blockers, as required.

We now prove (ii). If H1, H2 are Z2-blockers, then |E(H ′
i)| ≤ 2|V (H ′

i)|−2 for all

1 ≤ i ≤ c, since each H ′
i is a subgraph of H1, H2. Hence, |E(H ′)| ≤ 2|V (H ′)|−c and

so |E(H)| ≥ (2|V (H1)|−2)+(2|V (H2)|−2)− (2|V (H ′)|−2c) = 2|V (H)|+2(c−2).

If c ≥ 2 or |Vk(H)| = 1, then |E(H)| ≥ 2|V (H)| − 2 ≥ 2|V1(H)| + m|Vk(H)| − l,

since 0 ≤ m ≤ l ≤ 2 and l ≥ 1. This contradicts Proposition 6.1.2 or the sparsity

of (G,ψ). Therefore, H ′ is connected and Vk(H) = ∅, so ⟨H + f1 + f2⟩ ≃ Z2 by

Lemma 3.2.15. Hence, |E(H)| = 2|V (H)| − 2 and (ii) holds.

So, we may assume that at least one of H1, H2 is a balanced blocker. Without

loss of generality, assume that H1 is a balanced blocker. Since each H ′
i is a subgraph

of H1, |E(H ′)| ≤ 2|V (H ′)| − (2c0 + 3(c − c0)) (see the proof of (i) for details). Let

2 ≤ l2 ≤ 3 be the integer such that H2 is (2, l2)-tight. We have

|E(H)| = |E(H1)|+ |E(H2)| − |E(H ′)|

≥ (2|V (H1)| − 3) + (2|V (H2)| − l2)− (2|V (H ′)| − (2c0 + 3(c− c0)))

= 2|V (H)|+ 2c0 + 3(c− c0)− 3− l2 ≥ 2|V (H)|+ 3c− c0 − 3− l2. (6.1)

Since c0 ≤ c− 1, 3c− c0 − 3 ≥ 2c− 2 and so |E(H)| ≥ 2|V (H)|+ 2c− 2− l2. Since

m ≤ 2, 1 ≤ l and l2 ≤ 3, |E(H)| ≥ 2|V1(H)| +m|Vk(H)| − l whenever c ≥ 2. By

Proposition 6.1.2 and the sparsity of (G,ψ), this is a contradiction. Therefore, H ′

is connected and |E(H)| ≥ 2|V (H)| − l2.

We now show that H ′ has at most one fixed vertex. Assume, for a contradiction,

that |Vk(H ′)| ≥ 2. By assumption, this implies that m ̸= 2 and H2 is a balanced

blocker, so l2 = 3. By Equation (6.1), |E(H)| ≥ 2|V (H)| − 3 ≥ 2|V1(H)| + 1. If

m = 0, this contradicts the sparsity of (G,ψ). Hence, m = 1. By Equation (6.1),

|E(H)| ≥ 2|V (H)| − 3 = 2|V1(H)|+ |Vk(H)|+ (|Vk(H)| − 3)

≥ 2|V1(H)|+ |Vk(H)| − 1 ≥ 2|V1(H)|+ |Vk(H)| − l,
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where the last inequality holds because m ≤ l and m = 1. This contradicts

Proposition 6.1.2 or the sparsity of (G,ψ). Hence, H ′ has at most one fixed vertex.

If Vk(H
′) = ∅, then by Lemma 3.2.14, ⟨H + f1 + f2⟩ ≃ ⟨H2 + f2⟩, and so (ii) holds

by the sparsity of (G,ψ) and Equation (6.1). So we may assume that Vk(H
′) = {v0}.

Then, by Equation (6.1),

|E(H)| ≥ 2|V (H)| − l2 = 2|V1(H)| − l2 + 2 ≥ 2|V1(H)| − l,

since 1 ≤ l and l2 ≤ 3. If m = 0, this contradicts Proposition 6.1.2 or the sparsity

of (G,ψ), so m ̸= 0. Similarly, by Equation (6.1) and the fact that l2 ≤ 3, we

have |E(H)| ≥ 2|V (H)| − 3 ≥ 2|V1(H)| + |Vk(H)| − 2. If (m, l) = (1, 2), this

contradicts Proposition 6.1.2, so (m, l) ̸= (1, 2). Hence, (m, l) is one of (1, 1) and

(2, 2). In both cases, we can see that H ′ is (2, 3)-tight, as otherwise we can see

|E(H)| ≥ 2|V (H)| − l2 + 1 ≥ 2|V (H)| − 2 = 2|V1(H)| + |Vk(H)| − 1, contradicting

Proposition 6.1.2 or the sparsity of (G,ψ). By Lemma 3.2.30, v0 is not a cut vertex

of H ′. Then, ⟨H + f1 + f2⟩ = ⟨H + f2⟩ by Lemma 3.2.14. By the sparsity of (G,ψ)

and Equation (6.1), (ii) holds.

6.2 A gain tight graph admits a reduction

The following result is crucial for our combinatorial characterisations of symmetry-

generic infinitesimal rigidity. It states that, except for the specific cases in Figure 6.1,

there is always an admissible reduction at a vertex v of degree 3 of a (2,m, 3, l)-gain

tight or (2,m, 3, l)′-gain tight graph, where (m, l) = (0, 2), (1, 1), (1, 2), (2, 2).

Theorem 6.2.1. Let Γ be a cyclic group of order k and (G,ψ) be a Γ-gain graph

with a free vertex v of degree 3 which has no loop. Suppose that (G,ψ) is (2,m, 3, l)-

gain tight or (2,m, 3, l)′-gain tight, where (m, l) is one of the pairs (0, 1), (1, 1), (1, 2)

or (2, 2). Suppose further that if |Vk(G)| ≥ 2, then m = 1 and (G,ψ) is not

(2,m, 3, l)′-gain tight. If there is not an admissible 1-reduction at v, then exactly

one of the following holds.
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6.2. A gain tight graph admits a reduction

(i) (G,ψ) is (2, 2, 3, 2)-gain tight or (2,m, 3, l)′-gain tight, and v has exactly one

free neighbour v1 and exactly one fixed neighbour v2 (see Figure 6.1 (a)). If

(G,ψ) is (2,m, 3, l)′-gain tight, then the graph H spanned by v and v1 satisfies

⟨H⟩ ≃ Z2 (see Figure 6.1 (b)).

(ii) (G,ψ) is (2, 1, 3, 2)-gain tight and v has three neighbours, all of which are fixed

(see Figure 6.1 (c)).

v

(a)

v

γk/2

(b)

v

(c)

Figure 6.1: Three instances of a vertex v of degree 3 of a Γ-gain graph. In (a,b),

v has two neighbours, one of which is fixed, and there may or may not be an edge

between the neighbours of v. In (b), Γ = ⟨γ⟩ ≃ Zk for some even k ≥ 2 through the

isomorphism which maps γ to 1, and all the unlabelled edges have identity gain. In

(c), v has three neighbours, all of which are fixed.

In the proof of Theorem 6.2.1, we consider the three cases where |NG(v)| = 1, 2, 3

separately. Therefore, the proof becomes lengthy. In order to ease the flow, we

split the theorem into three different propositions, which we prove separately in

Subsections 6.2.1, 6.2.2 and 6.2.3.

6.2.1 v has exactly one neighbour

Proposition 6.2.2. Let Γ be a cyclic group of order k and (G,ψ) be a Γ-gain

graph with a free vertex v of degree 3. Suppose that v has no loop, and exactly one

neighbour u. Suppose further that (G,ψ) is (2,m, 3, l)-gain tight or (2,m, 3, l)′-gain
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tight, where (m, l) is one of the pairs (0, 1), (1, 1), (1, 2) or (2, 2). Then, there is an

admissible 1-reduction at v.

Proof. Let e1, e2, e3 be the edges incident to u and v. By Propositions 3.2.6 and 3.2.9,

we may assume that ψ(e1) = id. Moreover, by the definition of gain graph,

ψ(e2)ψ(e3)
−1, ψ(e2), ψ(e3) ̸= id. Let (G1, ψ1), (G2, ψ2) be obtained from G − v by

adding the loops f1, f2 at u with gains ψ(e2), ψ(e2), respectively. Suppose, for a

contradiction, that for i = 1, 2, Hi is a blocker of (Gi, ψi). Since both H1 + f1 and

H2 + f2 contain an unbalanced loop, H1, H2 are not balanced blockers. Then, by

Proposition 6.1.2, (G,ψ) is (2,m, 3, l)′-gain tight and H1, H2 are Z2-blockers. Since

⟨H1 + f1⟩ , ⟨H2 + f2⟩ ≃ Z2, we have ψ(e2) = ψ(e3), a contradiction. Therefore, the

result holds.

6.2.2 v has exactly two neighbours

Proposition 6.2.3. Let Γ be a cyclic group of order k and (G,ψ) be a Γ-gain

graph with a free vertex v of degree 3. Suppose that v has no loop, and exactly two

neighbours v1, v2. Suppose further that (G,ψ) is (2,m, 3, l)-gain tight or (2,m, 3, l)′-

gain tight, where (m, l) is one of the pairs (0, 1), (1, 1), (1, 2) or (2, 2). If there is no

admissible 1-reduction at v, then one of the following holds:

(i) (G,ψ) is (2, 2, 3, 2)-gain tight, v has one free and one fixed neighbour.

(ii) (G,ψ) is (2,m, 3, l)′-gain tight, v has one free neighbour v1 and one fixed

neighbour v2. The graph H spanned by v, v1 satisfies ⟨H⟩ ≃ Z2.

Proof. Let e1, e
′
1 := (v, v1) and e2 := (v, v2), and let g = ψ(e′1). By Propositions 3.2.6

and 3.2.9, we may assume that ψ(e1) = ψ(e2) = id and g ̸= id. We look at the cases

where v2 is free and fixed separately.

Case 1: v2 is free.

Let (G1, ψ1), (G2, ψ2), (G3, ψ3) be obtained from G − v by adding, respectively, the

edge f1 = (v1, v2) with gain id, the edge f2 = (v1, v2) with gain g, and a loop f3 at
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6.2. A gain tight graph admits a reduction

v1 with gain g. Assume, for a contradiction, that H1, H2 and H3 are blockers for

(G1, ψ1), (G2, ψ2) and (G3, ψ3), respectively. Let H and H ′ denote H1∪H2∪H3 and

H1 ∩ H2 ∩ H3, respectively. By Proposition 6.1.2(i), H1, H2 are not general count

blockers. Moreover, by Proposition 6.4 and Lemma 6.1.5(ii), E(H1∩H2) = ∅. Since

H3+ f3 contains the loop f3, H3 either a general-count blocker or, in the case where

(G,ψ) is (2,m, 3, l)′-gain tight, a Z2-blocker.

Either way, we show that E(H1 ∩ H3) = E(H2 ∩ H3) = ∅. If H3 is a general

count blocker, this follows directly from Lemma 6.1.5(i). So suppose H3 is a Z2-

blocker (so that (G,ψ) is (2,m, 3, l)′-gain tight) and assume, for a contradiction,

that E(Hi ∩ H3) ̸= ∅ for some 1 ≤ i ≤ 2. By Lemma 6.1.5(ii), Hi ∪ H3 is (2, 2)-

tight. Since Hi is either a balanced blocker or a Z2-blocker, every v1 − v2-walk in

Hi only containing free vertices has gain id or g. Hence, ⟨Hi ∪H3 + v⟩ ≃ Z2. By

Proposition 6.1.2, this is a contradiction. So E(H1 ∩H3) = E(H2 ∩H3) = ∅.

Suppose H3 is a general count blocker. Then, by Proposition 6.1.2, v2 ̸∈ V (H3).

For i = 1, 2, let 2 ≤ li ≤ 3 be the integer such that Hi is (2, li)-tight. Since m ≤ 2,

for i = 1, 2, we have |E(Hi)| = 2|V (Hi)|− li ≥ 2|V1(Hi)|+m|Vk(Hi)|− li. So letting

S1 =
∑

1≤i ̸=j≤3 |V1(Hi∩Hj)|− |V1(H ′)| and Sk =
∑

1≤i ̸=j≤3 |Vk(Hi∩Hj)|− |Vk(H ′)|,

we have

|E(H)| ≥ 2
3∑
i=1

|V1(Hi)|+m
3∑
i=1

|Vk(Hi)| − l1 − l2 − l

= 2 (|V1(H)|+ S1) +m (|Vk(H)|+ Sk)− l1 − l2 − l

≥ 2 (|V1(H)|+ S1) +m|Vk(H)| − 6− l,

where the last inequality holds because l1 + l2 ≤ 6 and Vk(H
′) ⊆ Vk(Hi ∩ Ht) for

all pairs 1 ≤ i ̸= t ≤ 3. Since the free vertex v2 is not contained in H ′, it is easy

to see that S1 ≥ 3. Hence, |E(H)| ≥ 2|V1(H)| + m|Vk(H)| − l. This contradicts

Proposition 6.1.2. So, we may assume that (2,m, 3, l)′-gain tight and that H3 is a

Z2-blocker. If Hi is a Z2-blocker for some i = 1, 2, then

|E(Hi ∪H3)| = 2|V (Hi)| − 2 + 2|V (H3)| − 2 = 2|V (Hi ∪H3)|+ 2|V (Hi ∩H3)| − 4.
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By Proposition 6.1.2, |V (Hi∩H3)| = 1, and so |E(Hi∪H3)| = 2|V (Hi∪H3)|−2. But

then ⟨H1 ∪Hi + f1 + fi⟩ = ⟨H1 ∪Hi + v⟩ ≃ Z2, contradicting Proposition 6.1.2.

Therefore, H1, H2 are balanced blockers. Since E(H1 ∩ H2) = ∅, it is easy to see

that |E(H1 ∪ H2)| = 2|V (H1 ∪ H2)| + 2|V (H1 ∩ H2)| − 6. By Proposition 6.1.2,

V (H1 ∩H2) is composed of the two isolated vertices v1, v2 and Vk(H) = ∅.

By Lemma 3.2.21, H1∪H2+f1+f2 is near-balanced with base vertex v1 (and with

base vertex v2). Since H1∪H2+f1+f2 contains the 2-cycle f1, f2, it is near-balanced

with gain g. So there is a gain ψ′ equivalent to ψ such that ψ′(e) ∈ {id, g, g−1}

for all edges e in E(H1 ∪ H2) incident to v1, and ψ′(f) = id for all other edges

f ∈ E(H1 ∪ H2). In particular, ⟨H1 ∪H2 + v⟩ = ⟨H1 ∪H2 + f1 + f2⟩ = ⟨g⟩ ≃ Z2.

But |E(H)| ≥ 2|V (H)| − 2, contradicting Proposition 6.1.2. This proves the result

for the case where v2 is free.

Case 2: v2 is fixed.

Assume that (i) and (ii) do not hold. Let (G1, ψ1), (G2, ψ2) be the graphs obtained

from G − v by adding, respectively, an edge f1 = (v1, v2) with gain id, and a loop

f2 at v1 with gain g (see Figure 6.2). Notice that, if there is already an edge

(v1, v2) ∈ E(G), (G1, ψ1) is not a well-defined gain graph. We look at the cases

where (v1, v2) ∈ E(G) and (v1, v2) ̸∈ E(G) separately.

v

v1 v2

e2e1 e′1

v1 v2
f1

v1 v2

f2

Figure 6.2: Two possible 1-reductions at v.

First, assume (v1, v2) ∈ E(G). Then it is easy to check that the graph induced by

v, v1, v2 violates both (2, 0, 3, 1)-gain sparsity and (2, 1, 3, 2)-gain sparsity. Hence, we

may assume that (G,ψ) is (2, 1, 3, 1)-gain tight (and possibly (2, 1, 3, 1)′-gain tight).

Assume, for a contradiction, that (G2, ψ2) has a blocker H2. Since H2 + f2

contains the loop f2 with gain g, it is unbalanced and, in the case where (G,ψ)
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6.2. A gain tight graph admits a reduction

is (2, 1, 3, 1)′-gain tight, ⟨H2 + f2⟩ ̸≠ Z2. Hence, H2 is a general-count blocker. It

follows, from Proposition 6.1.2, that v2 ̸∈ V (H2). Hence, the graph H obtained from

H2 by adding v, v2, together with the edges e1, e
′
1, e2, (v1, v2), satisfies

|E(H)| = |E(H2)|+ 4 = 2|V1(H2)|+ |Vk(H2)|+ 3 = 2|V1(H)|+ |Vk(H)|,

contradicting the sparsity of (G,ψ). Thus, the 1-reduction at v which yields (G2, ψ2)

is admissible. Now, let (v1, v2) ̸∈ E(G). Assume that H1 and H2 are blockers for

(G1, ψ1) and (G2, ψ2), respectively. By Proposition 6.1.2, either H1 is a balanced

blocker or (G,ψ) is (2,m, 3, l)′-gain tight and H1 is a Z2-blocker. So, let 2 ≤ l1 ≤ 3

be the integer such that H1 is (2, l1)-tight. Since H2 + f2 contains the loop f2,

it is a general-count blocker. By Proposition 6.1.2, v2 ̸∈ V (H2). Moreover, by

Lemma 6.1.5(i), E(H1 ∩H2) = ∅. Let H := H1 ∪H2 and H ′ := H1 ∩H2. We have

|E(H)| = (2|V (H1)| − l1) + (2|V1(H2)|+m|Vk(H2)| − l)

= 2|V1(H)|+m|Vk(H)| − l + 2|V1(H ′)|+m|Vk(H ′)|

+ (2−m)|Vk(H1)| − l1 ≥ 2|V1(H)|+m|Vk(H)| − l,

where the last inequality holds because |V1(H ′)| ≥ 1, |Vk(H1)| ≥ 1,m ≤ 1 and l1 ≤ 3.

This contradicts Proposition 6.1.2. Hence, there is an admissible 1-reduction at v,

as required.

6.2.3 v has exactly three neighbours

Proposition 6.2.4. Let Γ be a cyclic group of order k and (G,ψ) be a Γ-gain

graph with a free vertex v of degree 3. Suppose that v has no loop, and exactly

three neighbours v1, v2, v3. Suppose further that (G,ψ) is (2,m, 3, l)-gain tight or

(2,m, 3, l)′-gain tight, where (m, l) is one of the pairs (0, 1), (1, 1), (1, 2) or (2, 2), and

that if |Vk(G)| ≥ 2, then m = 1 and (G,ψ) is not (2,m, 3, l)′-gain sparse. Either

there is an admissible 1-reduction at v, or (G,ψ) is (2, 1, 3, 2)-gain tight and v1, v2, v3

are fixed.

Proof. For i = 1, 2, 3, let ei = (v, vi) be the edges incident with v. Let f1, f2 and

f3 denote the edges (v1, v2), (v2, v3) and (v3, v1), respectively. By Propositions 3.2.6
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and 3.2.9, we may assume ψ(e1) = ψ(e2) = ψ(e3) = id. For 1 ≤ i ≤ 3, let (Gi, ψi)

be obtained by applying a 1-reduction at v, during which we add the edge fi with

gain id, and assume that (Gi, ψi) has a blocker Hi. Let H := H1 ∪ H2 ∪ H3 and

H ′ := H1 ∩H2 ∩H3.

We first show that E(Hi ∩Hj) = ∅ for all pairs i ̸= j. As a first step, we show

that E(Hi ∩Hj) ̸= ∅ for at most one pair i ̸= j. So assume for a contradiction that

this is not the case. Without loss of generality, suppose that E(H1 ∩H2) ̸= ∅ and

E(H1∩H3) ̸= ∅. By Lemma 6.1.5(ii), eitherH1∪H2 is (2, 3)-tight andH1∪H2+f1+f2

is balanced or H1 ∪H2 is (2, 2)-tight and ⟨H1 ∪H2 + f1 + f2⟩ ≃ Z2. Let 2 ≤ l′ ≤ 3

be the integer such that H1 ∪H2 is (2, l′)-tight. Then,

|E(H1∪H2+v)| = |E(H1∪H2)|+3 = 2|V (H1∪H2)|+3−l′ = 2|V (H1∪H2+v)|−l′+1.

If ⟨H1 ∪H2 + v⟩ = ⟨H1 ∪H2 + f1 + f2⟩, this contradicts the sparsity of (G,ψ).

So, we may assume that ⟨H1 ∪H2 + v⟩ = ⟨H1 ∪H2 + f1 + f2⟩. The group

⟨H1 ∪H2 + v⟩ ≃ ⟨H1 ∪H2 + f1 + f2 + f3⟩ is given by the elements of the group

⟨H1 ∪H2 + f1 + f2⟩, together with the gains of the walks from v1 to v3 which

do not contain fixed vertices. Since ⟨H1 ∪H2 + v⟩ ≠ ⟨H1 ∪H2 + f1 + f2⟩, there

must be a path P from v3 to v1 in H1 ∪ H2 with gain g ̸∈ ⟨H1 ∪H2 + f1 + f2⟩,

which contains only free vertices. In particular, v1, v3 are free. Moreover, v2 must

be fixed, for otherwise, f1, f2, P is a closed path in H1 ∪ H2 + f1 + f2 with gain

g ̸∈ ⟨H1 ∪H2 + f1 + f2⟩ and with no fixed vertex, a contradiction.

Applying the same argument to H1 ∪H3, we may conclude that v1 is fixed and

v2, v3 are free. But this contradicts the fact that v1 is free and v2 is fixed. Hence,

E(Hi ∩ Hj) ̸= ∅ for at most one pair 1 ≤ i ̸= j ≤ 3. Without loss of generality,

E(H1 ∩H3) = E(H2 ∩H3) = ∅.

Assume, for a contradiction, that E(H1 ∩H2) ̸= ∅. Then, as shown above, v2 is

fixed and v1 and v3 are free. In particular, H1∪H2 cannot be (2, 2)-tight, as otherwise

|E(H1∪H2)| = 2|V (H1∪H2)|−2 ≥ 2|V1(H1∪H2)|+m|Vk(H1∪H2)|−l, contradicting

Proposition 6.1.2 or the sparsity of (G,ψ). (This is true because v2 ∈ V (H1 ∪H2)

is fixed.) Therefore, H1 ∪H2 is (2, 3)-tight and H1 ∪H2 + f1 + f2 is balanced.
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If H3 is a balanced blocker or a Z2-blocker, there is an integer 2 ≤ l3 ≤ 3 such

that H3 is (2, l3)-tight. Then, since H is the union of H1 ∪H2 and H3, we have

|E(H)| = 2|V (H)|+ 2|V ((H1 ∪H2) ∩H3)| − 3− l3. (6.2)

If |V ((H1 ∪H2) ∩H3)| ≥ 3 or if l3 = 2 then, since v2 is fixed, it is easy to see that

|E(H)| ≥ 2|V1(H)| +m|Vk(H)| − l, contradicting Proposition 6.1.2 or the sparsity

of (G,ψ). Hence, V ((H1 ∪ H2) ∩ H3) = {v1, v3} and H3 is a balanced blocker. It

follows that H is balanced. (Every closed walk in H is composed of closed walks

in H1 ∪H2, of closed walks in H3, and of concatenations of walks from v1 to v3 in

H1 ∪H2 together with walks from v3 to v1 in H3; all such walks must have identity

gain, since H1 ∪H2 + f1 + f2, H3 + f3 are balanced.) However, by Equation (6.2),

we have |E(H)| = 2|V (H)| − 2, contradicting the sparsity of (G,ψ). So, we may

assume that H3 is a general-count blocker. Then, it is easy to see that

|E(H)| = (2|V (H1 ∪H2)| − 3) + (2|V1(H3)|+m|Vk(H3)| − l)

= 2|V1(H)|+m|Vk(H)| − l + f − 3

where f = (2−m)|Vk(H1 ∪H2)|+m|Vk((H1 ∪H2) ∩H3)|+ 2|V1((H1 ∪H2) ∩H3)|.

Since v1, v2 ∈ V1((H1 ∪H2) ∩H3) and 0 ≤ m ≤ 2, we have f ≥ 3, contradicting the

sparsity of (G,ψ). Hence, E(Hi ∩Hj) = ∅ for all pairs i ̸= j.

We now show that at least one of H1, H2, H3 is a general count blocker. Assume,

for a contradiction, that for 1 ≤ i ≤ 3 there is some 2 ≤ li ≤ 3 such that Hi is (2, li)-

tight. If |V (Hi ∩Hj)| = 1 for all 1 ≤ i ̸= j ≤ 3, then it is easy to see that ⟨H + v⟩

is generated by the elements in ⟨H1 + f1⟩ , ⟨H2 + f2⟩ , ⟨H3 + f3⟩. (Since every closed

walk in H is composed of closed walks in Hi for 1 ≤ i ≤ 3, and the concatenation

of walks from v1 to v2 in H1, walks from v2 to v3 in H2, and walks from v3 to v1 in
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H3.) Moreover

|E(H)| =
3∑
i=1

|E(Hi)| =
3∑
i=1

[2|V (Hi)| − li]

= 2|V (H)|+ 2
∑

1≤i ̸=j≤3

[|V (Hi ∩Hj)| − |V (H ′)|]−
3∑
i=1

li

= 2|V (H)|+ 2(1 + 1 + 1)−
3∑
i=1

li = 2|V (H)|+ 6−
3∑
i=1

li. (6.3)

If
∑3

i=1 li = 9, then H1, H2, H3 are all balanced blockers, and so H + v is balanced.

But since |E(H)| = 2|V (H)| − 9, this contradicts Proposition 6.1.2. If
∑3

i=1 li < 9,

then at least one of H1, H2, H3 is a Z2-blocker and, since H1, H2, H3 are all either

balanced blockers or Z2-blocker, ⟨H + v⟩ ≃ Z2. However, by Equation (6.3),

|E(H)| ≥ 2|V (H)| − 2, contradicting Proposition 6.1.2 or the sparsity of (G,ψ).

Hence, |V (Hi ∩ Hj)| ≥ 2 for some 1 ≤ i ̸= j ≤ 3. Without loss of generality, let

|V (H1 ∩H2)| ≥ 2. Then,

|E(H1 ∪H2)| = 2|V (H1 ∪H2)|+ 2|V (H1 ∩H2)| − l1 − l2

≥ 2|V (H1 ∪H2)| − l1 − l2 + 4

≥ 2|V1(H1 ∪H2)|+m|Vk(H1 ∪H2)| − l1 − l2 + 4,

where the last inequality holds because m ≤ 2. If l = 2 or if l1 + l2 ≤ 5, this

contradicts Proposition 6.1.2. Hence, l = 1 and l1+l2 = 6. It follows that H1, H2 are

balanced blockers. Moreover, rearranging Equation (6.3) and noting that l1 = l2 = 3

and l3 ≤ 3, we know that

|E(H)| ≥ 2|V (H)| − 1 + 2

( ∑
1≤i ̸=j≤3

|V (Hi ∩Hj)| − |V (H ′)| − 4

)

≥ 2|V1(H)|+m|Vk(H)| − 1 + 2

( ∑
1≤i ̸=j≤3

|V (Hi ∩Hj)| − |V (H ′)| − 4

)
,

since m ≤ 2. If we show that f :=
∑

1≤i ̸=j≤3 |V (Hi ∩ Hj)| − |V (H ′)| ≥ 4, this

contradicts Proposition 6.1.2. Notice that |V (H ′)| is at most the minimum of

|V (Hi ∩ Hj)|, where i ̸= j run from 1 to 3. Call this number min. Hence,

156



6.2. A gain tight graph admits a reduction

f ≥
∑

1≤i ̸=j≤3 |V (Hi ∩Hj)| −min. If min = |V (H1 ∩H2)|, then |V (H2 ∩H3)| ≥ 2

and |V (H1 ∩H3)| ≥ 2, and so f ≥ 2 + 2 ≥ 4. So assume, without loss of generality,

that min = |V (H2 ∩ H3)|, and hence that f ≥ |V (H1 ∩ H2)| + |V (H1 ∩ H3)|. If

|V (H1 ∩H3)| ≥ 2, then f ≥ 4. So, assume that V (H1 ∩H3) = {v1}. By minimality,

V (H2 ∩ H3) = {v3}. It follows that V (H ′) = ∅, and so f ≥ 2 + 1 + 1 = 4. Since

we at least one of H1, H2, H3 is a general count blocker. Assume, without loss of

generality, that H1 is a general-count blocker.

Claim: For 2 ≤ i ≤ 3, we have |V (H1 ∩Hi)| = 1.

Proof: If Hi is also a general-count blocker, since |E(H1∪Hi)| = |E(H1)|+ |E(Hi)|,

the graph H ′
i := H1 ∪Hi satisfies

|E(H ′
i)| = 2|V1(H ′

i)|+m|Vk(H ′
i)| − l + (2|V1(H1 ∩Hi)|+m|Vk(H1 ∩Hi)| − l)

≥ 2|V1(H ′
i)|+m|Vk(H ′

i)| − l + (2|V1(H1 ∩Hi)|+m|Vk(H1 ∩Hi)| − 2),

since l ≤ 2. If |V1(H1 ∩ Hi)| ≥ 1, or if |Vk(H1 ∩ Hi)| ≥ 2 (and so m = 1 by

assumption), it is easy to see that this is at least 2|V1(H ′
i)| +m|Vk(H ′

i)| − l. This

contradicts Proposition 6.1.2. Hence, |V (H1∩Hi)| = |Vk(H1∩Hi)| = 1, and the claim

holds. Whether Hi is a balanced blocker or a Z2-blocker, |E(Hi)| ≥ 2|V (Hi)| − 3.

Hence,

|E(H ′
i)| ≥ 2|V1(H ′

i)|+m|Vk(H ′
i)| − l + (2|V1(H1 ∩Hi)|+ 2|Vk(H1 ∩Hi)| − 3)

= 2|V1(H ′
i)|+m|Vk(H ′

i)| − l + (2|V (H1 ∩Hi)| − 3),

where the inequality holds because Vk(H1 ∩Hi) ⊆ Vk(Hi) and m ≤ 2. If H1 and Hi

have more than two vertices in common, then this contradicts the sparsity of (G,ψ).

Hence, the claim holds. □

By the Claim, V (H1 ∩H2) = {v2} and V (H1 ∩H3) = {v1}. Hence, v1, v2, v3 do

not lie in V (H ′). Let n be the number of free vertices in {v1, v2, v3}. Since each

vertex in {v1, v2, v3} lies in Hi ∩Hj for some 0 ≤ i ̸= j ≤ 1, this implies that

S1 :=
∑

1≤i ̸=j≤3

|V1(Hi ∩Hj)| − |V1(H ′)| ≥ n
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and

Sk :=
∑

1≤i ̸=j≤3

|Vk(Hi ∩Hj)| − |Vk(H ′)| ≥ 3− n.

We look at the following cases separately: H2, H3 are not general count blockers;

H2 is a general-count blocker, but H3 is not; H2, H3 are general-count blockers.

Case 1: H2, H3 are not general count blockers.

Whether H2, H3 are balanced blockers or Z2-blocker, we have |E(Hi)| ≥ 2|V (Hi)|−3

for i = 1, 2. Hence,

|E(H)| ≥ (2|V1(H1)|+m|Vk(H1)| − l) + (2|V (H2)| − 3) + (2|V (H3)| − 3)

= 2[|V1(H)|+ S1] +m[|Vk(H)|+ Sk] + (2−m)(|Vk(H2)|+ |Vk(H3)|)− 6− l

≥ 2|V1(H)|+m|Vk(H)| − l + f,

where f := 2n+m(3− n) + (2−m)(|Vk(H2)|+ |Vk(H3)|)− 6. If f ≥ 0, Proposition

6.1.2 leads to a contradiction, and so there is an admissible 1-reduction at v. We

will show that indeed f ≥ 0. This is clear if n = 3. Suppose n = 2, so that

f = m+ (2−m)(|Vk(H2)|+ |Vk(H3)|)− 2.

Since n = 2, at least one of v1, v2, v3 is fixed, and so |Vk(H2)| + |Vk(H3)| ≥ 1.

Hence, f ≥ m + 2 − m − 2 = 0. So, we may assume n ≤ 1. Hence, there are

at least two fixed vertices in {v1, v2, v3} ⊂ V (G), and so |Vk(H2)| + |Vk(H3)| ≥ 2.

By assumption, this implies that m = 1 and H2 is a balanced blocker. Hence,

f = n− 3 + |Vk(H2)|+ |Vk(H3)| ≥ n− 1. When n = 1, f ≥ 0. So, let n = 0. Then

|Vk(H2)|, |Vk(H3)| ≥ 2, so f ≥ 1.

Case 2: H2 is a general-count blocker, but H3 is a not.

Whether H3 is a balanced blocker or a Z2-blocker, we have |E(H3)| ≥ 2|V (H3)| − 3.

Therefore,

|E(H)| ≥ (2|V1(H1)|+ |Vk(H1)| − l) + (2|V1(H2)|+ |Vk(H2)| − l) + (2|V (H3)| − 3)

= 2[|V1(H)|+ S1] +m[|Vk(H)|+ Sk] + (2−m)|Vk(H3)| − 3− 2l

≥ 2[|V1(H)|+ n] +m[|Vk(H)|+ (3− n)] + (2−m)|Vk(H3)| − 3− 2l

= 2|V1(H)|+m|Vk(H)| − l + f,
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where f := 2n+m(3− n) + (2−m)|Vk(H3)| − 3− l ≥ 0. If f ≥ 0, then we obtain

a contradiction by Proposition 6.1.2. We show that indeed f ≥ 0. If n = 3, then

f ≥ 3− l > 0, since l ≤ 2. If n = 2, then f ≥ 1+m− l ≥ 0, since l−m ≤ 1. Hence,

we may assume that n ≤ 1. So, at least two of the elements in {v1, v2, v3} ⊂ V (G)

are fixed. It follows that m = 1 and f = n− l+ |Vk(H3)|. If n = 1, then |Vk(H3)| ≥ 1

and f = 1− l + |Vk(H3)| ≥ 2− l ≥ 0, since l ≤ 2. If n = 0, then |Vk(H3)| ≥ 2 and

f ≥ 2− l ≥ 0.

Case 3: H2, H3 are general-count blockers.

In this case, we have

|E(H)| =
3∑
i=1

|E(Hi)| = 2
3∑
i=1

|V1(Hi)|+m
3∑
i=1

|Vk(Hi)| − 3l

= 2(|V1(H)|+ S1) +m(|Vk(H)|+ Sk)− 3l

≥ 2|V1(H)|+m|Vk(H)| − l + [2n+m(3− n)− 2l].

If f := 2n+m(3−n)− 2l ≥ 0, then we obtain a contradiction by Proposition 6.1.2.

Assume that either (G,ψ) is not (2, 1, 3, 2)-gain tight or at least one of v1, v2, v3 is

free. We will show that f ≥ 0. If n = 3, f = 6 − 2l = 2(3 − l) > 0, since l ≤ 2. If

n = 2, then f = 4+m− 2l = 2(2− l) +m ≥ 0, since l ≥ 2 and m ≥ 0. So, we may

assume that n ≤ 1, which implies that m = 1. Hence, f = n+3− 2l. If n = 1, then

f = 2(2 − l) ≥ 0. If n = 0, then f = 3 − 2l. Moreover, by assumption, l ≥ 1. But

then f ≥ 1. This proves the result.

6.3 Main result: reflection

Let (G̃, p̃) be a Cs-generic framework. Recall that the Γ-gain graph (G,ψ) of

G̃ is (2, 1, 3, 1)-gain tight whenever (G̃, p̃) is fully-symmetrically isostatic, and

(G,ψ) is (2, 1, 3, 2)-gain tight whenever (G̃, p̃) is anti-symmetrically isostatic (see

Proposition 5.1.1 in Subsection 5.1.1). In this section, we show that the converse

statements are also true.
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To do so, we employ a proof by induction on |V (G)|, which uses the vertex

extension and reduction moves described in Section 5.3. Hence, we first need to

show that there is an admissible reduction of (G,ψ), whose corresponding extension

does not break fully-symmetric or anti-symmetric infinitesimal rigidity.

Let v be a free vertex of degree 3 with no loop. By Theorem 6.2.1, there is always

an admissible 1-reduction at v, unless all neighbours of v are fixed and (G,ψ) is

(2, 1, 3, 2)-gain tight. Lemma 5.3.11 shows that a 1-extension maintains the fully-

symmetric and anti-symmetric infinitesimal rigidity of a framework. However, the

result assumes that all neighbours of the added vertex do not lie on the same line,

and hence they cannot all be fixed. This issue arises both in the fully-symmetric and

the anti-symmetric cases. Hence, our proof by induction cannot rely on applying a

1-reduction to a vertex whose neighbours are all fixed.

In the following result we show that, if G has at least two free vertices, and all

free vertices of degree 3 in V (G) have three fixed neighbours, then there is another

vertex in V (G) at which we may apply an admissible reduction.

Lemma 6.3.1. Let Γ be a cyclic group of order 2. For 1 ≤ l ≤ 2, let (G,ψ) be

a (2, 1, 3, l)-gain tight Γ-gain graph with |V1(G)| ≥ 2. Then there is a reduction of

(G,ψ) which yields a (2, 1, 3, l)-gain tight graph (G′, ψ′). The reduction which yields

(G′, ψ′) is one of the following: a fix-0-reduction, a 0-reduction, a loop-1-reduction,

a 1-reduction at a vertex with at least one free neighbour, or a fix-1-reduction.

Proof. The case where there are no fixed vertices is known (see e.g., [[56], Theorem

6.3]), so we may assume V2(G) ̸= ∅. Suppose G has a vertex v which is either a

fixed vertex of degree 1, or a free vertex of degree 2, or a free vertex of degree 3

with a loop. (Notice that if v has a loop, then l = 1.) Then, we may apply a

fix-0-reduction, or a 0-reduction, or a loop-1-reduction at v. All such reductions

are clearly admissible. Hence, we may assume that there is no such vertex v. By

Theorem 6.2.1, we may also assume that all free vertices of degree 3 in V (G) have

three distinct neighbours, all of which are fixed. Let n be the number of vertices of

degree 2 in V2(G).
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Claim: Under the above assumptions, we have n ≥ 3.

Proof. To see this, let v1, . . . , vt be the free vertices in G of degree 3 and assume

that for all 1 ≤ i ≤ t, the edges incident with vi are directed to vi. Notice that

t ≥ 2, by Lemma 6.1.1. Define the set

V ′ := {v ∈ V2(G) : (v, vi) ∈ E(G) for some 1 ≤ i ≤ t}.

Let n′ = |V ′| and consider the subgraph H of G induced by {v1, . . . , vt} ∪ V ′. By

the sparsity of (G,ψ), 3t ≤ |E(H)| ≤ 2t+ n′ − l and hence n′ ≥ t+ l.

Now, the average degree of G is ρ̂ = (4|V1(G)| + 2|V2(G)| − 2l)/|V (G)|. This

average is smallest when all vertices in V1(G) \ {v1, . . . , vt} have degree 4, and all

fixed vertices in V (G) which do not have degree 2, have degree 3. This gives ρ̂ ≥

(4|V1(G)|+ 3|V2(G)| − n− t)/|V (G)|. Hence,

n ≥ |V2(G)|+ 2l − t ≥ n′ + 2l − t ≥ (t+ l) + 2l − t = 3l ≥ 3,

as required. □

So, there is a fixed vertex v of degree 2. Let u1, u2 be the neighbours of v. Notice

that there is no (2, 1, 3, l)-gain tight subgraph H of G with u1, u2 ∈ V (H), v ̸∈ V (H),

as otherwise the graph H ′ := H + v satisfies

|E(H ′)| = |E(H)|+2 = 2|V1(H)|+|V2(H)|−l+2 = 2|V1(H ′)|+|V2(H ′)|−l+1, (6.4)

contradicting the sparsity of (G,ψ). We show that there is an admissible fix-1-

reduction at v.

First, suppose that l = 2. By the sparsity of (G,ψ), u1, u2 are free. Let

(G1, ψ1), (G2, ψ2) be obtained from (G,ψ) by removing v and adding the edge

e = (u1, u2) with gains id and γ ̸= id, respectively. Assume, for a contradiction, that

for 1 ≤ i ≤ 2, (Gi, ψi) has a blocker Hi. By Equation (6.4), H1, H2 are balanced

blockers. If E(H1 ∩H2) = ∅, then

|E(H1 ∪H2)| = 2|V (H1)| − 3 + 2|V (H2)| − 3

= 2|V (H1 ∪H2)|+ 2|V (H1 ∩H2)| − 6 ≥ 2|V (H1 ∪H2)| − 2,

161



Chapter 6. Sufficient conditions for groups of order 2 and 3

where the inequality holds because u1, u2 ∈ V (H1∩H2). But then H
′ := H1∪H2+v

satisfies

|E(H ′)| = 2|V (H ′)|−2 = 2|V1(H ′)|+|V2(H ′)|−2+|V2(H ′)| ≥ 2|V1(H ′)|+|V2(H ′)|−1,

where the inequality holds because v ∈ V2(H
′). This contradicts the sparsity of

(G,ψ). So E(H1 ∩H2) ̸= ∅. Since H1, H2 are balanced blockers, all paths from u1

to u2 in H1 have gain id and all paths from u1 to u2 in H2 have gain γ. By the

sparsity count, H1 ∩ H2 is connected (see, e.g., the proof of Lemma 6.1.5(ii)). So,

there is a path from u1 to u2 in H1 ∩H2 with two different gains, a contradiction.

Hence, at least one of (G1, ψ1), (G2, ψ2) is (2, 1, 3, 2)-gain tight.

Now, let l = 1. Let (G1, ψ1) be obtained from (G,ψ) by removing v and adding

the edge e1 = (u1, u2) with gain id. Assume that (G1, ψ1) has a blocker H1. By

Equation (6.4), H1 is a balanced blocker. Hence, H1 + v satisfies

|E(H1 + v)| = 2|V (H1 + v)| − 3 = (2|V1(H1 + v)|+ |V2(H1 + v)| − 3) + |V2(H1 + v)|.

If H1 + v contains three fixed vertices, this contradicts the sparsity of (G,ψ). Since

v is fixed, this implies that at most one of u1, u2 is fixed. Assume, without loss of

generality, that u1 is free.

Let (G2, ψ2) be obtained from (G,ψ) by removing v and adding a loop e2 at u1

with gain γ ̸= id. Assume that (G2, ψ2) has a blocker H2. Since H2 + e2 contains

the unbalanced loop e2, H2 is a general-count blocker. Hence, by Equation (6.4),

u2 ̸∈ V (H2). If E(H1 ∩ H2) ̸= ∅, then |E(H1 ∩ H2)| ≤ 2|V (H1 ∩ H2)| − 3 and so

H12 := H1 ∪H2 satisfies

|E(H12)| ≥ (2|V (H1)| − 3) + (2|V1(H2)|+ |V2(H2)| − 1)− (2|V (H1 ∩H2)| − 3)

= 2|V1(H12)|+ |V2(H12)| − 1 + (|V2(H1)| − |V2(H1 ∩H2)|)

≥ 2|V1(H12)|+ |V2(H12)| − 1.

By Equation (6.4), this contradicts the sparsity of (G,ψ). So, E(H1 ∩ H2) = ∅.
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Hence,

|E(H12)| = (2|V (H1)| − 3) + (2|V1(H2)|+ |Vk(H2)| − 1)

= 2|V1(H12)|+ |V2(H12)| − 4 + |V2(H1)|+ 2|V1(H1 ∩H2)|+ |V2(H1 ∩H2)|

≥ 2|V1(H12)|+ |V2(H12)| − 2 + (|V2(H1)|+ |V2(H1 ∩H2)|).

where the inequality holds because u1 ∈ V1(H1 ∩ H2). If |V2(H1)| ≥ 1, then H12

is (2, 1, 3, 1)-gain tight which, by Equation (6.4), contradicts the sparsity of (G,ψ).

Hence, V2(H1) = ∅. In particular, u2 is free.

Let (G3, ψ3) be obtained from (G,ψ) by removing v and adding a loop e3 at u2

with gain γ ̸= id. Assume that (G3, ψ3) has a blocker H3. Similarly as we did with

H2, it is easy to see that H3 is a general-count blocker, that u1 ̸∈ V (H3) and that

E(H1∩H3) = ∅. Moreover, E(H2∩H3) = ∅, as otherwise H2∪H3 is (2, 1, 3, 1)-gain

tight which, by Equation (6.4), contradicts the sparsity of (G,ψ). Let

S1 =
∑

1≤i ̸=j≤3

|V1(Hi ∩Hj)| − |V1(H1 ∩H2 ∩H3)|

and

S2 =
∑

1≤i ̸=j≤3

|V2(Hi ∩Hj)| − |V2(H1 ∩H2 ∩H3)|.

Since u1, u2 ̸∈ V1(H1 ∩H2 ∩H3), we have S1 ≥ 2. So the graph H := H1 ∪H2 ∪H3

satisfies

|E(H)| = (2|V (H1)| − 3) + (2|V1(H2)|+ |V2(H2)| − 1) + (2|V1(H3)|+ |V2(H3)| − 1)

= 2|V1(H)|+ |V2(H)| − 5 + (|V2(H1)|+ 2S1 + S2)

≥ 2|V1(H)|+ |V2(H)| − 1.

By Equation (6.4), this contradicts the sparsity of (G,ψ). Hence, there is an

admissible fix-1-reduction at v.

Theorem 6.3.2. Let (G̃, p̃) be a Cs-generic framework with Cs-gain framework

(G,ψ, p). The following hold:

(1) If (G,ψ) is (2, 1, 3, 1)-gain tight, then (G̃, p̃) is fully-symmetrically isostatic.
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(2) If (G,ψ) is (2, 1, 3, 2)-gain tight, then (G̃, p̃) is anti-symmetrically isostatic.

Proof. We use a proof by induction on |V (G)|. First, assume that V (G) has no free

vertex. If (G,ψ) is (2, 1, 3, 1)-gain tight, then G is a tree. The base case consists of

exactly one single vertex and no edge, which is clearly fully-symmetrically isostatic.

Assume that the statement is true for all graphs on m vertices and let G be a graph

onm+1 vertices. Since G is a tree, it has a vertex v of degree 1. Thus, we may apply

a fix-0-reduction at v to obtain a (2, 1, 3, 1)-gain tight graph (G′, ψ′) on m vertices.

By the inductive hypothesis, all Cs-generic realisations of G̃′ are fully-symmetrically

isostatic. Choose a Cs-generic realisation (G̃′, q̃′) of G̃′. By Lemma 5.3.6, there is

a Cs-symmetric realisation (G̃, q̃) of G̃ which is fully-symmetrically isostatic. By

Cs-genericity, (G̃, p̃) is also fully-symmetrically isostatic.

If (G,ψ) is (2, 1, 3, 2)-gain tight, then G consists of exactly two isolated vertices

u, v, with no edges, since any edge would violate the sparsity count. In this case,

any anti-symmetric motion m̃ of (G̃, p̃) assigns vectors (0 m1)
T and (0 m2)

T to u

and v, respectively. Since u, v are fixed, p̃(u) = (a 0)T and p̃(v) = (b 0)T for some

a, b ∈ R. Therefore, ⟨m̃(u)− m̃(v), p̃(u)− p̃(v)⟩ = 0, and m̃ is trivial. It follows

that (G̃, p̃) is anti-symmetrically isostatic.

Hence, we may assume |V1(G)| ≥ 1. If |V (G)| = 1, then G is a single vertex

with exactly one loop when (G,ψ) is (2, 1, 3, 1)-gain tight, and it is a single vertex

with no loop when (G,ψ) is (2, 1, 3, 2)-gain tight. In the former case, (G̃, p̃) is fully-

symmetrically isostatic: it is rigid since it is a single edge, and the ρ0-orbit rigidity

matrix of (G,ψ, p) is a non-zero row. In the latter, (G̃, p̃) is anti-symmetrically

isostatic: the only joints p̃(u) and p̃(v) of (G̃, p̃) have coordinates (x y)T and

σp̃(u) = (−x y)T , respectively; By Equation (4.3), any anti-symmetric infinitesimal

motion m̃ of (G̃, p̃) which assigns (m1 m2)
T to u satisfies m̃(v) = (m1 − m2)

T ,

and so ⟨m̃(u)− m̃(v), p̃(u)− p̃(v)⟩ = 0. All base graphs are given in Figure 6.3.

For the inductive step, assume the result holds whenever |V (G)| = m for some

m ∈ N. Let 1 ≤ l ≤ 2 and suppose (G,ψ) is (2, 1, 3, l)-gain tight with |V (G)| = m+1.

If G has a fixed vertex v of degree 1, then we may apply a fix-0-reduction at v to
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Fully-symmetric Anti-symmetric

Figure 6.3: Base graphs for reflection.

obtain a (2, 1, 3, l)-gain tight graph (G′, ψ′) on m vertices. By induction, all Cs-

generic realisations of G̃′ are fully-symmetrically isostatic if l = 1, and they are

anti-symmetrically isostatic if l = 2. Then, our result follows from Lemma 5.3.2.

So, assume that all fixed vertices of G have degree at least 2.

Suppose that V1(G) = {u}, and let V2(G) = {v1, . . . , vt} for some t ≥ 1. The

average degree of G, denoted ρ̂, satisfies ρ̂ = 2|E(G)|/|V (G)| = (4+2t−2l)/|V (G)|.

The average degree of G is smallest when all vertices in V2(G) have degree 2, and

so 2t + deg(u) ≤ 4 + 2t − 2l. Hence deg(u) ≤ 4 − 2l. By Lemma 6.1.1(i), l = 1

and deg(u) = 2. Then we may apply a 0-reduction at u to obtain a (2, 1, 3, 1)-gain

tight graph (G′, ψ′) on m vertices. By induction, all Cs-generic realisations of G̃′ are

fully-symmetrically isostatic. Then the result holds by Lemma 5.3.4. So, assume

|V1(G)| ≥ 2.

By Lemma 6.3.1, (G,ψ) admits a reduction using one of the moves listed in

the statement of the lemma. Let (G′, ψ′) be a (2, 1, 3, l)-gain tight graph obtained

by applying such a reduction to (G,ψ). By induction, all Cs-generic realisations

of G̃′ are fully-symmetrically isostatic if l = 1 and anti-symmetrically isostatic if

l = 2. Let q̃′ be a Cs-generic configuration of G̃′ which also satisfies the conditions of

Lemma 5.3.11 (respectively, Lemma 5.3.6) if G̃′ is obtained from G̃ by applying a 1-

reduction (respectively, a fix-1-reduction). Such a configuration exists: if necessary,

we may apply a small symmetry-preserving perturbation to the points of a Cs-generic

framework, which will maintain Cs-genericity. By Lemmas 5.3.2, 5.3.4, 5.3.6, 5.3.8

and 5.3.11, there is a realisation (G̃, q̃) of G̃ which is fully-symmetrically isostatic

if l = 1 and anti-symmetrically isostatic if l = 2. Since p̃ is Cs-generic, the result

follows.
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The following main result for Cs is now a consequence of Proposition 5.1.1 and

Theorem 6.3.2. Note that it is a generalisation of Theorem 3.1.7, which was given

in [56].

Theorem 6.3.3. Let (G̃, p̃) be a Cs-generic framework, and let (G,ψ) be the Z2-gain

graph of G̃. (G̃, p̃) is infinitesimally rigid if and only if (G,ψ) has a (2, 1, 3, 1)-gain

tight spanning subgraph and a (2, 1, 3, 2)-gain tight spanning subgraph.

6.4 Main result: 2-fold rotation

Let (G̃, p̃) be a C2-generic framework with C2-gain framework (G,ψ, p). Recall that

(G,ψ) is (2, 0, 3, 1)-gain tight whenever (G̃, p̃) is fully-symmetrically isostatic, and

(G,ψ) is (2, 2, 3, 2)-gain tight whenever (G̃, p̃) is anti-symmetrically isostatic (see

Proposition 5.1.2 in Subsection 5.1.2). In this section, we show that the converse

statements are also true.

We do so by induction on |V1(G)|, using the vertex reduction moves shown in

Section 5.3. Hence, we first need to show that there is an admissible reduction of

(G,ψ). Let v ∈ V (G) be a free vertex of degree 3. By Theorem 6.2.1, there is always

an admissible 1-reduction at v, unless (G,ψ) is (2, 2, 3, 2)-gain tight, v has exactly

one free neighbour and exactly one fixed neighbour. In the following Lemma, we

take care of this remaining case.

Lemma 6.4.1. Let Γ be a cyclic group of order 2. Let (G,ψ) be a (2, 2, 3, 2)-gain

tight Γ-gain graph with |V2(G)| ≤ 1 and 2 ≤ |V (G)|. Then there is a reduction of

(G,ψ) which yields a (2, 2, 3, 2)-gain tight graph (G′, ψ′). The reduction which yields

(G′, ψ′) is one of the following: a 0-reduction, a 1-reduction or a 2-vertex reduction.

Proof. The case where there is no fixed vertex is already known (see, e.g., [[56],

Theorem 6.8]). Hence, we may assume V2(G) = {v0}. By Lemma 6.1.1, there is a

free vertex in V (G) of degree 2 or 3. By the sparsity of (G,ψ), no vertex of G has

a loop. We may assume that G has no free vertex of degree 2. Otherwise, we may
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apply a 0-reduction to (G,ψ). (Clearly, any 0-reduction is admissible.) Further, we

may assume that all free vertices of degree 3 have exactly 2 distinct neighbours, one

of which is v0: otherwise, we may apply a 1-reduction to (G,ψ), by Theorem 6.2.1.

So let v1, . . . , vt be the free vertices in G of degree 3. For 1 ≤ i ≤ t let ui be the

free neighbour of vi, and ei := (ui, v0). By Lemma 6.1.1(ii), deg(v0) ≤ t. So, if the

edge ei is present for some 1 ≤ i ≤ t, then ui must be a vertex of degree 3. Hence,

we can apply a 2-vertex reduction at ui, vi. So, we may assume that ei ̸∈ E(G) for

all 1 ≤ i ≤ t.

For 1 ≤ i ≤ t, let (Gi, ψi) be obtained from (G,ψ) by removing vi and adding

ei with gain id. We will show that, for some 1 ≤ i ≤ t, (Gi, ψi) is an admissible

1-reduction. Assume, for a contradiction, that for all 1 ≤ i ≤ t there is a blocker Hi

for (Gi, ψi). By Proposition 6.1.2, each Hi is a balanced blocker.

Moreover, for each 1 ≤ i ̸= j ≤ t, vj ̸∈ V (Hi). To see this, suppose, for a

contradiction, that vj ∈ V (Hi). Since Hi is (2, 3)-tight, all of its vertices have

degree at least 2, by Lemma 6.1.1(i). Hence, two of the edges incident to vj lie in

E(Hi). Moreover, since Hi is balanced, it cannot contain parallel edges. Hence, Hi

contains exactly 2 of the edges incident to vj. Let e be the edge incident to vj such

that e ̸∈ E(Hi). Then

|E(Hi + vi + e)| = |E(Hi)|+ 4 = 2|V (Hi)|+ 1 = 2|V (Hi + vi + e)| − 1,

contradicting the sparsity of (G,ψ). So vj ̸∈ V (Hi) for all 1 ≤ i ̸= j ≤ t.

Claim: E(Hi ∩Hj) = ∅ and V (Hi ∩Hj) = {v0} for all 1 ≤ i ̸= j ≤ t.

Proof. Choose some 1 ≤ i ̸= j ≤ t. Suppose that E(Hi∩Hj) ̸= ∅. We show that this

leads to a contradiction. In a similar way as we did in the proof of Lemma 6.1.5(ii),

we can see that |E(Hi∪Hj)| ≥ 2|V (Hi∪Hj)|+3c−c0−6, where c, c0 are, respectively,

the number of connected components and isolated vertices of Hi ∩Hj. Notice that

c0 ≤ c − 1. (Since all isolated vertices of H ′ are also connected components of H ′,

and H ′ has at least one connected component with non-empty edge set.) Therefore,

|E(Hi ∪ Hj)| ≥ 2|V (Hi ∪ Hj)| + 2c − 5. By the sparsity of (G,ψ), c = 1 and
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|E(Hi ∪ Hj)| = 2|V (Hi ∪ Hj)| − 3. But the graph H obtained from Hi ∪ Hj by

adding vi, vj and its incident edges satisfies |E(H)| = 2|V (H)|−1, contradicting the

sparsity of (G,ψ). Thus, E(Hi ∩Hj) = ∅ for all 1 ≤ i ̸= j ≤ t.

Now, if V (Hi ∩Hj) ̸= {v0}, then

|E(Hi ∪Hj)| = |E(Hi)|+ |E(Hj)|

= 2|V (Hi ∪Hj)|+ 2|V (Hi ∩Hj)| − 6 ≥ 2|V (Hi ∪Hj)| − 2.

But then the graph H obtained from Hi ∪Hj by adding vi, vj and its incident edges

satisfies |E(H)| = 2|V (H)|, contradicting the sparsity of (G,ψ). So V (Hi ∩ Hj) is

the singleton {v0}. Since i, j were arbitrary, the claim holds. □

Let H :=
⋃t
i=1Hi. By the Claim,

|E(H)| =
t∑
i=1

|E(Hi)| = 2
t∑
i=1

|V (Hi)|−3t = 2(|V (H)|+(t−1))−3t = 2|V (H)|−t−2.

So for the graph G′ obtained from H by adding the vertices vi, i = 1, . . . , t, and

their incident edges, we have |E(G′)| = 2|V (G′)| − 2. This implies that there is no

edge e ∈ E(G) \ E(H) that joins two vertices in V (H).

Next we show that there is no non-empty subgraph H ′ of G such that V (G) is

the disjoint union of V (G′) and V (H ′). Assume, for a contradiction, that such a

graph H ′ exists. By assumption, all vertices of H ′ have degree at least 4 in G. Let

d(G′, H ′) be the number of edges joining a vertex in G′ with one in H ′. We know

|E(H ′)| = 2|V (H ′)| − α for some α ≥ 2. We have that

4|V (H ′)| ≤
∑

v∈V (H′)

degG(v) = 2|E(H ′)|+ d(G′, H ′) = 4|V (H ′)| − 2α + d(G′, H ′),

and so d(G′, H ′) ≥ 2α. Hence,

|E(G)| = |E(G′)|+ |E(H ′)|+ d(G′, H ′) ≥ 2|V (G′)| − 2 + 2|V (H ′)| − α + 2α

= 2|V (G)| − 2 + α,

which contradicts the sparsity of (G,ψ), since α ≥ 2. So, H ′ does not exist, and

G = G′.
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Finally, fix some 1 ≤ i ≤ t and let n,m be the vertices of H which have degree

2 and 3 in Hi. The average degree of Hi is ρ̂ = 2|E(G)|/|V (Hi)| = (4|V (Hi)| −

6)/|V (Hi)|. The minimum average degree of Hi is (4|V (Hi)| − 2n − m)/|V (Hi)|.

Hence, 2n +m ≥ 6. In particular, there are at least 3 vertices of degree 2 or 3 in

V (Hi), and so there is a free vertex v of degree 2 or 3 that is not v0 or ui. This

means that v has degree 2 or 3 in G = G′. But this is not possible, since we assumed

there are no free vertices of degree 2 in G, and that all free vertices of degree 3 are

v1, . . . , vt. The result follows.

The following results will be proved in a very similar way to Theorem 6.3.2.

However, we now work with the half-turn group. So |V2(G)| ≤ 1.

Theorem 6.4.2. Let (G̃, p̃) be a C2-generic framework with C2-gain framework

(G,ψ, p). The following hold:

(1) If (G,ψ) is (2, 0, 3, 1)-gain tight, then (G̃, p̃) is fully-symmetrically isostatic.

(1) If (G,ψ) is (2, 2, 3, 2)-gain tight, then (G̃, p̃) is anti-symmetrically isostatic.

Proof. First, notice that if there is no free vertex, then G̃ is a single fixed vertex.

In this case G̃ is not (2, 0, 3, 1)-gain tight. It is (2, 2, 3, 2)-gain tight and clearly also

anti-symmetrically isostatic.

Hence, we may assume |V1(G)| ≥ 1. We prove the result by induction on |V1(G)|.

Assume |V1(G)| = 1. If (G,ψ) is (2, 0, 3, 1)-gain tight, G is either composed of a

free vertex and a loop, or a free vertex, a fixed vertex, and an edge connecting

them. In either case, O0(G,ψ, p) is a non-zero row with one-dimensional kernel, and

so (G̃, p̃) is fully-symmetrically isostatic. If (G,ψ) is (2, 2, 3, 2)-gain tight, G must

be a single free vertex. Any anti-symmetric motion of any realisation (G̃, p̃) of G̃

must be a translation of the whole framework, and so (G̃, p̃) is anti-symmetrically

isostatic. The base cases for the fully-symmetric and anti-symmetric case are given

in Figure 6.4.

Assume the result holds whenever |V1(G)| ≤ m for some m ∈ N and consider

the case where |V1(G)| = m+ 1.
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Fully-symmetric Anti-symmetric

Figure 6.4: Base graphs for 2-fold rotation.

If (G,ψ) is (2, 0, 3, 1)-gain tight, G has a free vertex v of degree 2 or 3, by

Lemma 6.1.1. If v has degree 2, or if it has degree 3 with a loop, then we may

apply a 0-reduction or loop-1-reduction at v to obtain a (2, 0, 3, 1)-gain tight graph

(G′, ψ′), since 0-reductions and loop-1-reductions are always admissible. Moreover,

if v has degree 3 with a loop, then it is not incident to a fixed vertex, by the

sparsity of (G,ψ). By the inductive hypothesis, all C2-generic realisations of G̃′ are

fully-symmetrically isostatic. Then, our result follows from Lemmas 5.3.4 and 5.3.8.

So, assume that v has degree 3 and no loops. By Lemma 6.2.1, there is a

(2, 0, 3, 1)-gain tight graph (G′, ψ′) obtained from (G,ψ) by applying a 1-reduction

at v. By induction, all C2-generic realisations of G̃′ are fully-symmetrically isostatic,

so take a C2-generic realisation (G̃′, q̃′) of G̃′ such that the conditions in Lemma 5.3.11

are satisfied. Then, our result holds by Lemma 5.3.11.

If (G,ψ) is (2, 2, 3, 2)-gain tight then, by Lemma 6.4.1, there is a (2, 2, 3, 2)-gain

tight graph (G′, ψ′) on at most m vertices (exactly m if we apply a 0-reduction or 1-

reduction, and exactly m−1 if we apply a 2-vertex reduction) obtained by applying

a reduction to (G,ψ).

By the inductive hypothesis, all C2-generic realisations of G̃′ are ρ1-isostatic.

Let q̃′ be a C2-generic configuration of G̃′, which also satisfies the conditions

of Lemma 5.3.11 if G̃′ is obtained from G̃ by applying a 1-reduction. By

Lemmas 5.3.4, 5.3.11 and 5.3.13, our result holds.

From Proposition 5.1.2 and Theorem 6.4.2, we obtain the following main result

for C2. Note that this is a generalisation of Theorem 3.1.8, which was given in [56].

Theorem 6.4.3. Let (G̃, p̃) be a C2-generic framework, and let (G,ψ) be the Z2-gain
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graph of G̃. (G̃, p̃) is infinitesimally rigid if and only if (G,ψ) has a (2, 0, 3, 1)-gain

tight spanning subgraph and a (2, 2, 3, 2)-gain tight spanning subgraph.

6.5 Main result: 3-fold rotation

Let k ≥ 3 be odd, and (G̃, p̃) be a Ck-generic framework with C3-gain framework

(G,ψ, p). Recall that (G,ψ) is (2, 0, 3, 1)-gain tight whenever (G̃, p̃) is fully-

symmetrically isostatic, and (G,ψ) is (2, 1, 3, 1)-gain tight whenever (G̃, p̃) is

ρ1-symmetrically isostatic and ρk−1-symmetrically isostatic (recall Lemmas 5.1.3

and 5.1.4 in Subsections 5.1.2 and 5.1.3, respectively). Here, we prove that the

converse is also true, which will give us the desired characterisation for C3-generic

frameworks.

Theorem 6.5.1. For some k ≥ 3, let (G̃, p̃) be a Ck-generic framework with Ck-gain

framework (G,ψ, p). The following hold:

(1) If (G,ψ) is (2, 0, 3, 1)-gain tight, then (G̃, p̃) is fully-symmetrically isostatic.

(2) If (G,ψ) is (2, 1, 3, 1)-gain tight and k is odd, then (G̃, p̃) is ρ1-isostatic and

ρk−1-isostatic.

Proof. We prove the result by induction on |V1(G)|, with the base cases given in

Figure 6.5. It is easy to check that, if G is a single vertex v with a loop, then

O0(G,ψ, p) has full rank and nullity 1 (since it is a non-zero multiple of p(v)), and

O1(G,ψ, p) and Ok−1(G,ψ, p) have full rank and nullity 1. (See, e.g., the proof of

Lemma 5.3.8: using the same notation, O1(G,ψ, p) = Ap(v)T .) Moreover, in the

second case of Figure 6.5, O0(G,ψ, p) has full rank and nullity 1, and in the fourth

case of Figure 6.5, O1(G,ψ, p) and Ok−1(G,ψ, p) have full rank and nullity 1.

For the inductive step, assume the result holds when |V1(G)| = t for some t ≥ 1,

and let (G,ψ) be a (2,m, 3, 1)-gain tight graph with |V1(G)| = t + 1, for some

0 ≤ t ≤ 1. Suppose that m = 0, and that V (G) has an isolated fixed vertex. Then,

we may remove it to obtain a (2, 0, 3, 1)-gain tight graph (G′, ψ′) on t vertices.
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By the inductive hypothesis, all Ck-generic realisations of G̃′ are fully-symmetrically

isostatic. Let q̃′ be a Ck-generic configuration of G̃′. For any extension q̃ : V (G) → R2

of q̃′, we have O0(G,ψ, q) = O0(G
′, ψ′, q′). So, (G̃, p̃) is also fully-symmetrically

isostatic. By Ck-genericity of (G̃, p̃), the result follows. So, we may assume that

each fixed vertex of (G,ψ) has degree at least 1.

By Lemma 6.1.1, G has a free vertex v of degree 2 or 3 (both when m = 0 and

when m = 1). If v has degree 2, or if it has degree 3 with a loop, then we may

apply a 0-reduction or loop-1-reduction at v to obtain a (2,m, 3, 1)-gain tight graph

(G′, ψ′) on t vertices. By the inductive hypothesis, all Ck-generic realisations of G̃

are fully-symmetrically isostatic when m = 0, and ρ1-symmetrically isostatic, ρk−1-

symmetrically isostatic when m = 1. Moreover, when m = 0, the vertex incident

to v is free, by the sparsity of (G,ψ). Then, by Lemmas 5.3.4 and 5.3.8, the result

holds. So, assume that v has degree 3 and no loop. By Theorem 6.2.1, there is

(2,m, 3, 1)-gain tight graph (G′, ψ′) obtained from (G,ψ) by applying a 1-reduction

at v.

By the inductive hypothesis, all Ck-generic realisations of G̃′ are ρ0-isostatic

when m = 0, and ρ1-isostatic when m = 1. Let (G̃, q̃′) be any Ck-generic realisation

of G̃′ which satisfies the conditions of Lemma 5.3.11. Then, our result holds by

Lemma 5.3.11.

Fully-symmetric ρ1, ρk−1-symmetric

Figure 6.5: Base graphs for 3-fold rotation (and k-fold rotation for ρ0, ρ1 and ρk−1).

We finally have our main combinatorial characterisation for C3, which is a direct

result of Proposition 5.1.5 and Theorem 6.5.1. Note that this is a generalisation of

Theorem 3.1.9, which was given in [56].
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Theorem 6.5.2. Let (G̃, p̃) be a C3-generic framework, and let (G,ψ) be the Z3-gain

graph of G̃. (G̃, p̃) is infinitesimally rigid if and only if (G,ψ) has a (2, 0, 3, 1)-gain

tight spanning subgraph and a (2, 1, 3, 1)-gain tight spanning subgraph.
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Chapter 7

Sufficient conditions for cyclic

groups of higher order

In this chapter we consider a Ck-generic framework (G̃, p̃), where k ≥ 4. The aim

of the chapter is to show that the conditions given in Section 5.1 which the Γ-gain

graph (G,ψ) of G̃ must satisfy in order for (G̃, p̃) to be infinitesimally rigid are

also sufficient, and hence fully characterise the infinitesimal rigidity of Ck-generic

frameworks. Similarly as in Chapter 6, we adopt a proof by induction on the order

of (G,ψ).

We structure the chapter as follows. In Section 7.1 we generalise the notion of

admissibility and blocker given in Chapter 6, and we give some results on blockers

which will be useful to prove some of the main results of the chapter. In Section 7.2

we show that, under certain conditions, there is always an admissible reduction at a

free vertex of (G,ψ). In Section 7.3 we show that, if (G,ψ) satisfies the conditions

given in Section 5.1, then (G̃, p̃) is infinitesimally rigid, provided 5 ≤ k ≤ 1000 is odd

or k = 4, 6. In Section 7.4 we explain the restrictions on the order of the symmetry

group. Specifically, we give counterexamples to show that the analogous results do

not hold if k ≥ 8 is even.
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7.1 Blockers of a reduction

Let k ≥ 4, 2 ≤ j ≤ k− 2, and let (G,ψ) be a Zjk-gain tight Γ-gain graph for a cyclic

group Γ of order k. We say a reduction of (G,ψ) is admissible if the Γ-gain graph

(G′, ψ′) which it yields is also Zjk-gain tight.

Definition 7.1.1. Let Γ be a cyclic group of order k ≥ 4. For 2 ≤ j ≤ k − 2, let

(G,ψ) be a Zjk-gain tight Γ-gain graph with a free vertex v of degree 3 which has no

loop. Let (G′, ψ′) be a Γ-gain graph obtained from (G,ψ) by applying a 1-reduction

at v, and let e = (v1, v2) be the edge we add when we apply such reduction. We say a

subgraphH of G−v with v1, v2 ∈ V (H) and E(H) ̸= ∅ is a blocker of e (equivalently,

of (G′, ψ′)) if H + e is connected and |E(H)| = 2|V (H)| − 3 + αjk(H + e), where αjk

is as defined in Subsection 3.2.5.

If αjk(H + e) = 3 − 2|Vk(H)|, we say H is a general-count blocker. If H + e is

balanced, we say H is a balanced blocker. If j is odd and ⟨H⟩ ≃ Z2, we say H is a

Z2-blocker.

A blocker is defined such that, when joined with the edge added through the

1-reduction, it is connected. However, disconnected graphs may also lead to a break

of the sparsity count when applying a 1-reduction. With the same notation as that

in Definition 7.1.1, let H ′ be a disconnected Zjk-gain tight subgraph of G − v with

no isolated vertices, such that v1, v2 ∈ V (H ′) and E(H ′) ̸= ∅. Let H1, . . . , Hc be the

connected components of H ′. By Lemma 3.2.30, H ′ is (2, 0, 0)-tight.

Moreover, each connected component of H ′ is also (2, 0, 0)-tight: if, say

|E(H1)| ≤ 2|V1(H1)| − 1, then some other connected component Hi must satisfy

|E(Hi)| ≥ 2|V1(Hi)| + 1, contradicting the sparsity of (G,ψ). For some (not

necessarily distinct) 1 ≤ s, t ≤ c, we have v1 ∈ V (Hs), v2 ∈ V (Ht). Then, Hs ∪Ht is

a blocker, as given in Definition 7.1.1.

Lemma 7.1.2. Let Γ be a cyclic group of order k ≥ 4. For 2 ≤ j ≤ k − 2, let

(G,ψ) be a Zjk-gain tight Γ-gain graph with a free vertex v of degree 3 which has

no loop. Let (G1, ψ1), (G2, ψ2) be obtained from (G,ψ) by applying two different
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1-reductions at v, which add the edges f1, f2, respectively. Let H1, H2 be blockers

for (G1, ψ1), (G2, ψ2), respectively, and use H to denote H1 ∪ H2. If |NG(v)| = 3,

assume that f1 and f2 do not share a fixed vertex. Then, ⟨H + v⟩ ≃ ⟨H + f1 + f2⟩.

Proof. Since ⟨H⟩ is a subgroup of a cyclic group, we know that there is some integer

n ≤ k such that ⟨H⟩ = ⟨h⟩ ≃ Zn through an isomorphism which maps h to 1. We

look at the cases where |NG(v)| is 1,2,3, separately.

Case 1: |NG(v)| = 1.

Let u be the neighbour of v, let e1, e2, e2 be the edges incident to u and v, and let

ψ(ei) = gi for 1 ≤ i ≤ 3. By Propositions 3.2.6 and 3.2.9, we may assume that

g1 = id. Moreover, by the definition of gain graph, we know that g2, g3, g2g
−1
3 ̸= id.

By the definition of 1-reduction and the fact that (G1, ψ1), (G2, ψ2) are obtained

by applying two different 1-reductions, we may assume without loss of generality

that ψ1(f1) ̸= ψ2(f2) lie in {g2, g3, g2g−1
3 }. It follows that ⟨{f1, f2}⟩ = ⟨g2, g3⟩, since

(g2g
−1
3 )g3 = g2 and (g2g

−1
3 )−1g2 = g3. Similarly, ⟨{e1, e2, e3}⟩ = ⟨g2, g3⟩. Then,

⟨H + v⟩ = ⟨H + f1 + f2⟩ = ⟨h, g2, g3⟩, as required.

Case 2: |NG(v)| = 2.

Let v1, v2 be the neighbours of v, let e1, e
′
1 be the edges incident to v and v1, and let

e2 be the edge incident to v and v2. By Propositions 3.2.6 and 3.2.9, we may assume

that ψ(e1) = ψ(e2) = id, and by the definition of gain graph, g := ψ(e′1) ̸= id.

By the definition of 1-reduction and the fact that (G1, ψ1), (G2, ψ2) are obtained

by applying two different 1-reductions, we know that at most one of ψ1(f1), ψ2(f2) is

id, and we may assume without loss of generality that ψi(fi) ∈ {id, g} for 1 ≤ i ≤ 2.

If v2 is fixed, it follows that ⟨H + v⟩ = ⟨H + f1 + f2⟩ = ⟨h, g⟩. So, assume that

v2 is free. Let W be the set of walks from v1 to v2 in H with no fixed vertex and

notice that, for all W ∈ W , g−1(gψ(W )) = ψ(W ). Then, ⟨H + v⟩ is the group

⟨h, g, ψ(W ), gψ(W ) : W ∈ W⟩ = ⟨h, g, ψ(W ) : W ∈ W⟩. Similarly,

⟨H + f1 + f2⟩ = ⟨h, g, ψ(W ) : W ∈ W⟩ = ⟨H + v⟩ ,

as required.
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Case 3: |NG(v)| = 3.

Let v1, v2, v3 be the neighbours of v and, for 1 ≤ i ≤ 3, let ei = (v, vi). By

Propositions 3.2.6 and 3.2.9, we may assume that ψ(ei) = id for 1 ≤ i ≤ 3.

Then, by the definition of 1-reduction, ψ1(f1) = ψ2(f2) = id. Assume, without

loss of generality, that f1 = (v1, v2) and that f2 = (v2, v3). By assumption, v2 is

free. For 1 ≤ s ̸= t ≤ 3, let Ws,t denote the set of walks from vs to vt in H

which do not contain a fixed vertex. If v1, v2 are free, then ⟨H + f1 + f2⟩ , ⟨H + v⟩

are both ⟨h, ψ(W12), ψ(W23), ψ(W13) : W12 ∈ W1,2,W23 ∈ W2,3,W13 ∈ W1,3⟩. So, we

may assume that one of v1, v3 is fixed. Assume, without loss of generality, that v1 is

fixed. Then, ⟨H + f1 + f2⟩ = ⟨H + v⟩ = ⟨h, g, ψ(W ) : W ∈ W2,3⟩. This proves the

result.

Let (G,ψ) be Zjk-gain tight Γ-gain graph with a free vertex v of degree 3. It

is easy to see that there are at least two possible 1-reductions at v. (It can be

seen, for instance, in the proof of Lemma 7.1.2.) Let (G1, ψ1), (G2, ψ2) be obtained

from (G,ψ) by applying two different 1-reductions at v, which add the edges f1, f2,

respectively. Suppose that neither one of the 1-reductions is admissible, so that

(G1, ψ1), (G2, ψ2) have some blockers H1, H2, respectively. Similarly as we did in

Chapter 6, we examine H1 ∪ H2 for the case where E(H1 ∩ H2) = ∅. (Recall

Lemma 6.1.5 in Section 6.1.)

We aim to show that |E(H1 ∪H2)| = 2|V (H1 ∪H2)| − 3+αjk(H1 ∪H2 + f1 + f2)

whenever E(H1∩H2) ̸= ∅. Then, if E(H1∩H2) ̸= ∅, we need only consider the case

where H1 ∪H2+ f1+ f2 is proper near-balanced and H1 ∪H2 is (2, 1)-tight, and the

case where |NG(v)| = 3 and f1, f2 share a fixed vertex, by Lemma 7.1.2.

Note that Zjk-sparsity is far more refined than the sparsity conditions we needed

in Chapter 6: since 0 ≤ αkj (H1 + f1), α
k
j (H2 + f2) ≤ 3, we must consider 10 different

cases. If we restrict the values of αkj (H1 + f1), α
k
j (H2 + f2) to lie between 1 and 2,

we then only have to consider 3 cases. We therefore split the study of H1 ∪ H2 in

different subsections: in Subsection 7.1.1, we show that H1, H2 cannot be general-

count blockers, so that αkj (H1 + f1), α
k
j (H2 + f2) ≤ 2. (Note, this is the analogous
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result as Lemma 6.1.5(i) in our new setting.) In Subsection 7.1.2, we show that

the desired result holds whenever αkj (Hi + fi) = 0 for some 1 ≤ i ≤ 2. Then, in

Subsection 7.1.3, we prove the full result.

7.1.1 General count blockers

Lemma 7.1.3. Let Γ be a cyclic group of order k ≥ 4. For 2 ≤ j ≤ k − 2, let

(G,ψ) be a Zjk-gain tight Γ-gain graph with a free vertex v of degree 3 which has

no loop. Let (G1, ψ1), (G2, ψ2) be obtained from (G,ψ) by applying two different

1-reductions at v, which add the edges f1 and f2, respectively. For i = 1, 2, assume

that (Gi, ψi) has a blocker Hi. If E(H1∩H2) ̸= ∅, then H1, H2 are not general-count

blockers.

Proof. Let H := H1 ∪H2, H
′ := H1 ∩H2, and let H ′

1, . . . , H
′
c denote the connected

components of H ′. Let c0 ≤ c − 1 be the number of isolated vertices of H ′,

so that H ′
1, . . . , H

′
c0

are the isolated vertices of H ′, and H ′
c0+1, . . . , H

′
c are the

connected components of H ′ with non-empty edge set. Assume, for a contradiction,

that E(H ′) ̸= ∅ and that Hi is a general-count blocker, for some 1 ≤ i ≤ 2.

Assume, without loss of generality, that H1 is a general count blocker. We use the

abbreviation α to denote αjk(H2 + f2) and, for each c0 + 1 ≤ i ≤ c, we use αi to

denote αjk(H
′
i). By the sparsity of (G,ψ), we have

|E(H ′)| ≤
c0∑
i=1

[2|V (H ′
i)| − 2] +

c∑
i=c0+1

[2|V (H ′
i)| − 3 + αi]

= 2|V (H ′)| − (2c0 + 3(c− c0)) +
c∑

i=c0+1

αi.

Therefore, letting g = −(2c0 + 3(c− c0)) +
∑c

i=c0+1 αi, we have

|E(H)| ≥ 2|V1(H1)|+ (2|V (H2)| − 3 + α)− (2|V (H ′)|+ g)

= 2|V1(H1)|+ (2|V1(H2)|+ 2|Vk(H2)| − 3 + α)− (2|V1(H ′)|+ 2|Vk(H ′)|+ g)

= 2|V1(H)|+ 2(|Vk(H2)| − |Vk(H ′)|) + 2c0 + 3(c− c0 − 1) + (α−
c∑

i=c0+1

αi).
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Let f = 2(|Vk(H2)| − |Vk(H ′)|) + 2c0 + 3(c− c0 − 1) + (α−
∑c

i=c0+1 αi). If we show

that f ≥ 0, then |E(H)| ≥ 2|V1(H)| and so, by Proposition 6.1.2, the result holds

by contradiction. We show that indeed f ≥ 0.

To do so, we first note that, for each c0+1 ≤ i ≤ c, H ′
i is a subgraph of H2+ f2,

and so αi ≤ α whenever Vk(H
′
i) = Vk(H2). If Vk(H

′) = Vk(H2) = ∅, it follows that

f ≥ 2c0 + 3(c− c0 − 1) + (α− (c− c0)α) = 2c0 + (c− c0 − 1)(3− α) ≥ 0,

where the last inequality holds because 0 ≤ c0 ≤ c − 1 and α ≤ 3. Hence, we may

assume that Vk(H2) = {v0}. By definition, it follows that α ≤ 1. Moreover, since

each connected component of H ′ is a subgraph of H2 + f2, we know that αi ≤ α+2

for all c0 + 1 ≤ i ≤ c. Hence, if Vk(H
′) = ∅, it follows that

f ≥ 2 + 2c0 + 3(c− c0 − 1) + (α− (c− c0)(α + 2))

= (c− c0 − 1)(3− α) + 2(1− c+ 2c0)

≥ 2(c− c0 − 1) + 2(1− c+ 2c0) = 2c0 ≥ 0.

So, we may assume that Vk(H
′) = {v0}. If v0 is isolated in H ′, then c0 ≥ 1. Hence,

f ≥ 2c0 + 3(c− c0 − 1) + (α− (c− c0)(α + 2)) ≥ 2(c0 − 1) ≥ 0.

So assume, without loss of generality, that v0 ∈ V (H ′
c0+1). By definition, αc0+1 ≤ α.

Since αi ≤ α + 2 for all c0 + 2 ≤ i ≤ c, we have

f ≥ 2c0 + 3(c− c0 − 1) + (α− α− (α + 2)(c− c0 − 1))

= (c− c0 − 1)(1− α) + 2c0 ≥ 0,

where the last inequality holds because 0 ≤ c0 ≤ c− 1 and α ≤ 1. We always have

f ≥ 0, as required.

7.1.2 (2, 3)-tight blockers

With the same notation as that in Lemma 7.1.3, we now consider the case where

αjk(H1 + f1) = 0. By definition, this is equivalent to saying that H1 + f1 is either
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balanced or S0(k, j) with Vk(H1) ̸= ∅. We consider the two cases separately, in

Lemmas 7.1.5 and 7.1.6, respectively. However, in Lemma 7.1.5, we do not assume

that H1 + f1 is balanced. Instead, we make the slightly weaker assumption that

the intersection H1 ∩H2 is balanced. (This weaker assumption will be useful when

proving Lemma 7.1.6, as well as Lemma 7.1.7.) In order to prove Lemma 7.1.5, we

need the following result.

Lemma 7.1.4. Let 0 ≤ m ≤ 2, 1 ≤ l ≤ 3 be such that m ≤ l, and let (G,ψ) be

a (2,m, l)-tight Γ-gain graph for some cyclic group Γ of order k ≥ 4. Assume that

|Vk(G)| ≤ 1. Then G has no fixed cut-vertex.

Proof. By Lemma 3.2.30, G is connected. If Vk(G) = ∅, the result clearly holds.

Therefore, we may assume that Vk(G) = {v0}. Assume, for a contradiction, that

v0 is a cut-vertex. Let {G1, . . . , Gt} be subgraphs of G such that Gi ∩ Gj is v0

for all 1 ≤ i ̸= j ≤ t and {E(G1), . . . , E(Gt)} forms a partition of E(G). Then,

|E(Gi)| ≤ 2|V1(Gi)|+m|Vk(Gi)| − l = 2|V1(Gi)|+m− l for all 1 ≤ i ≤ t. Hence,

|E(G)| =
t∑
i=1

|E(Gi)| ≤ 2
t∑
i=1

|V1(Gi)|+mt− lt = 2|V1(G)|+ t(m− l).

Since |E(G)| = 2|V1(G)|+m|Vk(G)| − l = 2|V1(G)|+m− l, and since m− l ≤ 0, it

follows that t ≤ 1. But this contradicts the fact that v0 is a cut-vertex. Hence, the

result holds.

Lemma 7.1.5. Let Γ be a cyclic group of order k ≥ 4. For 2 ≤ j ≤ k − 2, let

(G,ψ) be a Zjk-gain tight Γ-gain graph with a free vertex v of degree 3 which has

no loop. Let (G1, ψ1), (G2, ψ2) be obtained from (G,ψ) by applying two different

1-reductions at v, which add the edges f1 and f2, respectively. For i = 1, 2, assume

that (Gi, ψi) has a blocker Hi, and let H = H1∪H2. If E(H1∩H2) ̸= ∅ and H1∩H2

is balanced, then E(H) = 2|V (H)| − 3 + αjk(H + f1 + f2).

Proof. Let H ′ := H1 ∩H2, and let H ′
1, . . . , H

′
c denote the connected components of

H ′. Let c0 ≤ c− 1 be the number of isolated vertices of H ′, so that H ′
1, . . . , H

′
c0

are

the isolated vertices of H ′, and H ′
c0+1, . . . , H

′
c are the connected components of H ′
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with non-empty edge set. For 1 ≤ i ≤ 2, use αi to denote αjk(Hi + fi). We also use

α to denote αjk(H + f1 + f2). Assume that H ′ is balanced. Then,

|E(H ′)| ≤
c0∑
i=1

[2|V (H ′
i)| − 2] +

c∑
i=c0+1

[2|V (H ′
i)| − 3] = 2|V (H ′)| − 2c0 − 3(c− c0).

Therefore,

|E(H)| ≥ (2|V (H1)| − 3 + α1) + (2|V (H2)| − 3 + α2)

− (2|V (H ′)| − 2c0 − 3(c− c0))

= 2|V (H)| − 6 + α1 + α2 + 2c0 + 3(c− c0). (7.1)

If c − c0 ≥ 2, then |E(H)| ≥ 2|V (H)| + α1 + α2 + 2c0 ≥ 2|V1(H)|, contradicting

Proposition 6.1.2 or the sparsity of (G,ψ). Hence, c−c0 = 1 and |E(H)| ≥ 2|V (H)|−

3 + α1 + α2 + 2c0. If c0 ≥ 2, then |E(H)| ≥ 2|V (H)|+ 1, contradicting the sparsity

of (G,ψ). Hence, (c0, c1) is either (0, 1) or (1, 2).

Suppose that (c0, c1) = (1, 2). By Equation (7.1), |E(H)| ≥ 2|V (H)|−1+α1+α2.

By Proposition 6.1.2 and the sparsity of (G,ψ), Vk(H) = ∅ and α1 = α2 = 0. It

follows that H1, H2 are balanced blockers. By Lemma 3.2.21, H + f1 + f2 is proper

near-balanced, so α = 2. Then, by the sparsity of (G,ψ), |E(H)| = 2|V (H)| −

1 = 2|V (H)| − 3 + α. Hence, we may assume that (c0, c1) = (0, 1) and so, by

Equation (7.1),

|E(H)| ≥ 2|V (H)| − 3 + α1 + α2. (7.2)

By Proposition 6.1.2, α1+α2 ≤ 2. We look at the cases where α1+α2 = 2, α1+α2 = 1

and α1+α2 = 0 separately. In all such cases, we show that |E(H)| = 2|V (H)|−3+α,

proving the result.

Case 1: α1 + α2 = 2

By Equation (7.2), |E(H)| ≥ 2|V (H)| − 1, so by the sparsity of (G,ψ), Vk(H) = ∅.

Moreover, H ′ is (2, 3)-tight: otherwise, it is easy to see that |E(H)| ≥ 2|V (H)|,

contradicting Proposition 6.1.2 or the sparsity of (G,ψ). Assume, without loss of

generality, that (α1, α2) is one of (1, 1) and (0, 2). In the former case, j is odd

181



Chapter 7. Sufficient conditions for cyclic groups of higher order

and ⟨H1 + f1⟩ = ⟨H2 + f2⟩ ≃ Z2. Since H ′ is connected, every closed walk W in

H + f1 + f2 can be decomposed as a concatenation of closed walks in H1 + f1 and

H2 + f2. It follows, from the fact that Vk(H) = ∅, that ⟨H + f1 + f2⟩ ≃ Z2. Then,

by the sparsity of (G,ψ), H is (2, 1)-tight, and the result holds. If (α1, α2) = (0, 2),

then H1 is a balanced blocker, and H2+f2 is either proper near-balanced or S(k, j).

In the former case, H + f1 + f2 is proper near-balanced, by Lemma 3.2.20. In

the latter, H + f1 + f2 is S(k, j), by Lemma 3.2.14. In both cases, α = 2 and

|E(H)| = 2|V (H)| − 1 = 2|V (H)| − 3 + α by the sparsity of (G,ψ).

Case 2: α1 + α2 = 1

By Equation 7.2, |E(H)| ≥ 2|V (H)| − 2. It follows, from Proposition 6.1.2, that

Vk(H) = ∅. Assume, without loss of generality, that (α1, α2) = (1, 0). Then, j is

odd, ⟨H1 + f1⟩ ≃ Z2, and H2 is a balanced blocker. It follows, from Lemma 3.2.14,

that ⟨H + f1 + f2⟩ ≃ Z2, and so α = 1. By the sparsity of (G,ψ), H satisfies

|E(H)| = 2|V (H)| − 2 = 2|V (H)| − 3 + α.

Case 3: α1 + α2 = 0

By Equation 7.2, |E(H)| ≥ 2|V (H)| − 3. Notice that, if H ′ is not (2, 3)-tight, then

|E(H)| ≥ 2|V (H)| − 2 and so Vk(H) = ∅ by Proposition 6.1.2. It follows that if

H ′ is not (2, 3)-tight, then it does not have a fixed cut-vertex. On the other hand,

if H ′ is (2, 3)-tight, then it does not have a fixed cut-vertex by Lemma 7.1.4. So,

H ′ does not have a fixed cut-vertex. For each 1 ≤ i ≤ 2, since αi = 0, Hi is either

balanced, or it has a fixed vertex and is S0(k, j). If H1, H2 are balanced blocker, then

H+ f1+ f2 is balanced by Proposition 3.2.14. If one of H1+ f1, H2+ f2 is balanced,

and the other is S0(k, j), then H + f1 + f2 is S0(k, j) by Proposition 3.2.14, and

contains the fixed vertex. If H1+f1, H2+f2 are both S0(k, j), then so is H+f1+f2

by Lemma 3.2.27(i), and it contains the fixed vertex. In all such cases, α = 0, and

|E(H)| = 2|V (H)| − 3 = 2|V (H)| − 3 + α, as required.

Lemma 7.1.6. Let Γ be a cyclic group of order k ≥ 4. For 2 ≤ j ≤ k−2, let (G,ψ)

be a Zjk-gain tight Γ-gain graph with a free vertex v of degree 3 which has no loop.

Let (G1, ψ1), (G2, ψ2) be obtained from (G,ψ) by applying two different 1-reductions
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at v, which add the edges f1 and f2, respectively. For i = 1, 2, assume that (Gi, ψi)

has a blocker Hi. Assume further that Vk(H1) = {v0} and that H1+f1 is S0(k, j). If

E(H1∩H2) ̸= ∅, then H := H1∪H2 satisfies |E(H)| = 2|V (H)|−3+αjk(H+f1+f2).

Proof. Let H ′ := H1 ∩H2, and let H ′
1, . . . , H

′
c denote the connected components of

H ′. Let c0 ≤ c− 1 be the number of isolated vertices of H ′, so that H ′
1, . . . , H

′
c0

are

the isolated vertices of H ′, and H ′
c0+1, . . . , H

′
c are the connected components of H ′

with non-empty edge set. By Lemma 7.1.5, we may assume that H ′ is unbalanced.

In particular, H2 is not a balanced blocker. Moreover, by Lemma 7.1.3, we may

assume that H2 is not a general-count blocker. Throughout the proof, let α denote

αjk(H2 + f2). We look at the cases where Vk(H
′) = ∅ and Vk(H

′) = {v0} separately.

First, suppose that Vk(H
′) = ∅. Since Vk(H1) = {v0}, it follows that Vk(H2) = ∅.

By assumption, this implies that 1 ≤ α ≤ 2. Since each connected component of H ′

is a subgraph of H2 + f2 and Vk(H
′) = Vk(H2) = ∅,

|E(H ′)| =
c∑
i=1

|E(H ′
i)| ≤

c0∑
i=1

[2|V (H ′
i)| − 2] +

c∑
i=1+c0

[2|V (H ′
i)| − 3 + α]

= 2|V (H ′)| − 2c0 + (c− c0)(α− 3).

Hence, letting g = −2c0 + (c− c0)(α− 3), we have

|E(H)| ≥ (2|V (H1)| − 3) + (2|V (H2)| − 3 + α)− (2|V (H ′)|+ g)

= 2|V (H)| − 6 + α + 2c0 + (c− c0)(3− α)

= 2|V1(H)| − 4 + α + 2c0 + (c− c0)(3− α). (7.3)

We show that c0 = 0 and c1 = 1. Assume, for a contradiction, that c − c0 ≥ 2.

Then, by Equation (7.3) and the fact that α ≤ 2, we have

|E(H)| ≥ 2|V1(H)|+ 2− α ≥ 2|V1(H)|.

This contradicts Proposition 6.1.2 or the sparsity of (G,ψ). Hence, c = c0 + 1 and,

by Equation 7.3, we have |E(H)| ≥ 2|V1(H)| − 1 + 2c0. By Proposition 6.1.2, it

follows that c0 = 0, c = 1 and |E(H)| = 2|V1(H)|− 1. If we show that H + f1+ f2 is
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S0(k, j), it then follows that |E(H)| = 2|V (H)|−3+αjk(H+f1+f2), as required. We

show that H + f1 + f2 is indeed S0(k, j). Since 1 ≤ α ≤ 2 and Vk(H2) = ∅, exactly

one of the following holds: H2 is a Z2-blocker; H2 + f2 is S(k, j); H2 + f2 is proper

near-balanced. If H2 is a Z2-blocker, then H + f1 + f2 is S0(k, j) by Lemma 3.2.15.

If H2 + f2 is S(k, j), then it is S0(k, j) by Lemma 3.2.25. Hence, H + f1 + f2 is

S0(k, j) by Lemma 3.2.27(i). If H2+f2 is near-balanced, then H+f1+f2 is S0(k, j)

by Lemma 3.2.27(ii). So, whenever Vk(H
′) = ∅, the result holds.

Now, assume that Vk(H
′) = {v0}. This implies that Vk(H2) ̸= ∅. Hence,

|E(H2)| = 2|V1(H2)| − 1 + α. If v0 is isolated in H ′, then c0 ≥ 1. Assume, without

loss of generality, that v0 is H ′
1. Since each H ′

i is a subgraph of H1 + f1, we have

|E(H ′)| =
c∑
i=1

|E(H ′
i)| ≤ 2|V1(H ′

1)|+
c0∑
i=2

[2|V1(H ′
i)| − 2] +

c∑
i=c0+1

[2|V1(H ′
i)| − 1]

= 2|V1(H ′)| − 2(c0 − 1)− (c− c0),

and so, letting g = −2(c0 − 1)− (c− c0), we have

|E(H)| ≥ (2|V1(H1)| − 1) + (2|V1(H2)| − 1 + α)− (2|V1(H ′)|+ g)

= 2|V1(H)| − 2 + α + 2(c0 − 1) + (c− c0).

If c − c0 ≥ 2 or if c0 ≥ 2, this contradicts Proposition 6.1.2 or the sparsity of

(G,ψ). Hence, we may assume that c0 = 1, c = 2. So, |E(H)| ≥ 2|V1(H)| − 1 + α.

In a similar way, if v0 is not an isolated vertex of H ′, we can see that |E(H)| ≥

2|V1(H)|−2+α+2c0+(c−c0). If c0 ≥ 1 or c−c0 ≥ 2, this contradicts Proposition 6.1.2

or the sparsity of (G,ψ). Hence, c0 = 0, c = 1, and |E(H)| ≥ 2|V1(H)|−1+α. Both

when v0 is an isolated vertex of H ′ and when it is not, Proposition 6.1.2 implies that

α = 0 and |E(H)| = 2|V1(H)| − 1. Hence, it is enough show that H + f1 + f2 is

S0(k, j). Since α = 0 and H2 is not a balanced blocker, H2+f2 is S0(k, j). Moreover,

H ′ is either connected, or it is composed of two connected components, one of which

is the isolated fixed vertex. So, H + f1 + f2 is S0(k, j) by Lemma 3.2.27(i), and the

result holds.
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7.1.3 The union of two blockers

Lemma 7.1.7. Let Γ be a cyclic group of order k ≥ 4. For 2 ≤ j ≤ k−2, let (G,ψ)

be a Zjk-gain tight Γ-gain graph with a free vertex v of degree 3 which has no loop.

Let (G1, ψ1), (G2, ψ2) be obtained from (G,ψ) by applying two different 1-reductions

at v, which add the edges f1 and f2, respectively. For i = 1, 2, assume that (Gi, ψi)

has a blocker Hi. If E(H1 ∩H2) ̸= ∅, then |E(H)| = 2|V (H)| − 3+αjk(H + f1 + f2).

Proof. Throughout the proof, we let H ′ = H1 ∩ H2 and we let H ′
1, . . . , H

′
c be the

connected components of H ′. Let c0 ≤ c − 1 be the number of isolated vertices of

H ′, so that H ′
1, . . . , H

′
c0

are the isolated vertices of H ′, and H ′
c0+1, . . . , H

′
c are the

connected components of H ′ with non-empty edge set. We abbreviate αjk(Hi+fi) to

αi, for i = 1, 2. By Lemma 7.1.5, we may assume that H ′ is unbalanced. Moreover,

by Lemmas 7.1.3 and 7.1.6, we may assume that 1 ≤ α1, α2 ≤ 2. Without loss of

generality, assume that α1 ≥ α2. We look at the following three cases separately:

(α1, α2) = (1, 1); (α1, α2) = (2, 1); and (α1, α2) = (2, 2).

Case 1: α1 = α2 = 1.

If we show that Vk(H
′) = ∅ then, by the definition of α1, α2, one of H1, H2 is a

Z2-blocker. We show that Vk(H
′) is indeed empty. So assume, for a contradiction,

that |Vk(H ′)| = 1. By the sparsity of (G,ψ), we know that, for all c0 + 1 ≤ i ≤ c,

|E(H ′
i)| ≤ 2|V1(H ′

i)|. If the fixed vertex is isolated, then c0 ≥ 1 and

|E(H ′)| =
c∑
i=1

|E(H ′
i)| ≤

c0∑
i=1

[2|V (H ′
i)| − 2] +

c∑
i=c0+1

2|V (H ′
i)|

= 2|V (H ′)| − 2c0 ≤ 2|V (H ′)| − 2.

If the fixed vertex is not isolated, assume without loss of generality, that it lies in

H ′
c0+1. Then,

|E(H ′)| =
c∑
i=1

|E(H ′
i)| ≤

c0∑
i=1

[2|V (H ′
i)| − 2] + [2|V (H ′

1+c0
)| − 2] +

c∑
i=c0+2

2|V (H ′
i)|

= 2|V (H ′)| − 2c0 − 2.
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Since c0 ≥ 0, |E(H ′)| ≤ 2|V (H ′)| − 2. Hence, in both cases we have

|E(H)| ≥ (2|V (H1)| − 2) + (2|V (H2)| − 2)− (2|V (H ′)| − 2)

= 2|V (H)| − 2 = 2|V1(H)|.

By the sparsity of (G,ψ) and Proposition 6.1.2, this is a contradiction. So, H ′ has

no fixed vertex, j is odd and ⟨Hi + fi⟩ ≃ Z2 for some 1 ≤ i ≤ 2. Assume, without

loss of generality, that ⟨H1 + f1⟩ ≃ Z2. Then, since H
′ is a subgraph of H1+ f1 and

j is odd, |E(H ′)| ≤ 2|V (H ′)| − 2c, and so

|E(H)| ≥ (2|V (H1)| − 2) + (2|V (H2)| − 2)− (2|V (H ′)| − 2c)

= 2|V (H)|+ 2(c− 2). (7.4)

By the sparsity of (G,ψ) and Proposition 6.1.2, this implies that c = 1 and that

|Vk(H)| = 0. Hence, |Vk(H2)| = 0, and we have ⟨H2 + f2⟩ ≃ Z2. Since H ′ is

connected, every closed walkW in H+f1+f2 can be decomposed as a concatenation

of closed walks in H1 + f1 and H2 + f2. Hence, ⟨H + f1 + f2⟩ ≃ Z2. By the sparsity

of (G,ψ), and by Equation (7.4), |E(H)| = 2|V (H)| − 3 + αjk(H + f1 + f2).

Case 2: α1 = 2, α2 = 1.

By the definition of α1, |Vk(H1)| = 0 and H1+f1 is S(k, j) or proper near-balanced.

Notice that for each 1 ≤ i ≤ c0, |E(H ′
i)| = 2|V (H ′

i)| − 2 < 2|V (H ′
i)| − 1. So,

since |Vk(H ′)| = 0 and H ′ is a subgraph of H1 + f1, it must satisfy the inequality

|E(H ′)| ≤
∑c

i=1[2|V (H ′
i)| − 1] = 2|V (H ′)| − c. Hence,

|E(H)| ≥ (2|V (H1)| − 1) + (2|V (H2)| − 2)− (2|V (H ′)| − c)

= 2|V (H)| − 3 + c ≥ 2|V (H)| − 2, (7.5)

since c ≥ 1. By Proposition 6.1.2, |Vk(H)| = 0. By the definition of α2, H2 is a

Z2-blocker. Then, since H
′ is a subgraph of H2 + f2, each connected component of

H ′ must be (2, 2)-sparse. It follows that H ′ satisfies |E(H ′)| ≤ 2|V (H ′)| − 2c and

|E(H)| ≥ (2|V (H1)| − 1) + (2|V (H2)| − 2)− (2|V (H ′)| − 2c) = 2|V (H)|+ 2c− 3.
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This implies that c = 1, by the sparsity of (G,ψ). Since H ′ is unbalanced, H1 + f1

is not proper near-balanced: otherwise, ⟨H1 + f1⟩ ≃ Z2, by Lemma 3.2.22, which

contradicts the definition of proper near-balancedness. It follows that H1 + f1 is

S(k, j). Then, by Lemma 3.2.15, H + f1 + f2 is S(k, j) and so αjk(H + f1 + f2) = 2.

Hence,

|E(H)| ≥ 2|V (H)| − 1 = 2|V (H)| − 3 + αjk(H + f1 + f2). (7.6)

By the sparsity of (G,ψ), Equation (7.6) holds with equality.

Case 3: α1 = α2 = 2.

In a similar way as we did in Case 2, we can see that |E(H)| ≥ 2|V (H)| − 2 + c.

If H ′ is not connected or if Vk(H) ̸= ∅, then |E(H)| ≥ 2|V (H)|, contradicting

Proposition 6.1.2 or the sparsity of (G,ψ). So c = 1 and Vk(H) = ∅. Since H ′

is a subgraph of H1 + f1 and Vk(H
′) = Vk(H1 + f1) = ∅, it is (2, 1)-sparse. If

|E(H ′)| ≤ 2|V (H ′)| − 2, it is easy to see that |E(H)| ≥ 2|V (H)|, contradicting

Proposition 6.1.2 or the sparsity of (G,ψ). Hence, H ′ is (2, 1)-tight.

If exactly one of H1+ f1, H2+ f2 is near-balanced, then H + f1+ f2 is S(k, j) by

Lemma 3.2.27(ii). If both H1 + f1, H2 + f2 are S(k, j), then they are both Si(k, j)

for some i ∈ {0,−1, 1}, by Lemma 3.2.25. So, by Lemma 3.2.27(i), H + f1 +

f2 is also Si(k, j). If neither H1 + f1 nor H2 + f2 is S(k, j), then they are both

proper near-balanced. Hence, H ′ is also proper near-balanced and so H + f1 + f2

is near-balanced by Lemma 3.2.19. By the sparsity of (G,ψ) and Proposition 6.1.2,

|E(H)| = 2|V (H)| − 1 and |Vk(H)| = 0. Since αjk(H + f1 + f2) = 2, we have

|E(H)| = 2|V (H)| − 3 + αjk(H + f1 + f2), as required.

Proposition 6.1.2, and Lemmas 7.1.2, 7.1.7 imply the following result.

Corollary 7.1.8. Let Γ be a cyclic group of order k ≥ 4. For 2 ≤ j ≤ k − 2, let

(G,ψ) be a Zjk-gain tight Γ-gain graph with a free vertex v of degree 3 which has

no loop. Let (G1, ψ1), (G2, ψ2) be obtained from (G,ψ) by applying two different

1-reductions at v, which add the edges f1 and f2, respectively. For i = 1, 2, assume
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that (Gi, ψi) has a blockerHi, and suppose that E(H1∩H2) ̸= ∅. If |NG(v)| ≠ 3, or if

f1 and f2 do not share a fixed vertex, then H1∪H2+f1+f2 is proper near-balanced.

Proof. Let H = H1 ∪ H2. Assume that |NG(v)| ≠ 3, or that f1 and f2 do not

share a fixed vertex. Assume, for a contradiction, that H + f1 + f2 is not proper

near-balanced. By Lemma 7.1.2, ⟨H + f1 + f2⟩ = ⟨H + v⟩. Therefore, we know that

αj(H + v) = αj(H + f1 + f2). By Lemma 7.1.7, |E(H)| = 2|V (H)| − 3+αjk(H + v),

which contradicts Proposition 6.1.2. Hence, H+f1+f2 is proper near-balanced.

7.2 A gain tight graph admits a reduction

The following result is crucial for the combinatorial results of the paper. We show

that, given a vertex v of degree 3, we may always apply an admissible 1-reduction

at v except in one special case.

v

γk/2

(a)

v

γk/2

(b)

Figure 7.1: Two instances of a vertex v of degree 3 of a Γ-gain graph. In both

cases v has two neighbours, one of which is fixed. In (a) there is an edge between

the neighbours of v, in (b) there is not. In both cases, Γ = ⟨γ⟩ ≃ Zk through the

isomorphism which maps γ to 1, and all unlabelled edges have identity gain.

Theorem 7.2.1. For k ≥ 4, let Γ = ⟨γ⟩ ≃ Zk through the isomorphism defined

by letting γ 7→ 1. Let (G,ψ) be a Γ-gain graph with a free vertex v of degree 3

and no loop. Suppose that (G,ψ) is Zjk-tight for some 2 ≤ j ≤ k − 2. If there is

not an admissible 1-reduction at v, then k is even and j is odd, v has exactly two
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neighbours, only one of which is free, call it v1. Moreover, the 2-cycle v, v1, v has

gain γk/2 (see Figure 7.1).

In a similar manner as we did for cyclic groups of order 2 and 3 (recall Section 6.2

in Chapter 6), we split the proof of Theorem 7.2.1 in the three separate cases where

|NG(v)| = 1, 2 and 3, in Subsections 7.2.1, 7.2.2 and 7.2.3, respectively.

7.2.1 v has exactly one neighbour

Proposition 7.2.2. For k ≥ 4, let Γ = ⟨γ⟩ ≃ Zk through the isomorphism defined

by γ 7→ 1. For 2 ≤ j ≤ k − 2, let (G,ψ) be a Zjk-gain tight Γ-gain graph with

a vertex v of degree 3. Suppose that v has no loop, and exactly one neighbour u.

Then, there is an admissible 1-reduction at v.

Proof. Let e1, e2, e3 be the edges incident to u and v, with gi := ψ(ei) for 1 ≤

i ≤ 3. By Propositions 3.2.6 and 3.2.9, we may assume that g1 = id. Moreover,

g2, g3, g2g
−1
3 ̸= id by the definition of gain graph. Let (G1, ψ1), (G2, ψ2) and (G3, ψ3)

be obtained from G − v by adding the loops f1, f2, f3 at u with gains g2, g3, g2g
−1
3 ,

respectively. Assume, for a contradiction, that for each 1 ≤ i ≤ 3, (Gi, ψi) has

a blocker Hi, and for all such i let αi denote α
j
k(Hi + fi). Notice that, for each

1 ≤ i ≤ 3, Hi is neither a balanced blocker (since Hi + fi contains a loop), nor a

general-count blocker (by Proposition 6.1.2). Since g2, g3, g2g
−1
3 ̸= id, at most one

of g2, g3, g2g
−1
3 is γk/2, and so at most one of H1, H2, H3 is a Z2-blocker.

Notice that, for all 1 ≤ s ̸= t ≤ 3, Hs ∪Ht + fs + ft contains a vertex with two

different loops, and so it is not proper near-balanced. It follows, from Corollary 7.1.8

that E(Hs ∩ Ht) = ∅ for all 1 ≤ s ̸= t ≤ 3. We now show that at most one of

H1+f1, H2+f2, H3+f3 is S(k, j). To do so, fix some 1 ≤ s ̸= t ≤ 3 and assume, for

a contradiction, that Hs + fs, Ht + ft are both S(k, j). Then, Hs is (2,ms, 1)-tight
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and Ht is (2,mt, 1)-tight, for some 0 ≤ ms,mt ≤ 1. Since u ∈ V (Hs ∩Ht) is free,

|E(Hs ∪Ht)| = (2|V1(Hs)|+ms|Vk(Hs)| − 1) + (2|V1(Ht)|+mt|Vk(Ht)| − 1)

= 2|V1(Hs ∪Ht)|+ 2|V1(Hs ∩Ht)| − 2 +ms|Vk(Hs)|+mt|Vk(Ht)|

≥ 2|V1(Hs ∪Ht)|,

contradicting Proposition 6.1.2 or the sparsity of (G,ψ). Therefore, we may assume

that at most one of H1 + f1, H2 + f2, H3 + f3 is S(k, j). This implies that, for some

1 ≤ i ≤ 3, Hi + fi is proper near-balanced. (Since none of the Hi is a balanced

blocker or a general-count blocker, at most one of the Hi is a Z2-blocker, and at most

one of the Hi+fi is S(k, j).) Hence, αi = 2. Without loss of generality, assume that

α3 = 2. Let H := H1 ∪ H2 ∪ H3, and H
′ := H1 ∩ H2 ∩ H3. Since u ∈ V (Hs ∩Ht)

for all 1 ≤ s ̸= t ≤ 3, we have

|E(H)| =
3∑
i=1

|E(Hi)| = 2
3∑
i=1

|V (Hi)| − 9 +
3∑
i=1

αi

= 2|V (H)|+ 2
∑

1≤s ̸=t≤3

[|V (Hs ∩Ht)| − |V (H ′)|]− 7 + α1 + α2

≥ 2|V (H)| − 3 + α1 + α2.

So, α1 + α2 ≤ 2, by Proposition 6.1.2 and the sparsity of (G,ψ). If H has a fixed

vertex, then we have |E(H)| ≥ 2|V (H)| − 3+α1+α2 = 2|V1(H)| − 1+α1+α2, and

so α1 + α2 = 0, by Proposition 6.1.2 and the sparsity of (G,ψ). Since H1, H2 are

not balanced blockers, the only case in which α1 = α2 = 0 is when H1 + f1, H2 + f2

are both S0(k, j) and |Vk(H1)| = |Vk(H2)| = 1. But this contradicts the fact that at

most one of H1+ f1, H2+ f2, H3+ f3 is S(k, j). So, we may assume that Vk(H) = ∅.

This implies that, for i = 1, 2, αi ≥ 1 with equality if and only if Hi is a Z2-blocker.

So, the only way of having α1+α2 ≤ 2 is if H1, H2 are Z2-blockers. This contradicts

the fact that at most one of H1, H,H3 is a Z2-blocker. By contradiction, the result

holds.
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7.2.2 v has exactly two neighbours

Proposition 7.2.3. For k ≥ 4, let Γ = ⟨γ⟩ ≃ Zk through the isomorphism defined

by letting γ 7→ 1. For 2 ≤ j ≤ k−2, let (G,ψ) be a Zjk-gain tight Γ-gain graph with

a free vertex v of degree 3. Suppose that v has no loop, and exactly two distinct

neighbours v1, v2. Either there is an admissible 1-reduction at v or v has exactly one

free neighbour, j is odd and the subgraph of G spanned by v, v1, v2 has gain γk/2.

Proof. Let e1, e
′
1 := (v, v1) and e2 := (v, v2), and let g = ψ(e′1). By Propositions 3.2.6

and 3.2.9, we may assume that ψ(e1) = ψ(e2) = id and g ̸= id. We look at the cases

where v2 is free and fixed separately.

Case 1: v2 is free.

Let (G1, ψ1), (G2, ψ2), (G3, ψ3) be obtained from G− v by adding, respectively, the

edges f1 = (v1, v2) with gain id, the edge f2 = (v2, v1) with gain g, and a loop f3

at v1 with gain g. Assume, for a contradiction, that H1, H2 and H3 are blockers

for (G1, ψ1), (G2, ψ2) and (G3, ψ3), respectively. Let H = H1 ∪ H2 ∪ H3 and H ′ =

H1∩H2∩H3. By Proposition 6.1.2, H1, H2 are not general-count blockers. Moreover,

H3 is not a balanced blocker, since H3 + f3 contains a loop.

We start by showing that E(Hs ∩Ht) = ∅ for all 1 ≤ s ̸= t ≤ 3. So assume, for

a contradiction, that E(Hs ∩Ht) ̸= ∅ for some 1 ≤ s ̸= t ≤ 3. By Corollary 7.1.8,

Hs ∪ Ht + fs + ft is proper near-balanced. Moreover, by Lemma 7.1.7, Hs ∪ Ht is

(2, 1)-tight.

In particular, if s = 1, t = 2, then the base-vertices of near-balancedness must be

v1, v2: otherwise, there is a gain ψ′ equivalent to ψ such that ψ′(f1) = ψ′(f2) = id,

contradicting the definition of gain graph. This implies that every path W from

v1 to v2 in H1 ∪ H2 has gain id, or g−1: W must have gain in {id, g, g−1} because

f1 ∈ E(H1∪H2+f1+f2), and it cannot have gain g, because f2 ∈ E(H1∪H2+f1+f2).

Then H1 ∪ H2 + v is also near-balanced. Since H is (2, 1)-tight, this contradicts

Proposition 6.1.2. Hence, E(H1 ∩H2) = ∅, and one of s, t is 3.

Assume, without loss of generality, that E(H1 ∩ H3) ̸= ∅, and recall that this
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implies thatH1∪H3+f1+f3 is proper near-balanced, and thatH1∪H3 is (2, 1)-tight.

By the sparsity of (G,ψ), H1 ∪H3 + f1 is also proper near-balanced. It follows that

H ′
1 := H1∪H3 is a blocker for (G1, ψ1). If E(H2∩H3) ̸= ∅, then the same argument

shows that H ′
2 := H2∪H3 is a blocker for (G2, ψ2). Since E(H

′
1∩H ′

2) = E(H3) ̸= ∅,

H ′
1 ∪H ′

2 + f1 + f2 is proper-near balanced, by Corollary 7.1.8, and H ′
1 ∪H ′

2 is (2, 1)-

tight by Lemma 7.1.7. Using a similar argument as in the previous paragraph, we

can see that H ′
1 ∪H ′

2 + v is proper near-balanced, contradicting Proposition 6.1.2.

Hence, E(H2 ∩H3) = ∅. It follows that

|E(H)| = |E((H1 ∪H3) ∪H2)|

= |E(H1 ∪H3)|+ |E(H2)| = (2|V (H1 ∪H3)| − 1) + (2|V (H2)| − 3 + α2)

= 2|V (H)|+ 2|V ((H1 ∪H3) ∩H2)| − 4 + α2 ≥ 2|V (H)|+ α2

≥ 2|V (H)| ≥ 2|V1(H)|,

since v1, v2 ∈ V (H1), V (H2) and α2 ≥ 0. This contradicts Proposition 6.1.2 or

the sparsity of (G,ψ). Hence, E(Hs ∩ Ht) = ∅ for all 1 ≤ s ̸= t ≤ 3. Since

E(H1 ∩H2) = ∅,

|E(H1 ∪H2)| = |E(H1)|+ |E(H2)| = (2|V (H1)| − 3 + α1) + (2|V (H2)| − 3 + α2)

= 2|V (H1 ∪H2)|+ 2|V (H1 ∩H2)| − 6 + α1 + α2.

If |V (H1 ∩ H2)| ≥ 3, or if |V (H1 ∩ H2)| = 2 and Vk(H1 ∪ H2) ̸= ∅, this is at least

2|V1(H1 ∪ H2)|, contradicting Proposition 6.1.2 or the sparsity of (G,ψ). Hence,

H1 ∩H2 is composed of the two isolated vertices v1, v2, and Vk(H1) = Vk(H2) = ∅.

Therefore, we have |E(H1 ∪H2)| = 2|V (H1 ∪H2)| − 2 + α1 + α2. Hence,

|E(H)| = (2|V (H1 ∪H2)| − 2 + α1 + α2) + (2|V (H3)| − 3 + α3)

= 2|V (H)|+ 2|V (H1 ∪H2) ∩H3| − 5 +
3∑
i=1

αi. (7.7)

In particular, the intersection of H1 ∪ H2 and H3 must indeed be the isolated

vertex v3. To see this, assume, for a contradiction, that this is not the case.

Then, we have |E(H)| ≥ 2|V (H)| − 1 +
∑3

i=1 αi. If Vk(H) ̸= ∅, this is at least
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2|V1(H)|+ 1, contradicting the sparsity of (G,ψ). If Vk(H) = ∅, then α3 ≥ 1 (since

H3 + f3 is unbalanced), and so |E(H)| ≥ 2|V (H)| = 2|V1(H)|, which contradicts

Proposition 6.1.2. So, |V (H1 ∪H2) ∩H3| = 1 and

|E(H)| = 2|V (H)| − 3 +
3∑
i=1

αi. (7.8)

Assume that α1 = α2 = 0, so that |E(H)| = 2|V (H)| − 3 + α3. Then, since

all vertices of H1, H2 are free, H1, H2 are balanced blockers and, by Lemma 3.2.21,

H1∪H2+f1+f2 is near-balanced with base vertex v1 (and with base vertex v2). Since

H1∪H2+f1+f2 contains the 2-cycle f1, f2, it is near-balanced with gain g. So there

is a gain ψ′ equivalent to ψ such that ψ′(e) ∈ {id, g, g−1} for all edges e in E(H1∪H2)

incident to v1, and ψ′(f) = id for all other edges f ∈ E(H1 ∪ H2). In particular,

⟨H1 ∪H2 + f1 + f2⟩ = ⟨g⟩. Since H3+f3 contains the loop f3 with gain g, it follows

that ⟨H1 ∪H2 + f1 + f2⟩ ≤ ⟨H3 + f3⟩, and so ⟨H + f1 + f2 + f3⟩ ≃ ⟨H3 + f3⟩. By

Proposition 6.1.2 and Lemma 7.1.2, H3 + f3 must be proper near-balanced. Since

it contains the loop f3, it is near-balanced with base vertex v1 and gain g. Recall

that H1 ∪ H2 + f1 + f2 is also near-balanced with base vertex v1 and gain g, so

H+f1+f2+f3 and H+v are proper near-balanced with base vertex v1 and gain g.

But then |E(H)| = 2|V (H)| − 3 + α3 = 2|V (H)| − 3 + αjk(H + f1 + f2 + f3), which

is a contradiction by Proposition 6.1.2.

Hence, α1 + α2 ≥ 1. In particular, Vk(H) = ∅, for otherwise, by Equation (7.8),

|E(H)| ≥ 2|V1(H)|, which contradicts Proposition 6.1.2 or the sparsity of (G,ψ).

Since H3 + f3 is unbalanced, this implies that α3 ≥ 1. Moreover, by Equation (7.8)

and Proposition 6.1.2,
∑3

i=1 αi ≤ 2. So, (α1, α2, α3) is one of (0, 1, 1) and (1, 0, 1).

Without loss of generality, assume that α1 = 0, α2 = 1 and α3 = 1. By the definition

of α2, α3, H2, H3 are Z2-blockers. Hence, g = γk/2 and each path from v1 to v2 in

H2 has gain id or g. It follows that ⟨H2 ∪H3 + f2 + f3⟩ ≃ Z2. However,

|E(H2 ∪H3)| = (2|V (H2)| − 2) + (2|V (H3)| − 2)

= 2|V (H2 ∪H3)|+ 2|V (H2 ∩H3)| − 4 = 2|V (H2 ∪H3)| − 2,
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contradicting Proposition 6.1.2 and Lemma 7.1.2. Hence, the result holds if v2 is

free.

Case 2: v2 is fixed.

Let (G1, ψ1), (G2, ψ2) be the graphs obtained from G− v by adding, respectively, an

edge f1 = (v1, v2), and a loop f2 at v1 with gain g. Notice that, if there is already an

edge (v1, v2) ∈ E(G), (G1, ψ1) is not a well-defined gain graph. Assume that g ̸= γk/2

or j is even. We show that one of (G1, ψ1), (G2, ψ2) is Zjk-gain tight. So assume,

for a contradiction, that H2 is a blocker for (G2, ψ2) and, whenever (v1, v2) ̸∈ E(G),

assume that H1 is a blocker for (G1, ψ1). Since H2 + f2 contains the loop f2, H2 is

not a balanced blocker. Moreover, since g ̸= γk/2 or j is even, H2 is not a Z2-blocker.

So, if we show that |Vk(H2)| = 0, then αjk(H2 + f2) ≥ 2 by definition.

Assume, for a contradiction, that v2 ∈ V (H2). In particular, H2 + f2 is not

near-balanced, since Vk(H2) ̸= ∅. Moreover, ⟨H2 + v⟩ ≃ ⟨H2 + f2⟩, since v2 is fixed.

Since |Vk(H2 + v)| = |Vk(H2 + f2)|, it follows that αjk(H2 + v) = αjk(H2 + f2). But

this contradicts Proposition 6.1.2. Hence, v2 ̸∈ V (H2), and so |Vk(H2)| = ∅. So,

αjk(H2 + f2) ≥ 2 and |E(H2)| ≥ 2|V (H2)| − 1. If (v1, v2) ∈ E(G), then

|E(H2 + v2)| = |E(H2)|+ 1 ≥ 2|V (H2)| = 2|V1(H2 + v2)|,

which contradicts Proposition 6.1.2 or the sparsity of (G,ψ). Hence, (v1, v2) ̸∈ E(G),

and (G1, ψ1), H1 are well-defined. Let H = H1 ∪H2 and H
′ = H1 ∩H2. Notice that

H + f1 + f2 is neither balanced nor near-balanced, since it contains the loop f2 and

the fixed vertex v0. Hence, by Corollary 7.1.8, E(H ′) = ∅. Then,

|E(H)| = (2|V (H1)| − 3 + αjk(H1 + f1)) + (2|V (H2)| − 3 + αjk(H2 + f2))

= 2|V (H)|+ 2|V (H ′)| − 6 + αjk(H1 + f1) + αjk(H2 + f2)

≥ 2|V (H)| − 4 + αjk(H1 + f1) + αjk(H2 + f2)

≥ 2|V (H)| − 2 = 2|V1(H)|.

This contradicts Proposition 6.1.2. Hence, there is an admissible 1-reduction at

v, and the result holds.
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7.2.3 v has exactly three neighbours

Proposition 7.2.4. Let Γ be a cyclic group of order k ≥ 4. For 2 ≤ j ≤ k − 2,

let (G,ψ) be a Zjk-gain tight Γ-gain graph with a free vertex v of degree 3. Suppose

that v has no loop, and exactly three distinct neighbours v1, v2, v3. Then there is an

admissible 1-reduction at v.

Proof. For i = 1, 2, 3, let ei = (v, vi) be the edges incident with v. Let f1, f2 and

f3 denote the edges (v1, v2), (v2, v3) and (v3, v1), respectively. By Propositions 3.2.6

and 3.2.9, we may assume ψ(e1) = ψ(e2) = ψ(e3) = id. For 1 ≤ i ≤ 3, let (Gi, ψi)

be obtained by applying a 1-reduction at v, during which we add the edge fi with

gain id, and assume that (Gi, ψi) has a blocker Hi. Let H := H1 ∪ H2 ∪ H3 and

H ′ := H1∩H2∩H3. We will consider the following cases separately: E(Hs∩Ht) = ∅

for at most two pairs of s, t; and E(Hs ∩Ht) = ∅ for all pairs s, t. In both cases, we

show that there is a contradiction.

Case 1: E(Hs ∩Ht) = ∅ for at most two pairs s, t.

Without loss of generality, we may assume E(H1 ∩ H2) ̸= ∅. By Corollary 7.1.8,

either H1 ∪H2 + f1 + f2 is proper near-balanced or v2 is fixed. If H1 ∪H2 + f1 + f2

is near-balanced, say with base vertex u, then so is H1 ∪ H2 + v, since every walk

which contains u, from v1 to v2, from v2 to v3, and from v3 to v1 must have gain id, g

or g−1, for some g ∈ Γ. However, by Lemma 7.1.7, H1 ∪ H2 is (2, 1)-tight, which

contradicts Proposition 6.1.2.

Hence, we may assume that v2 is fixed, and so v1, v3 are free. By the same

argument as in the previous paragraph, it is easy to see that E(H1 ∩ H3) and

E(H2 ∩ H3) are both empty. Therefore, by Lemma 7.1.7, and by the fact that

v1, v3 ∈ V ((H1 ∪H2) ∩H3), we have

|E(H)| = |E((H1 ∪H2) ∪H3)| = |E(H1 ∪H2)|+ |E(H3)|

= (2|V (H1 ∪H2)| − 3 + α12) + (2|V (H3)| − 3 + αjk(H3 + f3))

= 2|V (H)|+ 2|V ((H1 ∪H2) ∩H3)| − 6 + α12 + αjk(H3 + f3)

≥ 2|V (H)| − 2 + α12 + αjk(H3 + f3) ≥ 2|V1(H)|,
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where α12 denotes αjk(H1 ∪H2 + f1 + f2). This contradicts Proposition 6.1.2 or the

sparsity of (G,ψ).

Case 2: E(Hs ∩Ht) = ∅ for all pairs s, t.

For simplicity, let αi := αjk(Hi + fi) for 1 ≤ i ≤ 3. We have

|E(H)| =
3∑
i=1

|E(Hi)| = 2
3∑
i=1

|V (Hi)| − 9 +
3∑
i=1

αi

= 2[|V (H)|+
∑

1≤s ̸=t≤3

|V (Hs ∩Ht)| − |V (H ′)|]− 9 +
3∑
i=1

αi

≥ 2|V (H)| − 3 +
3∑
i=1

αi.

(7.9)

By the sparsity of (G,ψ) and Proposition 6.1.2, 0 ≤
∑3

i=1 αi ≤ 2. Moreover,

|V (Hs ∩ Ht)| ≥ 2 for at most one pair 1 ≤ s ̸= t ≤ 3. Otherwise, it is easy

to see that
∑

1≤s ̸=t≤3 |V (Hs ∩ Ht)| − |V (H ′)| ≥ 5, and so |E(H)| ≥ 2|V (H)| + 1,

contradicting the sparsity of (G,ψ).

First, let
∑3

i=1 αi = 0 and |E(H)| ≥ 2|V (H)| − 3. Then, for each 1 ≤ i ≤ 3,

Hi+ fi is either balanced or it is S0(k, j) with |Vk(Hi)| = 1. First, assume that each

Hi is a balanced blocker. If |V (Hs ∩ Ht)| = 1 for all pairs 1 ≤ s ̸= t ≤ 3, then

H + f1 + f2 + f3 is balanced: each path in H1 (respectively H2 and H3) between

v1 and v2 (respectively v2 and v3, and v1 and v3) has gain id. So, H + v is also

balanced. Since |E(H)| ≥ 2|V (H)| − 3, this contradicts Proposition 6.1.2 or the

sparsity of (G,ψ). So, without loss of generality, assume that |V (H1∩H2)| = 2, and

|V (H1 ∩ H3)| = |V (H2 ∩ H3)| = 1, so that |E(H)| ≥ 2|V (H)| − 1. If Vk(H) ̸= ∅,

then |E(H)| ≥ 2|V1(H)|+1, contradicting the sparsity of (G,ψ). So Vk(H) = ∅. By

Lemma 3.2.21, H1 ∪H2 + f1 + f2 is near-balanced with base vertex v2. Since each

path in H3 from v1 to v3 has gain id, it follows that H+f1+f2+f3 is near-balanced

with base vertex v2. So H + v is also near-balanced with base vertex v2. Since

|E(H)| ≥ 2|V (H)| − 1, this contradicts Proposition 6.1.2 or the sparsity of (G,ψ).

Now, assume that Hi + fi is S0(k, j) with |Vk(Hi)| = 1 for some 1 ≤ i ≤ 3.

Without loss of generality, let H1 + f1 be S0(k, j). If |V (Hs ∩ Ht)| ≥ 2 for some
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pair 1 ≤ s ̸= t ≤ 3, then |E(H)| ≥ 2|V (H)| − 1 = 2|V1(H)| + 1, contradicting the

sparsity of (G,ψ). So |V (Hs ∩ Ht)| = 1 for all pairs 1 ≤ s ̸= t ≤ 3. In particular,

H1 + f1, H2 + f2, H3 + f3 cannot all be S0(k, j): otherwise, they all share a fixed

vertex and, since v1, v2, v3 ̸∈ V (H ′), |V (Hs ∩ Ht)| ≥ 2 for all 1 ≤ s ̸= t ≤ 3. So,

without loss of generality, consider the following cases separately: H1 + f1, H2 + f2

are S0(k, j) and H3 is a balanced blocker; H1+f1 is S0(k, j), and H2, H3 are balanced

blockers.

First, assume that H1 + f1, H2 + f2 are S0(k, j) and H3 is a balanced blocker.

Let n1, n2 ∈ S0(k, j) be such that ⟨H1 + f1⟩ ≃ Zn1 , ⟨H2 + f2⟩ ≃ Zn2 . Since

|V (H1 ∩ H2)| = 1 and H1, H2 share the fixed vertex, v2 is the fixed vertex. So,

⟨H + f1 + f2 + f3⟩ is the group generated by ψ(W ), for all closed walks W in

H + f1 + f2 + f3 not containing v2, which in turn is the group

⟨ψ(W ) : W is a closed walk in H1 or H2 not containing v2, or in H3 + f3⟩ ≃ Zl,

where l = lcm(n1, n2) ∈ S0(k, j). So H + f1 + f2 + f3 is S0(k, j), which

Proposition 6.1.2 or the sparsity of (G,ψ), since |E(H)| ≥ 2|V1(H)| − 1.

Now, let ⟨H1 + f1⟩ ≃ Zn for some n ∈ S0(k, j), and H2, H3 be balanced blockers.

Then the gain of H + f1+ f2+ f3 is composed of the gain of every closed walk in Hi

not containing the fixed vertex, for 1 ≤ i ≤ 3, and the gain of every walk obtained

by concatenating a walk from v1 to v2 (in H1), a walk from v2 to v3 (in H2), and a

walk from v3 to v1 (in H3). Since every walk from v1 to v2 has gain in Zn (since f1

has identity gain), and every closed walk in H1 has gain in Zn (since H1 ⊂ H1+ f1),

and every closed walk in H2, H3, as well as every walk from v2 to v3 and from v3

to v1 has gain id, ⟨H + f1 + f2 + f3⟩ ≃ Zn. By Lemma 7.1.2, H + v is S0(k, j).

Since |E(H)| ≥ 2|V1(H)| − 1, this is a contradiction, by the sparsity of (G,ψ) and

Proposition 6.1.2.

So, let the triple (α1, α2, α3) be one of (1, 0, 0), (2, 0, 0), (1, 1, 0). In particular,

since
∑3

i=1 αi ≥ 1, |V (Hs ∩ Ht)| = 1 for all 1 ≤ s ̸= t ≤ 3. Otherwise,∑
1≤s ̸=t≤3 |V (Hs∩Ht)|− |V (H ′)| ≥ 4, and so, by Equation (7.9), |E(H)| ≥ 2|V (H)|,

contradicting Proposition 6.1.2 or the sparsity of (G,ψ). Moreover, if |Vk(H)| = 1,
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then |E(H)| ≥ |V1(H)| by Equation (7.9). This contradicts Proposition 6.1.2 or the

sparsity of (G,ψ), so |Vk(H)| = 0.

If the (α1, α2, α3) = (1, 1, 0), then H1, H2 are Z2-blockers, and H3 is a balanced

blocker. Since |V (Hs ∩Ht)| = 1 for all 1 ≤ s ̸= t ≤ 3, the gain of H + f1 + f3 + f2 is

given by the gain of each closed walk in H1+f1, H2+f2 and H3+f3, and the gain of

every walk obtained by concatenating a walk from v1 to v2 (in H1), a walk from v2 to

v3 (in H2), and a walk from v3 to v1 (in H3). So, ⟨H + v⟩ = ⟨H + f1 + f2 + f3⟩ ≃ Z2.

Since |E(H)| ≥ 2|V (H)| − 2 and j is odd, this contradicts Proposition 6.1.2 or the

sparsity of (G,ψ).

So assume that (α2, α3) = (0, 0). Then H2 ∪ H3 + f2 + f3 is balanced, since

H2∩H3 is the isolated vertex v3. Hence, ⟨H + v⟩ = ⟨H + f1 + f2 + f3⟩ = ⟨H1 + f1⟩.

Moreover, it is easy to see that H + f1 + f2 + f3 (and hence also H + v) is near-

balanced whenever H1 + f1 is near-balanced. Since |Vk(G)| = 0, this implies that

αkj (H+v) = α1. Since |E(H)| = 2|V (H)|−3+α1, this contradicts Proposition 6.1.2

or the sparsity of (G,ψ).

7.3 Main results

For some integer k ≥ 4, let (G̃, p̃) be a Ck-generic framework with Ck-gain framework

(G,ψ, p). Recall that (G,ψ) is (2, 0, 3, 1)-gain tight whenever (G̃, p̃) is fully-

symmetrically isostatic, that (G,ψ) is (2, 1, 3, 1)′-gain tight whenever (G̃, p̃) is ρ1-

isostatic or ρk−1-isostatic, and that, for 2 ≤ j ≤ k − 2, (G,ψ) is Zjk-gain tight

whenever (G̃, p̃) is ρj-isostatic (see Proposition 5.1.8 in Subsection 5.1.3). In this

section, we show that the converse statements are also true whenever 5 ≤ k ≤ 1000

is odd or k = 4, 6.

This was already done in Chapter 6 for the fully-symmetric case and, with the

restriction that k is odd, for the ρ1-symmetric and ρk−1-symmetric cases (recall

Theorem 6.5.1). In this section, we conclude the study by considering the ρ1-

symmetric and ρk−1-symmetric cases for k = 4, 6 and, the ρj-symmetric case for
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all odd 5 ≤ k ≤ 1000 and for k = 4, 6, where 2 ≤ j ≤ k − 2. The case where

Vk(G) = ∅ was already shown in [27] for odd k ≤ 1000, and in [8] for k = 4, 6. Here,

we unite the results and state them as Theorem 7.3.1.

Theorem 7.3.1 ([8], [27]). For odd 5 ≤ k ≤ 1000 or for k = 4, 6, let (G̃, p̃) be a Ck-

generic framework with Ck-gain framework (G,ψ, p). Suppose that V (G) = V1(G).

(G̃, p̃) is ρ1-isostatic and ρk−1-isostatic if and only if (G,ψ) is (2, 1, 3, 1)′-gain tight.

For 2 ≤ j ≤ k − 2, (G̃, p̃) is ρj-isostatic if and only if (G,ψ) is Zjk-gain tight.

The proofs of Theorem 7.3.1 apply inductive arguments. The base case for the ρ1-

symmetric case and the ρk−1-symmetric case is a single vertex with a loop, similarly

as we had for the 3-fold rotation symmetry case (recall Figure 6.5 in Subsection 6.5).

However, in this case the loop is not allowed to have gain g such that ⟨g⟩ ≃ Z2.

For the ρj-symmetric case, where 2 ≤ j ≤ k − 2, the base cases are a combination

of disjoint unions of certain base graphs, which may be grouped into three classes.

The first class is composed of the graphs in Figure 7.2. The second class consists of

all Zjk-gain tight 4-regular graphs which may be obtained from an S(k, j) Zk-gain

graph by adding an edge. The third class consists of all Zjk-gain tight 4-regular

graphs (with j odd) which can be obtained from a Zk-gain graph G with ⟨G⟩ ≃ Z2

by adding two edges.

Similarly, we use inductive arguments which employ reduction moves on the gain

graph (G,ψ). When a fixed vertex is present, we will see that we obtain exactly one

additional base graph for the ρ1-symmetric and ρk−1-symmetric case, and exactly

one additional connected component of a base graph for the ρj-symmetric case where

2 ≤ j ≤ k − 2: in both cases, this is the isolated fixed vertex. Since we employ a

proof by induction, we will need the following result.

Lemma 7.3.2. For k = 4, 6, let Γ = ⟨γ⟩ ≃ Zk through the isomorphism defined

by letting γ 7→ 1. For 2 ≤ j ≤ k − 2, let (G,ψ) be a Zjk-gain tight (respectively,

(2, 1, 3, 1)′-gain tight) Γ-gain graph with Vk(G) = {v0} and |V (G)| ≥ 2. Suppose

that deg(v0) ≥ 1. Then there is a reduction of (G,ψ) which yields a Zjk-gain
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δ δδ

id id

id id

Figure 7.2: Base graphs for k-fold rotation for 2 ≤ j ≤ k− 2, where V (G) = V1(G).

All (unlabelled) edges of such graphs may be labelled freely, with the restrictions

that loops must not have non-identity gains, the non-looped edges of the last graph

are labelled id, and each graph must be Zjk-gain tight.

tight (respectively, (2, 1, 3, 1′)-gain tight) graph (G′, ψ′). The reduction which yields

(G′, ψ′) is one of the following: a 0-reduction, a loop-1-reduction, a 1-reduction or a

2-vertex reduction.

Proof. By Lemma 6.1.1, there is a free vertex in V (G) of degree 2 or 3. We may

assume that G has no free vertex of degree 2 and no free vertex of degree 3 with a

loop. Otherwise, we may apply a 0-reduction or loop-1-reduction to (G,ψ). Further,

we may assume that j is odd if (G,ψ) is Zjk-gain tight, and that for all free vertices

v of degree 3, v has exactly 2 distinct neighbours, one of which is v0, and the 2-cycle

v forms with its free neighbour has gain γk/2 (see Figure 7.1). Otherwise, we may

apply a 1-reduction to (G,ψ), by Theorems 6.2.1 and 7.2.1. If Zjk-gain tight, this

forces k and j to be 6 and 3, respectively.

Let v1, . . . , vt be the free vertices of degree 3 in G. For 1 ≤ i ≤ t let ui be the

free neighbour of vi, and ei := (ui, v0). By Lemma 6.1.1, deg(v0) ≤ t. So, if the edge

ei is present for some 1 ≤ i ≤ t, then ui must be a vertex of degree 3. Hence, we

can apply a 2-vertex reduction at ui, vi. So, we may assume that ei ̸∈ E(G) for all

1 ≤ i ≤ t.

For 1 ≤ i ≤ t, let (Gi, ψi) be obtained from (G,ψ) by removing vi and adding

ei with gain id. We will show that, for some 1 ≤ i ≤ t, (Gi, ψi) is an admissible

1-reduction. Assume, for a contradiction, that for all 1 ≤ i ≤ t there is a blocker Hi

for (Gi, ψi). Suppose that (G,ψ) is Zjk-gain tight. If there is some 1 ≤ i ≤ t such
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that αjk(Hi + ei) ≥ 1, then

|E(Hi)| = 2|V (Hi)| − 3 + αjk(Hi + ei) = 2|V1(Hi)| − 1 + αjk(Hi + ei) ≥ 2|V1(Hi)|,

since Hi contains the fixed vertex v0. This contradicts Proposition 6.1.2 or the

sparsity of (G,ψ). So for all 1 ≤ i ≤ t, αjk(Hi + ei) = 0 and Hi is (2, 3)-tight.

Similarly, if (G,ψ) is (2, 1, 3, 1)′-gain tight, then each Hi is (2, 3)-tight: Hi cannot

be a general count blocker by Proposition 6.1.2, and it cannot be a Z2-blocker, as

otherwise |E(Hi)| = 2|V1(Hi)| + |Vk(Hi)| − 1, contradicting Proposition 6.1.2. It

follows that, for all 1 ≤ i ≤ t, Hi + ei is either balanced or, just for the case where

(G,ψ) is Zjk-gain tight, S0(6, 3). Since S0(6, 3) = {3}, it follows that ⟨Hi + ei⟩ is

either {id} or, just for the case where (G,ψ) is Zjk-gain tight, {id, γ2, γ4}.

Moreover, for each 1 ≤ i ̸= s ≤ t, vs ̸∈ V (Hi). To see this, suppose, for a

contradiction, that vs ∈ V (Hi). Since ⟨Hi + ei⟩ is either {id} or {id, γ2, γ4}, it

cannot contain the 2-cycle (vs, us)(us, vs) of gain γ3. Hence, there is an edge e

incident to vs, us such that e ̸∈ E(Hi). By Lemma 6.1.1(i), since Hi i (2, 3)-tight,

all of its vertices have degree 2 in Hi. In particular, us has degree 2 in Hi, so two

edges incident to us lie in Hi. Then,

|E(Hi + e)| = 2|V (Hi)| − 2 = 2|V1(Hi + e)| = 2|V1(Hi + e)|+ |Vk(Hi + e)| − 1,

since v0 ∈ V (Hi). This contradicts Proposition 6.1.2. Hence, for all 1 ≤ i ̸= s ≤ t,

vs ̸∈ V (Hi).

Claim: E(Hi ∩Hs) = ∅ and V (Hi ∩Hs) = {v0} for all 1 ≤ i ̸= s ≤ t.

Proof. Choose some 1 ≤ i ̸= s ≤ t. Assume for a contradiction that E(Hi∩Hs) ̸= ∅.

By the proof of Lemmas 7.1.5 and 7.1.6, we can see that

|E(Hi ∪Hs)| = 2|V (Hi ∪Hs)| − 3

= 2|V1(Hi ∪Hs)| − 1 = 2|V1(Hi ∪Hs)|+ |Vk(Hi ∪Hs)| − 2.
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But then,

|E(Hi ∪Hs + vi + vs)| = |E(Hi ∪Hs)|+ 6 = 2|V1(Hi ∪Hs)|+ 5

= 2|V1(Hi ∪Hs + vi + vs)|+ 1

= 2|V1(Hi ∪Hs + vi + vs)|+ |Vk(Hi ∪Hs + vi + vs)|,

contradicting the sparsity of (G,ψ). So E(Hi ∩Hs) = ∅ for all 1 ≤ i ̸= s ≤ t. Now,

if V (Hi ∩Hs) ̸= {v0}, then Hi ∩Hs contains a free vertex, and so

|E(Hi ∪Hs)| = |E(Hi)|+ |E(Hs)| = 2|V (Hi ∪Hs)|+ 2|V (Hi ∩Hs)| − 6

≥ 2|V (Hi ∪Hs)| − 2 = 2|V1(Hi ∪Hs)|

= 2|V1(Hi ∪Hs)|+ |Vk(Hi ∪Hs)| − 1,

since Hi ∪ Hs contains v0. This contradicts Proposition 6.1.2 or the sparsity of

(G,ψ), so V (Hi ∩Hs) = {v0}. Since i, s were arbitrary, the claim holds. □

Let H :=
⋃t
i=1Hi. By the Claim,

|E(H)| =
t∑
i=1

|E(Hi)| = 2
t∑
i=1

|V (Hi)|−3t = 2(|V (H)|+(t−1))−3t = 2|V (H)|−t−2.

So, H ′ := H + v1 + · · · + vt satisfies |E(H ′)| = 2|V (H ′
1)| − 2. Since v0 ∈ V (H ′), it

also satisfies |E(H ′)| = 2|V1(H ′
1)| = 2|V1(H ′

1)|+ |V1(H ′
1)|−1. This implies that there

is no edge e ∈ E(G) \ E(H ′) that joins two vertices in V (H ′) (both when (G,ψ) is

Zjk-gain tight and when it is (2, 1, 3, 1)′-gain tight).

Next, we show that H ′ is a connected component of G. Clearly, H ′ is connected.

Suppose G has a non-empty subgraph G′ such that V (G) is the disjoint union of

V (H ′) and V (G′). Let d(H ′, G′) be the number of edges joining a vertex in H ′

with one in G′. We aim to show that d(H ′, G′) = 0. Let α ≥ 0 be such that

|E(G′)| = 2|V (G′)|−α = 2|V1(G′)|−α = 2|V1(G′)|+ |Vk(G′)|−α. (Note that α ≥ 1

if (G,ψ) is (2, 1, 3, 1)′-gain tight.) Then,

|E(G)| = |E(H ′)|+ |E(G′)|+ d(H ′, G′) = 2|V1(H ′)|+ 2|V1(G′)| − α + d(H ′, G′)

= 2|V1(G)| − α + d(H ′, G′) = |E(G)| − α + d(H ′, G′),
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since |E(G)| = 2|V1(G)| = 2|V1(G)| + |Vk(G)| − 1. So α = d(H ′, G′). Since every

vertex in G′ has degree at least 4 in G,

4|V (G′)| ≤
∑

v∈V (G′)

degG(v) = 2|E(G′)|+ d(H ′, G′)

= 4|V (G′)| − 2α + α = 4|V (G′)| − α,

and so d(H ′, G′) = α = 0, as required. If (G,ψ) is (2, 1, 3, 1)′-tight, we already have

a contradiction. Hence, we may assume that (G,ψ) is Zjk-gain tight.

Consider H1 and let n,m be the vertices of degree 2 and 3 in H1, respectively.

Let ρ̂, ρmin be the average degree and minimum attainable degree of H1, respectively.

Since H1 is (2, 3)-tight, |V (H1)|ρ̂ = 4|V (H1)| − 6. Moreover, ρmin is attained when

all vertices of H1 have degree 2,3 or 4, and hence we have |V (H1)|ρmin = 4|V (H1)|−

2n − m. Since ρmin ≤ ρ̂, 2n + m ≥ 6. Hence, there are at least three vertices of

degree 2 or 3 in H1. If two of the vertices are v0, v1, there is still a free vertex w in

H1 of degree 2 or 3. Since H1 is a connected component of G, it follows that w has

degree 2 or 3 in G. But this contradicts our assumption that the only free vertices

of degree 2 or 3 in G are v1, . . . , vt. Hence, our result holds by contradiction.

We now prove the main result of this section.

Theorem 7.3.3. For odd 5 ≤ k ≤ 1000 or for k = 4, 6, let (G̃, p̃) be a Ck-generic

framework with Ck-gain framework (G,ψ, p). The following hold:

(1) If (G,ψ) is (2, 0, 3, 1)-gain tight, then (G̃, p̃) is fully-symmetrically isostatic.

(2) If (G,ψ) is (2, 1, 3, 1)′-gain tight, then (G̃, p̃) is ρ1-isostatic and ρk−1-isostatic.

(3) If (G,ψ) is Zjk-gain tight for some 2 ≤ j ≤ k − 2, then (G̃, p̃) is ρj-isostatic.

Proof. Since (1) is an example of Theorem 6.5.1(1), we need only prove (2) and

(3). We use induction on |V (G)|. The base cases for (2) are the same that were

given in Figure 6.5. It is easy to check, in a similar way as we did in the proof of

Theorem 6.5.2, that in both cases O1(G,ψ, p) and Ok−1(G,ψ, p) have full rank and
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nullity 1. For the base cases of (3), let V (G) = Vk(G) = {v0}. Then (G,ψ) is an

isolated fixed vertex, and so it is easy to see that (G̃, p̃) is ρj-symmetrically isostatic

for 1 ≤ j ≤ k − 1. The Γ-liftings of the graphs in Figure 7.2 were shown to have

ρj-isostatic realisations for 2 ≤ j ≤ k − 2 in [27]. The base cases of our induction

argument are exactly the disjoint combinations of the base graphs given in [27], and

of the isolated fixed vertex.

We may assume that V1(G) ̸= ∅ (since otherwise we obtain a base graph).

Assume further that the statement is true for all graphs on at most t vertices,

for some integer t ≥ 1, that |V (G)| = t+ 1, and that G is not a base graph.

For (2), suppose that (G,ψ) is (2, 1, 3, 1)′-gain tight. By Lemma 7.3.2, (G,ψ)

admits a reduction using one of the moves listed in the statement of the lemma.

Let (G′, ψ′) be a (2, 1, 3, 1)′-gain tight graph obtained by applying such a reduction

to (G,ψ). By induction, all Ck-generic realisations of G̃′ are ρ1-isostatic and ρk−1-

isostatic. Let q̃′ be a Ck-generic configuration of G̃′ which also satisfies the conditions

of Lemma 5.3.11 (respectively, Lemma 5.3.8) if G̃′ is obtained from G̃ by applying

a 1-reduction (respectively, a loop-1-reduction). By Lemmas 5.3.4, 5.3.8, 5.3.11

and 5.3.13, there is a realisation (G̃, p̃) of G̃ which is ρ1-isostatic (or ρk−1-isostatic).

(2) follows from the fact that p̃ is Ck-generic.

Now we prove (3). If Vk(G) = ∅, or if V (G) has an isolated fixed vertex, then

the graph (G′, ψ′) obtained from (G,ψ) by removing its fixed vertex (if it has one),

is Zjk-gain tight. By Theorem 7.3.1, (G̃′, p̃|V (G′)) is ρj-symmetrically isostatic. Since

Oj(G,ψ, p) = Oj(G
′, ψ′, p|V (G′)), (G̃, p̃) is also ρj-symmetrically isostatic. So, we

may assume that G has a connected component H which contains a fixed vertex,

and which is not a base graph. Hence, the fixed vertex has degree at least 1.

If |V1(G)| = 1, then V (G) = {v0, v}, where v0 is a fixed vertex and v is free, and

E(G) is composed of a loop e at v, and an edge between v and v0. Since (G,ψ)

is Zjk-gain tight, if k = 6 and j = 3, then e does not have gain γk/2. Moreover,

G is not S0(k, j). We may apply a loop-1-reduction at v to obtain a Zjk-gain

tight graph (G′, ψ′) on t vertices. By the inductive hypothesis, every Ck-generic
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realisation of G̃′ is ρj-symmetrically isostatic. Let (G̃′, q̃′) be a Ck-generic realisation

of G̃′. By Lemma 5.3.8, there is a Ck-symmetric realisation (G̃, q̃) of G̃ which is ρj-

symmetrically isostatic. Then, since (G̃, p̃) is Ck-generic, it is also ρj-symmetrically

isostatic.

So, we may assume that |V1(G)| ≥ 2. If k = 4, 6, by Lemma 7.3.2, there

is a Zjk-gain tight graph (G′, ψ′) on at most t vertices obtained from (G,ψ) by

applying a reduction given in the statement of the lemma (exactly t if we apply a

0-reduction, loop-1-reduction or 1-reduction, and exactly t−1 if we apply a 2-vertex

reduction). By induction, every Ck-generic realisation of G̃′ is ρj-symmetrically

isostatic. Moreover, if we apply a loop-1-reduction at a vertex v which removes a

loop e, by the sparsity of (G,ψ), the following hold: if k = 6, j = 3, then e does not

have gain γk/2; if the vertex incident to v is fixed, call it v0, then the graph spanned

by v, v0 is not S0(k, j). So the conditions in Lemma 5.3.8 hold.

Let q̃′ be a Ck-generic configuration of G̃′, which also satisfies the condition in

Lemma 5.3.11 if the move applied is a 1-reduction. Notice that such a configuration

does exist, since small symmetry-preserving perturbations of the points of a Ck-

generic framework maintain Ck-genericity. By Lemmas 5.3.4, 5.3.8, 5.3.11 and 5.3.13

there is a Ck-symmetric realisation (G̃, q̃) of G̃ which is ρj-symmetrically isostatic.

By Ck-genericity, (G̃, p̃) is also ρj-symmetrically isostatic.

So, assume that k is odd. By Lemma 6.1.1, H has a free vertex v of degree

2 or 3. If v has degree 2, or if it has degree 3 with a loop, then we may apply a

0-reduction or loop-1-reduction at v to obtain a Zjk-gain tight graph (G′, ψ′) on t

vertices. Moreover, if v has a loop, and the vertex incident to v is fixed, call it v0,

then the graph spanned by v, v0 is not S0(k, j). By the inductive hypothesis, all

Ck-generic realisations of G̃′ are ρj-symmetrically isostatic. Then, our result holds

by Lemmas 5.3.4 and 5.3.8. So, assume that v has degree 3 and no loop. Then, by

Theorem 7.2.1, there is a Zjk-tight graph (G′, ψ′) on t vertices obtained by applying

a 1-reduction at v. By the inductive hypothesis, all Ck-generic realisations of G̃′ are

ρj-symmetrically isostatic. Let q̃′ be a Ck-generic realisation of G̃′ which satisfies
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the condition of Lemma 5.3.11. Then, our result holds by Lemma 5.3.11.

We finally have our main combinatorial characterisation for Ck for all odd integers

5 ≤ k ≤ 1000 and for k = 4, 6, which is a direct result of Proposition 5.1.8 and

Theorem 7.3.3.

Theorem 7.3.4. Let k = 4, 6 or 5 ≤ k ≤ 1000 be odd. Let (G̃, p̃) be a Ck-generic

framework, and let (G,ψ) be the Zk-gain graph of G̃. (G̃, p̃) is infinitesimally rigid

if and only if (G,ψ) has a (2, 0, 3, 1)-gain tight spanning subgraph, a (2, 1, 3, 1)′-gain

tight spanning subgraph and a Zjk-gain tight spanning subgraph for all 2 ≤ j ≤ k−2.

The restriction k ≤ 1000 in Theorem 7.3.1 arises from the difficulty of

computationally checking the rank of the corresponding orbit matrices for a growing

list of base graphs. Both in [8] and in [27], it is conjectured that this restriction

may be dropped if V (G) = V1(G). For even k ≥ 8, there are counterexamples to

Theorem 7.3.1, as we will see in Section 7.4. Our final result relies on Theorem 7.3.1.

Hence, we must maintain all restrictions on k.

7.4 Rotation groups of even order at least 8

In this section, we provide, for all even |Γ| ≥ 8, examples of Γ-gain graphs that

satisfy all conditions of Theorem 7.3.4, but whose C|Γ|-generic lifting frameworks are

still not infinitesimally rigid.

Let k := |Γ| ≥ 4 be even, and let G be the multigraph with exactly one free

vertex v, which is free, and two loops f1, f2 at v (see Figure 7.3(a)). Let γ be the

generator of Γ which corresponds to 1 in Zk. Let ψ : E(G) → Γ be defined by letting

ψ(f1) = γ and ψ(f2) = γ3. If k ≥ 6, (G,ψ) is a well-defined Γ-gain graph. Moreover,

if k ≥ 8, then (G,ψ) is Zjk-gain tight for all 2 ≤ j ≤ k − 2. Since G − f1 is both

(2, 0, 3, 1)-gain tight and (2, 1, 3, 1)′-gain tight, (G,ψ) satisfies all three conditions of

Theorem 7.3.4. For all odd 1 ≤ k − 1, we have

ρ k
2
(γj) = exp(π

√
−1j) = cos(πj) +

√
−1 sin(πj) = −1.
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7.4. Rotation groups of even order at least 8

Therefore, for any injective p : (V ) → R2, the ρk/2-orbit rigidity of (G,ψ, p) is[(p(v)− Ckp(v) + p(v)− C−1
k p(v)]T

[(p(v)− C3
kp(v) + p(v)− C−3

k p(v)]T

 =

−2 sin(2π
k
)y 2 sin(2π

k
)x

−2 sin(6π
k
)y 2 sin(6π

k
)x

 ,

where x and y denote the x-coordinate and the y-coordinate of p(v), respectively.

Suppose x ̸= 0. Then, for any m1 ∈ R, it is easy to see that the column vector in

R2 whose first entry is m1 and whose second entry is m1y/x lies in the kernel of

Ok/2(G,ψ, p). Therefore, (G,ψ, p) is not ρk/2-isostatic.

This result is not unexpected. Let G̃ be the Γ-lifting of (G,ψ), and take an

arbitrary Ck-symmetric realisation (G̃, p̃) of G̃. By definition, the realisation of the

vertices in V (G) form a regular k-gon. Moreover, it is easy to see that the vertices

of the k-gon alternate between vertices of the two partite sets of a bipartite graph

(see e.g. Figure 7.3(b) for the case when k = 8), as no odd cycles are created.

Clearly, the framework is Ck-generic. It is well known that such a framework has

an ‘in-and-out’ infinitesimal motion m which, for τ(δ) = Ck, satisfies the system of

equations

m(δtv) =

C
t
km(v) if t is even

−Ct
km(v) if t is odd,

where v is an arbitrary vertex of G̃ (here, m(v) is a vector on the line from the

origin to pv), and 0 ≤ t ≤ k − 1 (see e.g. [72]). Equivalently, for all v ∈ V (G̃) and

0 ≤ t ≤ k − 1,

m(γtv) = cos(πt)Ct
km(v) = cos(−πt)Ct

km(v)

= exp(−πit)Ct
km(v) = ρk/2(γt)C

t
km(v).

So, m is a ρk/2-symmetric infinitesimal motion.

This example may be extended to the case in which the Γ-gain graph has a fixed

vertex. Let G be a multigraph with exactly two free vertices u, v, and one fixed

vertex v0. Let the edge set of G be composed of two loops f1, f2 at u, one loop f3 at

v, and the edges e1 = (u, v) and e2 = (v, v0) (see Figure 7.3(c)). Let ψ : E(G) → Γ
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Chapter 7. Sufficient conditions for cyclic groups of higher order

be defined by letting ψ(f1) = γ, ψ(f2) = γ3, ψ(f3) = γ2, and ψ(e1) = ψ(e2) = id.

Similarly as in the previous examples, (G,ψ) is well-defined for all k ≥ 6. Moreover,

it has the following spanning subgraphs: G− f1 − f3, which is (2, 0, 3, 1)-gain tight;

G − f1, which is (2, 1, 3, 1)′-gain tight; and G − f3, which is Zjk-gain tight for all

2 ≤ j ≤ k − 2, provided k ≥ 8. Hence, for k ≥ 8, (G,ψ) satisfies all conditions in

Theorem 7.3.4. Since ρk/2(γ
2) = exp(2π

√
−1) = 1, for some p : V (G) → R2, the

ρk/2-orbit rigidity matrix of (G,ψ, p) is

−2 sin(2π
k
)yu 2 sin(2π

k
)xu 0 0

−2 sin(6π
k
)yu 2 sin(6π

k
)xu 0 0

xu − xv yu − yv xv − xu yv − yu

0 0 (2− 2 cos(4π
k
))xv (2− 2 cos(4π

k
))yv

0 0 xv yv


,

where p(u) = (xu yu)
T and p(v) = (xv yv)

T . Clearly, the first two rows of the

matrix are linearly dependent, as are the bottom two. Hence, rankOk/2(G,ψ, p) ≤ 3.

By the Rank-nullity Theorem, nullOk/2(G,ψ, p) ≥ 1. Therefore, (G,ψ, p) is not

ρk/2-isostatic.

γ γ3

(a) (b)

γ γ3

γ2

(c) (d)

Figure 7.3: (a,c) show Γ-gain graphs with C8-symmetric frameworks (b,d),

respectively. Though (a,c) satisfy the conditions in Theorem 7.3.4, (b,d) are ρ4-

symmetrically flexible. Here, γ denotes the generator of Γ which corresponds to

rotation by π/4.
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Similarly as with the free action case, the result is not unexpected. Let G̃ be

the lifting of (G,ψ) and consider a Ck-generic realisation (G̃, p̃) of G̃. Since this is

an extension of the previous example, (G̃, p̃) still contains a regular k-gon P , and

the graph induced by the vertices of P is bipartite. In addition, (G,ψ) contains two

regular k/2-gons, P1 and P2, such that all vertices of P1, P2 are adjacent to the origin,

and they are adjacent with the vertices of P as shown in Figure 7.3(d). Then, the

infinitesimal motion from the previous example extends to an infinitesimal motion

m of (G̃, p̃) which rotates P1 and P2 clockwise and anti-clockwise, respectively.
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Further work

When I started my PhD, I was presented with the idea of extending the combinato-

rial characterisations of infinitesimally rigid plane Cs, C2 and C3-generic frameworks

given in [56] to the case where the symmetry group need not act freely on the

joints. The mathematical motivation was to start closing a gap in the knowledge of

infinitesimally rigid plane symmetric frameworks. The gap has partly been closed

now: we have a combinatorial characterisation for infinitesimally rigid Cs-generic

and Ck-generic frameworks, where k = 2, 4, 6 or 3 ≤ k < 1000 is odd. However,

there are still many question to be answered. In fact, for certain symmetry groups,

the infinitesimal rigidity of symmetry-generic plane frameworks has not yet been

characterised, even with the assumption that the symmetry group acts freely on the

joints of the framework.

8.1 Cyclic groups

For all odd k > 1000 and for all even k ≥ 8, we do not have a combinatorial

characterisation of infinitesimally rigid Ck-generic frameworks, even with the

assumption that Ck acts freely on the joints of the framework. In Chapter 5,

we presented necessary conditions for the infinitesimal rigidity of Ck-symmetric

framework, where k ≥ 3 is arbitrary. (Analogous necessary conditions were given
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8.1. Cyclic groups

for the case where Ck acts freely on the joints of a given framework in [27] and

in [56].) In Chapters 6 and 7, we showed that the conditions given in Chapter 5

were also sufficient for the ρ0-infinitesimal rigidity, the ρ1-infinitesimal rigidity and

ρk−1-infinitesimal rigidity of Ck-generic frameworks. Therefore, the problem lies in

proving that, for 2 ≤ j ≤ k−2, a Zjk-gain tight graph has a ρj-isostatic ‘realisation’.

The proof of our final combinatorial characterisation (see Theorem 7.3.4)

strongly relies on the free action equivalent of the result given in [8] and [27] (see

Theorem 7.3.1). Even assuming that a Zjk-gain tight graph (G,ψ) has a fixed vertex

v0, we still rely on Theorem 7.3.1: since Zjk-gain graphs need not be connected,

it is possible that (G,ψ) has a connected component which does not contain v0.

Further, assuming that (G,ψ) has a fixed vertex v0 and it is connected, we still need

Theorem 7.3.1: when applying a reduction at a vertex of (G,ψ), it is possible we

obtain a disconnected graph, and again we may have a connected component which

does not contain v0. Therefore, our inductive argument implicitly uses Theorem 7.3.1

throughout.

Since Theorem 7.3.1 assumes that 5 ≤ k ≤ 1000 is odd or k = 4, 6, we must

keep these bounds on the order of the group. As mentioned in Chapter 7, the upper

bound of 1000 on k is due to the computational technique adopted in [27] to study

the base cases of an inductive argument. In [27] it was (strongly) conjectured that

this upper bound may be dropped. Since our only additional base case is a simple

fixed vertex, we conjecture the following.

Conjecture 8.1.1. Let Γ be a cyclic group of odd order k ≥ 5. Let (G̃, p̃) be

a Ck-generic framework with underlying Γ-symmetric graph G̃. Let (G,ψ) be the

Γ-gain graph of G̃. Then, (G̃, p̃) is infinitesimally rigid if and only if (G,ψ) has a

(2, 0, 3, 1)-gain tight spanning subgraph, a (2, 1, 3, 1)-gain tight spanning subgraph

and a Zjk-gain tight spanning subgraph for all 2 ≤ j ≤ k − 2.

Proving Conjecture 8.1.1 requires an analysis of the phase-symmetric orbit

rigidity matrices of the base cases through algebraic tools.

Dropping the bound on even k would require more work. At the end of Chapter 7
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we have seen through counterexamples that for all even k ≥ 8, the lifting of

a Zk/2k -gain tight graphs need not have a ρk/2-infinitesimally rigid Ck-symmetric

realisation. Therefore, more refined conditions are needed for a full characterisation

of infinitesimally rigid Ck-generic frameworks for even k ≥ 8.

Let Γ = ⟨γ⟩ be a cyclic group of even order k ≥ 8, and let it be isomorphic to Zk
through the isomorphism which maps γ to 1. By definition, a Zk/2k -gain tight Γ-gain

graph (G,ψ) is allowed to have two loops f1, f2 at a vertex, with some restrictions

on the gains ψ(f1), ψ(f2). If, say ψ(f1) = γ, then f2 is allowed to have any gain

except id, γ−1, γ and γk/2. In particular, ψ(f2) can be γn for any odd n which is not

equivalent (modulo k) to −1, 1 or k
2
. As we have seen in Section 7.4, for all odd n,

ρk/2(γ
n) = −1. Hence, for any injective p : V (G) → R2, the rows corresponding to

two loops at a vertex v with gains γn, γm, where n,m are odd, in Ok/2(G,ψ, p) are−2 sin(2nπ
k
)y 2 sin(2nπ

k
)x

−2 sin(2mπ
k
)y 2 sin(2mπ

k
)x

 ,

where p(v) = (x y)T . This clearly presents a row dependence. Thus, two loops at

a vertex are not allowed to have gains γn, γm where n,m are both odd (see, e.g.,

Figure 8.1).

γ3 γ5

Figure 8.1: A Z16-gain graph with a C16-symmetric realisation of its Z16-lifting.

Here, γ denotes the generator of Γ ≃ Z16 which corresponds to rotation by π/8, and

the loop in blue (respectively, red) lifts to the edge orbit in blue (respectively, red).

Note that the C16-symmetric framework is a bipartite graph realised on a conic.

On the other hand, for all even n, ρk/2(γ
n) = 1. Hence, for any injective p :

V (G) → R2, the rows in Ok/2(G,ψ, p) corresponding to two loops at a vertex v with
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gains γn, γm, where n,m are even, are(2− 2 cos(2nπ
k
))x (2− 2 cos(2nπ

k
))y

(2− 2 cos(2mπ
k
))x (2− 2 cos(2mπ

k
))y

 ,

where p(v) = (x y)T . Again, this clearly presents a row dependence. Therefore,

two loops at a vertex are not allowed to have gains γn, γm where n,m have the same

parity. Note, similarly as we did in the definition of Zjk-gain tight given in Chapter 3,

we must also consider subgraphs of (G,ψ) which are symmetric with respect to a

subgroup of Γ. Therefore, for all even k ≥ 8 and all 2 ≤ j ≤ k − 2, we define the

following set in a similar way as we defined S0(k, j) and S±1(k, j):

Sk/2(k, j) = {n ∈ N;n ≥ 8 is even, n|k, j ≡ n/2(mod n)}.

Then, we say a connected subgraph H of G is Sk/2(k, j) if ⟨H⟩ψ ≃ Zn for some

n ∈ Sk/2(k, j). For all Sk/2(k, j) subgraphs H of (G,ψ), we expect that H does

not have two loops at a vertex with gains γn, γm, where n,m have the same parity.

However, more refined conditions may be needed.

8.2 Dihedral groups

More challenging, though still tractable for some special classes, is the study of

plane frameworks which are symmetric with respect to a dihedral group. In [29],

Jordán, Kaszanitzky and Tanigawa combinatorially characterise fully-symmetrically

infinitesimally rigid Ckv-generic frameworks on the plane, where k ≥ 3 is odd and

the symmetry group acts freely on the joints of the framework. We present their

result in our terminology.

Theorem 8.2.1 ([29], Theorem 8.2). Let k ≥ 3 be an odd integer, and (G̃, p̃)

be a Ckv-generic framework with Ckv-gain framework (G,φ, ψ, p). Suppose that all

vertices of G are free. Then, (G̃, p̃) is fully-symmetrically infinitesimally rigid if and

only if (G,φ, ψ) is D2k-gain tight.
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Using a similar proof strategy as we did for the case of cyclic groups of order

2, 4, 6 or of odd order 3 ≤ k ≤ 1000, we expect that this result can be generalised to

the setting where V (G) ̸= V1(G). In Chapter 5 we proved the necessity of the these

sparsity conditions (see Proposition 5.2.6). It remains to show that the conditions

are also sufficient. Take a connected D2k-gain tight graph (G,φ, ψ) for some odd

k ≥ 3. If we let G have semi-free vertices, ⟨H⟩v,ψ and ⟨H⟩v,ψ′ can be very different for

two equivalent edge-gain maps ψ, ψ′ and for some non-fixed v ∈ V (G). Therefore,

the problem becomes significantly more complex. However, the problem should still

be tractable, through a proof by induction on |V (G)|.

It is easy to see, through a combinatorial argument similar to that used for the

proof of 6.1.1, that the following result holds.

Lemma 8.2.2. Let (G,φ, ψ) be a connected D2k-gain tight graph with |V (G)| ≥ 1

and V (G) ̸= V1(G). Suppose that G is not an isolated fixed vertex. Then, G has

either a semi-free vertex of degree 1 or 2 or a free vertex of degree 2 or 3.

The definitions of fix-0-reduction, 0-reductions, loop-1-reductions, 1-reductions

(as well as fix-0-extensions, 0-extensions, loop-1-extensions, 1-extensions) can easily

be adapted to our new setting, as can the proofs of Lemmas 5.3.2, 5.3.4, 5.3.8

and 5.3.11. Moreover, arguments similar to those used in Chapters 6 and 7 (though

slightly more laborious) show that there is always an ‘admissible’ reduction at a free

vertex of degree 3 of a D2k-gain tight graph, where k ≥ 3 is odd.

Theorem 8.2.3. For odd k ≥ 3, let (G,φ, ψ) be a D2k-gain tight graph with a free

vertex v of degree 3. There is a reduction at v which yields a D2k-gain tight graph.

Therefore, it remains to:

1. Generalise the notions of 0-extension and 0-reduction to our new setting (note,

we now add a semi-free vertex), and show that a 0-extension can always be

applied to a fully-symmetrically isostatic Ckv-gain graph in a way that does

not add a row dependence in the ρ0-orbit rigidity matrix.
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2. Show that there is always an admissible semi-1-reduction at a semi-free vertex

v ∈ V2(G) of degree 2, provided such a vertex exists.

3. Check that a D2k-gain tight graph with k ≥ 3 odd has a fully-symmetrically

isostatic ‘Dkv-realisation’ when |V (G̃)| is small.

If k ≥ 2 is even, Theorem 8.2.1 does not hold. The smallest known

counterexample is the Bottema mechanism, a C2v-generic framework (G̃, p̃) (see

Figure 8.2). It is easy to see that the D4-gain graph of the underlying D4-symmetric

graph of (G̃, p̃) is D4-gain tight. However, it is well-known that (G̃, p̃) is fully-

symmetrically flexible: it is a well-known fact in kinematics [74]; it is also easy to

see that (G̃, p̃) is a bipartite graph realised on a conic, and hence it has an ‘in-and-

out’ infinitesimal motion, i.e. an infinitesimal motion which shifts the vertices of one

partite set of the graph in the direction of the origin, and the other partite set in

the direction opposite to the origin [72]. Further counterexamples are also given in

[[29], Section 8.2]. Moreover, if V (G) ̸= V1(G), there is the added difficulty that for

two vertices u, v ∈ V2(G), φ(u) and φ(v) need not be conjugate. It is important to

note that the sparsity conditions given in Theorem 8.2.1 are necessary for all even

k ≥ 2. This was shown in [29] for the case where V (G) = V1(G) and in this thesis

for the case where V (G) ̸= V1(G).

u⋆

v⋆

id s srr

u

v

Figure 8.2: The Bottema mechanism and the D4-gain graph of its underlying graph.

It can also be interesting to consider the infinitesimal motions of a Ckv-

symmetric framework which break its symmetry. Given a 2-dimensional irreducible
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representation µj of D2k (for k ≥ 3, 1 ≤ j ≤ ⌊k/2⌋), the velocity vector corresponding

to a µj-symmetric infinitesimal motion m̃ at a joint p̃(v) does not uniquely determine

the velocity vectors corresponding to m̃ at p̃(γv) for all γ ∈ D2k. This ambiguity

creates two obstacles:

(A) It is not clear how to write the definition of µj-symmetric infinitesimal motion

in terms of given vertex representatives in a way that uniquely determines the

motion on the whole vertex orbits.

(B) None of the notions of gain graph given in Chapter 3 enclose sufficient

information to be considered a good mathematical model to describe a

combinatorial characterisation of infinitesimally rigid Ckv-generic frameworks.

Therefore, for all k ≥ 3, even just providing necessary combinatorial conditions for

the infinitesimal rigidity of Ckv-symmetric frameworks is a challenge. (If k = 2,

the necessary conditions are given in Chapter 5.) In [31], engineers Kangwai and

Guest present a possible approach to the problem: given a Ckv-symmetric framework

(G̃, p̃), they use the column space of a the projection operator matrix

Oµj
mn =

∑
γ∈D2k

[µj(γ)]m,n(τ ⊗ PV (G̃)(γ))

as a basis for the τ ⊗ PV (G̃)(γ)-invariant subspace of R|V (G̃)| corresponding to µj.

(See also the papers [19, 30, 32].) This projection operator may be useful to obtain

a general description of the phase-symmetric orbit rigidity matrices.

8.3 Different types of symmetric frameworks

In this thesis we considered the infinitesimal rigidity of symmetric bar-joint frame-

works. However, for a variety of reasons, mathematicians (and non-mathematicians)

are also interested in other types of symmetric structures.
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8.3.1 Body-bar-hinge frameworks and molecular graphs

A body in Rd is a set of points which affinely span Rd, and an infinitesimal motion

of a body B is an isometric linear transformation of B. In other words, B can be

seen as an infinitesimally rigid structure, and so the space of infinitesimal motions

of B has dimension
(
d+1
2

)
. A body-and-bar framework is a structure composed of

bodies, connected by rigid bars.

Similarly as for bar-joint frameworks, body-and-bar frameworks can be modelled

mathematically by a graph G and a configuration p : V (G) → Rd which determines

the end-points of the bars. However, since joints are now substituted by rigid

structures, we allow up to
(
d+1
2

)
parallel edges between any pair of vertices u, v of

V (G). The notions of genericity, infinitesimal rigidity and rigidity matrix naturally

extend to this setting, as do the ideas of symmetric framework, symmetric genericity

and gain graph [58, 51, 68, 71].

Unlike infinitesimally rigid generic bar-joint frameworks, infinitesimally rigid

generic body-and-bar frameworks have been combinatorially characterised in all

dimensions.

Theorem 8.3.1 ([68], Theorem 5.3). A generic body-and-bar framework (G, p) in

Rd is isostatic if and only if G is
((
d+1
2

)
,
(
d+1
2

))
-tight; or equivalently if and only if

it is the union of
(
d+1
2

)
edge-disjoint spanning trees.

This powerful result spiked the interest of mathematicians. In particular, it was

noticed that analogous techniques which were used for the study of infinitesimally

rigid ‘symmetry-generic’ bar-joint frameworks could also be adapted to the setting

of symmetric body-and-hinge frameworks [25, 58, 51]. In [58], it was noted that a

similar proof as that given in [49] for Theorem 4.3.1 shows that the rigidity matrix

of a symmetric body-and-bar framework also diagonalises in a way that each block

correspond to an irreducible representation of the symmetry group.

This allowed a characterisation of infinitesimally rigid body-and-bar frameworks

(G̃, p̃) in Rd which are symmetric (and symmetry-generic) with respect to a
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symmetry group τ(Γ) ≃ Z2 × · · · ×Z2, provided the group acts freely on the bodies

of the framework [58]. The conditions are given in terms of sparsity counts on the Γ-

gain graph of the underlying Γ-symmetric graph G̃. The proofs are significantly more

complex than that used for the bar-joint framework setting, as they employ Plücker

coordinates. However, the general approach is similar, as are some of the specific

techniques. Therefore, I expect that the content of this thesis can be translated to

the body-and-bar setting, in order to extend the result in [58] to the case where the

symmetry group does not act freely on the bodies.

One of the reasons body-and-bar frameworks have sparked such interest is

their strong connection to body-and-hinge frameworks, key objects in the study

of protein-folding, engineering, robotics and other applied sciences. A body-and-

hinge framework in Rd is a structure composed of bodies in Rd, which are connected

in pairs along hinges, i.e. (d− 1)-affine subspaces of Rd (see Figure 8.3).

Figure 8.3: Continuous motion of a body-and-hinge framework in R3.

Replacing a hinge by 5 independent bars which intersect the hinge line, we can see

that body-and-hinge frameworks are special cases of body-and-bar-frameworks [70,

71]. Further, the same conditions which characterise generically rigid body-and-

bar frameworks characterise generically rigid body-and-hinge frameworks [65, 66,

73]. Similarly as for body-and-bar frameworks, [58] also characterises infinitesimally

rigid body-and-hinge frameworks (G̃, p̃) in Rd which are symmetric (and symmetry-

generic) with respect to a symmetry group τ(Γ) ≃ Z2×· · ·×Z2, provided the group

acts freely on the bodies of the framework. Again, I expect that the content of this

thesis can be used to extend this result to the case where the symmetry group need
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not act freely on the bodies of the body-and-hinge framework.

An even more special class of body-and-bar frameworks is the class of panel-and-

hinge frameworks. Panel-and-hinge frameworks are body-and-hinge frameworks for

which all the hinges incident to each body are forced to lie in a common hyperplane

(see Figure 8.4). Panel-and-hinge frameworks are often referred to as molecular

graphs, as they are a good model to describe molecules. In 1984, Tay and Whiteley

proposed the Molecular Conjecture, which states that a multigraph can be realised

as an infinitesimally rigid body-and-hinge framework in Rd if and only if it can

be realised as an infinitesimally rigid panel-and-hinge framework in Rd [70]. The

statement was famously proved by Tanigawa and Katoh in 2011 [35]. It would be

interesting to prove the symmetric version of the Molecular Conjecture, stated in

[51], which asserts that body-and-hinge frameworks and panel-and-hinge frameworks

share the same infinitesimal rigidity properties, both for the free and non-free action

case, provided they are ‘symmetry-generic’.

Figure 8.4: Continuous motion of a panel-and-hinge framework in R3.

8.3.2 Linearly constrained frameworks

A multigraph G = (V,E) can sometimes be written as a triple G = (V,E, L), where

V,E and L denote, respectively, the vertices, non-loop edges, and loops of G. A

linearly constrained framework in Rd is a triple (G, p, q), where G = (V,E, L) is

a graph with no parallel edges and p : V → Rd, q : L → Rd are functions. Note

that (G − L, p) is a bar-joint framework. An infinitesimal motion of (G, p, q) is an

infinitesimal motion m : V → R2 of (G − L, p) such that ⟨m(v), q(l)⟩ = 0 for all

v ∈ V, l ∈ L with l = uu.
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This additional condition on m forces the velocity vector associated to a vertex

v ∈ V with a loop l ∈ L to lie on the hyperplane through the joint p(v) with

normal q(l). Therefore, linearly constrained frameworks can be seen as bar-joint

frameworks for which some joints are constrained to lie on certain hyperplanes (see

Figure 8.5), and therefore are a good model for slide joints in engineering. The

notions of genericity, infinitesimal rigidity, rigidity matrix and isostaticity extend

naturally to this setting, as do the notions of symmetric framework and symmetry-

genericity.

Figure 8.5: Example of a linearly constrained framework.

It was shown in [63] that a generic linearly constrained framework (G, p) with

G = (V,E, L) is isostatic in R2 if and only if (V,E) is (2, 3)-sparse, G is (2, 0)-sparse

and |E| + |L| = 2|V |. This result was extended in [14] to the case where d ≥ 3,

provided each vertex has sufficiently many linear constraints with respect to d.

Theorem 8.3.2 ([14], Theorem 1.2). Let G = (V,E, L) be a graph and d, t ≥ 1 be

integers such that d ≥ max{2t, t(t − 1)}. Suppose that for all v ∈ V , there are at

least d − t loops at v. Then, G can be realised as an infinitesimally rigid linearly

constrained framework in Rd if and only if G has a (t, 0)-tight spanning subgraph.

In [44] it was shown, in a similar way as in [49], that the rigidity matrix of

a symmetric linearly constrained framework block-diagonalises. The same paper

uses this result, together with the characterisation in [63], to characterise isostatic

linearly constrained plane frameworks which are symmetry-generic with respect to

Ck, where k = 2 or k ≥ 3 is odd. Notice that the restriction on the order k of the
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8.3. Different types of symmetric frameworks

symmetry group is very similar to the restriction we had in Chapter 7. In [44], the

restriction is due to a problem encountered while proving that a vertex of degree 3

admits a reduction, and there are no known counterexamples to show that the result

does not extend to all k ≥ 2. It could be interesting to either find counterexamples

for even k ≥ 4, or to find an alternative argument to show that the result extends

to all k ≥ 4.

The other symmetry group for which we do not yet have a combinatorial

characterisation of infinitesimally rigid symmetry-generic linearly constrained plane

frameworks is the group Cs. In this case, the main obstacles encountered by the

authors of [44] are due to the fact that the number of fixed joints, bars and linear

constrains of a Cs-symmetric linearly constrained framework can be arbitrarily large

(unlike for the rotation symmetry case in which, for instance, at most one fixed

joint is allowed). Perhaps some of the techniques in the thesis can be adapted to

the study of linearly constrained frameworks in order to overcome this difficulty.

Moreover, higher dimensions may be explored. Since the infinitesimal rigidity

of generic bar-joint frameworks has not been characterised in dimensions d ≥ 3,

a lot of results concerning symmetric bar-joint frameworks are restricted to plane

frameworks or, perhaps, frameworks which are known to be generically rigid in Rd for

d ≥ 3, such as body-and-bar frameworks, or frameworks obtained from generically

rigid frameworks by applying a series of Henneberg moves, or triangulated polytopes.

Theorem 8.3.2 gives us the possibility to tackle the problem of studying symmetry-

generic linearly constrained frameworks in Rd .
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Appendix A

Additional proofs

In Sections 3.2.3 and 5.1.3 we stated some results related to near-balanced graphs

which were proved in [27]. This documents is hard to access. We therefore present

the proofs in our own language.

Lemma A.0.1 (Lemma 4.1 in [27]). For a group Γ, let (G,ψ) be a proper near-

balanced Γ-gain graph. Then, G is unbalanced and there is some γ ∈ Γ and a gain

map ψ′ equivalent to ψ such that ψ′(e) ∈ {id, γ} for all edges e ∈ E(G) directed to

v, and ψ′(e) = id for all edges e ∈ E(G) not incident to v.

Proof. The statement clearly holds if |V (G)| = 1. So assume that |V (G)| ≥ 2.

By definition, there is a non-identity element γ ∈ Γ such that ψ(W ) ∈ {id, γ, γ−1}

for every closed walkW containing v as its initial vertex but not as its internal vertex.

Moreover, G − v is balanced, as ⟨G⟩ψ ̸≃ Z2,Z3. Take a spanning tree T of G such

that T ∩E(G−v) is a spanning forest of G−v. By Proposition 3.2.6, there is a gain

function ψ′′ equivalent to ψ such that ψ′′(e) = id for all e ∈ T . By Lemma 3.2.11,

ψ′′(e) = id for all e ∈ E(G− v).

Let E1, . . . , Et be the connected edge subsets of G− v, and let Ev be the set of

edges in G directed to v. For each 1 ≤ i ≤ t define the set

E ′
i := {e ∈ Ev : e is incident to a vertex in V (Ei)}.

Note that E(G) = (E1 ∪ E ′
1) ∪ · · · ∪ (Et ∪ E ′

t). For each 1 ≤ i ≤ t consider the
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connected edge set E1 ∪ E ′
1. Notice that ψ′′(e) = id for all e ∈ Ei and there is

at least one edge in E ′
i with identity gain. By the definition of the proper near-

balancedness, either ψ′′(e) ∈ {id, γ} for all e ∈ E ′
i or ψ

′′(e) ∈ {id, γ−1} for all e ∈ E ′
i.

If the latter holds, we may apply a switching at each vertex in V (Ei) with gain γ, in

order to obtain a gain map ψ′ equivalent to ψ′′ (and ψ) such that ψ′(e) = ψ′′(e) for

all e ∈ E(H) \ (Ei ∪ E ′
i), ψ

′(e) = id for all e ∈ Ei and ψ
′(e) ∈ {id, γ} for all e ∈ E ′.

The result follows.

Lemma A.0.2 (Lemma 4.2 in [27]). Let Γ be a group and (G,ψ) be a proper

near-balanced Γ-gain graph which satisfies |E(G)| ≥ 2|V (G)| − 1. Suppose that all

balanced subgraph of (G,ψ) are (2, 3)-sparse. Then, the base vertex of G is unique.

Moreover, for all near-balanced subgraphs H of G with |E(H)| = 2|V (H)| − 1, the

unique base vertex of H coincides with the base vertex of G.

Proof. Let v be a base vertex of G, and let Ev denote the set of edges in E(G)

directed to v. We start by showing that v is the unique base vertex of G. If v has a

loop, this is clearly true. So, we may assume that v has no loop. By Lemma A.0.1,

there is a gain function ψ′ equivalent to ψ and some γ ∈ Γ such that ψ′(e) ∈ {id, γ}

for all e ∈ Ev, and ψ
′(e) = id for all e ∈ E(G) \ Ev.

Since G−v is balanced and H is unbalanced, v lies on every unbalanced cycle. It

suffices to show that there are two vertex-disjoint unbalanced cycles passing through

v. Notice that

|E(G)| = degG(v) + |E(G− v)| ≤ degG(v) + 2|V (G− v)| − 3

= degG(v) + 2|V (G)| − 5 ≤ degG(v) + |E(G)| − 4,

and so degG(v) ≥ 4. Define the two set S := {u ∈ NG(v) : ψ′(uv) = id} and

T := {u ∈ NG(v) : ψ
′(uv) = γ}. (Note that S and T are not necessarily disjoint, as

parallel edges are allowed.) Since degG(v) ≥ 4 and every balanced subgraph of G is

(2, 3)-sparse, |S|, |T | ≥ 2. Let r be the be the maximum number of vertex-disjoint

paths in G− v from a vertex in S to a vertex in T . We look at the following cases

separately: r = 0; r = 1; and r ≥ 2.
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Case 1: r = 0.

There are two sets W1 and W2 such that S ⊆ W1, T ⊆ W2,W1 ∪W2 = V (G) and

W1 ∩W2 = {v}. This implies

2|V (G)|−1 ≤ |E(G)| = |E(W1)|+|E(W2)| ≤ (2|W1|−3)+(2|W2|−3) = 2|V (G)|−4,

a contradiction.

Case 2: r = 1.

For some u ∈ V (G), there are two sets W1 and W2 such that S ⊆ W1, T ⊆ W2,

W1 ∪W2 = V (G) and W1 ∩W2 = {u, v}. Define the sets of edges F1, F2 by letting

F1 = E(W1) \ {e ∈ Ev : ψ
′(e) = γ} and F2 = E(W2) \ {e ∈ Ev : ψ

′(e) = id}. Then,

2|V (G)| − 1 ≤ |E(G)| = |F1|+ |F2| ≤ (2|W1| − 3) + (2|W2| − 3) = 2|V (G)| − 2,

a contradiction.

Case 3: r ≥ 2

Then there are two vertex-disjoint paths from a vertex in S to a vertex in T .

Combining the two paths and Ev, we obtain two unbalanced cycles both of which

contain v. Hence, v is the unique base vertex of G.

Now, let u be the unique base vertex of H. Then, by a similar argument as

above, there are two vertex-disjoint unbalanced cycles which contain u in H. Hence,

u = v. This completes the proof.

In [27], R. Ikeshita adopts a matroidal approach to his proofs, and hence the

statements of Lemmas A.0.4, A.0.5 and A.0.6 are slightly stronger in our setting.

However, the proofs in [27] can be applied almost directly. First, we need the

following preliminary result.

Lemma A.0.3 (Lemma 4.3(a,d) in [27]). Let Γ be a group, and let (G,ψ) be a

(2, 1)-tight Γ-gain graph. Suppose that every balanced subgraph of (G,ψ) is (2, 3)-

tight. Then, every 2-connected component of G is unbalanced. Moreover, every

(2, 3)-tight graph is 2-connected.
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Proof. Assume, for a contradiction, that G has a balanced 2-connected component

H. There is a vertex v ∈ V (H) and a subgraph H ′ of G such that V (H ∩H ′) = {u}

and E(G) = E(H) ∪̇E(H ′). But then

2|V (G)| − 1 = |E(G)| = |E(H)|+ |E(H ′)|

≤ (2|V (H)| − 3) + (2|V (H)| − 1) = 2|V (G)| − 2

This is a contradiction. Hence, all 2-connected components of G are unbalanced.

Similarly, assume for a contradiction that there is a (2, 3)-tight graph H which is

not connected. Then, there is a vertex v ∈ V (H) and two graphs H1, H2 such that

H1 ∪H2 = H,E(H1 ∩H2) = ∅ and V (H1 ∩H2) = {v}. But then

2|V (G)| − 3 = |E(G)| = |E(H)|+ |E(H ′)|

≤ (2|V (H)| − 3) + (2|V (H)| − 3) = 2|V (G)| − 4.

Since this is a contradiction, the result holds.

Lemma A.0.4 (Lemma 4.4 in [27]). Let Γ be a group, (G,ψ) be a Γ-gain graph

and H1, H2 be proper near-balanced subgraphs of G such that H1∩H2 is (2, 1)-tight

and proper near-balanced. Assume that for 1 ≤ i ≤ 2 there is an edge fi ∈ E(Hi)

such that Hi − fi is (2, 1)-tight. Assume further that every balanced subgraph of

H1 − f1, H2 − f2 is (2, 3)-sparse. Then H1 ∪H2 is proper near-balanced.

Proof. By Lemma 3.2.30 H1 − f1, H2 − f2, H1 ∩ H2 are connected, as are H1, H2.

By Lemma A.0.2, H1, H2, H1 ∩ H2 have a common unique base vertex v. By

Lemma A.0.3 the 2-connected components ofH1, H2, H1∩H2 are unbalanced. Hence,

v is not a separating vertex for H1, H2, H1∩H2. It follows that v is not a separating

vertex for H1 ∪H2.

Let Ev be the set of edges in G directed to v. By Lemma A.0.1, we may assume

that there is some γ ∈ Γ such that ψ(e) ∈ {id, γ} for all e ∈ H1 ∩ H2 ∩ Ev and

ψ(e) = id for all e ∈ (H1∩H2)\Ev. Choose a 2-connected component H of H1∪H2.

We need only show that we can obtain a gain map ψ′ equivalent to ψ such that
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ψ′(e) ∈ {id, γ} for all e ∈ E(H) ∩ Ev and ψ′(e) = id for all e ∈ E(H) \ Ev by

performing type I switchings at the vertices of H − v.

For some c ≥ 1, let H ′
1, . . . , H

′
c be the 2-connected components of H1 ∩H2 in H,

and let H ′ =
⋃c
i=1H

′
i. We look at the cases where c = 0 and c ≥ 1 separately.

Case 1: c = 0.

Here, H is a 2-connected component of H1 or H2. Take a spanning tree T in H such

that T \Ev is a spanning tree of H − v. By Proposition 3.2.6, we may assume that

ψ(e) = id for all e ∈ T . Since H − v is balanced, ψ(e) = id for all e ∈ E(H) \ Ev.

Hence, either ψ(e) ∈ {id, γ} for all e ∈ Ev or ψ(e) ∈ {id, γ−1} for all e ∈ Ev. In

the former case, we have the desired gain map. In the latter, we may apply a type

I switching at each vertex in H − v with gain γ, in order to obtain the desired gain

map.

Case 2: c ≥ 1.

Take a spanning tree T of H ′ such that T \Ev is a maximal spanning forest of H ′−v

and that ψ(e) = id for all e ∈ T ∩Ev, and take a maximal forest F of H−V (H ′). For

some s ≥ 1, let G1, . . . , Gs be the connected components of the graph induced by F .

For each 1 ≤ i ≤ s, choose an edge ei = uivj, where ui ∈ V (Gi) and vj ∈ V (Hj − v)

for some 1 ≤ j ≤ s, and add ei to Gi. By Proposition 3.2.6, we may assume that

ψ(e) = id for all 1 ≤ i ≤ s.

Let T ′ := T ∪ E(G1) ∪ · · · ∪ E(Gs), and notice that T ′ is a spanning tree of H,

T ′ ∩ E(Hi) is a spanning tree of H ∩Hi for 1 ≤ i ≤ 2, and ψ(e) = id for all e ∈ T ′.

Let Z be the set {uw ∈ E(G) : w ∈ V (H ′), u ∈ V (Gi) for some 1 ≤ i ≤ s}, and

notice that E(H) = Z ∪̇E(H ′) ∪̇E(H − V (H ′)). Since H ∩H1 − v,H ∩H2 − v are

balanced, ψ(e) = id for all e ∈ E(H − V (H ′)).

If c = 1, then given an edge e = uw ∈ Z \ Ev, u ∈ V (Gi), w ∈ V (H ′
1) for

some 1 ≤ i ≤ s. Then, there is a cycle C composed of e, edges of E(H ′
1 − v),

the edge ei, and edges of Gi. So, by balancedness we have ψ(e) = id. Given an

edge e = uw ∈ Z ∩ Ev, u ∈ V (Gi) for some 1 ≤ i ≤ c. Then, there are two cycles

passing C1, C2 composed of e, edges in E(H1), the edge ei, and edges of Gi, such that
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ψ(C1) = ψ(e) and ψ(C2) = ψ(e)γ−1. By proper near-balancedness, ψ(e) ∈ {id, γ},

as required. So, we may assume that c ≥ 2.

Let e = uw ∈ Z. If e ̸∈ Ev, then u ∈ V (Gi), w ∈ V (H ′
j) for some 1 ≤

i ≤ s, 1 ≤ j ≤ c. If ei = uivj, then there is a cycle C composed of ei, edges of

E(H ′
j−v), the edge ei, and edges of Gi. By balancedness, we then ψ(C) = ψ(e) = id.

Otherwise, ei = uivk for some k ̸= j, and there are three cycles C1, C2, C3 composed

of e, edges in E(Hj), edges in E(Hk), the edge ei, and edges of Gi, such that

ψ(C1) = ψ(e), ψ(C2) = ψ(e)γ−1 and ψ(C3) = ψ(e)γ. By proper near-balancedness,

ψ(e) = id. If e ∈ Ev, then u ∈ V (Gi) for some 1 ≤ i ≤ s. Similarly as above, there

are two cycles C1, C2 passing through v with ψ(C1) = ψ(e) and ψ(C2) = ψ(e)γ−1,

and so ψ(e) ∈ {id, γ}. This proves the result.

Lemma A.0.5 (Lemma 4.5 in [27]). Let Γ be a group, (G,ψ) be a Γ-gain graph and

H1, H2 be subgraphs of G such that H1∩H2 is connected, balanced and (2, 3)-tight.

Assume that there is an edge f1 ∈ E(H1) such that H1 − f1 is (2, 1)-tight and that

H1 is proper near-balanced. Assume further that H2 is connected and balanced, and

that V|Γ|(H2) = ∅. Then H1 ∪H2 is proper near-balanced.

Proof. First, notice that V|Γ|(H1 ∪H2) = ∅, since V|Γ|(H1) = ∅ = V|Γ|(H2) = ∅. Let

H1 be proper near-balanced with base vertex v ∈ V (H1) and gain γ ∈ Γ. Let Ev

denote the set of edges in H1 ∪H2 directed to v. By Lemma A.0.1, we may assume

that ψ(e) = id for all e ∈ E(H1)\Ev and that ψ(e) ∈ {id, γ} for all e ∈ E(H1)∩Ev.

Let E ′
v be the set {e ∈ E(H1) ∩ Ev : ψ(e) = γ}. We look at the cases where

E ′
v ∩ E(H1 ∩H2) = ∅ and E ′

v ∩ E(H1 ∩H2) ̸= ∅ separately.

First, assume that E ′
v ∩ E(H1 ∩ H2) = ∅. Take a spanning tree T of H2 such

that T ∩E(H2) is a spanning tree of H1 ∩H2. Since E
′
v ∩E(H1 ∩H2) = ∅, we know

that ψ(e) = id for all e ∈ E(H1) ∩ T . Then, we may apply a series of switchings

at the vertices in V (T ) \ V (H1) in order to obtain a gain map ψ′ equivalent to

ψ such that ψ′(e) = ψ(e) for all e ∈ E(H1) and ψ′(e) = id for all e ∈ T . By

Lemma 3.2.11, ψ′(e) = id for all e ∈ E(H2). Hence, H1∪H2 is proper near-balanced

by Lemma A.0.1.
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Now suppose that E ′
v ∩ E(H1 ∩ H2) ̸= ∅, and let e′ ∈ E(H1 ∩ H2) ∩ Ev be an

edge satisfying ψ(e) = γ. By Lemma A.0.3, H1 ∩H2 is 2-connected. Hence, given

an edge e ∈ (E(H1 ∩ H2) ∩ Ev) \ {e′}, there is a cycle C in H1 ∩ H2 which passes

through e, e′. By balancedness of H1, we have that ψ(C) = id, and so ψ(e) = γ. It

follows that ψ(e) = γ for all e ∈ E(H1∩H2)∩Ev. Apply a switching operation at v

with gain γ−1 in order to obtain a gain map ψ′ equivalent to ψ such that ψ′(e) = id

for all e ∈ E(H1 ∩H2)∩Ev and for all e ∈ H1 \Ev, and such that ψ′(e) ∈ {id, γ−1}

for all e ∈ E(H1) ∩ Ev. Hence, we may apply the same proof as in the case where

E ′
v ∩ E(H1 ∩H2) = ∅ to show that H1 ∪H2 is proper near-balanced.

Lemma A.0.6 (Lemma 4.6 in [27]). Let Γ be a group, (G,ψ) be a Γ-gain graph

and H1, H2 be balanced subgraphs of G such that H1∩H2 consists of two connected

components, one of which is an isolated vertex v. Suppose that there is an edge

f1 ∈ E(H1) such that H1 − f1 is (2, 3)-tight, and that H2 is connected. Suppose

further that V|Γ|(H1 ∪H2) = ∅. Then H1 ∪H2 is near-balanced with base vertex v.

Proof. Let Ev be the edges in H1 directed to v. By Lemma A.0.3, H1 − f1 is 2-

connected, as is H1. In particular, H1−v is connected. By assumption, (H1∩H2)−v

is connected. Since H1 − v and H2 are balanced, (H1 − v) ∪ H2 is balanced by

Lemma 3.2.14. Then, by Proposition 3.2.6 and Lemma 3.2.11, we may assume that

ψ(e) = id for all e ∈ E((H1 − v) ∪ H2). Let γ := ψ(e) for some e′ ∈ Ev. Given

an edge e ∈ Ev, there is a cycle C in H1 which passes through e, e′. Since H1 is

balanced, ψ(C) = id, and so ψ(e) = ψ(e′) = γ. It follows that ψ(e) = γ for all

e ∈ Ev. By Lemma A.0.1, this proves the result.

Lemma A.0.7. Let Γ be a group, (G,ψ) be a Γ-gain graph andH1, H2 be connected

subgraphs of G such that H1 ∩ H2 is connected and unbalanced. Assume that H1

is proper near-balanced and that ⟨H2⟩ ≃ Zp for some prime p ≥ 2. Then, we have

⟨H1⟩ = ⟨H2⟩ = ⟨H1 ∩H2⟩ = ⟨H1 ∪H2⟩.

Proof. Since H1 is near-balanced, V|Γ|(H1∩H2) = V|Γ|(H1) = ∅. Then, since H1∩H2

is connected and unbalanced, we have ⟨H1 ∩H2⟩ ≃ ⟨H2⟩ ≃ Zp.
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Let v be a base vertex of H1 and let Ev be the set of edges in H1 ∪H2 directed

to v. Then, there is a gain map ψ′ equivalent to ψ, and some γ ∈ Γ such that

ψ′(e) = id for all e ∈ E(H1 − Ev) and ψ′(e) ∈ {id, γ} for all e ∈ E(H1) ∩ Ev.

Since H1 ∩H2 is unbalanced, we have γ ∈ ⟨H1 ∩H2⟩ψ′ . Moreover, there is an edge

e ∈ (E(H1∩H2)∩Ev) such that ψ′(e) = id, as otherwise H1∩H2 would be balanced.

It follows, by Lemma 3.2.11, that ⟨H1⟩ ≃ ⟨H1 ∩H2⟩ ≃ Z2. The result then follows

by Lemma 3.2.15.

Lemma A.0.8. (Lemma 5.5 in [27]) Let k := |Γ| ≥ 4, 0 ≤ j ≤ k − 1, τ : Γ → Ck
be an injective homomorphism, (G,ψ) be a Γ-gain graph, and p : V (G) → R2.

If Oj(G,ψ, p) is row independent, |E(H)| ≤ 2|V (H)| − 1 for any near-balanced

subgraph H of G.

Proof. Recall that the cyclic group Γ = ⟨γ⟩ is isomorphic to Zk, through the

isomorphism which maps γ to 1. Let H be a near-balanced subgraph of G. If

⟨H⟩ ≃ Z2,Z3, the result holds by Lemma 5.1.7. Hence, assume that H is proper

near-balanced. Let v be a base vertex of H. By Propositions 3.2.6, 4.1.4 and 4.1.5,

and by Lemma 3.2.17, we can assume that there is an integer 0 ≤ t ≤ k − 1

such that ψ(e) = id for all e ∈ E(H) not incident to v and ψ(e) ∈ {id, γt} for all

e ∈ E(H) directed to v. LetM be the matrix obtained from Oj(G,ψ, p) by removing

the columns which correspond to vertices in V (G) \ V (H), together with the rows

corresponding to their incident edges.

Let v1, . . . , vn be the vertices incident to v in H and, for all 1 ≤ i ≤ n, let

ei := (vi, v). Let 0 ≤ m ≤ n be such that e1, . . . , em have gain γt and em+1, . . . , en

have gain id. Note that, by the definition of near-balancedness, there is at most one

loop at v. If there is such a loop, let it be e1. For each 1 ≤ i ≤ m, the row in M

corresponding to ei has the form

ei =
(
. . . ρj(γ

t)(p(v)− τ(γ−t)p(vi))
T . . . (p(vi)− τ(γt)p(v))T . . .

)
if v ̸= vi, and it has the form

ei =
(
. . . (p(v)− τ(γt)p(v) + ρj(γ

t)p(v)− ρj(γ
t)τ(γ−t)p(v))T . . .

)
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otherwise. Order the rows of M such that, for all 1 ≤ i ≤ t, the ith row in M is the

row corresponding to ei. Then, add the following column to M :

ρj(γ
t)(p(v)− τ(γ−t)p(v1))

T

...

ρj(γ
t)(p(v)− τ(γ−t)p(vm))

T

0
...

0


Then, subtracting the new columns from the columns corresponding to v and

multiplying the new columns by ρj(γ
t)−1τ(γt), we can see that M is

(τ(γt)p(v)− p(v))T

(τ(γt)p(v)− p(v2))
T

...

(τ(γt)p(v)− p(vm))
T

0
...

0

(p(v)− τ(γt)p(v))T

0
...

0

(p(v)− p(vm+1))
T

...

(p(v)− p(vn))
T

0

⋆
...
...
...
...

⋆

0 0 Oj(H − v, ψ|E(H−v), p|V (H−v))



,

where the first row is removed if there is no loop at v. It is easy to see that

the matrix obtained is the standard rigidity matrix for a graph F with |V (H)| + 1

vertices. Therefore, |E(H)| ≥ (|V (H)|+1)−3 = 2|V (H)|−1, proving the result.
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Character tables of cyclic and

Dihedral groups

Maschke’s Theorem implies that all the information of the representations of a group

is held in its irreducible representations. In fact, a lot of this information is held in

the characters of its irreducible representations. Hence, we sometimes use character

tables to study the representations of a group. The character table of a group Γ is

a table which presents the characters of its irreducible representations. The rows

of the character table of a group correspond to the characters of the irreducible

representations of the group. The columns correspond to the group elements. The

entry at row χ and column γ ∈ Γ represents χ(γ).

Given a group Γ and an irreducible matrix representation ρ of Γ with trace

χ, χ(γ) = χ(δ) for all conjugate γ, δ ∈ Γ. Hence, the number of columns in

the character tables of a group Γ is exactly the number of conjugacy classes of Γ.

Moreover, χ(id) = dim ρ. Therefore, the entry at row χ and column id gives exactly

dim ρ. We consider the irreducible representations over the complex numbers.

For the scope of this thesis, we only present the character tables of arbitrarily

large (but finite) cyclic groups (see Section B.1) and arbitrarily large (but finite)

dihedral groups (see Section B.2).
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Appendix B. Character tables of cyclic and Dihedral groups

B.1 Character tables of cyclic groups

Cs id s

χ0 1 1

χ1 1 -1

C2 id C2

χ0 1 1

χ1 1 -1

C3 id C3 C2
3

χ0 1 1 1

χ1 1 i
√
3−1
2

i
√
3+1
2

χ2 1 i
√
3+1
2

i
√
3−1
2

For an arbitrary integer k ≥ 2, the character table of Ck is:

Ck id Ck C2
k . . . Ck−1

k

χ0 1 1 1 . . . 1

χ1 1 exp 2πi
k

exp 4πi
k

. . . exp (k−1)πi
k

χ2 1 exp 4πi
k

exp 8πi
k

. . . exp 2(k−1)πi
k

...
...

...
...

. . .
...

χk−1 1 exp 2(k−1)πi
k

exp 4(k−1)πi
3

. . . exp 2(k−1)2πi
k

B.2 Character tables of Dihedral groups

The only dihedral group whose irreducible representations are all 1-dimensional is

the dihedral group of order 4:

C2v id s C2 sC2

χ0 1 1 1 1

χ1 1 1 -1 -1

χ2 1 -1 -1 1

χ3 1 -1 1 -1

For k ≥ 3, all dihedral groups of order 2k have at least one irreducible

representation of order 2. The irreducible representations of Ckv depend on the

parity of k. If k = 2n for some integer n ≥ 2, then the character table of Ckv is:
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B.2. Character tables of Dihedral groups

Ckv id s Ck sCk . . . Ck−1
k sCk−1

k

χ0 1 1 1 1 . . . 1 1

χ1 1 1 -1 -1 . . . -1 -1

χ2 1 -1 -1 1 . . . -1 1

χ3 1 -1 1 -1 . . . 1 -1

E1 2 0 2 cos 2π
k

0 . . . 2 cos (k−1)π
k

0

E2 2 0 2 cos 4π
k

0 . . . 2 cos 2(k−1)π
k

0
...

...
...

...
...

. . .
... 0

En−1 2 0 2 cos 2(n−1)π
k

0 . . . 2 cos 2(k−1)(n−1)π
k

0

If k = 2n+ 1 for some integer n ≥ 1, then the character table of Ckv is:

Ckv id s Ck C2
k . . . Ck−1

k

χ0 1 1 1 1 . . . 1

χ1 1 -1 1 1 . . . 1

E1 2 0 2 cos 2π
k

2 cos 4π
k

. . . 2 cos (k−1)π
k

E2 2 0 2 cos 4π
k

2 cos 8π
k

. . . 2 cos 2(k−1)π
k

...
...

...
...

...
. . .

...

En 2 0 2 cos 2nπ
k

2 cos 4nπ
3

. . . 2 cos 2(k−1)nπ
k
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