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Abstract—Continual Semantic Segmentation (CSS) extends
static semantic segmentation by incrementally introducing new
classes for training. To alleviate the catastrophic forgetting issue
in this task, replay methods can be adopted, constructing a
memory buffer that stores a small number of samples from
previous classes for future replay. However, existing replay
approaches in CSS often lack a thorough exploration of two
critical issues: how to find the most suitable memory samples
and how to utilize them for replay more effectively. Common
strategies either randomly select samples or rely on hand-crafted,
single-factor-driven methods that are hard to be optimal, and
often employ conventional training techniques for replay that do
not account for class imbalance problem resulting from limited
memory capacity. In this work, we tackle these challenges by
introducing a novel memory sample selection method that lever-
ages a reinforcement learning framework with innovative state
representations and a dual-stage action scheme to automatically
learn a selection policy. Additionally, we propose an expert
mechanism and a dual-phase training method to address the class
imbalance issue, thereby enhancing the effectiveness of replay
training by making better use of memory samples. Incorporating
the proposed automatic sample selection and effective memory
utilization methods, we develop a novel and effective replay-based
pipeline for CSS. Our extensive experiments on Pascal VOC
2012 and ADE20K datasets demonstrate the effectiveness of our
approach, which achieves state-of-the-art (SOTA) performance
and outperforms previous advanced methods significantly.

Index Terms—Continual semantic segmentation.

I. INTRODUCTION

Semantic segmentation is an important task with numerous
applications for both academic research and industrial appli-
cations. The rapid development of algorithms [14], [19], [64],
[52] and the growing availability of large public datasets [22],
[102], [25] have led to significant success in this field. Most
existing methods for semantic segmentation are typically based
on a setup where all classes are known beforehand and can be
learned simultaneously. However, in many scenarios, this static
setup is often unrealistic and does not meet practical needs, as
the constantly changing environment may require the model to
be continually updated to handle new classes. To address this
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challenge, continual semantic segmentation (CSS) [91], also
known as class-incremental semantic segmentation, has been
proposed and is gaining increasing attention in the research
community. This task aims to adapt the previously learned
model to accommodate newly added categories, thus allowing
different classes to be learned incrementally at different stages.

A simplistic approach to implementing CSS is directly
finetuning the old model with data from new classes. However,
this method typically results in the model becoming biased to-
wards the new classes, leading to a forgetfulness of previously
learned information and a reduction in accuracy for old classes.
This challenge, known as catastrophic forgetting, has become
the biggest problem for CSS and prompted the development
of various solutions. For example, some works [9], [55], [59],
[57], [75], [92], [86] utilize knowledge distillation to incorpo-
rate the knowledge of the old model into the learning process
of new classes. Other techniques [96], [81], [21] focus on
multi-stage knowledge integration by merging the parameters
of old and new models. Another category of methods [10],
[85], [53], known as exemplar replay, employ a small subset
of samples from previous classes to store into a memory, which
are subsequently included in the training of future stages,
thereby enhancing the model’s ability to handle old classes and
mitigating the issue of catastrophic forgetting. Demonstrated
to be both robust and effective, such replay methods have been
widely adopted in practical continual learning scenarios.

Due to the need to minimize storage usage and protect
privacy, the memory capacity in these replay methods is
typically limited, only allowing for the storage of a few
selected samples. Therefore, the careful selection of the most
suitable samples for replay becomes critical, which has re-
ceived considerable attention by previous works [71], [63],
[6], [1], [36], [5], leading to the development of various
solutions aimed at finding the optimal method for sample
selection. For instance, some researchers [54] advocate for
selecting the most common samples with the lowest diversity,
under the assumption that the most representative samples
would boost the replay effectiveness better. However, these
common samples may not necessarily be those most likely
to be forgotten in subsequent stages, and thus might not
always be the best choice for replay. Alternative approaches,
such as the one suggested by [5], advocate for preserving
both low-diversity samples near the distribution center and
high-diversity samples near classification boundaries. This
dual approach, however, introduces new challenges as the
limited memory capacity makes it difficult to balance the
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number of different types of samples effectively to maximize
replay effectiveness. Moreover, most existing methods are
designed based on a single factor, yet the performance of
sample selection could be influenced by multiple factors with
intricate interdependencies. For example, beyond diversity, the
memory sample selection should also be class-dependent, as
classes that are more challenging require a greater number of
replay samples to effectively alleviate its more severe problem
of catastrophic forgetting. Therefore, we argue that a more
intelligent approach for memory sample selection is needed,
one that could consider a broader spectrum of factors and their
intricate interdependencies.

Witnessing the challenge, we argue that manually designing
an optimal selection strategy is difficult due to the complicated
factors that may affect replay effectiveness. To address this,
we instead propose a novel mechanism that learns an optimal
selection policy automatically and selects samples accordingly.
Our key insight is that selecting memory samples can be
viewed as a decision-making task across different training
stages. Therefore, we formulate this operation as a Markov
Decision Process and propose solving it automatically within
a reinforcement learning (RL) framework. Specifically, we
employ an agent network to make the selection decisions,
which takes the state representation as input and selects
optimal samples for replay. To enhance the decision-making
effectiveness, we design a comprehensive, task-tailored state
that integrates sample diversity and class performance features,
in which a novel method for measuring similarity is introduced
to compute this state more effectively and efficiently. We
also propose a dual-stage action space where the agent not
only selects the most appropriate samples for memory updates
but also optimizes these samples for better replay effective-
ness through gradient-based enhancements. These innovative
designs constitute an effective RL mechanism, which was
initially introduced in the conference version of this paper
[107] and demonstrates enhanced sample selection capabilities
that can significantly boost replay performance.

While the most suitable memory samples have been selected
using our proposed method, how to utilize them better to
achieve effective replay training remains a challenge, which
we aim to address in this extended work. A primary concern
is the limited number of samples retained for previous classes
in the memory, which creates a significant disparity between
the number of new and old class samples used for training.
Such class imbalance could impair the model’s ability to retain
processing capabilities for older categories. To address this
issue, in this extended work of our conference version [107],
we further introduce a novel memory utilization method that
incorporates a stage-specific expert mechanism with shared
information usage. In this mechanism, the classes in each stage
are assigned a dedicated expert, thus preventing all model
parameters from being overly biased towards new classes
with more training samples available. Additionally, we also
enable selective cross-stage expert utilization to leverage the
shared information across different categories. This enriches
feature extraction pathways for each category and enhances the
training effectiveness of the experts. Furthermore, we propose
a dual-phase training paradigm consisting of a conventional

training phase followed by a class-balanced finetuning phase,
thereby addressing the class imbalance issue and further
mitigating the catastrophic forgetting problem of old classes.

Incorporating the automatic sample selection and effective
memory utilization methods proposed in this work, we develop
a novel and effective replay-based pipeline for CSS, which
simultaneously addresses two critical questions for the replay
mechanisms in CSS: how to find the most suitable memory
samples and how to utilize them for training more effectively.
We evaluate our method on Pascal VOC 2012 and ADE20K,
and the state-of-the-art (SOTA) performance on both of them
demonstrates the superiority of our novel pipeline. Results
indicate that by storing only 1% of the total training samples
for replay, our method can achieve excellent CSS performance.
To summarize, the contributions of this work are as follows:

o We develop an automatic selection mechanism to select
the best replay samples enabled by a novel RL paradigm,
which incorporates a task-tailored state representation
containing comprehensive factors that can guide the se-
lection decision, and a dual-stage action space to select
samples and boost their replay effectiveness.

o We propose a novel method for the more effective uti-
lization of memory samples, which incorporates a stage-
specific expert mechanism with shared information uti-
lization and a dual-phase training approach to overcome
the class imbalance issue caused by the limited capacity
of replay memory.

« Incorporating the proposed automatic sample selection
and memory utilization methods, we develop a novel and
effective replay-based pipeline for CSS, with extensive
experiments on multiple datasets and protocols demon-
strating its excellent performance.

As an extension of our previous conference paper [107]
published on CVPR2023, this paper introduces significant
enhancements in three key aspects. First, [107] focuses solely
on how to select samples, but does not further explore how to
leverage the selected samples more effectively for better replay
training. This extended work addresses this crucial aspect
by further proposing an innovative and effective memory
utilization method (Section V), which includes a novel expert
mechanism with shared information utilization, and a dual-
phase training approach to alleviate the class imbalance issue.
By incorporating these newly proposed methods, our extended
pipeline presented in this paper achieves superior results than
its conference version. Second, we expand our comparisons
across a broader range of CSS settings and with additional
methods (including transformer-based methods). The more
extensive results provide stronger evidence of the advantages
of our approach. (Section VI-B) Third, we conduct more
comprehensive ablation study experiments and analysis to
evaluate the effectiveness and soundness of our designs more
thoroughly. (Section VI-C)

II. RELATED WORK

1) Image Segmentation: Image segmentation is a crucial
research area in computer vision. In recent years, the rapid
development of deep learning has led to significant advance-
ments in this field. Techniques based on fully convolutional
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networks [52], UNet architecture [64], [3], pyramid networks
[14], [100], dilated convolution [12], [13], [14], [15], attention
mechanisms [26], [110], [108], and transformers [83], [19],
[20], [32], [60] have established a new paradigm for tasks
such as semantic segmentation [14], [83], [109], [20], [100],
[45], [34], [79], instance segmentation [30], [42], [11], [37],
[77], [82], panoptic segmentation [70], [38], [18], [16], [56],
[46], and video object segmentation [7], [97], [88]. Recently,
some methods [104], [44], [31] explore improved represen-
tation spaces for semantic segmentation. For example, [104]
proposes a non-parametric framework that replaces traditional
learned classifiers with multiple class prototypes derived via
online clustering, enabling efficient and interpretable segmen-
tation through nearest-prototype inference. [44] introduces
a novel segmentation framework that integrates symbolic
reasoning with neural networks to better mimic human-like
structured visual understanding. Other methods [103], [47],
[78], [89], [106] focus on more effective training strategies
for segmentation. For instance, [103] pioneers the application
of pixel-wise contrastive learning to supervised semantic seg-
mentation, achieving significant performance improvements.
[47] proposes a novel generative-discriminative hybrid training
scheme by modeling class-conditional feature distributions
using Gaussian Mixture Models. More recently, approaches
based on foundation models, such as CLIP [61], [48], [35],
Segment Anything Models (SAM) [39], [93], [17], and mul-
timodal large language models [41], [62], [106], [105], have
further advanced segmentation performance by leveraging the
rich pre-trained knowledge embedded in foundation models,
thereby achieving strong generalization capabilities. Despite
their success, most of these methods operate under a conven-
tional setup where all training data are known beforehand and
can be learned simultaneously. In contrast, our work focuses
on the more practical and challenging continual learning
setting for semantic segmentation.

2) Continual Segmentation: Continual segmentation over-
comes the limitations of traditional segmentation algorithms
by allowing different classes to be learned at different stages.
To address the biggest challenge in this task—catastrophic
forgetting—some methods [9], [55], [59], [57], [75], [92]
adopt knowledge distillation techniques that enable the model
to review knowledge from previous stages during the learn-
ing process of new stages. For example, MIB [9] addresses
the challenge of semantic shift in the background class by
proposing a novel weight initialization method and distillation
loss. SDR [55] proposes a novel distillation-based preservation
technique based on prototype matching, contrastive learning,
and feature sparsity. CSW-KD [59] selectively revises the
knowledge of old classes that are likely to be forgotten through
distillation by focusing on those that are visually similar to the
new classes. LGKD [87] proposes a label-guided knowledge
distillation loss to mitigate the issue of confusion between the
background and novel classes in the continual scenarios. Other
methods [24], [98], [50], [72] address the forgetting problem
by annotating the new stage’s data with pseudo-labels for the
old stage’s classes. For example, PLOP [24] employs a pseudo-
labeling mechanism based on prediction confidence to improve
continual learning performance. CoinSeg [98] introduces a

contrastive-learning-based distillation to enhance both inter-
class and intra-class representations with the guidance of
pseudo-labels. Some methods [96], [81], [21] use weight
fusion to combine model parameters from both new and old
stages to retain previous knowledge. For example, EWF [81]
fuses models from different stages by taking the weighted
average of their corresponding parameters. Cs2K [21] further
improves the model fusion method by selectively integrating
different model parameters through weight-guided selective
consolidation. Another effective approach to addressing catas-
trophic forgetting is to employ a portion of past data for
replay. For example, some methods [10], [85] use a memory
buffer to store replay exemplars, but the samples are selected
either randomly or based on heuristic rules. [53] derives richer
replay exemplars through a generative adversarial network,
but this approach comes with high computational costs and
requires additional web-crawled images. Our work also adopts
a memory replay mechanism but with a different and entirely
new pipeline, in which we introduce a novel automatic sample
selection mechanism and propose a new, effective replay
training method to utilize memory samples better. Some more
recent works [65], [58], [8], [28] are designed based on
transformer networks. We have also conducted experiments
to compare with these methods and achieved superior results.
(Please see Section VI-B2 for details)

3) Memory Sample Selection: As an important approach to
addressing catastrophic forgetting in continual learning, the
effectiveness of replay-based methods relies on the careful
selection of memory samples. Most of the previous selection
methods are designed based on hand-crafted heuristic rules.
For example, some methods [1], [90], [36], [5] consider
sample diversity as a key factor in determining replay effec-
tiveness and select samples accordingly. [66] uses adversarial
Shapley value for sample selection to preserve latent decision
boundaries for previously observed classes. [63] proposes
selecting a fixed number of representative samples that best
capture the feature distribution of each class. Despite some
success, such hand-crafted methods are difficult to be optimal
due to the complex interplay between different factors that
can affect selection performance. In contrast, our method
explores a novel direction by enabling the selection policy
to be automatically learned through a carefully designed RL
mechanism, which achieves better performance than previous
selection methods as demonstrated by the experimental results
presented in Section VI-B4.

4) Reinforcement Learning: Reinforcement learning (RL)
is a technique that has achieved remarkable success in many
decision-making tasks, such as game intelligence [67], robot
control [68], and large language models [4]. It has also been
applied to computer vision in various areas such as active
learning [27], pose estimation [29], model compression [2],
and person re-identification [80]. A previous work related
to our method is [51], which uses RL for exemplar length
management but operates with a completely different mech-
anism from ours. Instead of employing RL to control class-
level memory length while still relying on a random selection
process as in [51], our method is end-to-end and can directly
select specific samples in a fully automated, single step. In
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Fig. 1. The overall framework of RPMaster, including (A) Automatic Sample Selection (Section IV), and (B) Effective Memory Utilization (Section V).

addition to the selection method, we also propose a novel
approach to better utilize the samples selected by the RL
policy. By incorporating these designs, our method introduces
a brand-new RL-based replay pipeline for CSS.

III. PRELIMINARIES

Continual semantic segmentation (CSS) aims to train a seg-
mentation model in 7" stages continuously without forgetting.
In each stage ¢, a training dataset D; can be utilized, where
only pixels within the current classes C; are labeled, while
pixels from other classes (including previous classes Ci.;—1
and future classes C;y1.7) are treated as the background. The
objective is to allow the model to be able to predict all classes
Cy.7 after completing all 7" stages. To alleviate the catastrophic
forgetting problem in CSS, we follow the setting of previous
replay-based methods [10], [85], where an exemplar memory
M that contains a small number of sampled data from the
previous classes can be used for replay. This allows both M
and Dy to be involved in training at stage ¢.

During the training process, M is updated once a training
stage is completed. This means M will be refilled by new
samples from M U D, after the stage ¢ is completed. It
is obvious that the careful selection of samples for M and
their effective utilization for training can significantly impact
performance, which is also the primary focus of this work.
In the following Section IV and Section V, we will illustrate
our solutions for addressing the challenges in memory sample
selection and memory sample utilization, respectively.

IV. AUTOMATIC SAMPLE SELECTION
A. Overall

Considering the memory M with L samples and D; with
N; samples, the target of this work is to learn an optimal
policy that automatically selects L samples from M UD; and
put them into M for training in the next stage, driven by
the goal of maximizing a reward that reflects performance
improvement. The selection decision is made by an agent
network ¢, which is a three-layered MLP. This network

transforms the learning of the selection policy into a decision-
making process with the following procedure: 1) Obtaining
the state s by assessing the properties of samples that can
measure its contribution for replay. 2) Based on s, using the
agent ¢ to make an action a that selects L samples to update
the memory M. 3) Training the segmentation network with
the updated M. 4) Computing the reward r based on the
validation performance of the updated segmentation network.
5) Repeating the above steps until completing all T stages. 6)
Optimizing agent ¢ based on r from all stages.

As shown in Figure 1(A), in this work, we solve the above
problem using a reinforcement learning (RL) framework, in
which the agent g evaluates each state s and decides on an
action a based on this evaluation. By leveraging the proposed
task-tailored state representations, a novel dual-stage action for
selection enhancement and the reward-driven optimization, we
enable the agent to learn an effective selection policy that can
enhance the replay performance. In the following sections, we
illustrate the details of how these components are designed.

B. State Representation

The state representation s is the key to enabling the au-
tomatic selection decision process effective, as it serves as
the input to and the decision support for the agent network.
Designing an effective state representation should consider
and align with the requirements of the selection policy. In-
tuitively, an optimal policy should make selection decisions
by estimating the potential replay contribution of each sample
and allocating different quotas to different classes, as harder
classes suffer more from catastrophic forgetting and thus
require more samples for replay. Based on these intuitions,
we propose combining two key factors—sample diversity and
class performance—to construct the state representation. For
an image within class ¢, sample diversity div is a factor that
measures its novelty, which can reflect the potential replay
effectiveness as suggested by previous works [5], [63]. We
calculate this factor by computing and averaging inter-sample
similarities, with a higher div indicating that the sample
differs more from other images within the same class c.
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Class performance is constructed using a combination of two
metrics: 1) accuracy and 2) forgetfulness. Accuracy is derived
by computing the training IoU I, for each class ¢, with
harder classes that achieve poorer performance having lower
IoUs. However, while this IoU factor measures the current
training accuracy for each class, it cannot reflect whether a
class is likely to be forgotten in the future, which is a critical
consideration for CSS but difficult to measure directly because
future performance is unknown. To address this problem, we
estimate forgetfulness g. by measuring the similarities between
class ¢ with all other classes, motivated by the previous finding
that classes more similar to others are more likely to be
forgotten [59]. Eventually, for a given image, we compute
the diversity {div.}¢ ;, accuracy {I.}<_ ,, and forgetfulness
{g.}S_, for all C classes present in the image, resulting in
three groups of features. We then calculate the average values
of these three groups across different classes and concatenate
them to form the state representation s of the image.

C. Measuring Similarity in Multi-structure Space

1) Motivation: Both the sample diversity div and forgetful-
ness g. introduced above require the computation of similarity
between different images. In previous works, this similarity is
primarily measured in either the prototype-level space [63] or
pixel-level space [76]. The prototype-level approach condenses
the feature map of a sample into a single prototype and
then calculates inter-prototype distances. While computation-
ally efficient, this method sacrifices spatial information and
structural details, which may lead to errors. For instance,
two images with entirely different local structures or object
postures may have similar prototypes, as these prototypes are
computed by averaging all pixel features, thereby concealing
differences in local details. Such errors caused by the lack
of local detail are detrimental to segmentation tasks, since
the local structural information is crucial for accurate pixel-
level predictions as indicated by previous works [109], [33].
The pixel-level approach retains local information but incurs
an unacceptable computational cost due to the pixel-wise
distance calculations and may lead to overfitting [43]. There-
fore, to obtain a more informative similarity metric, a novel
representation space is needed—one that can preserve spatial
and structural information while remaining computationally
feasible. To address this, we propose a novel method that first
maps each sample into a multi-structure graph space and then
measures inter-sample similarity based on graph matching. In
this graph, each vertex represents a semantic structure, and
each edge represents the spatial and semantic correlations.
In this way, a fine-grained similarity can be calculated by
utilizing the comprehensive information in the graph, while
requiring only a small amount of computation benefiting from
the condensed feature representation.

2) Multi-structure Graph: Considering an image with class
¢, we represent the region R within ¢ as a graph G through
the way illustrated by Figure 2. To obtain the local structural
representation, we first employ the method in [73] to produce
M superpixels {r,,}M_; (ry Ura U...U7ry = R). The
motivation for generating superpixels is that, each produced
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Fig. 2. Tllustration of how the graph for computing sample diversity is
constructed. In the figure, r; and r; denote two superpixels. F; and F} refer
to the average features for all pixels within them. (Z;,9;) and (;,7;) denote

the centroid coordinates of r; and r; respectively. dé’ej and dé’g refer to the
semantic distance and spatial distance. The generated graph G will be used
to compute the sample diversity and forgetfulness.

Tm can represent a meaningful semantic structure, such as
the head of a bird; and it can also condense the pixel-level
representation by clustering pixels with similar features and
adjacent positions, thus enabling the subsequent processes to
be completed more efficiently with reduced computational
cost. Each vertex F), is then computed as the average
backbone feature for all pixels within r,,. We represent the
edges of G as a distance map D € RMXM = \where each
element D*J denotes the distance between the i-th and j-th
vertices. To simultaneously consider the context-aware high-
level semantic information and low-level spatial correlation,
we combine both the semantic distance and spatial distance
to get D. Specifically, the semantic distance d%J is the L2
distance between F; and F}; while the spatial distance d%J is
the Euclidean distance between the two centroid coordinates
' of the superpixels r; and r;, which reflect the relative
positions of them. We normalize dj/ and dj to [0,1] and
derive D" = dg/ +dy;). Such a graph captures comprehensive
representations of an image, such as the local structural details
and spatial information, which are lost in the prototype space
but are crucial for measuring a fine-grained similarity.

3) Inter-graph Similarity: After mapping each image into
the aforementioned graph space, we then measure the inter-
image similarities using a matching algorithm. Specifically, for
two graphs G; and G; from two images, we apply the Sinkhorn
algorithm [23] to align them, through which the transport
cost tc is obtained by solving the optimal transport problem,
with a higher ¢c indicating the lower similarity between
these two graphs. The details for this step are presented in
Appendix A. Since the edge distance D/ is computed using
both semantic and spatial distances, the resulting tc after
matching can reflect both semantic and spatial similarity. For
example, when comparing two regions of the ‘person’ class,
we can assess both whether they are wearing similar clothes
(semantic similarity) and whether they have the same body
posture (spatial similarity), thereby capturing comprehensive
fine-grained representations that contribute to an effective state
representation in our framework.

4) Representation Computation: We use the aforemen-
tioned similarity measurement to compute sample diversity
div and forgetfulness g in our state representations. For an

Considering a superpixel r = {(xi,yi)}ilil, the centroid coordinate
— = 1 = 1 N
(%,7) is computed as: T = 5 >;11 Tis U= 77 D_i—1 Yi-
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image containing the c-th class, let G represent its graph. We
introduce a support set S. = {G:}N¢, for computing div,
which contains several graphs of other images within the same
class c. For each previous class ¢ € Cy.4—1, S, is constructed
as the set of all images for ¢ stored in the memory M.
While for each current class in C; that has a larger number of
images, we randomly sample 10% of all images to form S, for
reducing the computational burden. Our experimental results
presented in Section VI-C5 demonstrate that div computed
from such a sampled set is effective enough. A diverse and
novel sample is likely to have low similarities compared to
other samples within the same class. Therefore, we calculate
div by computing the average similarities as follows:

> sim (6,61, (1)

gies.

1

div S
where Sim refers to the inter-graph similarity measurement
introduced in Section IV-C3, which outputs the transport cost
of mapping G and G! (please see Appendix A for details). A
higher value of Sim (G,G?) indicates a lower similarity be-
tween graphs G and G'. To calculate forgetfulness g, for each
class ¢, we first construct a representative set S, = {gg}jvgl,
which contains the top 10% of samples in S, with the lowest
diversity scores div. These samples are most similar to other
samples in ¢ and can therefore serve as representatives for
the entire class. The forgetfulness g, is then computed as the
class-wise similarity as follows:

1 1 1
gc—@ 2 Crae| =1 2 1S,

gies, jEC1t\c

> sim(G,GF).
ghkes;
2
Eventually, the obtained div and ¢ are combined with the
accuracy I, generating the state representations that can help
make a wiser selection decision.

D. Dual-stage Action with Sample Selection and Enhancement

After obtaining the state information s’ for each sample, we
use an agent network ¢ to produce a score ¢(s%) by taking s*
as the input. A higher score indicates that this sample is more
suitable for replay. Thus, we consider the agent’s output score
as an indicator of replay effectiveness and use it to drive a
novel action space for the RL mechanism, which operates in
two stages: sample selection and sample enhancement.

Specifically, we first select memory samples by choosing
the top L samples with the highest agent scores, expressed as:

a= TopL ¢ (si) . 3)

i€[1,L+N¢)

After that, instead of directly using the static selected samples
for training in the next stage, we further propose an enhance-
ment operation that edits each sample to be more effective
for replay. This approach is motivated by our observation of
the agent scores for the selected samples. Specifically, we
noticed that only 10% of the selected samples have agent
scores exceeding 0.8 (with the theoretical maximum score
being 1). This indicates that while these samples are the
best possible choices among the available candidates, they

are still not the ideally perfect samples for replay. Thus, we
implement enhancement through a gradient-based approach by
maximizing the agent score. Specifically, we treat the state s”
as a feature computed from the input image x, along with M
and D;, under the segmentation network parameters 6., with
the state computing function f;, which is formulated as:

5" :fs ($§M>Dtveseg)- (4)

The agent score is then generated as ¢(s®). We perform a
gradient update on x to increase the agent score ¢(s*) and
thereby enhancing the replay effectiveness. This process is
formulated as:

¥ =x+eV,uq(s¥)
=1x+€eVyq (fs (l‘§ M, Dy, 9869)) ,
where € is a hyper-parameter to control an adequate updating
rate to ensure that the image label remains unchanged. With

the higher agent score, the resulting ' can be more effective
and is stored into M for replay.

&)

E. Reward and Optimization

Our selection policy aims to enable the segmentation model
trained with the memory M to achieve better performance.
Therefore, the reward for optimizing the agent should reflect
how much the memory samples derived by the agent’s policy
can benefit the CSS training. To implement this, we divide
a subset from the training set to get a reward set D"ewerd,
compute the validation accuracy ac; for the segmentation
model that has completed the t¢-th stage on D"*w ¢  and
obtain reward r; by r; = ac; —acy—1. With the reward derived,
following DQN [74], the agent is optimized by the temporal
difference (TD) error formulated as:

R 1 T-1 L i )
TD (6,9) = ﬁ (Tt-l-l + % Zq (5:_?1179)

where s; * refers to the state representation of the ¢-th selected
sample in the ¢-th stage, 6 and 0 refer to the agent’s policy
and off-policy parameters respectively. Following [74], 6 is
periodically updated based on 6, aiming to save the learned
Q-value.

F. Agent Training and Deployment

With the RL mechanism for CSS introduced above, we
then present the agent training and deployment method in
this section. We denote D; as the dataset for the first-stage
training. According to the CSS protocol [24], D; contains
multiple classes (usually more than half of the total), thus
it can provide sufficient information for training an effective
agent. The detailed training process of the agent is shown in
Alg. 1. Specifically, we train the agent for Y iterations. In each
iteration, we randomly divide D; into a training set D{"%" and
a reward set DJ°¥"4 and set a new CSS task by reallocating
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Algorithm 1 Agent Training Algorithm.

1: Input: agent network ¢, segmentation network parameters 0scq,

Image x € Cy

Feature Extractor F

dataset D;.

for yin 1,...,
Randomly create a new task having T}, continual stages with

Y do

class partitions {C:, },y_1

[ Expert E;

Partition D; to D™ and Dyewerd
Initialize .4, initialize M as an empty set

for ¢, in 1,.

., Ty do

train ity

Train Ggeg on ./\/l uUD,
Compute state s” (Sec IV-B) and agent score ¢(s
every sample z € M U Dtmm tu,

9: Select and enhance sample% (Sec.IV—D), update M

A A

*) for

i

v
Expert E;, Expert E¢ Interruption
1 [o2 No T = N el N st Y3 N Indicat
Goncraen
| | ! [ i "= ol /a
Ne Ne K
[Z er(F(x)) Z o7 1(hi" (GAP(F(x))) > 0) ej"(F(x))J
€[2:t] n=1
- L [4 n4 LY 4 3 3 LY
Classmcatlon Head][ H 2N t1]|[ ¢.2 N —_—l
2 IR | -] Gate 0z
: X~ N (Tm1)
Result .
li[ B B i)

Classes Cy

10: if ¢, > 1 then

11: Compute reward 7, using Drewerd (Sec.IV-E)
12: end if

13:  end for

14:  Update g by Eq. 6

15: end for

16: Return: ¢

the classes observed in each stage. This helps the agent to
learn a more general policy by training from diverse settings.

Once the agent training is completed, we can deploy it on
the whole set D = {D;}L_,, selecting and enhancing memory
samples at the end of each stage and using them for replay in
the next stage.

V. EFFECTIVE MEMORY UTILIZATION
A. Motivation

After training an agent using the aforementioned method
and employing it to select samples at the end of each stage
t — 1, the next challenge is how to effectively utilize these
samples for replay training in the next stage t. Due to the
limited capacity of memory M, the number of samples used
for training Ci.;—; in stage ¢ is significantly less than those
for training C;. This class imbalance issue could cause the
model to be overly biased towards classes C; with much
more training samples, thereby hindering its effectiveness
in learning segmentation abilities for classes Ci.;—1. Some
previous methods assign pseudo-labels of classes C1.;_1 to the
dataset D; and thereby increasing C;i.;_1’s training samples.
However, to ensure accuracy, these methods typically select
only high-confidence samples for pseudo-labeling. As a result,
the increase in the number of training samples for Ci.;—1 is
very limited, and the class imbalance issue still remains.

To address the aforementioned issue, a straightforward
approach is to assign a separate expert {E;} to each C; € Cy.4,
with each expert responsible only for extracting features rele-
vant to the segmentation of its corresponding classes C;, rather
than sharing a common set of parameters across all classes.
This design aims to prevent all model parameters from being
biased toward C;, which typically has more training samples
than previous classes. However, although this naive method
yields some improvements, we found its performance to still
not be sufficiently satisfactory. This may be due to the limited
number of training samples available for {C;}!Z] in M,
which makes it difﬁcult to effectively train their corresponding
experts {E;}!_] using such insufficient data.

Fig. 3. Tllustration of our expert mechanism with shared information uti-
lization in the ¢-th training stag. GAP denotes global average pooling. For
simplicity, we only present the process of segmenting classes Cy for an input
sample within Cj. The segmentation processes for other classes are similar.

The above discussion suggests that neither extreme cross-
class sharing nor complete expert isolation is optimal. Instead,
we propose a novel method that strikes a balance between the
two: each expert E; is primarily responsible for a specific
C;, but is also allowed to selectively learn useful shared
information from other classes {C; }je[l:t]\i under a controlling
strategy. This design helps mitigate overfitting while also
enabling more effective training of the expert modules. In the
following section, we present the details of this novel method.

B. Expert with Shared Information Utilization

Specifically, as shown in Figure 3, instead of using a single
network layer as the expert E, we draw inspiration from
MOE [94] and set up N, parallel sub-experts {7} to
form FE;. Each e} is implemented as a 3 X 3 convolutional
layer with 128 output channels. Different sub-experts receive
the same backbone features as input, but are encouraged to
extract different information during training (see Section V-C
for details). During the segmentation of classes C; for an
input sample z, besides leveraging its corresponding expert
E; {ef}f\[:el, the other sub-experts are also selectively
utilized for feature extraction under the control of an activation
gate. This gate is determined by a fully connected layer h)",
which receives the global average pooling of the backbone
feature F'(z) and produces a score that indicates whether the
sub-expert ej should be activated for using. The prediction
result p; for classes C; can then be formulated as:

Y Yo (hJ (GAP (F (z))) > o) e’(F(x))

je[L:t]\i n=1
(N

where GAP refers to global average pooling. Considering
the significant difference in the number of training samples
for different C;, we aim to prevent each expert FE; from
learning segmentation capabilities from an excessive number
of samples of other classes, which could cause an imbalance
issue. To address this, during the training phase, we introduce
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an imbalance factor for generating a probability to randomly
interrupt the use of each sub-expert ef € {el})c, of E;
when processing input samples that do not belong to their
respective classes C;. Specifically, in the m-th iteration of the
training process at stage ¢, we count the number of times each
e has been activated when processing samples within each
Cy * across all previous m — 1 iterations, denoted as ai".
The imbalance factor IJ ™ of e for Cy, is then calculated as
" =a)"/ aj ', During trammg, given a sample within Cy,
the predlctlon process of p; in Eq.7 is rewritten as:

Ne
pi =H (Z el (F(x

S 3 (127 GAP(F (2) > 0) e} (F(o)
jefL]\in=1
3)

where
= 1(X <0): X ~ N (Z01), ©)

where N denotes the Gaussian distribution. Through this
method, classes that have excessively activated sub-expert e
in previous training iterations — i.e., with more activation
counts compared to samples from e’'’s corresponding classes
C; — are less likely to use e for their training samples in the
current iteration. This encourages each e to learn segmenta-
tion capabilities from a more balanced set of samples, thereby
balancing the number of negative samples encountered by the

expert of each class and effectively enhancing performance.

C. Dual-Phase Model Training

Building on the novel network structure introduced above,
we further elaborate on the training details of our method in
each stage t. To further address the issue of class imbalance,
we propose a dual-phase training mechanism that consists of a
conventional training phase for learning segmentation abilities
followed by a finetuning phase to achieve class balance. In the
first phase, all model parameters are trained using all samples
from M U D;. The loss function for this phase is written as:

L= £seg + Ediv (10)

where L4 is the cross-entropy loss for segmentation training,
in which we also employ the pseudo label mechanism as in
[24] to improve accuracy. Lg;, enforces different sub-experts
{er}N< | in each E; to extract diverse and orthogonal features,
which is formally written as:

I ) (e (F ()"
WZZZM |w<ww

€ i=1n=1m=1

Ldz’v =

(1)

In the second phase, to enhance class balance, instead of
using all samples in M UD, for training, we use the proposed
memory selection method to select S images from D, and
combine them with M to form a more balanced training set

2Here, the Cj, to which each sample belongs is determined by the categories
indicated in its label. In practice, since pseudo-labels are employed during
training, a sample may belong to multiple Cy. In such cases, we choose the
largest Z;'™ from all the Cj, the sample belongs to for the calculation in Eq.9.

M U D, where S equals the average number of samples per
C; in M. Given the small number of samples in M U D;,
to avoid overfitting, we do not use this dataset to perform
full finetuning on the whole model. Instead, we introduce an
additional expert E; with N, sub-experts in parallel with the
existing experts { E; }!_,. The prediction process for all classes
Ci¢ can use each sub-expert in E, for feature extraction.
During fine-tuning, only E is updated, while all other model
parameters are kept frozen. The loss function for this phase
is the same as in the first phase (Eq.10). After fine-tuning,
E; can be merged with each E; € {E;}!_, to form the new
E; used for the next continual stage. By adopting this dual-
phase training strategy, our model not only learns segmentation
capabilities effectively from abundant data, but also distributes
these capabilities more evenly across different classes through
fine-tuning with a class-balanced set of positive and negative
samples. Experimental results in Section VI-C6 demonstrate
that our method outperforms using either single phase alone.

VI. EXPERIMENTS
A. Experimental Settings

1) Datasets and CSS Protocols: We evaluate our method
on two popular semantic segmentation datasets — Pascal VOC
2012 [25] and ADE20K. Pascal VOC 2012 is a large object
segmentation dataset containing 10582 images for training and
1449 images for testing, with 20 foreground classes in total.
ADE20K [102] is a large dataset for scene parsing. It has 150
foreground classes, with 20210 and 2000 images for training
and testing, respectively. There are two different settings used
in the research field of CSS: Disjoint and Overlapped. The key
difference between them lies in whether the training set D; at
each stage ¢ contains pixels belonging to other classes in Cy.¢—1
and Cy41.7. Specifically, in the Disjoint setting, the samples
in D, contain only pixels belonging to classes C;. In contrast,
in the Overlapped setting, the samples in D; can contain
pixels belonging to any classes from Ci.t—1 U Cy U Cyqq.7.
Note that in both settings, pixels in D; that do not belong
to C; are labeled as the background category. Experimental
results on both settings are reported and compared. To evaluate
the effectiveness of our method comprehensively, we conduct
experiments across multiple CSS protocols. Each protocol is
denoted as ‘m —n(T stages)’, which refers to the model being
trained over a total of T' continual stages, in which the first
stage C; includes m classes while each of the remaining 7" — 1
stages includes n classes. In this work, following the settings
of previous works, we conduct experiments based on 19-1(2
stages), 15-5(2 stages) and 15-1(6 stages) for Pascal VOC
2012, and 100-50(2 stages), 100-10(6 stages), 100-5(11 stages)
and 50-50(3 stages) for ADE20K.

2) Metrics: We use mloU as the metric to evaluate the
model’s performance, which is widely used by most previous
CSS methods and other semantic segmentation works. Fol-
lowing [24], [92], we compute the mloU for the classes in
the first stage C;, for the classes in the remaining continues
stages Co.p, and for all classes Ci.p in all stages. These
metrics respectively reflect the model’s ability to overcome
catastrophic forgetting, learn new knowledge, and achieve
overall segmentation performance.
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3) Implementation Details: Our method consists of two
stages: agent training and segmentation model training. In
the first stage, the agent network is trained to develop the
selection policy (Section IV). While in the second stage, this
trained policy is deployed for memory sample selection to
train a segmentation model in a continual learning manner
(Section V). For the segmentation model training stage, we
follow previous works by adopting SGD as the optimizer, with
a momentum value of 0.9 and an initial learning rate of 0.01
using the ‘poly’ learning rate decay schedule. As discussed
in Section V-C, training at each continual stage includes two
phases: a conventional training phase and a finetuning phase.
For each continual stage on Pascal VOC 2012, the model is
trained for 30 epochs during the first conventional training
phase and for 5 epochs during the subsequent finetuning phase.
For ADE20K, the model is trained for 60 epochs during the
first conventional training phase and for 10 epochs during
the subsequent finetuning phase. The batch size is set to 24
for both datasets. Following [10], the memory length | M| is
100 for Pascal VOC 2012 and 300 for ADE20K. We also
discuss the model’s performance when using different memory
lengths | M| in Section VI-D1. The number of superpixels M
in the multi-structure graph is set to 5, € in Eq.5 is set to
0.1, and the number N, of sub-experts e;* for each expert E;
in Section V-B is set to 4. Following most previous CNN-
based CSS methods, we use Deeplabv3 with an ImageNet-
pretrained ResNetlO1 (stride=16) as the backbone for our
segmentation model. In Section VI-B2, we also extend our
experiments to transformer-based segmentation methods. For
the agent training stage, since this process is conducted offline,
we can use a shallower segmentation network and a smaller
dataset to reduce computational costs. Specifically, we use
DeepLabv3 with a ResNetl8 backbone as the segmentation
model. The training epochs Y in Alg.1 are set to 1000. We
randomly partition 10% of the entire dataset into the training
set and reserve the remaining data for the reward set. For each
continual stage, the network is trained for 5 epochs on Pascal
VOC 2012 and 8 epochs on ADE20K. The segmentation
network is optimized using SGD with an initial learning rate
of 0.01, and the agent network is optimized using Momentum
with a learning rate of 0.1.

B. Main Results

1) Comparison with the State-of-the-arts: We compare the
performance of our method with other state-of-the-art CSS
approaches on Pascal VOC 2012 and ADE20K. The results for
these two datasets are presented in Table I and Table II, respec-
tively, where the first row (Joint) represents the performance of
training all classes C;.7 together without using continual learn-
ing. Compared to other methods, the conference version of
our approach, denoted as the replay-based pipeline (RP) with
automatic sample selection, and its extended version in this
paper, denoted as replay master (RPMaster), achieve the best
results across all protocols. For example, on the overlapped
setting of Pascal VOC 2012, our RP achieves mloU of 71.94%
on the 15-1(6 stages) protocol, improving upon the previous
best result by 9.80%. Benefiting from the newly proposed

method for effectively utilizing memory samples for replay, the
extended version in this paper, RPMaster, achieves even better
performance, with an improvement of 1.91% on this protocol.
It is important to note that when the number of continual
learning stages is small, the performance gains from our
RPMaster against RP are relatively modest. This is because,
in such settings, the degree of forgetting previous classes is
relatively limited, making the improvements introduced by
our method appear less significant. However, as the number
of stages increases, the problem of catastrophic forgetting
becomes more severe. In these more challenging scenarios, the
advantage of our approach becomes significantly more evident,
as it leverages memory samples more effectively to enable
better replay training. For instance, RPMaster outperforms RP
by 1.91% in the 15-1 (6 stages) protocol — substantially
higher than the gain of 0.50% observed in the 15-5 (2 stages)
protocol. Compared to Pascal VOC 2012, ADE20K is a more
challenging dataset due to its larger number of classes and
images with more complex scenes. On this dataset, our method
also achieves superior performance that surpasses previous
results significantly. We also report and compare the results
under the disjoint setting for Pascal VOC 2012 in Table I. In
this setting, we cannot obtain pseudo-labels for Cy.; 1 from the
training samples of D,, thus making the catastrophic forgetting
problem more severe. Under this challenging condition, the
importance of information from previous classes introduced
by the replay samples becomes even more crucial, thus the
advantages of our proposed innovative and effective replay
mechanism are more pronounced. These results demonstrate
the high effectiveness of our method under diverse settings,
highlighting its high robustness and excellent generalization.

2) Extension to Transformer-based Segmentation Models:
Although most previous CSS methods typically use the CNN-
based Deeplab as the segmentation model, the success of trans-
formers in various computer vision fields has inspired more
recent CSS works to design continual learning methods for
transformer-based segmentation models. We notice that previ-
ous transformer-based CSS methods lack a unified paradigm,
with different transformer models used by different methods.
For example, Segmenter [69] is used by Incrementer [65] and
MBS [58], and Mask2Former [19] is used by CoMFormer [8]
and CoMasTRe [28]. To ensure a fair comparison and evaluate
the effectiveness of our approach more comprehensively, we
implement our method on both of these two transformer mod-
els (Segmenter and Mask2Former) and make a comparison
with other methods. The results presented in Table III show
that our method consistently outperforms existing approaches
across various protocols and models. This highlights the high
effectiveness and superiority of our approach when applied
to transformer-based segmentation methods, demonstrating
its robust generalization capabilities and substantial practical
value across different model architectures.

3) Combining with Other CSS Methods: Our method is not
only an independent pipeline but can also serve as a plug-and-
play improvement strategy that can be used in conjunction with
other CSS methods to further enhance their performance. To
demonstrate this, we combine our method with three other
CSS approaches—MIB [9], RBC [101], and PLOP [24]—and
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TABLE I
COMPARISON RESULTS ON PASCAL VOC 2012 IN BOTH OVERLAPPED AND DISJOINT SETTINGS

19-1(2 stages) 15-5(2 stages) 15-1(6 stages)
Overlapped Disjoint Overlapped Disjoint Overlapped Disjoint
Method 0-19 20 all ‘ 0-19 20 all 0-15 16-20 all ‘ 0-15 16-20 all 0-15 16-20 all ‘ 0-15 16-20 all
Joint | 7840 78.82 7842|7840 7882 7842|7995 7351 7842|7995 7351 7842|7995 7351 78427995 73.51 7842
EWC [40] 2690 14.00 26.30 | 23.20 16.00 22.90 | 24.30 35.50 27.10 | 26.70 37.70 2940 | 0.30 430 130 | 030 430 1.30
ILT[54] 67.75 10.88 65.05 | 69.10 1640 66.40 | 67.08 39.23 60.45 | 63.20 39.50 57.30| 875 799 856 | 3.70 570 4.20
MiB [9] 7143 2359 69.15| 69.60 25.60 67.40 | 76.37 49.97 70.08 | 71.80 43.30 64.70 | 34.22 13.50 29.29 | 46.20 12.90 37.90
REMINDER [59] | 76.48 32.34 74.38 - - 76.11 50.74 70.07 - - - 68.30 27.23 58.52 - - -
SDR [55] 69.10 32.60 67.40 | 69.90 37.30 68.40 | 75.40 52.60 69.90 | 73.50 47.30 67.20 | 4470 21.80 39.20 | 59.20 12.90 48.10
UCD [86] 71.40 47.30 70.00 | 73.40 33.70 71.50 | 77.50 53.10 71.30 | 71.90 49.50 66.20 | 49.00 19.50 41.90 | 53.10 13.00 42.90
RBC [101] 77.26 55.60 76.23 | 7643 4579 75.01|76.59 5278 70.92 | 75.12 49.71 69.89 | 69.54 38.44 62.14 | 61.68 19.52 51.60
PLOP [24] 75.35 37.35 73.54 | 7537 38.89 73.64| 7573 51.71 70.09 | 71.00 42.82 64.29 | 65.12 21.11 54.64 | 57.86 13.67 46.48
RCIL [96] - - - - - 78.80 52.00 7240 | 75.00 42.80 67.30 | 70.60 23.70 59.40 | 66.10 18.20 54.70
SPPA [49] 76.50 36.20 74.60 | 75.50 38.00 73.70 | 78.10 52.90 72.10 | 75.30 48.70 69.00 | 66.20 23.30 56.00 | 59.60 15.60 49.10
LGKD [87] 76.50 37.50 75.50 | 75.39 39.55 73.68 | 77.60 54.30 72.70 | 75.38 49.46 69.21 | 69.00 29.10 60.50 | 62.45 19.03 52.11
IDEC [99] 76.92 3698 75.02 | 72.78 36.50 71.05 | 78.01 51.84 71.78 | 74.95 48.39 68.63 | 76.96 36.48 67.32 | 70.02 24.88 59.27
BARM [95] 7820 4220 76.40 | 76.75 45.10 7524 | 77.43 53.03 71.62 | 75.09 50.11 69.14 | 77.60 4590 70.00 | 71.78 26.65 61.03
NeST [84] 77.00 49.10 75.70 | 74.16 50.23 73.02 | 77.60 55.80 72.40 | 76.02 49.89 69.80 | 72.20 33.70 63.10 | 64.34 1835 53.40
LAG [92] 76.71 4529 75.21 | 73.32 4798 72.11 | 77.33 51.76 7124|7625 49.59 69.90 | 75.00 37.52 66.08 | 70.08 25.73 59.52
RP [107] | 77.86 56.75 76.85|77.10 5892 7623 |79.31 55.88 73.73 | 77.18 53.04 7143|7854 50.82 71.94|7549 44.67 68.15
RPMaster 78.02 57.78 77.06 | 77.84 59.25 76.95 | 79.68 56.80 74.23 | 78.10 53.88 72.33 | 79.16 56.86 73.85|77.16 5295 71.40
TABLE 11
COMPARISON RESULTS ON ADE20K IN OVERLAPPED SETTING
100-50(2 stages) 100-10(6 stages) 100-5(11 stages) 50-50(3 stages)
Method 1-100 101-150 all 1-100 101-150 all 1-100 101-150 all 1-50 51-150 all
Joint | 4528 27.95 39.54 | 4528 27.95 39.54 | 4528 27.95 39.54 | 51.56 33.41 39.54
MiB[9] 40.52 17.17 32.79 38.21 11.12 29.24 36.01 5.66 25.96 45.57 21.01 29.31
SDR [55] 37.40 24.80 33.20 28.90 7.40 21.70 - - - 40.90 23.80 29.50
PLOP[24] 41.87 14.89 32.94 40.48 13.61 31.59 39.10 7.80 28.80 48.83 20.99 30.40
REMINDER([59] 41.55 19.16 34.14 38.96 21.28 33.11 - - - 38.96 21.28 33.11
RCIL [96] 42.30 18.80 34.50 39.30 17.60 32.00 38.50 11.50 29.60 48.30 25.00 32.50
SPPA [49] 42.90 19.90 35.20 41.00 12.50 31.50 - - - 49.80 23.90 32.50
EWF [81] 41.20 21.30 34.60 41.50 16.34 33.20 41.40 13.40 32.10 - - -
LGKD [87] 43.30 25.10 37.20 42.20 20.40 34.90 40.93 18.95 33.60 49.10 27.20 34.40
IDEC [99] 42.01 18.22 34.08 40.25 17.62 32.71 39.23 14.55 31.00 47.42 25.96 33.11
BARM [95] 42.00 23.00 35.70 41.10 23.10 35.20 40.50 21.20 34.10 47.90 26.50 33.70
LAG [92] 41.64 19.73 34.34 41.00 18.69 33.56 39.96 17.22 32.38 47.69 26.12 33.31
RP [107] | 44.01 25.32 3778 | 43.88 25.14 37.67 | 4335 18.53 3513 | 50.13 25.72 33.96
RPMaster | 4455 26.20 3843 | 4430 26.48 3836 | 4391 22.75 36.87 | 50.87 27.96 35.60
TABLE III TABLE IV

COMPARISON RESULTS BASED ON TRANSFORMER-BASED SEGMENTATION
MODELS ON PASCAL VOC 2012 IN OVERLAPPED SETTING.

THE PERFORMANCE OF COMBINING OUR METHOD WITH OTHER CSS
METHODS ON PASCAL VOC 2012 IN OVERLAPPED SETTING.

19-1(2 stages)

15-1(6 stages)

19-1(2 stages)

15-1(6 stages)

Model Method 0-19 20 all | 0-15 1620 all Method 0-19 20 all ‘ 0-15 16-20 all
Joint 8434 82.05 8423|8520 81.13 84.23 Joint | 7840 7882 7842 | 79.95 7351 78.42

Segmenter MBS [58] 83.30 72.00 82.76 | 82.60 72.20 80.06 MIB [9] | 7143 2359  69.15 | 3422 1350 29.29
Incrememter [65] | 82.54 60.95 82.14 | 79.60 59.56 75.55 MIB + Ours 78.05 58.10 77.10 79.23 57.01 73.94
Ours 84.09 73.07 83.57 | 84.12 72.80 81.42 RBCLI01 | 7726 5560 7623 | 6954 3844 6214
Joint 79.90 73.84 79.61 | 8245 70.52 79.61 RBC + Ours 7830 5916 7739 | 79.74  59.88  75.01

Mask2Former | COMFormer [8] | 7535 24.06 7291 | 4897 2328 48.8 PLOP (241 | 7535 3735 7354 | 6512  2L11 5468
CoMasTRe [28] | 75.13 6951 74.86 ) 69.77 43.62 63.54 PLOP + Ours 7826  57.86 7729 | 7962 5725  74.29
Ours 7891 70.16 78.49 | 79.04 62.65 75.14

evaluate the performance improvement on the overlapped
setting of Pascal VOC 2012. Specifically, on top of these
existing methods, we further train an agent using the approach
mentioned in Section IV and employ it to select and enhance
memory samples for replay training with the way described
in Section V. As shown in Table IV, this modification, which
incorporates our method, improves the original MIB, RBC

and PLOP by 44.65%, 12.87%, and 19.65%, respectively
on the 15-1(6 stages) protocol. This significant enhancement
demonstrates the generality and versatility of our approach. It
is worth noting that none of these three methods originally
utilizes a replay mechanism, yet the introduction of just 1%
of all samples for replay can result in significant performance
improvements. This indicates the high effectiveness of the
replay mechanism, particularly the novel replay pipeline we
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TABLE V TABLE VI TABLE VII
COMPARISON WITH OTHER SAMPLE SELECTION STRATEGIES ON PASCAL EFFECTIVENESS OF DIFFERENT EFFECTIVENESS OF SELECTION
VOC 2012 IN OVERLAPPED SETTING. COMPONENTS. AND ENHANCEMENT.
19-1(2 stages) 15-1(6 stages) Method | all Method | all
Selection Strategy 0-19 20 all 0-15 16-20 all Ours ‘ 73.85 Ours ‘ 73.85
Random Selection | 73.80 5620 7296 | 7496 4481 67178 Ours wio ASS 0778 Ours wio Enh T
iCaRL [63] 74.53 5626 73.66 | 75.71 4486  68.36 Ours w/o EMU 71.94 Ours w/o Sel & Enh 67.78
Rainbow [5] 74.64 5627 73776 | 75.88 4490  68.50 ASS: automatic sample selection Sel: sample selection. Enh: sample
CBES [85] 7522 56.19 7431 76.41 45.55 69.06 (Sec.IV). EMU: effective memory enhancement.
SSUL [10] 7495 5640 74.07 76.19 4497 68.76 utilization (Sec.V).
NHS ‘ 75.62  56.80 74.72 ‘ 76.73 4599  69.41
Ours (w/o Enhancement) | 77.32 57.69 76.39 | 78.01 49.87 7131 TABLE VIII
NHS denotes a newly-designed hand-crafted strategy using the same factors as our EFFECTIVENESS OF DIFFERENT COMPONENTS IN THE STATE
method (see Appendix for details). The results for random selection are derived REPRESENTATION
from the average of five repetitive experiments.
Method | 015 16-20 all
i thi . h . del . ithi Ours ‘ 79.16 56.86 73.85
ropose 1n this paper, in enhancing model pertormance within
prop ) p p, _g p Ours w/o sample diversity div 74.77 50.74 69.05
the continual learning segmentation tasks. Ours wio accuracy 77.11 53.76 71.55
4) Comparison with Other Sample Selection Strategies: Ours w/o forgetfulness g 71.34 5402 TLT9
Ours w/o {I,g} 76.27 52.39 70.58

To evaluate the effectiveness of our RL-driven automatic
sample selection mechanism, we conduct comparative anal-
yses against other selection methods within the CSS task.
These experiments are performed using the Pascal VOC 2012
dataset under the 19-1(2 stages) and 15-1(6 stages) overlapped
settings, with the results presented in Table V. The com-
pared methods include three types: 1) the random selection
strategy; 2) the previously-proposed hand-crafted strategies
including iCaRL [63], Rainbow [5], CBES [85] and SSUL
[10], where iCaRL and Rainbow are diversity-based selection
criteria, and CBES and SSUL are class-balanced sample
selection strategies specially designed for CSS. Moreover, to
further validate the effectiveness of our automatic learning
mechanism, we introduce and compare with a novel hand-
crafted strategy (NHS) that utilizes the same factors as our
RL approach—sample diversity and class performance. This
strategy, detailed in the Appendix, is based on our analysis
of the learned policy as described in Section VI-D2. For a
fair evaluation, all methods, including ours, utilize the same
replay training approach as described in Section V. On the ‘all’
metric of 15-1(6 stages) protocol, random selection achieves
67.78% mloU. Employing heuristic rules for intelligent sample
selection, iCaRL, Rainbow, CBES, and SSUL achieve mloUs
of 68.36%, 68.50%, 69.06%, and 68.76%, respectively. NHS
further enhances this performance to 69.41% by considering
additional factors and their complex interrelationships. To
maintain fairness in comparison, we report the performance of
our method without the sample enhancement operation, which
achieves 71.31% mloU. This result not only outperforms
the previously proposed iCaRL, Rainbow, CBES, and SSUL,
highlighting the higher effectiveness of our novel selection
approach; but also surpasses NHS that uses the same set of
factors as ours, thus demonstrating the significant advantages
of the reward-driven automatic policy learning mechanism
over the hand-crafted strategies.

C. Ablation Study

In this section, we conduct ablation study experiments to
verify the effectiveness of different components and design

choices in our method. The experiments are conducted on
Pascal VOC 2012 under the 15-1 (6 stages) overlapped setting.

1) Effectiveness of Different Components: Our method con-
sists of two main components: automatic sample selection
(ASS, Section 1V) and effective memory utilization (EMU,
Section V). As shown in Table VI, when the proposed selection
method is not used and samples are selected randomly, or
when the proposed effective utilization method is not ap-
plied and conventional replay training is used instead, the
model’s performance will significantly decrease. These results
demonstrate that both components of our pipeline contribute
significantly to the high-performance continual segmentation.

2) Effectiveness of Selection-enhancement Dual-stage Ac-
tion: As detailed in Section IV-D, the action in our method
consists of two stages: sample selection and sample enhance-
ment. We conduct experiments to verify the effectiveness
of these two stages, and the results are presented in Table
VII. Our method, which includes both sample selection and
enhancement, achieves 73.85% mloU on the ‘all’ metric.
Removing the enhancement operation reduces performance
to 71.31%. Further removing both the enhancement and se-
lection procedures and employing a randomly filled memory
decreases performance to 67.78%, which is 6.07% lower than
our full method. These results indicate that both the selection
and enhancement operations in our method can effectively
boost CSS performance, demonstrating the soundness and
importance of our designs for the replay pipeline.

3) Ablation Study of the State Representation Components:
We then validate the different components of the designed
state representations and the results are presented in Table
VIII. As introduced in Section IV-B, the state representation in
our method consists of three components: 1) sample diversity
div; 2) accuracy I and 3) forgetfulness g, with the latter
two constituting the class performance feature. As shown in
Table VIII, removing any of these components can lead to a
significant decrease in mloU scores, demonstrating their effec-
tiveness and importance in making a wiser selection decision
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TABLE IX
EFFECTIVENESS AND EFFICIENCY OF SIMILARITY COMPUTATION.

Method | 015 16-20 all | KFLOPs
Graph-based Method (Ours) ‘ 79.16 56.86 73.85 ‘ 221.7

Prototype-level Method 76.79 53.27 71.19

Pixel-level Method 79.36 57.43 74.14 9837 3
Ours w/o d. in graph 77.42 53.80 71.80 186.6

Ours w/o dg, in graph 77.95 54.26 72.31 221.6

KFLOPs here refers to the average computational cost required to calculate
the similarity between every two images (including the computation for
superpixel construction in our graph-based method).

that contributes to the higher segmentation performance.

4) Effectiveness and Efficiency of Similarity Computation:
As illustrated in Section I'V-C, to compute the sample diversity
and forgetfulness in our state representations more effectively
and efficiently, we propose a novel multi-structure graph to cal-
culate inter-sample similarity. To demonstrate the advantages
of our method, we compare it with two conventional similar-
ity measurement approaches—the prototype-level method and
the pixel-level method—and present the results in Table IX.
Specifically, the prototype-level method first employs masked
average pooling to obtain the representation vector of a class
c within an image. Then, the cosine distance between the
representation vectors of two images is calculated as their
inter-sample similarity for class c. The pixel-level method
calculates and averages the similarity between every pair of
pixels belonging to class c in two images. More concretely, let
{pi}M1 and {p2} 2, represent the sets of backbone features
for all pixels belonglng to ¢ in two images x; and zo,
respectlvely The pixel-level method computes their similarity
by: N1 NG Z ZN2 Cos(pi, p}), where Cos refers to the
cosine dlstance As shown in Table IX, the prototype-level
method requires the least computation since it only needs
to calculate the cosine distance once when measuring the
similarity between two images. However, as discussed in detail
in Section IV-C1, this method performs poorly due to the lack
of consideration for local details and structured information.
The pixel-level method retains local information and therefore
achieves better performance, but the requirement to compute
similarity for every pair of pixels results in a substantial com-
putational burden. Our method successfully achieves a balance
between effectiveness and computational efficiency by using
the proposed multi-structure graph, which retains the spatial
and structure information while reducing the computational
load by condensing the feature maps into fewer superpixels.
As a result, our method requires significantly less computation
than the pixel-level method while achieving nearly comparable
performance. We further evaluate the designs within the pro-
posed multi-structure graph. Specifically, as detailed in Section
IV-C2, the edges of the graph are calculated as the combination
of semantic distance d,. and spatial distance dsp,. As shown
in Table IX, removing either distance could negatively impact
the model performance, which demonstrates the effectiveness
and importance of both components.

5) Computation of diversity div and forgetfulness g: As
introduced in Section IV-C4, we adopt two strategies to further
reduce the computational load of calculating diversity div

12
TABLE X
COMPUTATION OF DIVERSITY div AND FORGETFULNESS g IN STATE
REPRESENTATIONS.

Method | 015 1620 all | FLOPs

Sampling 10% of images as S, 79.16 56.86 73.85 27.8M

All images as S, 79.35 57.12 74.06 277.8M

Sampling 10% from S, as S, 79.16 56.86 73.85 0.7G

All images from S, as S, 79.30 57.49 74.11 73.9G

FLOPS here refers to the average computational cost required to calculate

div for each image and g for each classs.

TABLE XI
ABLATION STUDY OF EFFECTIVE MEMORY UTILIZATION.

Method | 0-15 16-20  all
Ours | 79.16 56.86 73.85
Ours w/o experts E (Sec.V-B) 77.83 53.55 72.05
Ours w/o 1st phase of the dual-phase training (Sec.V-C) | 71.17 46.93 65.40
Ours w/o 2nd phase of the dual-phase training (Sec.V-C) | 78.38 55.66 72.97
Ours w/o shared information utilization 78.41 55.14 72.87
Ours w/o 7 in Eq.8 78.69 55.31 73.12
Ours w/ all samples from M U D, for finetuning 78.50 5578 73.09
Ours w/o Lg;,, in Eq.10 78.42 5579 73.03
Ours w/ all parameters to be updated in finetuning 78.40 55.68 72.99

and forgetfulness g in our state representations at stage ¢: 1)
We randomly sample 10% of all images within each class ¢
in C; to construct its support set S.. 2) We select the top
10% of samples in S. with the lowest diversity scores div
to construct the representative set S.. Please refer to Section
IV-C4 for more details of these methods. As presented in Table
X, if we use all samples of class ¢ to construct S., or all
samples from S. to construct S.. the model’s performance
can be slightly improved due to the more accurate calculation
of div and g from a larger number of samples. However, the
significantly increased computational load would reduce the
method’s efficiency. In contrast, our approach largely reduces
the computation with only a minimal sacrifice in accuracy,
thus achieving a better balance between model effectiveness
and computation efficiency.

6) Ablation Study of Effective Memory Utilization: In Sec-
tion V, we propose a novel method to utilize memory samples
for replay to effectively overcome the issue of catastrophic
forgetting. We further evaluate the effectiveness of different
components within this method and present the results in
Table XI. Specifically, our approach introduces a new expert
network with shared information utilization (Section V-B)
and training method (Section V-C) to achieve better memory
utilization. When we remove either of these components, i.e.,
by eliminating the experts E for each class, or by not using
the dual-phase training and instead performing only one of
the two stages, the segmentation performance decreases by
1.80%, 8.45% and 0.88%, respectively. We further evaluate
the effectiveness of the designs within our expert mecha-
nism and dual-phase training method. Specifically, for the
expert mechanism, we conduct the following experiments:
1) restricting the segmentation process of each C; to only
use features extracted by its corresponding expert E; without
shared information utilization, and 2) not using the random
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(a) Number of Superpixels (b) Number of Sub-Experts

Fig. 4. Performance on Pascal VOC 2012 15-1(6 stages) overlapped setting
when using different values for the number of superpixels M (a) and the
number of sub-experts Ne (b).
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Fig. 5. Performance on Pascal VOC 2012 (a) and ADE20K (b) when setting
the capacity | M| of memory M to different values.

interruption strategy implemented by 7 in Eq.8, and instead
directly applying Eq.7 during training. For the training method,
we 1) do not use the balanced M U @t but use all samples
MUD, for finetuning, 2) remove the diversity loss L£g;, from
the loss functions in Eq.10, and 3) allow all model parameters
to be updated during the finetuning phase. We find that either
of these modifications to our original method would result
in a decrease in performance. These results demonstrate the
effectiveness and importance of our methods and designs.

7) Ablation Study of Hyperparameters: We further conduct
experiments to determine the best choices for the hyperparam-
eters in our method, including the number of superpixels M
in the multi-structure graph and the number NV, of sub-experts
e’ for each expert E; as discussed in Section V-B, with the
results presented in Figure 4(a) and Figure 4(b), respectively.
As observed from Figure 4(a), the performance remains stable
when M is larger than 3 and less than 8, while an overly large
M may lead to over-segmentation, which could negatively
affect segmentation performance. For the experiments on N,
shown in Figure 4(b), we find that a larger N, can improve
performance since more diverse features are extracted and
utilized, but it will also increase the number of parameters.
When N, > 5, the model’s performance approaches satura-
tion, so further increasing N, only yields limited improvement.
In conclusion, our method is not sensitive to the setting of
hyperparameters, as the model can consistently achieve stable
and excellent performance when 3 < M < 8 and N, > 3.

D. Discussion and Analysis

1) Influence of Memory Capacity: It is intuitive that the
capacity | M| of the memory M can significantly impact the
model’s performance. As shown by the results presented in
Figure 5, a larger capacity for M allows more replay samples

65 Our Method
~#— Random Selection

50 100 200 500 1000 3000 5000 7000

M|
Fig. 6. Performance comparison on the Pascal VOC 2012 15-1(6 stages)

setting when using our method and random method for replay sample
selection. Results for different memory capacities are reported.
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Fig. 7. The numbers of selected samples for different classes. The horizontal
axis from left to right represents classes from poor to good performance.

to be involved in the training of the next stage, thereby alle-
viating the catastrophic forgetting issue better and achieving
higher performance. In this paper, we follow the setup of
[10] by setting |M)| to 100 for Pascal VOC 2012 and 300
for ADE20K. The results indicate that even when using only
1% of the total dataset (|M|=100 and the length of the entire
training set being 10582 for Pascal VOC 2012) as memory
samples in this setting, the model can already achieve excel-
lent performance. This highlights the high efficiency of our
replay pipeline benefiting from our carefully designed sample
selection mechanism and utilization method. Furthermore, we
conduct an additional comparison between our approach and
the random method for replay sample selection under varying
memory capacities |M|. As shown in Figure 6, our method
exhibits a substantial advantage when the memory size |M|
is small. Although the performance gain from our sample
selection method becomes less pronounced as the memory
size increases, it remains very significant. For example, when
| M| = 7000, which corresponds to storing over 60% of the
training samples, our method still outperforms the random
selection strategy by 1.53%. These results demonstrate that
our method can consistently achieve better performance than
random selection across a wide range of memory capacities,
highlighting its high effectiveness and general applicability.
2) Analysis of the Learned Policy: We further analyze the
learned sample selection policy to provide deeper insights into
how our method works, and we found the following rules:
(a) Low-performance classes require more replay sam-
ples. As shown in Figure 7, on the 15-1 (6 stages) protocol of
the Pascal VOC 2012 dataset, after completing the memory
sample selection at the end of the first stage, we count
the number of selected samples for different classes with
varying performance levels. Specifically, from left to right,
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(a) Chair (b) Boat (c) Cat

Fig. 8. Visualization of the diversity for the selected samples of three classes
including ‘chair’, ‘boat’ and ‘cat’. The red triangles represent the selected
samples and the gray dots denote other samples that are not selected. Triangles
or dots closer to the center represent samples with the lower diversity. (Best
viewed in color)

the horizontal axis of Figure 7 represents different classes
in order of increasing performance, where the performance
of a class ¢ is measured by summing its accuracy factor I,
and forgetfulness factor g. as illustrated in Section IV-B. It
is observed that the number of selected samples of a class
is negatively correlated with its performance. This is because
low-performance classes are either less accurate or more prone
to forgetting, so more samples are required for replay to
further improve segmentation capabilities for these classes or
to mitigate their more severe issues of catastrophic forgetting.

(b) Classes with different forgetfulness require different
kinds of samples. We further investigate the correlation
between class forgetfulness and sample diversity in the learned
selection policy and discover some interesting patterns. Specif-
ically, we select three representative classes: ‘chair’, ‘boat’,
and ‘cat’, and visualize the diversity scores of their selected
samples. Among these classes, ‘chair’ is a difficult class with
a low forgetfulness score g that indicates it is more prone to be
forgotten, while ‘cat’ represents an easier class with a higher
score, and ‘boat’ exhibits a medium score. The results for these
classes are shown in Figure 8, where the red triangles represent
the selected samples, and the gray dots denote other non-
selected ones. Triangles or dots closer to the center represent
samples with lower diversity scores that indicate they are more
similar to others within the same class. Our results reveal dis-
tinct selection strategies across these classes. For the hard class
‘chair’, we find that most red triangles are distributed near the
center, indicating that common samples with low diversity are
selected. In contrast, the ‘cat’ class, which is less susceptible
to forgetting, exhibits a preference for high-diversity sam-
ples. The ‘boat’ class demonstrates an intermediate pattern,
selecting both common and diverse samples for replay. These
patterns could be explained by the differing types of replay
samples required by different classes with varying levels of
forgetfulness. Specifically, for hard classes where catastrophic
forgetting is more severe, most samples—including both high-
diversity novel ones and low-diversity common ones—could
be forgotten after the model trains on new classes. Therefore,
using more common and representative samples helps to learn
a more general classification space that covers most samples.
In contrast, for easy classes with relatively minor catastrophic
forgetting issues, the common samples are more likely to be
still remembered in the next stage, while the high-diversity
samples, which are further from the class’s distribution center,

TABLE XII
COMPARISON OF COMPUTATIONAL COST BETWEEN RP AND RPMASTER.

Pascal 15-1(6 stages) ‘ ADE 100-5(11 stages)

Method ‘ hour/stage

GFLOPs mloU | hour/stage ~GFLOPs mloU
RP [107] 0.53 68.17 71.94 2.24 68.18 35.13
RPMaster 0.64 69.10 73.85 2.76 70.26 36.87

“hour/stage” denotes the training time for each continual stage on 2 V100 GPUs.

TABLE XIII
CROSS-DATASET DEPLOYMENT EXPERIMENTS THAT DEPLOY THE AGENT
TRAINED FROM ONE DATASET TO ANOTHER DATASET

Deployment Dataset ‘ Sample Selection Method ‘ mloU
Random 70.17
Pascal VOC 2012 Agent trained from Pascal VOC 2012 74.23
Agent trained from ADE20K 74.05
Random 34.11
ADE20K Agent trained from ADE20K 38.43
Agent trained from Pascal VOC 2012 37.89

are more likely to be forgotten. Thus, replaying with high-
diversity samples can be more effective for such classes.

E. Discussion of Complexity and Generalization

1) Efficiency Enhancement for Agent Training: In our
method, training the agent network incurs very high com-
putational costs due to the complex policy updates, the use
of multiple networks, temporal-difference (TD) learning, and
experience replay mechanisms involved in our reinforcement
learning framework. Specifically, as shown in Alg.1, the the-
oretical additional cost for agent training is O(Y") higher than
that of deployment. Fortunately, we find that the agent exhibits
strong generalization ability, and thus, as detailed in Section
VI-A3, we can train the agent using a shallower segmentation
network and a smaller dataset, without needing to replicate the
exact settings used during deployment. Empirically, we found
that training with a ResNet-18-based segmentation model
and only 10% of the full dataset is sufficient to obtain a
powerful agent that generalizes effectively to deeper segmen-
tation networks based on the ResNet-101 backbone. These
simplifications enable a computation-efficient training process,
with the agent training time being only about 12 hours on the
15-1 (6 stages) setting of Pascal VOC 2012.

2) Comparison of Computational Cost Between RP and
PRMaster: Compared to the conference version RP [107],
the extended method RPMaster in this work incurs higher
computational costs due to the additional expert modules and
the dual-phase training strategy, as shown in Table XII, which
reports both the training time per continual stage (hour/stage)
on 2 NVIDIA TITAN V100 GPUs and the GFLOPs dur-
ing inference. However, in RPMaster, the additional training
epochs required for each continual stage are relatively small
(only 5 epochs for Pascal VOC 2012 and 10 for ADE20K),
and the expert modules are very lightweight, consisting only
of some standard convolutional layers. Therefore, RPMaster’s
increase in computational cost compared to RP is relatively
minor. Considering the significant performance improvements
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(b) Ground Truth

(2) Image (c) PLOP

(d) BARM (e) RP (f) RPMaster

Fig. 9. Visualization comparison of different CSS methods. From left to right, each row shows the image, ground truth, segmentation results obtained by
PLOP [24], BARM [95], RP [107], and our RPMaster. The regions outlined by white bounding boxes indicate the erroneous areas in the segmentation results.

achieved by RPMaster, we believe this modest additional cost
is well justified and entirely acceptable.

3) Cross-Dataset Generalization: We further found that the
trained agent exhibits strong cross-dataset generalization, as
an agent trained on one dataset can be effectively deployed
on others. As shown in Table XIII, using the agent trained on
Pascal VOC 2012 to deploy on the 100-50 (2 stages) setting
of ADE 20K achieves 37.89% mloU, and using the agent
trained on ADE 20K to deploy on the 15-5 (2 stages) setting
of Pascal VOC 2012 achieves 74.05% mloU. In both cases,
the performance significantly exceeds that of using randomly
selected samples and is only slightly below the result of using
an agent trained on the same dataset as deployment. These
results demonstrate the high generalization capability of our
method. In practical applications, the agent only needs to be
trained once and can then be used for several different CSS
tasks without the additional computation cost for agent retrain-
ing. This significantly reduces the computational demands for
completing CSS training across multiple datasets, showcasing
the high practical value of our method in real-world scenarios.

FE. Visualization of Segmentation Results

In Figure 9, we present the visualization of segmentation re-
sults obtained from different CSS methods. The results on both
the Pascal VOC 2012 (1st-2nd rows) and ADE20K (3rd-5th
rows) are covered. As shown in the figure, previous methods
like PLOP [24] and BARM [95] yield suboptimal results with
several erroneous regions. In contrast, our conference version
RP [107], which employs an RL-based automatic sample
selection strategy, significantly improves segmentation quality
by selecting more informative samples for replay. Building

upon RP, the extended RPMaster framework proposed in this
paper introduces an effective memory utilization strategy to
further alleviate class imbalance issues. As a result, RPMas-
ter achieves even better segmentation performance than the
conference version, demonstrating the high effectiveness and
substantial improvements introduced in our extended work.

VII. CONCLUSION

This work proposes a novel replay-based pipeline for con-
tinual semantic segmentation, which includes an automatic
memory sample selection mechanism powered by a task-
tailored reinforcement learning framework, and an effective
approach to utilize memory samples for better replay through
an expert mechanism and a dual-phase training method. Ex-
tensive experiments across multiple datasets and protocols
demonstrate the high effectiveness and generalization of our
method, which achieves state-of-the-art (SOTA) performance
while utilizing only 1% of the total training data for replay.
We consider our work as an important method that can provide
valuable insights into memory selection and utilization in
continual semantic segmentation, making the replay methods
in this research domain more effective and readily applicable.
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