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Abstract

Multi-access edge computing (MEC) networks face significant challenges in managing congestion and safeguarding per-
sonal privacy data on a massive scale. Integrating trust awareness into MEC networks presents an opportunity to enhance
security and privacy by correlating human relationships with connected devices. Moreover, leveraging trust-aware task
caching and offloading holds promise in mitigating latency and reducing energy consumption. Despite existing research
efforts to address these challenges, they often overlook either trust awareness or caching optimization in task offloading,
potentially compromising security or leading to task failures. To address this gap, this paper proposes a novel approach:
a trust-aware task offloading strategy with cache constraints (TCTO) in MEC networks, which considers social relation-
ships, task offloading, and caching. Drawing on the characteristics of bipartite graphs and bipartite perfect matching,
we develop a trust-aware caching-constrained task offloading algorithm based on bipartite graphs. This algorithm aims
to select task offloading strategies that minimize delay, energy consumption in task transmission and execution, while
maximizing security among devices in MEC networks. Extensive simulations demonstrate that our proposed method
has a better performance than other task offloading strategies for reducing delay and energy consumption in the process
of task transmission and execution. Compared with the other baselines, the overhead of our proposed method is reduced
55.65% ∼ 96.20% compared with other baselines.
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1. Introduction

Multi-access Edge Computing (MEC), positioned as a
pivotal technology and facilitator of the Internet of Things
(IoT), seamlessly merges telecommunications and IT ser-
vices to furnish cloud computing functionalities at the net-5

work periphery, thereby meeting stringent network perfor-
mance demands concerning latency and bandwidth [1, 2].
In the MEC network, the majority of user operations are
executed at the network edge, leading to significant reduc-
tions in communication latency and energy consumption10

within the MEC networks [1, 3, 4].
In MEC networks, task offloading serves as an effective

means to mitigate resource constraints and enhance service
quality [5]. Device-to-Device (D2D) communication facil-
itates resource sharing and equilibrium among diverse de-15

vices by enabling direct data transmission to nearby coun-
terparts [5, 6, 7]. Moreover, frequent task requests within
short time intervals can strain network links, leading to
resource wastage or poor user experiences [8, 9]. There-
fore, those frequently requested tasks can be cached on20

the devices in advance. If these tasks to be offloaded are
already cached on the MEC device, the delay and energy
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consumption can be markedly reduced [8, 10]. However,
assuming universal willingness among user devices to pro-
vide services and resources in D2D-assisted MEC networks25

is unrealistic. Social relationships influence user’s trust,
fostering efficient and reliable cooperation in various as-
pects, including data transmission, task offloading, and
resource sharing [11].

In certain scenarios of Device-to-Device (D2D) aux-30

iliary networks, trust awareness is considered a key fac-
tor in improving the performance of MEC systems [12,
13, 14]. Social relationships, such as proximity and user
intimacy, significantly influence how devices collaborate
for task offloading and resource sharing. Among the var-35

ious dimensions of social relationships, trust awareness
plays a particularly critical role. Trust can be regarded
as a fundamental component of social awareness, provid-
ing a more concrete and actionable indicator for evalu-
ating the reliability of collaborative partners [15]. While40

general social ties describe the existence and strength of
social relationships, trust awareness focuses specifically on
the perceived reliability, honesty, and willingness of a de-
vice (or its owner) to participate in cooperative activi-
ties. For example, in the context of the Social Internet45

of Things (SIoT) [16], devices belonging to the same so-
cial group such as smartphones used by family members,
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close friends, or colleagues tend to exhibit higher levels of
mutual trust. In dynamic and potentially adversarial envi-
ronments, trust becomes a decisive factor for task offload-50

ing and secure resource sharing [17, 14]. By incorporating
trust awareness into offloading strategies, MEC systems
can prioritize collaboration with trusted devices, thereby
improving both the security and efficiency of the offload-
ing process. Therefor, trust awareness not only extends55

but also strengthens the capabilities of social awareness
by focusing on reliability and safety in device cooperation.

Figure 1: An illustrate of motivating scenario

In Figure 1, we illustrate a trust-aware caching con-
strained D2D-assisted MEC network in an urban environ-
ment as our motivating scenario. Within this environ-60

ment, individuals in the city possess varying degrees of
trust, which can be mapped onto the devices within the
MEC network based on ownership. This integration facili-
tates safer and more efficient communication links between
devices. Consequently, tasks requiring high levels of pri-65

vacy can be offloaded to devices with high levels of trust,
thereby incorporating trust awareness into the decision-
making process. Simultaneously, devices in the MEC net-
work possess caching capabilities capable of storing various
types of tasks, such as videos, audio, and images requests.70

This caching functionality significantly reduces both delay
and energy consumption associated with executing tasks
repeatedly by pre-storing task results, which is particu-
larly advantageous for delay-sensitive and energy-efficient
tasks. In this trust-aware caching-constrained D2D MEC75

network, we can adopt task offloading strategies that pri-
oritize both trustworthiness and efficiency, resulting in an
enhanced user experience and ensuring the security of task
transmission between devices.

However, there are also many challenges in the research80

of MEC network. Firstly, ensuring secure and efficient
D2D connections is complex yet crucial for mitigating la-
tency and energy consumption [18]. Additionally, an ill-
conceived task offloading scheme can lead to prolonged

response times and resource wastage [19]. Thus, there’s85

a pressing need to develop optimal task offloading strate-
gies that integrate edge caching and consider the trust
degrees among devices in MEC networks. While some
researches [8, 20, 21] have tackled task offloading along-
side edge caching, these approaches often fall short in ac-90

curately mapping real-world trust relationships to device
nodes in MEC networks. Furthermore, certain studies
such as [22], have incorporated trust relationships into task
offloading but failed to account for how device caching im-
pacts offloading decisions. While certain researches [23, 24]95

have delved extensively into cooperative caching with trust
awareness, they have yet to thoroughly explore the impli-
cations of trust-aware cooperative caching on the selection
of task offloading strategies.

To tackle the challenges inherent in MEC, this paper100

introduces a approach: the trust-aware caching-constrained
task offloading (TCTO) strategy in MEC networks. With
the TCTO approach, devices in the MEC network are
equipped to cache computation results and resources, thus
catering to the low delay requirements of tasks sensitive to105

delays [25]. Moreover, we incorporate the influence of trust
relationships among users on device trust in MEC net-
works. Building upon these considerations, we propose a
comprehensive task offloading scheme encompassing local
offloading, direct-to-cloud offloading, D2D offloading, and110

D2D-assisted to-cloud offloading strategies [7, 26]. Our
primary objective is to identify the optimal task offload-
ing strategy characterized by high trust degrees, minimal
delay and energy consumption in both transmission and
execution phases. In summary, the contributions of this115

paper can be outlined as follows:

• The trust-aware caching-constrained task offloading
strategy is proposed to reduce the delay and en-
ergy consumption during task execution and improv-
ing the security of the transmission process in MEC120

network. We subsequently define a comprehensive
overhead metric that integrates considerations of de-
lay, energy consumption, and trust awareness for
the evaluation of task offloading strategies. We fur-
ther implement the optimal problem by minimizing125

the overhead based on the trust-aware caching con-
strained task offloading strategy.

• In order to solve the above optimization problem, in-
spired by the characteristics of the bipartite graph,
we adapt the optimization problem to the bipartite130

graph. Initially, we construct a weighted bipartite
graph to represent the relationship between tasks
and devices. Subsequently, we employ the Kuhn-
Munkres (K-M) algorithm to facilitate optimal match-
ing between tasks and devices, thereby enabling the135

selection of an appropriate task offloading strategy.

• In order to verify that our proposed method can ef-
fectively reduce delay and energy consumption, we
conducted extensive simulation experiments. Sim-
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ulation results show that the overhead of the pro-140

posed method is significantly lower than other base-
lines. According to the experimental results, we find
that the overhead is 55.65% ∼ 96.20% compared with
other baselines, representing the lower delay and en-
ergy consumption in task transmission and execu-145

tion. Furthermore, our simulation results illustrates
that the caching also takes an significant effect on
reducing consumption of delay and energy.

The organization of this paper is as follows. Section 2
presents the related work. Section 3 explains the system150

model of the proposed TCTO. The optimization prob-
lem of this paper is formulated in section 4. The trust-
aware caching constrained task offloading based on bipar-
tite graph matching method which solves the above op-
timization problem is then elaborated in Section 5. The155

performances and evaluations of the proposed TCTO sim-
ulation are provided in 6. Finally, section 7 concludes this
work with future directions.

2. Related Work

There are many works that focus on the optimiza-160

tion problem in MEC networks with the consideration of
socially-aware task offloading or collaborative caching. De-
tails are as follows.

2.1. Socially-aware Task Offloading in MEC
Long et al. [14] carried out research on the energy-165

efficient task offloading in socially-aware D2D-assisted MEC
networks, where user devices can offload tasks to nearby
devices or further forward them to MEC servers based on
social relationships. Chen et al. [22] proposed a socially-
aware system model for collaborative MEC, where the170

social links between devices is represent on device social
graph. In [27], Xu et al. proposed the Mobile Device Selec-
tion Algorithm (MDSA), which provides device-to-device
offloading by considering social relationships, location de-
pendencies, and activities of mobile devices in the selection175

of target mobile devices. Liu et al. [28] incorporated the
social relationship of energy harvesting (EH) mobile de-
vices (MDs) into the computation offloading schemes in
fog computing and developed a dynamic computing of-
floading scheme using the game theory. Li et al. [29] con-180

sidered the effects of social attributes on task offloading
and resource allocation in real offloading system, and the
response computing resources are allocated according to
social attributes. Ibrar et al. [30] implemented an adap-
tive capacity task offloading solution considering equip-185

ment utilization and social relationship strength in order to
improve resource utilization, improve QoS and obtain bet-
ter task completion rate based on D2D social Industrial In-
ternet of Things (ToSIIoT). In [15], Alioua et al proposed a
trust management mechanism based on blockchain, which190

improves the security and reliability of task offloading in

MEC through reputation model and Stackelberg game in-
centive mechanism, and built trust relationship between
system entities. Wang et al. [16] presented a new So-
cial Internet of Things (SIoT collaborative group and de-195

vice selection problem (SCGDSP) and an approximation
algorithm to optimize load sharing between SIoT devices,
MEC servers, and remote servers, reducing communication
and computation costs while supporting large-scale dis-
tributed deployment. Gao et al. [31] investigated dynamic200

computation offloading mode selection in MEC-aided low-
latency IoT, leveraging social ties in human networks to
minimize execution latency and energy consumption, and
proposed a Lyapunov-based solution (DPP algorithm) for
efficient resource assignment.205

However, most of these above researches [14, 22, 32]
focused on the impact of social awareness or trust aware-
ness on the task offloading and resource allocation in MEC
networks, but they ignored that the cache of user devices
and MEC servers plays an important role in reducing the210

delay and energy consumption in the process of task of-
floading by caching the results of tasks to the edge devices
in advance. Therefore, in this paper, we will combine the
cache and social awareness to optimize the task offloading
scheme in MEC network.215

2.2. Cooperative Caching in MEC
Fan et al. [23] investigated the cooperative caching

problem in Fog Radio Access Networks (F-RANs), and
presented a clustering method based on Hedonic Coali-
tion Game (HCG) by exploiting the social relationships220

among Fog Access Points (F-APs) to optimize transmis-
sion delay and energy consumption. Zohreh et al. [33] pro-
posed an encoded/non-encoded content placement, where
content can be propagated among nearby cache nodes ac-
cording to its popularity. Meybodi et al. [34] studied the225

caching of multimedia content under MEC, and proposed
the transformer-based edge caching (TEDGE) framework
which can efficiently and dynamically predict the popular-
ity of content, the popularity of content in active caching
schemes, and store the content in advance. In [35], a230

similarity-aware popularity-based caching (SAPoC) algo-
rithm was proposed to exploit the similarity between con-
tents to improve the performance of wireless edge caching
in dynamic scenarios. In [36], Bai et al. implemented
a heterogeneous network collaborative caching and video235

transcoding architecture based on MEC, and proposed a
new knowledge graph-based video caching scheme to opti-
mize the cache hit rate and latency performance. In [37],
Bai et al. proposed a social-aware D2D caching scheme
that integrates the concept of social incentive and recom-240

mendation with D2D caching decision making.
However, the works mentioned above paid attention on

the caching scheme in MEC networks. Researches [33, 34,
35] were aiming at solving the problem of content place-
ment, and [23, 36, 37] settled with cooperative caching245

problem in MEC networks. But in this paper, we compre-
hensively concentrate that caching of MEC devices will
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have a significant effect on the task offloading scheme for
reducing delay and energy consumption. At the same time,
we associate the trust awareness with caching to optimize250

the problem of task offloading in D2D MEC networks,
which differs from most of the existing works.

Finally, in view of the above researches, we comprehen-
sively consider important factors of cache and trust aware-
ness on task offloading scheme, and propose a trust-aware255

caching-constrained task offloading strategy in MEC net-
works, thus avoiding inaccurate execution results or failure
of task offloading due to a lack of consideration of one of
these factors. The comparison of the aforementioned re-
search works and our work is presented in Table 1.260

Table 1: comparison of existing research works
Research Social and Trust Caching Task offloading
[8, 38, 39] × ✓ ✓
[14, 22, 32] ✓ × ✓
[23, 35, 37] ✓ ✓ ×
Our Scheme ✓ ✓ ✓

3. System Model

In this section, we introduce the system model includ-
ing the communication model, cache and queue model,
computational model and social relationship model. The
specific descriptions for these models are elaborated as fol-265

lows.

3.1. System Description
A trust-aware D2D-assisted MEC system is considered

which is as shown in Figure 2. It consists of several base
stations (BSs) equipped with MEC servers and user equip-270

ments in physical domain. All user devices are divided into
two types, one is DT (distant transmitter), and the other
is NR (nearby device) which assists DT for task offloading.
DTs and NRs are carried by humans in the social domain.

Social 

domain

Physical 

domain

Social 

relationship

Uplink

Communication 

link

Human

Distant 

transmitter 

(DT)

Nearby 

device(NR)

Base 

station(BS)

Figure 2: An illustration of system model
275

For the MEC system depicted in Figure 2, we assume
that tasks exist in the task set C={c1, c2, · · · , ci, · · · , cI},
and the task size is represented as D={d1, d2, · · · , di, · · · , dI},
where I is the total number of tasks; it is considered that
the BS storage size is Ω, the computing power is λB, and280

the BS set is B={b1, b2, · · · , bK}; DT and NR have the same
storage size Λ; the computing power is λU , the DT set is
S ={s1, s2, · · · , sM}, and the NR set is R={r1, r2, · · · , rN}. In
addition, four offloading strategies are considered: local
offloading, directly to cloud offloading, D2D offloading,285

and D2D-assisted to cloud offloading, shown in Figure 3.
In this paper, we consider the cloud to refer to the BS
equipped with MEC servers. We assume that computa-
tional tasks are generated by DT, and the arrival of tasks
in the system follows a Poisson process based on the re-290

search [40]. And we consider the binary offloading of tasks,
tasks are constrained to complete offloading and execution
within a limited amount of time τ.

3 4-2

4-1

2
1

BS

NR

DT

1 Local offloading

2 D2D offloading 

3 Directly to cloud 

offloading 

4 (4-1,4-2) D2D-assisted 

to cloud offloading

Figure 3: An illustration of task offloading strategies in MEC net-
work

In next subsections, we elaborate the communication
model and the computational model in physical domain,295

cache and queue model, and the social relationship model
in social domain, respectively.

3.2. Communication Model
Considering that tasks are transmitted through wire-

less channels when offloading to nearby auxiliary devices300

and offloading to BSs, we assume that the wireless chan-
nels between users and BSs are stable. Therefore, accord-
ing to the Shannon formula [41, 42], the content transmis-
sion rate of the two communication links under this model
can be expressed as follows. The transmission rate of the305

communication link between user m and user n is expressed
as Formula 1.

RU
m,n = W1log2(1 +

PU,S l−αm,n,U

σ2 + V
) (1)

where W1 is the bandwidth of the communication link be-
tween users, PU,S represents the transmission power of the
users, lm,n,U denotes the distance of user m and n, α is the310

path loss exponent, the noise is σ2, and V is the sum of
signal interference generated by neighboring devices [42].

The transmission rate of the communication link be-
tween user m and BS k is expressed as Formula 2.

RB
m,k = W2log2(1 +

PU,S l−αm,k,B

σ2 + V
) (2)
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where W2 is the bandwidth of the communication link be-315

tween user and BS, lm,k,B denotes the distance of user m
and BS k.

3.3. Cache and Queue Model
In this model, the device’ memory is divided into two

parts. A part of the memory space is used to cache the320

historical execution results of the tasks (the memory sizes
of the user and BS are HU and HB respectively), and the
remaining part is used to store the task execution queue
Q.

In this cache and queue model, user devices and BSs325

are able to store task execution results. Leveraging this
feature, we hypothesize that when a new task requires ex-
ecution, we prioritize the possibility of retrieving the task’s
execution results from device caches. The process involves
the following steps. Initially, our proposed method con-330

ducts a local search to ascertain if the execution result is
available locally. If the result is found on the device it-
self, it is directly returned. In cases where the result is not
found locally, we extend the search to nearby auxiliary de-
vices. If the result is located on any of these devices, it335

is retrieved. If the execution result is still unavailable, we
proceed to search BSs. If the result exists on any of the
BSs, it is retrieved without the need for task re-execution.

We set XU
m ={xU

m,1, x
U
m,2, · · · , xU

m,I} for each user device and
XB

k ={xB
k,1, x

B
k,2, · · · , xB

k,I} for BS to record the execution re-340

sults of tasks. For any task c j, the xU
m, j in the vector XU

m
stored on user m is interpreted as follows: if the result of c j

has stored on the user m, then, xU
m, j=1; otherwise, xU

m, j=0.
Similarly, if the result of c j has stored on the BS k, xB

k, j=1;
otherwise, xB

k, j=0.345

Due to the limited computing resources and cache space
of edge devices, it is necessary to consider whether the
remaining computing resources and cache space of the
devices are more than the newly generated task size d j.
We set the waiting queue QU

m={qU
m,1, q

U
m,2, · · · , qU

m,r, · · · } on350

each user and QB
k ={qB

k,1, q
B
k,2, · · · , qB

k,r, · · · } on each BS re-
spectively, which are used to store the waiting task queue
on the current device. The queue is initially empty, and
the task scheduler selects the one with the shortest comple-
tion time. Among them, qU

m,r and qB
k,r represent the size of355

the rth task in the waiting queue of the current device(user
m or BS k). When there is a new task that needs to be of-
floaded, we insert the task at the end of the waiting queue.

Example 1. Figure 4 depicts three cases of the waiting
queue for the user m when the result of task i is not cached360

on user m.

(1) If the remaining cache space and computing resources
are sufficient, and the task does not exist in the wait-
ing task queue QU

m , then the task will be directly
inserted at the end of the queue.365

(2) If the task i already exists in the task waiting queue ,
then it is unnecessary to insert the task at the end

of the queue, but wait for execution at the position
of the current task already stored in the queue.

(3) If the remaining local computing resources and cache370

space are insufficient when inserting a task into the
end of the queue, that is, Λ − HU −

∑
QU

m < di, then
the cached tasks will be removed from memory based
on memory replacement policies, such as FIFO(First
Input First Output), LRU(Least Recently Used), or375

LFU(Least Frenquent Used), until there is enough
space to store the new tasks. In this paper, the least
recently used task will be deleted iteratively accord-
ing to the LRU algorithm (The specific reasons can
be found in 6.3.2 ) until the remaining memory space380

is enough to accommodate the task; which is formu-
lated as Λ − HU −

∑
QU

m ≥ di, then the task will be
inserted into the task waiting queue.

History

Task

History 

TaskInsert

Task iQ Q+Task i

(a) case 1:Direct insert the task i

History

Task
Insert

Task iQ Q+Task i

History

Task

Task i

(b) case 2:Task i is queuing in the QU
m

History

Task
Insert

Task iQ Q+Task i

History

Task

Remove

History

Task

Task i

(c) case 3:The caching space of QU
m is insufficient for task i

Figure 4: An illustration of waiting queue of QU
m when inserting task

i

3.4. Computational Model
In this model, the delay and energy consumed under385

the four task offloading strategies are calculated respec-
tively.

3.4.1. Local Execution
If there is a execution result locally, the result will be

returned directly, and the transmission delay and energy390

consumption are set to 0. If not hit, the local execution
time is represented as follows:

tL
e =

d j

λu
(3)

where λu is the computational ability of user device. The
local waiting queuing delay of user m is expressed as fol-
lows:395

tL
m =

∑p=r
p=1 qU

m,p

λu
(4)

in which r is the position of the task in the task waiting
queue, the∑p=r

p=1 qU
m,p is the sum of task r and the task before
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it. Therefore, the delay under the local offloading strategy
of user m is as follows:

T L
m = (1 − xU

m, j)(t
L
e + tL

m) (5)

The energy consumption of user m can be calculated by400

execution power and time of user’s device:

EL
m = PUT L

m (6)

where PU is the execution power of user’s device.

3.4.2. Directly to Cloud Offloading Strategy
If hits on BS, only the delay and energy consumption

in the transmission process are taken into account. In this405

process, the transmission delay from user m to BS k is
described as follows:

tB
m,k =

d j

RB
m,k

(7)

where d j is size of task j, and RB
m,k is the rate of transmis-

sion between user device m and base station k. The energy
consumption for the task transmission from user m to BS410

k is calculated as follows:

eB
m,k = PU,S tB

m,k (8)

If it is not hit, and the memory of the BS satisfies Ω−HU −∑
QB

k ≥ d j, the delay and energy consumption of the of-
floading strategy are divided into three parts: consumed in
transmission process, queuing process and execution pro-415

cess. The execution time of BS k can be represented as
follows:

tB
e =

d j

λB
(9)

λB is the computational ability of base station. The time
delay consumed by the queuing process is:

tB
k =

∑p=r
p=1 qB

k,p

λB
(10)

Therefore, based on above, under the directly to cloud420

offloading strategy, the delay can be calculated as:

T B
m,k = (1 − xB

k, j)(t
B
e + tB

k ) + tB
m,k (11)

The energy consumption is as follows:

EB
m,k = PB(1 − xB

k, j)(t
B
e + tB

k ) + eB
m,k (12)

where PB is the execution power of BS k.

3.4.3. D2D Offloading Strategy
If it hits on a nearby auxiliary node, consider the trans-425

mission delay between devices is:

tD
m,n =

d j

RU
m,n

(13)

The energy consumption under this process is expressed
as follows:

eD
m,n = PU,S tD

m,n (14)

If there is no hit, and the nearby auxiliary device memory
satisfies Λ − HU −

∑
QU

m ≥ d j, then the delay and energy430

consumption of the offloading strategy are divided three
parts: transmission process, queuing process and execu-
tion process. Similarly, the execution time of user m is:

tD
e =

d j

λU
(15)

The time delay consumed by the queuing process on the
user n is described as follows:435

tD
n =

∑p=r
p=1 qU

n,p

λU
(16)

Therefore, under the condition that the memory is satis-
fied, the delay from user m to user n of the D2D-assisted
offloading execution strategy is calculated as:

T D
m,n = (1 − xU

m, j)(t
D
e + tD

n ) + tD
m,n (17)

The energy from user m to user n of D2D-assisted offload-
ing execution strategy is as follows:440

ED
m,n = PU(1 − xU

m, j)(t
D
e + tD

n ) + eD
m,n (18)

3.4.4. D2D-Assisted to Cloud Offloading Strategy
Under the D2D-assisted to cloud offloading strategy, if

it hits at BS k, the transmission delay from user m to user
n and to BS k can be calculated as follows:

tDA
m,n,k =

d j

RU
m,n
+

d j

RB
n,k

(19)

The energy consumption of the transmission process is:445

eDA
m,n,k = PU,S tDA

m,n,k (20)

If it not hit, we can obtain the execution time under this
execution strategy is the execution time of the task on BS
k.

tDA
e =

d j

λB
(21)

The queuing delay on the BS k is:

tDA
k =

∑p=r
p=1 qU

k,p

λB
(22)

Therefore, for task j, the delay from user m to user n and450

from user n to BS k under this strategy is represented as:

T DA
m,n,k = (1 − xB

k, j)(t
DA
e + tDA

k ) + tDA
m,n,k (23)

The energy consumption is as follows:

EDA
m,n,k = PB(1 − xB

k, j)(t
DA
e + tDA

k ) + eDA
m,n,k (24)
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Figure 5: An illustration of social relationship

3.5. Social Relationship and Trust Model
In MEC networks, especially in device cooperative of-

floading scenarios such as D2D communication, successful455

collaboration between devices depends not only on phys-
ical network conditions (e.g., channel quality), but also
closely on their social relationships. We construct a so-
cial graph to model and quantify these relationships, using
trust levels to measure whether a device is reliable for pro-460

cessing or forwarding tasks. When selecting the offloading
strategy or target device, the scheduler does not simply
choose the one with the lowest delay and energy from all
available devices. Instead, it makes decisions based on a
comprehensive system cost metric that integrates weighted465

trust degree, delay and energy consumption, ultimately
selecting the optimal offloading strategy. Moreover, in-
corporating trust awareness can enhance the stability and
sustainability of collaboration by avoiding frequent task
failures. In dense networks, ignoring trust between devices470

may lead to offloading tasks to untrustworthy devices, po-
tentially causing security or privacy risks.

Considering the privacy and security of the user’s so-
cial interaction, the trust between devices is also impor-
tant. We believe that devices are more inclined to of-475

fload their tasks to those with closer social relationships
and high trust for offloading and execution. We establish
a correspondence between the social relationships among
devices and those among users in the real world [43, 44].
As shown in the network model in Figure 5, we use users’480

ownership of devices to represent both social connections
in the human domain and the physical interactions be-
tween the devices. Specifically, the trust between devices
are modeled based on the social strengths of the users who
own them.485

Additionally, the social relationships between users are
characterized by similarities in their behaviors. This be-
havioral similarity is quantified by analyzing the likelihood
of users selecting similar content and engaging in compara-
ble activities. The probability of users consuming similar490

content is used to describe the similarity of user behavior,

which determines the strength of their social relationship,
which is mapped to trust degree between devices.

The trust degree, denoted as ω, quantifies the level
of trust between two devices based on the similarity of495

tasks they execute. This similarity is captured through
the intersection of tasks stored in the task queues of the
devices, which can be represented as vectors. For instance,
let XU

m and XB
k denote the task vectors of user m and BS

k, respectively, while d={d1, d2, · · · , di} represents the task500

sizes. The trust degree is then defined by the similarity in
the task vectors, normalized by the task size, as follows:

ωm,n =
XU

m XU
n dT

XU
m dT

or ωm,k =
XU

m XB
k dT

XU
m dT

(25)

Here, XU
m and XU

n represents the dot product of the task
vectors for users m and n, and the normalization by XU

m dT

ensures that the trust degree reflects the relative impor-505

tance of the common tasks being offloaded.
This formulation provides a way to calculate the trust

degree between devices based on both the tasks they share
and the behavioral similarities of their respective users.
By incorporating user behavior into the trust model, we510

ensure that the system reflects real-world social dynamics
and privacy concerns, where devices with stronger trust (as
determined by user behavior) are more likely to collabo-
rate and share resources in a secure and privacy-preserving
manner.515

4. Problem Formulation

The purpose of this paper is to find a strategy with
high trust between device nodes, low delay and energy con-
sumption during the transmission and execution of tasks
in MEC network. Thus, based on the references [32, 14],520

we define the overhead metrics ZL
m, ZC

m,k, ZD2D
m,n , ZDA

m,n,k corre-
sponding to the four strategies of local, directly to cloud,
D2D, and D2D-assisted to cloud, respectively and quantify
the four metrics as follows. Under the local task offloading
strategy, the overhead ZL

m can be calculated as:525

ZL
m = e−ωm,m [θ T L

m + (1 − θ)EL
m] (26)

where θ is the weight of delay and energy consumption
and θ ∈ [0, 1]. T L

m and EL
m represent the delay and energy

consumption for the local offloading strategy, respectively,
while ωm,m represents the trust level between the device m
and itself.530

The overhead ZC
m,k of directly to cloud task offloading

strategy can be described as:

ZC
m,k = e−ωm,k [θ T B

m,k + (1 − θ)EB
m,k] (27)

T B
m,k and EB

m,k are the delay and energy consumption for
offloading from device m to base station k and then to the
cloud. The trust between device m and base station k is535

denoted by ωm,k.
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Under the D2D offloading strategy, the overhead ZD2D
m,n

is expressed as:

ZD2D
m,n = e−ωm,n [θ T D

m,n + (1 − θ)ED
m,n] (28)

T D
m,n and ED

m,n represent the delay and energy consumption
for direct device-to-device offloading, and ωm,n is the trust540

level between devices m and n.
And the overhead ZDA

m,n,k of which tasks offload by D2D-
assisted to cloud can be calculated as follows:

ZDA
m,n,k = e−ωm,nωn,k [θ T DA

m,n,k + (1 − θ)EDA
m,n,k] (29)

In this case, T DA
m,n,k and EDA

m,n,k represent the delay and en-
ergy consumption for D2D-assisted offloading to the cloud,545

while ωm,n and ωn,k denote the trust levels between devices
m and n, and between device n and base station k, respec-
tively.

In this paper, we choose a strategy with a large trust
degree and low delay as well as energy consumption as550

the optimal offloading strategy. Then, the problem can be
formulated as follows.

min{ZL
m,Z

C
m,k,Z

D2D
m,n ,Z

DA
m,n,k}

s.t. C1 :θ ∈ [0, 1];
C2 :ωm,m, ωm,n, ωm,k, ωn,k ∈ [0, 1];

C3 :xU
m, j ∈ {0, 1}, xB

k, j ∈ {0, 1};

C4 :
∑

Qm + HU ≤ Λ,
∑

Qk + HB ≤ Ω

(30)

where C1 denotes the weight of delay and energy consump-
tion constraint, and θ denotes the weight of delay, (1 − θ)
is the weight of energy consumption. Especially, if we555

balance the delay and energy, θ is set to 0.5. C2 is the
trust constraint which represents the trust between device
nodes, and the more two nodes trust each other, the closer
the value of ω will be to 1. C3 represents wether the his-
tory result of task j has been cached on the user device m560

or BS k or not, and the xU
m, j and xB

k, j are dispersed which
can only be 0 or 1. And C4 is the constraint of caching size
of user devices and BSs, which guarantees that the size of
all the tasks caching on the user device or the BS is less
than the memory of user device or BS, respectively.565

Theorem 1. The optimization problem of Eq.(30) is NP-
hard.
Proof. In optimization problem, it is obvious that both
discrete and continuous variables are involved, so the above
problem is a mixed integer nonlinear programming prob-570

lem (MINLP) [45]. And it has been proved that the MINLP
problem is NP-hard [46, 47]. Therefore, the optimization
problem Eq.(30) is NP-hard as well.

5. Trust-aware Caching Constrained Task Offloading Strat-
egy Selection Based on Bipartite Graph Matching575

To overcome the NP-hardness of the above problem,
this section is devoted to addressing the optimization prob-
lem by exploiting the underlying social relationships among

device users. We will consider the bipartite graph match-
ing based on social awareness to minimize the overhead580

consumption of delay and energy.
Bipartite graph is a graph structure where the vertex

set can be divided into two disjoint subsets, and edges are
allowed only between vertices from different subsets. In
the context of this work, we model the offloading environ-585

ment as a bipartite graph, where one subset represents the
tasks and the other represents devices capable of execut-
ing tasks, including local devices, nearby devices and BSs.
This modeling choice is motivated by the natural suitabil-
ity of bipartite graphs for representing assignment-type590

problems, such as pairing tasks with available comput-
ing devices. Furthermore, the bipartite matching frame-
work enables the application of efficient optimization algo-
rithms (e.g., the Hungarian algorithm), which significantly
reduce the computational complexity compared to exhaus-595

tive search methods.

5.1. Task Cache and Placement
Before selecting the task strategy, we first need to solve

the problem of content placement on the users. The main
problem to be solved is to choose which tasks should be600

cached on which user devices. The main steps to solve this
problem are as follows: Firstly, according to the unit pop-
ularity of the content, that is, the ratio of the frequency
of a task being requested to the size of the task, the con-
tent is sorted in descending order. Then, according to the605

size of the memory, the tasks with a higher frequency of
requests are sequentially selected for caching to improve
the hit rate of the tasks on the nodes as much as possible.

Obviously, the main idea of solving this content place-
ment problem is the same as solving the 0 − 1 Knapsack610

problem. To solve the problem, we use the greedy strategy
of maximum unit popularity. Here, the unit popularity of
a task is the ratio of the frequency at which a task is re-
quested to the size of the task. First, the unit popularity
of each task is calculated, and tasks are sorted by unit615

popularity from largest to smallest. Then, according to
the greedy strategy of unit popularity priority, the tasks
are cached in the node memory in sequence until all tasks
are cached or the remaining memory capacity is empty. If
the size of the current task does not exceed the remaining620

memory capacity, the task is cached to the node, other-
wise, the task is not cached to the node. This strategy is
executed in a loop until the remaining memory is 0.

5.2. Bipartite Graph Construction
To solve the task offloading problem, we need to con-625

struct a suitable bipartite graph based on trust aware-
ness according to the trust between devices. In a bipartite
graph, all the vertices can be divided into two sets, there
are no edges in the two sets and the edges in the graph
only exist between the two sets. Based on the character-630

istics of the bipartite graph, it is effective and convenient
to use the bipartite graph to solve our optimization prob-
lem. And we try to solve the problem of task offloading
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based on the maximum weight bipartite perfect matching
method.635

5.2.1. Device Social Graph
A device social graph in trust-aware MEC network is

introduced. It can be considered to achieve cooperation
in MEC by using human social relationships. The trust
relationships between BSs are represented in the device640

social graph. The nodes in the device social graph are the
same as the devices in the MEC networks, and the edges
in the device social graph represent the trust relationships
between devices. We believe that when two devices trust
each other, there will be a certain social relationship, then645

there will be an edge connecting two devices. The device
social relationship graph, D2D connection graph and cloud
[32] are respectively represented as shown in Figure 6.

DT

NR

NR

NR

DT

(a) Device social
graph

DT

NR

NRNR

DT

(b) D2D connectivity
graph

BSBS

(c) Cloud

Figure 6: Preparation for bipartite matching graph

According to the above preparations, we can easily ob-
tain a network model based on the trust and the D2D650

links. The D2D-assisted MEC network is shown in Figure
7.

Social 

domain

Physical 

domain

Social 

relationship

Uplink

Communication 
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Human

Distant 
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(DT)

Nearby 

device(NR)

Base 

station(BS)

Task

Figure 7: An illustration of D2D-assisted MEC network

5.2.2. Bipartite Matching Graph
As shown in Figure 6, by considering the device social

graph and the D2D connection graph, a weighted bipartite655

graph G(V, E) can be conducted, where V is the vertex set
and E is the edge set of the bipartite matching graph. And
the vertex set consists of two parts, one is the set of tasks
where vertex m represents the task of device m; the other
contains vertices of executors including the user devices660

and BSs for task execution. Then, the cooperative task
offloading strategy under trust awareness can be modeled

as a minimum weight bipartite perfect matching problem
[22] and the bipartite matching graph is shown in Figure
8.665
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Figure 8: Bipartite Matching Graph of Trust-aware Caching Con-
strained Task Offloading

Then we elaborate on the edge set of bipartite graph.
The edges of the bipartite graph are divided into the fol-
lowing four different cases: the first is that the task vertex
m is connected with its corresponding device vertex, which
is corresponding to local task offloading strategy, then the670

weight value of this edge is under the local offloading strat-
egy ZL

m. The second case is under the D2D offloading strat-
egy, there is an edge between the task vertex m and the
device vertex n, which is connected with the task vertex
m on the device social graph and the D2D connectivity675

graph, and the weight value of this edge is under the D2D
offloading strategy ZD2D

m,n . The weight of edge between the
task vertex m and its corresponding BS vertex k in the
cloud, which represents the directly to cloud offloading,
is set as ZC

m,k. As for D2D-assisted to cloud offloading, if680

there exists a social connection between the task vertex m
and the device vertex n in device social graph and a D2D
link in D2D connection graph, then there is an edge be-
tween the task vertex and the binding vertex consisting
of the auxiliary device vertex n and the corresponding BS685

vertex k. Correspondingly, the weight of this edge is ZDA
m,n,k.

After clarifying the edge set and vertex set of the bipartite
matching graph, we can select by the weight value of the
edge in the bipartite matching graph, and then solve the
above optimization problem.690

5.3. Trust-aware Caching Constrained Task Offloading Al-
gorithm

According to our analysis mentioned in Section 5.2, the
trust-aware caching constrained task offloading algorithm
based on bipartite graph is proposed. The proposed algo-695

rithm is presented in Algorithm 1.
Algorithm 1 works as follows: variables and character-

ization formula are initialized based on the task set T , the
device set D, the DT set S and the collection of all tasks
A. Then, the task placement and caching process include700

the following steps: calculating the unit popularity of each
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Algorithm 1 Trust-aware Caching Constrained Task Of-
floading Algorithm
Input: The task set T , the device set D, the DT set S , the

collection of all tasks A
Output: The optimized task offloading strategy scheme W
Initialization: Define variables and characterization for-

mula, and generate the corresponding bipartite graph
G(V, E);

1: for s = 1 : S do
2: Calculate the unit popularity ηa of task a, and the

task set A in descending order according to the unit
popularity ηa;

3: for a = 1 : A do
4: if XsdT < HU then
5: Cache the result of task a on DT s ;
6: else
7: Break;
8: end if
9: end for

10: end for
11: for t = 1 : T do
12: Calculate the ZL

t , ZC
t,k, ZD2D

t,n , ZDA
t,n,k, according to the

formula (26), (27), (28), (29);
13: Make the weight ω of the edge in the bipartite graph

G(V, E) equal to the Z value under the corresponding
task offloading strategy;

14: end for
15: for t = 1 : T do
16: for e = 1 : E do
17: if task t was not the matched or conflict with de-

vice vertices then
18: Use binary perfect matching algorithm

(Algorithm 2) [27] to find matching vertices;
19: end if
20: end for
21: end for
22: for e = 1 : E do
23: Add to strategy set W;
24: end for

task, and sorting each task according to the unit popular-
ity from large to small. Then, according to the greedy
strategy of unit popularity priority, the tasks are cached
in the node memory in sequence until all tasks are cached705

or the remaining memory capacity is empty (Line 1-10).
Then, the bipartite graph G(V, E) is constructed according
to the device social graph and the D2D connectivity graph.
After that, we traverse the tasks in the task set, and for ev-
ery task, calculate the time delay and energy consumption710

of executing the task under each strategy, and finally find-
ing the overhead of executing the task under each strat-
egy, including local offloading, directly to cloud offloading,
D2D offloading and D2D-assisted to cloud offloading. Af-
ter obtaining the result, the weights of the edges of the715

bipartite graph are assigned, and the weight value of the
corresponding edge is the overhead metric calculated by

the execution of the task under the corresponding strat-
egy (Line 11-14). The next procedure is the selection part
of the task offloading strategy. The edges of each task ver-720

tex in the bipartite graph are traversed with binary per-
fect matching algorithm (Algorithm 2) [27] to find match-
ing vertices in the bipartite graph, and delete other edges.
The above process is cyclically executed until all vertices
in the task set have found their matching strategies. At725

this time, the corresponding strategy selection is also the
set of edges with the smallest weight value (Line 15-21).

Algorithm 2 Trust-aware Bipartite Perfect Matching
Based on K-M Algorithm
Input: Bipartite graph G(V, E).
Output: The matched bipartite graph G′(V, E).
Initialization: Negate the weights of edges in a bipartite

graph G(V, E). And set V can divide into two subset
(T,N)

1: for t = 1 : T do
2: Make the value ct of vertex in the starting set T

the maximum value of weight among all the edges
connected with it

3: end for
4: for n = 1 : N do
5: Assign cn = 0 to the vertex value in the matching

set N, which meets the criterion ct + cn = ωt,n

6: end for
7: for t = 1 : T do
8: if Task t was conflict with other nodes then
9: Modify the value of vertices and re-match.

10: else
11: Match the task vertices in the starting set.
12: end if
13: end for

The process of selecting a task offloading strategy based
on bipartite graph perfect matching is shown in Algorithm
2. To simplify the matching process, we convert the prob-730

lem of minimum weight matching into maximum weight
matching. So we take the inverse of the weight of the
edges. In this way, the above problems can be solved by
bipartite graph maximum weight perfect matching. The
main steps to solve maximum perfect matching problem735

are as follows: the first step is to initialize the value of the
vertices, the value cn of the device vertex (the matching
set) is set as 0, and the value of the task vertex ct (the
starting set) is set as the maximum value after taking the
inverse of the weight of the edge connected to it, thus the740

criterion cn + ct = ωn,t is satisfied (Line 1-6). The second
step is to select the task vertices in the starting vertex set
for matching. If a conflict occurs, we modify the vertex
value and re-match until all vertices in the starting set are
matched (Line 7-13). Then we assume that matched edge745

is the optimal offloading strategy for the task.
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5.4. Analysis of the Proposed Algorithm
Computational complex analysis: Obviously, the time

complexity of the trust-aware caching constrained task of-
floading algorithm is related to the number of edges and750

vertices of the bipartite graph when solving the problem
of bipartite graph maximum weight perfect matching. So
the time complexity of the bipartite matching algorithm is
O(T |E|), where T represents the quantity of vertices in the
starting set, |E| is the number of edges. However, the num-755

ber of edges is proportional to the number of vertices in
our problem, so the proposed algorithm’s time complexity
in the worst case is O(T 3) [22].

Scalability analysis: The scalability of bipartite graph
matching algorithm mainly depends on the efficiency of the760

algorithm when processing large-scale data. The Hungar-
ian algorithm is implemented by depth-first search (DFS)
and has a time complexity of O(T 3), where T is the num-
ber of vertices. For sparse graphs, this algorithm performs
well. For dense graphs, however, performance may de-765

grade. In order to improve the efficiency of the algorithm,
some heuristics optimization techniques, such as prepro-
cessing and pruning, are used when the network scale is
large. For example, in this paper when the network scale is
large, we cluster the devices according to the trust relation-770

ship and physical distance between the devices to achieve
network preprocessing. By dividing the MEC network into
several small-scale networks and tasks are offloaded within
the cluster, the amount of computation can be decreased
by reducing unnecessary searches. Finally, we carry out775

simulation experiments for large-scale networks comparing
the execution time of algorithm to prove the effectiveness
of network preprocessing in dealing with the problem of in-
creasing computational complexity in large-scale networks.
We compare the algorithm execution time of a large-scale780

network with and without the use of a network preprocess-
ing algorithm under different numbers of devices whish is
shown as Table 2, focusing on scenarios involving numer-
ous devices and tasks, and we set the number of tasks is
1000.785

Table 2: Convergence time comparison

225 350 450
Preprocessed

network 283.4051s 628.6768s 996.0353s

Unpreprocessed
network 357.4183s 1285.3927s 1309.6373s

Sensitivity analysis: To evaluate the robustness of the
proposed model, we conduct a sensitivity analysis on the
weighting factor θ that balances delay and energy con-
sumption in the objective function. By varying θ from
0.1 to 1, we observe the corresponding changes in system790

overhead function, which is shown in the simulation ex-
perienment Exp-3 Figure 10(c). The result demonstrates
the impact of different θ values on system performance and

provide insights into the model’s behavior under varying
optimization preferences.795

6. Simulation and Performance Evaluation

In this section, the results and performance of the pro-
posed trust-aware caching constrained task offloading scheme
is verified and evaluated through simulation experiments.

6.1. Simulation Settings800

The simulation experiments are carried out on a com-
puter equipped with Intel Core i5-1135G7 CPU 2.40GHz
2.42GHz, and Windows 11 system. We implement our
proposed algorithm using Python in the Pycharm 2021.3
environment. We assume a circular area with a radius of805

100m, and the BS is located in the center of the circular
area. Correspondingly, NRs and DTs are distributed in
annular areas with a radius of 50 − 100m and 10 − 50m,
respectively [23]. The initial value settings of related vari-
ables and parameters are shown in Table 3 based on the810

researches [23, 48, 14, 22]. We calculated the overhead
metric Z values of different task offloading strategies in
various situations representing the trust between devices
and the delay and energy consumption.

Table 3: The Parameters Initialization
Parameters Values

1 PU,S 28 dBm
2 PB 46 dBm
3 PU 46 dBm
4 W1 8 MHz
5 W2 10 MHz
6 λu 1 GHz
7 λB 40 GHz
8 σ2 −100 dBm
9 α 4
10 Λ 3000 GB
11 Ω 5000 GB
12 V −174 dBm/Hz
13 θ 0.5
14 d j [1, 50] MB
15 lm,n,U [1, 50] m
16 lm,k,B [50, 100] m

6.2. Comparison Schemes815

In order to fairly compare the results of simulation ex-
periments and conduct analysis and evaluation, we choose
the following approaches and strategies for comparative
experiments.

• GA: Genetic Algorithm (GA) is an optimization method820

inspired by natural evolution [49]. It searches for the
optimal solution through selection, crossover, and
mutation. Each chromosome represents task offload-
ing decisions, and the best one is selected as the final
solution [50].825
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• DRL: DRL-based algorithm (DRL) solves the prob-
lem of various task offloading strategies, which is
aiming at generating an offloading decision in MEC
network [51]. It learns a policy network (Actor)
and a value function network (Critic) at the same830

time, and improves the decision-making ability of the
agent by optimizing both networks [52].

• W/O-Soc: The task offloading strategy without the
consideration of social (W/O-Soc). Under this ap-
proach, the social relationship between nodes is not835

considered, that is, nodes do not trust each other.

• Local: The approach that all task execute on local
device nodes (Local). In this way, all the tasks will
be executed on the nodes that they generate.

• Cloud: The method that all tasks execute on BSs840

(Cloud). All the tasks executed by this way will
offload to the nearest BS to execute.

• Random: Under this scheme (Random), multiple
task offloading strategies are randomly generated based
on the number of tasks.845

• Proximity: Under the Proximity scheme, task of-
floading strategies are designed based on the physical
or network closeness of devices. Tasks are offloaded
to nearby devices with available resources to improve
efficiency and reduce latency [53].850

• TCTO (Ours): A trust-aware caching constrained
task offloading strategy (Ours) proposed in this pa-
per comprehensively considers the latency, energy
consumption and trust between nodes representing
content privacy and security for each offloading strat-855

egy. And the offloading strategies are selected using
binary perfect matching algorithm. We compare the
Z values and select the strategy corresponding to the
minimal Z value as the task offloading strategy under
this scheme.860

6.3. Simulation Results and Performance Evaluation
In this chapter, we conduct a comparative simulation

experiment and performance evaluation of the algorithm.

6.3.1. Algorithm convergence time comparison
Firstly, we discuss and evaluate the convergence speed865

of our proposed algorithm and different algorithms. The
average convergence speed and time of each algorithm are
compared as Table 4. Since the proposed bipartite match-
ing algorithm is non-iterative and can obtain the opti-
mal solution in a single pass, we evaluate its execution870

time. For comparison, we also present the convergence
times of iterative algorithms such as DRL, TD3 and GA.
Among the baseline algorithms, TD3 (Twin Delayed Deep
Deterministic Policy Gradient) is a reinforcement learning
method known for its stability in continuous control tasks.875

It uses twin critic networks and delayed updates to reduce
overestimation and improve learning [54].

Table 4: Convergence time comparison

Ours DRL TD3 GA
50 Tasks 0.2253 1.7587 1.2174 1.2887
100 Tasks 0.4242 4.9415 3.9456 4.4382
200 Tasks 0.7785 16.0491 17.7317 14.5797
300 Tasks 1.1729 33.8548 37.5643 36.2252
400 Tasks 1.4761 71.9385 61.5111 74.6866
500 Tasks 1.9501 112.5215 86.6081 101.1736

6.3.2. Memory replacement algorithm comparison
Moreover, considering that different memory replace-

ment policies can affect task scheduling in memory, we880

compare the performance of our algorithm under vari-
ous replacement strategies including FIFO (First-In-First-
Out), LRU (Least Recently Used), and LFU (Least Fre-
quently Used) with different numbers of tasks. As shown
in the Figure 9, although the performance differences among885

the three strategies are not significant, the LRU replace-
ment policy demonstrates slightly better performance in
optimizing the overhead function of the algorithm. There-
fore, the LRU strategy is adopted in this work to evict
tasks from memory and make room for newly arriving890

tasks.

Figure 9: Memory replacement algorithm comparison

Nextly, we compare different task offloading strategies
through simulation experiments, and then evaluate and
analyze the experimental results.

6.3.3. Exp-1: Overhead vs. Task number895

In Figure 10(a), we show the overhead of different task
offloading strategies under different task numbers, with 5
DTs, 5 NRs and 3 base stations. And our proposed ap-
proach decreases the overhead compared with others base-
lines which represents our proposed approach reduces the900

delay and energy consumption in the task offloading proce-
dure under different task quantities. Especially, from Fig-
ure 10(a), it can be seen that the overhead of our proposed
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(a) Task number (b) Communication link probability (c) Weight

Figure 10: Overhead under different parameters

(a) DT number (b) NR number (c) BS number

Figure 11: Overhead under different number of devices

method is smaller than that of the method W/O-Soc, rep-
resenting that trust awareness plays an important role in905

reducing delay and energy consumption of task transmis-
sion and execution. And we can find that in Figure 10(a)
the overhead of our proposed method increases slowly com-
pared with other methods with the increase of task num-
bers which shows that our proposed method performs sta-910

bly facing enormous number of tasks.

6.3.4. Exp-2: Overhead vs. Link probability
In Figure 10(b), we compare the overhead of different

task offloading strategies under different link probabilities.
The link probability represents the likelihood of a commu-915

nication channel existing between two devices, and it can
be analogized to social relationship link probability. In
this analogy, the link probability of social relationships
refers to the probability of maintaining effective interac-
tions between individuals, reflecting the likelihood of es-920

tablishing and sustaining relationships. As social interac-
tions increase, each device benefits more from cooperative
task offloading, as more devices with established social ties
become available to assist, leading to more efficient task
offloading. Owing to the task executed by the local of-925

floading strategy is not influenced by the other nodes, we
thus exclude it from consideration. The results of this
simulation experiment are shown in Figure 10(b). And

the overhead decreases while the link probability increases
which means that more links between devices can effec-930

tively alleviate network congestion as well as reduce delay
and energy consumption. The magnitude of the drop un-
der the strategy of directly to cloud offloading and random
offloading are more pronounced as the link probability in-
creases. The overhead of our method changes more stably935

as the link probability changes, which means that our pro-
posed method is less affected by link changes. And the
curve of our proposed method is overall below the curves
of other strategies which indicates that our method has
the smallest delay and energy consumption compared with940

other strategies with the same link probability.

6.3.5. Exp-3: Overhead vs. Weight of delay and energy
In this simulation experiment, the overhead of different

approaches is compared under different value of weight of
delay and energy consumption, which is shown as Figure945

10(c). The weight value represents the impact of the delay
on the task offloading strategy selection. In other words,
the weight value corresponding to delay-sensitive tasks
is larger, and the weight value corresponding to energy-
sensitive tasks is smaller. The experiment result indicates950

that our method has advantages in reducing the delay and
energy consumption compared with the other baselines un-
der different values of weight.

13



0 500 1000 1500 2000
0

1×104

2×104

3×104

4×104

5×104

Cache size

O
v

e
r
h

e
a

d

Task number=50

Task number=100

Task number=200

Task number=300

(a) Overhead under different cache size with
different task number

0 500 1000 1500 2000
0

2×105

4×105

6×105

8×105

Cache size

O
v

e
r
h

e
a

d

GA

Ours

Cloud

Local

Random

W/O-Soc

DRL

(b) Overhead under different cache size under
different baseline (c) Overhead under different caching strategy

and different task numbers

Figure 12: Overhead under different cache size and caching strategy

6.3.6. Exp-4: Overhead vs. DT number
Figure 11(a) illustrates the overhead of these methods955

as the number of DTs [14] changes when the number of
NRs is 5 and the number of tasks is 200. Because in the DC
offloading strategy, the change of overhead is not affected
by the change of the number of DTs, so it is not considered.
The result shows that the overall trend is a downward960

trend with the increase of the number of DTs. And the
overhead of our proposed method is below other curves
of other algorithms, representing that the tasks executed
by our proposed method has the least cost of delay and
energy with the same number of DT in the MEC network.965

Compared to the Local strategy, it can be seen that the Z
value of our proposed approach is lower than the strategy
of executing on local device nodes, which indicates that
the D2D and D2D-assisted to cloud offloading strategy
can reduce delay and energy consumption in the process970

of task execution and retrieve the pressure of network.

6.3.7. Exp-5: Overhead vs. NR number
Correspondingly, Figure 11(b) shows the result of over-

head under different task offloading strategies when the
number of NRs [14] changes, where the number of DTs is975

5 and the task number is 200. Since under the Local and
Cloud offloading strategies, the NR devices do not partic-
ipate in task offloading. Therefore, we only compare the
overhead of the other methods under different NR num-
bers. And our proposed method performs the least over-980

head compared with other strategies under different NR
numbers. The curve of random task offloading strategy
is higher than others which means that our proposed ap-
proach can reduce the delay and energy consumption in
the process of task transmission and execution under dif-985

ferent quantity of NRs.

6.3.8. Exp-6: Overhead vs. BS number
Then we compare the overhead of different baselines

under different number of BSs. And we do not consider the
Local method because the changing of the number of BSs990

will not impact the overhead of local method. The result
is depicted as Figure 11(c). We can find that our approach
has least overhead under different MEC numbers. And the
overhead of Cloud approach has a significant decline while
the number of BSs increases, which means the increase of995

MEC severs will reduce the pressure of MEC networks.

6.3.9. Exp-7: Overhead vs. Cache size (Different task num-
ber)

Figure 12(a) simulates the variation of the overhead
when varying the cache size of user device under differ-1000

ent task numbers and the MEC scenario with 5 DTs, 5
NRs and 3 BSs. The simulation results illustrate that
the value of overhead decreases with the increase of the
cache capacity of device nodes under different task num-
bers. This demonstrates that the cache of devices can ef-1005

fectively avoid the delay and energy consumption caused
by task transmission. In addition, with the increase of
cache capacity, the number of tasks cached by devices in-
creases, which represents that the hit ratio of tasks on de-
vices increases during task offloading. In particular, com-1010

pared with the circumstance that cache size is 0 which im-
plies the cache is not considered, we find that our proposed
method with the consideration of caching can significantly
reduce the consumption of delay and energy in the process
of transmission under different task number.1015

6.3.10. Exp-8: Overhead vs. Cache size (Under different
approach)

Then, we conduct the experiment of the comparison of
overhead under different cache size of different approaches.
The simulation result is delineated as Figure 12(b). We1020

can find that with the increase of cache size, the overall
value of overhead shows a decreasing trend. Our method
performs stably, which indicates that our method is more
conducive to dealing with different cache changes com-
pared with other baselines, especially the Cloud and DRL.1025
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6.3.11. Exp-9: Overhead vs. Task numbers (Under differ-
ent caching approach)

We compare the system overhead under different num-
bers of tasks and various task caching strategies, shown in
Figure 12(c). In our approach, tasks are cached on devices1030

based on their maximum unit popularity. For comparison,
we also consider two alternative strategies: caching tasks
in order of task size and in order of request times. Exper-
imental results show that the maximum unit popularity-
based strategy consistently achieves better performance in1035

reducing system overhead across different task numbers.

6.3.12. Exp-10: Overhead vs. Task Repeat Probability
We analyze the impact of the probability of repeated

task requests on the overall system overhead. Experiments
shown in Figure 13(a) demonstrate that as the probability1040

of repeated task requests increases, the system overhead
decreases. A higher probability of repeated task requests
indicates that a task may be requested multiple times
within the network. Leveraging caching mechanisms, re-
peated task requests can directly return the task results,1045

thereby reducing task execution time and energy consump-
tion, which in turn lowers system overhead. We compare
the system overhead under different offloading schemes,
and the experimental results show that our proposed ap-
proach still maintains an advantage in algorithmically re-1050

ducing system overhead.

6.3.13. Exp-11: Task Fail Rate vs. Task Deadline
In this experiment, shown in Figure 13(b), the failure

rate of the whole system task offloading under different
task deadline is compared. When the task offloading de-1055

lay exceeds the deadline, the task offloading fails. In this
experiment, the number of tasks is 200. When the deadli-
neof a task is limited to 50ms−110ms, the task failure rate
decreases with the increase of the deadline. At the same
time, our proposed scheme has the lowest probability of1060

task offloading fail rate within the same deadline, indicat-
ing that under our proposed scheme, the task offloading
success rate is the highest and the delay is the smallest.

6.4. Discussion
The above research findings, based on extensive simu-1065

lations, highlight several key advantages and limitations of
the proposed trust-aware caching-constrained task offload-
ing strategy in MEC networks. Firstly, the proposed task
offloading strategy in MEC networks effectively reduces
latency and energy consumption, particularly in high con-1070

nectivity and large-cache scenarios. It consistently out-
performs baseline strategies across various task sizes, link
probabilities, and energy-delay trade-offs, demonstrating
adaptability to different task requirements. However, as it
has not yet been tested on physical edge devices, real-world1075

constraints may present implementation challenges. Addi-
tionally, the strategy dependence on social awareness data
and cache capacity may limit performance in settings with

limited social data or low cache. Future work will focus
on real-device testing and further optimization to enhance1080

practical applicability in MEC network.
However, since the TCTO strategy has not yet been

tested on real devices such as the application in smart
cities, UAV networks and so on, real-world constraints may
pose significant challenges, such as limited availability of1085

trust awareness data, which could affect the accuracy of
predictions, especially in environments with sparse or frag-
mented data. Additionally, the strategy’s reliance on large
cache capacities may be constrained by the memory lim-
itations of real devices, necessitating efficient cache man-1090

agement techniques. Network variability, including fluctu-
ations in bandwidth and connectivity, could impact task
offloading performance, requiring adaptive mechanisms to
cope with dynamic network conditions. Moreover, while
the TCTO strategy reduces energy consumption in sim-1095

ulations, real-world devices with limited battery life will
need solutions to balance energy usage and task offload-
ing, possibly through energy harvesting. Finally, scala-
bility concerns in large-scale MEC deployments, such as
those in smart cities mentioned in the introduction, must1100

be addressed to manage computational overhead and net-
work load. Future work will focus on TCTO in real-world
scenarios, refining social data collection methods, optimiz-
ing cache management, and developing adaptive solutions
for network and energy constraints.1105

7. Conclusion

In this paper, we comprehensively consider the role of
trust awareness, caching, and task offloading to optimize
the reduction of latency and energy consumption in the
MEC networks. A trust-aware task offloading strategy1110

with cache constraints is proposed, which avoids the pos-
sibility of repeated execution of tasks requested multiple
times and provides a more flexible task offloading strat-
egy. Then, a trust-aware caching-constrained bipartite
graph matching algorithm is devised to select the opti-1115

mal task offloading strategy. Therefore, compared with
schemes that partially consider some of these factors, our
proposed scheme can more effectively reduce the latency
and energy consumption of task execution and transmis-
sion. Extensive simulations show that our approach has a1120

significant effect on reducing both delay and energy con-
sumption. The proposed approach reduces the overhead
55.65% ∼ 96.20% compared with other task offloading
strategies. And we find that the caching plays an impor-
tant role in reducing overhead based on extensive simula-1125

tion results.
As a future direction, we consider introducing an adap-

tive adjustment mechanism for the weight of delay and
energy, allowing it to change dynamically based on real-
time network conditions to improve system flexibility and1130

performance. In the future, we will use deep learning, re-
inforcement learning and other related theories to improve
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(a) Overhead of tasks with different repeat request proba-
bilities

(b) The fail rate of tasks under different deadlines

Figure 13: Comparison under different task parameters

efficiency for the selection of task offloading and caching
based on trust awareness.
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