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Abstract

This thesis presents the development and validation of a number of robust algorithms

for both single and multi-quadrotor control for use in the nuclear industry, to improve

the safety and efficiency of environmental monitoring processes associated with

nuclear decommissioning. The objectives include the development and validation

of a robust and reliable control algorithm for a single quadrotor, the design,

development and validation of a robust multi-quadrotor system, and validation of

the efficacy of the proposed control systems for applications in the nuclear industry.

A novel finite-time integral sliding mode control system was developed for

robust trajectory tracking of a single quadrotor. This control method demonstrated

superior performance over existing techniques in simulations and real-world experi-

mentation in the presence of parameter uncertainties. A discrete-time sliding mode

control system was also introduced to handle for the discrete nature of onboard

sensors when controlling the quadrotors in environments where GPS is unavailable,

showing enhanced performance when sampling rates were slow.

A discrete-time sliding mode formation control system was designed and

implemented to enable the robust formation control of multiple quadrotors around a

dynamic virtual leader in the presence of external disturbances. The efficacy of the

algorithm was validated experimentally, through implementation on the Crazyflie

2.1 micro-quadrotor platform.

Finally, the applications of the proposed control algorithms for the nuclear

industry was demonstrated by adapting the discrete-time sliding mode formation

control with a gradient-climbing virtual leader, for locating the source of a radiative

sensor field. Additionally, the data collection capability of the multi-quadrotor

system was verified experimentally, using Gaussian Process Regression to estimate

the temperature distribution within an environment. This highlighted the potential

for the system to safely and efficiently monitor hazardous nuclear environments.

Overall, this thesis advances the field of quadrotor control by delivering robust

algorithms tailored for the nuclear industry.
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Chapter 1

Introduction

1.1 Robotics in the Nuclear Industry

In history, industrial revolutions have signified giant leaps forward in industrial

processes, from the use of steam-powered machines in the first industrial revolution

to the use of robots and computer automation in the third. In 2011, the German

government proposed a new term, “Industry 4.0”, which was suggested as the fourth

industrial revolution. Industry 4.0 (I4.0) refers to a new form of industry in which

the Internet of Things (IoT), Artificial Intelligence (AI) and Cyber-Physical Systems

(CPS) are utilised to create smart factories with capabilities such as interconnected

supply chains, predictive maintenance, and human-machine interactions [2], [5].

Although the implementation of these technologies has brought about this

revolution, questions remain about how increasing energy demands can be met.

Wind and solar power provide sustainable and renewable energy. Despite successes

of growing wind and solar capabilities in recent years, neither of these energy sources

is expected to provide a consistent availability to produce a continuous stable source

of power. Combining these energy sources with nuclear leverages the strength of

both methods to provide a more robust and sustainable energy system, with reduced

carbon emissions, enhanced grid stability, and reduced reliance on fossil fuels [5].

The nuclear industry in the UK is currently facing many new challenges. The
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requirement to continue the production of nuclear energy through the construction

and commissioning of new sites, while actively decommissioning existing nuclear

legacy sites, present a unique set of problems. The decommissioning of the nuclear

site Sellafield is expected to cost £121 billion, and take until the year 2120 [7].

Several programs, such as Integrated Innovation in Nuclear Decommissioning [8]

and the Industrial Strategy Challenge Fund [9] have been introduced to tackle

these issues through the use of innovative technologies such as robotics. Part

of the Industrial Strategy Challenge Fund aimed to deliver robots for a safer

world, to remove people from potentially harmful operations and improve the

resilience and infrastructure of public services by leveraging unmanned systems

[10]. Through funds such as these, technological demonstrations have shown how

emerging technologies can be used by the nuclear industry to improve operations.

1.1.1 Plant Characterisation

One such challenge of nuclear decommissioning is plant characterisation and

monitoring of inaccessible locations on nuclear sites. Currently, on Sellafield

site, radiological protection monitoring is carried out manually using commercially

available handheld radiation monitors. Monitoring through surveys is often

undertaken by hand, can be lengthy, and place humans in hazardous environments.

Adding to the autonomy of this process can improve safety and reduce the costs

associated with the operation. In collaboration with Sellafield Ltd, the University of

Manchester developed the Continuous Automated Radiation Monitoring Assistance

(CARMA) platform. This is a mobile platform that offers autonomous and wireless

radiometric floor mapping of a nuclear facility. After a demonstration to prove

the effectiveness of the platform, improvements were made and a second platform,

CARMA2, was later deployed on Sellafield site in 2018 to carry out complete

radiological floor surveys [11]. In 1957, a fire at Sellafield’s Windscale Pile 1 chimney

left radioactive contamination in elevated, inaccessible areas. The location of the

contamination meant it was unable to be manually monitored. In February 2015,
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the RISER Unmanned Aerial Vehicle (UAV) system, equipped with various sensors,

was flown remotely into a solvent recovery plant on Sellafield site. The initial test

flight in this location demonstrated the capabilities of the technology. This was

later followed by a second successful demonstration in Windscale Pile 1 Chimney on

Sellafield site. The demonstrations proved that UAV technologies could be applied to

these challenging nuclear environments [12]. This new system allowed the effective

characterisation of a nuclear legacy facility to allow decommissioning to progress

while reducing the radiation dose that operators are exposed to through using remote

technology.

1.1.2 Condition Monitoring and Inspection

Alongside plant characterisation, condition monitoring and inspection of nuclear

packages has been identified as a key challenge in the nuclear industry [13]. The

nuclear industry has committed to the safe storage of low-level waste (LLW),

intermediate-level waste (ILW), and high-level waste (HLW). Condition monitoring

and inspection can play a particularly important role in ensuring the safe storage

of ILW [14]. ILW is first encapsulated into different types of packages, including

drums and large concrete boxes. These are then placed into a storage facility such as

the Windscale Advanced Gas-cooled Reactor (WAGR) store on Sellafield site [15].

It’s anticipated that bringing innovation to condition monitoring and inspection

processes will significantly benefit Sellafield’s decommissioning programme by

improving the efficiency and safety of such operations [16]. Some potential areas for

improvement involve the development of ’smart packages’ that monitor themselves,

technologies for visual observation and analysis, and large-area scanning [17].

1.1.3 Physical Asset Management

The commissioning of new nuclear sites, as well as the decommissioning of legacy

sites such as Sellafield, involves procurement, storage, and installation of a wide

variety of equipment. Currently, asset identification is undertaken manually by
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personnel performing walks of a site [18]. Records are then updated manually to

note any changes in the status, condition, or location of physical assets. This process

is often timely and complicated, as physical assets come from a diverse number of

manufacturers that implement unique numbering systems. Innovative physical asset

management solutions will enable the nuclear industry, among other industries, to

identify and track several physical assets from procurement to decommissioning.

Some main challenge aims include assigning unique tracking codes to physical assets,

visualisation of assets against a digital model, and real-time tracking of assets to aid

informed decision-making [19]. Implementing UAVs as inspection aids for physical

asset management can address issues associated with safety, accessibility, and time

involved with much physical asset management. Automated systems with integrated

intelligent UAVs could provide a potential solution to the challenges associated with

regulation and report generation for the inspection of physical assets.

1.1.4 Waste Handling and Storage

The handling and storage of radioactive waste poses many challenges due to the

hazardous properties of the waste. Types of waste are largely diverse, from wet

slurries to metals, among other by products. Often, these diverse waste types

are mixed and need to be segregated. Due to the hazardous properties of this

waste, innovative remote techniques need to be developed to handle the waste more

efficiently [20]. As a final disposal facility is not yet available in the UK, any waste

produced by UK nuclear sites needs to be safely and securely stored for long periods.

This requires innovative packaging and storage methods to be developed to allow

the costs and efforts associated with waste storage to be reduced. There are several

challenges associated with the handling and storage of nuclear waste. These include

but are not limited to; restricted access to the waste that needs to be handled, a

lack of direct line of sight to the waste, and assessment of the waste properties. One

article suggests the inclusion of autonomy for the management of nuclear waste [21].

The article highlights trials undertaken at the United Kingdom National Nuclear
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Laboratory Workington facility, in which a robotic system is being developed using

a KUKA KR500 robotic arm for post-processing of nuclear waste. Currently, this

system is teleoperated by operators, relying on static cameras, with pan, tilt and

zoom (PTZ) control, for observation of the system. The framework for a rational

agent-based robotic system is proposed for nuclear waste management that utilises

a Kinect sensor with vision processing and an intelligent control system to separate

and identify waste. This could reduce the workload of operators controlling robotic

systems through the introduction of autonomy within the process [21].

1.2 Problems and Objectives

The complexities involved in decommissioning tasks on sites such as Sellafield are

vast. Tasks such as plant characterization, condition monitoring, inspection, and

waste handling are currently labour-intensive, potentially hazardous to employees,

and costly. The existing methods for environmental monitoring, such as manual

surveying and observing through static cameras and sensors, are inefficient in these

extensive, high-risk environments.

Many of the challenges highlighted above require new technologies to be

developed that can more safely and efficiently monitor, inspect, and characterise

physical and environmental conditions. The nuclear industry is safety-critical, and

as such, adopting new technologies can be difficult. High levels of radiation can

cause degradation of sensor measurements and introduce noise and uncertainties into

the system. Nuclear environments are often cluttered and uncertain, with objects

such as trolleys or robotic arms causing dynamic hazards. Existing infrastructure,

such as ventilation systems, can create unpredictable air dynamics, impacting the

stability of aerial robots. Existing robotic solutions, such as the CARMA platform,

still require a significant amount of oversight, and fully autonomous operation

is limited by current technological capabilities. Due to the hazardous nature of

nuclear environments, the nuclear industry adopts strict safety standards. The use
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of novel robotic solutions must undergo rigorous testing to validate the proposed

solutions. There is the potential for catastrophic failure, causing health risks and

environmental damage. Therefore, the developed systems must be exceptionally

reliable, introducing the need for novel systems to have robustness considered as a

first priority.

The main aim of this research is to provide a robust formation controller for

an autonomous or semi-autonomous formation of quadrotor agents to enhance the

safety, efficiency and effectiveness of tasks involved in the nuclear decommissioning

process. With this in mind, the project aspires to deliver a novel and robust system

by addressing four research aims:

• Develop a highly robust control algorithm for trajectory tracking of a

single quadrotor for the purpose of navigating within hazardous nuclear

environments.

• Develop an algorithm to enable stable and reliable formation control of a group

of quadrotors in hazardous nuclear environments.

• Validate the designed algorithms through extensive simulation and implement

the algorithms in real-world experimental testing.

• Apply the designed algorithms to problems within the nuclear industry to

validate the efficacy of the proposed system.

Achieving the aims identified in this section would provide a cyber-physical

system capable of addressing a number of identified challenges within the nuclear

industry. The field of robotic research in the nuclear industry provides a unique

opportunity to address challenges involved with decommissioning large-scale legacy

sites such as Sellafield. By advancing research in the field of autonomous and

robust aerial robotics, the nuclear industry can enhance safety and improve

overall efficiency, potentially reducing both the time and costs associated with

decommissioning. The proposed system will provide a solution for navigating a
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group of quadrotors in hazardous environments and enable the collection of real-

time data, reducing the need for human intervention. The robust control algorithms

will provide a solution capable of trajectory tracking and stable formation control in

complex and dynamic nuclear sites. These algorithms will be fine-tuned through

rigorous simulation and validated experimentally to improve their likelihood of

adoption in safety-critical nuclear environments. Ultimately, this research aims to

contribute to a safer and more efficient nuclear industry.

1.3 State of the Art

Many of the issues highlighted above require technologies to be developed that

can more safely and efficiently monitor, inspect, and characterise physical and

environmental conditions and properties. The proposed solution to the challenges

identified relies on the concept of multi-agent systems. Multi-agent systems offer a

promising and innovative way to understand, manage, and use distributed, large-

scale, dynamic, open, and heterogeneous computing and information systems [22] .

Here, an agent is an autonomous computational entity such as a software program

or a robot that can perceive and act upon its environment.

This review draws upon the sensor network and heterogeneous multi-robot

system as the components of such a multi-agent system to develop a system that

not only interacts with internal agents but can interact with humans to achieve

goal-oriented and task-oriented coordination, both cooperatively and competitively.

The review pays special attention to the opportunities and challenges that exist in

extreme environments, as well as the context of the challenges of the Game Changer

within the nuclear industry.

As part of the work completed during this project, findings from a literature

survey were initially published in part in the following book chapter.

• A. Montazeri and A. Can, “Unmanned aerial systems: Autonomy, cognition,

and control,” in Jan. 2021, pp. 47–80, isbn: 9780128202760. doi: 10.1016/
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B978-0-12-820276-0.00010-8

This section provides an up-to-date investigation of the state of the art surrounding

the field of single and multi-quadrotor control. A survey of the most recent literature

can group quadrotor control methods:

• Linear control

• Nonlinear control methods

1.3.1 Linear Quadrotor Control Methods

Quadrotor systems are complex, nonlinear and under-actuated systems. Therefore,

the control of these systems using linear methods relies heavily on the linearisation

of the quadrotor dynamics about a hover set-point [23].

The main foundation of linear control in quadrotors can be grouped into three

techniques:

• Proportional Integral Derivative

• Linear Quadratic techniques

• Robust linear techniques

Early implementations of quadrotor control systems relied on the use of

proportional integral derivative (PID) controllers. One of the earliest works in the

field of quadrotor control applied PID and linear quadrotor (LQ) control to the

attitude system of a quadrotor [24]. The study showed successful control over the

orientation of the quadrotor and provided a foundation for what would later become

a hugely researched area. The study found that PID had advantages over LQ control

due to its simplicity. Additionally, imperfections in the quadrotor model hindered

the performance of the LQ controller, showing further research was required in this

area. In the modern day, PID is considered the standard in quadrotor control due to

its simplicity and historical precedence [25]–[28]. Following this, works began on PID
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control in quadrotors, focusing on the 6 Degree of Freedom (DoF) trajectory tracking

capabilities of the PID control system [29], [30]. A number of papers implement

position control of the quadrotor through the introduction of a cascaded control

structure, where an outer-loop PID controller provides position control inputs to an

inner-loop attitude control system [31], [32].

Due to the short flight time of quadrotors, research works have focused on

optimal control methods. Linear optimal control of quadrotors can be achieved with

Linear Quadratic Regulator (LQR) and Linear Quadratic Gaussian (LQG) control

systems. In one paper, LQR control was found to have acceptable performance

when compared to PID [27]. It also found that the quadrotors displayed less

steady-state error when compared to PID control when an accurate model of the

quadrotor was provided. Another paper analyses the performance of a quaternion-

based LQR controller [33]. The authors of one comparative study found the LQR

displayed smoother trajectory tracking performance when compared to PID [30].

The results from the papers suggest that LQR is suitable for control when the

parameters are known, suggesting that any parameter variation or disturbance could

have detrimental effects on the system.

Robust linear control methods aim to provide acceptable performance in the

presence of uncertainties and disturbances. One paper combines a linear controller

with a robust compensator to allow robust tracking of a quadrotor’s roll and pitch

angles [34]. Another robust linear control method is provided by H∞ control. The

robust performance of H∞ control is shown in a number of works [35]–[37] in the

presence of disturbances and uncertainties. While H∞ is a robust control method,

it has more recently been criticised in the robust control of quadrotors due to poor

handling of uncertainties [38].

1.3.2 Nonlinear Quadrotor Control Methods

Nonlinear controllers allow control over the quadrotor’s nonlinear states rather than

around a linearised operating point, allowing quadrotors to operate within their
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full range of dynamics. In early work in the field, a nonlinear Adaptive Integral

Backstepping controller is compared against both PID and Integral-LQR control to

demonstrate the benefits of considering the nonlinear dynamics in the design of the

control law [39]. This section explores the recent state of the art in nonlinear control

techniques. The main foundation of nonlinear control in quadrotors is based on four

techniques:

• Feedback Linearisation

• Backstepping

• Adaptive

• Model Predictive Control

• Sliding Mode Control

Feedback linearisation allows for exact state transformation of the quadrotor

model, converting the nonlinear model into a full, or partially linear model for

control, effectively cancelling the nonlinearities [40]. Early research towards this

introduces feedback linearisation in combination with a linear LQR controller [41].

The paper finds that through feedback linearisation, the system was able to reject

a bounded disturbance in both simulations and real-world tests. Another paper

was able to demonstrate the effectiveness of feedback linearisation in combination

with LQR by developing a controller with zero steady-state error and no overshoot

[40]. Both of these papers address the attitude control of the quadrotor system.

Full the purpose of trajectory tracking, a cascaded controller is developed in [42]

that combines feedback linearisation with a simple PD controller. The paper

shows desirable trajectory performance when compared to H∞ control methods in

the presence of disturbances. Feedback linearisation has also been shown to be

applicable to fault-tolerant control, where the system can remain stable despite the

loss of a rotor [43]. A more modern approach improves the robustness of feedback

linearisation by combining the technique with a super-twisting algorithm alongside
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a disturbance observer to estimate the disturbance in the system [44]. The control

system demonstrates superior performance when compared to other modern, robust

techniques.

One approach to the under-actuated control problem of quadrotors is Back-

stepping control. Backstepping control provides a good solution for the position

and attitude control of a quadrotor due to the inherent cascaded nature of the

backstepping control system. Early work in the field leverages this technique to

provide control over the full quadrotor states [45], [46], where each subsystem is

stabilised by designing control systems based on Lyapunov stability. Following

on from these works, one paper suggests that general backstepping control is not

sufficient for the control of micro-quadrotors due to the requirements of accurate

parameter identification and is not sufficiently robust to external disturbances [47].

To solve this, the paper presents an adaptive integral backstepping control law

that is capable of estimating system disturbance online. The designed controller

shows improvements over general backstepping control in the presence of model

uncertainties. In the current state of the art, backstepping is implemented as the

foundational framework of more complex and robust methods for full trajectory

tracking control of quadrotor systems [48]–[50].

Adaptive control techniques rely on the ability of a system to estimate parameters

online. This parameter estimation can be used to augment the control algorithms

to provide more robustness to parametric uncertainties in the system. Initial work

implemented adaptive control to enable robustness to increases in payload [51].

The invariance to parameters through this technique is also demonstrated in [52],

where the control system demonstrated robustness in the presence of a varying

centre of gravity. Another paper implements adaptive control to enable robustness

to varying inertial parameters on a quadrotor [53] and was successful in removing

oscillations compared to integral techniques. Adaptive control has also been shown

to be suitable for rejecting external disturbances applied to the system [54], as

well as in cases of loss of thrust due to component damage [55]. Remarkably,
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adaptive control techniques have even been shown to be robust against time-varying

uncertainties [56]. The main disadvantage highlighted from the literature is the

reduced computation efficiency of the algorithm due to the parameter estimation

step.

Fuzzy logic control implements the idea of fuzzy rules to map inputs to control

actions. Simple fuzzy logic control has been shown to have improvements over

classical PID in [57]. Fuzzy logic controllers are often combined with other robust

control techniques highlighted in this review to provide robust control for quadrotor

systems [58]–[61]. The feasibility and superiority of fuzzy logic control are shown in

[62], where strong robustness and fault tolerance is demonstrated through simulation

and real-world testing.

Another approach to handling disturbances and uncertainties in dynamics is

model predictive control (MPC). MPC relies on the idea that the future system

states and control inputs can be predicted using an online model of the system

[63]. In [64], a learning-based model predictive controller is implemented to allow

a quadrotor to catch and throw a ball. The control system implements statistical

learning techniques alongside control techniques to guarantee a level of robustness in

the system. MPC can be implemented alongside feedback linearisation techniques

in real-time on embedded hardware for onboard trajectory tracking of a quadrotor

system [65]. MPC can also be combined with adaptive techniques, with online

parameter identification, to improve the robustness of the system further [66]. In a

more modern approach, MPC is combined with a deep-learning algorithm to achieve

robust trajectory tracking performance of a quadrotor system [64]. MPC faces issues

similar to those of the adaptive techniques, where additional computation is required

to achieve stable results.

First presented in 2006, a popular robust technique in the robust control

of quadrotor systems is sliding mode control (SMC) [67]. The technique was

shown to be successful in robustly controlling the under-actuated system through

the implementation of a cascaded sliding mode control system. Through the
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implementation of control via a sliding surface, the stability of the system can be

guaranteed, making it ideal for robust control in the presence of uncertainties and

disturbances. Further to this, the order of the sliding surface can be extended

to higher degrees to increase robustness [68]. Other work combines sliding mode

control with a disturbance observer to achieve robust trajectory tracking [69]. More

recently, work within the field has moved toward discrete-time sliding mode control

due to the inherent discrete nature of the sensing systems on-board quadrotors [70].

More recently, discrete-time sliding mode control has shown to be robust against

both rotational and translational disturbances in aerial robotics [71].

Due to the safety-critical nature of the nuclear industry, robust control is of

utmost importance. The system can be impacted by varying sensor noise due to

radiation, external wind disturbances from powerful ventilation systems, and model

uncertainties from potential propeller damage. With this in mind, sliding mode

control techniques should be used to control an aerial robot in these environments

to guarantee the safe convergence of the system to the desired states in the presence

of these uncertainties and disturbances. Additionally, due to the inherent discrete-

time nature of the sensing and processing units onboard these mobile platforms,

designing the control system in discrete-time could prove beneficial, as it guarantees

the convergence of the system under lower sampling times, which cannot be achieved

with equivalent continuous methods. Advancing the field of discrete-time sliding

mode control for the control of UAVs could prove critical to the success and uptake of

aerial vehicles in the nuclear industry. From the literature review, it is seen that the

main disadvantage of sliding mode control techniques is the presence of chattering,

where the sliding system states rapidly oscillate about the sliding surface. This

is particularly present in discrete-time sliding mode control systems, as they are

only marginally stable within a quasi-sliding mode band. Future work would need

to analyse the impact of this on the system through real-world implementation to

validate its efficacy.
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1.3.3 Multi-Agent Control Problems

The extension of control algorithms to the multi-agent case is a popular emerging

topic in the field of robotic control. Multi-agent control is a field of robotic control

that aims to drive the states of a group of agents to some sort of agreement, be that

synchronisation or a desired formation. The concept enables coordination between

a number of separate agents to achieve complex tasks beyond the capabilities of

any single agent. This literature survey aims to review works surrounding multi-

agent control strategies that solve a number of problems that, when addressed, could

enable the use of collaborative robots inside nuclear legacy sites. Specifically, the

review investigates three topics that are relevant to collaborative robotics in the

nuclear industry:

• The rendezvous problem

• The formation problem

• The source seeking problem

The rendezvous problem considers the task of a group of communicating agents

achieving synchronisation of their states and is first posed in [72], and is modelled

in [73]. Work towards the problem often implements a consensus control approach

to achieve rendezvous of system states [74]–[76]. One solution to the rendezvous

problem through consensus-based cooperative control of a multi-UAV system is

proposed in [77]. The paper shows that the states of the system are able to converge

to a single point as long as there is at least one directed spanning tree in the

communication graph. More recently, research has moved towards robust consensus-

based control of multi-UAV systems, where one paper demonstrates successful

convergence of each UAV’s states in the presence of disturbances [78]. One more

recent paper focuses on the rendezvous problem for multi-agent systems with input

constraints [79]. The paper considers constraints on the input amplitude and rate

constraints. The authors achieve this using a velocity damping term within the
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control algorithm. By considering these constraints, the developed control system

is guaranteed to achieve rendezvous while satisfying the input amplitude and rate

constraints.

An extension of the rendezvous problem that is more applicable to control over

quadrotors is the formation problem. The formation problem in regards to multi-

agent control proposes the idea of a group of agents achieving a desired geometric

formation, with each agent converging towards a desired separation between each

agent. One paper proposes a low-cost test bed for designing multi-quadrotor

formation control algorithms and implements a consensus-based formation controller

to achieve a desired formation [80]. A formation controller for a multi-quadrotor

system based on model predictive control is designed in [81]. The paper shows

that formation control can be achieved for quadrotors through a hybrid approach

where a linear MPC handles the inner-loop states of the quadrotor, while a hybrid

MPC handles the path planning strategy to bring the quadrotors into the desired

formation. A novel formation controller for a multi-quadrotor system is proposed in

[82] based on backstepping control. The results are found to improve the steady-state

error in the formation when compared to a Laplace method and an MPC method.

Sliding mode control is also a popular approach to solving the multi-quadrotor

formation problem, with a number of papers showing desirable results in terms

of steady-state error and robustness [83]–[85]. In order to combat communication

delays and slow sampling rates, one paper implements a discrete-time sliding mode

formation controller in [86]. The paper shows that when implementing the control

law in discrete-time, poor performance can be introduced through slow sampling

rates. The discrete-time sliding mode control approach is extended in [87] through

the introduction of a super-twisting algorithm. However, the paper does not address

the possibility of external disturbances in the system and infers the robust properties

of the controller through simulation results. Work still remains on discrete-time

sliding mode formation control of quadrotors, as there is a lack of research that

implements the algorithms experimentally. An alternative approach to traditional
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control algorithms for solving the formation control problem is Reinforcement

Learning (RL). In [88], RL is used to achieve formation control of a heterogeneous

network of quadrotors and Unmanned Ground Vehicles. By leveraging system data,

the paper implements RL to produce a fault-tolerant controller without accurate

knowledge of each vehicle’s dynamics. This allows the system to achieve formation

in the presence of communication and actuator faults. In other work, RL is

used to achieve an optimal formation strategy for a group of quadrotors under

switching topologies [89]. The paper demonstrates the effectiveness of the proposed

optimal leader-follower formation control strategy in simulation. This paper also

demonstrates how RL is able to use sampled vehicle data to achieve these results

without information of vehicle dynamics.

Building on the formation control problem, source-seeking is a task in which a

group of agents in formation navigate towards the peak of a field based on sensor

data. It is clear that this would be extremely useful for condition monitoring

and inspection in nuclear sites by allowing temperature or radiation hotspots to

be rapidly located by a group of autonomous agents. One paper provides a solution

to the two-dimensional source-seeking problem for a scalar field [90]. The paper

observes that through circular formation, the agents are able to estimate the gradient

of the field. The control system then uses this information to steer the formation

towards the peak of the environmental field. The results show that the agents

are successful in localising a source in a scalar field. Source-seeking control can

be achieved with robust techniques such as sliding mode control, as shown in

[91]. This paper implements a sliding mode control approach to steer the leader

of a formation of quadrotors to navigate towards the peak of a radiative field.

An alternative method to gradient estimation for the purpose of source seeking

is provided in [92], where an approach using an Extended Kalman Filter (EKF) is

used to estimate the location of the source of a radiative field. The paper shows that

the EKF-based approach improved convergence time, which is critical in quadrotor

systems where flight time is limited. One paper also works towards overall system
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robustness by implementing a source-seeking algorithm in a network of agents with

switching network topologies [93]. Interestingly, it has been shown that source-

seeking algorithms can be adapted to achieve contour mapping [94]. In this paper,

a network of agents locates the peak of a scalar field and then proceeds to map a

contour of a set value. This could be particularly useful within the nuclear sector, as

it would allow a group of agents to identify safe zones in an environment. For locating

time-varying sources in three-dimensional scalar fields, one paper proposes a solution

using Adaptive Navigation control techniques [95]. In this paper, a Cluster-Space

formation control algorithm is used to achieve a desired three-dimensional formation.

The Adaptive Navigation layer of the control architecture provides cluster-shape and

mobility signals to the Cluster-Space controller. The gradient is estimated at the

centre of the cluster using measurements from each UAV, and is used by the Adaptive

Navigation layer to guide the UAVs towards the peak of a three-dimensional scalar

field. In more recent work, one paper implements a novel control algorithm that

combines a gradient-free optimisation algorithm with a consensus-based formation

control system to control a formation of quadrotors towards the peak of a scalar

field [96]. This paper demonstrates the effectiveness of the control system in both

simulation and physical experiments. The results show that the control system

is capable of locating the peak of a two-dimensional scalar field faster and more

accurately that previous approaches, without estimating the gradient of the field.

While these works provide useful insights into source-seeking algorithms, they are

mostly implemented in simulation and do not show the experimental performance

of the proposed algorithms. Additionally, much of the literature does not consider

the robustness problem that is inherent in tasks of this nature.

The remainder of this thesis is organised as follows. Chapter 2 proposes a

novel continuous-time sliding mode control system for the robust and chattering-free

trajectory tracking control of a single quadrotor. Chapter 3 applies a robust discrete-

time sliding mode control to a single quadrotor and analyses the performance in

the presence of varying sample time in simulation through the Robot Operating
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System (ROS). Chapter 4 extends the discrete-time sliding mode controller to the

multi-agent case to investigate the robust performance of discrete-time sliding mode

formation control for a group of quadrotor agents. Chapter 5 demonstrates the

effectiveness of the proposed control strategies for applications in source-seeking

and characterisation of nuclear legacy sites. Chapter 6 provides a discussion of

the findings of the thesis, alongside concluding remarks and some ideas for future

research in the field of robotic sensing in the nuclear industry.
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Chapter 2

Finite-Time Sliding Mode

Controller for a Quadrotor System

2.1 Introduction

In recent years, Unmanned Aerial Vehicles have become increasingly popular in

commercial sectors, such as agriculture [97], infrastructure monitoring [98], and

emergency response. Due to the agile and manoeuvrable nature of quadrotor UAVs,

their remote sensing capabilities, and the significant reduction in development costs

recently, they provide an ideal solution to many challenges faced in hazardous

environments unsuitable for human access [99]. One area currently exploring

UAV technology is the nuclear industry. In February 2015, the RISER UAV

system, equipped with visual and radiometric sensors, was flown remotely into

a solvent recovery plant on the Sellafield site. The initial test flight in this

location demonstrated the capabilities of the technology. This was later followed

by a second successful demonstration in Windscale Pile 1 Chimney on Sellafield

site. The demonstrations proved that UAV technologies could be applied to these

challenging nuclear environments [100]. The nuclear industry has identified a

number of challenges through the Game Changers programme [101]. Using emerging

technologies, such as UAVs, to address these challenges can greatly impact the future
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of the nuclear industry [2].

Safety is a critical concern when adopting new technology within the nuclear

industry, as there are several hazards to consider. Uncertainties such as sensor

degradation, radiation noise, and a dynamic environment with many obstacles can

cause several issues for UAV technology. For autonomous UAVs to be implemented

in the nuclear industry, they must be robust against these uncertainties and

disturbances. This, combined with the nonlinear and under-actuated dynamics of

quadrotor UAVs, requires the development of advanced control algorithms for full

position and attitude control. Recent advances in control systems allow these UAVs

to robustly track planned trajectories autonomously without human involvement.

Classic Proportional-Integral-Derivative (PID) control has been widely used for the

control of quadrotor UAVs due to its practicality and ease of implementation [32].

The PID control, among other linear control methods, relies on the linearisation of

the quadrotor dynamics around a point of hover. While the system is robust around

this hover point, large deviations in states can cause the nonlinear quadrotor system

to become unstable.

Indoor nuclear environments are often cluttered and GPS-denied [102]. As GPS

can not be used for positioning in these environments, simultaneous localisation and

mapping (SLAM) must be used to localise these robots in 3D space. Various 2D

and 3D SLAM methods have been developed in recent years for robotic applications,

such as fastSLAM [3], OctoMapping [103], Gmapping [104], Orb-SLAM2 [105], and

Hector SLAM [106]. These various SLAM techniques rely on sensor data from either

LiDAR sensors, or visual sensors, such as single camera, stereo camera, or RGBD

camera devices. As such, with changing payloads of the quadrotor, it is essential

that control systems must handle variations in the quadrotor parameters.

Sliding mode control provides a robust nonlinear solution for full control of a

quadrotor’s dynamics. Studies have validated the robustness of classical sliding

mode control and its ability to handle uncertainties [107]. One disadvantage of

classical sliding mode control is the presence of a phenomenon known as chattering,
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where the state of the system can experience high frequency oscillations of a finite

frequency and magnitude, caused by unmodeled dynamics or discrete sensing [108].

The chattering phenomenon can cause poor controller accuracy, degradation of

mechanical components, and power losses [109]. The design and development of a

chattering-free sliding mode controller is reported in [110], [111] and [112] through

the use of a continuous and time-varying sliding surface. An alternative method

to design a chattering-free sliding mode control involves introducing a non-singular

terminal sliding mode controller [113], [114]. More recent work has introduced the

use of an Extended Kalman Filter for practical implementation of the controller

[115]. In the case of quadrotors with unknown inertia parameters, an adaptive

closed-loop identification and control method can be implemented [116]. In another

paper, an event-triggered particle filter was implemented to improve the energy

management of the state estimation procedure onboard the quadrotor [117].

Initial results from work towards the development of robust control algorithms

for quadrotor UAVs in hazardous environments, completed as part of this PhD

research, were presented at a conference and published.

• A. Can, H. Efstathiades, and A. Montazeri, “Design of a chattering-free sliding

mode control system for robust position control of a quadrotor,” in 2020

International Conference Nonlinearity, Information and Robotics (NIR), 2020,

pp. 1–6. doi: 10.1109/NIR50484.2020.9290206

In this research, a nested chattering-free sliding mode controller was developed

for position and attitude control of a quadrotor UAV for use in hazardous

environments with parametric uncertainties. This chapter further builds on the

novelty of the published research through the introduction of an integral term within

the sliding surface, as well as a new robust control term in order to guarantee

system stability and improve overall performance. This chapter also provides a

rigorous stability analysis to derive the robust stability condition of the under-

actuated system and prove that the system is finite-time stable. The proposed

control system is compared to a modern finite-time sliding mode controller [118]
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in order to evaluate its performance in simulation. The controller is implemented

experimentally to illustrate the efficacy of the proposed controller.

The remainder of this chapter is organised as follows: Section 2.2 describes

the quadrotor dynamical model; Section 2.3 presents the derivation of the flight

controller; Section 2.4 displays the simulation results; Section 2.5 displays the

experimental results; Section 2.6 discusses the chapters findings and results.

2.2 Quadrotor Dynamic Model

This section describes the dynamical model of an x-frame quadrotor system. Figure

2.1 displays a diagram of the quadrotor system, the coordinate system used, and

the propeller directions.

Figure 2.1: Diagram of an X-frame quadrotor with the coordinate systems and

propeller directions [119].

ω =


ω1

ω2

ω3

ω4

 . (2.1)
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2.2. Quadrotor Dynamic Model

Here, ω ∈ R4 is a vector that contains the four propeller velocities, each represented

by ωi.

The pose of the quadrotor can be described using two vectors r and α. Here

vector r represents the position of the quadrotor in 3D space and α contains the

Euler angles of the system, representing the attitude of the quadrotor.

r =


x

y

z

 ,α =


φ

θ

ψ

 , (2.2)

where φ, θ, and ψ are the roll, pitch, and yaw angles, respectively, and x, y and z

describe the 3D coordinates of the quadrotor. The Euler angles of the quadrotor

can be used to determine how the rigid body of the quadrotor is oriented in space

with the rotational matrix R for a ZYX rotation order, shown in (2.3).

R =


cθcψ cψsφsθ − cφsψ sφsψ + cφcψsθ

cθsψ cφcψ + sφsθsψ cφsθsψ − cψsφ

−sθ cθsφ cφcθ

 , (2.3)

where cφ = cos(φ) and sφ = sin(φ).

In order to define the equations of motion, we can use Newton-Euler formulae

for rigid body dynamics.

d2r

dt2
= g


0

0

1

− RKT

m

4∑
i=1

ω2
i −

ṙ

m


kdx

kdy

kdz

 , (2.4)

where KT is the coefficient of thrust for the propellers,kdx, kdy and kdz are the drag

terms in the x y and z directions,m is the mass of the quadrotor, and g represents the

acceleration of the system due to gravity. The rotational motion of the system can

be defined as a set of torques around each axis of the quadrotor system. Equations

(2.5)-(2.7) describe the torques.

τφ = KT l(ω
2
1 − ω2

2 − ω2
3 + ω2

4), (2.5)
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τθ = KT l(ω
2
1 + ω2

2 − ω2
3 − ω2

4), (2.6)

τψ = KD(ω
2
1 − ω2

2 + ω2
3 − ω2

4), (2.7)

where τφ, τθ, and τψ are the roll, pitch and yaw torques respectively, KD is the drag

coefficient due to the propellers and l is the quadrotor’s arm length. From Euler’s

second law of motion for rigid body dynamics, we get (2.8).

ω̇α × I = τα − (ωα × Iωα)− τg, (2.8)

where τg is the gyroscopic effect torque due to the rotors. As quadrotors operating

in nuclear environments are not expected to perform aggressive manoeuvres and will

be operating near-hover, it is safe to use the small-angle assumption when developing

flight control systems for these environments. Control systems designed using the

small-angle assumption can increase computational efficiency while providing control

algorithms that are more easily tuned and implemented in real-world scenarios.

Using the small-angle assumption,

ωα =


ωφ

ωθ

ωψ

 =


p

q

r

 =


φ̇

θ̇

ψ̇

 , τα =


τφ

τθ

τψ

 , I =


Ixx 0 0

0 Iyy 0

0 0 Izz

 .
The quadrotor system is an under-actuated system with 6 degrees of freedom

and only 4 actuators to control them. The force applied on the quadrotor system

from the four actuators can be converted into the overall thrust and torques acting

on the system. Equation (2.9) shows this conversion.

The inputs of the system are defined as

u =


u1

u2

u3

u4

 =


T

τφ

τθ

τψ

 =


KT KT KT KT

lKT −lKT −lKT lKT

lKT lKT −lKT −lKT

KD −KD KD −KD




ω2
1

ω2
2

ω2
3

ω2
4

 , (2.9)

where u is a vector containing the system inputs, u1 is the total thrust T of the

UAV and u2, u3, and u4 are the rotational torques for roll, pitch, and yaw.
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Using equations (2.4),(2.8), and (2.9), the full dynamical model of the quadrotor

can be defined. Equations (2.10) - (2.15) describe the 6 nonlinear equations of

motion for the quadrotor.

ẍ = (−cφcψsθ − sφsψ)
u1
m

− kdx
m
ẋ (2.10)

ÿ = (cψsφ− cφsθsψ)
u1
m

− kdy
m
ẏ (2.11)

z̈ = g − cφcθ
u1
m

− kdz
m
ż (2.12)

φ̈ =
(Iyy − Izz)× θ̇ × ψ̇

Ixx
− Jrθ̇

Ixx
(ω1 − ω2 + ω3 − ω4) +

u2
Ixx

, (2.13)

θ̈ =
(Izz − Ixx)× φ̇ × ψ̇

Iyy
+
Jrφ̇

Iyy
(ω1 − ω2 + ω3 − ω4) +

u3
Iyy

, (2.14)

ψ̈ =
(Ixx − Iyy)× φ̇ × θ̇

Izz
+
u4
Izz

, (2.15)

2.3 Flight Controller Design

The problem of flight control in a quadrotor system is complex due to the under-

actuated and nonlinear dynamics of the quadrotor system. Robustness is a

particularly important property for quadrotors within a nuclear setting, due to the

safety-critical nature of nuclear processes. Disturbances such as wind, changing

payloads for different characterisation tasks, and sensor degradation from nuclear

radiation can all affect the performance of a quadrotor. Ventilation systems inside

of nuclear legacy sites can create areas of wind gusts that the quadrotor must fly

through. For this reason, robust control methods, such as sliding mode control,

are desirable for application in the nuclear industry due to their inherent ability to

reject both external and internal disturbances.

A full robust trajectory tracking controller for the quadrotor is designed in a

nested control form such that the position control of x and y, and the attitude

control of φ and θ are separated into two distinct control loops, known as the outer-

loop and the inner-loop. The outer-loop handles position control of the quadrotor,
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while the inner-loop handles the attitude of the quadrotor. Altitude control of z

and the yaw control of ψ are considered separate channels and are included within

the inner-loop control system. The altitude controller produces the desired overall

thrust value u1. The position controller then outputs the desired roll and pitch

values φd and θd. The desired attitude is handled with an attitude controller to

provide the system inputs u2, u3 and u4. The system inputs are then converted to

individual motor speeds using equation (2.9). A flow diagram demonstrating the

structure of the nested controller is displayed in Figure 2.2.

Figure 2.2: Flow diagram describing the structure of the nested control system.

2.3.1 Problem Formulation

The quadrotor model derived in Section 2.2 can be redefined in state space form as

a nonlinear dynamical system.ẋ1 = x2

ẋ2 = f(x) + g(x)u+ d(t).

(2.16)

x =

x1

x2

 , (2.17)
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where x1 = [x y z φ θ ψ]T , x1 ∈ R6 represents the state vector of the quadrotor

states. The vector x2 = [ẋ ẏ ż φ̇ θ̇ ψ̇]T , x2 ∈ R6 is a vector of the time derivative of

the states. The states, and their derivatives are concatenated into vector x ∈ R12.

The vector u = [u1 u2 u3 u4]
T ,u ∈ R4 denotes the control inputs in equation (2.9).

The terms f : R12 → R6 and g : R12 → R6×4 are nonlinear functions that

describe the system dynamics represented in equations (2.10)-(2.15) and d(t) ∈ R6

represents an external matched wind disturbance acting on the system. It is assumed

that d(t) is bounded such that ∥d(t)∥∞ ≤ dmax,∀t ∈ R. Due to the time-varying

nature of the quadrotor parameters, it is also important to consider their effect as

dynamic perturbation on the functions f(x) and g(x). Both nonlinear functions can

be separated into their nominal terms and the disturbance as

f(x) = f0(x) + ∆f(x), (2.18)

g(x) = g0(x) + ∆g(x), (2.19)

where f0 : R12 → R6 and g0 : R12 → R6×4 represent the nominal terms shown

in (2.10)-(2.15), and ∆f : R12 → R6 and ∆g : R12 → R6×4 represent the system

dynamic uncertainties resulting from uncertainties in parameters Ixx, Iyy, Izz

and m. It is also assumed that ∆f(x) and ∆g(x) are norm bounded such that

∥∆f(x)∥∞ ≤ fmax and ∥∆g(x)∥1 ≤ gmax for all x ∈ R12.

Remark 1: To illustrate how ∆f(x) and ∆g(x) can be derived for the quadrotor

dynamics presented in (2.10)-(2.15), we perturb Ixx, Iyy, Izz and m by ∆Ixx, ∆Iyy,

∆Izz and ∆m respectively. As such, the perturbed dynamics of the system in (2.18)

and (2.3.1), i.e. ∆f(x) and ∆g(x) become

∆f(x) =



kdxẋ∆m
m(m+∆m)

kdy ẏ∆m

m(m+∆m)

kdz ż∆m
m(m+∆m)

(Ixx(∆Iyy−∆Izz)−∆Ixx(Iyy−Izz))θ̇ψ̇+∆IxxJr θ̇Ωr
Ixx(Ixx+∆Ixx)

(Iyy(∆Izz−∆Ixx)−∆Iyy(Izz−Ixx))φ̇ψ̇−∆IyyJrφ̇Ωr
Iyy(Iyy+∆Iyy)

(Izz(∆Ixx−∆Iyy)−∆Izz(Ixx−Iyy))φ̇θ̇
Izz(Izz+∆Izz)


,
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∆g(x) =



∆m(cφcψsθ+sφsψ)
m(m+∆m)

0 0 0

∆m(cφsθsψ−cψsφ)
m(m+∆m)

0 0 0

∆m(cφcθ)
m(m+∆m)

0 0 0

0 − ∆Ixx
Ixx(Ixx+∆Ixx)

0 0

0 0 − ∆Iyy
Iyy(Iyy+∆Iyy)

0

0 0 0 − ∆Izz
Izz(Izz+∆Izz)


,

where Ωr = (ω1 − ω2 + ω3 − ω4) ∈ R.

The desired values of the system can be represented by

x1d
= [xd yd zd φd θd ψd]

T ,x1d
∈ R6 and x2d

= [ẋd ẏd żd φ̇d θ̇d ψ̇d]
T ,x2d

∈

R6. The tracking error of the system can be represented by e1 = x1 − x1d
=

[e1x e1y e1z e1φ e1θ e1ψ ]
T , e1 ∈ R6 and e2 = x2 − x2d

= [e2x e2y e2z e2φ e2θ e2ψ ]
T ,

e2 ∈ R6. Furthermore, we take the time derivatives of error asė1 = e2

ė2 = (f(x)− ẋ2d
) + g(x)u+ d(t).

(2.20)

2.3.2 Finite-Time Integral Sliding Mode Control

From [120], it can be seen that the inclusion of an integral term within the

sliding surface can help guarantee the invariance of the system to disturbance

and uncertainties in the system in the reaching phase of the sliding mode control.

Nevertheless, this can increase the chattering phenomenon found in the sliding phase

of the controller. The conventional approach to reduce the effect of chattering in

the sliding phase is to design a low-pass filter using the equivalent control technique

or integrate it with higher-order SMC. This effect is reduced by implementing a

finite-time sliding mode control approach by following [1].

First it is necessary to introduce some lemmas.

Lemma 1. Suppose that there exists a continuously differentiable function V (x) Rn →

R, and number c > 0, c ∈ R and 0 < a < 1, a ∈ R such that

V (0) = 0,
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V (x) is positive definite on Rn,

V̇ (x) ≤ −cV a(x),∀x ∈ Rn.

The settling time Tof the system can be defined as

T (x(0)) ≤ V (x(0))1−a

c(1− a)
, (2.21)

where V (x(0)) is the initial value of V (x).

proof. See [121].

Lemma 2. For real numbers li, i = 1, 2, ..., n and for every a ∈ (0, 1), the following

inequality holds:

(|l1|+ ... + |ln|)a ≤ |l1|a + ... + |ln|a. (2.22)

proof. See [122].

First, we take the nominal sliding surface as

σ0 = e2 +Λe1, (2.23)

where σ0 ∈ R6 and Λ = diag[λx, λy, λz, λφ, λθ, λψ] ∈ R6×6 is a vector of tuneable

parameters. Next, an integral term is introduced and a new sliding surface is defined

as

σI = σ0 − σ0(0)+ kc

∫ t

0

σ0 dτ, (2.24)

where σI ∈ R6 is the new integral sliding surface, σ0(0) ∈ R6 is the initial condition

of the sliding surface at t = 0 and kc =

diag[kcx , kcy , kcz , kcφ , kcθ , kcψ ],kc ∈ R6×6. Next, a Lyapunov candidate function

is defined as

V =
n∑
i=1

Vi, (2.25)

where each Vi is an individual Lyapunov candidate for each channel of the quadrotor

system. Each separate channel can be defined as

Vi = ηi|σIi |γi , (2.26)
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where γi =
ai
bi
, 0 < ai < bi, ai, bi ∈ N, and ai and bi are odd. A sufficient condition

for the stability of the system is each component V̇i must be negative.

V̇i = ηiγiσIi
(γi−1)σ̇Iisign(σIi) < 0. (2.27)

We can achieve this by choosing V̇i such that

V̇i = −µi|σIi |δi < 0, (2.28)

where δi =
pi
qi
, 0 < pi < qi, pi, qi ∈ N and pi and qi are odd.

From taking the time derivative of the Lyapunov candidate function (2.27), and

inserting it into (2.28) the stability condition can be written as

σ̇Ii = − µi
ηiγi

σIi
(δi−γi+1). (2.29)

Here, the power of σIi can be re-written as ζi where ζi =
αi
βi
, 0 < αi < βi, αi, βi ∈ N

and αi and βi are odd. By designing the stability condition in this way, singularities

often present in Terminal Sliding Mode Control design can be avoided, as here the

final fractional power is strictly a positive, odd fractional power. This ensures the

control law is non-singular. Furthermore, the coefficients can be collected into a

single term identified as µ̄i.

σ̇Ii = −µ̄iσIiζi . (2.30)

Next, we take the derivative of the integral sliding surface in (2.24)

σ̇I = σ̇0 + kcσ0, (2.31)

σ̇I = ė2 +Λė1 + kcσ0, (2.32)

σ̇I = (f(x)− ẋ2d
) + g(x)u+ d(t) +Λė1 + kcσ0. (2.33)

Equation (2.33) can be simplified by lumping all disturbances into a single term

h(x,u, t). This gives

σ̇I = (f0(x)− ẋ2d
) + g0(x)u +Λė1 + kcσ0 + h(x,u, t), (2.34)

30



2.3. Flight Controller Design

where h(x,u, t) = ∆f(x) + ∆g(x)u + d(t). In order to assess the stability of the

system, u can be split into the nominal and robust parts, given by

u = −g0
†(un + ur), (2.35)

where un ∈ R6 is a control vector for the nominal system, ur ∈ R6 is the extra

robustness term, and g0
† ∈ R4×6 is the generalized inverse of matrix g0. The

nominal control vector un is designed such that

un = (f0(x)− ẋ2d
) +Λė1 + kcσ0. (2.36)

By substituting equations (2.35) and (2.36) into equation (2.34), we get the following

equation:

σ̇I = −ur + h(x,u, t). (2.37)

Equation (2.37) can be split into its vector components. By equating this to (2.30)

we get

σ̇Ii = −uri + hi(x,u, t) = −µ̄iσIiζi . (2.38)

However, using the subadditivity properties of the infinite norm, we can write

−ur + h(x,u, t) ≤ −ur + ∥h(x,u, t)∥∞ ≤ −ur+

(∥∆f(x)∥∞ + ∥∆g(x)u∥∞ + ∥d(t)∥∞). (2.39)

Assuming that the infinity norm of the uncertainty and disturbance terms are known,

a sufficient condition for robust stability of the closed-loop system can be achieved

if uri satisfies the inequality below

−uri + (|fmax|+ |gmaxū|+ |dmax|) ≤ −µ̄i|σIi|ζi ≤ −µ̄iσIiζi , (2.40)

In (2.40), ū is the norm bound of the control input vector u such that ∥u∥∞ ≤

ū. Here, we can lump the maximum perturbations into two new terms Ppos and

Pneg, where Ppos = fmax + gmaxū + dmax, Ppos ∈ R+ and Pneg = −(fmax + gmaxū +

dmax), Pneg ∈ R−. Therefore, the condition for robust stability of the closed-loop

system (2.40) can be written for each case.
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Case 1: σIi > 0

−uri + Ppos ≤ −µ̄iσIiζi , (2.41)

Case 2: σIi < 0

−uri + Pneg ≥ −µ̄iσIiζi , (2.42)

By choosing uri = KiσIi
ζi , as will be proved in Theorem 1, it is possible to

show that the closed-loop system remains finite-time stable despite the uncertainties.

Additionally, through the use of a fractional power in the robustness term, the

negative effects of chattering should be alleviated due to the continuous nature of

the robustness term about the sliding surface. Next, the robust stability of the

control equation will be proven.

Theorem 1. For the uncertain dynamic system defined in (2.16)-(2.19) and the

control law defined by

u = g0
†
((

(f0(x)− ẋ2d
) +Λė1 + kcσ0

)
+ ur

)
, (2.43)

the closed-loop system will be finite-time stable and the trajectories of the closed-

loop system converge to the desired trajectory if the following sufficient condition is

satisfied for each channel i and the control input uri is selected such that

uri = KiσIi
ζi . (2.44)

where, Ki = µ̄i + K̄i, Ki, K̄i ∈ R, is a constant where K̄i is a constant that is

designed to dominate the maximum disturbances Ppos and Pneg.

Case 1: σIi > 0

K̄iσIi
ζi ≥ Ppos, (2.45)

Case 2: σIi < 0

K̄iσIi
ζi ≤ Pneg, (2.46)
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proof. We start the proof by considering two cases for the sign of sliding surface.

Case 1: σIi > 0

From equation (2.41) the condition for stability for each case is

−uri ≤ −µ̄iσIiζi − Ppos. (2.47)

Therefore,

uri ≥ µ̄iσIi
ζi + Ppos. (2.48)

Substituting equation (2.44) into (2.48) gives

KiσIi
ζi ≥ µ̄iσIi

ζi + Ppos. (2.49)

Case 2: σIi < 0

From equation (2.42) the condition for stability for each case is

−uri ≥ −µ̄iσIiζi − Pneg. (2.50)

Therefore,

uri ≤ µ̄iσIi
ζi + Pneg. (2.51)

Substituting equation (2.44) into (2.51) gives

KiσIi
ζi ≤ µ̄iσIi

ζi + Pneg. (2.52)

Expanding the terms in equations (2.49) and (2.52) and cancelling gives

equations (2.45) and (2.46). Therefore, the system is stable outside of the following

bounds

σIi
ζi ≥ Ppos

K̄i

, ∀ σIi > 0 (2.53)

σIi
ζi ≤ Pneg

K̄i

, ∀ σIi < 0 (2.54)

In the context of this proof, the region defined by the conditions in equations

(2.53) and (2.54) represents the boundary layer of the system. The system’s

trajectories converge to this boundary layer but not necessarily to zero. The

boundary layer serves as a cushion around the desired sliding surface, ensuring that
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the closed-loop system remains stable and converges towards the boundary layer

while mitigating chattering effects that may occur in the presence of uncertainties

and disturbances.

In this way, the control law uri dominates the maximum disturbance and

uncertainties in (2.34), and thus the system is robustly stable. To prove the finite-

time convergence of the system, from lemma 2, we choose li as ηiσIi
γi , defined in

(2.27), and substitute this into equation (2.22) to get the following inequality(
6∑
i=1

|ηiσiγi |

)a

≤
6∑
i=1

|ηiσiγi |a. (2.55)

Let a = r/s < 1 and r and s are positive odd integer numbers and rai
sbi

= δi. Equation

(2.55) becomes (
6∑
i=1

|ηiσiγi|

)a

≤
6∑
i=1

|ηi|a|σi|δi . (2.56)

Taking |ηi|a as µi and multiplying both sides of (2.57) by minus one gives

−
6∑
i=1

µi|σi|δi ≤ −

(
6∑
i=1

ηi|σi|γi
)a

. (2.57)

Substituting equations (2.25), (2.26) and (2.27) into (2.57) gives

V̇ ≤ −V a. (2.58)

Thus, according to lemma 1, it can be seen that the closed-loop system is finite-time

stable. The settling time of the system can be calculated as

T (x(0)) ≤ V (x0)
1−a

(1− a)
, (2.59)

where V (x0) is the initial condition of V in equation (2.25).

2.3.3 Translational Control

The equations of translation motion in the x and y directions in equations (2.10)

and (2.11) can be simplified with the introduction of two further control gains ux

and uy to give the equations

ẍ = ux
u1
m

− kdx
m
ẋ, (2.60)
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ÿ = uy
u1
m

− kdy
m
ẏ, (2.61)

where ux = (−cφcψsθ − sφsψ) and uy = (cψsφ− cφsθsψ). Using equations (2.60)

and (2.61) and substituting them into equation (2.43) the outer-loop control laws

for the x and y positions of the quadrotor can be derived.

ux =
m

u1

((
−KxσIx

(ζx)

)
−λx(ẋ−ẋd)−kcx(ẋ−ẋd+λx(x−xd))+

kdx
m
ẋ+ẍd

)
, (2.62)

uy =
m

u1

((
−KyσIy

(ζy)

)
−λy(ẏ− ẏd)−kcy(ẏ− ẏd+λy(y−yd))+

kdy
m
ẏ+ ÿd

)
. (2.63)

Following this, using equations (2.64) and (2.65), the desired roll φd and pitch θd

values are determined as

φd = arcsin(−ux sin(ψd) + uy cos(ψd)), (2.64)

θd = arcsin

(
ux cos(ψd) + uy sin(ψd)

cos(φd)

)
. (2.65)

Values φd and θd are passed to the inner-loop attitude controller to allow for full

trajectory tracking control of the quadrotor.

In order to control the z position of the quadrotor, equation (2.43) is expanded

and substituted into the altitude dynamics of the quadrotor system in equation

(2.12). This gives the control equation for u1.

u1 =
m

cφcθ

((
KzσIz

(ζz)

)
+λz(ż−żd)+kcz(ż−żd+λz(z−zd))+g−

kdz
m
ż−z̈d

)
. (2.66)

2.3.4 Attitude Control

The attitude control of the quadrotor uses the dynamic system equations (2.13)-

(2.15) and equation (2.43) to derive equations for u2, u3 and u4

u2 = Ixx

((
−KφσIφ

(ζφ)

)
− λφ(φ̇− φ̇d) + φ̈d − kcφ(φ̇− φ̇d + λφ(φ− φd))

−
(
(Iyy − Izz)θ̇ψ̇

Ixx

)
+
Jrθ̇

Ixx
(ω1 − ω2 + ω3 − ω4)

)
, (2.67)
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u3 = Iyy

((
−KθσIθ

(ζθ)

)
− λθ(θ̇ − θ̇d) + θ̈d − kcθ(θ̇ − θ̇d + λθ(θ − θd))

−
(
(Izz − Ixx)φ̇ψ̇

Iyy

)
− Jrφ̇

Iyy
(ω1 − ω2 + ω3 − ω4)

)
, (2.68)

u4 = Izz

((
−KψσIψ

(ζψ)

)
− λψ(ψ̇ − ψ̇d) + ψ̈d − kcψ(ψ̇ − ψ̇d + λψ(ψ − ψd))

−
(
(Ixx − Iyy)φ̇θ̇

Izz

))
. (2.69)

Using equations (2.60)-(2.69), and implementing them as shown in Figure 2.2

each channel of the quadrotor system can be controlled, and full robust trajectory

tracking control can be achieved for a quadrotor system.

2.4 Simulation Results

The FTI-SMC control system developed in Section 2.3 was simulated in MATLAB

and Simulink using the “Parrot Minidrones Support from Simulink” toolbox. To

evaluate the performance of the controller, it was compared against a modern finite-

time sliding mode controller [118]. The FTI-SMC controller was also compared

against a modified PID controller provided by the minidrone toolbox, as well as a

classical sliding mode controller. The robustness of each controller was evaluated by

introducing parametric uncertainties in the mass and inertia of the quadrotor. This

section presents and compares the results from all three control systems.

The quadrotor parameters in equations (2.10)-(2.15) were set to match those of

a Parrot Mambo Minidrone. Due to the small size of the Parrot Mambo Minidrone,

the drag terms in the x, y, and z directions were considered to be negligible. These

parameters are displayed in Table 2.1 and were used to collect the simulation results.
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Table 2.1: Simulation parameters.

Variable Value

m 0.0630 kg

Ixx 5.8286× 10−5 kg.m2

Iyy 7.1691× 10−5 kg.m2

Izz 1.0000×10−4 kg.m2

Jr 1.0209×10−7 kg.m2

l 4.4100×10−2 m

KT 4.7200×10−8

KD 1.1393×10−10

Kdx 0

Kdy 0

Kdz 0

37



Chapter 2. Finite-Time Sliding Mode Controller for a Quadrotor System

Table 2.2: Control parameters used in simulation for (a) PID, (b) SMC, (c)

FTSMC[118], and (d) FTI-SMC.
(a)

Kpx 0.005

Kpy 0.005

Kpz 0.6

Kdx 0.1

Kdy 0.1

Kdz 0.3

Kix 0

Kiy 0

Kiz 0

Kpφ 0.013

Kpθ 0.01

Kpψ 0.004

Kdφ 0.02

Kdθ 0.028

Kdψ 0.012

Kiφ 0.01

Kiθ 0.01

Kiψ 0

(b)

µx 0.4

µy 0.4

µz 7

λx 1

λy 1

λz 10

µφ 18

µθ 18

µψ 8

λφ 12

λθ 12

λψ 9

(c)

α1,x 0.8 α1,φ 15

α1,y 0.8 α1,θ 15

α1,z 11 α1,ψ 10

α2,x 0.2 α2,φ 10

α2,y 0.2 α2,θ 10

α2,z 5 α2,ψ 0.01

ρx 0.1 ρφ 1

ρy 0.1 ρθ 1

ρz 0.5 ρψ 1

Θx 0.5 Θφ 5

Θy 0.5 Θθ 5

Θz 5 Θψ 5

vx 0.5 vφ 0.5

vy 0.5 vθ 0.5

vz 0.5 vψ 0.5

Φx 7/9 Φφ 11/17

Φy 7/9 Φθ 11/17

Φz 7/11 Φψ 11/17

γx 7/9 γφ 11/13

γy 7/9 γθ 11/13

γz 7/13 γψ 11/13

(d)

µx 0.4 µφ 10

µy 0.4 µθ 10

µz 10 µψ 10

λx 1 λφ 10

λy 1 λθ 10

λz 1.5 λψ 10

ηx 1 ηφ 1

ηy 1 ηθ 1

ηz 1 ηψ 1

ζx 27/31 ζφ 31/33

ζy 27/31 ζθ 31/33

ζz 21/25 ζψ 31/33

kcx 0.05 kcφ 0

kcy 0.05 kcθ 0

kcz 2.5 kcψ 0

2.4.1 Numerical Analysis of the Nominal Performance

To assess the performance of the nominal controllers, the system was first simulated

with no disturbance applied to the mass or inertial parameters of the quadrotor. In

order to assess the trajectory tracking capability of the quadrotor system, it was

tasked to follow a circular trajectory in 3D space at the z position of −1. The

integral of absolute error (IAE) was measured and the results are displayed in Table

2.3. The total IAE value is based on the euclidean distance between the desired

38



2.4. Simulation Results

trajectory and the actual position of the drone. The total IAE is calculated using

the equation

Total IAE =
√
IAEx

2 + IAEy
2 + IAEz

2. (2.70)

Table 2.3: IAE for quadrotor positions with no disturbance.

Integral of Control Systems

Absolute Error PID SMC FTSMC FTI-SMC

X Position (m) 1.2493 0.2767 0.2656 0.1835

Y Position (m) 2.0778 0.8736 0.8790 0.7631

Z Position (m) 0.7647 0.8697 0.5256 0.6046

Total (m) 2.5422 1.2634 1.0581 0.9908

From the simulation results of the nominal system displayed in Table 2.3, it

can be seen that FTI-SMC displays a superior response in the x and y positions of

the quadrotor when compared to FTSMC, SMC, and PID. As expected, all sliding

mode control systems display more accurate performance for trajectory tracking of

a quadrotor when compared to PID.

Figure 2.3 displays the position response of each control system when tasked

with following the desired circular trajectory.
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(a) (b)

Figure 2.3: Transient response of three control techniques following a circular

trajectory, with (a) displaying the x, y, and z response of the control systems,

and (b) displaying the three-dimensional trajectory of each control system.

From Figure 2.3, it can be seen that PID and FTSMC display an overshoot in

the y position of the quadrotor, with PID displaying the largest overshoot. All three

sliding mode controllers have good tracking, closely following the desired trajectory

once they have settled. FTSMC displays oscillatory behaviour while settling to the

desired trajectory on the y axis despite rigorous tuning of the control system. The y

axis demonstrates the worst overall performance for all control systems, which may

be due to the non-zero value of the desired yd position of the quadrotor. From Table

2.3 and Figure 2.3 it can be seen that FTI-SMC displays the best overall tracking,

most closely following the desired trajectory.

In order to assess the transient response of the control systems, FTI-SMC is

also compared to SMC and FTSMC by observing their sliding surfaces and control

inputs. The sliding surfaces for the position and attitude subsystems are shown in

figure 2.4. The control inputs for u1, u2, u3 and u4 are displayed in Figure 2.5.

When observing the sliding surface for SMC, FTSMC, and FTI-SMC, it can be

seen that both SMC and FTI-SMC control systems track a value of zero for the
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sliding surface for the attitude subsystem, while FTSMC shows weaker tracking of

a zero sliding surface value for the roll sliding surface. For the pitch and altitude

subsystems, a large initial spike is present in the sliding surfaces, which is quickly

corrected. This is due to the large difference between the initial values of y and z,

and the non-zero initial values of yd and zd. When observing the position subsystem,

oscillations are present in the sliding surface of FTSMC.

When observing the control inputs for each control system in Figure 2.5, it can be

seen that the u1, u2 and u3 control inputs display discontinuity with large oscillations

when using FTSMC, with no such discontinuity present in classical SMC or FTI-

SMC. Control input u4 displays similar performance between both PID, SMC, and

FTI-SMC, however, FTSMC displays oscillations once again. The discontinuities

in the control inputs of FTSMC may be present due to the implementation of a

switching function in the control law that contains the signum function. To help

alleviate the chattering phenomenon when implementing classical SMC, tanh was

used as an approximation for the signum function. While implementing FTI-SMC,

the use of an odd fractional power allows the removal of the signum function in the

control equations. Neither classical SMC nor FTI-SMC displays any discontinuity

in the sliding surfaces.

These results clearly show the advantage of FTI-SMC when compared to the

other control systems. FTI-SMC displays the best accuracy between the controllers

while also guaranteeing convergence in finite time without the introduction of

chattering, which is present in FTSMC.
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(a) (b)

Figure 2.4: Sliding surfaces for the nominal system, with (a) displaying the sliding x,

y, and z sliding surfaces, and (b) displaying the roll, pitch and yaw sliding surfaces.

(a) (b)

Figure 2.5: Control inputs for the nominal system. (a) displays all inputs from

t = 0s to t = 30s. (b) displays the transient control inputs from t = 3s to t = 30s.
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Table 2.4: Control efforts for each control system for the nominal system.

Control Control Systems

Effort PID SMC FTSMC FTI-SMC

u1 47.9907 47.9169 48.6062 48.0110

u2 0.1010 0.0012 0.0013 0.0013

u3 7.3499×10−4 0.0014 7.4370×10−4 0.0097

u4 7.5136× 10−6 8.9649× 10−6 1.7683× 10−5 2.9381× 10−5

Total 48.0925 47.9196 48.6083 48.0220

2.4.2 Numerical Analysis of the Robust Performance

The control systems were compared in the second scenario, where parametric

uncertainty and sensor noise were introduced. An increase was applied to the mass

m with ∆m = 0.0315kg, and an increase was applied to the Ixx and Iyy values where

∆Ixx = 0.0874 × 10−3kg.m2 and ∆Iyy = 0.1075 × 10−3kg.m2. The performance of

each controller was assessed while attempting to track the same desired trajectory

as in the nominal case.

Table 2.5: IAE for quadrotor positions with parametric disturbances and sensor

noise.

Integral of Control Systems

Absolute Error PID SMC FTSMC FTI-SMC

X Position (m) 1.2556 0.7264 0.6439 0.3723

Y Position (m) 2.1535 1.6580 1.3938 1.1020

Z Position (m) 15.6592 4.3996 0.6832 0.8216

Total IAE (m) 15.8564 4.7574 1.6805 1.4241

Here, the advantage of both finite time sliding mode controllers becomes
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apparent, as the IAE for both has very little increase in the x and y positions of the

quadrotor, while the performance of PID and classical SMC degrades. Furthermore,

PID and SMC develop steady-state error in altitude control of the quadrotor, while

FTSMC and FTI-SMC remain stable with no steady-state error. FTI-SMC shows

the least increase in total IAE, as well as the best overall performance in the presence

of uncertainties and sensor noise. Results in Figure 2.6 display how the quadrotor

handles these uncertainties while tracking the circular trajectory.

Here FTI-SMC once again shows its advantages, displaying improved overall ro-

bustness when compared to the other control systems, while maintaining guaranteed

convergence in finite time, with no introduction of chattering.

(a) (b)

Figure 2.6: Transient response of three control techniques following a circular

trajectory with parametric disturbances and sensor noise, with (a) displaying the x,

y, and z response of the control systems, and (b) displaying the three-dimensional

trajectory of each control system.

It can be seen from Figure 2.6 that both PID and SMC lose tracking performance

in the z position of the quadrotor, displaying steady state error. FTSMC and FTI-

SMC remain capable of tracking the desired altitude. The tracking performance of
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PID, SMC and FTSMC in the x and y axes degrades, with worse overall tracking,

and a slower settling time than the nominal case. When observing the graphs

there is very little change in the performance of FTI-SMC in the disturbed case

when compared to the nominal case, displaying improved robust performance over

FTSMC.

In order to assess the chattering response of the control systems in the presence

of parametric uncertainties, once again FTI-SMC is compared to SMC and FTSMC

by observing their sliding surfaces and control inputs. The sliding surfaces for the

position and attitude subsystems are shown in Figure 2.7. The control inputs for

u1, u2, u3 and u4 are displayed in Figure 2.8.

(a) (b)

Figure 2.7: Sliding surfaces with parametric disturbances and sensor noise, with (a)

displaying the sliding x, y, and z sliding surfaces, and (b) displaying the roll, pitch

and yaw sliding surfaces.
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(a) (b)

Figure 2.8: Control inputs with parametric disturbances and sensor noise. (a)

displays all inputs from t = 0s to t = 30s. (b) displays the transient control

inputs from t = 3s to t = 30s.

Table 2.6: Control efforts for each control system with parametric uncertainties and

sensor noise.

Control Control Systems

Effort PID SMC FTSMC FTI-SMC

u1 71.8612 71.8274 72.6131 71.8980

u2 0.1006 0.0023 0.0019 0.0014

u3 0.0011 0.0019 0.0011 0.0096

u4 1.2429× 10−4 1.7852× 10−4 1.3897× 10−4 2.6520× 10−4

Total 71.9630 71.8317 72.6162 71.9093

The sliding surfaces for FTI-SMC and SMC remain similar to the nominal

case, with slightly larger deviations around a zero value. The chattering present
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in FTSMC degrades further, with more severe oscillations present in the x, y and

roll sliding surfaces, and worse tracking of a zero value. When observing the control

inputs, the introduced sensor noise has a large impact on the smoothness of each

controller, and chattering becomes less apparent. However, clear oscillations are still

present in u3 when implementing FTSMC.

2.5 Experimental Results

In order to further test the validity of the developed control methods, the FTI-SMC

control system was implemented onto a Parrot Mambo Minidrone using the Parrot

Simulink Support Package. The Minidrone is equipped with an IMU, an Optical

Flow sensor, a sonar sensor, and a barometer. These sensors allow the quadrotor to

estimate the various states of the system. PID was once again used as a baseline for

comparison. To assess how finite-time convergence affects the quadrotor in a real

scenario, it was also compared against classical SMC.

Experimental testing of the quadrotor proved to be more difficult due to

the Parrot Mambo Minidrone sensor uncertainties. As the aim of this section

is to provides an analysis of the control system itself, and not the onboard

estimation system, the estimated states will be used as the ground truth values.

Additionally, there are many unmodeled uncertainties in the system, such as motor

dynamics, propeller dynamics, and power delivery inconsistencies. For these reasons,

performance for all controllers degrades when compared to the simulation.

It should be noted that the results in this section will also be affected by the

localisation performance of the Parrot Mambo Minidrone. By controlling states that

may not be accurately updated by the on-board localisation system, the system can

experience undesired behaviour. For example, latency in updating the measured

states can introduce oscillatory or sluggish behaviour. Additionally, these potential

delays and uncertainties are un-modelled in simulation. This can lead to large gaps

between simulation and real-world performance. Future work can aim to address
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this by repeating these experiments using more accurate ground truth methods such

as external motion capture systems.

Each controller was evaluated using a sequence of three step inputs applied to

the desired positions of the quadrotor. The following inputs were used as step inputs

to evaluate the performance of each controller:
t = 0, (xd, yd, zd) = (0, 0,−1.1).

t = 10, (xd, yd, zd) = (0.4,−1.1).

t = 20, (xd, yd, zd) = (0.4, 1,−1.1).

(2.71)

The results were recorded for the nominal system as well as in the presence of

parametric uncertainties. It should be noted that as these are experimental results

on a real quadrotor drone, sensor noise was present for both scenarios.

2.5.1 Experimental Results for the Nominal System

First, the experimental results were collected for the nominal system without any

parametric disturbance. The position response, attitude response and a 3D plot

of the quadrotor’s trajectory are shown in Figure 2.9, 2.10 and Figure 2.11. Table

2.7 displays the IAE for the x, y and z positions of the quadrotor following this

trajectory in experimentation.
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Figure 2.9: Position response of three control techniques in experimentation with a

sequence of step inputs.
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Figure 2.10: Attitude response of three control techniques in experimentation with

a sequence of step inputs.
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Figure 2.11: 3D position plot of three control techniques in experimentation with a

sequence of step inputs.

Table 2.7: IAE for quadrotor positions in experimentation.

Integral of Control Systems

Absolute Error PID SMC FTI-SMC

X Position (m) 3.9052 2.0150 1.1053

Y Position (m) 3.6566 2.1657 1.2623

Z Position (m) 5.5930 3.7717 4.5257

Total (m) 7.7397 4.7934 4.8267

From these results, we can see that in experimentation, both sliding mode

controllers have improved performance over PID for the nominal system. FTI-SMC

shows the best performance in control of the x and y positions of the quadrotor, with

good tracking ability. Looking at the response of the attitude subsystem, we also

see that FTI-SMC shows the best response for the control of yaw. When compared

to SMC, FTI-SMC also displays the least oscillatory behaviour when observing the
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roll and pitch response of the quadrotor. Finally, looking at the 3D plot in Figure

2.11, we can see that FTI-SMC displays the best overall trajectory tracking results

in experimentation.

2.5.2 Experimental Results with Parametric Uncertainties

As the next step, the same inputs are applied, however, now a small mass was

attached off-centre to the frame of the quadrotor. This mass offsets the balance

of the Minidrone, introducing ∆m, ∆Ixx, ∆Iyy and ∆Izz as unknown parametric

uncertainties. Results for the position and attitude response for each controller of

the quadrotor are displayed in Figure 2.12 and Figure 2.13 for each controller. Figure

2.14 displays the 3D trajectory of each controller under this disturbance. Table 2.8

displays the IAE for the x, y and z positions of the quadrotor.

Figure 2.12: Position response of three control techniques in experimentation with

a sequence of step inputs with parameter disturbance.
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Figure 2.13: Attitude response of three control techniques in experimentation with

a sequence of step inputs with parameter disturbance.
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Figure 2.14: 3D position plot of three control techniques in experimentation with a

sequence of step inputs with parameter disturbance.

Figures 2.12 and 2.14 display a clear problem with PID when parametric

uncertainties are applied to the quadrotor. After take-off, the y position of the

quadrotor experiences a large offset due to the off-centre mass attached to the

quadrotor. This is likely due to the integral term of the inner-loop control system

taking a substantial amount of time to reject the unknown disturbance, as the

PID controller was tuned to display good performance in the nominal case. This

behaviour is unsuitable for safety-critical industries such as the nuclear industry as

there can often be unpredictable disturbances that cause the quadrotor to operate

outside of its narrow operating range. Classical SMC also displays an offset after

take-off but more quickly rejects the disturbance. FTI-SMC displays improved

robust performance compared to both PID and classical SMC and is able to quickly

reject the parametric disturbance.
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Table 2.8: IAE for quadrotor positions in experimentation with a disturbance in

parameters.

Integral of Control Systems

Absolute Error PID SMC FTI-SMC

X Position (m) 2.1726 3.2935 0.9579

Y Position (m) 5.8951 1.0049 1.5846

Z Position (m) 8.1491 5.5025 2.9664

Total (m) 10.2898 6.4911 3.4969

When parametric uncertainties are applied, it becomes clear that PID has less

robust performance when compared to SMC and FTI-SMC. Figure 2.12 and 2.14

display the unstable nature of PID in this scenario. SMC remains relatively stable,

although large oscillations become present. FTI-SMC displays the best performance

here, with stable transient response and good trajectory tracking capabilities. The

attitude response of the system under parametric uncertainties in Figure 2.13

displays larger oscillations in the roll and pitch angles of the quadrotor. Overall,

these results verify that FTI-SMC offers strong performance for applications in

quadrotor control, with improved performance over PID and SMC.

2.6 Conclusion

This chapter has provided a novel approach for full trajectory tracking and position

control of a quadrotor UAV in 3D space in the presence of nonlinear uncertainties

and disturbances using sliding mode control. The controller is designed on a basis

of integral sliding mode control to improve the robustness of the controller against

disturbance and nonlinear uncertainties in the reaching phase. To alleviate the effect

of chattering, a finite-time approach is proposed using an odd fractional power in

conjunction with the integral sliding mode control. Further to numerical simulation,
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the controller was implemented onto a Parrot Mambo Minidrone to evaluate the

effectiveness of the controller against PID and SMC control in practice. Both

simulation and experimental results validate the performance of this new controller,

with FTI-SMC showing more accuracy and robustness over other controllers while

avoiding chattering. This robust, accurate, and chattering-free qualities of the

proposed control system make it an ideal controller for quadrotor control in safety-

critical nuclear environments.

The FTI-SMC control system designed in this chapter is formulated in continuous

time. While this is ideal for theoretical analysis, it is unrealistic, as real-world

systems use sensors which have discrete sampling rates. Discrete sampling can

reintroduce issues such as chattering that this chapter specifically aims to solve.

Additionally, nuclear legacy sites are often GPS-denied and require localisation

solutions that provide discrete measurements of the quadrotor’s pose. To address

these issues, the next chapter aims to design and investigate the use of a sliding

mode control system developed in the discrete domain, and provide a comparison

against continuous methods.
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Chapter 3

Discrete-time Sliding Mode

Control for Quadrotor Systems

3.1 Introduction

In the nuclear industry, many of the applications of UAV technology are aimed at

indoor use. Therefore, implemented UAV systems must be able to operate without

the use of a Global Positioning System (GPS). For this reason, other positioning

methods using visual data must be implemented. One example of a system used is

Simultaneous Localisation and Mapping (SLAM), in which different visual sensors,

such as LiDAR and cameras, are used to position the quadrotor in space while

mapping the environment [3], [103], [105]. Most notably, Hector SLAM uses a 2D

LiDAR and on-board computational technology to position a quadrotor in space

[106].

With the advent of cyber-physical systems and networked control technologies

in the design of industrial autonomous systems in general and in the nuclear

industry in particular, the use of sampled-data control methods has gained increasing

popularity. In the field of robotic control for real-time implementation of such

systems, implementing a fixed sampling time is necessary for periodic transmission

of sensors’ data and execution of the control signals through the actuators. For
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example, in SLAM-based control systems, the publishing rate of the position

estimate can vary greatly depending on the type of sensors. Intel Realsense depth

cameras have the ability to operate between 6 Hz and 90 Hz, while various 2D

LiDAR scanners used for SLAM can vary between 5 Hz and 50 Hz [123]–[125].

In these scenarios, when the update rate of the estimated position of a robot is

slower, discretisation of the designed continuous-time SMC will not show the same

performance as expected due to the long sampling period. Instead, implementing

the controller in the discrete domain from the beginning should allow for improved

robust stability and performance compared to the continuous-time design. A

discrete-time multi-channel SMC is developed in another study for position and

attitude control of a quadrotor for a time-invariant set-point [70]. Another study

combines a discrete-time SMC with a disturbance observer. This control system

provides excellent tracking and robustness in the presence of disturbances and

uncertainties [126]. One alternative approach to discrete-time methods is an event-

triggered approach, which is primarily used due to the resource-constrained nature

of robotic applications [117], [127], [128].

This chapter builds on the previous chapter and related paper on the development

of robust control algorithms for quadrotor UAVs in hazardous environments,

completed during the project [1]. In this paper, a nested chattering-free sliding

mode controller (CFSMC) was applied for position and attitude control of a

quadrotor UAV for use in hazardous environments with parametric uncertainties.

In the present chapter, a nested discrete-time sliding mode controller is designed

and developed for a quadrotor UAV for complete trajectory tracking control in

indoor hazardous environments. The results are compared with continuous-time

control methods, including classical SMC as well as chattering-free SMC to highlight

practical issues of implementing these controllers along with SLAM algorithms for

low sampling rates in a closed-loop system. The results confirm the improved

robustness of the proposed discrete-time method for both inner and outer-loop

control with hector SLAM in the loop when compared with the other two methods.
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This chapter presents work that has been completed during the PhD project.

The work has been peer-reviewed and was published following presentation of the

findings at a conference:

• A. Can, J. Price, and A. Montazeri, “A nonlinear discrete-time sliding mode

controller for autonomous navigation of an aerial vehicle using hector slam,”

IFAC-PapersOnLine, vol. 55, pp. 2653–2658, Oct. 2022, © 2022 IFAC. CC

BY-NC-ND 4.0. doi: 10.1016/j.ifacol.2022.10.110

This chapter slightly modifies some sections of the publication to fit the context of

the overall thesis.

The remainder of this chapter is organised as follows: The quadrotor model

is derived in Section 3.2, and the derivation of the proposed discrete-time sliding

mode controller is presented in Section 3.3; Section 3.4 discusses details surrounding

the implementation of Hector SLAM; and the proposed method compared with the

previous ones is studied in Section 3.5; finally, Section 3.6 will conclude the chapter.

3.2 Quadrotor Model

The design of a control system for the quadrotor first requires the derivation of the

mathematical model of the quadrotor. A simplified form of the continuous-time

quadrotor model, first shown in equations (2.10)-(2.15), is given in equation (3.1)

[1]. Variables [x, y, z] represent the position of the quadrotor in the world frame,

while [φ, θ, ψ] represent the roll, pitch and yaw angles of the quadrotor in the body

frame. The mass of the quadrotor is denoted by m. The moments of inertia are

represented by [Ixx, Iyy, Izz], while control inputs are represented by [u1, u2, u3, u4].
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

ẍ = (−cφcψsθ − sφsψ)u1
m
,

ÿ = (−cφsθsψ − cψsφ)u1
m
,

z̈ = g − cφcθ u1
m
,

φ̈ = (Iyy−Izz)×θ̇ ×ψ̇
Ixx

+ u2
Ixx
,

θ̈ = (Izz−Ixx)×φ̇ ×ψ̇
Iyy

+ u3
Iyy
,

ψ̈ = (Ixx−Iyy)×φ̇ ×θ̇
Izz

+ u4
Izz
,

(3.1)

where cφ = cos(φ) , sφ = sin(φ) and tφ = tan(φ).

In order to design a discrete-time control system, the continuous model of the

quadrotor must be converted into the discrete domain. Though a number of methods

for discretisation exist, this chapter will use the forward-Euler method shown in

equation (3.2).

ẋk =
xk+1 − xk

T
. (3.2)

Variable T denotes the sample time of the discrete system. The discrete-time

quadrotor model is therefore calculated using equation (3.2) to give the set of system

equations in (3.3) and (3.4).

xk+1 = xk + T ẋk,

ẋk+1 = ẋk + T (−cφkcψksθk − sφksψk)
u1,k
m
,

yk+1 = yk + T ẏk,

ẏk+1 = ẏk + T (−cφksθksψk − cψksφk)
u1,k
m
,

zk+1 = zk + T żk,

żk+1 = żk + T
(
g − (cφkcθk

u1,k
m

)
)
.

(3.3)
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

φk+1 = φk + T φ̇k,

φ̇k+1 = φ̇k + T (
(Iyy−Izz)θ̇kψ̇k+u2,k

Ixx
),

φk+1 = φk + T φ̇k,

θ̇k+1 = θ̇k + T (
(Iyy−Izz)φ̇kψ̇k+u3,k

Ixx
),

ψk+1 = ψk + T ψ̇k,

ψ̇k+1 = ψ̇k + T (
(Iyy−Izz)φ̇k θ̇k+u4,k

Ixx
),

(3.4)

where xk represents the variable x at time step k and xk+1 represents the variable

x one time step in the future. Using this set of discrete-time equations, a discrete-

time sliding mode controller can be developed [4].

3.3 Discrete-Time Sliding Mode Control

The task of control system design for quadrotor UAVs is challenging due to the

nonlinear, under-actuated, and coupled quadrotor dynamics [4]. In this section, a

discrete-time sliding mode controller (DTSMC) is designed.

Control systems used in modern robotics rely on sensor data for feedback of the

state variables. However, these sensors provide data that is inherently continuous-

time, but is discretised with a specific sampling period. The sensors therefore feed

discrete-domain data to the control system. The natural progression for these control

systems is, therefore, for them to be developed and implemented entirely in the

discrete domain. The control system developed in this section uses a nested, multi-

channel structure to allow for full position and attitude control of the quadrotor.

An inner-loop attitude control subsystem controls the roll, pitch and yaw of the

quadrotor. An outer-loop control system controls the position of the quadrotor by

generating desired angles for the attitude controller based on the position error. A

separate subsystem controls the altitude of the quadrotor.

61



Chapter 3. Discrete-time Sliding Mode Control for Quadrotor Systems

3.3.1 Attitude and Altitude Subsystems

The attitude subsystem controls the roll, pitch and yaw of the quadrotor, while

the altitude control system controls the height of the quadrotor. To derive these,

first, the sliding surface for each channel σs is defined at time step k in the discrete

domain.

σs,k = as(s
d
k − sk) + (ṡkd − ṡk) (3.5)

where sk and ṡk represent any variable and the rate of change of that variable at

time step k. sdk and ṡdk represent the desired value and rate of change of variables s

and ṡk at time step k. as is a tuning parameter. The sliding surface is then defined

at time step k + 1.

σs,k+1 = as(s
d
k+1 − sk+1)− (ṡdk+1 − ṡk+1) (3.6)

Next, a discrete-time reaching law proposed by [129] is implemented to force the

system to slide along sliding surface σ.

σs,k+1 − σs,k = −ηsTσs,k − ϵsTsgn(σs,k) (3.7)

ηs > 0, σs > 0, 1− ηsT > 0,

where ηs and ϵs are tuning parameters. sgn is the signum function. By substituting

equations (3.5) and (3.6) into (3.7), while using the discrete model in (3.3) and (3.4),

the control laws for inputs u1 to u4 at time step k can be derived.

u1,k =

(
m

cφkcθkT

)(
Tg + azz

d
k+1 − azT żk + żdk+1

−azzdk − żdk + (ηzσz,kT ) + (ϵzTsgn(σz,k))
)

(3.8)

u2,k =

(
Ixx
T

)(
− T

(
Iyy − Izz
Ixx

)
θ̇kψ̇k + aφφ

d
k+1

−aφT φ̇k − φ̇dk+1 − aφφ
d
k − φ̇dk + (ηφσφ,kT )

+(ϵφTsgn(σφ,k))

)
(3.9)
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u3,k =

(
Iyy
T

)(
− T

(
Izz − Ixx
Iyy

)
φ̇kψ̇k + aθθ

d
k+1

−aθT θ̇k − θ̇dk+1 − aθθ
d
k − θ̇dk

+(ηθσθ,kT ) + (ϵθTsgn(σθ,k))

)
(3.10)

u4,k =

(
Izz
T

)(
− T

(
Ixx − Iyy
Izz

)
φ̇kθ̇k + aψψ

d
k+1

−aψT ψ̇k − ψ̇dk+1 − aψψ
d
k − ψ̇dk

+(ηψσψ,kT ) + (ϵψTsgn(σψ,k))

)
(3.11)

From equation (3.8) it can be observed that the control law breaks down when

cφkcθk = 0. This can occur when either |φk| or |θk| is equal to π
2
rad. As |φk| or |θk|

approach π
2
rad, the control law u1,k approaches ∞. For this reason, the remainder

of this chapter assumes that the quadrotor is controlled within a reasonable angular

range of |φk| < π
2
rad, |ϑk| < π

2
rad.

3.3.2 Position Control Subsystem

The inner-loop subsystem allows control over the attitude and the altitude of the

quadrotor. In order to control the position of the quadrotor to allow control over all

six degrees of freedom, an outer-loop controller is developed that generates desired

angles based on the position error.

In the discrete-time position quadrotor model in (3.3), two new controller gains,

ux and uy, are substituted in.

ux,k = sφksψk + cφksθkcψk (3.12)

uy,k = −sφkcψk + cφksθksψk (3.13)
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This gives two new equations for the discrete time quadrotor model presented in

(3.3) . 

xk+1 = xk + T ẋk

ẋk+1 = ẋk + uxk
u1,kT

m

yk+1 = yk + T ẏk

ẏk+1 = ẏk + uy,k
u1,kT

m

(3.14)

By substituting equations (3.5) and (3.6) into (3.7), while using the new model

shown in (3.14), two new control laws for ux and uy can be derived.

ux,k =

(
m

T

)(
axx

d
k+1 − axT ẋk + ẋdk+1 − axx

d
k

−ẋdk + (ηxσx,kT ) + (ϵxTsgn(σx,k))
)

(3.15)

uy,k =

(
m

T

)(
ayy

d
k+1 − ayT ẏk + ẏdk+1 − ayy

d
k

−ẏdk + (ηyσy,kT ) + (ϵyTsgn(σy,k))
)

(3.16)

Values ux,k and uy,k can then be converted into φdk and θ
d
k using equations (3.17)

and (3.18). This can then be fed into the attitude control subsystem to allow full

control over the quadrotor’s position and attitude in 3D space.

φdk = arcsin
(
ux,k sin(ψk)− uy,k cos(ψk)

)
(3.17)

θdk = arcsin

(
ux,k cos(ψk) + uy,k sin(ψk)

cos(φk)

)
(3.18)

The diagram in Figure 3.1 displays the control diagram for the DTSMC system.
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Figure 3.1: Discrete time sliding mode control diagram for 6DOF control of a

quadrotor.

3.4 Hector SLAM

As this chapter does not contain experimental results, in an attempt to close the gap

between real-world and simulation, a SLAM state estimation system is used inside

of the Gazebo simulator. This allows the control systems to be tested with sensor

noise, and uncertainties in state-estimation, to provide more rigorous evidence of

the efficacy of the DTSMC system. Hector SLAM is a 2D SLAM method that relies

on laser scan data from a LiDAR sensor mounted to a robot [106]. Hector SLAM is

often used in aerial robotic applications, as it does not rely on odometry data from

the turning of wheels for localisation. Instead, it depends on LiDAR data and scan-

matching techniques to create a map and localise itself within that map. It achieves

this by creating an occupancy grid map of its environment from LiDAR data. It
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then finds the optimal robot pose that aligns the latest LiDAR scan with the stored

map using Gauss-Newton optimisation. Each cell in the occupancy grid stores a

probability value that the cell is occupied, allowing the map to be improved over

several iterations. Other benefits of Hector SLAM are its 360° capabilities due to

implementing LiDAR data over visual data, its increased computational efficiency,

and its increased range compared to 3D visual methods. As it inherently runs on

depth information, the map data can also be leveraged for obstacle avoidance and

path planning algorithms.

For positioning and localisation of the quadrotor, a 2D LiDAR was mounted to

the quadrotor frame in ROS and Hector SLAM was used. Rather than using ground

truth values for control, SLAM provides estimated values for the quadrotor’s position

in space [106]. A scan-matching technique matches LiDAR points to a previously

generated map. This is estimated using (3.19), where ξ = (x̂, ŷ, ψ̂)T , and ∆ξ is

calculated once per revolution of the 2D LiDAR when the map is updated.

ξk = ξk−1 +∆ξ (3.19)

where ∆ξ is calculated by optimizing the error between the current LiDAR points

and the generated map. The variables x̂, ŷ, and ψ̂ represent the estimated values of

x, y, and ψ respectively. In the following simulation section, the estimated position

values provided by hector SLAM are fed into each control system.

3.5 Simulation Results

3.5.1 Simulation Setup

Simulink and MATLAB were used to implement each control system, while the

Robot Operating System was used to implement the Hector SLAM algorithm.

Simulink was also used to read the quadrotor’s estimated states and communicate

control signals to ROS. A flow diagram demonstrating the communication between

ROS and Simulink is shown in Figure 3.2.
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Figure 3.2: Flow chart showing communication between ROS and Simulink.

ROS was used to simulate the quadrotor system to ensure that the testing of the

control systems was as accurate to life as possible. A quadrotor frame, equipped

with various sensors, was simulated inside an indoor world environment. Figure 3.3

shows the simulation of the quadrotor, as well as the visualised LiDAR data and

the map in the ROS software RViz.
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Figure 3.3: RViz software displaying quadrotor trajectory, laser scan data, and the

developed map.

In order to evaluate the performance of the discrete-time controller, it will be

compared against classical SMC as well as CFSMC in three scenarios. Firstly it will

be tested with a smaller sampling period of T = 0.01 seconds, then a larger sampling

time of T = 0.05 seconds, and finally a sampling time of T = 0.1 seconds. In each

scenario, the quadrotor was tasked to track a helical trajectory, with xd = 0.5 sin (t),

yd = 0.5 cos (t), and zd = 0.3 + t
25
, where t represents the current simulation time.
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Table 3.1: Control parameters used in simulation for (a) SMC, (b) CFMSC, and (c)

DTSMC control systems.

(a)

µx 0.7

µy 0.7

µz 16

λx 2.8

λy 2.8

λz 10

µφ 35

µθ 35

µψ 2.8

λφ 1.6

λθ 1.6

λψ 0.7

(b)

µx 0.9 µφ 3

µy 0.9 µθ 3

µz 10 µψ 3

λx 1.2 λφ 3

λy 1.2 λθ 3

λz 20 λψ 3

ηx 0.9 ηφ 0.8

ηy 0.9 ηθ 0.8

ηz 10 ηψ 0.8

αx/βx 11/15 αφ/βφ 15/17

αy/βy 11/15 αθ/βθ 15/17

αz/βz 13/17 αψ/βψ 15/17

(c)

αx 1.2 αφ 5

αy 1.2 αθ 5

αz 6 αψ 5

ηx 1.5 ηφ 8

ηy 1.5 ηθ 8

ηz 15 ηψ 8

ϵx 0.01 ϵφ 0.01

ϵy 0.01 ϵθ 0.01

ϵz 0.01 ϵψ 0.01

3.5.2 Numerical Results

The sampling rate of the sensors within ROS, the control system in Simulink, and

the rate at which commands were published from Simulink to ROS were each set

to the desired sampling rate in order to test each control system[4]. The integral of

absolute error (IAE) was measured to evaluate and compare the performance of each

controller. Figures 3.4 to 3.7 demonstrate the performance of the quadrotor following

the trajectory, with each control system implemented at three sample times, from

T = 0.01 to T = 0.05 seconds respectively. Table 3.2 displays and compares the

integral of absolute error for each control system at each sample time.
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Figure 3.4: Position response of all control systems with a sampling time of 0.01s.

Figure 3.5: Attitude response of all control systems with a sampling time of 0.01s.

Due to the robust nature of sliding mode control, all three control systems display

strong performance with a smaller sampling time of 0.01 seconds. DTSMC offers
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comparable performance to classical SMC for control of the X and Y position of the

quadrotor. DTSMC also displays slightly worse performance in the control of the

Z position of the quadrotor. CFSMC displays the best control over the Y position

of the quadrotor, while performing slightly worse than SMC and DTSMC in the

control over the X position.

Figure 3.6: Position response of all control systems with a sampling time of 0.05s.
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Figure 3.7: Attitude response of all control systems with a sampling time of 0.05s.
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Table 3.2: IAE for quadrotor positions for each sample time T .

Integral of Control Systems

Absolute Error SMC CFSMC DTSMC

T = 0.01 seconds

X Position 0.3147 0.4382 0.3457

Y Position 1.1046 0.9495 1.1204

Z Position 0.0759 0.0935 0.1630

Total 1.4952 1.4812 1.6291

T = 0.05 seconds

X Position 1.0590 1.3213 0.3944

Y Position 1.4730 1.3058 1.0573

Z Position 0.0942 0.1328 0.1827

Total 2.6262 2.7599 1.6344

T = 0.1 seconds

X Position Fail Fail 0.8995

Y Position Fail Fail 1.1565

Z Position Fail Fail 0.0931

Total - - 2.1491

When the sampling time is increased to T = 0.05 seconds, both classical SMC

and CFSMC display a deterioration in controller performance. The mean increase in

IAE between T = 0.01 and T = 0.05 for position error of the quadrotor using SMC

and CFSMC is 75.6% and 86.3% respectively. The mean increase in position error of

the quadrotor using DTSMC is 0.33%. These results suggest that continuous sliding

mode control methods such as classical SMC and CFSMC are not robust against

changes in sample time on discrete systems. Meanwhile, the discrete-time sliding

mode controller developed in this study demonstrates robustness against an increase

in sample time, and shows far better performance than both continuous methods at
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a larger sample time of 0.05 seconds. Both SMC and CFSMC displayed overshoot

when the sampling time was increased, while DTSMC did not. Furthermore,

increasing the sample time to T = 0.1 seconds caused both continuous control

methods to fail, while DTSMC remained stable.

In the case of attitude response, SMC and CFSMC both display oscillatory

behaviour when the sampling time is increased, while DTSMC has a stable transient

response. SMC also displays steady-state error for the quadrotor’s yaw.

3.6 Conclusion

In this chapter, a robust control system was developed in the discrete domain

for complete trajectory tracking control of a quadrotor in 3D space. All three

controllers displayed robust and accurate trajectory tracking performance in indoor

environments when the sampling time was negligible. However, discrete-time sliding

mode control provides a far more suitable option for scenarios where the sampling

time of a system is larger, such as when autonomous SLAM is used for on-board

localisation in GPS-denied nuclear legacy sites.

As the control system designed in this chapter implements a cascaded approach

to the control system design, the inner and outer loops are modular. The following

chapter aims to build on the work completed in this chapter by replacing the outer

loop control system with a robust multi-agent control system based on DTSMC and

consensus control. By extending the DTSMC algorithm developed in this chapter to

the multi-agent case, the following chapter aims to provide a robust control strategy

for the formation control of multiple quadrotors. This is particularly beneficial for

the nuclear industry, as multi-quadrotor systems could be deploying for more efficient

mapping and characterisation of hazardous and inaccessible areas of nuclear legacy

sites.

74



Chapter 4

Discrete-time Sliding Mode

Formation Control for

Multi-Quadrotor Systems

4.1 Introduction

A Cyber-Physical System (CPS) based on a multi-quadrotor platform must be

capable of autonomous movement around unknown areas. Modern research has

provided insight into various methods to control these multi-quadrotor systems.

Multi-agent control problems include the rendezvous problem, where a number of

agents meet at a common location [130], the formation problem, where a multi-agent

network must maintain a desired formation [131], and the flocking problem, where

multiple agents must mimic the flocking behaviour displayed in nature in birds [132].

This chapter addresses the formation problem for a multi-agent system of

networked quadrotors. Several methods have been proposed to solve the formation

problem in quadrotors. In one paper, the authors propose a linear PID controller

alongside a leader-follower network structure to solve the formation problem

[133]. While PID can be robust, quadrotors are complex systems comprised of

nonlinear and under-actuated coupled dynamics that can be exposed to parametric
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uncertainties and disturbances, in which case a more robust control algorithm may

be necessary. Another paper proposes a robust control approach to solve the

formation problem based on sliding-mode control [134]. In the paper, a group of

quadrotors could maintain formation while a load is suspended from the quadrotors

in simulation. This was compared to linear methods, such as a linear control system

using LQR-PID control and was shown to be superior. In another paper, adaptive

control is proposed to solve the formation problem in the presence of parametric

uncertainties [114]. The paper successfully developed an algorithm that estimates

the parameters of each quadrotor while controlling the formation of quadrotors.

The aim of this chapter is to extend current research by developing a discrete-

time sliding mode control system for the formation control of a number of quadrotor

agents in a network and validate its efficacy for implementation in hazardous,

complex, and dynamic indoor nuclear environments. By designing the controller

in the discrete domain, the chapter aims to reduce the negative effects present when

sampling at lower sampling rates.

This chapter extends published work completed during the PhD project. The

work was peer-reviewed and published following a presentation of the findings at a

conference:

• A. Can, J. Price, and A. Montazeri, “Robust formation control and trajectory

tracking of multiple quadrotors using a discrete-time sliding mode control

technique,” IFAC-PapersOnLine, vol. 55, pp. 2974–2979, Oct. 2022, © 2022

IFAC. CC BY-NC-ND 4.0. doi: 10.1016/j.ifacol.2022.10.184

Parts of the published paper, such as the introduction and problem statement, have

largely been reused in this chapter. The chapter significantly extends the published

work by expanding the controller to the complete trajectory tracking case, with

control over the x, y, and z axes. The work has also been updated to include a

rigorous robustness proof of the multi-agent control system. Numerical results are

also provided in the presence of simulated external disturbances. Most notably, the

proposed discrete-time sliding mode formation control algorithm was implemented
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experimentally to validate the robustness proof and the numerical results.

The structure of the chapter is organised as follows: the multi-agent control

problem is formulated in Section 4.2; a robust discrete-time formation control

algorithm is proposed in Section 4.3; Section 4.4 presents the simulation results

for a nominal system and in the presence of simulated wind disturbance; Section

4.5 presents an experimental framework and validates the proposed algorithm in the

real-world case; Section 4.6 provides a discussion of the findings of the chapter.

4.2 Problem Formulation

The following problem statement has been adapted from the original conference

paper [5] and has been extended to include additional dynamics for distributed 6

DoF control over the quadrotors.

4.2.1 Discrete-time Quadrotor Model

The discrete-time quadrotor model in equations (3.3) to (3.4) is rearranged to

provide the two following subsections of the quadrotor model that can be used

for multi-agent control. The first block (4.1) provides the states that can controlled

with an outer-loop multi-agent control system, while the second block (4.2) provides

the states that can be controller by an inner-loop controller onboard each quadrotor.

xk+1 = xk + T ẋk,

ẋk+1 = ẋk + T (cφkcψksθk + sφksψk)
u1,k
m
,

yk+1 = yk + T ẏk

ẏk+1 = ẏk + T (cφksθksψk − cψksφk)
u1,k
m
,

zk+1 = zk + T żk,

(4.1)
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

φk+1 = φk + T φ̇k,

φ̇k+1 = φ̇k + T (
(Iyy−Izz)θ̇kψ̇k+u2,k

Ixx
),

φk+1 = φk + T φ̇k,

θ̇k+1 = θ̇k + T (
(Iyy−Izz)φ̇kψ̇k+u3,k

Ixx
).

żk+1 = żk + T
(
g − (cφkcθk

u1,k
m

)
)
,

ψk+1 = ψk + T ψ̇k,

ψ̇k+1 = ψ̇k + T (
(Ixx−Iyy)φ̇k θ̇k+u4,k

Izz
).

(4.2)

The outer-loop position subsystem is shown in equation (4.1) and presents the

x, y, and z dynamics of a quadrotor. The inner-loop roll and pitch dynamics are

presented in equation (4.2). The positions of the quadrotor in space at time step k

are given by xk, yk, and zk, while the velocities of the quadrotor are given by ẋk,

ẏk, and żk. The roll, pitch and yaw of the quadrotor and its angular velocities are

given by φk, θk, ψk, φ̇k, θ̇k, and ψ̇k, respectively. The subscript k + 1 is used to

denote the values at the next time step T . The gravity acting on the quadrotor is

given by g, while m represents the mass of the quadrotor. The diagonal components

of the inertial matrix acting on the quadrotor are given by Ixx, Iyy, and Izz. The

control inputs to the system are thrust and torques around the x y and z axes of

the quadrotor and are given by u1,k, u2,k, u3,k, and u4,k respectively. For brevity, cos

and sin are substituted with c and s.

Graph theory can be used to describe the communication topology between the

agents. The following section provides preliminary information on graph theory and

provides error terms used for deriving a control algorithm for the formation control

of a multi-agent quadrotor system [5].

Definition 1. A directed graph G = {V,E,A} contains a set of nodes V ∈ Rn,

where each node represents an agent in the network, n is the total number of agents,

and a set of directed edges E ∈ V×V, representing the communication link between
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two agents in the network. The matrix A = [aij] ∈ Rn×n is the adjacency matrix of

graph G such that


aij = 0 if i = j

aij = 1 V i has a directed connection to V j

aij = 0 otherwise

Furthermore, as the communication topology can be time-varying, graph G ∈ Ĝ

where Ĝ = [G1, G2, ...] is a set of all possible graphs containing a spanning tree. At

any time-step k, graph G can be one of any of the possible graphs in the set Ĝ.

The Laplacian matrix of graph G is a matrix representing the graph’s structure

and communication properties and is given by L = D−A, L,D,A ∈ Rn×n, where

D is the degree matrix of graph G.

For the purpose of formation control, we take the dynamics of the outer-loop

position subsystem only. The set of equations in (4.1) can be converted into the

state-space form to describe the position dynamics of each agent i in the network.

ηi1,k+1 = ηi1,k + Tηi2,k,

ηi2,k+1 = ηi2,k + T (f i(ηik) + gi(ηik)u
i
k + δik).

(4.3)

ηik =

ηi1,k
ηi2,k

 , (4.4)

where ηi1,k = [xik yik zik]
⊤, ηi1,k ∈ R3 represents the state vector of the

system indicating the position of the quadrotor for each agent i. The vector

ηi2,k = [ẋik ẏik żik]
⊤, ηi2,k ∈ R3 is the state vector of the system indicating the

velocities of the quadrotor for agent i. The position states and their derivatives are

concatenated into the vector ηik ∈ R6.

The vector uik = [ui1,k u
i
2,k, u

i
3,k, u

i
4,k]

⊤,uik ∈ R4. The functions f i : R6 → R3

and gi : R6 → R3×4 are nonlinear mappings that describe the system dynamics

and δik ∈ R3 represents an external matched disturbance acting on the positional
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subsystem of agent i. It is assumed that δik is bounded such that ∥δik∥∞ ≤ δmax,∀k ∈

N, ∀i.

The compact form for the dynamics of the graph is therefore:η1,k+1 = η1,k + Tη2,k,

η2,k+1 = η2,k + T (f(ηk) + g(ηk)uk + δk),

(4.5)

ηk =

η1,k

η2,k

 , (4.6)

where the vector ηk ∈ R6n contains the position and velocity components. The

state vectors of the system in (4.5) are defined as η1,k = [η1⊤

1,k,η
2⊤

1,k, ...,η
n⊤

1,k]
⊤,

η1,k ∈ R3n and η2,k = [η1⊤

2,k,η
2⊤

2,k, ...,η
n⊤

2,k]
⊤,η2,k ∈ R3n. The input vector is

defined as uk = [u1⊤

k ,u2⊤

k , ...,un
⊤

k ]⊤,uk ∈ R4n. The state transition vector

f(ηk) = [f1(η1
k)

⊤, f2(η2
k)

⊤, ..., fn(ηnk)
⊤]⊤, f(ηk) ∈ R3n and the state input matrix

g(ηk) = diag[g1(η1
k)

⊤,g2(η2
k)

⊤, ...,gn(ηnk)
⊤]⊤,g(ηk) ∈ R4n×3n. Finally the matched

disturbance vector is mapped using δk = [δ1⊤

k , δ2⊤

k , ..., δn
⊤

k ]⊤, δk ∈ R3n.

The dynamics of the virtual leader can be taken as the desired trajectory for the

centre of the formation of the quadrotors and thus can be represented asη0
1,k+1 = η0

1,k + Tη0
2,k,

η0
2,k+1 = −c1η0

1,k − c2Tη
0
2,k + c1η

d0
1,k + c2Tη

d0
2,k,

(4.7)

where agent 0 is considered the virtual leader of the system with the same states

as the other agents in the system. Scalar values c1 ∈ R and c2 ∈ R are gains to be

designed. ηd01,k is the desired position for η0
1,k, and ηd02,k is the desired velocity for

η0
2,k.

Furthermore, for the purpose of formation control, the term ∆ηi1,k = [∆xik ∆y
i
k ∆z

i
k]

⊤,

∆ηi1,k ∈ R3 is introduced as the desired distance of agent i from the position of

agent 0 or leader x0. The term ∆ηi2,k = [∆ẋik ∆ẏik ∆żik]
⊤, ∆ηi2,k ∈ R3 is the rate

of change of positions in the formation. The formation is considered time-varying if

any element in ∆ηi2,k is non-zero.
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Definition 2. Assuming that the virtual leader 0 is the centre of the formation, the

quadrotor swarm has achieved formation if the following limits are satisfied:limk→∞(ei1,k) = 0, ∀i,

limk→∞(ei2,k) = 0, ∀i,
(4.8)

where

ei1,k =
∑
j∈nj

aij(ηj1,k −∆ηj1,k − ηi1,k +∆ηi1,k)

+bi(η0
1,k − ηi1,k +∆ηi1,k), (4.9)

ei2,k =
∑
j∈nj

aij(ηj2,k −∆ηj2,k − ηi2,k +∆ηi2,k)

+bi(η0
2,k − ηi2,k +∆ηi2,k). (4.10)

Here, ei1,k ∈ R3 contains the x, y and z components of the position error dynamics,

and ei2,k ∈ R3 contains the x, y and z components of the velocity error dynamics.

The term bi is the scalar components of the diagonal matrix B ∈ Rn×n for each

agent, where bi = 1 if agent i is directly connected to the virtual leader 0, otherwise

bi = 0.

From equations (4.9) and (4.10), the compact form of the error dynamics can be

derived for each position channel of the quadrotor agents.

e1,k = −
(
(L+B)⊗ In

)
(η1,k −∆η1,k − 1⊗ η0

1,k), (4.11)

e2,k = −
(
(L+B)⊗ In

)
(η2,k −∆η2,k − 1⊗η0

2,k), (4.12)

where e1,k ∈ R3n contains the error dynamics for x, y and z positions for each

quadrotor agent and e2,k ∈ R3n contains the error for each velocity in the x, y and

z directions for each agent. The Kronecker product is denoted by ⊗ and IN ∈ R3×3

is the identity matrix where N denotes the number of states.
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Remark 1. The position and velocity errors in equations (4.11) and (4.12) can

be broken down into their individual components by eliminating the Kronecker

product. For example, the compact form of the error dynamics for the x subsystem,

represented by e1,k,x ∈ Rn and e2,k,x ∈ Rn, can be expressed as

e1,k,x = −(L+B)(x1,k −∆x1,k − 1x0k), (4.13)

e2,k,x = −(L+B)(x2,k −∆x2,k − 1ẋ0k). (4.14)

At time step k, x1,k ∈ Rn holds the xik position of each agent i in the network, while

x2,k ∈ Rn contains the velocity ẋik of each agent. Additionally, ∆x1,k ∈ Rn and

∆x2,k ∈ Rn store the desired separation ∆xik for each agent and the rate of change

of that separation ∆ẋik respectively.

4.3 Robust DTSMC Based Formation Control

The DTSMC formation control inputs (4.15), developed in this section, can provide

outer loop control inputs for each agent i. The x and y axis control inputs can be

converted to desired angles using methods presented in Section 3.3.2. Equations

(3.17) and (3.18) are used to convert uix and uiy to desired angles φid and θ
i
d for each

agent i. Following this, a separate inner loop control system can be used to control

the attitude of each agent. In this chapter, the discrete-time attitude control system

designed in Section 3.3.1 is implemented as the inner loop controller. The altitude

of each agent in the system is controlled directly using the uiz control input from

(4.15).

Theorem 2. A robust formation control algorithm is proposed for each agent i.

uik =

(
1

(di + bi)T

)
(gi(η

i

k))
−1

[
− (di + bi)(ηi2,k + f(ηik)T )+∑

j∈nj

aij
(
ηj2,k+1 −∆ηj2,k+1 +∆ηi2,k+1

)
+ bi

(
η0
2,k+1 +∆ηi2,k+1

)
+

αi(ei1,k+1)− (1− µiT )σi
k + ϵisgn(σi

k)T

]
. (4.15)
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Here, µi
k ∈ R3×3 is a diagonal matrix of design parameters µix,k, µ

i
y,k and µiz,k where

each µik > 0, µik < 2 . Matrix ϵik ∈ R3×3 is a diagonal matrix of design parameters

ϵix,k, ϵ
i
y,k and ϵ

i
z,k where each ϵ

i
k > 0. The global form of the formation control protocol

is given by

uk =
1

T
g(ηk)

−1

(
−
(
(L+B)⊗ In

)−1
[(

(L+B)⊗ In

)(
η2,k + T f(ηk)−∆η2,k+1−

1⊗η0
2,k+1

)
+ (1− µT )σk − ϵTsgn(σk)−α(e1,k+1)

]
.

(4.16)

For the multi-UAV system presented by (4.5) and (4.6) and the virtual leader

presented by (4.7), the formation control protocol (4.16) results in the convergence

of the multi-UAV system to the desired formation determined by (4.8) to (4.10) ∆ηk

around the virtual leader (4.7).

Proof. A sliding surface is selected for the networked system.

σk = α(e1,k) + e2,k, (4.17)

where σk ∈ R3n contains the sliding surface σi
k for each agent i. σi

k =

[σix,k, σ
i
y,k, σ

i
z,k]

⊤ ∈ R3 contains the individual sliding surfaces for the x, y, and z

axes of the quadrotor model. Matrix α ∈ R3n×3n is a diagonal matrix of control

parameters for each agents x, y, and z terms. For this proof, each σix,k, σ
i
x,k and

σix,k term can be represented by the term σis,k for brevity. The same holds true for

tuning parameters µis, ϵ
i
s, and disturbance term δis.

The stability of the networked system can be analysed using the following

Lyapunov Candidate function.

Vk =
1

2
σT
kσk. (4.18)

Separating this into the components for each agent gives

Vk =
1

2

n∑
i=1

σis,k
2. (4.19)
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To guarantee robust stability, ∆Vk < 0 must be satisfied for each discrete increment.

∆Vk = Vk − Vk+1 < 0. (4.20)

∆Vk =
1

2

n∑
i=1

(
σis,k+1

2 − σis,k
2
)
. (4.21)

Using the difference of squares gives the following result.

∆Vk =
1

2

n∑
i=1

(
σis,k+1 + σis,k

)(
σis,k+1 − σis,k

)
. (4.22)

From equation (4.22), it can be seen that the system is stable in two cases.

Case 1: (
σis,k+1 − σis,k

)
> 0,

(
σis,k+1 + σis,k

)
< 0, ∀ i. (4.23)

Case 2: (
σis,k+1 − σis,k

)
< 0,

(
σis,k+1 + σis,k

)
> 0, ∀ i. (4.24)

The global sliding surface at time step k + 1 is given by

σk+1 = α(e1,k+1) + e2,k+1. (4.25)

Substituting e2,k+1 with the propagated error dynamics from (4.12) gives

σk+1 = α(e1,k+1)−
(
(L+B)⊗ In

)
(η2,k+1 −∆η2,k+1 − 1⊗η0

2,k+1). (4.26)

Substituting η2,k+1 with the multi-agent dynamics (4.5) gives

σk+1 = α(e1,k+1)−
(
(L+B)⊗In

)
(η2,k+T (f(ηk)+g(ηk)uk+dk)−∆η2,k+1−1⊗η0

2,k+1).

(4.27)

Substituting in global control protocol (4.16) and cancelling terms gives

σk+1 = (1− µT )σk − ϵTsgn(σk)−
(
(L+B)⊗ In

)
Tδk. (4.28)

The equivalent sliding surface for a single agent is given by

σis,k+1 = (1− µisT )σ
i
s,k − ϵisTsgn(σ

i
s,k) +

∑
j∈nj

aij(δis,k − δjs,k) + biδis,k). (4.29)
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For Case 1, substituting σis,k+1 into the first part of equation (4.23) gives

(1− µisT )σ
i
s,k − ϵiTsgn(σis,k) +

∑
j∈nj

aij(δs, ki − δjs,k) + bi(δs, ki)− σis,k > 0. (4.30)

When σis,k < 0 the above stability condition can be rearranged as

−µisTσis,k + ϵisT +
∑
j∈nj

aij(δs, ki − δjs,k) + bi(δs, ki) > 0. (4.31)

The most extreme disturbance on the system in this case is when δs, ki = δmax and

δjs,k = −δmax. Substituting the most extreme case for the disturbance into equation

(4.31) gives

−µisTσis,k + ϵisT − (2di + bi)δmax > 0. (4.32)

Inequality (4.32) always holds true as long as the gains are designed such that

ϵis > (2di + bi)δmax. (4.33)

Substituting σis,k+1 into the second part of equation (4.23) gives

(1− µisT )σ
i
s,k − ϵisTsgn(σ

i
s,k) +

∑
j∈nj

aij(δs, ki − δjs,k) + bi(δs, ki) + σis,k < 0. (4.34)

When σis,k < 0 the above stability condition can be rearranged as

(2− µisT )σ
i
s,k + ϵisT +

∑
j∈nj

aij(δs, ki − δjs,k) + bi(δs, ki) < 0. (4.35)

The most extreme disturbance on the system here is when δs, ki = −δmax and

δjs,k = δmax. Substituting the most extreme case for the disturbance into equation

(4.34) gives

(2− µisT )σ
i
s,k + ϵisT + (2di + bi)δmax < 0. (4.36)

From equation (4.36), the lower bound of a Quasi-Sliding-Mode Band (QSMB) can

be found as

σis,k <
−ϵisT − (2di + bi)δmax

2− µisT
. (4.37)
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For Case 2, substituting σis,k+1 into the first part of equation (4.24) gives

(1− µisT )σ
i
s,k − ϵiTsgn(σis,k) +

∑
j∈nj

aij(δs, ki − δjs,k) + bi(δs, ki)− σis,k < 0. (4.38)

When σis,k > 0 the above stability condition can be rearranged as

−µisTσis,k − ϵiT +
∑
j∈nj

aij(δs, ki − δjs,k) + bi(δs, ki) < 0. (4.39)

In this case, the most extreme disturbance is found when δs, ki = δmax and δjs,k =

−δmax. Therefore, the inequality in equation (4.39) always holds true as long as

ϵis > (2di + bi)δmax. (4.40)

Substituting σis,k+1 into the second part of equation (4.24) gives

(2− µisT )σ
i
s,k − ϵisTsgn(σ

i
s,k) +

∑
j∈nj

aij(δs, ki − δjs,k) + bi(δs, ki) > 0. (4.41)

When σis,k > 0 the above stability condition can be rearranged as

(2− µisT )σ
i
s,k − ϵisT +

∑
j∈nj

aij(δs, ki − δjs,k) + bi(δs, ki) > 0. (4.42)

Here, the most extreme disturbance is found when δs, ki = −δmax and δjs,k = δmax.

Rearranging (4.42) gives the upper bound of the QSMB as

σis,k >
ϵisT + (2di + bi)δmax

2− µisT
. (4.43)

This proof demonstrates the stability of the networked system and shows that

the system converges to the QSMB shown by bounds in equations (4.37) and (4.43).

The robust stability of the system is guaranteed if control term ϵ dominates the

disturbances of the networked system. This concludes the proof.

Interestingly, the QSMB can be reduced by increasing the sampling rate of the

discrete-time system. The stability proof also shows that the effects of disturbance

on the system can be limited by reducing the number of neighbours j per agent

i. Therefore, to ensure the best controller performance, the sampling rate should
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be reduced and the number of neighbouring agents limited. Finally, by reducing

the number of neighbours, (4.33) and (4.40) show that the magnitude of ϵ can be

reduced. A smaller value for ϵ would reduce the chattering present in the system by

decreasing the magnitude of the switching term.

4.4 Numerical Results

In this section the formation controller proposed in Theorem 2 is evaluated

numerically using MATLAB/Simulink simulation platform.

4.4.1 Simulation Design

The numerical simulation platform developed in this section simulates three

cooperative quadrotors. In this scenario, 3 quadrotors were tasked with tracking

a virtual leader. Assuming that the heading angles of each agent are aligned at time

step t = 0s, the desired yaw angle for each quadrotor is set to ψik,d = 0.

87



Chapter 4. Discrete-time Sliding Mode Formation Control for Multi-Quadrotor
Systems

Figure 4.1: Simulink block diagram for simulation of the DTSMC formation

controller.

A helical trajectory was selected to assess the performance of the multi-agent

system in simulation. The trajectory of the leader is described as

x0k = 0.5 sin(0.1kT ),

y0k = 0.5 cos(0.1kT ),

z0k = 0.02kT + 0.5.

(4.44)

A helical trajectory was used for the input from the virtual leader to assess the
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controller’s robust performance under a complex and continuously differentiable

trajectory. Additionally, the agents’ initial positions are out of formation to assess

the convergence performance of the multi-agent system. The initial position for each

agent is shown in Table 4.1

Table 4.1: Table of initial positions for each agent.

Axis Initial Position (m)

Agent 1 Agent 2 Agent 3

xk 2.0 -2.0 1.5

yk -1.0 -1.0 1.5

zk 0.0 0.0 0.0

An equilateral triangle was selected as a formation where the displacement from

the leader for each agent is described in Table 4.2.

Table 4.2: Reference formation for each agent.

Axis Reference Formation (m)

Agent 1 Agent 2 Agent 3

∆xk 1.0 -0.5 -0.5

∆yk 0.0 -0.866 0.866

∆zk 0.0 0.1 -0.1

Only Agent 1 receives information from the virtual leader to provide a more

realistic testing scenario. The communication topology implements a directed

spanning tree and is displayed in Figure 4.2.
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Figure 4.2: Graph showing communication topology between agents 1, 2, 3, and a

virtual leader 0.

The mass and inertial parameters selected for the simulation, based on the

parameters of a Crazyflie 2.0, are shown in Table 4.3 [135].

Table 4.3: Simulation parameters for each agent.

Parameter Values

Agent 1 Agent 2 Agent 3

mass (kg) 3.3× 10−2 3.3× 10−2 3.3× 10−2

Ixx (kg/m2) 1.40× 10−5 1.40× 10−5 1.40× 10−5

Iyy (kg/m2) 1.44× 10−5 1.44× 10−5 1.44× 10−5

Izz (kg/m
2) 2.17× 10−5 2.17× 10−5 2.17× 10−5
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Table 4.4: DTSMC control parameters for each agent.

Parameter Values

Agent 1 Agent 2 Agent 3

αx 5 5 5

αy 5 5 5

αz 5 5 5

µx 0.5 0.5 0.5

µy 0.5 0.5 0.5

µz 0.5 0.5 0.5

ϵx 0.1 0.1 0.1

ϵy 0.1 0.1 0.1

ϵz 0.1 0.1 0.1

αφ 16 16 16

αθ 16 16 16

αψ 3 3 3

ηφ 30 30 30

ηθ 30 30 30

ηψ 10 10 10

ϵφ 0.01 0.01 0.01

ϵθ 0.01 0.01 0.01

ϵψ 0.01 0.01 0.01

The simulation sample time was set to T = 0.01s for all simulations.

4.4.2 Simulation Results Under Nominal Conditions

The control system is first assessed under nominal conditions without any distur-

bance applied. The results were recorded in Simulink and plotted using MATLAB.
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Figure 4.3 displays the x, y and z response of each quadrotor, as well as the trajectory

of the virtual leader. The three-dimensional positions of each drone are plotted in

Figure 4.3(b).

(a) (b)

Figure 4.3: Trajectory response of the networked system following a virtual leader

with a helical trajectory, with (a) displaying the separate x, y, and z response, and

(b) displaying the three-dimensional trajectories.

From Figure 4.3(a), it is clear that the agents converge to the desired formation

around the virtual leader in under 10 seconds and track the virtual leader for the

duration of the flight. Each agent maintains the formation around the virtual leader

successfully, with no observed chattering in the position states. Agent 1 rapidly

converges to the desired position around the virtual leader, while Agent 2 and

Agent 3 experience a slight initial deviation on the y axis. This may be due to the

communication topology of the system, as only Agent 1 has access to the position

states of the virtual leader. Therefore, it is unlikely that this behaviour can be

improved with additional tuning. The dotted red line in Figure 4.3(b) connects the

final positions of each agent, showing the triangular formation.
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To show the transient response of a single UAV in this system, Figure 4.4 shows

the roll, pitch and yaw angles of Agent 1 over time.

Figure 4.4: Plot of the actual and desired attitude of Agent 1.

The thick lines in Figure 4.4 suggest the presence of rapid oscillations in control

input from the proposed control system. This could indicate the presence of

chattering in the control system. While this allows the system to accurately track

the virtual leader, this may be unfeasible for a quadrotor in the real world due to

motor or power supply constraints.

To assess the system’s stability, the error values in equations (4.11) and (4.12)

were plotted against time.
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(a) (b)

Figure 4.5: Position (a) and velocity (b) error plots for each agent for the x, y, and

z.

According to Definition 2, the system is stable if the error dynamics approach

0 as t approaches infinity. From Figures 4.5(a) and 4.5(b), it can be seen that this

condition is met for both the position and velocity error dynamics, ei1,k and ei2,k for

each agent i in the system. The system errors converge to zero by time t = 10s.

The error terms then remain around 0 for the duration of the flight, demonstrating

the controller’s performance in the nominal case.

The sliding surfaces can also observed to assess the stability of the networked

system. The sliding surfaces of the system are shown in Figure 4.6.
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Figure 4.6: Sliding surfaces on the x, y, and z axes for each agent.

From Figure 4.6, it can be seen that all sliding surfaces converge to 0 by time

t = 10s and remain there for the duration of the simulation. The initial sliding

surfaces at time t = 0s are non-zero due to the initial conditions of the quadrotors

being outside of the formation. To assess the chattering response, the transient

behaviour of the sliding surfaces can be observed by plotting a small portion of the

sliding surface after convergence. In Figure 4.7, the sliding surface is plotted over

the final 5 seconds of the flight, from t = 195s to t = 200s.
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Figure 4.7: Sliding surfaces on the x, y, and z axes for each agent from time t = 195s

to t = 200s, displaying the transient behaviour of the system after convergence.

From Figure 4.7, it can be seen that under the designed DTSMC formation

controller, the system experiences marginal stability after reaching the QSMB. After

converging to around zero, the transient response of the controller shows rapid

oscillations above and below the sliding surface, although the amplitude of these

oscillations is small and is unlikely to cause dramatic chattering in the nominal

case. To assess the feasibility of applying DTSMC formation control to a group

of quadrotors experimentally, the control gains must also be analysed. Figure 4.8

shows the control inputs uix, u
i
y, and u

i
z for each agent i in the system.
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Figure 4.8: inputs ux, uy, and uz for each agent.

From Figure 4.8, severe chattering can be seen again in the system. The

oscillations here have a small amplitude and are within a reasonable range to be

applied to an experimental system. However, it should be noted that these control

inputs can could lead to damage to actuators of the quadrotors.

4.4.3 Simulation Results in the Presence of Time-Varying

External Disturbances

The robust stability of the discrete-time sliding mode formation controller is further

assessed by analysing its performance in the presence of simulated disturbances.

The control system has been designed to reject matched disturbances applied to

the system. In a real-world scenario, these matched disturbances can represent

model uncertainties, load changes, unmodeled aerodynamic effects, or external wind
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disturbances.

Wind disturbance is simulated as a matched time-varying input on the accelera-

tion states in equation (4.5). Identical disturbance was applied to the x, y, and z axis

for each individual agent. The disturbance applied to each quadrotor is calculated

using

δk = A sin(ΩfkT ), (4.45)

where A is the amplitude of the disturbance, Ωf is the frequency of the oscillations

in rad/s, k is the sample, and T is the sample time in seconds.

Table 4.5: Disturbance parameters for each agent.

Agent Amplitude A Frequency Ωf (rad/s)

Agent 1 0.5 0.7

Agent 2 1.0 0.3

Agent 3 2.0 0.5

The evolution of the positions of each drone over 200 seconds is provided in

Figure 4.9.
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(a) (b)

Figure 4.9: Trajectory response of the networked system following a virtual leader

with a helical trajectory in the presence of simulated wind disturbance, with

(a) displaying the separate x, y, and z response, and (b) displaying the three-

dimensional trajectories.

Figure 4.9(a) demonstrates the effect of external disturbance on the position

states of the quadrotors over the duration of the simulation. Each agent was able to

maintain formation about the virtual leader in the presence of disturbances. This

shows the efficacy of the control system for formation control in windy environments.

Interestingly, from Figure 4.9(b), it can be seen that as the agents converge to the

desired formation, the position states remain smooth. However, once the agents

reach the desired formation, the position states appear noisy. This indicates the

presence of chattering in the system. To further investigate the chattering present

in the system, the desired and actual roll and pitch angles are plotted for Agent 1

in Figure 4.10.
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Figure 4.10: Plot of the actual and desired attitude of Agent 1 in the presence of

simulated wind disturbance.

From Figure 4.10, excessive chattering is present in the control system, indicated

by the thick band created by the desired roll angle. This larger band further shows

the marginal stability of the system within the QSMB. Interestingly, although the

yaw of each agent is not controlled by the DTSMC formation control system, it

still shows degradation due to chattering. This may be impacted by the discrete-

time implementation of the controller, as at each time step, a fixed control input is

applied to each motor of each agent.

To assess the system’s stability in the presence of external disturbances, the error

values in equations (4.11) and (4.12) were plotted against time.
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(a) (b)

Figure 4.11: Position (a) and velocity (b) error plots for each agent for the x, y, and

z in the presence of simulated wind disturbance.

Despite the presence of disturbances, the error terms for positions and velocities

are still able to converge towards zero, and remain around zero for the duration

of the simulation. The position terms show some deviation in error, along with

some oscillations. On the z axis, Agent 3 experiences a periodic divergence in the

position error. This may be due to Agent 3 experiencing the largest amount of

simulated disturbance. Furthermore, velocity errors experience large amounts of

rapid oscillations, which are likely caused by chattering. Regardless, the errors do

not diverge from zero for the duration of the simulation. From Definition 2, it can

be seen that the system is stable if errors e1 and e2 converge to zero. This suggests

that the system remains stable in the presence of external disturbances.

The sliding surfaces can also observed to assess the stability of the networked

system in the presence of disturbance. The sliding surfaces of the system are shown

in Figure 4.12.
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Figure 4.12: Sliding surfaces on the x, y, and z axes for each agent in the presence

of simulated wind disturbance.
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Figure 4.13: Sliding surfaces on the x, y, and z axes for each agent in the presence

of simulated wind disturbance from time t = 195s to t = 200s.

From Figures 4.12 and 4.13, the sliding surfaces converge to zero and rapidly

oscillate within the QSMB. The plots show periodic divergences in Agent 3’s z sliding

surface due to the large disturbances applied. However, the controller returns to the

sliding surface, rejecting the disturbance. This validates the claim that the designed

DTSMC formation control system is robust and marginally stable in the presence

of disturbances. The increased size of the QSMB is evident in Figure 4.13.
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Figure 4.14: Control inputs ux, uy, and uz for each agent in the presence of simulated

wind disturbance.

From Figure 4.14, the increased chattering is clear when disturbances are applied

to the system. While this works in simulation, real-world experimentation is required

to further validate the designed formation control system’s efficacy.

4.5 Experimental Validation

This chapter has shown that the designed DTSMC controller is robustly stable

through a rigorous stability proof, as well as in simulation. However, the simulation

raises some concerns surrounding the chattering phenomenon present in the control

system. To further validate the designed control system, this section applies the

controller to a real-world quadrotor swarm.

The Crazyflie 2.1 platform [136] was selected for real-world controller imple-
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mentation due to the access to the open-source software available for programming

the drones [137]. Additionally, an affordable external position system provides the

swarm with the sensor data required to undergo formation control. For spatial

positioning, each Crazyflie 2.1 was equipped with a Lighthouse Positioning Deck

[138]. Each deck is equipped with 4 infra-red (IR) receivers. These allow each

Crazyflie 2.1 to receive IR signals from 2 HTC Vive base stations to calculate their

pose. Figure 4.15 shows the drones that were used to complete the real-world testing.

Figure 4.16 shows one of the HTC Vive base stations placed in a corner of the

test area. The lighthouse positioning system was found to be suitable for research

applications, with a mean euclidean position error of 1cm during flight, with outliers

up to 5cm [139].

Figure 4.15: Three Crazyflie 2.1 nano quadrotors, equipped with Lighthouse

Positioning Decks, used for real-world testing.
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Figure 4.16: Photograph of the HTC Vive IR base station place in the test

environment.

A test environment was constructed at Lancaster University to fly the Crazyflie

2.1 network indoors safely. The testing environment consisted of an outdoor gazebo

surrounded by safety netting. A small entrance was cut into the safety netting to

allow access to the testing area. A ground station equipped with a radio transmitter

and receiver was placed next to the testing area to allow communication with each

Crazyflie 2.1 quadrotor. The test environment design is displayed in Figure 4.17,

and the final setup is shown in Figure 4.18.
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Figure 4.17: Diagram of formation control testing environment.

Figure 4.18: Formation control testing environment.

Due to radio communication constraints, only x and y position and velocity

data were able to be shared between each Crazyflie 2.1 Agent. For this reason,

the altitude of each drone was set to a fixed height during each test. The DTSMC

formation control system was used to generate desired roll and pitch angles that

were fed into the Crazyflie 2.1 internal PID controller.
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4.5.1 Results Under Nominal Conditions

The system was first tested without the presence of external disturbances. However,

the main difference between the simulation and the real-world implementation of the

control system was the presence of sensor noise, unmodeled dynamics, parameter

uncertainties, and external aerodynamic effects. These effects can significantly

impact the system and can be considered external disturbances. Additionally, as

the inner-loop attitude controller was not modified on the firmware, the default

Crazyflie PID attitude controller was used to control the attitude of each agent.

The virtual leader was set to follow a circular trajectory about the origin at a

fixed altitude. The trajectory is described as

x0k = 0.3 sin(4π(k−300
3000

)),

y0k = 0.3 sin(4π(k−300
3000

)),

z0k = 0.3,

(4.46)

where k is the current sample number. As we want to start the trajectory at

sample k = 300, this is removed from the value of k. To retain consistency with

the simulation, the same communication strategy from Figures 4.2 is implemented,

where agents only pass information down the directed spanning tree.

Figure 4.19(a) shows the three-dimensional trajectory of the quadrotors in space,

while Figure 4.19(b) shows the evolution of each agent’s trajectory alongside the

virtual leader over time t.
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(a) (b)

Figure 4.19: (a) A plot showing the three-dimensional trajectory of each agent

alongside the virtual leader and (b) a plot showing the evolution of each agent’s

trajectory over time t.

From Figure 4.19(a), the agents are shown to achieve formation after takeoff, and

maintain this formation around the virtual leader. The figure displays each agent’s

path in space, clearly showing the successful navigation of the circular trajectory

around the leader. The red line indicates the separation between each agent at the

final sample time. While the trajectory shows larger deviations and more noise when

compared with the simulation results, it is clear from the plot that the agents were

able to maintain the formation and did not diverge.

Figure 4.19(b) displays the position response of each agent over the time of

the flight. From the plots, it is clear that the agents converge to the desired

formation and remain in formation for the duration of the flight. Interestingly,

Agent 2 and Agent 3 maintain the desired separation from Agent 1. However,

Agent 1 experiences deviations in the desired separation from the virtual leader.

This suggests that while the desired controller can maintain the desired formation,

further tuning may be required to improve the tracking of the virtual leader. It
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should also be noted that, as Agent 1 is the only agent connected to the virtual

leader, the tracking of the formation may be further improved by experimenting

with alternative communication topology.

(a) (b)

Figure 4.20: Position (a) and velocity (b) errors for each agent in the formation

during real-world testing.

Figure 4.20 shows the position and velocity errors of each agent during the flight.

The position and velocity errors converge towards zero before time t = 5s and remain

around zero for full flight duration, demonstrating the stability of the system in a

real-world scenario. A sharp spike is present in the position error at time t = 25s

due to erroneous data from the positioning system. Omitting this data, the position

error does not exceed 0.16m for any agent in the system after converging. When

observing the velocity errors in Figure 4.20(b), the system displays larger oscillations

in error. The behaviour here may be due to chattering. In order to investigate this

further, the sliding surfaces and control inputs for each agent are plotted in Figure

4.21
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(a) (b)

Figure 4.21: (a) A plot displaying the sliding surfaces and (b) a plot displaying

the control inputs along each axis for each agent in the formation during real-world

testing.

Figure 4.21(a) shows that each agent’s sliding surface converges around the

QSMB for the x, y and z axis. This demonstrated the marginal stability of the

system in the real-world case. The sliding surfaces rapidly oscillate around a zero

value, displaying the chattering behaviour present when implementing DTSMC.

Regardless, this shows the stability of the system and further validates the presented

simulation results. The ux, uy, and uz control inputs for each agent in the system are

shown in Figure 4.21(b). These further display the presence of potential chattering

in the real-world implementation of the DTSMC formation controller. Despite

the chattering, the quadrotors remained stable during the flight, and there was

no obvious degradation in control due to the chattering present.
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4.5.2 Results in the Presence of Disturbance with a Static

Virtual Leader

This section presents the results obtained through real-world experimental testing

of the robust discrete-time sliding mode formation control system in the presence of

applied wind disturbance under a static leader position. The aim of these tests is

to evaluate the efficacy and robustness of the control system under environmental

conditions that simulate moderate to severe wind disturbances. The reason for first

testing the formation under a static leader position is to introduce complexity into

the system gradually. By initially keeping the virtual leader static, the effects of the

applied external wind disturbances on the system can be analysed in isolation.

An oscillating fan was introduced into the test environment to provide the system

with a time-varying external wind disturbance. A diagram for this is shown in Figure

4.22, and a photograph of the location of this fan is provided in Figure 4.23.

Figure 4.22: A modified diagram of formation control testing environment with the

location of an oscillating fan.
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Figure 4.23: A photograph of the test area with an oscillating fan.

Figure 4.24 displays the position response of each agent in the system under

discrete-time sliding mode formation control.
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(a) (b)

Figure 4.24: (a) A plot showing the three-dimensional trajectory of each agent

alongside the virtual leader and (b) a plot showing the evolution of each agent’s

trajectory over time t in the presence of disturbance with a static virtual leader.

Figure 4.24(a) illustrates the three-dimensional trajectory of the the quadrotors,

while Figure 4.24(b) displays the evolution of each agent position on the x, y, and

z axis over time. From the plots, it is evident that there is a deviation in positions

relative to the virtual leader. Interestingly, despite the deviation from the virtual

leaders, from Figure 4.24(b), it is evident that the agents maintain their separation.

All agents diverge from the virtual leader in a synchronised manner. This suggests

that while the formation is robust under external wind disturbances, further tuning

of the controller may improve the system’s tracking of the virtual leader. This

may also be improved by providing more agents with access to the states of the

virtual leader. These visualisations confirm the effectiveness of the control strategy

in the case of a static leader and also identify areas that have potential for further

improvement in future works. To further analyse the robustness of the system, the

errors for each agent are shown in Figure 4.25 displays the evolution of the system
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errors over time t.

(a) (b)

Figure 4.25: Position (a) and velocity (b) errors for each agent in the formation

during real-world testing in the presence of wind disturbance with a static virtual

leader.

The position errors shown in Figure 4.25(a) display good tracking of positions

over time. The errors are shown to occasionally diverge from the virtual leader. After

the original divergence under the disturbance, they once again converge towards

zero error, further validating the robustness of the system. From the velocity errors,

displayed in Figure 4.25(b), the presence of rapid oscillatory behaviour in the system

becomes evident. This shows the continuation of the chattering behaviour found in

the previous results. Figure 4.29 displays the system sliding surfaces and control

inputs.

115



Chapter 4. Discrete-time Sliding Mode Formation Control for Multi-Quadrotor
Systems

(a) (b)

Figure 4.26: (a) A plot displaying the sliding surfaces and (b) a plot displaying

the control inputs along each axis for each agent in the formation during real-world

testing in the presence of wind disturbance with a static virtual leader.

The stability of the system becomes clear in Figure 4.26(a), with the sliding

surfaces for the x and y rapidly oscillating around a zero value. The presence of

disturbances causes the x and y sliding surfaces to occasionally diverge. After the

divergence, they once again converge to the QSMB around the sliding surface. The

chattering of the control input under these conditions is evident in the control inputs

shown in Figure 4.26(b).

4.5.3 Results in the Presence of Disturbance with a Dy-

namic Virtual Leader

Following the tests implemented in the previous section, the agents were tasked with

tracking a dynamic virtual leader in the presence of an applied wind disturbance.

The aim of these tests was to validate the robust trajectory tracking performance of

the multi-agent system. Validation of performance under this scenario would enable
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a group of agents to navigate unanimously, enabling the system’s data collection

abilities for future work. Figure 4.27 displays the position response of each agent in

the system when tracking a dynamic leader in the presence of applied external wind

disturbances.

(a) (b)

Figure 4.27: (a) A plot showing the three-dimensional trajectory of each agent

alongside the virtual leader and (b) a plot showing the evolution of each agent’s

trajectory over time t in the presence of wind disturbance with a dynamic virtual

leader.

The agents achieve altitude and converge to the desired formation around the

leader. From Figure 4.28(a) it is clear that there is a decrease in performance

compared to Figure 4.19(a). This shows the negative effects of the external

disturbance on the system. Regardless, the system maintains its formation around

the virtual leader with no collisions. Similarly to Figure 4.24(b), Figure 4.28(b)

demonstrates that the agents are able to maintain the desired separation despite

the presence of the external disturbance. The main source of errors in the system

is Agent 1’s ability to track the virtual leader. This further enforces the belief that
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additional tuning could improve the tracking capabilities of the system, in addition

to the introduction of an alternative communication topology, where an increased

number of agents is connected to the virtual leader.

(a) (b)

Figure 4.28: Position (a) and velocity (b) errors for each agent in the formation

during real-world testing in the presence of wind disturbance with a dynamic virtual

leader.

Analysis of the system’s position and velocity errors in Figure 4.28 display

similar results to those shown in Figure 4.25. This suggests that the performance

of the discrete-time sliding mode formation control system does not degrade further

through the introduction of a dynamic leader. This is promising as it demonstrates

the system’s ability to track complex trajectories in the presence of external

disturbances. The evidence from these tests provides additional validation of the

rigorous proof provided in Section 4.3 and the simulation results in Section 4.4.

According to definition 2, the real-world implementation of the system is considered

robustly stable. Finally, in order to investigate the chattering response of the system

when tracking a dynamic leader under external disturbances, the sliding surfaces and
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control inputs are displayed in Figure 4.29.

(a) (b)

Figure 4.29: (a) A plot displaying the sliding surfaces and (b) a plot displaying

the control inputs along each axis for each agent in the formation during real-world

testing in the presence of wind disturbance with a dynamic virtual leader.

Compared to Figures 4.26(a) and 4.26(b), there is not a dramatic increase in

the amplitude of the oscillations around a zero value. This evidences the efficacy

of the designed multi-agent system when tracking a dynamic virtual leader in the

presence of external unknown disturbances and uncertainties. The system’s stability

in these conditions is evidenced in Figure 4.26(a), as the sliding surfaces do not

diverge dramatically from zero value and converge to the system’s QSMB. Despite

the rapid oscillatory behaviour of the system’s control inputs, the system was able

to maintain formation around the virtual leader, and the system’s sliding surfaces

did not diverge dramatically.
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4.6 Conclusion

In this chapter, a robust control system was proposed for the formation control of

a group of quadrotor agents. The proposed control system, based on discrete-time

sliding mode control, allows a group of agents to obtain a desired formation around a

virtual leader and track a dynamic virtual leader following a complex trajectory. The

chapter provides a rigorous stability proof, theorising that the system is stable in the

presence of unknown, time-varying bounded disturbances. The stability proof also

shows that the system is capable of maintaining its formation under communication

constraints, where agents only have access to a limited number of neighbouring

agent’s states. Additionally, it is shown that only a single agent in the system

requires access to the states of the virtual leader, potentially making implementation

with a ground station more accessible. Finally, the stability proof provides evidence

that the system is stable under time-varying any communication graph that has a

directed spanning tree. This allows reconfiguration of the communication topology

in real-time, improving robustness to communication failures.

To validate the performance of the controller and support the stability proof, the

chapter provides a numerical simulation displaying ideal performance in both the

nominal case and under unknown disturbances. During the project, the simulations

provided an environment to rapidly prototype and tune the proposed control system.

The simulation section also provides useful insights into the chattering behaviour

of the system under discrete-time sliding mode formation control. From the results,

it is clear that chattering can cause large issues in networked systems, particularly

where control signals are shared between quadrotors over a network. The chattering

becomes significantly worse when the quadrotors are placed under external matched

disturbances, such as wind. In particular, the chattering in simulation under external

disturbances causes the x, y control inputs to display large oscillations. If left

unaddressed, this could lead to the mechanical failure of the quadrotor actuators

over time. To help remedy this, the signum function in equation (4.15) can be

replaced with the tanh as a continuous approximation. The chattering issues likely
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contribute to the real-world performance degradation present in the experimental

results. From the results, the altitude of the quadrotor experiences high frequency

oscillations of a fixed magnitude, which can be caused by chattering control inputs.

It is also evident from the results that there exists a large gap between simulation

and real-world experimentation. This is a common problem in control system

design and there are many potential reasons for this. Primarily, the simulations

provided in this chapter do not employ estimation methods for feeding back the

state of each agent, while real-world results employ various sensors and filters for

estimating the pose of each quadrotor. The control system can be greatly impacted

by the localisation accuracy of the estimation system, as inaccuracies can lead to

degradation in controller performance. Additionally, latency can be present in these

estimation systems that is not accounted for in the control system design. Another

factor present in real-world experimentation that is not captured by simulation

is time-varying communication delay between each agent. Finally, the real-world

system also contains many unmodeled dynamics, such as propeller characteristics,

aerodynamic interference, motor dynamics, chassis vibrations, and sensor noise.

To further evidence the efficacy of the designed control system for use in complex

and hazardous indoor nuclear environments, an environment was constructed for

real-world testing of the system. This provided a controlled environment for

integration and testing of the designed control system. Real-world testing of the

multi-quadrotor system validated the efficacy of the system for use in these safety-

critical nuclear environments, where errors could cause less robust control systems to

fail, leading to potentially catastrophic consequences. Remarkably, the system was

also able to achieve this formation under communication constraints, where each

agent only had access to information from its direct neighbours. Furthermore, the

application of an external disturbance source during real-world testing demonstrates

the robustness of the system. The real-world experimentation also provides insight

into the potential improvements that can be made to the control system by adjusting

the communication topology or introducing additional gains into the system to
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improve tracking of the virtual leader.

To summarise, this chapter has successfully demonstrated the design, proof,

validation, and experimental verification of a discrete-time sliding mode controller

for the robust formation control of a multi-quadrotor system. The chapter provides

a promising solution for use in a mobile sensor network in safety-critical complex

nuclear environments by demonstrating robustness to communication constraints

and external wind disturbances. Future works could aim to improve on the results

in this chapter through optimisation of the control gains, experimentation with

alternative communication topologies, and additional real-world testing in larger

environments. While this chapter proposes a robust control law for controlling a

formation of quadrotors, the following chapter applies the principles developed in

this chapter to more complex tasks within the nuclear industry. Taking the concept

of multi-agent systems, and applying them to tasks such as source seeking and

environmental characterisation within the nuclear industry, could allow for far more

efficient characterisation of nuclear legacy sites.
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Chapter 5

Source Seeking with Applications

in the Nuclear Industry

5.1 Introduction

The previous chapters in this thesis have developed and validated the efficacy of

robust methods for controlling single quadrotors and networked multi-quadrotor

systems. The thesis has also identified several problems in the nuclear industry,

including condition monitoring, inspection, and plant characterisation. Building

upon this work, this chapter investigates the practical applications of such control

algorithms in the nuclear industry.

This chapter aims to apply the previously developed robust control algorithms

to address the outlined challenges, specifically in the context of locating the source

of an environmental scalar field, such as temperature or radiation. By applying

these robust control algorithms, we aim to show their efficacy for applications in

the nuclear industry. One case study in which this is particularly applicable is

radiation monitoring within high-dose areas of nuclear legacy sites. This has been

addressed with a single quadrotor in [12], where a remotely operated quadrotor,

equipped with a radiation sensor and radiation mapping software was used to acquire

accurate contamination distributions in a historical nuclear facility. This allowed
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decommissioning to progress while reducing the dose to operators.

The implementation of a gradient climbing virtual leader for source-seeking is

also investigated. Specifically, this chapter explores the discrete-time sliding mode

formation control algorithms to gradient climbing applications for source-seeking in

the nuclear industry. The technique steers a group of agents towards the field’s peak

to find the highest radiation intensity levels in an environment. The motivation

behind this is to allow an operator of a multi-quadrotor network to pinpoint the

location of a source in temperature or radiation sensor fields. Traditional methods

rely on the involvement of human workers and can be time-consuming and costly.

More recently, ground robots have been used to map radiation within nuclear

environments [140], although these face issues where robots cannot access parts of

a facility due to obstacles. Implementing a source-seeking algorithm for the multi-

quadrotor system would dramatically improve the plant characterisation process by

increasing the safety and efficiency of the operation.

Radiation sources are known to have an inversely proportional relationship with

the distance from the radiation source [141], [142]. The dose rate from the distance

of the source is defined as

I(r) =
I0

r2
. (5.1)

Here, r ∈ R+ is the radius from the source in meters. The function I(r), returns

the intensity of the radiation at a distance r from the source. I0 ∈ R+ is the intensity

of the radiation at the source. Additionally, radiation may be blocked or attenuated

by obstacles presence in the environment [141], [142]. However, this chapter does

not consider the obstacles in the environment and assumes a direct line of sight to

the radiation source. According to the Office for Nuclear Regulations, the maximum

permitted dose rate at the surface for transporting a nuclear package is 10 mSvhr−1

[143]. This will be used as the maximum value at the source of the scalar field I0.

In addition to this, background radiation in nuclear sites for the years 2022/23

was found to be approximately 2× 10−5 mSvhr−1 according to the Sellafield annual

124



5.1. Introduction

review [144]. Adjusting equation (5.1) to account for this gives

I(r) =
I0

r2
+ Ib (5.2)

where Ib ∈ R+ represents the levels of background radiation present.

The remainder of this chapter presents a robust source-seeking formation control

algorithm by building on the discrete-time formation control algorithm presented in

Chapter 4. The source-seeking algorithm is presented for locating the peak of a

radiative sensor field in the presence of wind disturbance. In addition to this, to

provide an operator with an appropriate radiation map, the application of Gaussian

Process Regression is validated in experimental work using a temperature source

in place of a source of gamma radiation, as thermal radiation similarly follows the

inverse-square law [145].

5.1.1 Source-seeking in the Presence of External Distur-

bances

The discrete-time sliding mode control law presented in Chapter 4 implements a

virtual leader at the centre of the formation to allow the quadrotor swarm to navigate

towards a set point or to follow a predefined trajectory. To build on this work, this

chapter proposes a solution to the source-seeking problem in which the position of

the virtual leader is updated to steer the formation of quadrotors towards the peak

of an environmental field, such as a radiative or temperature sensor field.

To estimate the environmental field’s gradient at the formation’s centre based

on information from i agents, the virtual leader can combine the measurements and

positions from each agent. The position of each agent at time step k is xik and yik.

A measurement from each agent is denoted by ζ ik for i = 1, 2, . . . , n. The centre of

the circular formation is represented by the virtual leader position and is given by

(x0k, y
0
k). The gradient of the field at the centre, ∇ζk =

(
∂ζ
∂x
, ∂ζ
∂y

)
, can be estimated

using linear algebra. An assumption is made that the gradient is approximately

linear in the formation region. The change in the field value ζ between the centre
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and each agent i can be approximated by the dot product of the gradient and the

difference in position.

ζ ik − ζ̂0k ≈ ∇ζ · ((xik − x0k), (y
i
k − y0k)), (5.3)

where ζ̂0k is the estimated measurement value at position of the virtual leader ζ0k and

can be approximated using

ζ̂0k =
1

n

n∑
i

(ζ ik). (5.4)

Expanding (5.3) for n agents gives

∆ηk

 ∂ζ
∂x

∂ζ
∂y

 =


ζ1k − ζ0k

ζ2k − ζ0k
...

ζnk − ζ0k

 , (5.5)

where

∆ηk =


(x1k − x0k) (y1k − y0k)

(x2k − x0k (y2k − y0k)
...

...

(xnk − x0k) (ynk − y0k).

 (5.6)

By taking the pseudo inverse of ∆ηk in equation (5.5), ∇ζk can be isolated.

∇ζk = (∆ηk
⊤∆ηk)

−1∆ηk
⊤


ζ1k − ζ0k

ζ2k − ζ0k
...

ζnk − ζ0k

 (5.7)

To steer the virtual leader’s position towards the field’s peak, the leader can

navigate toward an increasing gradient. To achieve this in practice, the virtual

leader’s position is updated using a value Kv ∈ R+, which is a set velocity in ms−1,

and the unit vector of the gradient ∇ζk.

η0
k+1 = η0

k + TKv
∇ζk
|∇ζk|

, (5.8)
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where η0
k = [x0ky

0
k]

⊤, η0
k ∈ R2 is a vector containing the x and y positions of the

virtual leader at sample k. η0
k is the position of the virtual leader at sample k + 1

and T ∈ R+ is the sample time of the discrete source-seeking control algorithm. The

initial position of each quadrotor and the position of the simulated gamma source

in the environment are shown in Table 5.1.

Table 5.1: Table showing the initial positions of each agent and the position of a

simulated gamma radiation source.

x position (m) y position (m)

Gamma radiation source 15.0 7.5

Initial Agent 1 position 2.0 -1.0

Initial Agent 2 position -2.0 1.0

Initial Agent 3 position 1.5 1.5

A disturbance representing wind is applied to each quadrotor using equation

(4.45) to validate the system’s robustness further. The amplitude and frequency of

the disturbances are provided in Table 5.2.

Table 5.2: Table showing the amplitude and frequency of the disturbance applied

to each agent.

Agent Amplitude A Frequency Ωf (rad/s)

Agent 1 0.3 0.7

Agent 2 0.7 0.3

Agent 3 0.5 0.5

From Table 5.2, it can be seen that external disturbances with different

amplitudes and frequencies are applied to each agent in the system. This allows

many disturbance combinations to more rigorously test the system’s robustness.
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In the simulations, an assumption is made that the virtual leader can access the

sensor samples from a location from each quadrotor in the system. This can be

achieved by implementing an undirected graph network topology, where the x and

y positions, along with a sensor measurement from each quadrotor, are passed back

to the virtual leader. Figure 5.1 shows the topology implemented in the simulations.

Figure 5.1: Graph representing the communication topology between each agent

and the virtual leader used for the simulations.

While the graph shows that each agent can communicate in both directions,

only the state information required for discrete-time sliding mode formation control

is passed in one direction through a subgraph containing a directed spanning tree.

Only sensor measurements and position states are returned to the virtual leader in

the opposite direction. Therefore, the system works in any network graph containing

at least one subgraph with a directed spanning tree, similar to the one shown in 4.2.

It should also be noted that only Agent 1 maintains a connection with the virtual

leader in the simulations. This provides a system capable of handling switching

communication topologies, increasing the system’s robustness.

Through this approach, the virtual leader can access the required position states

and sensor data to compute the gradient’s direction at the formation’s centre. To

evaluate the performance of the navigation algorithm developed in section 5.1.1 a

gamma radiation source is placed in a simulation environment illustrated in Fig. 5.1

with a value of 10 mSvhr−1.
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Figure 5.2 displays an example block diagram of the data communicated in the

source-seeking system. In this diagram, the virtual leader can be one of the agents

in the system or an external ground station. In this diagram, each agent runs the

DTSMC formation control algorithm to create the source-seeking formation. The

temperature data is passed to the virtual leader. The virtual leader then updates

its own position information to allow the formation to navigate towards the peak of

the sensor field.

Figure 5.2: Block diagram of the source-seeking system.

5.1.2 Simulation Results

Figure 5.3 shows the trajectory of the agents and the virtual leader as they converge

towards the centre of the formation.
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Figure 5.3: Plot of the xy plane in simulation, showing each agent’s trajectory

alongside the virtual leader and the location of a gamma source, with a contour plot

of the produced radiative sensor field from equation (5.2).

From Figure 5.3, it is demonstrated that the agents achieve formation and

navigate towards the peak of the radiative sensor field. Due to the circular nature

of the sensor field, the gradient is constant within the field. This causes the virtual

leader to navigate directly to the field’s peak and remain at the source. The virtual

leader then moves back and forth over the peak of the field with an amplitude of

Kv/T, where the amplitude is expressed in meters.

To investigate the response of the source-seeking control algorithm over time,

Figure 5.4 displays the position response of the algorithm over time. From the

figure, it is clear that the agents approach the source of the radiation at a velocity

of Kv ms−1. Once the agents locate the peak of the field, the virtual leader, along
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with all agents in the formation, remains around the source for the remainder of the

simulation.

Figure 5.4: x, y, and z position plots of each agent alongside the virtual leader, and

the x and y position of the gamma radiation source over time t.

Figure 5.5 shows a surface plot of the radiative field, clearly showing how the

inverse-square law in equation (5.1) affects the distribution of the field. Here, the

figure displays the efficacy of the source-seeking ability of the proposed control

solution as the agents reach their desired altitude and navigate towards the source

in the presence of external disturbances. The surface plot, combined with the colour

bar on the graph, shows the distribution dose rate across the field.

131



Chapter 5. Source Seeking with Applications in the Nuclear Industry

Figure 5.5: Three-dimensional trajectory of each agent alongside the virtual leader,

with a surface plot of the gamma dose measurements from radiative sensor field in

mSvhr−1.

Position error can be investigated to analyse the performance of the underlying

discrete-time sliding mode formation control algorithms as the agents track the time-

varying position of the virtual leader as it approaches the field’s peak. The errors

are shown in Figure 5.6. From the figure, the errors for the x, y and z positions of

each agent in the system rapidly converge to zero as they achieve formation. The

errors remain in the region of zero for the entire simulation duration, demonstrating

that the agents can accurately and effectively track the virtual leader in the presence

of external disturbances while it navigates towards the peak of the radiative sensor

field.
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Figure 5.6: Plot showing the position errors from equation(4.9) in meters, as the

agents track the virtual leader towards the peak of the radiative sensor field.

From the above figures, the efficacy of the control algorithm for source-seeking

purposes is evident. This is extremely useful for applications in the nuclear industry,

as it allows environments to be rapidly characterised. Additionally, by quickly

locating the peak of the field, this could enable a system to be implemented that is

capable of routine monitoring of nuclear sites. The system could identify potential

leaks effectively, without putting unnecessary risk on operators completing the task

manually. It could also significantly increase the efficiency of the waste monitoring

and plant characterisation process, potentially reducing the costs and time required.
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Table 5.3: Integral of Absolute Error for each quadrotor agent tracking a virtual

leader towards the peak of a radiative scalar field.

Integral of Agent

Absolute Error Agent 1 Agent 2 Agent 3

X Position (m) 2.662 5.626 16.402

Y Position (m) 2.508 3.224 11.354

Z Position (m) 6.125 0.001 0.001

Table 5.3 above shows the IAE for each quadrotor in the networked system.

From the table, Agent 1 displays significant error in altitude. This is due to the

communication topology of the system, as Agent 1 is the only agent connected to

the virtual leader in this simulation. The results demonstrate that Agent 2 and

Agent 3 accurately track the altitude of Agent 1 throughout take-off. Table 5.3

also shows that Agent 3 has the worst performance on the x and y axis, despite

not having the highest amplitude of disturbance applied to it. This can also be

seen in the error plot, as periodic bumps appear in the error signal for Agent 3.

The minima of these bumps occurs at approximately t = 18s, t = 80s, t = 142s.

The frequencies for the disturbance applied each agent are 0.3rad/s, 0.5rad/s, and

0.7rad/s. The Lowest Common Multiple (LCM) of the periods of each of these

frequencies is Tcommon = 20π, meaning that the three frequencies enter phase every

62.83s. This aligns with the periodic bumps present in the plot and shows how

disturbances applied to other quadrotors can be propagated throughout the network.

To avoid this, the control system should be tuned to reject the maximum disturbance

applied all quadrotors.

While the agents successfully track the virtual leader as it navigates towards

the peak of the radiative sensor field to locate the area of highest dosage, it is

not sufficient to simulate the system with the simple model in equation (5.2). A

more complex radiation field needs to be tested in simulation to investigate the
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system’s capability further. Therefore, an alternative function is provided to show

a more realistic distribution of the radiative sensor field. However, the process can

be applied to any environmental field with a single peak, such as a temperature or

humidity sensor field.

The function to calculate intensity at a point in the field I(x, y) at a given point

(x, y) is described as follows:

I(x, y) = I0 ·
(
I1(x, y) + I2(x, y) + I3(x, y)

3

)
, (5.9)

where

Il(x, y) = exp

−
[
(x− xs) (y − ys)

]
RiSR

⊤
i

x− xs

y − ys

 l ∈ 1, 2, 3,

S =

 1
30

0

0 1
3

 ,∈ R2×2

R1 = 0.25

cos (−π
6

)
− sin

(
−π

6

)
sin
(
−π

6

)
cos
(
−π

6

)
 ,∈ R2×2

R2 = 0.25

cos (11π15 ) − sin
(
11π
15

)
sin
(
11π
15

)
cos
(
11π
15

)
 ,∈ R2×2

R3 = 0.25

cos (π) − sin (π)

sin (π) cos (π)

 ∈ R2×2.

In this equation, (x, y) are the coordinates of the point where the field value is

being calculated. The term

[
(x− xs) (y − ys)

]
RiSR

⊤
i

x− xs

y − ys

 (5.10)

represents the transformed and scaled coordinates, which shifts the origin of the

coordinate system to (xs, ys). The matrix

S =

 1
30

0

0 1
3

 (5.11)
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is the scaling matrix, where S11 controls the width of the ellipses in the sensor field

and S22 controls height of the ellipses.

R1,R2,R3 are the rotation matrices that rotate each ellipse by a selected angle

to create three rotated ellipses. Specifically, R1 rotates by −π
6
radians, R2 rotates

by 11π
15

radians, and R3 rotates by π radians.

Each term

Il(x, y) = exp

−
[
(x− xs) (y − ys)

]
RiSR

⊤
i

x− xs

y − ys

 (5.12)

represents the sensor field value contributed by one of the rotated ellipses at the

point (x, y). The final field value I(x, y) is obtained by averaging the contributions

from the three ellipses and scaling the result to make the peak value 10 mSvhr−1. In

this case, the source of gamma radiation was placed further away from the agents’

initial positions to assess the source-seeking algorithm’s convergence time.

Table 5.4: Table showing the initial positions of each agent and the position of a

simulated gamma radiation source for the complex radiative sensor field simulations.

x position (m) y position (m)

Gamma radiation source 51.0 -20.0

Initial Agent 1 position 2.0 -1.0

Initial Agent 2 position -2.0 1.0

Initial Agent 3 position 1.5 1.5

Figure 5.7 shows the contour plot of the complex field from equation (5.9). The

effect of combining three ellipses is evident in creating a complex gradient is shown

to develop a complex gradient distribution across the xy plane. The plot shows that

despite this, the formation of agents could track the virtual leader to the sensor

field’s peak and stop at the location of the radiation’s source. In this figure, the

trajectory that the leader takes towards the location of the source is not linear due

to the complex gradient of the sensor field.
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Figure 5.7: Plot of the xy plane in simulation, showing each agent’s trajectory

alongside the virtual leader and the location of a gamma source, with a contour plot

of the produced radiative sensor field from equation (5.9).

To assess the response of the system over time, Figure 5.8 displays the x, y, and

z position response of each agent, along with the position response of the virtual

leader in the system. The figure also displays the x and y locations of the gamma

radiation source. From the figures, it is clear that the formation converges towards

the field’s peak in finite time in the presence of external disturbances applied to

the system. The nonlinear nature of the trajectory taken is clear, as the y position

initially diverges away from the location of the source before approaching it following

time t = 55s. Meanwhile, the x positions of the agents in the formation approach

the location of the source rapidly, locating a source 54.78m away within 300 seconds,

making it feasible for implementation on UAVs with limited flight time. It is seen

137



Chapter 5. Source Seeking with Applications in the Nuclear Industry

that on both axes, the formation converges to the location of the gamma radiation

source.

Figure 5.8: x, y, and z position plots of each agent alongside the virtual leader, and

the x and y position of the gamma radiation source over time t while source-seeking

within a complex sensor field.

To further analyse the system’s performance, the three-dimensional trajectory

plot of each agent, alongside the virtual leader, is shown in Figure 5.9. The figure

also shows a surface plot of the field, displaying the complex distribution of the

sensor field. The plots show that after attaining formation at the desired altitude,

the agents accurately track the virtual leader towards the field’s peak and stop at

the field’s peak.
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Figure 5.9: Three-dimensional trajectory of each agent alongside the virtual leader,

with a surface plot of the gamma dose measurements from radiative sensor field in

mSvhr−1 while source-seeking within a complex sensor-field.

The discrete-time sliding mode formation control algorithm (4.16) that provides

the foundation for this method can be analysed again by assessing the position

error response of the system in Figure 5.10. From the figure, the errors on each of

the x, y, and z axis converge to zero by time t = 10s, showing that formation is

achieved. The errors then remain around a zero error value for the remainder of

the simulation until time t = 500s. This further evidences the robustness of the

underlying algorithm, as the agents can track the dynamic virtual leader for the

duration of the simulation.
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Figure 5.10: Plot of the position errors of each agent in the system.

Figure 5.10 shows jumps in the error signal with a period of approximately 62s.

At t = 270s the impact of the oscillations of the source seeking virtual leader around

the scalar peak also become more visible on the y axis.

Table 5.5: Integral of Absolute Error for each quadrotor agent tracking a virtual

leader towards the peak of a complex radiative scalar field.

Integral of Agent

Absolute Error Agent 1 Agent 2 Agent 3

X Position (m) 7.618 9.241 29.470

Y Position (m) 13.854 13.063 22.470

Z Position (m) 6.126 0.002 0.002
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Table 5.5 further demonstrates the impact of the combined disturbance signal on

the multi-agent system. The large IAE for Agent 3 is impacted by its initial distance

from the formation. To investigate this further, the complex field simulation was

repeated with a fully connected network of three agents.

Figure 5.11: Three-dimensional trajectory of each agent alongside the virtual leader,

with a surface plot of the gamma dose measurements from radiative sensor field in

mSvhr−1 while source-seeking within a complex sensor-field with a fully connected

graph.
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Table 5.6: Integral of Absolute Error for each quadrotor agent tracking a virtual

leader towards the peak of a complex radiative scalar field using a fully connected

network topology.

Integral of Agent

Absolute Error Agent 1 Agent 2 Agent 3

X Position (m) 29.295 49.482 31.936

Y Position (m) 148.807 55.123 39.158

Z Position (m) 6.126 0.002 0.002

From Table 5.6, it is clear that there are now significant errors present for the

x and y positions of all three agents. This demonstrates further that disturbances

propagate through the networked system. From the previous chapter, equations

(4.40), (4.37), and (4.43) show that the size of the Quasi-Sliding-Mode Band becomes

larger with an increased number of connected agents, demonstrating one of the

limitations of the control system design. For real-world applications within the

nuclear industry, it is therefore advisable to ensure that there is a limited number

of interconnected agents within the multi-agent system, while maintaining at least

one directed spanning tree.

From the results provided in this section, the efficacy of the discrete-time sliding

mode formation control system has been validated in simulation to application

in source-seeking within radiative sensor fields. The algorithm’s robustness is

demonstrated by introducing external wind disturbance in the simulation. The

source-seeking strategy is effective in cases where a radiative sensor field follows the

inverse-square law. Also, the strategy shows strong performance in the presence of

more complex environmental sensor fields. Finally, by implementing the algorithm

in an undirected communication network, the system can handle switching network

topologies, increasing robustness in the case of communication drop-outs between

agents.
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5.2 Environmental Field Estimation

While Section 5.1.1 presents a robust source-seeking strategy, operators require

more information about the distribution of an environmental field to characterise

nuclear sites fully. Towards this, the current section aims to validate a common

environmental field estimation technique, i.e Gaussian Process Regression (GPR),

experimentally [146], [147]. Performing GPR while post-processing data collected

can provide an operator with an estimate of the distribution of a sensor field. This is

particularly useful in the nuclear industry, as it would allow rapid characterisation of

nuclear legacy sites and provide informative and easy-to-read data from any flights

conducted.

5.2.1 Experimental Setup

To assess the data collection abilities of the distributed quadrotor system, the envi-

ronment presented in Section 4.5 was adapted by introducing a space heater. This

allowed for the generation of a temperature gradient within the test environment to

validate the use of Gaussian Process Regression for post-processing data collected

onboard the quadrotors to produce and estimate an environmental sensor field. Due

to safety restrictions, it was not possible to validate the approach using a source

of gamma radiation; hence a heat source was used to produce a scalar sensor field.

Figure 5.12 shows a diagram of the constructed test environment with the placement

of two heat sources.
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Figure 5.12: Diagram of the experimental test area with the location of two heat

sources.

Figure 5.13: Test environment for data collection with two space heaters.

For temperature sensing, LM35 sensors lm35 were attached to three Crazyflie

2.1 micro-quadrotors. Power was delivered to the LM35 sensors through the
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onboard 3.3V power pins. GPIO was used to pass data from the LM35 sensors

to the Crazyflie2.1 embedded firmware. The firmware, written in embedded C, was

modified to accept the data through the GPIO pin and broadcast this data to the

ground station, where it was logged. A photograph of the sensor attached to a

Crazyflie2.1 micro-quadrotor is shown in Figure 5.14.

Figure 5.14: Photograph showing the LM35 temperature sensor connected to a

Crazyflie2.1.

Similar to Chapter 3, the Lighthouse Positioning Deck was used to localise

each Crazyflie2.1 in the environment. The Python code used to collect the data

is provided in Appendix A
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5.2.2 Experimental Results

To create a simple testing scenario, only one heater was powered in the area to

create a smooth temperature distribution over the environments. The ambient

temperature in the room was measured with a mercury thermometer as 22.1°C.

The peak temperature in front of the heat source was 31.1°C.

The temperature and position data were concatenated into one CSV file. The

Gaussian Process package from scikit-learn was used in Python to process the data

and produce an estimate of the environmental field [148]. The code for this is

provided in Appendix B. In the first scenario, the agents were tasked to achieve a

formation and tasked with following a virtual leader with a circular trajectory. The

same trajectory presented in Section 4.5.1, with the altitude of each agent set to

z = 0.5m to ensure immersion within the temperature field. The estimated field is

plotted in Figures 5.15.

Figure 5.15: Estimated temperature distribution across the area from data collected

using LM35 sensors onboard Crazyflie2.1 micro-quadrotors.

From Figure 5.15, a temperature gradient is measured across the field. The
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temperature gradient appears to have a slight clockwise rotation compared to the

expected hotspot. It is believed that this was due to temperature lag present

in the system. The LM35 temperature sensors do not measure the temperature

instantaneously at a location. The sensors themselves heat up over time while

exposed to warm air. Additionally, they also require time to cool after heating. This

lag may be causing the unwanted rotation that affects the estimated temperature

field. Despite this, the network accurately predicts temperature readings close to

the ambient air temperature and the maximum air temperature recorded next to the

heat source before the test. The temperature lag can potentially be compensated

with a time and space dependent temperature model, though this lies out of the

scope of this work as it is believed that when implementing the system using a

radiation monitor such as a scintillator, negative effects similar to temperature lag

will not be present.

To further investigate the efficacy of the GPR estimation algorithm, the second

heat source in diagram 5.12 was enabled. The temperature distribution within the

environment was expected to have two hotspots. In an attempt to improve the

environmental field estimation of the swarm, the virtual leader’s trajectory was

modified to execute a spiral trajectory within the environments. This would allow

a larger surface area to be covered on the xy plane, providing the algorithm with

more valuable data. Figure 5.16 displays the estimated field.
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Figure 5.16: Estimated temperature distribution across the area from data collected

using LM35 sensors onboard Crazyflie2.1 micro-quadrotors with two active heat

sources.

In Figures 5.16, it is clear that the unwanted rotation effect due to sensor lag

is still present when using a spiral trajectory with two heat sources. Regardless,

the estimated field displays two clear hotpots and identifies a distribution consistent

with the expected distribution based on the fan sensors.

Using GPR combined with the proposed source-seeking algorithm could signif-

icantly improve the plant characterisation and continuous monitoring process in

nuclear sites. Implementing these emerging techniques at the industry level could

increase the safety and efficiency of nuclear monitoring processes while reducing the

time and costs associated with such activities.

5.3 Conclusion

In this chapter, applications of a multi-quadrotor formation are validated at the

industry level. A novel, robust approach for the source-seeking problem is proposed
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based on robust discrete-time sliding mode formation control. The proposed solution

is robust to switching network topologies and external disturbances introduced

through robust ventilation systems. The algorithm proves capable of steering a

formation of quadrotors towards the peak of a radiative sensor field. The source-

seeking algorithm was also tested with a more complex environmental field, based

on the superposition of three rotated elliptical sensor fields, to validate the approach

for a non-circular field.

In addition, Gaussian Process Regression was used to estimate the distribution of

the field from data collected by a multi-quadrotor sensing system, which was tested

experimentally. The experimental results demonstrate a reasonable estimation of the

environmental field, with an estimation of the minimum and maximum temperature

values within the field. Due to lag in the temperature sensors, the quadrotors

estimated a shift in the environmental field. The results presented in this chapter

indicate that, through novel and emerging technologies, the nuclear industry can

significantly improve its processes while maintaining safety by implementing robust

techniques such as sliding mode control.
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Chapter 6

Conclusion

In this chapter, conclusions are made surrounding the key findings of this thesis,

and the potential impact of the research is discussed. This chapter also aims to

summarise the work completed during the thesis, discuss how the aims of the project

have been met, discuss the limitations of the project, and finally propose ideas for

future work.

The aims of the project are stated below:

• Develop a robust control algorithm for trajectory tracking of a single quadrotor

for the purpose of navigating within hazardous nuclear environments.

• Develop an algorithm to enable stable and reliable formation control of a group

of quadrotors in hazardous nuclear environments.

• Validate the designed algorithms through extensive simulation and implement

the algorithms in real-world experimental testing.

• Apply the designed algorithms to problems within the nuclear industry to

validate the efficacy of the proposed system.

The overall goal of the project was to deliver a robust system of quadrotors that

addressed these four research aims. As stated in the introduction of this thesis,

achieving these aims would provide a cyber-physical system capable of addressing a
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number of key challenges within the nuclear industry, such as plant characterisation

and condition monitoring and inspection. The ultimate motivation for this was to

contribute to improving the safety and efficiency across the nuclear industry.

To investigate the success of this thesis in achieving these aims, the findings

from each chapter will be summarised. In Chapter 2 a novel finite-time integral

sliding mode control system is provided for trajectory tracking of a single quadrotor.

The control algorithm provided robust, accurate, and chattering-free trajectory

tracking performance for a continuous-time system. The robustness of the system

was analysed through a stability proof, and was shown to be stable in the presence of

uncertainties in parameters, such as the mass, or inertial properties of a quadrotor.

The proof also shows the finite-time properties of the controller. The proposed

algorithm was then validated through numerical simulations, which also enabled

iterative tuning of the proposed control system. In order to assess the efficacy of the

system for the real-world case, FTI-SMC was implemented on a Mambo Minidrone.

The results were compared to another modern finite-time sliding mode technique,

as well as PID, and displayed superior performance to the other control systems.

The chapter proposed and validated a control system suitable for robust trajectory

tracking inside of nuclear environments, in the presence of parameter uncertainties,

addressing the first aim of the project. Despite this, the chapter does not consider

the discrete-time behaviour of the system.

Due to the discrete-time nature of sensors and compute systems available

onboard UAVs, continuous control methods may not be suitable for the control

of these systems in safety-critical environments. This is particularly important in

indoor nuclear sites, where environments are hazardous, cluttered, and GPS denied.

Because of this, localisation systems such as SLAM are required to allow UAVs

and other robots to navigate safely within these environments. SLAM systems can

have slow update rates, making the control of UAVs with SLAM-based localisation

particularly difficult for continuous-time control methods. To address this, Chapter

3 implements a discrete-time sliding mode control system for a quadrotor. The
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controller was tested using ROS, and investigated using a co-simulation environment,

where the control system was implemented in Simulink, and the simulation of the

quadrotor used the Gazebo simulation environment to provide a more realistic

testing scenario for the system. The Hector SLAM package was implemented for

localisation of the quadrotor system. The discrete-time update rates from the system

were varied to assess the performance of the discrete-time control system compared

to continuous methods. The results showed that the discrete-time system had

superior performance compared to continuous methods in cases where sampling rates

were slower. This demonstrated the potential requirement for discrete-time control

systems for trajectory tracking of a quadrotor in indoor nuclear environments.

To address the second research aim above, Chapter 4 designs and implements

a discrete-time sliding mode formation control system for a network of quadrotors.

The use of discrete-time sliding mode control allowed a robust system of quadrotors

to be developed, capable of holding a formation about a dynamic virtual leader

in the presence of external disturbances. A robustness analysis shows that

the control system demonstrated quasi-sliding mode behaviour. The marginal

stability of the control system was further demonstrated with the sliding surfaces

remaining within a quasi-sliding mode band in a Simulink simulation. To further

validate the efficacy of the control system for a network of quadrotors, the system

was implemented experimentally using Crazyflie 2.1 micro-quadrotors. Through

real-world experimental testing, strong performance in the nominal case was

demonstrated, as well as reasonable performance when in the presence of an

external wind disturbance. Results from experimental testing showed that, while the

system successfully retained its formation for the duration of the flights, the system

temporarily diverged from the position of the virtual-leader when a disturbance

was applied. This can potentially be mitigated, and future work should aim to

investigate alternative network topologies, or tune the system further to improve

the performance of the system. To summarise, Chapter 4 addresses the second and

third aims of the project, by developing and experimentally testing a discrete-time
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formation control algorithm.

To address the final research aim, Chapter 5 investigates the efficacy of the

discrete-time sliding mode formation control for application to challenges in the

nuclear industry. First, a system capable of source-seeking in a radiative sensor

field is developed by implementing a gradient-climbing virtual leader. By supplying

the virtual leader with temperature measurements, and position readings from each

quadrotor, through an undirected graph network topology, it was able to navigate

up a gradient towards the source of the field. Implementing this in combination

with the discrete-time sliding mode formation controller in Chapter 4, a system

was developed capable of locating the peaks of these sensor fields, while rejecting

external wind disturbance. The proposed algorithm was investigated in simulation

with a simple gamma radiation source, following the inverse-square law, placed in

an environment in Simulink. The proposed system allowed the agents to navigate

towards the source and remain at the source for the duration of the simulation. To

further investigate the efficacy of the control system for more complicated sensor

fields, an environmental field was simulated with superposition of three ellipses.

This simulation made the gradient climbing performance of the system evident,

as the plots in the chapter show the quadrotor swarm navigating up the gradient

towards the peak, locating the source within 300 seconds. To further investigate

the applications of the formation of quadrotors, the data-collection capability of the

quadrotors was combined with a technique known as Gaussian Process Regression,

to provide an operator with a two-dimensional map of a temperature sensor-field.

Data recorded by three quadrotors, equipped with LM35 temperature sensors and

placed in an environment with a varying temperature gradient, was processed using

Gaussian Process Regression in Python. The post-processed data displayed the

temperature gradient in the environment, in the presence of both a single hotspot,

and two separate hotspots. Combining these techniques, effectively allowing a

network of quadrotor to locate the peak of a radiative sensor field, while collecting

data to provide an operator with an environmental map of the area covered,
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could greatly improve the efficiency and safety of monitoring and characterisation

processes within the nuclear industry. This chapter validated the efficacy of the

designed control algorithms for applications in the nuclear industry.

The development of a robust source-seeking swarm of quadrotors has several

implications for the nuclear industry. Firstly, the developed algorithms provides

a novel robust method for rapid localisation of a radiation source. This could

allow a group of quadrotors to locate potential radiation hotspots within a nuclear

facility, for example, locating the source of radiation within a cell in a nuclear

facility undergoing decommissioning, or the exact location of a radiation hostpot

in the event of an incident. The system is also capable of providing an operator

with a two-dimensional map of the environmental field over the covered location

using Gaussian Process Regression. This could dramatically increase the efficiency

of monitoring approaches in these facilities. In addition to improved efficiency, the

system also provides improved safety through the reduction of human exposure in

these processes. Furthermore, the proposed system is scalable and adaptable. While

the thesis focuses on the use of a small network of three quadrotors, the algorithms

proposed are capable of achieving formation of a larger number of quadrotors. The

adaptability of the approach comes from the invariance to network topology, as

the system will work in any communication graph displaying at least one directed

spanning tree, improving system redundancy and robustness. Using the system for

rapid environmental monitoring can also supply timely and accurate data collection

of radiation levels in various environments. This information could be used for

regulatory compliance and potentially improve public confidence in safety within

the nuclear industry. Ultimately, this thesis provides advancements in the fields of

both single and multi-quadrotor control, improving and validating the robustness of

quadrotor control systems for use in the nuclear industry.

The work in this thesis has therefore addressed the four research aims outlined

by the project, and has provided the components of a cyber-physical system capable

of addressing a number of challenges identified in the nuclear industry. Despite this,
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there is still remaining work to be undertaken were the system to be implemented

on Sellafield site, or another nuclear site. This thesis has proposed and initially

validated a number of robust algorithms for the accurate and robust control of

quadrotors. Work remains on the further validation of these techniques for use

in the nuclear industry, to ensure safety of the system and regulatory compliance.

One of the limitation of the project was the inability to verify the robustness of the

formation control algorithm, in combination with the previously designed inner-loop

attitude and altitude control systems. Future work could aim to further validate

the efficacy of the control systems by combining these control techniques, and

implementing them on a larger quadrotor systems in the presence of disturbances. A

combination of different control algorithms could be considered, where an outer-loop

formation control system, based on discrete-time sliding mode formation control

is implemented alongside an attitude and altitude controller based on finite-time

integral sliding mode control. This could potential combine the chattering-free

capability of FTI-SMC, with the outer loop discrete-time sliding mode formation

controller, handling the discontinuous update rate of the networked system.

In addition to the validation of the the underlying control systems, the

applications proposed in this thesis can also be further investigated in future work.

In particular, future works should aim to investigate the efficacy of the system

for locating of a radioactive source in the real-world case, potentially trialing the

system on Sellafield site. An alternative avenue for future research is the application

of the developed algorithms to other fields, such as environmental monitoring and

agriculture.

This concluding chapter has provided a summary of the work completed in

this thesis, demonstrating the success of the project in addressing the research

aims outlined in Chapter 1. By advancing the understanding of quadrotor control

algorithms, the thesis has provided a number of robust control strategies for safe and

accurate control of quadrotors in the nuclear industry. The research demonstrates

the applications of robust mutli-quadrotor control in the nuclear industry, for
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problems such as radiation source localisation. This thesis presents the critical

foundational work required for the future implementation of autonomous multi-

quadrotor systems within the nuclear industry.
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Appendix A

Discrete-Time Sliding Mode

Swarm Python Code

import cflib.crtp

from cflib.crazyflie import Crazyflie

from cflib.crazyflie.syncCrazyflie import SyncCrazyflie

from cflib.crazyflie.log import LogConfig

from cflib.crazyflie.swarm import CachedCfFactory

import time

import math

import csv

import pandas as pd

import numpy as np

import cflib.crtp

from cflib.crazyflie import Crazyflie

from cflib.crazyflie.swarm import CachedCfFactory

from cflib.crazyflie.log import LogConfig

from cflib.crazyflie.swarm import Swarm

from cflib.crazyflie.syncCrazyflie import SyncCrazyflie

from cflib.crazyflie.syncLogger import SyncLogger
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from cflib.crazyflie.syncLogger import SyncLogger

URI1 = ’radio ://0/80/2M/E7E7E7E701 ’

URI2 = ’radio ://0/80/2M/E7E7E7E702 ’

URI3 = ’radio ://0/80/2M/E7E7E7E703 ’

uris = [

’radio ://0/80/2M/E7E7E7E701 ’,

’radio ://0/80/2M/E7E7E7E702 ’,

’radio ://0/80/2M/E7E7E7E703 ’,

]

sequence1 = [

(1, 0.25, 0.75, 3.0),

(-0.25, 0.25, 0.5, 3.0),

(-0.0, -0.0, 0.5, 3.0) ,]

sequence2 = [

(2, 0.25, 0.75, 3.0),

(-0.25, -0.25, 0.75, 3.0),

(0.25, -0.25, 0.1, 3.0),

(0.25, 0.25, 0.5, 3.0) ,]

sequence3 = [

(3, -0.25, 1, 3.0),

(0.25, -0.25, 1, 3.0),

(0.25, 0.25, 1, 3.0),

(-0.25, 0.25, 1, 3.0) ,]
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seq_args = {

’radio ://0/80/2M/E7E7E7E701 ’: [sequence1],

’radio ://0/80/2M/E7E7E7E702 ’: [sequence2],

’radio ://0/80/2M/E7E7E7E703 ’: [sequence3],}

#Sample Time

T = 0.02

xd_ref = [0,0,0,0]

yd_ref = [0,0,0,0]

pi = 3.142

radius = 0.3

spin_duration = 100

vlpx = 0

vlpy = 0

vldx = 0

vldy = 0

vlpx_old = 0

vlpy_old = 0

#initial velocities of leader

vlpz = 0.3

leaderpos = (0,0 ,0.3)

deltax1 = radius*math.cos (0) #distance of drone 0 to leader x

deltay1 = radius*math.sin (0) # distance of drone 0 to leader

y

deltax2 = radius*math.cos (2*pi *1/3) # distance of drone 1 to

leader x

deltay2 = radius*math.sin (2*pi *1/3) # disctance of drone 1 to
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leader y

deltax3 = radius*math.cos (2*pi *2/3) # distance of drone 2 to

the leader x

deltay3 = radius*math.sin (2*pi *2/3) #distance of drone 2 to

the leader y

gain = 1.7 #gain for desired velocity

#desired formation vectors

delta_x = np.array([deltax1 , deltax2 , deltax3 ])

delta_y = np.array([deltay1 , deltay2 , deltay3 ])

#gains

ax = 2*np.array ([[1, 0, 0],

[0, 1, 0],

[0, 0, 1]] ) # alpha x gain

ay = 2*np.array ([[1, 0, 0],

[0, 1, 0],

[0, 0, 1]] ) # alpha x gain

mux = 4*np.array ([[1, 0, 0],

[0, 1, 0],

[0, 0, 1]] ) # alpha x gain

muy = 4*np.array ([[1, 0, 0],

[0, 1, 0],

[0, 0, 1]] ) # alpha x gain

etax = 1*np.array ([[1, 0, 0],

[0, 1, 0],

[0, 0, 1]] )

180



etay = 1*np.array ([[1, 0, 0],

[0, 1, 0],

[0, 0, 1]] )

’’’

BEST GAINS SO FAR

ax = 2*np.array ([[1, 0, 0],

[0, 1, 0],

[0, 0, 1]] ) # alpha x gain

ay = 2*np.array ([[1, 0, 0],

[0, 1, 0],

[0, 0, 1]] ) # alpha x gain

mux = 5*np.array ([[1, 0, 0],

[0, 1, 0],

[0, 0, 1]] ) # alpha x gain

muy = 5*np.array ([[1, 0, 0],

[0, 1, 0],

[0, 0, 1]] ) # alpha x gain

etax = 1*np.array ([[1, 0, 0],

[0, 1, 0],

[0, 0, 1]] )

etay = 1*np.array ([[1, 0, 0],
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[0, 1, 0],

[0, 0, 1]] )

’’’

#Graph Connectivity

# Identity vector

eyebar = np.array([1, 1, 1])

A = np.array ([[0,1,0],

[1,0,1],

[0,1,0]])

D = np.array ([[1,0,0],

[0,2,0],

[0,0,1]])

L = D-A

# B matrix (connections to the leader)

B = np.array ([[0, 0, 0], [0, 1, 0], [0, 0, 0]])

#assuming just enough thrust for hover

m1, m2, m3 = 1, 1, 1

u11 , u12 , u13 = 9.81 ,9.81 ,9.81

u1mat = np.array ([[u11 , 0, 0], [0, u12 ,0], [0, 0, u13]])
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mVect = np.array ([[1/m1, 0, 0], [0, 1/m2, 0], [0, 0, 1/m3]])

u1m = T*u1mat@mVect

#lists for logging data to csv

dronexyz1_list = []

dronexyz2_list = []

dronexyz3_list = []

dronedxyz1_list = []

dronedxyz2_list = []

dronedxyz3_list = []

dronerpy1_list = []

dronerpy2_list = []

dronerpy3_list = []

dronepqr1_list = []

dronepqr2_list = []

dronepqr3_list = []

leaderxyz_list = []

errors_list = []

ss_list = []

controlInputs_list = []

def log_stab_callback(uri , timestamp , data , log_conf):

x = float(data[’stateEstimate.x’])

y = float(data[’stateEstimate.y’])

z = float(data[’stateEstimate.z’])

vx = float(data[’stateEstimate.vx’])

vy = float(data[’stateEstimate.vy’])

vz = float(data[’stateEstimate.vz’])

def land(cf , position):
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landing_time = 1.0

sleep_time = 0.1

steps = int(landing_time / sleep_time)

vz = position / landing_time

print(vz)

for _ in range(steps):

cf.commander.send_velocity_world_setpoint (0, 0, vz ,

0)

time.sleep(sleep_time)

cf.commander.send_stop_setpoint ()

# Make sure that the last packet leaves before the link

is closed

# since the message queue is not flushed before closing

time.sleep (0.1)

def simple_log_async(scf ,droneNum):

lg_vars = {

’stateEstimate.x’: ’FP16’,

’stateEstimate.y’: ’FP16’,

’stateEstimate.z’: ’FP16’,

’stateEstimate.vx’: ’FP16’,

’stateEstimate.vy’: ’FP16’,

’stateEstimate.vz’: ’FP16’,

’stabilizer.roll’: ’FP16’,

’stabilizer.pitch’: ’FP16’,

’stabilizer.yaw’: ’FP16’,

}
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lg_stab = LogConfig(name=’stateEstimate ’, period_in_ms

=20)

for key in lg_vars:

lg_stab.add_variable(key , lg_vars[key])

cf = scf.cf

cf.log.add_config(lg_stab)

idx = 0

with SyncLogger(scf , lg_stab) as logger:

for entry in logger:

idx += 1

lg_stab.data_received_cb.add_callback(lambda t, d

, l: log_stab_callback(cf.link_uri , t, d, l))

x = entry [1][’stateEstimate.x’]

y = entry [1][’stateEstimate.y’]

z = entry [1][’stateEstimate.z’]

vx = entry [1][’stateEstimate.vx’]

vy = entry [1][’stateEstimate.vy’]

vz = entry [1][’stateEstimate.vz’]

phi = entry [1][’stabilizer.roll’]

theta = entry [1][’stabilizer.pitch ’]

psi = entry [1][’stabilizer.yaw’]

#saving variables to list for plotting later:

posdrones[scf.cf.link_uri] = (x,y,z)

veldrones[scf.cf.link_uri] = (vx,vy,vz)

attdrones[scf.cf.link_uri] = (phi ,theta ,psi)
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uri = scf.cf.link_uri

if uri == URI1:

dronexyz1_list.append(posdrones[URI1])

dronedxyz1_list.append(veldrones[URI1])

dronerpy1_list.append(attdrones[URI1])

elif uri == URI2:

dronexyz2_list.append(posdrones[URI2])

dronedxyz2_list.append(veldrones[URI2])

dronerpy2_list.append(attdrones[URI2])

elif uri == URI3:

dronexyz3_list.append(posdrones[URI3])

dronedxyz3_list.append(veldrones[URI3])

dronerpy3_list.append(attdrones[URI3])

if idx > 5:

#### Here is where we run the main control loop

#print ("")

formation_control(scf ,posdrones ,veldrones ,idx

,droneNum)

if abs(x) > 0.9:

idx = 3300

elif abs(y) > 0.9:

idx = 3300

if idx == 3300:

if uri == URI1:

print("saving drone 1 data")
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dp1=pd.DataFrame(dronexyz1_list)

dp1.to_csv(’dronexyz1_list.csv’)

dv1=pd.DataFrame(dronedxyz1_list)

dv1.to_csv(’dronedxyz1_list.csv’)

da1=pd.DataFrame(dronerpy1_list)

da1.to_csv(’dronerpy1_list.csv’)

print("CSVs saved!")

elif uri == URI2:

print("saving to dronexyz2_list.csv")

dp2=pd.DataFrame(dronexyz2_list)

dp2.to_csv(’dronexyz2_list.csv’)

dv2=pd.DataFrame(dronedxyz2_list)

dv2.to_csv(’dronedxyz2_list.csv’)

da2=pd.DataFrame(dronerpy2_list)

da2.to_csv(’dronerpy2_list.csv’)

print("CSVs saved!")

elif uri == URI3:

print("saving to dronexyz3_list.csv")

dp3=pd.DataFrame(dronexyz3_list)

dp3.to_csv(’dronexyz3_list.csv’)

dv3=pd.DataFrame(dronedxyz3_list)

dv3.to_csv(’dronedxyz3_list.csv’)

da3=pd.DataFrame(dronerpy3_list)

da3.to_csv(’dronerpy3_list.csv’)
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print("CSVs saved!")

def get_control_inputs(uri ,xyz1 ,xyz2 ,xyz3 ,dxyz1 ,dxyz2 ,dxyz3 ,

vlpx ,vlpy ,vldx , vldy , idx):

x1,y1,z1 = xyz1[0],xyz1[1],xyz1 [2]

x2,y2,z2 = xyz2[0],xyz2[1],xyz2 [2]

x3,y3,z3 = xyz3[0],xyz3[1],xyz3 [2]

dx1 ,dy1 ,dz1 = dxyz1[0], dxyz1[1], dxyz1 [2]

dx2 ,dy2 ,dz2 = dxyz2[0], dxyz2[1], dxyz2 [2]

dx3 ,dy3 ,dz3 = dxyz3[0], dxyz3[1], dxyz3 [2]

x0x = vlpx

x0y = vlpy

dx0x = vldx

dx0y = vldy

#dx1 , dx2 , dy1 , dy2 , dx3 , dy3 = dx1*T, dx2*T, dy1*T, dy2*

T, dx3*T, dy3*T

# Definitions of the graph

xVect = np.array ([x1, x2, x3]) # vector of agents x

positions

yVect = np.array ([y1, y2, y3]) # y positions

dxVect = np.array([dx1 , dx2 , dx3]) # x velocities

dyVect = np.array([dy1 , dy2 , dy3]) # y velocities

# Define errors

e1x = -(L+B) @ (xVect - delta_x - x0x*eyebar) # x pos
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error

e2x = -(L+B) @ (dxVect - eyebar*dx0x) # x vel error

e1y = -(L+B) @ (yVect - delta_y - eyebar*x0y) # y pos

error

e2y = -(L+B) @ (dyVect - eyebar*dx0y) # y vel

e1x_plus = -(L+B) @ ((xVect + T*dxVect) - (delta_x) - (

eyebar*x0x + T*eyebar*dx0x))

e1y_plus = -(L+B) @ ((yVect + T*dyVect) - (delta_y) - (

eyebar*x0y + T*eyebar*dx0y))

ssx = ax@(e1x) + e2x

ssy = ay@(e1y) + e2y

sgnssx = np.array([np.sign(ssx [0]),

np.sign(ssx [1]),

np.sign(ssx [2])])

sgnssy = np.array([np.sign(ssy [0]),

np.sign(ssy [1]),

np.sign(ssy [2])])

# dxplus = np.linalg.inv(-(L+B))@(T*(-mux*ssx) + (L+B)@(

ax@(( xVect+T*dxVect)-delta_x -( eyebar*x0x+T*eyebar*dx0x

))-eyebar*dx0x -ax@(xVect -delta_x -eyebar*x0x) -(dxVect -

eyebar*dx0x)))

# dyplus = np.linalg.inv(-(L+B))@(T*(-muy*ssy) + T*

etay@sgnssy + (L+B)@(ay@((yVect+T*dyVect)-delta_y -(

eyebar*x0y+T*eyebar*dx0y))-eyebar*dx0y -ay@(yVect -

delta_y -eyebar*x0y)-(dyVect -eyebar*dx0y)))
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# uxmat = np.linalg.inv(u1m)@(dxplus - dxVect)

# uymat = np.linalg.inv(u1m)@(dyplus - dyVect)

uxmat = np.linalg.inv(u1m) @ (T*( dxVect - eyebar*dx0x) -

np.linalg.inv(L+B) @ ((T*mux*ssx) + T*etax@sgnssx + ax

*e1x_plus - ssx))

uymat = np.linalg.inv(u1m) @ (T*( dyVect - eyebar*dx0y) -

np.linalg.inv(L+B) @ ((T*muy*ssy) + T*etay@sgnssy + ay

*e1y_plus - ssy))

ux1 , ux2 , ux3 = uxmat

uy1 , uy2 , uy3 = uymat

e_all = (e1x ,e1y ,e2x ,e2y)

ss_all = (ssx , ssy)

controlInputsAll = (-ux1[0], uy1[0],-ux2[1], uy2[1], -ux3

[2], uy3 [2])

if uri == URI1:

controlInputs_list.append(controlInputsAll)

ss_list.append(ss_all)

errors_list.append(e_all)

if uri == URI1:

return -ux1[0], uy1 [0]

elif uri == URI2:

return -ux2[1], uy2 [1]
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elif uri == URI3:

return -ux3[2], uy3 [2]

def formation_control(scf ,posdrones ,veldrones ,idx ,droneNum):

global vlpx_old

global vlpy_old

cf = scf.cf

uri = scf.cf.link_uri

xyz1 = posdrones[’radio ://0/80/2M/E7E7E7E701 ’]

xyz2 = posdrones[’radio ://0/80/2M/E7E7E7E702 ’]

xyz3 = posdrones[’radio ://0/80/2M/E7E7E7E703 ’]

dxyz1 = veldrones[’radio ://0/80/2M/E7E7E7E701 ’]

dxyz2 = veldrones[’radio ://0/80/2M/E7E7E7E702 ’]

dxyz3 = veldrones[’radio ://0/80/2M/E7E7E7E703 ’]

#xyz1 = (deltax1 ,deltax2 ,0.3)

#xyz2 = (deltax2 , deltax2 , 0.3) #when drones are off ,

assume they are at their desired positions

#xyz3 = (deltax3 , deltay3 , 0.3) #when drones are off ,

assume they are at their desired postision

#dxyz1 = (0,0,0)

#dxyz2 = (0,0,0) #when drones are off , assume they are at

their desired veloctities

#dxyz3 = (0,0,0)
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if 300 <= idx < 3300 :

vlpx = 0.3* math.sin (4*pi*((idx -300))/3000)

vlpy = 0.3* math.cos (4*pi*((idx -300))/3000)

vlpz = 0.3

vldx = 0.3* math.sin (2*pi*((idx -300))/3000) - 0.3* math

.sin(2*pi*((idx -1 -300))/3000)

vldy = 0.3* math.cos (2*pi*((idx -300))/3000) - 0.3* math

.cos(2*pi*((idx -1 -300))/3000)

else:

vlpx = 0.3

vlpy = 0.3

vlpz = 0.3

vldx = 0

vldy = 0

vldz = 0

leaderpos = (vlpx , vlpy , vlpz ,vldx , vldy , 0)

print(vldx , vldy)

if uri == URI1:

leaderxyz_list.append(leaderpos)
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if 0<= idx <200:

a = 1

#can run some initialisation here if needed

#Takeoff Sequence , each drone goes to its desired

position

elif 200 <= idx < 300 :

if uri == ’radio ://0/80/2M/E7E7E7E701 ’:

a = 1

cf.commander.send_position_setpoint(xyz1[0],xyz1

[1] ,0.3 ,0) #set position to 0,0,1

#if drone is drone 1

elif uri == ’radio ://0/80/2M/E7E7E7E702 ’:

cf.commander.send_position_setpoint(xyz2[0],xyz2

[1] ,0.3 ,0) #set position to 0,0,1

a = 1

elif uri == ’radio ://0/80/2M/E7E7E7E703 ’:

a = 1

cf.commander.send_position_setpoint(xyz3[0],xyz3

[1] ,0.3 ,0) #set position to 0,0,1

#Main loop where drones are controlled with formation

controller

elif 300 <= idx < 3300 :

if uri == URI1:

ux,uy= get_control_inputs(uri ,xyz1 ,xyz2 ,xyz3 ,

dxyz1 ,dxyz2 ,dxyz3 ,vlpx ,vlpy ,vldx ,vldy ,idx)

phi_d1 , theta_d1 = uxuy2phidthetad(ux , uy)
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cf.commander.send_zdistance_setpoint (1* phi_d1 ,1*

theta_d1 , 0,0.3)

elif uri == URI2:

ux,uy= get_control_inputs(uri ,xyz1 ,xyz2 ,xyz3 ,

dxyz1 ,dxyz2 ,dxyz3 ,vlpx ,vlpy ,vldx ,vldy ,idx)

phi_d2 , theta_d2 = uxuy2phidthetad(ux , uy)

cf.commander.send_zdistance_setpoint (1* phi_d2 ,1*

theta_d2 , 0,0.3)

elif uri == URI3:

ux,uy= get_control_inputs(uri ,xyz1 ,xyz2 ,xyz3 ,

dxyz1 ,dxyz2 ,dxyz3 ,vlpx ,vlpy ,vldx ,vldy ,idx)

phi_d3 , theta_d3 = uxuy2phidthetad(ux , uy)

cf.commander.send_zdistance_setpoint (1* phi_d3 ,1*

theta_d3 , 0,0.3)

#landing sequence , each drone goes to final position

elif 3300 <= idx < 3400 :

#print (" landing ")

if uri == ’radio ://0/80/2M/E7E7E7E701 ’:

cf.commander.send_position_setpoint(deltax1 ,

deltay1 ,0.1 ,0) #set position to 0,0,1

a = 1

#if drone is drone 1

elif uri == ’radio ://0/80/2M/E7E7E7E702 ’:

cf.commander.send_position_setpoint(deltax2 ,

deltay2 ,0.1 ,0) #set position to 0,0,1

a = 1
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elif uri == ’radio ://0/80/2M/E7E7E7E703 ’:

cf.commander.send_position_setpoint(deltax3 ,

deltay3 ,0.1 ,0) #set position to 0,0,1

a = 1

#run final landing sequence and shurdown motors

elif 3400 == idx:

print(’powering down and saving logs’)

land(cf , -0.15)

if uri == URI1:

lp=pd.DataFrame(leaderxyz_list)

lp.to_csv(’leaderxyz_list.csv’)

print("adding errors and sliding surface to CSV")

el=pd.DataFrame(errors_list)

el.to_csv(’errors_list.csv’)

ss=pd.DataFrame(ss_list)

ss.to_csv(’ss_list.csv’)

il = pd.DataFrame(controlInputs_list)

il.to_csv(’controlInputs_list.csv’)

else:

quit()

def uxuy2phidthetad(ux , uy):

psi = 0

sinofphi = ux * math.sin(psi) - uy * math.cos(psi)

#print(sinofphi)

sinofphi = max(min(sinofphi , 1), -1) # clamp value

between -1 and 1
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phi_d = math.asin(sinofphi)

sinoftheta = (ux * math.cos(psi) + uy * math.sin(psi)) /

abs(math.cos(0))

sinoftheta = max(min(sinoftheta , 1), -1) # clamp value

between -1 and 1

theta_d = math.asin(sinoftheta)

return phi_d , theta_d

if __name__ == ’__main__ ’:

posdrones = dict()

veldrones = dict()

attdrones = dict()

attrates = dict()

initlog = 0

cflib.crtp.init_drivers(enable_debug_driver=False) #

initialize drivers

factory = CachedCfFactory(rw_cache=’./ cache’)

with Swarm(uris , factory=factory) as swarm:

swarm.parallel_safe(simple_log_async , args_dict=

seq_args)

# while True:

# #swarm.parallel_safe(simple_log_async ,

args_dict=seq_args)

# a = 1
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Temperature Data Collection

Python Code

import cflib.crtp

from cflib.crazyflie import Crazyflie

from cflib.crazyflie.syncCrazyflie import SyncCrazyflie

from cflib.crazyflie.log import LogConfig

from cflib.crazyflie.swarm import CachedCfFactory

import time

import math

import csv

import pandas as pd

import numpy as np

import cflib.crtp

from cflib.crazyflie import Crazyflie

from cflib.crazyflie.swarm import CachedCfFactory

from cflib.crazyflie.log import LogConfig

from cflib.crazyflie.swarm import Swarm

from cflib.crazyflie.syncCrazyflie import SyncCrazyflie

from cflib.crazyflie.syncLogger import SyncLogger
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from cflib.crazyflie.syncLogger import SyncLogger

URI1 = ’radio ://0/80/2M/E7E7E7E703 ’

URI2 = ’radio ://0/80/2M/E7E7E7E702 ’

URI3 = ’radio ://0/80/2M/E7E7E7E701 ’

uris = [

’radio ://0/80/2M/E7E7E7E703 ’,

’radio ://0/80/2M/E7E7E7E702 ’,

’radio ://0/80/2M/E7E7E7E701 ’,

]

sequence1 = [

(1, 0.25, 0.75, 3.0),

(-0.25, 0.25, 0.5, 3.0),

(-0.0, -0.0, 0.5, 3.0) ,]

sequence2 = [

(2, 0.25, 0.75, 3.0),

(-0.25, -0.25, 0.75, 3.0),

(0.25, -0.25, 0.1, 3.0),

(0.25, 0.25, 0.5, 3.0) ,]

sequence3 = [

(3, -0.25, 1, 3.0),

(0.25, -0.25, 1, 3.0),

(0.25, 0.25, 1, 3.0),

(-0.25, 0.25, 1, 3.0) ,]
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seq_args = {

’radio ://0/80/2M/E7E7E7E703 ’: [sequence1],

’radio ://0/80/2M/E7E7E7E702 ’: [sequence2],

’radio ://0/80/2M/E7E7E7E701 ’: [sequence3],}

#Sample Time

T = 0.02

xd_ref = [0,0,0,0]

yd_ref = [0,0,0,0]

pi = 3.142

radius = 0.25

spin_duration = 100

vlpx = 0

vlpy = 0

vldx = 0

vldy = 0

vlpx_old = 0

vlpy_old = 0

#initial velocities of leader

vlpz = 0.3

leaderpos = (0,0 ,0.3)

deltax1 = radius*math.cos (0) #distance of drone 0 to leader x

deltay1 = radius*math.sin (0) # distance of drone 0 to leader

y

deltax2 = radius*math.cos (2*pi *1/3) # distance of drone 1 to

leader x

deltay2 = radius*math.sin (2*pi *1/3) # disctance of drone 1 to
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leader y

deltax3 = radius*math.cos (2*pi *2/3) # distance of drone 2 to

the leader x

deltay3 = radius*math.sin (2*pi *2/3) #distance of drone 2 to

the leader y

gain = 1.7 #gain for desired velocity

#desired formation vectors

delta_x = np.array([deltax1 , deltax2 , deltax3 ])

delta_y = np.array([deltay1 , deltay2 , deltay3 ])

#gains

ax = 2*np.array ([[1, 0, 0],

[0, 1, 0],

[0, 0, 1]] ) # alpha x gain

ay = 2*np.array ([[1, 0, 0],

[0, 1, 0],

[0, 0, 1]] ) # alpha x gain

mux = 4*np.array ([[1, 0, 0],

[0, 1, 0],

[0, 0, 1]] ) # alpha x gain

muy = 4*np.array ([[1, 0, 0],

[0, 1, 0],

[0, 0, 1]] ) # alpha x gain

etax = 1*np.array ([[1, 0, 0],

[0, 1, 0],

[0, 0, 1]] )
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etay = 1*np.array ([[1, 0, 0],

[0, 1, 0],

[0, 0, 1]] )

’’’

BEST GAINS SO FAR

ax = 2*np.array ([[1, 0, 0],

[0, 1, 0],

[0, 0, 1]] ) # alpha x gain

ay = 2*np.array ([[1, 0, 0],

[0, 1, 0],

[0, 0, 1]] ) # alpha x gain

mux = 5*np.array ([[1, 0, 0],

[0, 1, 0],

[0, 0, 1]] ) # alpha x gain

muy = 5*np.array ([[1, 0, 0],

[0, 1, 0],

[0, 0, 1]] ) # alpha x gain

etax = 1*np.array ([[1, 0, 0],

[0, 1, 0],

[0, 0, 1]] )

etay = 1*np.array ([[1, 0, 0],
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[0, 1, 0],

[0, 0, 1]] )

’’’

#Graph Connectivity

# Identity vector

#eyebar = np.array ([1, 1, 1])

#A = np.array ([[0,1,0],

# [1,0,1],

# [0 ,1 ,0]])

#D = np.array ([[1,0,0],

# [0,2,0],

# [0 ,0 ,1]])

#L = D-A

# B matrix (connections to the leader)

#B = np.array ([[0, 0, 0], [0, 1, 0], [0, 0, 0]])

# Identity vector

eyebar = np.array([1, 1, 1])

A = np.array ([[0,1,1],

[1,0,1],
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[1,1 ,1]])

D = np.array ([[3,0,0],

[0,3,0],

[0,0 ,3]])

L = D-A

# B matrix (connections to the leader)

B = np.array ([[1, 0, 0], [0, 1, 0], [0, 0, 1]])

#assuming just enough thrust for hover

m1, m2, m3 = 1, 1, 1

u11 , u12 , u13 = 9.81 ,9.81 ,9.81

u1mat = np.array ([[u11 , 0, 0], [0, u12 ,0], [0, 0, u13]])

mVect = np.array ([[1/m1, 0, 0], [0, 1/m2, 0], [0, 0, 1/m3]])

u1m = T*u1mat@mVect

#lists for logging data to csv

dronexyz1_list = []

dronexyz2_list = []

dronexyz3_list = []

dronetemp1_list = []

dronetemp2_list = []

dronetemp3_list = []

dronedxyz1_list = []

dronedxyz2_list = []

dronedxyz3_list = []

dronerpy1_list = []
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dronerpy2_list = []

dronerpy3_list = []

dronepqr1_list = []

dronepqr2_list = []

dronepqr3_list = []

leaderxyz_list = []

errors_list = []

ss_list = []

controlInputs_list = []

def log_stab_callback(uri , timestamp , data , log_conf):

x = float(data[’stateEstimate.x’])

y = float(data[’stateEstimate.y’])

z = float(data[’stateEstimate.z’])

vx = float(data[’stateEstimate.vx’])

vy = float(data[’stateEstimate.vy’])

vz = float(data[’stateEstimate.vz’])

def land(cf , position):

landing_time = 1.0

sleep_time = 0.1

steps = int(landing_time / sleep_time)

vz = position / landing_time

#print(vz)

for _ in range(steps):

cf.commander.send_velocity_world_setpoint (0, 0, vz ,

0)

time.sleep(sleep_time)
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cf.commander.send_stop_setpoint ()

# Make sure that the last packet leaves before the link

is closed

# since the message queue is not flushed before closing

time.sleep (0.1)

def simple_log_async(scf ,droneNum):

lg_vars = {

’stateEstimate.x’: ’FP16’,

’stateEstimate.y’: ’FP16’,

’stateEstimate.z’: ’FP16’,

’stateEstimate.vx’: ’FP16’,

’stateEstimate.vy’: ’FP16’,

’stateEstimate.vz’: ’FP16’,

’stabilizer.roll’: ’FP16’,

’stabilizer.pitch’: ’FP16’,

’stabilizer.yaw’: ’FP16’,

’baro.temp’: ’float’,

}

lg_stab = LogConfig(name=’stateEstimate ’, period_in_ms

=20)

for key in lg_vars:

lg_stab.add_variable(key , lg_vars[key])

cf = scf.cf

cf.log.add_config(lg_stab)

idx = 0

with SyncLogger(scf , lg_stab) as logger:

for entry in logger:
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idx += 1

lg_stab.data_received_cb.add_callback(lambda t, d

, l: log_stab_callback(cf.link_uri , t, d, l))

x = entry [1][’stateEstimate.x’]

y = entry [1][’stateEstimate.y’]

z = entry [1][’stateEstimate.z’]

vx = entry [1][’stateEstimate.vx’]

vy = entry [1][’stateEstimate.vy’]

vz = entry [1][’stateEstimate.vz’]

phi = entry [1][’stabilizer.roll’]

theta = entry [1][’stabilizer.pitch ’]

psi = entry [1][’stabilizer.yaw’]

temp = entry [1][’baro.temp’]

#saving variables to list for plotting later:

posdrones[scf.cf.link_uri] = (x,y,z, temp)

veldrones[scf.cf.link_uri] = (vx,vy,vz)

attdrones[scf.cf.link_uri] = (phi ,theta ,psi)

tempdrones[scf.cf.link_uri] = (temp)

uri = scf.cf.link_uri

if uri == URI1:

dronexyz1_list.append(posdrones[URI1])

dronedxyz1_list.append(veldrones[URI1])

dronerpy1_list.append(attdrones[URI1])

dronetemp1_list.append(tempdrones[URI1])

elif uri == URI2:
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dronexyz2_list.append(posdrones[URI2])

dronedxyz2_list.append(veldrones[URI2])

dronerpy2_list.append(attdrones[URI2])

dronetemp2_list.append(tempdrones[URI2])

elif uri == URI3:

dronexyz3_list.append(posdrones[URI3])

dronedxyz3_list.append(veldrones[URI3])

dronerpy3_list.append(attdrones[URI3])

dronetemp3_list.append(tempdrones[URI3])

if idx > 5:

#### Here is where we run the main control loop

#print ("")

formation_control(scf ,posdrones ,veldrones ,idx

,droneNum)

if abs(x) > 1.5:

idx = 3300

elif abs(y) > 1.5:

idx = 3300

if idx == 3300:

if uri == URI1:

print("saving drone 1 data")

dp1=pd.DataFrame(dronexyz1_list)

dp1.to_csv(’dronexyz1_list.csv’)

dv1=pd.DataFrame(dronedxyz1_list)

dv1.to_csv(’dronedxyz1_list.csv’)

da1=pd.DataFrame(dronerpy1_list)

da1.to_csv(’dronerpy1_list.csv’)
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print("CSVs saved!")

elif uri == URI2:

print("saving to dronexyz2_list.csv")

dp2=pd.DataFrame(dronexyz2_list)

dp2.to_csv(’dronexyz2_list.csv’)

dv2=pd.DataFrame(dronedxyz2_list)

dv2.to_csv(’dronedxyz2_list.csv’)

da2=pd.DataFrame(dronerpy2_list)

da2.to_csv(’dronerpy2_list.csv’)

print("CSVs saved!")

elif uri == URI3:

print("saving to dronexyz3_list.csv")

dp3=pd.DataFrame(dronexyz3_list)

dp3.to_csv(’dronexyz3_list.csv’)

dv3=pd.DataFrame(dronedxyz3_list)

dv3.to_csv(’dronedxyz3_list.csv’)

da3=pd.DataFrame(dronerpy3_list)

da3.to_csv(’dronerpy3_list.csv’)

print("CSVs saved!")

def get_control_inputs(uri ,xyz1 ,xyz2 ,xyz3 ,dxyz1 ,dxyz2 ,dxyz3 ,

vlpx ,vlpy ,vldx , vldy , idx):

x1,y1,z1 = xyz1[0],xyz1[1],xyz1 [2]
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x2,y2,z2 = xyz2[0],xyz2[1],xyz2 [2]

x3,y3,z3 = xyz3[0],xyz3[1],xyz3 [2]

dx1 ,dy1 ,dz1 = dxyz1[0], dxyz1[1], dxyz1 [2]

dx2 ,dy2 ,dz2 = dxyz2[0], dxyz2[1], dxyz2 [2]

dx3 ,dy3 ,dz3 = dxyz3[0], dxyz3[1], dxyz3 [2]

x0x = vlpx

x0y = vlpy

dx0x = vldx

dx0y = vldy

#dx1 , dx2 , dy1 , dy2 , dx3 , dy3 = dx1*T, dx2*T, dy1*T, dy2*

T, dx3*T, dy3*T

# Definitions of the graph

xVect = np.array ([x1, x2, x3]) # vector of agents x

positions

yVect = np.array ([y1, y2, y3]) # y positions

dxVect = np.array([dx1 , dx2 , dx3]) # x velocities

dyVect = np.array([dy1 , dy2 , dy3]) # y velocities

# Define errors

e1x = -(L+B) @ (xVect - delta_x - x0x*eyebar) # x pos

error

e2x = -(L+B) @ (dxVect - eyebar*dx0x) # x vel error

e1y = -(L+B) @ (yVect - delta_y - eyebar*x0y) # y pos

error

e2y = -(L+B) @ (dyVect - eyebar*dx0y) # y vel

e1x_plus = -(L+B) @ ((xVect + T*dxVect) - (delta_x) - (
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eyebar*x0x + T*eyebar*dx0x))

e1y_plus = -(L+B) @ ((yVect + T*dyVect) - (delta_y) - (

eyebar*x0y + T*eyebar*dx0y))

ssx = ax@(e1x) + e2x

ssy = ay@(e1y) + e2y

sgnssx = np.array([np.sign(ssx [0]),

np.sign(ssx [1]),

np.sign(ssx [2])])

sgnssy = np.array([np.sign(ssy [0]),

np.sign(ssy [1]),

np.sign(ssy [2])])

# dxplus = np.linalg.inv(-(L+B))@(T*(-mux*ssx) + (L+B)@(

ax@(( xVect+T*dxVect)-delta_x -( eyebar*x0x+T*eyebar*dx0x

))-eyebar*dx0x -ax@(xVect -delta_x -eyebar*x0x) -(dxVect -

eyebar*dx0x)))

# dyplus = np.linalg.inv(-(L+B))@(T*(-muy*ssy) + T*

etay@sgnssy + (L+B)@(ay@((yVect+T*dyVect)-delta_y -(

eyebar*x0y+T*eyebar*dx0y))-eyebar*dx0y -ay@(yVect -

delta_y -eyebar*x0y)-(dyVect -eyebar*dx0y)))

# uxmat = np.linalg.inv(u1m)@(dxplus - dxVect)

# uymat = np.linalg.inv(u1m)@(dyplus - dyVect)

uxmat = np.linalg.inv(u1m) @ (T*( dxVect - eyebar*dx0x) -

np.linalg.inv(L+B) @ ((T*mux*ssx) + T*etax@sgnssx + ax
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*e1x_plus - ssx))

uymat = np.linalg.inv(u1m) @ (T*( dyVect - eyebar*dx0y) -

np.linalg.inv(L+B) @ ((T*muy*ssy) + T*etay@sgnssy + ay

*e1y_plus - ssy))

ux1 , ux2 , ux3 = uxmat

uy1 , uy2 , uy3 = uymat

e_all = (e1x ,e1y ,e2x ,e2y)

ss_all = (ssx , ssy)

controlInputsAll = (-ux1[0], uy1[0],-ux2[1], uy2[1], -ux3

[2], uy3 [2])

if uri == URI1:

controlInputs_list.append(controlInputsAll)

ss_list.append(ss_all)

errors_list.append(e_all)

if uri == URI1:

return -ux1[0], uy1 [0]

elif uri == URI2:

return -ux2[1], uy2 [1]

elif uri == URI3:

return -ux3[2], uy3 [2]

def formation_control(scf ,posdrones ,veldrones ,idx ,droneNum):
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global vlpx_old

global vlpy_old

cf = scf.cf

uri = scf.cf.link_uri

xyz1 = posdrones[’radio ://0/80/2M/E7E7E7E703 ’]

xyz2 = posdrones[’radio ://0/80/2M/E7E7E7E702 ’]

xyz3 = posdrones[’radio ://0/80/2M/E7E7E7E701 ’]

dxyz1 = veldrones[’radio ://0/80/2M/E7E7E7E703 ’]

dxyz2 = veldrones[’radio ://0/80/2M/E7E7E7E702 ’]

dxyz3 = veldrones[’radio ://0/80/2M/E7E7E7E701 ’]

#xyz1 = (deltax1 ,deltax2 ,0.5)

#xyz2 = (deltax2 , deltax2 , 0.5) #when drones are off ,

assume they are at their desired positions

#xyz3 = (deltax3 , deltay3 , 0.5) #when drones are off ,

assume they are at their desired postision

#dxyz1 = (0,0,0)

#dxyz2 = (0,0,0) #when drones are off , assume they are at

their desired veloctities

#dxyz3 = (0,0,0)

if 300 <= idx < 3300 :

vlpx = (0.4)*math.sin (4*pi*((idx -300))/2000) + 0.25

vlpy = (0.4)*math.cos (4*pi*((idx -300))/2000)

vlpz = 0.5

212



vldx = (0.4)*math.sin (2*pi*((idx -300))/2000) - (0.4)*

math.sin (2*pi*((idx -1 -300))/2000)

vldy = (0.4)*math.cos (2*pi*((idx -300))/2000) - (0.4)*

math.cos (2*pi*((idx -1 -300))/2000)

else:

vlpx = 0.3 + 0.25

vlpy = 0.3

vlpz = 0.5

vldx = 0

vldy = 0

vldz = 0

leaderpos = (vlpx , vlpy , vlpz ,vldx , vldy , 0)

#print(vldx , vldy)

if uri == URI1:

leaderxyz_list.append(leaderpos)

if 0<= idx <200:

a = 1

#can run some initialisation here if needed

#Takeoff Sequence , each drone goes to its desired
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position

elif 200 <= idx < 300 :

if uri == ’radio ://0/80/2M/E7E7E7E703 ’:

a = 1

cf.commander.send_position_setpoint(xyz1[0],xyz1

[1] ,0.5 ,0) #set position to 0,0,1

#if drone is drone 1

elif uri == ’radio ://0/80/2M/E7E7E7E702 ’:

cf.commander.send_position_setpoint(xyz2[0],xyz2

[1] ,0.5 ,0) #set position to 0,0,1

a = 1

elif uri == ’radio ://0/80/2M/E7E7E7E701 ’:

a = 1

cf.commander.send_position_setpoint(xyz3[0],xyz3

[1] ,0.5 ,0) #set position to 0,0,1

#Main loop where drones are controlled with formation

controller

elif 300 <= idx < 3300 :

if uri == URI1:

ux,uy= get_control_inputs(uri ,xyz1 ,xyz2 ,xyz3 ,

dxyz1 ,dxyz2 ,dxyz3 ,vlpx ,vlpy ,vldx ,vldy ,idx)

phi_d1 , theta_d1 = uxuy2phidthetad(ux , uy)

cf.commander.send_zdistance_setpoint (1* phi_d1 ,1*

theta_d1 , 0,0.5)

elif uri == URI2:

ux,uy= get_control_inputs(uri ,xyz1 ,xyz2 ,xyz3 ,

dxyz1 ,dxyz2 ,dxyz3 ,vlpx ,vlpy ,vldx ,vldy ,idx)

phi_d2 , theta_d2 = uxuy2phidthetad(ux , uy)

214



cf.commander.send_zdistance_setpoint (1* phi_d2 ,1*

theta_d2 , 0,0.5)

elif uri == URI3:

ux,uy= get_control_inputs(uri ,xyz1 ,xyz2 ,xyz3 ,

dxyz1 ,dxyz2 ,dxyz3 ,vlpx ,vlpy ,vldx ,vldy ,idx)

phi_d3 , theta_d3 = uxuy2phidthetad(ux , uy)

cf.commander.send_zdistance_setpoint (1* phi_d3 ,1*

theta_d3 , 0,0.5)

#landing sequence , each drone goes to final position

elif 3300 <= idx < 3400 :

#print (" landing ")

if uri == ’radio ://0/80/2M/E7E7E7E703 ’:

cf.commander.send_position_setpoint(deltax1 ,

deltay1 ,0.1 ,0) #set position to 0,0,1

a = 1

#if drone is drone 1

elif uri == ’radio ://0/80/2M/E7E7E7E702 ’:

cf.commander.send_position_setpoint(deltax2 ,

deltay2 ,0.1 ,0) #set position to 0,0,1

a = 1

elif uri == ’radio ://0/80/2M/E7E7E7E701 ’:

cf.commander.send_position_setpoint(deltax3 ,

deltay3 ,0.1 ,0) #set position to 0,0,1

a = 1

#run final landing sequence and shurdown motors

elif 3400 == idx:
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print(’powering down and saving logs’)

land(cf , -0.15)

if uri == URI1:

lp=pd.DataFrame(leaderxyz_list)

lp.to_csv(’leaderxyz_list.csv’)

print("adding errors and sliding surface to CSV")

el=pd.DataFrame(errors_list)

el.to_csv(’errors_list.csv’)

ss=pd.DataFrame(ss_list)

ss.to_csv(’ss_list.csv’)

il = pd.DataFrame(controlInputs_list)

il.to_csv(’controlInputs_list.csv’)

else:

quit()

def uxuy2phidthetad(ux , uy):

psi = 0

sinofphi = ux * math.sin(psi) - uy * math.cos(psi)

#print(sinofphi)

sinofphi = max(min(sinofphi , 1), -1) # clamp value

between -1 and 1

phi_d = math.asin(sinofphi)

sinoftheta = (ux * math.cos(psi) + uy * math.sin(psi)) /

abs(math.cos(0))

sinoftheta = max(min(sinoftheta , 1), -1) # clamp value

between -1 and 1

theta_d = math.asin(sinoftheta)
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return phi_d , theta_d

if __name__ == ’__main__ ’:

posdrones = dict()

veldrones = dict()

attdrones = dict()

attrates = dict()

tempdrones = dict()

initlog = 0

cflib.crtp.init_drivers(enable_debug_driver=False) #

initialize drivers

factory = CachedCfFactory(rw_cache=’./ cache’)

with Swarm(uris , factory=factory) as swarm:

swarm.parallel_safe(simple_log_async , args_dict=

seq_args)

# while True:

# #swarm.parallel_safe(simple_log_async ,

args_dict=seq_args)

# a = 1
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Gaussian-Process Regression

Python Code

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from scipy.signal import butter , filtfilt

from scipy.interpolate import griddata

from sklearn.gaussian_process import GaussianProcessRegressor

from sklearn.gaussian_process.kernels import RBF ,

ConstantKernel as C

# Load the datasets

folder = <folder to test results >

file1 = folder + ’dronexyz1_list.csv’

file2 = folder + ’dronexyz2_list.csv’

file3 = folder + ’dronexyz3_list.csv’

data1 = pd.read_csv(file1)

data2 = pd.read_csv(file2)

data3 = pd.read_csv(file3)
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# Concatenate the datasets

gridsize = 10

# Define a lowpass filter

def lowpass_filter(data , cutoff =0.01 , fs=1.0, order =5):

nyquist = 0.5 * fs

normal_cutoff = cutoff / nyquist

b, a = butter(order , normal_cutoff , btype=’low’, analog=

False)

y = filtfilt(b, a, data)

return y

# Apply the lowpass filter to the temperature data

filtered_temp1 = lowpass_filter(data1[’temp’])

filtered_temp2 = lowpass_filter(data2[’temp’])

filtered_temp3 = lowpass_filter(data3[’temp’])

data1[’temp’] = filtered_temp1

data2[’temp’] = filtered_temp2

data3[’temp’] = filtered_temp3

data = pd.concat ([data1 , data2 , data3], ignore_index=True)

# Define bin size (2x2 cm squares)

bin_size = 0.05 # 2 cm in meters

# Create bins for x and y

x_bins = np.arange(data[’x’].min(), data[’x’].max() +

bin_size , bin_size)

y_bins = np.arange(data[’y’].min(), data[’y’].max() +
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bin_size , bin_size)

# Digitize the x and y coordinates into bins

data[’x_bin’] = np.digitize(data[’x’], x_bins)

data[’y_bin’] = np.digitize(data[’y’], y_bins)

# Group by the bins and calculate the mean temperature for

each bin

binned_data = data.groupby ([’x_bin ’, ’y_bin ’]).agg({

’x’: ’mean’,

’y’: ’mean’,

’temp’: ’mean’

}).reset_index ()

# Extract the binned x, y, and temperature data

X_binned = binned_data [[’x’, ’y’]]. values

y_binned = binned_data[’temp’]. values

# Define the kernel for GPR

kernel = C(1.0, (1e-4, 1e4)) * RBF(length_scale =1,

length_scale_bounds =(1e-4, 1e3))

# Create and fit the Gaussian Process Regressor

gp = GaussianProcessRegressor(kernel=kernel ,

n_restarts_optimizer =10, alpha =2.0)

gp.fit(X_binned , y_binned)

# Create a grid for prediction

grid_x , grid_y = np.mgrid[data[’x’].min():data[’x’].max():10j

, data[’y’].min():data[’y’].max():10j]

grid_points = np.vstack (( grid_x.ravel (), grid_y.ravel ())).T
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# Predict the temperature at each grid point

grid_temp_pred , sigma = gp.predict(grid_points , return_std=

True)

grid_temp_pred = grid_temp_pred.reshape(grid_x.shape)

# Plot the temperature distribution predicted by GPR

plt.figure(figsize =(10, 8))

plt.contourf(grid_x , grid_y , grid_temp_pred , levels =100, cmap

=’viridis ’)

plt.colorbar(label=’Temperature ( C )’)

plt.xlabel(’x Coordinate (m)’)

plt.ylabel(’y Coordinate (m)’)

# Plot the trajectories of each drone

plt.plot(data1[’x’], data1[’y’], ’k-’, label=’Agent 1’)

plt.plot(data2[’x’], data2[’y’], ’r-’, label=’Agent 2’)

plt.plot(data3[’x’], data3[’y’], ’b-’, label=’Agent 3’)

# Add labels to the trajectories

plt.legend ()

# Plot the fan at (0.75 , -0.75) with a longer arrow pointing

left and tilted up by 5 degrees

dx = -0.2 * np.cos(np.radians (5))

dy = 0.2 * np.sin(np.radians (5))

plt.scatter (0.8, -0.6, color=’black’, s=100, marker=’o’)

# plt.annotate(’’, xy =(0.75 + dx, -0.75 + dy), xytext =(0.75 ,

-0.75),

# arrowprops=dict(facecolor=’black ’, shrink

=0.05 , width=2, headwidth =8))
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# Annotate the fan

plt.text (0.8, -0.65, ’Heat source ’, horizontalalignment=’

right ’, verticalalignment=’top’)

plt.arrow(x=0.8, y=-0.6, dx=-0.2, dy=0.05 , width =0.01 , color=

’black ’)

plt.show()
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