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Abstract

This thesis investigates the design and implementation of Wi-Fi fingerprinting-
based Indoor Positioning Systems (IPS), with a focus on enhancing their efficiency,
scalability, and accuracy. Wi-Fi fingerprinting, particularly utilising Received Signal
Strength Indicator (RSSI) data, offers a cost-effective and non-intrusive method for
indoor positioning. Despite its advantages, existing systems encounter challenges
such as high computational complexity, the need for frequent manual updates, and
difficulties in managing large datasets.

The research commences by evaluating various position estimation algorithms,
including k-Nearest Neighbour (k-NN) and its weighted variant (Wk-NN), identifying
the correlation distance function as a highly effective approach when combined with
exponential data representation. This combination was found to balance accuracy
with computational simplicity, making it a viable option for efficient IPS.

To address scalability and reliability, the thesis introduces a cloud-based Indoor
Positioning System (CB-IPS) framework that leverages cloud computing, edge
computing, and cache technologies. This framework significantly enhances the
management of large fingerprint databases, optimises computational resources, and
supports real-time processing, thereby improving the overall performance of the IPS.

Furthermore, the research addresses the complexity of database management
by implementing data preprocessing techniques, dimensionality reduction through
Principal Component Analysis (PCA), and auto-update mechanisms. These strategies
effectively reduce computational load and storage requirements, thereby ensuring that
the system remains scalable and efficient.

The findings demonstrate that the proposed optimisations can substantially
enhance the performance of Wi-Fi fingerprinting-based IPS, making them more com-
petitive with state-of-the-art systems. The research contributes to the advancement
of indoor positioning technologies, offering practical solutions that address current
limitations while laying the foundation for future innovations.

This thesis concludes by outlining potential directions for future research, includ-
ing the integration of advanced machine learning techniques, and further optimisation
of real-time implementations. These efforts are essential for fully realising the
potential of Wi-Fi fingerprinting-based indoor positioning systems across various real-
world applications.
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Chapter 1

Introduction

1.1 Overview

Positioning and navigation services have become increasingly important in our daily
lives. Currently, the accessibility and affordability of Global Navigation Satellite
System (GNSS) technology for outdoor positioning and navigation are at their peak.
The GNSS services, such as Global Positioning System (GPS) technology, used in
smartphones, provide an accurate position within approximately 4.9 metres with 95%
probability in outdoor environments [3]. However, in indoor environments, GPS
cannot function properly due to obstacles that block GPS Radio Frequency (RF)
signals from penetrating walls and objects inside buildings. Therefore, alternative
technology is needed to replicate GPS in indoor environments with greater accuracy
than can be achieved outdoors. This has led many academic and industrial researchers
over the past decades to work out how to emulate GPS in an indoor setting. These
efforts have resulted in an Indoor Positioning System (IPS), as illustrated in Figure
1

An IPS is a system that can determine the position of the object within a
building or in a specific coordinate system [4]. The determination of positioning
relies on different methods, which differ based on the technologies employed. These
technologies include RF, Optical, Magnetic, and Acoustic methods [5]. However, RF-
based technology is commonly used in IPS because radio frequencies can penetrate
walls to provide a broader coverage area compared to other technologies. It
also has lower-cost hardware, as it often utilises existing infrastructure such as a
Wireless Local Area Network (WLAN). Inside indoor spaces, indoor positioning has
multi-dimensional challenges such as signal problems, limited infrastructure, and a
lack of maps. However, signal problems are a major challenge for IPS RF-based
systems. Issues such as signal multipath and attenuation significantly degrade indoor
positioning for RF-based systems [6].
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Figure 1.1: Positioning environment GPS vs. IPS

1.2 Motivation

Over the past decade, there has been a substantial increase in the investigation of
Indoor Positioning Systems (IPS), with researchers predominantly focusing on various
Radio Frequency (RF) technologies . Among these notable technologies are Wi-
Fi [§], Bluetooth [9], Ultra-Wide Band (UWB) [10], Visible Light Communication
(VLC) [11], Radio Frequency Identification (RFID) [12], and ZigBee [13]. RF-
based technologies provide extensive coverage at a relatively low cost, often utilising
existing infrastructure such as Wireless Local Area Networks (WLAN). Furthermore,
cost-effective methodologies such as Pedestrian Dead Reckoning (PDR) and Inertial
Navigation Systems (INS) are frequently integrated [14]. Despite the plethora of

technologies available, only a select few have been identified as optimal solutions
for indoor positioning, each presenting distinct advantages and limitations. The
pursuit of an enhanced IPS solution has driven researchers to explore hybrid systems
that amalgamate multiple technologies through data fusion techniques. Although
promising, the implementation of a hybrid approach introduces challenges such as
increased costs and complexity ﬂ§ﬂ Consequently, numerous proposed IPS systems
prefer the simplicity and cost-effectiveness of a single technology. Wi-Fi technology,

widely prevalent and integrated into everyday devices, has emerged as a fundamental
enabler for IPS. By leveraging the IEEE 802.11 standard, Wi-Fi chips and access
points facilitate the measurement of RF signal intensity, enabling users to ascertain
their indoor location using devices such as mobile phones via the Wi-Fi indoor
positioning system, thus obviating the need for additional infrastructure costs [7].
For this reason, Wi-Fi fingerprinting is highly esteemed for indoor positioning. This
technique offers superior accuracy, scalability, and practicality compared to other
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indoor positioning solutions such as beacons or RFID tags. The notable advantages
of Wi-Fi fingerprinting include:

e High accuracy: Wi-Fi fingerprinting can achieve a high degree of accuracy by
comparing the current Received Signal Strength Indicator (RSSI) measurements
of a device to a pre-collected database of fingerprints, thereby enabling precise
location estimation even in complex indoor environments.

e Cost-effective: Wi-Fi fingerprinting represents a cost-effective solution for
indoor positioning, as it obviates the need for additional hardware such as
beacons or RFID tags.

e Flexibility: Wi-Fi fingerprinting is compatible with a wide array of devices,
including smartphones, tablets, laptops, and other Wi-Fi-enabled devices.

e Scalability: Wi-Fi fingerprinting can be effortlessly scaled to encompass larger
environments by collecting fingerprints at additional locations and augmenting
the number of Access Points (APs).

e Robustness: Wi-Fi fingerprinting is resilient to environmental changes, such as
furniture reconfigurations or human presence, which can adversely affect other
methods like trilateration or triangulation.

e Privacy: Wi-Fi fingerprinting can be performed without disclosing personal
information, as it solely utilises Wi-Fi signals that can be collected anonymously.

1.3 Research Problem and Questions

Indoor positioning using Wi-Fi technology offers various methods for determining
location. Each technology possesses unique indoor positioning capabilities, broadly
classified into two models: a 2D model for Bluetooth, ZigBee, and Wi-Fi, and
a 3D model for Infrared, UWB, and Ultrasonic technologies. The 2D model,
particularly prevalent in Wi-Fi, incurs lower infrastructure costs compared to the
3D model. Despite the 3D model’s enhanced accuracy, its implementation cost limits
its widespread adoption. Consequently, the 2D model, particularly Wi-Fi using RSSI
fingerprinting, remains a widely favoured choice[§]. This research focuses on Wi-Fi
and RSSI-based methods that utilise fingerprinting techniques within the 2D model.

Compared to other positioning systems, Wi-Fi fingerprint positioning has the
advantages of being low-cost and highly accurate. However, the technology currently
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requires computationally intensive algorithms for estimating positioning, leading to
a relatively long processing time and high algorithmic complexity. Additionally,
this method requires data for predefined initial positions and effective database
management. Furthermore, maintaining the fingerprinting database each time
the environment changes (such as changes in furniture or access points) requires
manual calibration to update the fingerprinting. Although previous approaches have
attempted to make fingerprinting efficient for meeting IPS requirements at low cost
and with less complexity, no system has yet achieved this goal. This is because
most existing systems have not considered the quality of their system design or their
integration with the infrastructure used, which is crucial for optimal IPS performance.

The advancement of IPS using Wi-Fi technology, particularly fingerprinting
techniques based on RSSI within the 2D model, faces significant challenges despite
its widespread use and advantages in cost-effectiveness and accuracy. Although
RSSI-based methods eliminate the need for additional hardware and are immune
to multipath signals, they currently rely on computationally intensive algorithms
for position estimation, require manual calibration for database updates, and lack
effective strategies for managing large databases generated during the fingerprinting
process. Furthermore, existing systems often overlook the integration of design factors
within the IPS architecture and positioning framework, which is crucial for optimal
performance.

Wi-Fi fingerprint-based approaches are preferred by researchers for several reasons.
Firstly, most large buildings come equipped with WLAN services for wireless network
coverage, which means that no additional hardware or costs are needed, making them
suitable for IPS. Secondly, as mobile and wireless receivers already contain networking
interface cards (NICs), they can readily measure Received Signal Strength (RSS)
values. Thirdly, path loss modelling might work well under normal circumstances, but
proves short-lived inside buildings due to complex signal propagation, which causes
RSS signals to fluctuate irrespective of the environment or time.

This research investigates a Wi-Fi-based indoor positioning framework. Specifi-
cally, RSSI fingerprinting-based localisation algorithms and techniques are proposed.
We assume that examining the system as a whole will lead to improvements in
the design of IPS Wi-Fi RSSI-based systems compared to current state-of-the-art
systems. This is because the design factors of the IPS architecture and the positioning
framework significantly impact the performance of Wi-Fi RSSI-based positioning.
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Research Questions

1. What is the most efficient and yet least complex position estimation algorithm
suitable for the IPS based on Wi-Fi Fingerprinting techniques?

2. How can a Wi-Fi Fingerprinting-based IPS achieve scalable and reliable perfor-
mance, making it simple, efficient, and competitive with state-of-the-art systems
while ensuring acceptable positioning services?

3. How can cloud architectures be wutilised to maintain the required accuracy,
privacy, and response time while providing scalability to the IPS?

4. What approaches can be employed to enhance the positioning accuracy and
scalability of Wi-Fi RSSI-based systems, with a focus on simplifying database
fingerprinting complexity using an edge-computing architecture?

1.4 Objective and Contribution

The prevailing approach to solving indoor positioning issues involves using inexpensive
and ubiquitous technologies, with Wi-Fi being a prime candidate due to its
widespread availability and the use of smartphones. This research aims to enhance
indoor positioning systems by implementing a fingerprinting method based on edge
computing, leveraging existing WLAN infrastructure without incurring additional
costs. Efficient design is crucial for addressing challenges in signal processing and
storage, particularly in managing large databases and calculating accurate positions.
This research focuses on developing an ideal indoor positioning system, considering
factors such as Wi-Fi access point deployment, database management, and cloud
administration for optimal performance.

Wi-Fi fingerprinting is central to this research, aiming to design a scalable and
reliable indoor positioning system. By examining system design aspects, the research
seeks to enhance functionality and accuracy while addressing challenges associated
with indoor deployment. Specific objectives include identifying efficient position
estimation algorithms, suitable cloud architectures, and improving system scalability
and accuracy through Wi-Fi fingerprinting. The research aims to establish system
design parameters applicable to indoor Wi-Fi infrastructure, emphasising simplicity,
high performance, and satisfactory positioning services. As a result, we will determine
the system design parameters applicable to Wi-Fi infrastructure in indoor offices and
buildings. Therefore, this research addresses the following:

e Enhancing the positioning accuracy and scalability of Wi-Fi RSSI-based
systems.
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e Simplifying the complexity of database fingerprinting by implementing an edge
computing architecture for efficient resource management and system scalability.

Consequently, this PhD thesis makes significant contributions by overcoming the
challenges of accuracy and scalability through innovative approaches and methodolo-
gies. The research provides valuable insights and effective design strategies for IPS,
particularly in the domain of Wi-Fi fingerprinting techniques.

Most research literature overlooks the system’s design elements. In this research,
we propose a new approach that considers the system’s input, particularly for the
online stage of Wi-Fi fingerprinting. We also design a framework that allows multiple
solutions from each system element by establishing system metrics. The proposed
framework demonstrates a remarkable improvement in IPS accuracy and scalability
performance.

The following points highlight the main contributions of this thesis:

e Optimising the Wi-Fi fingerprinting database by studying the characteristics of
RSS to design an appropriate algorithm for radio maps and mitigate positioning
errors.

e Design an optimised WK-NN algorithm for better positioning estimation. We
propose a combination of methods utilising optimal parameters such as k-value,
distance weight, and functions that perform well on the selected dataset.

e Propose an indoor positioning system based on edge computing architecture.
This system leverages resource optimisation techniques to improve the accuracy
and scalability of the IPS, utilising a cache mechanism to reduce computational
cost and increase response time.

All these proposed systems are evaluated using publicly available datasets.

1.5 Scope and Limitations

Scope: Building on the motivation discussed in Section [I.2] this research focuses
on utilising Wi-Fi as the primary technology for indoor positioning. This choice has
implications for the environments and applications that our system can support. Our
work targets any area with pre-existing Wi-Fi infrastructure, such as indoor buildings,
including offices, markets, and other locations with local hotspots. Specifically,
our project emphasises Wi-Fi fingerprinting in indoor environments to enhance the
performance and scalability of indoor positioning systems (IPS). We concentrate on
the online phase for signal processing and algorithm matching, and we utilise cloud
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architecture for storage and system scaling. Our proposed system is simulated under
indoor conditions using software-based simulations (MATLAB) and the open-source
dataset UJIIndoorLoc [15], available from the IndoorLoc repository [16]. The primary
aim of this research is to improve the performance and scalability of the proposed IPS
system compared to existing state-of-the-art systems.

Simulation Justification. This research adopted a simulation-based approach
using MATLAB and the UJIIndoorLoc dataset due to practical limitations in setting
up real-world testbeds. The approach enabled rapid evaluation of system design
variations and provided a controlled environment for analysing different algorithmic
configurations. While simulations offer valuable insights and reproducibility, future
work should validate the findings through hardware-based deployments and real-time
experiments.

Limitations: This research develops a proof of concept for an indoor positioning
system, acknowledging several potential challenges. The focus on simulation, due to
environmental and time constraints, may impact the system’s validity in real-world
scenarios. The accuracy of simulated environments is critical, as it determines the
system’s performance and generalisability. Furthermore, the system’s dependence on
existing Wi-Fi infrastructure may restrict its applicability in areas lacking reliable Wi-
Fi coverage. Open-source datasets may have limitations in data quality and diversity,
potentially compromising the system’s robustness.

Although this research offers proof of concept, it may not resolve all deployment
challenges, highlighting the necessity for further investigation into real-world appli-
cations. Moreover, software-based simulation tools may not fully replicate real-world
conditions, necessitating refinement for a more accurate representation.

1.6 Thesis Organization

The structure of the thesis is detailed below:

Chapter 2 provides background information on IPS and Wi-Fi fingerprinting
techniques. It includes a review of related work in three areas: Wi-Fi fingerprinting,
IPS, TIPS design, and cloud-based IPS. The chapter offers a comprehensive analysis
of the reviewed work and identifies existing research gaps in Wi-Fi fingerprinting
techniques.

Chapter 3 establishes a unified System Model, Notation, and Evaluation
Framework for the thesis. It discusses the Wi-Fi fingerprinting method for indoor
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positioning, focusing on the Received Signal Strength Indicator (RSSI)-based ap-
proach and detailing the fingerprinting technique. The chapter also presents baseline
deterministic algorithms for RSSI-based fingerprinting.

Chapter 4 addresses position estimation in the online phase, providing compre-
hensive testing and optimisation of algorithms to enhance performance.

Chapter 5 focuses on optimizing radio map fingerprinting. It reviews various
methods and proposes combinations to address issues such as heterogeneity, data size
reduction, auto-updating mechanisms, and database management strategies.

Chapter 6 describes the system design and cloud-based indoor positioning archi-
tecture. This chapter introduces the proposed system as a platform, incorporating
models and algorithms from Chapters 4 and 5. It includes details on system
integration, testing, and the results and discussion.

Chapter 7 concludes the research, summarising the main findings and suggesting
directions for future work.



Chapter 2

Background

2.1 Overview of IPS

Imagine navigating a large mall, effortlessly finding the perfect store or guiding a
loved one through a hospital maze with ease. What was once a dream is now a
reality with the revolutionary IPS. Gone are the days of frustrating map searches and
aimless wandering. IPS acts as your indoor GPS, pinpointing your exact location and
guiding you seamlessly through any building, no matter how complex. This advanced
technology uses a network of strategically placed wireless access points or beacons to
create a digital map of indoor environments. Whether it is using a smartphone app
or a dedicated tag, the IPS system translates complex signals into simple directions,
ensuring precision and leading you straight to your destination. Customers, patients,
and employees can all benefit from IPS, as it empowers them to navigate indoor
spaces with confidence and purpose. Consequently, this gives rise to what we know as
Location-based Services (LBS) in many smartphone applications, such as marketing
platforms, tracking systems, navigation guides, and emergency response and rescue
tools.

Positioning or localisation is an interchangeable term that refers to the use
of technology to determine the specific location of a device or person. This
mechanism can be classified primarily based on the area of deployment, the underlying
technology, and the measurement techniques shown in Figure 2.1 Then, based
on user needs and budget, the underlying technology and measurement techniques
are chosen accordingly. IPSs have become essential tools for providing accurate
location information about people and devices within indoor environments. Various
technologies and algorithms have been developed to address the challenges and
requirements of indoor positioning. In the following sections, we will explore these
technologies, focusing on RF technologies.
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Figure 2.1: General Classification of the Localisation Methods.

2.2 Challenges and Opportunities in IPS

The significance of indoor positioning systems is increasingly recognised due to the
growing demand for indoor tracking and navigation. Unlike outdoor environments
where satellite-based location services are commonly used, navigating indoors poses
significant challenges. Tracking objects and individuals indoors presents a formidable
obstacle, constituting a primary barrier to achieving seamless positioning in indoor
environments. Enhancements in the performance of indoor positioning systems offer
the potential to unlock unprecedented opportunities for businesses.

A fundamental question arises regarding the distinction between indoor and
outdoor positioning. Although most positioning systems theoretically function in
both environments, their performance varies significantly due to inherent differences.

2.2.1 Challenges

The complexity of indoor environments poses significant challenges for positioning
systems, demanding innovative solutions to overcome these obstacles. Identified
challenges include:

e Multipath Effects: Various obstacles within indoor spaces lead to multipath
effects, where signals bounce off surfaces, causing interference and inaccuracies
in positioning.

10
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Non-Line of Sight (NLoS) Issues: The lack of direct line of sight to
positioning satellites exacerbates inaccuracies in indoor positioning, as signals
are obstructed by walls, ceilings, and other structures.

Signal Attenuation and Scattering: The dense concentration of obstacles
in indoor environments results in high attenuation and signal scattering, further
complicating accurate positioning.

Environmental Variability: Human presence, opening and closing of doors,
and changes in occupancy levels introduce dynamic environmental factors that
challenge the consistency and reliability of indoor positioning systems.

Demand for Precision: Commercial applications demand high levels of
precision and accuracy, placing additional pressure on indoor positioning
systems to perform optimally.

2.2.2 Opportunities

Despite the challenges, advances in indoor positioning systems present unprecedented
opportunities for various industries. Key opportunities include:

Simplified Infrastructure: Indoor environments typically have smaller cover-
age areas, simplifying positioning infrastructure setup and reducing deployment
complexities.

Weather Independence: Indoor positioning systems are less susceptible to
weather influences such as temperature gradients and air circulation, ensuring
consistent performance regardless of external conditions.

Geometric Constraints: Fixed geometric constraints, such as planar surfaces
and orthogonal walls, provide stable reference points for positioning, enhancing
accuracy and reliability.

Infrastructure Accessibility: Availability of essential infrastructure ele-
ments, such as electricity and Internet access, facilitates the deployment and
operation of indoor positioning systems.

Reduced Dynamics: Slower walking and driving speeds indoors result in lower
dynamics, enabling more accurate and reliable positioning measurements.

By addressing these challenges and capitalising on the inherent opportunities,
indoor positioning systems can meet the growing demand for LBS and reliable
navigation and tracking solutions in indoor environments.

11



Chapter 2. Background 2.3. Positioning Technologies

2.3 Positioning Technologies

IPS has become increasingly important in providing location-based services within
indoor environments where GPS signals are often unavailable. Several technologies
have been developed to address this need, each with its unique advantages and
challenges. The common types of these technologies are:

2.3.1 Radio Frequency (RF)

RF-based technologies are commonly used in IPS due to their wide availability and
relatively low cost[8]. These technologies include Wi-Fi, Bluetooth, Radio Frequency
Identification (RFID), Ultra-Wideband (UWB), and ZigBee [17]. They provide
positioning functions with simple modifications and are considered practical for indoor
positioning. However, the accuracy of RF-based systems can be affected by signal
interference and physical obstructions |18]. Moreover, the accuracy of RF-based IPS
can be influenced by various factors, such as multipath propagation, fading, and
shadowing. Multipath propagation occurs when signals reflect off surfaces, leading to
multiple signal paths reaching the receiver at different times [19], [20]. Fading, on the
other hand, results from signal strength fluctuations due to factors such as reflection
and interference[8|. Additionally, shadowing occurs when objects obstruct the signal,
causing a weaker signal at the receiver [21].

To address these challenges, RF-based IPS systems employ techniques such as
signal processing, filtering, and antenna diversity. Signal processing methods such
as Time-of-Arrival (ToA), Time-Difference-of-Arrival (TDoA), and Angle-of-Arrival
(AoA) can enhance accuracy by mitigating the effects of multipath propagation and
fading|22]. Filtering techniques like Kalman filtering and particle filtering are utilised
to reduce noise and outliers, thereby improving accuracy|23|. Antenna diversity
techniques such as beamforming and spatial diversity help minimise the impact of
shadowing and interference, further enhancing accuracy|24]. Overall, RF-based IPS
systems provide a practical and cost-effective solution for indoor positioning. However,
their accuracy is limited by signal interference and physical obstructions, which can
be mitigated by signal processing, filtering, and antenna diversity techniques.

2.3.2 Pedestrian Dead Reckoning (PDR)

PDR is a method that estimates the position of a pedestrian by integrating the step
length and heading direction[25]. It uses sensors such as accelerometers, gyroscopes,
and magnetometers, commonly found in smartphones. PDR is advantageous because
it does not require additional infrastructure beyond the smartphone. However, errors
can accumulate over time, leading to a drift in the estimated position [26]. PDR

12
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can be combined with other positioning technologies such as Wi-Fi [27], or Bluetooth
[28] to mitigate the drift. This hybrid approach can provide a more accurate and
robust position estimate [29]. PDR can also be improved by using machine learning
algorithms to learn the walking pattern of the pedestrian and correct for errors. PDR
has potential applications in indoor navigation, fitness tracking, and location-based
services.

2.3.3 Inertial Navigation System (INS)

INS uses motion sensors and rotation sensors to calculate the position, orientation,
and velocity of a device|30], [31]. It is often used in combination with other systems
like GPS for outdoor navigation, but it can also be used independently for indoor
navigation[32]. A method that leverages inertial measuring units (IMU) such as
accelerometers and gyroscopes to ascertain the position and movement of objects.
INS operates independently of external signals, making it ideal for use in areas with
poor signal reception. However, INS may accumulate errors over time and necessitate
advanced filtering techniques like the Kalman filter[32]. Additionally, INS demands
a network infrastructure for location sensing, which can be expensive and time-
consuming to set up|33|. To mitigate this issue, many studies propose an innovative
solution that merges existing sensor networks, such as in [31].

2.3.4 Magnetic Field Technology

This technology leverages anomalies in the Earth’s magnetic field that are caused by
building structures for indoor positioning[34], [35]. Each location inside a building
has a unique magnetic signature that can be used for positioning [34]. To identify
indoor locations, two methods are commonly used. One relies on the Earth’s magnetic
field, while the other relies on a magnetic field that is artificially created. The first
method identifies location using the unique digital signature of the Earth’s magnetic
field. The second requires measuring the strength of these fields produced by beacons
through coils to determine user location based on the position of the beacons [36].
Magnetic positioning systems are utilised to track locations within enclosed spaces.
These systems are resistant to signal interference and do not depend on line of sight
to function properly [37]. This approach is beneficial because it does not require any
additional infrastructure. However, the accuracy of magnetic field-based positioning
can be affected by other magnetic objects in the environment [34].
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2.3.5 Acoustic

Sound technologies operate within the audio frequency range of 20 Hz to 20 kHz,
including both ultrasonic and audible sound. The human ear can perceive sound waves
in various environments. Transducers, such as microphones or speakers, are used to
convert sound signals into electrical signals[38]. Ultrasonic sensors are commercially
available for measuring sound intensity and have beneficial applications, such as
distance sensing by estimating the time it takes for sound signals to travel between a
source and the sensor. In indoor tracking scenarios, ultrasonic sensors are utilised as
distance-based devices within ultrasonic location detection systems, where the echo
and trigger pins of the sensor function as both transmitter and receiver [39], [40].
Moreover, ultrasonic sensors have been integrated into soft robotic perception systems
for auto-positioning and multimodal sensory intelligence, highlighting their potential
in advanced robotics[41].

2.3.6 Optical

Indoor positioning systems utilise optical signals in the form of infrared (IR) and
visible light communication (VLC) technologies. These two technologies require
a direct line of sight to function, unlike RF technologies. The development of
newer technology like LiDAR [42] and computer vision enables precise and real-
time navigation. However, this raises concerns regarding the computational power
required and privacy issues. To improve positioning systems, sensor fusion enables
the integration of data from various sources, including cameras and magnetic fields,
with the help of neural networks. These systems have shown promising results of 91%
accuracy at 1.34 m, but the cell phone must be held upright [43].

2.3.7 Hybrid techniques

Hybrid techniques in IPS have gained significant attention due to their ability to
enhance accuracy and reduce drift by combining different types of data. One
common approach is data fusion, where data from various sources, such as Wi-Fi
or Bluetooth signals and PDR data, are merged to achieve more precise and reliable
results[44]. Wi-Fi and Bluetooth signals can provide information about access points
or beacon locations, while PDR data offers information about the user’s movement
and orientation [44]. By integrating these data through techniques such as sensor
fusion, feature fusion, or decision-level fusion, the accuracy and dependability of IPS
applications, particularly for indoor positioning and navigation, can be significantly
improved [45]. Research has shown that the fusion of multiple wireless signals, such
as Wi-Fi and Bluetooth, through machine learning-based IPS, can notably enhance
location accuracy [44]. Furthermore, the use of hybrid positioning measurements,
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such as the Extended Kalman Filter (EKF), has been successful in achieving accurate
indoor positioning [45].

Additionally, the integration of synthetic, simulated datasets with data fusion
techniques is proposed to eliminate the cost associated with fingerprint collection in
IPS [46]. Moreover, the evolution of IPS technologies has resulted in the widespread
use of hybrid models in indoor mapping research to address the limitations of
individual models [47]. These advances are crucial because accurate indoor positioning
systems are now a research priority, considering that a significant amount of time is
spent indoors[48]. By leveraging fusion-based techniques and hybrid models, TIPS
can overcome challenges related to accuracy, reliability, and market penetration[49].
Therefore, data fusion can improve the accuracy and reliability of various applications
that rely on sensor data, such as indoor positioning and navigation. This hybrid
technique is often used in various studies, including [50]—[56].

In conclusion, the choice of technology for an IPS depends on the specific
requirements of the application, including the desired accuracy, availability of
infrastructure, cost, and characteristics of the indoor environment. It is also common
to use a combination of these technologies to improve system accuracy and reliability.
While these technologies offer unique advantages, they also present challenges,
including signal interference, hardware compatibility issues, and the need for extensive
infrastructure deployment. Each technology offers unique advantages and drawbacks,
catering to specific application needs and navigating the complex trade-off between
accuracy, cost, scalability, and privacy. As research and development in indoor
positioning continue to progress, a combination of these technologies or innovative
solutions may lead to even more robust and reliable indoor positioning systems. In
the following sections, we will place greater emphasis on RF-based technologies.

2.4 RF Positioning Techniques

Radio frequency technologies used in IPS are versatile, with applications spanning
various fields. These technologies leverage signal strength, particularly in wireless
communication devices, and employ spread-spectrum signals with narrow bandwidth.
These radio waves are produced by sources or devices that generate an electromagnetic
field. The IPS incorporates various localisation technologies based on radio frequency,
which are essential to wireless communication technologies. These technologies define
the physical layer and medium access control (MAC) layer of the open system
interconnection (OSI) model. Examples of such radio frequency technologies include
Bluetooth, RFID, ZigBee, UWB, WLAN, and mobile networks [17]. Figure
illustrates how various RF technologies vary in accuracy and coverage, making it
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Figure 2.2: RF-based technologies accuracy vs. coverage.(Source:).

important to identify their appropriate use.

Indoor positioning technologies encompass a diverse array of methods, each
with its unique principles, advantages, and limitations. One prevalent approach
involves Wi-Fi fingerprinting, which utilises the strength of Wi-Fi signals to determine
a device’s location within a confined space. This method offers high accuracy,
scalability, and cost-effectiveness, making it suitable for various applications. Another
prominent technology is Bluetooth beacons, which transmit signals to compatible
devices, enabling precise localisation. Beacons are particularly useful in retail
environments for proximity marketing and navigation @ Additionally, UWB
technology is gaining traction because of its exceptional accuracy, which makes it
capable of pinpointing locations within centimetres. UWB is ideal for applications
requiring extremely precise positioning, such as asset tracking and indoor navigation
for the visually impaired [58].

The diverse array of RF-based positioning technologies offers unique features that
cater to different indoor positioning needs. Understanding the principles, advantages,
and limitations of each technology is crucial for selecting the most suitable solution
for a given application. As illustrated in Figure 2.3) RF positioning systems have two
primary classifications: according to the infrastructure they employ, and based on
the devices utilised. Depending on the devices used, the localisation methods can be
classified into two categories: Device-free localisation (DFL): This method uses
established signals, such as Wi-Fi fingerprinting, to estimate location without needing
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a person’s tag. Non-device-free localisation (NDFL): This approach requires a
tag or device attached to the person for precise tracking. Examples include RFID,
UWB, Bluetooth, ZigBee, etc. Regarding infrastructure deployment, there are two
categories.

Infrastructure-based localisation (i.e., existing RF network): This approach utilises
existing networks such as Wi-Fi to estimate location. It is cost-effective but less
accurate. In the absence of infrastructure (i.e., infrastructure-free or cooperative
localisation): This uses dedicated tags or devices without relying on pre-existing
infrastructure. The position of a node is estimated concerning the positions of other
nodes in a wireless network, offering better accuracy but requiring setup, which usually
incurs additional costs. This is a typical scenario for wireless sensor networks (WSN).
In this research, our focus falls under NDFL.

Furthermore, there is another classification presented by [59], which categorises
RF localisation according to active localisation and passive localisation. Active IPS
encompasses technologies such as RFID, UWB, Bluetooth, ZigBee, IR, ultrasonic,
hybrid systems, and WLAN. These systems involve attaching a tag or device to a
person to track their position in a dynamic indoor localisation setup. On the other
hand, passive indoor localisation is characterised by the absence of any tag or device
carried by the person within the location area. Another form of passive localisation
is device-free, which operates similarly to the DFL method, such as computer vision.
Passive indoor localisation has been studied in [60)-[62].

The upcoming subsections will briefly cover the most commonly used RF
technologies in indoor positioning.

2.4.1 Wireless Fidelity (Wi-Fi)

Wi-Fi, short for Wireless Fidelity, is a standard of the Institute of Electrical and
Electronics Engineers (IEEE) 802.11 for WLAN. It facilitates the connection of
devices within a limited space using radio frequency signals. Operating on the
[EEE 802.11a,b,g and n standards, Wi-Fi utilises electromagnetic waves in the
radio frequency range as a means of transmitting data. Although Wi-Fi provides
a convenient means of interconnecting devices and accessing a broader network, its
coverage is limited due to its high frequency (2.4 GHz and 5 GHz) and a restricted
transmission range of approximately 100 metres. As a result, Wi-Fi is typically
confined to small areas such as apartments, offices, and markets and cannot span
large regions [8]. It is important to note that in both this research and other works,
Wi-Fi-based methods are sometimes called WLAN-based methods. While these terms
are often used interchangeably, they represent different wireless technologies. WLANS
utilise radio waves to link nodes. On the other hand, Wi-Fi standards are simply a
subset of WLAN standards.
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Figure 2.3: Classification of the RF-based Localisation Methods.

Indoor Wi-Fi-based positioning systems utilise the signal strength from multiple
wireless access points to estimate the user’s position [63]. By analysing RSSI from Wi-
Fi access points, these systems can accurately locate users within indoor spaces with
a high degree of precision [64]. This technology is attracting considerable attention
in research due to its ability to provide high precision, low power consumption, and
affordability. As per the IEEE 802.11 standards, Wi-Fi network cards and access
points (APs) possess the capability to measure the strength of radio frequency signals.
Leveraging this functionality, users can use mobile devices such as smartphones,
laptops, and tablet PCs, together with specific algorithms, to achieve indoor
positioning using Wi-Fi [§], |65], [66]

Wi-Fi technology has become a prominent solution for indoor positioning systems
due to its widespread availability, cost-effectiveness, and accuracy. Leveraging
Wi-Fi signals for indoor localisation has been extensively researched, with studies
demonstrating the effectiveness of Wi-Fi-based positioning systems. Researchers
have explored various approaches to utilising Wi-Fi signals for indoor positioning,
including virtual access points, RSSI measurements, and fingerprint-based localisation
techniques [24], [67]-]70]. These methods have shown low complexity, high accuracy,
and robustness in determining the user’s location within indoor environments.

Furthermore, researchers have proposed integrating Wi-Fi signals with other
technologies such as sensors, Bluetooth, and IMUs to enhance the accuracy and

18



Chapter 2. Background 2.4. RF Positioning Techniques

reliability of indoor positioning systems [30], [52], [66], [71]-[75]. By combining Wi-
Fi with sensor data and advanced algorithms, researchers have achieved improved
indoor localisation performance. Despite the advantages of Wi-Fi-based indoor
positioning, challenges such as signal interference and environmental factors affecting
signal propagation have been identified [76]. However, ongoing research focuses on
mitigating these challenges through innovative techniques such as machine learning
algorithms and hybrid localisation methods|50], [51], [56], [69], [77]-[80].

2.4.2 Bluetooth Low Energy (BLE)

Bluetooth is a part of the IEEE 802.15.1 standard, which is designed to enable
short-range wireless communication between devices. Bluetooth technology allows
electronic devices to communicate wirelessly using radio waves within the 2.4 GHz
license-free Industrial, Scientific, and Medical (ISM) band. Classic Bluetooth uses 79
channels on the 2.4 GHz ISM band for short-range wireless communication between
mobile devices, while BLE is designed for low power consumption and small amounts
of data transmission for the Internet of Things. The Bluetooth SIG manages the
Bluetooth specification and introduced BLE to give the technology a fresh direction.
The maximum current of Bluetooth class 4 does not exceed 15 mA, which means that
it uses less power than other Bluetooth standards and can transmit small amounts of
data to host devices without a physical master-slave connection [81].

Bluetooth, specifically Bluetooth Low Energy (BLE), is a commonly used
technology in IPS. BLE beacons can be placed around the indoor environment, and the
user’s device can estimate its location based on the signal strength of these beacons
[20]. Beacon-based Bluetooth systems offer cost-effective solutions with moderate
accuracy. Beacons transmit signals, and user devices estimate their position based
on received signal strength. However, similar to Wi-Fi, Bluetooth signals can also be
affected by physical obstructions. Additionally, scalability can be an issue in large
spaces [58]. Researchers have explored different algorithms and methods to improve
Bluetooth-based indoor positioning systems. For example, the fusion of Bluetooth
beacons with PDR techniques has been proposed to provide metre-level positioning
without additional infrastructure [28].

Furthermore, the integration of Bluetooth with Wi-Fi positioning technology has
been shown to improve accuracy and robustness in indoor positioning performance
[72]. Additionally, studies have investigated the use of BLE for RSSI-based distance
estimation algorithms [82], [83]. Despite the success of Bluetooth technology in indoor
positioning, challenges such as body-shadowing errors and limitations in response
rates of Bluetooth inquiries have been identified [84], [85]. However, ongoing research
aims to address these issues through innovative approaches such as IMU-aided error
compensation methods [86].
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2.4.3 Ultra-Wideband (UWB)

UWRB technology has gained significant attention for indoor positioning systems due
to its ability to provide exceptionally accurate location information. UWB technology
enables precise time-of-arrival estimation, making it more suitable for accurate indoor
positioning compared to other technologies like Wi-Fi, Bluetooth, and RFID [87].
UWB-based indoor positioning systems leverage the technology’s capability for precise
ranging, allowing for centimetre-level precision in determining the user’s location [88].
UWB provides very high accuracy and can also measure the distance between the
transmitter and receiver, making it suitable for real-time tracking and applications.
With its high bandwidth and precise time-of-flight measurements, UWB delivers
centimetre-level accuracy.

However, UWB requires specialised hardware, can be susceptible to interference,
and is more expensive compared to other RF technologies [10], [89]-[91]. Researchers
have explored various applications of UWB in indoor positioning, including dynamic
ad hoc systems [92], monitoring and positioning of indoor mobile robots [91],
and real-time location systems [93]. UWB technology has been recognised for its
superior performance in indoor environments, offering sub-millimetre accuracy and 3D
positioning capabilities [88]. Furthermore, UWB has been successfully integrated with
IMUs for accurate 3D localisation in various applications [33]. Challenges in UWB-
based indoor positioning systems include noise from moving obstacles and non-line-of-
sight occurrences, which can lead to unreliable signals [94]. However, research efforts
have focused on addressing these challenges through techniques such as ensemble
learning and particle swarm optimisation [95].

2.4.4 Radio Frequency Identification (RFID)

RFID technology has emerged as a valuable tool for indoor positioning systems,
offering advantages such as low cost, non-contact communication, and resistance to
harsh environments [96]. RFID systems have been widely used for indoor location
tracking, particularly in applications involving human tracking [97]. The scalability
and efficiency of RFID technology make it a suitable choice for various indoor
positioning tasks, including patient identification systems and project management
[96]. RFID uses tags and readers for positioning. The tags are attached to the objects
to be located, and the readers pick up the signals from these tags. Although RFID
can provide high accuracy, the need to install many readers for full coverage can be a
limitation [12], [97]. Research has explored the integration of RFID technology with
other systems to improve the accuracy and functionality of indoor positioning. For
example, a hybrid indoor positioning system has been proposed, combining WLAN
and RFID technologies, using passive RFID tags for localisation [9§].
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Additionally, RFID has been integrated with IMUs for indoor tracking, where
RFID provides the primary trajectory estimation complemented by IMU data
[99]. RFID-based indoor positioning systems encounter a range of challenges and
limitations, including interference from other networks, multi-path and shadow effects,
communication distance restrictions, and errors that may accumulate from the use of
mobile phone sensors and pedestrian dead reckoning calculations [97]. Although these
systems are cost-effective and easy to set up, addressing these issues is crucial for
improving their accuracy and performance. Thankfully, advanced algorithms such as
Bayesian probability and K-Nearest Neighbour(k-NN) have been developed to boost
the performance of RFID-based indoor positioning systems. With the help of these
algorithms, the technology’s low cost, long life, and ease of deployment can be further
optimised, making it a highly promising solution for indoor positioning [100].

The integration of RFID with advanced algorithms and complementary technolo-
gies continues to drive innovation in indoor positioning research, enabling enhanced
accuracy and scalability for a wide range of applications. However, challenges
related to interference, environmental effects, communication distance limitations, and
accumulated errors need to be addressed to enhance the performance and accuracy
of RFID-based indoor positioning systems [12], [97].

2.4.5 ZigBee

ZigBee is a specification based on the IEEE 802.15.4 standard. It uses the 868 MHz
band in Europe, the 915 MHz band in the USA and Australia, and 2.4 GHz in
other regions. ZigBee technology has been a subject of interest in indoor positioning
systems due to its low power consumption, scalability, and reliability. ZigBee is a
low-cost, low-power consumption technology that operates in the ISM radio bands. It
is often used in applications that require long battery life and secure networking [13],
[17]. Research has explored the application of ZigBee in various indoor positioning
scenarios, highlighting its potential for accurate and cost-effective location tracking.
Studies have investigated the use of ZigBee in combination with other technologies to
enhance indoor positioning accuracy [13], [101].

Additionally, ZigBee has been integrated with Wi-Fi technology for improved in-
door localisation [102]. Advanced algorithms have been developed to optimise indoor
ZigBee-based positioning systems. For example, research by [103] focused on an indoor
positioning algorithm based on ZigBee received signal strength index, emphasising
ZigBee’s low cost, low hardware power consumption, and easy implementation.

Furthermore, research has explored the use of ZigBee in trilateration algorithms for
estimating locations in RSSI-based indoor positioning systems [104]. The advantages
of ZigBee technology, such as low cost, high scalability, and support for various
topologies, have made it a preferred choice for indoor positioning applications [105].
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The ability of ZigBee to establish a fingerprint database and its compatibility
with inertial navigation systems have contributed to improved accuracy in location
estimation [106]. However, the coexistence of ZigBee with other networks, such as
Wi-Fi, can cause significant performance losses due to interference, which can affect
the overall reliability of indoor positioning systems based on ZigBee [107].

Despite the fact that ZigBee technology faces challenges related to instability, low
accuracy, and interference, addressing these challenges is crucial for improving the
performance and reliability of ZigBee-based indoor positioning systems.

2.5 Measurement Techniques

In general, RF-based indoor positioning systems—and more specifically (from now
on)—Wi-Fi-based technology in indoor positioning fall into two categories, according
to [8]: Time and Space Attributes of Received Signal-Based positioning technology
(TSARS) and RSSI-based positioning technology, as shown in Figure . Each of
these categories has its measurements based on the technology used:

TSARS-based techniques encompass ToA, Time Difference of Arrival (TDoA),
and AoA. ToA calculates the distance between the AP and the Reference Node (RN)
based on signal travel time, while TDoA measures signal arrival delay, and AoA
determines signal angle. Achieving high accuracy with TSARS usually requires at
least three APs and may necessitate additional hardware in the RN, such as multiple
antennas, resulting in a costly deployment. The complexity of indoor environments
introduces challenges, as RF signal propagation is susceptible to interference from
human movement or environmental factors, such as doors opening and closing.
Consequently, this method may yield significant measurement and positioning errors
[8], [108].

RSSI-based techniques include trilateration, approximation perception, and
scene analysis, commonly known as fingerprint matching. Relying on received signal
strength, RSSI-based methods offer advantages over TSARS by eliminating the need
for additional hardware and being unaffected by multipath signals[109]. The simplicity
and cost-effectiveness of RSSI-based methods, exemplified by technologies like Wi-Fi,
have contributed to their widespread use for indoor positioning[5|, [§].

In addition, indoor positioning measurement techniques can be broadly classified
into range-based and range-free categories.

Range-based techniques use distance measurements between the receiver and
transmitters to determine the position. These include:

e Time of Arrival (ToA): Measures the time taken for a signal to travel from
a transmitter to a receiver.
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Figure 2.4: Measurements Classification of RF-based IPS (Source [§]).

e Time Difference of Arrival (TDoA): Measures the time difference between
the arrival of a signal at two or more receivers.

e Angle of Arrival (AoA): Measures the angle at which a signal arrives at
a receiver, with position determined based on the intersection of angles from
multiple transmitters.

Range-free techniques, on the other hand, do not rely on distance measure-
ments but use other parameters such as Received Signal Strength Indicator (RSSI)
and AoA. These include:

e Fingerprinting: Involves creating a database of signal characteristics at
various locations and matching the current signal characteristics to determine
the position.

e Triangulation: Uses the intersection of circles or spheres to determine the
position.

e Proximity-based methods: Use the signal strength to estimate the distance
between the receiver and transmitter.

In the following subsections, we will provide a brief overview of these positioning
measurement techniques for Wi-Fi-based indoor positioning.
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Figure 2.5: AoA measurements (Source[17]).

2.5.1 Angle of Arrival (AoA)

The measurement of the AoA in wireless communication systems is crucial for
determining the angle between a mobile device without a fixed location and a fixed
anchor, such as an AP with a known position, as depicted in Figure 2.5l Various
techniques have been developed to accomplish this, mainly involving the assessment
of the amplitude or phase response of the receiving antenna [110]. For accurate
localisation, it is imperative to use at least two APs to infer the location of the mobile
device [111]. However, as shown in Figure it should be noted that the location
of the mobile device requires the participation of at least three nodes for a successful
implementation [112]. It is noteworthy that employing AoA measurements requires
integrating antenna arrays into APs, rendering this technique comparatively more
expensive and power-intensive than ToA and RSSI methods [112].

It is crucial to acknowledge that the accuracy of AoA measurements is influenced
by various factors, including antenna directivity and environmental conditions such
as Non-Line-of-Sight (NLOS) and multipath effects [110]. In particular, angle-based
localisation requires a clear line of sight (LOS) due to the potential for significant
measurement errors caused by reflected signals |112]. Therefore, careful consideration
of these factors is essential in designing and implementing AoA-based localisation
Systems.

2.5.2 Time of Arrival(ToA)

Determining the distance between nodes is often based on the ToA method, which
evaluates the arrival times of signals to calculate the propagation time in one direction,
thereby establishing the distance |[113]. However, ToA is subject to inaccuracies due to
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discrepancies in clock synchronisation between transmitters and receivers. Variations
as small as a nanosecond can lead to location inaccuracies of up to 0.3 metres,
making error control impractical without periodic calibration. Nevertheless, ToA
remains a valuable measurement tool in air-based environments due to the consistent
propagation rates of radio waves [113].

An alternative approach to addressing this issue involves measuring the round-
trip time of signals between nodes, rather than just one-way travel. This method
involves sending a signal from one node to another and back again, allowing
distance calculation based on the total travel time without requiring precise clock
synchronisation. However, delays may occur when the secondary node processes the
signal, necessitating calibration procedures to adjust the measurements.

In ToA measurements, the velocity of waves is used to estimate the distance
between APs and mobile devices [113]. Various types of waves, such as RF
and acoustic signals, can be used for localisation, with RF Receiver resolution,
determined by bandwidth, also impacting measurement accuracy, with higher
bandwidth resulting in smaller errors. ToA localisation employs the concept of
lateration, requiring multiple measurements from different APs to determine the
mobile device’s coordinates, with a minimum of three APs needed for 2D localisation
and four for 3D localisation.

The circular equations derived from ToA measurements are typically solved using
methods such as Nonlinear Least Squares (NLS) and Linear Least Squares (LLS).
While NLS offers greater accuracy, LLS is more susceptible to noise and non-line-of-
sight (NLOS) conditions [114]. Thus, careful consideration of measurement techniques
and calibration procedures is essential to ensure accurate distance estimation in
localisation systems using ToA.

2.5.3 Time Difference of Arrival(TDoA)

Another related time measurement is the time difference of arrival (TDoA), where the
time difference between two ToA measurements is used to formulate a single equation.
With three ToA measurements, two TDoA measurements can be formulated [115]. All
sensors, including the mobile device, must be synchronised in ToA, as the mobile clock
is not as accurate as the base station clock [116]. As a result, there will be errors in
estimating the flight time and thus localisation; however, in TDoA, only APs need to
be synchronised [116].

On the other hand, ToA makes better use of existing information. One ToA
measurement confines the possible locations of the mobile to a circle. With two
ToA measurements, the mobile can be located in two possible positions. In contrast,
with TDoA, the location lies on a hyperbola. With three measurements, ToA can
estimate a unique solution, whereas TDoA may yield one or possibly two solutions
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Figure 2.6: TDoA measuremets (Source[17]).

[115]. Another drawback of TDoA is its sensitivity to the existence of LOS; due to its
hyperbolic nature, a small error can lead to significant changes in the curve, resulting

in reduced accuracy [115]. Several indoor positioning systems using TDoA include
[117], [11§]

2.5.4 Trilateration

Trilateration is a popular positioning technology that has been extensively researched
and applied in indoor positioning systems. Researchers have combined triangular
positioning methods with TSARS technology, achieving a certain level of success.
However, due to the limitations of these techniques and the advantages of RSSI, RSSI-
based triangular positioning has been widely studied. The trilateration method uses
three or more APs to send signals that are received by mobile devices and converted
into spatial distances. These distances are then used as the radii of circles (with
the centres being the APs), and the intersection of the circles determines the user’s
location, as shown in Figure 2.7

The complexity of indoor environments can affect the strength of RF signals,
leading to inaccuracies in distance determination. To mitigate these errors, scholars
suggest techniques to aid trilateration, with the path loss model being the most
common method used to estimate the position of APs [§].
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Figure 2.7: Trilateration measurements (Source [§]).

2.5.5 Proximition

Proximity perception, also known as relative positioning, is proposed as an economical
and straightforward method for estimating the distance between a mobile device
and an AP. The proximity approach is unaffected by whether the mobile device
and the AP experience the same fading channel, provided they remain within
the communication range [18]. This approach is particularly useful in scenarios
where precise synchronisation or alignment of fading channels is challenging, as
it emphasises the relative distance between devices rather than specific channel
characteristics. Utilising relative positioning methods like proximity perception can
be highly advantageous in indoor localisation systems, especially given factors such
as multi-path environments and signal attenuation that can complicate traditional
distance estimation techniques |17].

By focusing on the proximity of the mobile device to the AP rather than intricate
channel characteristics, this approach simplifies the range estimation process and
provides a practical solution for indoor positioning applications. In indoor positioning
technologies, focusing on relative positioning methods highlights the importance of
practical and efficient solutions that do not rely heavily on complex channel modelling
or synchronisation requirements. Using proximity between devices as a key metric to
estimate range, proximity perception presents a promising approach for achieving
accurate localisation results in indoor environments without the need for extensive
calibration or synchronisation efforts [119].
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2.5.6 Scene Analysis

In the field of scene analysis, particularly regarding the electromagnetic characteristics
of a target, pattern recognition or fingerprinting is essential. This technique involves
recording and comparing these characteristics with an existing dataset to map features
to specific locations [119]. For example, wireless signal characteristics at specific points
can be used to create a radio map, which facilitates the determination of a mobile
device’s location by matching its signal data to the map. This methodology, known as
fingerprinting, is recognised for its simplicity but requires the collection of significant
data. In addition, environmental changes can affect the characteristics of features,
requiring periodic updates to the dataset.

Fingerprinting localisation, widely recognised for IPS development due to its high
localisation accuracy, is extensively discussed in the literature [20]. The fundamental
concept of fingerprinting lies in the uniqueness of the RF signature at a specific
location over time [120]. Wi-F1i fingerprinting, a common indoor positioning technique,
capitalises on the availability of infrastructure in urban areas [121]. The effectiveness
of fingerprint-based methods is closely linked to the number of reference points in
a given space [122]. Furthermore, the fingerprinting database serves as a crucial
component of Wi-Fi positioning systems [66].

2.6 Wi-Fi Fingerprinting
Wi-Fi fingerprinting has become a prominent technology for indoor positioning

systems due to its ability to provide accurate location information without requiring
line-of-sight measurements of access points. This method has gained significant

28



Chapter 2. Background 2.0. Wi-Fi Fingerprinting

attention in recent years due to its high applicability in complex indoor environments
[108], [123]. Wi-Fi technology combined with fingerprinting techniques has emerged
as a prominent method for indoor positioning systems. This technique involves
estimating a user’s location by analysing the signals propagated from several Wi-
Fi access points. In contrast to previous RF measurement methods for determining
position, Wi-Fi uses RSSI, Channel State Information (CSI), and Round-Trip Time
(RTT) as the main approaches in conjunction with fingerprinting techniques to achieve
position estimation results.

2.6.1 Received Signal Strength(RSS)

RSS is the actual signal strength measured in units such as dBm at the receiver,
typically as a negative value in RF contexts. In contrast, RSSI is a simplified, positive,
unitless value that represents signal strength for easier understanding. RSSI scales
the negative RF values into positive ones to enhance clarity. For example, 0 dBm
(maximum) corresponds to 100 RSSI, and -100 dBm (minimum) corresponds to 0
RSSI.

The RSS data collected from different access points at specific locations is
then processed into RSSI to form a database used for positioning. When using
fingerprinting technology, this database matches unique RSSI patterns at specific
locations to predict user positions. This approach is popular, particularly when
combined with machine learning methods [22]. However, trilateration and proximity
perception are straightforward methods that do not involve machine learning and rely
on distances between access points and the user to calculate the user’s location.

The relationship between RSS and distance follows a decay law but is affected by
non-linearity due to factors such as multipath interference in indoor environments [21].
Movement and environmental conditions can cause fluctuations in RSS, impacting
localisation accuracy [124]. RSS-based systems, such as WLAN, offer advantages
such as continuous monitoring and low cost but may face interference issues [21].
These systems excel in short-range distances but may lack accuracy in long-range
applications compared to time-of-arrival systems [21]. Various RSS-based localisation
algorithms exist, including range-based and fingerprinting techniques, each with its
strengths and limitations [21].

2.6.2 Channel State Information (CSI)

The use of orthogonal frequency division multiplexing (OFDM) enables the extraction
of CSI, which is crucial for gaining a deeper understanding of the characteristics of
the Wi-Fi channel, particularly between access points and receivers. Unlike RSS,
which provides only limited information, CSI incorporates significant details such as
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fading, scattering, multipath effects, and the decay of power with distance during
signal transmission.

However, obtaining CSI is more challenging than RSS because it requires
extraction from the Wi-Fi receiver driver on mobile devices, making it difficult to
utilise in smartphone-based indoor positioning systems [125], [126]. Since 2010,
researchers have been able to extract Channel Frequency Response (CFR) as CSI
using modified firmware on standard wireless network cards. This has overcome
limitations in measuring the precision of wireless channels. CSI provides fine-grained
information by offering amplitude and phase details of each subcarrier. This enables
indoor positioning systems to achieve sub-metre-level accuracy. The amplitude and
phase components of the frequency response of each subcarrier in CSI serve as valuable
inputs for indoor positioning systems [125].

2.6.3 Round-trip time (RTT)

Wi-Fi round-trip time information is derived from the fine time measurement (FTM)
protocol for ranging proposed by IEEE 802.11-2016. It is a new protocol used to
directly calculate the time duration for a Wi-Fi signal to travel from the transmitter
to the receiver. This information can be used for various purposes, including indoor
positioning, device localisation, and distance estimation. The FTM protocol uses a
series of messages between the transmitter and receiver to measure the round-trip
time. The protocol can achieve sub-microsecond accuracy in measuring RT'T, making
it suitable for high-precision applications. The RTT Wi-Fi information is expected
to enable new use cases and applications of Wi-Fi networks, especially in indoor
environments where GPS signals are not available or accurate enough for positioning
[21].

Wi-Fi signals can be used for indoor localisation through various methods such as
fingerprint-based, range-based, and angle-based positioning. RSS, CSI, and RTT can
all be extracted from these signals. Among these methods, RSS-based positioning has
gained popularity due to its easy accessibility and versatility. Although RTT and CSI
can offer better accuracy than RSS, they require specialised equipment for precise
measurement and are still in the experimental stage. Consequently, they are not
widely available for use. On the other hand, RSS is coarse-grained data that contains
the superposition of multipath signals at the same time. RSS-based positioning is thus
the preferred choice for indoor positioning solutions due to its accessibility, simplicity,
and adaptability.

Although other techniques, such as CSI and RTT, offer fine-grained information
and higher accuracy, they are often limited by equipment requirements or experimen-
tal stages, making RSS the pragmatic choice for scalable indoor positioning solutions.
This research will thus focus on utilising RSS for optimal results.
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2.7 RSS-based Fingerprinting

From now on, in this research, when we refer to Wi-Fi Fingerprinting, we are talking
about using RSSI-based Fingerprinting. Wi-Fi technology is commonly found in
smartphones and laptops, and it makes it easy to measure RSS for indoor positioning.
Using existing Wi-Fi infrastructure in buildings keeps implementation costs low,
making Wi-Fi fingerprinting an economically viable option in various settings such as
airports, universities, hospitals, and shopping centres.

Furthermore, Wi-Fi Fingerprinting does not require precise knowledge of AP
positions, so it can adapt to different indoor layouts. This adaptability also extends
to data processing techniques like machine learning, which helps mitigate noise and
correct signal distortion. Fingerprinting localisation has been widely accepted for IPS
development due to its superior accuracy, as discussed by (Subedi & Pyun, 2020)[127].
This method eliminates the need for line-of-sight from access points, making it a
preferred choice in IPS design.

The RSSI-based Fingerprinting method relies on establishing a unique RSSI
fingerprint for each location, which is then matched with real-time RSSI data
for positioning [21]. Advanced algorithms like the weighted K-nearest neighbours
(Wk-NN) based on RSSI similarity and position distance have shown significant
improvements in positioning accuracy[128]. Deep learning approaches, such as
convolutional neural networks (CNNs), have been successfully applied to Wi-Fi
fingerprinting for indoor localisation, enhancing accuracy and performance|22], [129].
Techniques such as clustering, weighted fusion, and manifold learning have been
proposed to enhance the accuracy of fingerprinting-based positioning systems|127],
[130].

Within Wi-Fi indoor positioning, RSSI emerges as a cornerstone metric, offering
multiple advantages. RSSI-based methods include straightforward approaches such
as trilateration and proximity estimation, along with sophisticated fingerprinting
techniques. These techniques, particularly when augmented with deep learning
algorithms, capitalise on unique RSSI patterns to predict user positions with
remarkable accuracy. However, it’s essential to acknowledge the challenges associated
with RSSI, including non-linear decay laws influenced by factors like multipath
interference and environmental dynamics, which can introduce fluctuations impacting
localisation precision[21].

RSSI fingerprinting techniques, in particular, have witnessed significant advances.
Algorithms such as Wk-NN and deep learning-based approaches have demonstrated
substantial improvements in positioning accuracy [128], [129).
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Figure 2.9: RSSI Fingerprinting Diagram (Source [126]).

2.7.1 RSSI Fingerprinting Construction

The RSSI fingerprinting process comprises two distinct phases: offline and online, as
shown in Figure 2.9] During the offline phase, a set of Wi-Fi measurements is taken
from various APs in a designated area to create a collection of Reference Points (RPs)
at predetermined locations. These measurements are then stored in the positioning
server database for future use. In the online phase, mobile devices in the same area
sense RSSI measurements and send them to the positioning server. Using the RSSI
values stored from the offline phase, the server can estimate the position of these
mobile devices. The online phase typically employs various algorithms for positioning
estimation, ranging from simpler ones like k-NN algorithms to more advanced machine
learning and deep learning algorithms.|[8], [131].

More details of RSSI Fingerprinting are dedicated to Chapter [3] The accuracy of
RSSI fingerprinting depends on multiple factors, including the number of RPs, the
distance between RPs, the number of APs used, the density of APs, the stability of
the signal, and the interference from the environment. In general, a larger number
of RPs and APs and a denser deployment of APs can improve the accuracy of the
positioning system. However, this also increases the cost and complexity of the system.
Therefore, a trade-off between accuracy and cost should be weighed when designing
an RSSI fingerprinting system.
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2.7.2 Position Estimation Algorithms

Estimating the location of a user based on RSSI values can be approached through
two main methods: deterministic and probabilistic.

The deterministic method is a straightforward approach that relies on the
average of the RSSI time samples to estimate the user’s location within a building.
This method assumes that the RSSI values are deterministic and that the signal
propagation characteristics remain constant over time. By averaging the RSSI
values collected at different time points, the deterministic method calculates a single-
point estimate of the user’s location. However, this approach may oversimplify the
localisation process by not accounting for variability in RSSI measurements due to
factors such as multipath propagation, signal attenuation, and environmental changes.

On the other hand, the probabilistic method offers a more sophisticated
approach to user localisation, considering all RSSI time samples collected during the
localisation process. Instead of relying on a single point estimate, the probabilistic
method uses probabilistic algorithms such as Bayesian inference or particle filters
to calculate the probability distribution for the user’s position within the building.
Taking into account the uncertainty associated with RSSI measurements, the
probabilistic method provides a more robust and accurate estimate of the location
of the user[132].

Deterministic methods include techniques such as nearest neighbour (NN), k-NN|
and Wk-NN algorithms [133]. These methods typically involve comparing observed
RSSI values with reference points in a radio map to determine the location of the
user [134]. On the other hand, probabilistic methods involve models like Gaussian
and lognormal distributions to represent RSSI randomness, enhancing the accuracy of
location estimation [135]. Hence, the choice between deterministic and probabilistic
methods for determining a user’s location via RSSI values is contingent on the desired
level of accuracy as well as the complexity of the surroundings.

Deterministic methods are straightforward and effective, while probabilistic
methods offer a more in-depth analysis of RSSI data for a precise indoor location[136].
Our research aims to create a Wi-Fi Fingerprinting indoor positioning system that is
efficient, affordable, and user-friendly, yet still delivers acceptable levels of accuracy,
scalability, and dependability. Hence, we choose a deterministic approach for the
research, where the Nearest Neighbour algorithm and its variations dominate.

2.8 System Performance Characteristics

The performance evaluation of an IPS encompasses various characteristics crucial
for assessing its efficacy. While researchers have established numerous criteria, it
is noteworthy that some of the items listed as metrics are better described as

33



Chapter 2. Background 2.8. System Performance Characteristics

characteristics. Metrics ought to be measurable, whereas some of these characteristics
lack quantifiability. Nonetheless, they are particularly relevant to the efficient design
of scalable indoor positioning systems based on Wi-Fi fingerprinting.

2.8.1 Accuracy

This is the most important metric for any indoor positioning system. The accuracy
of a Wi-Fi fingerprinting system is determined by how close the estimated position is
to the actual position of the user. The accuracy can be measured in terms of metres
or centimetres. The accuracy of an IPS is fundamental, especially for applications
demanding precise location information. However, it’s imperative to balance accuracy
with factors like cost and real-time performance, tailoring the system’s precision to
meet specific requirements [67].

2.8.2 Scalability

The scalability of the system is determined by how well it performs in large and
complex environments. A scalable system should be able to handle a large number
of users and provide accurate positioning information even within complex indoor
environments. Scalability is paramount for accommodating a growing user base
without compromising system performance. Designing a scalable IPS ensures seamless
expansion and adaptation to evolving demands, minimising additional costs and
optimising performance [67].

2.8.3 Reliability

The reliability of an IPS is essential for consistent performance in diverse environments
and conditions. Ensuring accuracy under adverse circumstances is crucial, particularly
in critical scenarios where positioning accuracy is vital [137].

2.8.4 Cost

The cost of the system is an important factor to consider when designing and
evaluating indoor positioning systems. Wi-Fi fingerprinting systems require hardware
and software components, and the cost of these components should be reasonable and
affordable. Cost-effectiveness plays an important role in the widespread adoption of
indoor positioning technology. Considering cost implications throughout the design
process is crucial, as it impacts deployment feasibility and popularity [138].
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2.8.5 Precision

Precision, synonymous with consistency and repeatability, is vital for accurate
positioning. It measures the closeness of measured positions to actual ones, critical
for applications demanding high accuracy [139].

Other metrics such as availability, robustness, stability, latency, and power
consumption are also essential considerations, but will be briefly mentioned here.

Availability: Availability refers to the percentage of time that a positioning
system is operational and able to provide accurate results. High system availability
ensures uninterrupted operation and user accessibility.

Robustness: The robustness of the system refers to how well it performs in the
presence of interference and noise. Wi-Fi fingerprinting systems are susceptible to
interference from other wireless devices and noise from environmental factors such as
walls, furniture, and people. Robust systems can withstand environmental variations
and disturbances, ensuring continued functionality in challenging conditions.

Stability: The stability of the system refers to how consistent the estimated
position is over time. A stable system will provide the same estimated position for a
user at a particular location over multiple measurements.

Latency: The latency of the system refers to the time it takes to provide a
position estimate. A low-latency system is desirable for real-time applications such
as indoor navigation. Minimising latency enhances real-time performance, benefiting
applications requiring immediate positioning updates.

Power Consumption: Power consumption is an important criterion for evalu-
ating positioning systems. Low power consumption is crucial for prolonging battery
life, especially in portable devices such as smartphones.

By focusing on these key metrics, the design and evaluation of scalable indoor
positioning systems based on Wi-Fi fingerprinting can be more effectively guided and
assessed.

2.9 Cloud Technology in Indoor Positioning

The general concept of cloud-based IPS is visually depicted in Figure 2.10] These
systems leverage Wi-Fi fingerprinting technology to deliver precise positioning
services. Through the integration of cloud computing capabilities, these systems
offer flexible and scalable solutions for indoor localisation. Incorporating machine
learning algorithms enhances the accuracy and reliability of positioning prediction
[68], [108]. Cloud computing significantly improves indoor positioning systems by
providing scalable and efficient computational resources, addressing limitations such
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as processing efficiency, fault tolerance, and privacy concerns [140].

The synergy between cloud and edge computing is essential for addressing
challenges such as device diversity, data processing efficiency, and security. Cloud-
based Wi-Fi indoor positioning systems integrate machine learning algorithms,
hybrid positioning technologies, and advanced signal processing to deliver dependable
location information across various applications. These systems offer scalable, precise,
and efficient solutions for indoor positioning, catering to various needs [129].

Efficient indoor positioning systems must align with cloud computing paradigms
to fully exploit their advantages, combining computational power, precise positioning
techniques, and standardised methodologies. Achieving computational efficiency
entails deploying lightweight algorithms capable of accurately determining user or
device positions. However, the complexity of indoor environments poses challenges to
achieving high positioning accuracy, especially in complex multi-building and multi-
story settings.

Key attributes of cloud-based IPS include seamless integration of new positioning
technologies, efficient algorithms, straightforward setup and maintenance, resilience
to failures, adherence to privacy and security standards, compatibility with different
computing paradigms, and real-time positioning tracking. Researchers are actively
developing a range of software solutions, including proprietary and open-source
options, to embody these characteristics effectively.
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2.10 Related Work

This section categorises related studies into three thematic areas. First, IPS based
on the Wi-Fi fingerprinting technique is examined, providing an overview of early
and contemporary systems. Secondly, Efficient design approaches are presented,
closely related to our method. Thirdly, the integration of Cloud-based Wi-Fi indoor
positioning is addressed. Lastly, a summary of limitations in the existing literature is
provided, discussing research gaps about the research questions.

2.10.1 IPS based on Wi-Fi Fingerprinting

Wi-Fi fingerprinting is a well-researched indoor positioning technique extensively
discussed in the literature. Numerous Wi-Fi positioning systems have been proposed
due to the proliferation of Wi-Fi hotspots, with early systems such as RADAR [141]
and Horus [142] pioneering this field. RADAR, developed by Microsoft Research,
was among the pioneering efforts to use Wi-Fi networks for generating location
fingerprints. In the training phase, the area of interest is divided into a 1x1 metre grid,
where signal strength measurements from access points are taken at each intersection.
These measurements are then averaged to create a radio map for subsequent online
phase use. However, challenges emerge as the stability of the radio map is not
always guaranteed, impacting location estimation accuracy. Subsequent studies have
explored various aspects of indoor Wi-Fi fingerprinting positioning systems, including
positioning algorithms, feature extraction methods, and system architecture [5], [18],
[58], [138], [143], [144].

Deterministic approaches to Wi-Fi fingerprinting research have focused on op-
timising the k-NN algorithm [145], [146]. Adaptive k-value methods have shown
significant improvements in position accuracy [146|, while algorithmic enhancements
that incorporate signal propagation models have also been explored [147]. Quartile
analysis and sparse learning techniques have been proposed for the preprocessing of
RSSI data, leading to improved positioning accuracy [148], [149]. Various approaches
have been used to select Wi-Fi signals that uniquely classify locations [108], [150].
The integration of Wi-Fi with other technologies such as BLE has been explored to
improve indoor location systems [122]. Moreover, device-free localisation algorithms
using RSSI metrics have become a promising research area [60].

Recent research has used machine learning algorithms to improve accuracy and
efficiency, with deep learning models and support vector machines being applied to
wireless fingerprinting [69], [151], [152]. Despite these advances, challenges remain in
creating and maintaining radio maps, and in errors in measuring RSSI [153]. Various
approaches, including SLAM, extrapolation/interpolation, and crowdsourcing, have
been proposed to address these challenges [24], [154], [155]. Furthermore, [156] in-
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troduce a fingerprint-based indoor Wi-Fi localisation method that exceeds traditional
algorithms. Collectively, these studies support the importance and progress in using
Wi-Fi RSSI for indoor localisation applications.

2.10.2 Efficient Design of IPS

The design aspects of IPS have received relatively limited attention in the literature,
with few studies addressing the essential considerations for scalable IPS design. Early
research by Kaemarungsi (2005) presented a systematic study aimed at improving
the design of indoor positioning systems based on location fingerprinting techniques
[157]. Kaemarungsi proposed a modelling framework to facilitate the efficient design
of such systems, quantifying the improvement in accuracy and precision resulting from
adjustments in system parameters.

Similarly, [158] noted the absence of analytical models suitable for designing and
deploying positioning systems. Their innovative approach modelled WLAN planning
and positioning error reduction as an optimised solution to address indoor positioning
challenges during WLAN planning. Subsequent studies investigated the optimisation
of reference node (RN) placements to improve system performance [159].

Recent research has explored machine learning techniques to improve the accuracy
of IPS, studies highlighting the importance of system scalability [160]. Researchers
have proposed various scalable solutions, highlighting the importance of scalability
for public applications [161]. Despite these advancements, challenges persist in highly
dynamic and large-scale indoor environments, necessitating innovative approaches
for accurate and reliable positioning services [162]. In the realm of fingerprinting
methods, [127] introduced Affinity Propagation Clustering and Weighted Centroid
Fingerprinting to improve the accuracy of location estimation. These advances aim
to improve the accuracy and efficiency of indoor positioning systems.

Furthermore, studies by [71], [128] focused on refining positioning algorithms based
on RSSI similarity and BLE devices, respectively. Despite advances in RSSI-based
fingerprinting techniques, challenges persist, highlighting the need for comprehensive
system design considerations.

2.10.3 Cloud-Based Wi-Fi Indoor Positioning

Cloud-based Wi-Fi indoor positioning systems have attracted considerable attention
in recent years due to their potential to offer accurate and real-time location
information in indoor environments. Leveraging cloud computing for indoor Wi-
Fi positioning provides scalability, flexibility, and centralised data management
capabilities. In addition, cloud-based Wi-Fi indoor positioning systems can benefit
from advanced signal processing techniques to address challenges such as multipath
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propagation. By leveraging physical layer information and advanced algorithms such
as extended Kalman filters [163], these systems can extract direct path signals and
enhance localisation accuracy in complex indoor environments.

Researchers have explored the deployment of cloud-based architectures to manage
the processing and storage requirements of large-scale Wi-Fi fingerprint datasets for
indoor positioning |164]. Using cloud resources, these systems efficiently handle the
collection, storage, and analysis of Wi-Fi fingerprints to improve the accuracy of the
localisation [165]. Furthermore, cloud-based solutions enable real-time updates of
radio maps and algorithms, ensuring the system’s adaptability to changing indoor
environments [166].

In [167] investigated latency issues in cloud-based IPS systems, particularly in
scenarios where users are mobile, such as indoor navigation. They introduced the
Location Retrospective Adjustment (LRA) method to address this issue, enhancing
real-time navigation performance and reducing the computational burden on mobile
devices. Notably, LRA operates solely through the mobile browser (HTML5), ensuring
stable and accurate navigation without the need for additional application downloads.

In [168], a fixed-edge cloud-based design employing a single access point for guiding
robots within buildings was proposed. While promising, this approach requires
further refinement to work with multiple access points. In [169] presented a cloud-
based indoor positioning service using Android devices to record RSSI and determine
positions via server requests, subsequently transforming them into global coordinates.
Despite demonstrating feasibility, their research highlighted average response times
and performance issues, especially under high request loads. To address this, they
suggested implementing a load balancing strategy to improve performance without
compromising response times or throughput.

Additionally, [170] proposed a verifiable edge computing scheme for indoor
positioning, integrating edge computing technologies to improve the reliability and
security of location-based services. By leveraging edge computing capabilities, the
system aims to tackle challenges related to device heterogeneity and data processing
in indoor positioning applications. Moreover, [171] introduced a cloudlet-based cloud
computing approach for Wi-Fi indoor positioning and navigation, utilising machine
learning models to process RSSI data for accurate indoor localisation tasks. Using
cloudlet resources, the system optimises data processing and analysis, leading to better
indoor positioning accuracy.

Furthermore, [172] proposed an edge computing solution merging Wi-Fi and
Bluetooth fingerprint data while prioritising user privacy, countering vulnerabilities
inherent in cloud-based LBS solutions. Their approach advocates for a multi-tiered
cloud-computing network based on a privacy-preserving framework to ensure location
secrecy, accuracy, and reduced offline fingerprinting time. In [173] proposed a
cloud-based machine learning mechanism for optimising fingerprint nodes in RSSI

39



Chapter 2. Background 2.10. Related Work

data, leveraging multidimensional spatial similarity to enhance Wi-Fi-based indoor
positioning accuracy while mitigating computational complexity and estimation
errors.

The integration of cloud computing with Wi-Fi fingerprinting technology allows
for the development of innovative positioning algorithms capable of handling complex
indoor environments [174]. By leveraging cloud resources for data processing
and model training, these systems achieve high precision and reliability in indoor
positioning applications [27]. Furthermore, cloud-based indoor positioning systems
support multiple simultaneous measurements and collaborative feedback mechanisms
to improve localisation accuracy [175].

The efficient design of a Wi-Fi fingerprinting indoor positioning system involves
leveraging advanced techniques to enhance accuracy and scalability. To achieve
this, integrating cloud computing capabilities can optimise system performance and
flexibility [140]. Cloud platforms offer efficient computation, interoperability, and
real-time updates, which are crucial for managing large-scale Wi-Fi fingerprinting
datasets and ensuring accurate indoor localisation.

2.10.4 Gaps in the Existing Literature

Research on Wi-Fi fingerprinting-based IPS has predominantly focused on enhancing
positioning accuracy. However, there has been limited attention to the design of
scalable IPS architectures.

e Various approaches have been proposed to improve accuracy, but the role of
well-designed Wi-Fi fingerprinting algorithms in enhancing both performance
and scalability remains underexplored.

e Existing IPS studies often lack unified metrics and standardised datasets,
hindering comprehensive evaluations.

e Previous research on IPS has mainly focused on achieving accurate indoor
positioning by developing methods based on a single technology.

e These studies typically involved modifications to network access points and/or
mobile nodes at the device level, necessitating signal processing measurements
and hardware modifications.

Addressing these gaps in the literature is crucial for advancing cloud-based Wi-
Fi indoor positioning systems. By focusing on standardised benchmark datasets,
automatic radio map adaptation mechanisms, and exploring synergies with other
sensor technologies, we can develop more accurate, reliable, and scalable indoor
positioning systems.
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2.11 Summary and Conclusions

2.11.1 Summary

The chapter provides an in-depth overview of IPS, highlighting its growing significance
across various applications. IPS technologies such as Wi-Fi, BLE beacons, and UWB
offer solutions tailored to diverse application needs. Understanding the strengths and
limitations of these technologies is crucial for creating seamlessly connected indoor
environments. Among these techniques, Wi-Fi Fingerprinting, particularly RSSI-
based methods, stands out due to its ability to cope with indoor environmental
challenges such as multi-path and obstacles. Wi-Fi fingerprinting utilises signal
strength from multiple access points to estimate device locations within indoor
environments.

The discussion delves into the stages of Wi-Fi fingerprinting, including training and
positioning, and explores various matching approaches such as nearest-neighbour algo-
rithms, deep neural networks (DNN), and recurrent neural networks (RNN). Despite
potential inaccuracies in dynamic environments, Wi-Fi fingerprinting continues to be a
preferred choice for indoor location tracking, providing precise location determination
without the need for specialised equipment. By leveraging the ubiquity of Wi-Fi
infrastructure, Wi-Fi fingerprinting offers a cost-effective and non-intrusive solution
for indoor positioning.

The chapter examines key performance metrics for IPS, such as accuracy,
scalability, reliability, and cost. Additionally, the chapter concludes by emphasising
the role of cloud technology in indoor positioning and discussing advances in
fingerprint-based indoor localisation, driven by developments in artificial intelligence
and pattern recognition, particularly deep learning techniques. The chapter lays the
foundation for subsequent research and development efforts by identifying gaps in the
current literature.

2.11.2 Conclusions

The chapter concludes by emphasising the importance of IPS technologies in various
applications and underscores the advantages of Wi-Fi fingerprinting, particularly its
adaptability, scalability, and cost-effectiveness. Despite challenges such as dynamic
environmental conditions, Wi-Fi fingerprinting remains a viable solution for indoor
location tracking, offering precise results without the need for specialised hardware.
The integration of cloud technology further enhances the capabilities of indoor
positioning systems, paving the way for more efficient and reliable solutions.
Additionally, the chapter highlights the ongoing advancements in fingerprinting-
based indoor localisation, driven by innovations in artificial intelligence and pattern
recognition, including deep learning approaches. By addressing the existing gaps
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in the literature, future research endeavours can build upon these developments
to further improve the accuracy and robustness of indoor positioning systems. In
summary, the chapter provides a comprehensive understanding of IPS technologies
and their potential for shaping the future of indoor navigation and location-based
services.
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Chapter 3
Wi-Fi Fingerprinting

This chapter presents the Wi-Fi fingerprinting method employed for indoor posi-
tioning estimation, with a primary focus on the Received Signal Strength Indicator
(RSSI)-based approach. It introduces the fundamental fingerprinting techniques and
discusses the baseline deterministic algorithms applied to RSSI-based fingerprinting.

3.1 Introduction

Wi-Fi technology is widely utilised for indoor positioning due to its broad availability
and the absence of additional infrastructure requirements, as Wi-Fi access points
(APs) are commonly installed in many buildings. Nevertheless, Wi-Fi-based posi-
tioning systems are often constrained by limited accuracy compared to alternatives
such as UWB [176]. For instance, in |[177] reported that Wi-Fi positioning typically
achieves an accuracy of approximately 2 to 4 metres. This level of precision is generally
considered sufficient for typical indoor applications, such as navigating large airport
terminals or locating rooms in multi-floor hospital buildings.

Among indoor positioning techniques, Wi-Fi fingerprinting is one of the most
prevalent due to its ease of implementation, lack of reliance on additional hardware,
and capacity to deliver satisfactory accuracy. However, its performance is influenced
by several factors, including the density and distribution of APs, the initial site survey
required to construct the fingerprint database, and the periodic updates needed to
maintain the database’s accuracy. Furthermore, the precision of positioning depends
on both the quality of data collection and the selection of appropriate estimation
algorithms.

Wi-Fi fingerprinting operates by generating radio map fingerprints (RMFs) of
specific areas through RSSI measurements from multiple APs. Nevertheless, incorpo-
rating all detected APs into fingerprint vectors can lead to increased computational
complexity and reduced system efficiency [108]. Including all APs may introduce noise
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and redundancy, adversely affecting the accuracy of the IPS. Prior studies emphasise
the importance of considering AP set similarity and RSSI distance to ensure that the
fingerprint data accurately represents spatial proximity [178].

The RSSI fingerprinting technique constructs a radio map by collecting signal
strength data throughout the environment and subsequently estimating a user’s
position by comparing real-time measurements with pre-recorded fingerprint values
[58], [75]. RSSTis a standard metric in wireless communications that reflects the power
level received by a device [17]. Modern single-chip transceivers typically include RSSI
indicators to assess signal quality |179].

RSSI fingerprinting comprises two distinct phases: offline and online, as illustrated
in Figure 3.1 During the offline phase, RSSI measurements are systematically
collected at predefined locations—termed reference points (RPs), within the area
of interest (Aol). These measurements are stored in a central database (DB) on the
positioning server (PS), thereby constructing the radio map for the environment.

In the online phase, a mobile device (MD) operating within the same Aol measures
RSSI values from nearby APs and transmits them to the positioning server. The PS
then estimates the device’s location by comparing these real-time measurements with
the previously stored fingerprints, as shown in Figure [3.2]

Various algorithms can be employed for location estimation in the online phase,
ranging from basic methods such as k-Nearest Neighbours (k-NN) to more sophisti-
cated machine learning and deep learning approaches [8|, [131].

Together, these processes facilitate accurate and reliable indoor positioning using
Wi-Fi fingerprinting, highlighting the critical integration of hardware infrastructure
and algorithmic methodologies in the design of indoor positioning systems.

Wi-Fi fingerprinting is considered a promising solution, but it has its drawbacks,
such as the need for human effort to initially take measurements and to keep the
fingerprint updated over time. The radio map (fingerprinting) can change due to
alterations in furniture in the area [8], [157], [180].

3.2 System Model and Evaluation Framework

This section outlines the general system model for Wi-Fi fingerprinting based indoor
positioning adopted in this thesis. It also defines the standard mathematical notation
that will be used consistently across subsequent chapters and introduces the key
performance evaluation metrics employed to assess the developed algorithms and
systems. Establishing this unified framework aims to enhance clarity and ensure
a consistent understanding of the methodologies and results presented.
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3.2.1 General System Model and Notation

The Wi-Fi fingerprinting technique for indoor positioning, as investigated in this
research, operates based on a two-phase paradigm: an offline phase and an online
phase.

Offline Phase (Radio Map Construction): During the offline phase, a detailed
survey of the indoor environment is conducted. Received Signal Strength Indicator
(RSSI) values are collected from M detectable Wireless Access Points (APs) at
N predetermined discrete locations known as Reference Points (RPs). Each RP,
denoted by index ¢ (where i@ = 1,...,N), has known true coordinates, which,
for a 2D representation, can be expressed as ¢; = (x;,¥;). In multi-floor, multi-
building scenarios, these coordinates can be extended to include floor and building
identifiers, e.g., ¢; = (Lon;, Lat;, Floor;, Buildingl D;), as is the case with datasets
like UJIIndoorLoc For each RP i, the set of RSSI values from all M APs forms a
unique vector known as a fingerprint, denoted as f; = [RSSI;;, RSSI;s, ..., RSST;y],
where RSSI;; is the signal strength from AP j at RP i. The collection of all such
fingerprint-coordinate pairs, {(f;,c;)}Y,, constitutes the radio map or fingerprint
database, denoted as D.

Online Phase (Position Estimation): In the online phase, a Mobile Device
(MD) at an unknown location measures its current RSSI values from the surrounding
M APs. This results in an online RSSI vector, z = [RSSI,;, RSSI.s,..., RSSI, .
A positioning algorithm is then employed to compare this online vector z against the
fingerprints {f;} stored in the radio map D. Based on this comparison, the algorithm
estimates the MD’s current coordinates, €.

Standard Mathematical Notation: To ensure consistency throughout this
thesis, the following mathematical notations will be adopted:

e Scalars (e.g., individual RSSI values, coordinates, number of APs/RPs, error val-
ues, indices) will be denoted by normal italic letters: x,y, k, M, N, d, RSSI,e,1i,j.

e Vectors (e.g., RSSI fingerprints, coordinate vectors) will be denoted by lowercase
bold italic letters: f,z,e,p,q. For instance, an RSSI vector f € RM.

e Matrices (e.g., data matrices, PCA projection matrix) will be denoted by
uppercase bold italic letters: X, W Y.

e Sets (e.g., the radio map database) will be denoted by calligraphic uppercase
letters: D.

e Estimated values will be denoted with a hat accent: ¢, Z.

This notational convention is intended to provide clarity in all mathematical
descriptions and algorithmic presentations.  Table and Table provide
mathematical symbols used throughout the thesis.
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3.2.2 Performance Evaluation Metrics

The performance of the indoor positioning systems and algorithms developed and
analysed in this thesis is assessed using a set of standard evaluation metrics. These
metrics are chosen to provide a comprehensive understanding of the system’s accuracy
in both classification tasks (such as identifying the correct building or floor) and
regression tasks (such as estimating precise 2D coordinates)|126].

3.2.2.1 Metrics for Classification Tasks

For tasks involving the prediction of categorical labels, such as the building or floor
where a user is located, the primary metric used is the Hitting Rate.

Hitting Rate (HR): The Hitting Rate quantifies the percentage of test instances
where the system correctly predicts the categorical label (e.g., building ID or floor
number). It is a direct measure of classification accuracy.

NCOT"V‘EC
HR = =2 % 100% (3.1)
Ntotal

where Neypreet 18 the number of correct predictions for a given category (e.g., correct
floor identifications), and Ny is the total number of prediction attempts for that
category. A higher HR indicates better classification performance.

3.2.2.2 Metrics for Regression Tasks (Coordinate Estimation)

For tasks involving the estimation of continuous values, such as the 2D geographical
coordinates (e.g., Longitude and Latitude) of a user, the following metrics are
employed, all based on the positioning error.

Positioning Error (e;): For each test point &, the positioning error e, is defined
as the Euclidean distance between the true 2D coordinates (Long, Laty) and the

estimated 2D coordinates (ﬂlk, fc;fk) provided by the positioning system.

€ = \/(f(;lk — Lonk)Q + (fa\tk — Latk)Q (32)

This error is typically measured in metres.

Mean Absolute Error (MAE): The MAE represents the average of the absolute
positioning errors over all test instances. It provides a straightforward measure of the
average prediction error magnitude.

Ntest
MAE = Z er = Z \/(Lonk — Lony)? + (Laty, — Laty)? (3.3)
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where Ny is the total number of test points evaluated. A lower MAE indicates
higher average accuracy.

Root Mean Squared Error (RMSE): The RMSE is the square root of the
average of the squared positioning errors. It is sensitive to large errors, meaning
outliers have a more significant impact on the RMSE value compared to MAE.

Ntest Ntest
1 1 — o
RMSE — 2 — ) (L — Lony)? + (Lat, — Lat 2) 3.4
Ntest ek Ntest k=1 ( o Onk) + ( o ! k) ( )

A lower RMSE indicates better positioning accuracy, with a greater penalty for large
deviations.

Cumulative Distribution Function (CDF) of Positioning Errors: The
CDF of positioning errors is a graphical representation that illustrates the probability
P(E < e) that the positioning error E is less than or equal to a specific value
e. It provides a comprehensive overview of the error distribution, allowing for an
understanding of, for example, the percentage of errors that fall below a certain
acceptable threshold (e.g., 5 metres, 10 metres).

These unified metrics will be referenced in subsequent chapters when evaluating
the performance of the proposed algorithms and system architectures.
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Table 3.1: Summary of Scalar Mathematical Symbols and Notation

Symbol Description

Scalars

M Total number of WAPs considered in a fingerprint.

N Total number of Reference Points (RPs) in the radio map.
Niest Total number of test queries used for performance evaluation.
Neorrect Number of correctly classified/localised test instances.

Niotal Total number of prediction attempts for a classification task.
RSSI; Received Signal Strength Indicator from WAP j at RP .
RSSIg; RSSI from WAP j at a specific RP R.

RSSI,, RSSI from WAP j in an online (query) RSSI vector z.

iy Ui 2D Cartesian coordinates of RP 1.

Lon;, Lat; Longitude and Latitude coordinates of RP 1.

Floor; Floor identifier for RP 1.

Buildingl D; Building identifier for RP .

T,7 Estimated 2D Cartesian coordinates.

fo\nk, mk Estimated Longitude and Latitude for test point k.

k Number of nearest neighbours considered in the k-NN algorithm.
d(p,q) Distance (e.g., Euclidean) between RSSI vectors p and q.

do Reference distance in the path loss model (typically 1 metre).
RSS1y, RSSIy; Reference RSSI value at distance dy (for WAP j).

n,n; Path loss exponent (for WAP j).

Xijs Xjtarget Shadowing or large-scale fading component.

0]2- Variance of the shadowing effect for WAP j.

D Order parameter for Minkowski distance.

Q parameter in exponential RSSI representation.

7y Weighting factor in auto-update.

15} Parameter in powered RSSI representation.

w; Weight assigned to the i-th nearest neighbour in Wk-NN.

€k Positioning error for the k-th test point.

1 Mean (e.g., of RSSI values for normalisation).

o standard deviation (e.g., of RSSI values for normalisation).
Pos(z Positive representation of RSSI value z.

Exp;(x) Exponential representation of RSSI value z for WAP 1.
Pow;(z) Powered representation of RSSI value x for WAP .
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Table 3.2: Summary of Vector, Matrix, and Set Mathematical Symbols

Symbol Description
Vectors (lowercase bold italic)
c; Coordinate vector of RP i, e.g., (x;, y;).

¢ Estimated coordinate vector for a query.
fi. fr RSSI fingerprint vector for RP i or RP R; f € RM.

~

fi Estimated or updated fingerprint vector for location 1.
z Online (query) RSSI vector measured by a Mobile Device; z € RM.
P, q Generic RSSI vectors used in distance calculations.

Matrices (uppercase bold italic)

X Radio map matrix, where rows are f; and columns are WAPs.
Y Data matrix after transformation (e.g., projected data in PCA).
w Transformation matrix in PCA (matrix of principal components).

Sets (calligraphic)
D The fingerprint database, typically a set of (f;, ¢;) pairs.
Qdata Set of new fingerprint-location data derived from user queries.

3.3 RSSI Models

There exist two principal categories of RSS methodologies: range-based and range-
free. The range-based technique entails the construction of a spatial map predicated
on the physical attributes of the wireless signal, subsequently employed to ascer-
tain the object’s location through trilateration, min-max, or maximum likelihood
algorithms. Nevertheless, this method exhibits potential limitations in precision
and adaptability across diverse environments. Conversely, the range-free technique
leverages a fingerprinting database (radio map) to deduce the object’s position by
juxtaposing the signal strength at the object’s present location with a precompiled
database of signal strengths at known locations.

The range-free methodology obviates the necessity for angular or distance
measurements between nodes. A pivotal aspect of wireless signal transmission is
RSSI, which quantifies the received signal’s intensity at a receiver device, typically
articulated in decibel-milliwatts (dBm) or milliwatts (mW). The RSSI value facilitates
the estimation of the distance between transmitter (Tx) and receiver (Rx) devices,
with proximity inversely correlated to RSSI magnitude. Consequently, signal strength
attenuates with increasing distance, as illustrated in Figure |3.3]

The figure delineates the relationship between signal strength and distance,
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Figure 3.3: Signal characteristic: relation between signal strength and distance

encompassing both the transmitter (Tx) and the receiver (Rx). Although theoretical
predictions of signal strength exhibit consistency, empirical measurements often
demonstrate variability attributed to fading instigated by multipath propagation. In
confined environments, signal propagation from assorted access points engenders a
distinctive representation of received signals, influenced by multipath, attenuation,
and spatial obstructions, such as furniture. This attribute proves advantageous for
RSSI-based fingerprinting methodologies but may impede other range-based indoor
positioning techniques, such as AoA or ToA.

A radio map at each designated position, known as a Reference Point (RP), is
meticulously constructed using this technique. The fingerprinting methodology offers
enhanced accuracy and applicability across various indoor settings; however, RSSI
measurements are susceptible to environmental perturbations. Indoor environments,
replete with obstacles, significantly affect radio signal propagation. Noise and
multipath effects notably degrade RSSI localisation precision. Nonetheless, the
accuracy of RSSI computations can be ameliorated through meticulous calibration
and analysis of signal propagation [17].

RSSI represents a measure of RSS, as typically defined by individual chip vendors
and quantified in arbitrary units per the RSSI [179]. By relying solely on received
signal strength, the RSSI-based algorithm can efficaciously pinpoint an object’s
position without necessitating supplementary hardware or time synchronisation,
thereby surpassing the accuracy of alternative methodologies.

The RSSI propagation model used in fingerprinting for indoor positioning is
often based on the logarithmic distance path loss model. This model represents
the relationship between the received signal strength and the distance between the
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transmitter AP and the target device.

The signal propagation characteristics from any Access Point (AP) to a specific
location within an indoor environment can be described by the log-distance path loss
model. Let RSSI,.; be RSSI value received from the 4" AP at a generic location
denoted by 'loc’, and dj,. ; be the distance from this location to the 5" AP. The model
is expressed as:

0

doc j
RSS[lOCJ‘ = RSSI()] — 1077,] 10g10 ( ld ’J) + Xloc,jz (35)

where:

e RSSIy; is the reference RSSI value at a short reference distance dy (e.g., 1
metre) from the j%* AP. This accounts for the transmission power and antenna
characteristics of AP j.

e n; is the path loss exponent associated with the j¥ AP, indicating the rate of
signal strength decay with distance within the specific indoor environment.

® X, ; represents the large-scale fading (shadowing) component for the signal
path between the location ’loc’ and the j* AP, often modelled as a zero-mean
Gaussian random variable in decibels, i.e., Xjoe; ~ N(0, 0]2»), where 032- is the
variance of the shadowing for AP j.

This general model (Equation applies to both phases of the Wi-Fi fingerprinting
process, with differences in context and known parameters:

1. Offline Phase Application (Radio Map Construction): During the
offline phase, a radio map is constructed by collecting RSSI measurements at N
known reference positions (RPs). For the i'" RP, "loc’ in Equation corresponds to
this RP i. Thus, RSSIj,.; becomes RSSI;;, which is the signal strength value stored
in the fingerprint database (often an average of multiple readings at RP ¢ from AP j).
The distance dj,.; becomes d;;, the known Euclidean distance between RP i and AP
7. The model in this context helps understand the signal characteristics that form
the fingerprints stored in the database.

2. Online Phase Application (Position Estimation): In the online phase, a
target device at an unknown location measures current RSSI values from surrounding
APs. Here, ’loc’ in Equation [3.5| corresponds to the target device’s location. Thus,
RSSIi,c; becomes RSS1igrgetj, the live RSSI value measured by the target device
from the j* AP. The distance dioe,; becomes dyiqyget,j, Which is the unknown distance.
The model in this context describes the physical generation of the RSSI values that
the target device measures in real-time.

It is crucial to note that in the Wi-Fi fingerprinting technique, rather than directly
solving Equation for individual unknown distances dyqrger,; (Which is characteristic
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of range-based methods), the entire vector of measured RSSiqget ; values is compared
against the pre-calculated fingerprints in the radio map. The goal is to find the stored
fingerprint (and thus its known location) that is most similar to the currently observed
RSSI vector. This approach leverages the site-specific uniqueness of the overall radio
signature.

The Wi-Fi fingerprinting technique leverages the distinct radio signature present
at each location within an indoor environment. This uniqueness arises from the
complex propagation of radio waves, which are affected by physical obstacles such as
walls, doors, furnishings, and floors, leading to reflection, diffraction, and scattering.
Consequently, the pattern of RSSI values from multiple detectable APs at a given
location can serve as a distinguishing fingerprint for that location.

The core of RSSI fingerprinting involves two main phases:

1. Offline Radio Map Construction: In this phase, a database of RSSI
fingerprints is constructed. At a series of pre-defined reference positions (RPs) within
the indoor environment, RSSI values from all detectable APs are measured and
recorded. For a given reference position R, the RSSI fingerprint, denoted as fg,
is a vector containing these measurements:

fr = [RSSIn1, RSSIns, ..., RSSIx ., (3.6)

where M is the total number of APs considered, and RSSIg; is the RSSI value
measured at reference position R from AP j. Each such RSSIg ; value is an instance
of the signal behaviour described by Equation applied to the offline context. This
database of fingerprints { fr} paired with their known locations constitutes the radio
map.

2. Online Position Estimation: When a target device requires its position, it
performs a Wi-Fi scan to measure the current RSSI values from detectable APs. This
results in an observed RSSI vector, z:

z = [RSSItarget,h RSS[target,Za R RSS[target,M]a (37)

where RSS1iqrget,; is the RSSI value currently measured by the target device from AP
J. Each RSSTiqr4et,; is an instance of the signal behaviour described by Equation
applied to the online context.

The system then estimates the target device’s position by comparing the observed
vector z with the fingerprints fr stored in the radio map.

3.4 Application of RSSI Models in This Research

The RSSI propagation models presented in Section 3.3 which describe the relationship
between RSSI and distance (Equations [3.5), serve as the theoretical underpinning
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for understanding signal behaviour in the Wi-Fi fingerprinting techniques developed
throughout this thesis. While these mathematical models articulate the expected
signal characteristics, their direct application for positioning (e.g., by inverting them
to calculate distances) is not the primary focus of our work due to real-world
complexities.

Instead, this research adopts an empirical fingerprinting methodology. We leverage
a database of collected RSSI measurements (the radio map) where each fingerprint
is a vector of signal strengths from multiple APs at a known location. This
approach inherently captures the complex multipath propagation, attenuation, and
shadowing effects characteristic of indoor environments, which are often challenging
to encapsulate exhaustively with purely theoretical propagation models. Specifically,
while the logarithmic distance path loss model (as detailed in Section informs
our understanding of general signal decay and variability, our radio map construction
relies on actual measured RSSI values.

The principles of fingerprinting, which are based on the unique RSSI signatures
described by the models in Section (3.3, are directly realised in the positioning
algorithms presented in Chapter [d Particularly, the understanding derived from
these models influences:

e The structure of our RSSI fingerprint database (Section , which stores
vectors of measured RSSI values. Each element in these vectors is an instance
of an RSSI governed by the principles laid out in Equations 3.5

e The choice and application of distance metrics within our nearest-neighbour
algorithms (Section [3.11.1] and Chapter [4f), which operate by comparing these
empirically collected RSSI vectors.

e The strategies for radio map optimisation are detailed in Chapter These
techniques, such as dimensionality reduction and auto-update mechanisms, aim
to enhance the efficiency and robustness of the fingerprinting process, which
fundamentally relies on the stability and distinctiveness of RSSI patterns.

Our implementation strategy acknowledges the practical limitations of relying
solely on theoretical propagation models for precise positioning in varied indoor
settings. By grounding our system in empirical measurements, while being informed
by the theoretical behaviour of RSSI, we aim to develop robust and accurate
positioning solutions. This allows our system to build upon established theoretical
foundations while pragmatically addressing the real-world complexities of indoor
signal propagation.

The specific algorithms, optimisations, and their performance evaluations, which
embody this application of fingerprinting principles, are detailed in Chapters [4 and
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3.5 Fingerprint Database Constructing

Fingerprinting Databases can be categorised based on their coverage into:
e Single-floor databases
e Single-building and multi-floor databases
e Multi-building and multi-floor databases
While RSSI collection methods can be divided into:

e Crowdsourcing: Based on volunteers, resulting in random RSSI records at
various RPs but requiring minimal effort.

e Insourcing: Purposefully designed and systematically carried out by project
participants, resulting in a structured and organised RSSI database, but
demanding considerable labour during construction.

In the offline stage, constructing the RSSI fingerprinting database requires a team
of labour if the area to be covered is substantially large. The procedure begins
with collecting RSSI data from various APs within a building or indoor space. This
data includes information such as signal strength, MAC address, and position. The
researchers then use this data to create a database that maps the RSSI readings to
specific positions within the building. This database can then be used by indoor
positioning systems to accurately locate users within the building based on RSSI
readings received from their devices. To model this process, consider the following:

e N as the total number of reference positions.
e M as the total number of APs in the environment.

e RSSI;; as the RSSI measurement obtained from the ™ reference position for
the j'* AP.

Then, the RSSI fingerprint database X can be mathematically represented as:

RSSIy RSSLy ... RSShu
RSSIy  RSSIyn ... RSShhy
RSSIny RSSIns ... RSSInm

Each row of this matrix represents the RSSI measurements from all APs at a
specific reference position, while each column represents the RSSI measurements
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Table 3.3: Datasets Characteristics

Dataset Year D, D;. #APs FP/RP Area (m?) #Bld #FIr Ref.

TUT 1 2013 1476 490 309 1 9000 1 4 [184]
TUT 2 2013 584 176 354 1 14000 1 3 [184]
UJI1 2014 19861 1111 520 21 108703 3 4-5  |15]
uJr2 2017 20972 5179 520 11 108730 3 4-5  [185]
TUT 3 2017 697 3951 992 1 8000 1 ) 168
TUT 4 2017 3951 697 992 1 8000 1 ) [68]
LIB1 2018 576 3120 174 12 308.4 1 2 [21]
LIB2 2018 576 3120 197 12 308.4 1 2 [21]
UTS1 2019 9108 388 589 6 44000 1 16 [22]
SOD 1 2022 21205 2720 105 1/30 8000 3 1-3  [125]

from a particular AP across all reference positions. To populate this matrix, RSSI
measurements are collected at each RP from all available APs using a Wi-Fi scanning
device, such as a mobile phone or laptop. These measurements are then organised
into the matrix format as described above, forming the RSSI fingerprinting database
used to locate and position devices within the indoor environment. This model matrix
describes the spatial distribution of RF fingerprints within the target area, known as
the radio map fingerprint (RMF).

3.6 Fingerprinting Datasets

Numerous experiments have been undertaken to propose Wi-Fi indoor positioning
systems, primarily consisting of software simulations, with only a few executed within
dedicated testbeds [181]-[183]. However, conducting empirical experiments may not
always be financially viable or logistically feasible due to the considerable time and
cost involved. Therefore, in our research, we focus on modelling indoor positioning
and evaluating various algorithms for system performance using publicly available
datasets from online repositories such as IndoorLoc|l6]. These repositories offer
diverse datasets, among which we have chosen UJlIndoorLoc [15]. The Table
illustrates a comparison of these Wi-Fi Fingerprinting datasets.

The data presented in Table |3.3| unmistakably highlight the UJI dataset as the
largest in terms of covered area, spanning three buildings and five floors. Additionally,
it boasts an impressive number of fingerprints per RP, totalling 21. It is noteworthy
that the UJI dataset stands out as the most frequently used dataset in indoor
positioning systems, having been referenced in more than 300 research articles [125].
In the following, we introduce the UJI dataset and its characteristics.
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3.6.1 UJlIIndoorLoc

The UJlIndoorLoc database serves as a widely adopted resource for evaluating and
developing machine learning algorithms in indoor positioning, particularly those
utilising Wi-Fi fingerprinting technology [15]. This database, which includes training
and validation data, plays a crucial role in the development and validation of machine
learning algorithms for indoor positioning systems. Machine learning algorithms,
trained on datasets like UJIIndoorLoc, play a pivotal role in indoor positioning
systems, especially when utilising Wi-Fi fingerprinting methods. These algorithms
utilise RSSI values to accurately predict indoor locations.

The UJlIndoorLoc database has emerged as a widely utilised resource within the
academic community for the refinement and evaluation of machine learning algorithms
related to indoor positioning. Numerous scholarly works have leveraged this repository
to introduce and validate a diverse array of machine learning algorithms specifically
tailored for indoor positioning systems, with a pronounced emphasis on WLAN /Wi-Fi
fingerprinting technology. This database, encompassing both training and validation
datasets, plays a crucial role in the development and validation of custom matching
algorithms for indoor positioning systems [15]. The UJIIndoorLoc dataset is a publicly
available collection of data points intended to evaluate indoor positioning systems
based on Wi-Fi fingerprinting. The dataset comprises 21,048 records (consisting of
19,937 training samples and 1,111 validation samples), each corresponding to a unique
capture event and containing 529 numerical elements. These elements are categorised
as follows:

e RSSI (elements 001-520): Signal strengths from 520 distinct wireless access
points (WAPs) detected at the capture location.

e Real-World Coordinates (elements 521-523): X, Y, and Z coordinates of
the capture point within the building, where Z refers to the floor.

e Metadata:
— BuildingID (element 524): Identifier for the building where the capture

occurred (one of three buildings).

— SpacelD (element 525): Identifier for the specific space within the
building (933 unique spaces).

— Relative Position (element 526): Relative position of the capture point
within the designated space (potentially useful for specific applications).

— UserID (element 527): Identifier for the user who collected the data
point.

57



Chapter 3. Wi-Fi Fingerprinting 3.6. Fingerprinting Datasets

— PhonelID (element 528): Identifier for the specific mobile device used
for data collection (25 different models used).

— Timestamp (element 529): Date and time of the capture event.

3.6.2 Key Characteristics

e Coverage Area: The dataset encompasses an area of 108,703 square meters
across three buildings, with each building having 4 — 5 floors.

e Training and Validation Sets: The data is divided into 19,937 samples for
training/learning and 1,111 samples for validation/testing. To ensure dataset
independence, validation samples were collected four months after the training
samples.

e User Diversity: Data collection involved more than 20 users using 25 different
mobile device models (some users used multiple models).

e Data Collection Tools: Two Android applications, CaptureLoc and Vali-
dationLoc, were used for data collection. These applications referenced map
services published on an ArcGIS server, providing users with visual aids during
data capture (building interiors and reference point locations) to enhance
positioning accuracy.

Originally conceived for indoor localisation within a university campus in Spain,
the UlJIIndoorLoc database stands out as a multi-building, multi-floor repository
based on Wi-Fi fingerprinting technology, offering a realistic depiction of diverse
indoor environments across three heterogeneous buildings. During its inception, the
database detected 520 different WAPs, resulting in Wi-Fi fingerprints comprised of
520 intensity values per Reference Point (RP), thus forming a unique reference point
characterised by a 520-element vector. These intensity values are represented as
negative integer values ranging from -104 dBm (indicative of extremely poor signal) to
0 dBm, with a default value of +100 dBm assigned to undetected WAPs (as illustrated
in Table . Furthermore, each reference point is accompanied by a set of attributes
including longitude, latitude, floor, building, space, relevant position, user ID, phone
ID, and time of records (as depicted in Table [3.5).

Leveraging this publicly available database facilitates the examination of novel
indoor localisation algorithms and enables comparative analyses across different
algorithms.  This public dataset serves as a standardised means to assess the
accuracy of localisation algorithms reliant on RSSI levels and facilitates comparative
evaluations of localisation algorithms within a standardised experimental framework.
Additionally, the accessibility of proposed algorithms for scrutiny is heightened by the
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public availability of the database, distinguishing it from other research endeavours
confined to specific environments [15].

Table 3.4: WAPs measurement of RSS at one of the RP

WAPyy1 ... WAP031 WAP032 WAP033 WAP034 WAP035 WAP036 WAP520
-97 +100 -97 +100 +100 -65 -65 +100

Table 3.5: Example of a data entry at a RP with its attributes

WAPgyy; ... WAPs5y Longitude Latitude Floor BuildinglD SpacelD Rel.Pos UserID PhonelD Time
-97 .. 4100 -7594.7  4864983.9 3 0 111 2 11 13 1370340142

3.6.3 Data preparation

The UJIIndoorLoc database comprises fixed-size vectors, with each index correspond-
ing to a WAP. These vectors encapsulate original intensity values ranging from
0 (indicating the highest signal strength) to -104 (representing the lowest signal
strength) in decibel milliwatts (dBm), with undetected WAPs denoted by a default
value of 100 dBm. To ensure data consistency, any rows or columns containing this
default value were omitted. Consequently, a total of 55 columns and 76 rows were
removed from the original dataset, resizing it from (19,937x529) to (19,861x474),
constituting approximately a 10.7% reduction in the original dataset size.

Additionally, negative intensity values were converted into their positive coun-
terparts, facilitating a more intuitive interpretation of measurements and aiding in
subsequent calculations, particularly for operations such as square-root transforma-
tions or logarithmic computations. Although some researchers [186] may advocate for
additional normalisation techniques, such as converting values to a zero-to-one scale,
in our investigation, the conversion of all RSSI values to positive values suffices for
the baseline algorithm, particularly in the context of the k-NN algorithm.

3.6.4 RSSI Data Representation

The analysis of RSSI data, which constitutes a fundamental element of Wi-Fi
fingerprinting, is subject to exploration through various representations. These
representations encompass both raw signal strengths and transformed values, the
assessment of which serves to elucidate their respective impacts on positioning
accuracy. The discernment of the most effective representation therein serves as
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a critical endeavour in refining the feature space, thereby potentially enhancing
algorithmic performance.

In our research, we explore three distinct representations for RSSI wvalues:
positive, exponential, and powered. We follow the methodology proposed in [186].
This preprocessing step has demonstrably enhanced model performance, primarily
by effectively representing RSSI measurements for algorithmic calculations and
concurrently reducing training time. The following delineation provides a detailed
overview of these representations:

e Positive representation

Posi(x) = (RSSI; — min), if WAP.iis detected, (3.8)
0, Otherwise.
e Exponential representation
61’])( RSSI;—min)
Exp;(x) = —a— (3.9)
exp(=5*)
e Powered representation
RSSI; — min)?
Pow(x) = ¢ min)” (3.10)

(—min)?

where RSSI; is a received signal strength measurement, min represents the minimum
value of RSSI; in the datasets. Lastly, a and [ are mathematical constants with
values of 24 and 2, respectively.

The parameters a and [ control the scaling and non-linear transformation of
RSSI values in the exponential and powered representations, respectively. Following
the methodology proposed by [186], the values o = 24 and = 2 were selected based
on their extensive empirical analysis of the UJIIndoorLoc dataset.

Specifically, « = 24 was determined to be optimal for the exponential representa-
tion as it appropriately scales the exponential function to capture the logarithmic
nature of signal propagation. The value preserves the relative importance of
strong signals while preventing weaker signals from being completely diminished
in the transformed space. The parameter f = 2 in the powered representation
effectively implements a quadratic transformation that has been shown to enhance
the discriminative power of RSSI fingerprints by amplifying the differences between
stronger signals while moderating the impact of weaker, potentially less reliable
signals. Our own empirical evaluations on the dataset further confirmed the suitability
of these values.
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These specific values represent a balance between enhancing signal differentiation
and maintaining robustness against noise, which is crucial in indoor environments
where signal propagation is affected by various factors such as multipath fading,
reflection, and absorption. In [186] demonstrated through extensive experimentation
that these parameter values yielded superior positioning accuracy compared to
alternative configurations.

The parameters o = 24 and 5 = 2 were adopted from [186], who established these
values through empirical optimisation. While the specific process of determining
these exact values is not elaborated in their work, these parameters serve important
mathematical functions in transforming RSSI values. The parameter « in the
exponential representation controls the scaling factor that determines how quickly the
exponential transformation amplifies differences between signal strengths. Similarly,
[ in the powered representation determines the degree of the power function applied
to signal strengths, with § = 2 implementing a quadratic transformation that
accentuates stronger signals while diminishing the influence of weaker ones.

It is worth noting that these parameter values may be optimised for the specific
characteristics of the UJIIndoorLoc dataset and the environmental conditions under
which it was collected.

3.7 Dataset Profiling and Analysis

This section presents a comprehensive analysis and profiling of the indoor positioning
dataset, with a focus on understanding the spatial and statistical characteristics
of the RSSI values. The objective is to extract meaningful insights that can
inform the selection and optimisation of algorithmic components in later stages.
Both two-dimensional and three-dimensional visualisations are employed to explore
the distribution of RSSI values across different reference points and access points.
Additionally, this section examines signal variability, sparsity, and environmental
noise, all of which significantly influence the performance of positioning algorithms.
By establishing a clear understanding of the dataset’s structure and signal behaviour,
this foundational analysis supports the rational design and evaluation of the proposed
methods.

In addition, this section presents the initial simulation results using the standard
k-NN approach with default parameters such as & = 1. It establishes the
baseline performance using Euclidean distance metrics and analyses their impacts
on positioning accuracy. This baseline assessment is crucial for understanding the
performance limitations of conventional approaches.

To model a simple system for IPS, the model was implemented using MATLAB
R2023 (a), executed and tested on a Lenovo Laptop with an Intel(R) Core(TM)
i5-8265u CPU @ 1.60 GHz, 1.80 GHz processor, 8 GB of RAM, and running
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Optimize the Dataset
Import Training Data by deleting Normalize Data values
and Validation Data columns/rows with to be positive values —>
value 100

Get Query Point

Calculate Euclidean
Distance using KNN
function between the 224
query point and
training Data

Select the minimum
distance to the query 3
point within the
training Data

Select the correlated Display the correlated
coordinate tothe coordinate to be an
minimum distance. estimated position.

Figure 3.4: Modelling Process Flow

Windows 10, 64-bit. The modelling programming procedure, which processes the
UlJlIndoorLoc dataset detailed in Section (comprising 19,861 training samples
and 1,111 validation samples), consists of four main steps as follows:

1. Import Training and Validation Datasets
2. Pre-process Dataset
3. Implement Algorithm

4. Output the results

These steps were converted to a process flow diagram as shown in Figure 3.4l The
flow diagram was then transformed into a model using MATLAB code, following the
same sequence outlined in Algorithm [I}

Algorithm 1 K-NN

Load fingerprint dataset

Load validation dataset

Remove columns and rows with values equal to 100 from both datasets

Normalise the data to absolute values

Plot 3D scatter plot of fingerprint dataset and validation dataset

for each query point in the validation dataset do
Find k nearest neighbours in the fingerprint data set using Euclidean distance
Compute the mean position of k closest neighbors as estimated position

end for

Plot query points and estimated positions on 3D scatter plot

Database Exploration
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Reference Points in the UJlindoorLoc Data

®  Building 1
® Building 2
Building 3

Floor
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£
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Longitude 7700 4.8647 Latitude

Figure 3.5: UJIIndoorLoc Training Datasets plotted in 3D for the three buildings

Figure displays the coordinates of the entire dataset in a 3D plot, showcasing
the layout across the three buildings. These coordinates, representing of RPs, are
further visualised in 2D in Figure [3.6] providing insight into the spatial distribution
and shape of the collected RPs. In particular, the arrangement of these RPs reflects
the architectural structure of Jaume I University (Universitat Jaume I), as illustrated
in Figure where the dataset was originally collected.

Figure highlights the distinctive characteristics of WAP fingerprinting at each
reference point, illustrating the unique vector of values associated with each RP. These
vectors serve as the basis for comparison against query points to compute the MD
estimation position. Moreover, Figure highlights the distinctive characteristics
of WAP fingerprinting at each reference point. For each WAP shown (e.g., WAP1,
WAP2), the y-axis depicts the processed positive RSSI value (representing signal
strength magnitude as detailed in Section recorded at different Reference Points
(RPs, shown along the x-axis). The collection of these RSSI values from all WAPs at a
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Figure 3.6: UJIIndoorLoc Training Datasets plotted in 2D for the three buildings
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Figure 3.7: Jaume I University campus on Google Map
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single RP forms its unique fingerprint vector, which serves as the basis for comparison
against query points to compute the MD estimation position.

Figure presents the signal distribution for both the dataset and the validation
dataset, providing a visual representation of the RSSI values. In particular, the
validation data set exhibits significantly fewer signal records compared to the original
data set. The distribution of the dataset also reveals certain impractical values, such
as those falling between 0 and -20, as well as values exceeding -100, indicative of very
poor signal strength.

Figure further elucidates additional features observed within both datasets,
particularly focusing on the pattern of attributes by:

1. Provides a more comprehensive view of the overall distribution patterns across
the entire dataset, while previous figures focused on specific aspects or subsets.

2. Tllustrates how the ground truth labels (Longitude, Latitude, Floor, BuildingID)
vary across the sequence of collected reference points. Understanding this label
distribution is important for assessing the coverage and balance of the dataset
used for training and validating the positioning algorithms.

3. Helps identify potential outliers, clusters, and density variations in the reference
data that impact positioning accuracy in different regions of the environment.

4. Supports the analysis of data quality and consistency between training and
validation sets, which is crucial for ensuring reliable algorithm performance.

Baseline Performance
We developed separate models for each attribute in the database to evaluate the
baseline performance. The baseline performance is presented in Table |3.6

Table 3.6: Baseline kNN Algorithm Results on UJI Datasets

Metrics BLD FLO Success LAT LON MAE
kNN 94.06 98.83 89.29 18.5163 25.2991 11.5182

3.8 Positioning Estimation

During the online positioning estimation stage, the algorithm estimates the position
of an unknown RF fingerprint. The algorithm takes the RF fingerprint sampled
at an unknown position as input and outputs the most probable position of the
unknown fingerprint. To achieve this, the algorithm treats position estimation as
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Figure 3.9: Distribution of Signal in Training Dataset and Validation Dataset

a classification problem. Each entry in the RMF represents a unique class of RF
fingerprint that describes a particular position. The algorithm’s objective is to classify
the unknown RF fingerprint into one of these predefined classes based on specific
optimisation criteria [157]. The choice of classifier and optimisation scheme depends
on the information represented by RF fingerprints [157].

The architecture of the fingerprint database is quite straightforward, with the
characteristic of the Reference Point based solely on the average Received Signal
Strengths from each Access Point. Various algorithms are available for estimating the
location of the MD. The fundamental technique among these is known as the Nearest
Neighbour (NN) [141].

3.9 Wi-Fi Fingerprinting Technique

The Wi-Fi fingerprinting technique in indoor positioning uses the RSSI values of Wi-
Fi APs to determine the position of a device. The process depicted in Figure [3.11
typically involves the following steps:

e Data collection: Collect Wi-Fi fingerprints from multiple positions in the
indoor environment. The fingerprints should include the RSSI values of the
APs and the corresponding position of the device that collects the data.
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Figure 3.11: Fingerprinting Process

Database creation: Create a Wi-Fi fingerprint database that contains the
RSSI values of APs along with their corresponding positions.

Fingerprint matching: When a device needs to determine its position, it scans
nearby APs and measures their RSSI values. These values are then compared
with the fingerprints in the database to find the best match.

Position estimation: The position of the device is estimated based on the
closest matching fingerprint.

After completing the offline phase of data collection, the online phase begins,
creating a model for indoor positioning, as depicted in Figure [3.12] The basic steps
of this process are as follows:

Feature selection: Select the most relevant features from the collected
fingerprints for use in the positioning algorithm. Common features include the
mean, median, and standard deviation of the RSSI values of the APs.

Algorithm selection: Select the appropriate positioning algorithm for the
task. Common algorithms include k-NN, support vector machines (SVMs), and
neural networks.

Model training: Train the positioning algorithm with the collected finger-
prints and selected features.

Model evaluation: Evaluate the performance of the positioning algorithm
using metrics such as accuracy, precision, and recall.

Model optimisation: Optimise the algorithm by fine-tuning the parameters,
selecting different features, or using alternative algorithms.

After the model is optimised, it can be deployed to estimate the position of devices
based on their RSSI measurements in real-time.
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3.10 Wi-Fi Fingerprinting Accuracy

Under optimal conditions, certain Wi-Fi fingerprinting systems may achieve an
average accuracy level of around 2-5 metres, and most Wi-Fi fingerprinting systems
can accomplish this level of accuracy or better [187]. Wi-Fi fingerprinting has been
proven to be highly accurate in indoor environments, achieving a point accuracy
of 2 metres and a room accuracy of 98% [164]. However, accuracy may be
affected by human behaviour and the distribution of RSSI. Studies have shown Wi-
Fi fingerprinting accuracy between 2.0 and 2.5 metres [188]. When dealing with
incomplete fingerprint databases, interpolation and extrapolation can be used to
improve positioning accuracy. However, the best performance depends on more than
just the average interpolation accuracy [189]. Large Wi-Fi fingerprinting positioning
errors can be reduced by identifying and avoiding poor estimations. Hybrid methods
that combine multiple technologies can be employed [123]. By incorporating weighted
fusion and error-handling techniques during data acquisition, algorithms for Wi-Fi
indoor positioning have shown greater accuracy and precision [190|. The accuracy of
Wi-Fi fingerprinting can be reduced by the orientation of the devices during signal
measurements. However, constructing RMF's considering various angular directions
has been found to improve positioning accuracy [191].

Indoor positioning systems based on Wi-Fi fingerprinting exhibit varying degrees
of precision but can achieve high accuracy under specific conditions. Implementing
techniques such as frequency hopping, optimised fingerprint collection, and advanced
algorithms can enhance accuracy through weighted fusion. Additionally, considering
device orientation and using interpolation to fill gaps in the database can further
enhance the performance of these systems. Even with obstacles, Wi-Fi fingerprinting
remains a promising solution for indoor positioning, particularly when practicality is
vital.
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3.11 Deterministic Positioning Algorithms

Deterministic positioning algorithms in Wi-Fi fingerprinting aim to determine the
position of a target device based on the similarity between the observed RSSI
fingerprints and the fingerprints stored in the database. Several common algorithms
are used for this purpose.

3.11.1 Nearest Neighbour (NN) Algorithms

1. Nearest neighbour (NN): The Nearest Neighbour algorithm estimates the
position of the target device by identifying the reference position in the database
with the most similar RSSI fingerprint to the observed RSSI measurements.
Mathematically, the estimated position (Z,7) is determined as:

M
(Z,9) = arg min Z(RSS[Z-]- — )2, (3.11)
(isys) =
where (z;,y;) represents the coordinates of the i'" reference position in the
database, RSSI; is the stored RSSI value from the j AP for the i*" reference
position, and z; is the currently observed RSSI value from the ;% AP by the
target device. The summation is performed over all M Access Points that
constitute the fingerprint vector. This equation identifies the reference position
(x;,y;) whose fingerprint vector is closest (in Euclidean distance) to the observed
RSSI vector z.

2. K-Nearest neighbours (k-NN):

The K-Nearest-Neighbours algorithm extends the NN algorithm by considering
the RSSI fingerprints of several reference positions. Calculates the position
of the target device by averaging the coordinates of the K reference positions
with the most similar RSSI fingerprints. Mathematically, the estimated position
(Z,7) is determined as:

K

(@,9) = ?Z(%,yz), (3.12)

where (x;,1;) are the coordinates of the i*" reference position selected from the
K nearest neighbours.

3. Weighted K-Nearest neighbours (Wk-NN):
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The Wk-NN algorithm applies weights to the reference positions based on
the similarity of their RSSI fingerprints to the observed RSSI measurements.
Calculates the position of the target device by computing a weighted average
of the coordinates of the K reference positions. Mathematically, the estimated
position (Z,y) is determined as:

(3.13)

where w; represents the weight assigned to the i reference position. The
weights w; are typically selected to be inversely proportional to the distance
between the observed fingerprint and the reference fingerprint, giving higher
importance to closer reference points. A common approach is to calculate w;
as:

w; = — (3.14)

where d; is the Euclidean distance between the target fingerprint and the
reference fingerprint, and p is a power parameter (typically set to 1 or 2) that
controls the influence of distance on the weighting. When p = 1, the weights
are inversely proportional to distance, and when p = 2, they are inversely
proportional to the squared distance.

An alternative approach is to use Gaussian kernel weights:

2
d;

w; = e 207 (3.15)

where o is a parameter that controls the width of the Gaussian kernel.

The choice of weighting scheme significantly impacts the performance of the Wk-
NN algorithm, with optimal values for p or o often determined empirically based
on the specific characteristics of the indoor environment and the distribution of
reference points.

These deterministic positioning algorithms provide a straightforward approach to
estimating the position of a target device based on the similarity of RSSI fingerprints.
They are widely used in indoor Wi-Fi fingerprinting positioning systems because of
their simplicity and effectiveness.

NN algorithms are among the most widely used techniques for indoor positioning.
They rely on the principle that a device’s position can be estimated by identifying
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the closest known RPs and considering their relative positions. This approach is
particularly effective in indoor environments where obstructions make GPS signals
unavailable or unreliable.

3.11.2 Working Principle of NN Algorithms

NN algorithms are a class of deterministic positioning algorithms commonly used in
Wi-Fi fingerprinting for indoor positioning. The working principle of NN algorithms
is straightforward and intuitive.

1. Database Construction:

The first step in using NN algorithms is to construct a database of RSSI
fingerprints. This database contains RSSI measurements from multiple reference
positions within the indoor environment. Each entry in the database contains
RSSI measurements from all available APs at a specific reference position.

2. Observation:

When a target device needs to be localised, it takes measurements of the RSSI
from nearby APs in its vicinity. These observed RSSI measurements serve as
input to the NN algorithm for estimating the device’s position.

3. Nearest neighbour Search:

The NN algorithm identifies the reference position in the database with the
RSSI fingerprint most similar to the RSSI measurements observed by the target
device. This is typically done by calculating the distance function, such as
Euclidean distance, between the observed RSSI measurements and the RSSI
fingerprints stored in the database.

4. Position Estimation:

Once the nearest-neighbour reference position is identified, the NN algorithm
estimates the position of the target device as the coordinates of this reference
position. In other words, the estimated position of the target device is assumed
to be the same as the known position of the reference point with the most similar
RSSI fingerprint.

The inherent simplicity and implementation efficiency of NN algorithms constitute
a principal advantage, rendering them highly suitable for real-time applications
within the domain of indoor positioning. These algorithms exhibit a robustness to
noise present in RSSI measurements, thereby reducing susceptibility to variations
in signal strength. Nevertheless, NN algorithms may encounter inaccuracies when
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the captured RSSI measurements do not precisely correspond to any fingerprints
within the database or amidst significant environmental changes. The precision of
NN algorithms is contingent upon the quality of the RMF, necessitating meticulous
data collection and preprocessing. Consequently, NN algorithms may face challenges
related to scalability when applied to extensive databases.

3.11.3 Addressing Scalability Issues in NN Algorithms

Scalability issues with large databases in NN algorithms can be mitigated through
several approaches:

1. Dimensionality Reduction: High-dimensional feature spaces can increase
computational complexity and memory requirements in k-NN algorithms.
Dimensionality reduction techniques, such as Principal Component Analysis
(PCA) or feature selection methods, can help reduce the number of features
while preserving the most relevant information. These techniques can improve
the scalability of k-NN algorithms by reducing the computational burden.

2. Approximate Nearest Neighbour Search: Traditional k-NN algorithms
perform an exhaustive search over the entire database to find the nearest
neighbours for a given query, which can be computationally expensive for large
databases. Approximate nearest-neighbour search algorithms, such as locality-
sensitive hashing (LSH) or tree-based methods (e.g., KD-trees), offer more
efficient methods to search for nearest neighbours in high-dimensional spaces.
These methods provide approximate solutions at a lower computational cost,
making the k-NN algorithms more scalable.

3. Data Partitioning and Indexing: Dividing the database into smaller
partitions or utilising indexing structures can help accelerate the search process
in k-NN algorithms. Techniques like spatial indexing (e.g., R-tree, Quadtree)
or hash-based indexing can organise the database into hierarchical structures,
enabling faster retrieval of nearest neighbours. By partitioning and indexing
the data effectively, k-NN algorithms can achieve better scalability with large
databases.

4. Parallel and Distributed Computing: Leveraging parallel and distributed
computing frameworks can distribute the computational workload across multi-
ple processors or nodes, enabling faster processing of k-NN queries. Techniques
like MapReduce or Spark can be used to parallelise the k-NN search process and
scale it to large datasets. By harnessing the power of parallel and distributed
computing, k-NN algorithms can handle large databases more efficiently.
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By employing these strategies, scalability issues with large databases in k-NN
algorithms can be mitigated, allowing for efficient and effective indoor positioning in
Wi-Fi fingerprinting systems even with large datasets.

3.11.4 Distance Function

The choice of distance metric significantly influences the outcome of NN-based
algorithms. In this work, we investigate multiple distance functions—including
FEuclidean, Manhattan, and Minkowski distances—to evaluate their impact on
algorithm sensitivity to spatial variations in indoor Wi-Fi signal propagation.
Building on prior studies [186], [192], we assess the performance of common
distance metrics, including Cityblock, Fuclidean, Minkowski, Cosine, and Correlation,
across several dataset configurations. Notably, Cityblock, Euclidean, and Minkowski
distances belong to the Minkowski family, where the general form is given by:

M ’
Dy(p,q) = (Z pj — qj\p> , VpeNT, (3.16)
j=1

where p, g € R? are two signal strength vectors representing locations in the indoor
environment. The parameter p determines the type of distance metric: when p =1,
the metric reduces to the Cityblock (Manhattan) distance; for p = 2, it becomes
the standard FEuclidean distance. Values p = 3,4,5 yield higher-order Minkowski
distances.

Cosine Distance. This metric belongs to the inner product family and is based
on the angular similarity between vectors. It is particularly useful when comparing
patterns of signal strength rather than their absolute values. Given two vectors p,q €
RM where p-q =YV PQ, is the dot product of the vectors, and ||p|| and |/g| are
their Euclidean norms. M is the number of WiFi features (e.g., APs) considered in
the environment. The cosine distance is then derived as:

S

This formulation measures the cosine of the angle between the two vectors. A
value of 0 indicates identical directions (maximum similarity), while a value of 1
corresponds to orthogonal vectors (no similarity). In indoor positioning, cosine
distance is advantageous because it captures the relative pattern of RSSI values rather
than their magnitude, which may vary due to device or environmental differences.

cos(p,q) =1— (3.17)
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Correlation Distance. This metric evaluates the linear correlation between
two vectors by incorporating mean normalisation. It is derived from the Pearson
correlation coefficient, rescaled to fall within the range [0,1]. Given vectors p,q € RM,
the correlation distance is computed as:

vl > 5m(pia) — Mpq
2\ LM S ¢ - Mg

where p and ¢ are the means of vectors p and q, respectively. The numerator
represents the covariance between the vectors, and the denominator is the product of
their standard deviations.

This metric is robust against linear shifts in signal strength, focusing on the degree
to which the vectors change together. A correlation distance of 0 implies perfect
positive correlation, while a value near 1 indicates a lack of correlation or inverse
trends.

dcor?“(p> Q) = ) (318>

3.12 Challenges in Wi-Fi Fingerprinting

The challenges inherent in Wi-Fi fingerprinting are multifaceted and have conse-
quently attracted considerable scholarly attention. A primary challenge lies in
the variability of RSSI measurements, which significantly undermines the accuracy
and reliability of Wi-Fi fingerprinting systems [27]. This variability emanates from
fluctuations within the radio signal environment, resulting in discrepancies between
online and offline RSSI measurements [27].

Moreover, the deployment of Wi-Fi fingerprinting systems in real-world environ-
ments introduces further challenges, including the installation of infrastructure, cali-
bration procedures, and the complexity of modelling building floor plans [193]. These
obstacles can hinder the seamless operation and accuracy of Wi-Fi fingerprinting
systems in practical applications. Additionally, Wi-Fi fingerprinting’s dependence
on the correlation between online and offline RSSI measurements exacerbates the
difficulties encountered [27]. The necessity for continuous updates and maintenance
of Radio Map Files (RMFSs) to ensure optimal performance adds another layer of
complexity to these systems |193].

Furthermore, the development of highly accurate fingerprinting-only solutions
remains challenging, underscoring the need for further advancements in algorithmic
development and system optimisation [194]. Wi-Fi fingerprinting faces numerous
challenges that impact the system’s accuracy and reliability. A critical issue is the
selection of an appropriate distance metric for similarity estimation. Previous studies
predominantly relied on Euclidean distance with raw, unprocessed data, without
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thoroughly exploring optimal distance functions or data representation methods [186].
This lack of comprehensive analysis can lead to suboptimal performance in Wi-Fi
fingerprinting systems. Additionally, the presence of noise and missing signals in
RSSI measurements poses a significant challenge. Traditional distance metrics such as
Euclidean distance may not be the most suitable measures of similarity due to these
factors [195]. Furthermore, the calculation of distances using conventional norms
like Manhattan, Euclidean, or Mahalanobis norms can be affected by inherent RSSI
variability, further complicating the accuracy of these systems [71], [196].

Additionally, the maintenance and updating of RMFs pose practical challenges.
The continual requirement for RMF updates to accommodate environmental changes
and ensure system accuracy introduces complexity in the deployment and operation
of Wi-Fi fingerprinting-based indoor positioning systems. The nonlinear relationship
between RSSI and physical distance can cause positioning errors when using tradi-
tional metrics such as Euclidean or Manhattan distances [130]. Device heterogeneity
in Wi-Fi fingerprinting constitutes another major drawback, presenting a significant
challenge.

The diversity of devices used for signal collection can result in variations in
RSSI measurements, affecting the accuracy and consistency of the fingerprinting
process. As discussed in [108], they address the challenges of calibrating heterogeneous
devices for signal collection, emphasising the importance of standardising RSSI
measurements for accurate positioning. Moreover, the presence of various devices
can cause inconsistencies in signal interpretation and processing. In [197], highlight
the vulnerability of Wi-Fi fingerprinting systems to over-the-air adversarial attacks,
underscoring the potential security breaches that malicious devices can exploit.

The use of different devices with varying capabilities and vulnerabilities can
undermine the overall integrity and reliability of Wi-Fi fingerprint-based indoor
positioning systems. In [165], explore the impact of device heterogeneity on
the performance of Wi-Fi fingerprinting algorithms.  Their research compares
various methods, including Nearest-Neighbour algorithms, Gaussian kernels, Bayesian
models, neural networks, and deep learning, to mitigate the challenges posed by device
heterogeneity. Adapting algorithms to accommodate the diverse characteristics of
devices used for signal collection is essential for achieving accurate and reliable indoor
positioning. These challenges can be summarised as follows:

1. Localisation Accuracy: Achieving high levels of localisation accuracy in
Wi-Fi fingerprinting systems remains challenging, especially in complex indoor
environments with multipath propagation and signal attenuation. Enhancing
the robustness and reliability of localisation algorithms is essential for real-world
deployment.

2. Scalability: Managing large-scale fingerprint databases can be particularly
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challenging, especially in environments with a high density of APs and reference
positions.  Scalability issues arise in database construction, storage, and
retrieval, impacting the efficiency and performance of Wi-Fi fingerprinting
systems.

3. Device Heterogeneity: Device heterogeneity presents a complex challenge in
Wi-Fi fingerprinting systems. The use of multiple types of devices with different
hardware and software configurations can further complicate the system’s
calibration and performance metrics. In this case, employing a multi-device
calibration process and algorithms designed to adapt to different device types
can enhance the overall performance and accuracy of the system.

4. Variability in RSSI Measurements: RSSI measurements can vary due to
factors such as obstructions, multipath interference, and environmental changes.
These variations can impact the accuracy of fingerprinting-based positioning
systems, leading to localisation errors.

5. Dynamic Environments: The characteristics of the Wi-Fi signal can change
over time due to factors such as device mobility, user activity, and RF
interference. Dynamic environments introduce challenges for maintaining the
accuracy of fingerprint databases and require adaptive algorithms to cope with
changes.

Addressing these challenges requires interdisciplinary research efforts that involve
signal processing, machine learning, networking, and privacy considerations. By
overcoming these challenges, Wi-Fi fingerprinting can continue to evolve as a reliable
and accurate indoor positioning technology. In this research, we address the three
challenges of localisation accuracy, scalability, and device heterogeneity.

3.13 Selected Approaches for This Research

Based on the comprehensive review of Wi-Fi fingerprinting techniques presented in
this chapter, this research adopts specific approaches for the positioning algorithms
and system design presented in subsequent chapters. The selection of these methods is
informed by the analysis of their strengths, limitations, and suitability for addressing
the key challenges identified in Section [3.12]

For positioning estimation, this research primarily builds upon the k-Nearest
Neighbours (k-NN) algorithm described in Section due to its demonstrated
balance between accuracy and computational efficiency. Specifically, we adopt the
weighted k-NN variant (equation as our baseline algorithm, which we extend
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and enhance in Chapter 4| with novel optimisations to improve both accuracy and
scalability.

To address the challenge of radio map complexity, this research adopts selec-
tive optimisation strategies, with a particular focus on enhancing accuracy and
mitigating device and environmental heterogeneity. Chapter [5| introduces a novel
radio map optimisation technique that builds on these foundations, incorporating
additional enhancements to improve scalability. Chapter [6] presents a cloud-based
indoor positioning system (CB-IPS) framework, developed using MATLAB and the
UlJIIndoorLoc dataset, designed to enhance the scalability, efficiency, and accuracy
of Wi-Fi fingerprinting-based IPS. By integrating cloud and edge computing, the
proposed framework optimises computational resource usage and introduces a caching
mechanism to reduce execution times, thereby further improving the system’s
scalability and responsiveness.

For evaluation metrics, we primarily utilise the hitting rate (equations and
RMSE (equation as defined in Section which allow for a comprehensive
assessment of both classification accuracy and positioning precision. These metrics
form the basis for the experimental evaluation presented in Chapters [, and [6

The subsequent chapters present our novel contributions that extend these
foundational approaches to address the identified challenges of localisation accuracy,
scalability, and device heterogeneity in Wi-Fi fingerprinting systems.

3.14 Summary and Conclusion

3.14.1 Summary

This chapter has provided a detailed examination of the RSSI-based Wi-Fi fin-
gerprinting method for indoor positioning. A key contribution of this chapter
was the establishment of a unified System Model, Notation, and Evaluation
Framework (Section , which defines the general fingerprinting system concept,
standardises mathematical notations, and outlines the performance evaluation metrics
(such as Hitting Rate, MAE, and RMSE) that will be consistently applied throughout
the subsequent chapters of this thesis.

Beyond this foundational framework, the chapter delineated the integral com-
ponents of the Wi-Fi fingerprinting process itself, including radio map (RMF)
construction from RSSI measurements and the principles of positioning algorithms.
It underscored a deterministic methodology, chosen for its balance of simplicity and
design efficiency. While acknowledging that Wi-Fi fingerprinting can achieve an
average positioning accuracy in the range of 2-5 metres, the chapter also highlighted
inherent challenges such as signal shadowing effects and environmental dynamics that
can impact efficacy.
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Furthermore, this chapter explored various deterministic positioning algorithms,
with a primary focus on Nearest Neighbour (NN) techniques and their variants, while
also briefly acknowledging alternative approaches to enhance accuracy. Despite its
advantages, Wi-Fi fingerprinting faces limitations, notably the need for potentially
intensive initial measurements and periodic updates to the RMF due to environmental
changes.

The chapter concluded by accentuating the imperative to address ongoing
challenges such as optimal distance metric selection, mitigation of noise in RSSI
measurements, robust RMF maintenance strategies, and managing device hetero-
geneity, all of which are crucial for bolstering the reliability and accuracy of Wi-
Fi fingerprinting systems in diverse indoor positioning contexts. It underscored the
necessity for continued research to refine these methods, aiming for advancements
that promote exceptional accuracy and dependability in real-world indoor localisation
systems.

3.14.2 Conclusion

Indoor Wi-Fi fingerprinting, as detailed in this chapter, represents a promising and
widely adopted technology for enhancing the accuracy and reliability of Indoor
Positioning Systems (IPSs). This chapter has not only explored the operational
principles and inherent challenges of this technique but has also established a crucial
methodological foundation for this thesis by introducing a unified system model,
consistent mathematical notation, and a standard set of evaluation metrics. This
framework is essential for the rigorous development and assessment of the algorithmic
and architectural contributions presented in subsequent chapters.

The chapter emphasised the application of Wi-Fi fingerprinting within indoor
localisation contexts, accentuating the ongoing significance of addressing challenges
related to distance metric selection, RSSI noise, RMF lifecycle management, and
device heterogeneity to improve overall system reliability and accuracy. Moreover,
the discussion highlighted the potential of leveraging machine learning algorithms
and systematic design approaches to tackle these pressing issues, paving the way for
more robust and efficient indoor positioning solutions.
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Positioning Estimation Algorithm

The chapter provides an overview of the Positioning Estimation Algorithm utilised
within the Wi-Fi Fingerprinting technique. It begins with an introduction to the
methodology of the research and introduces the UJIIndorLoc database of RSSI signals
used for indoor positioning. Subsequently, it explores an examination of the k-NN
algorithm employed as the baseline algorithm for comparison purposes, and finally,
tuned k-NN and Wk-NN algorithms are examined and discussed.

4.1 Introduction

Wi-Fi fingerprinting is a prominent technique for indoor positioning, primarily due to
its reliance on existing wireless infrastructure and the widespread availability of Wi-Fi
enabled devices. As discussed in Chapter [3| deterministic algorithms, particularly the
k-Nearest Neighbour (k-NN) algorithm and its variants, offer a balance of simplicity
and effectiveness for position estimation. However, their performance is highly
sensitive to parameter choices and the specific characteristics of the operational
environment and dataset.

This chapter focuses on significantly enhancing the accuracy and reliability of
Wi-Fi fingerprinting-based indoor positioning by systematically optimising existing
k-NN and Weighted k-NN (Wk-NN) algorithms. The UJIIndoorLoc dataset [15], a
comprehensive multi-building, multi-floor benchmark, serves as the empirical basis
for this investigation.

The primary contributions of this chapter are:

e A rigorous empirical analysis of crucial k-NN/Wk-NN hyperparameters, includ-
ing the number of neighbours (k), various distance metrics (e.g., Euclidean,
Manhattan, Cosine, Correlation), and different RSSI data representation
schemes (positive, exponential, powered).
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e A detailed investigation into the impact of dataset configurations, such as
evaluating performance on the complete dataset versus individual building
subsets, to understand algorithm scalability and sensitivity.

e The systematic application of distance weighting schemes within the Wk-NN
framework to improve position estimation by giving more influence to closer or
more reliable neighbours.

e The development of an optimally tuned Wk-NN configuration, informed by these
analyses, which demonstrates substantial improvements in positioning accuracy
(Mean Absolute Error) and classification success (Building and Floor Hitting
Rate) compared to baseline k-NN implementations and a range of existing
studies utilising the UJIIndoorLoc dataset.

The chapter begins by briefly introducing the UJIIndoorLoc dataset (Section
and the baseline k-NN algorithm (Section . It then details the methodologies for
enhancing these algorithms (Section and presents a comprehensive experimental
evaluation of the optimised approaches, including a comparative analysis with state-
of-the-art results (Section . The findings provide valuable insights into achieving
optimal performance from k-NN based fingerprinting systems.

4.2 Dataset Overview

Various studies in the literature consistently utilise the UJIIndoorLoc database for
indoor positioning, highlighting its widespread adoption and significance in specifying
the input and output structures of proposed models. Researchers have designed and
validated their algorithms against this publicly available database, establishing it as
a benchmark for indoor positioning systems.

Table provides a summary of related work, showing the various configurations
of the UJIIndoorLoc database used in different studies. Notably, |15], [186], who
initiated the UJI datasets, highlight the effectiveness of the k-NN algorithm, with
varying parameters yielding different success rates and errors. Subsequent work
explores different algorithms and configurations, demonstrating the versatility of
machine learning techniques on UJI datasets to solve indoor localisation problems.
Therefore, Table [4.1| not only summarises previous findings but also establishes key
performance benchmarks from the literature that will be used in Section to
evaluate the advancements offered by the optimised algorithms developed in this
chapter.

However, it is worth mentioning that not all the studies mentioned here use the
same dataset configurations and methods, which may affect comparisons of their
findings with others. For example, [198] used the test data sets that were provided
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Table 4.1: Comparison of UJI Dataset Results

Reference Success (%) Error (m)
BLD FLO Mean

Torres-Sospedra et al. (2014) [15] - - 89.92 7.90
Torres-Sospedra et al. (2015) |186] - - 95.2 6.19
RTLSQUM: Moreira et al. (2015) [198] 100 93.74 - 6.20
Nowicki & Wietrzykowski (2017) [199] . - 92 ;
Tbrahim et al. (2018) [200] 100 100 ; 2.77
Hybloc: Akram et al. (2018) [201] - - 85 6.29
Gan et al. (2019) [202] 100 95.41 - 6.40
CNNLoc: Song et al. (2019) [22] 100 96.03 - 11.78
Liu et al. (2021) [203] 99.64 91.18 - 8.39
CCpos: Qin et al. (2021) [204] 99.6  95.3 - 124
Cao et al. (2021) |205] - 99.54 - 3.46
Elesawi et al. (2021) [206] 100 9523 - 8.62
DeepLocBox: Laska & Blankenbach (2021) [207] 99.64 92.62 - 9.07
Tang et al. (2022) [208] 100  94.20 - 8.42
EA-CNN: Alitaleshi et al. (2023) [209)] - 9631 - 8.34

as part of the UJI data sets during the EVAAL competition [210]. While the
results obtained from [200], the datasets were manipulated to obtain RSSI time-
series readings, and then the new dataset was split. In [201], a new generated
attribute named Room ID consists of Building ID, Floor ID, and Space 1D, was used.
Furthermore, [208] splits the validation dataset into a new validation and test set.
Therefore, in the absence of a standardised evaluation framework, direct comparison
of results among these studies remains methodologically unreliable.

4.3 Baseline k-NN Algorithm

As outlined by [186], K-NN operates as a distance-based classifier, wherein a current
sample is compared to all labelled samples stored within a database. This requires
the establishment of a comprehensive database, commonly referred to as a training
set, where all samples are appropriately labelled.

The parameter ‘k’ in k-NN represents the number of nearest neighbours considered
when estimating the position of a query point. In the context of indoor positioning,
these samples typically consist of Wi-Fi fingerprints, represented as vectors containing
WAP intensities, while the labels correspond to numerical values associated with real-
world coordinates such as longitude, latitude, altitude/floor, and building data.

The selection of an appropriate value for ‘k’ is critical to the performance of the
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algorithm. A small value of k (such as k=1) may lead to overfitting and vulnerability
to noise in the training data, while a large value may result in oversmoothing and
loss of local patterns in the signal space. As will be demonstrated in Section [4.4.1]
the optimal value of k depends on various factors, including dataset characteristics,
signal representation, and distance metrics employed.

The k-NN algorithm, with parameters such as k = 1 and the Manhattan distance
metric known as City Block, is often chosen as a baseline for comparison due to its
simplicity and effectiveness|185].

The k-NN algorithm operates by evaluating the distance between a query point
or position and all stored fingerprints within the training set. Subsequently, the
algorithm assigns the query position to the position, comprising the longitude,
latitude, and altitude of the training fingerprint that demonstrates the shortest
distance or the highest similarity, employing Equation [3.12]

4.3.1 Performance Evaluation

The performance of the k-NN algorithm and its variants is assessed using the standard
metrics defined in Section For classification tasks such as building and floor
identification, the Hitting Rate (HR, Equation is reported. For the regression
task of estimating 2D coordinates (Longitude and Latitude), the Mean Absolute
Error (MAE, Equation and Root Mean Squared Error (RMSE, Equation
are primary indicators, calculated from individual positioning errors (Equation .

4.4 Enhancement Methodology

This section outlines our methodology for enhancing the performance of the k-NN and
WKk-NN algorithms in the context of indoor positioning using Wi-Fi fingerprinting.
Rather than proposing a novel algorithm, our contribution lies in the systematic
tuning of existing algorithmic parameters—specifically the k-value and distance
weighting schemes—and evaluating their impact on positioning accuracy using the
UlJlIndoorLoc dataset. This approach ensures a reproducible and data-driven
enhancement of the baseline algorithms.

The machine learning approach utilised here is based on an enhanced k-Nearest
Neighbours (k-NN) algorithm, incorporating systematic parameter optimisation.
This approach belongs to the category of instance-based learning (or memory-based
learning), as opposed to model-based methods.

Specifically, our approach:

e Extends the basic k-NNN algorithm: It builds upon the traditional k-NN
method, which estimates locations based on the k£ most similar fingerprints in
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the training database.

e Incorporates weighted averaging (Wk-NN): Rather than assigning equal
influence to all & neighbours, we apply weights according to their similarity to
the query point, giving more prominence to closer neighbours.

e Optimizes multiple parameters, including:

— The number of neighbours (k)
— The weight function parameter (w)

— The choice of distance metric (e.g., Euclidean, Manhattan, Cosine)

Although the core methodology remains grounded in instance-based k-NN, these
enhancements yield a significantly more sophisticated and effective localisation
framework. The principal innovation lies in the empirical optimisation of parameters
and the strategic selection of distance metrics, validated through experiments
conducted on the UJIIndoorLoc database.

In contrast to model-based techniques, such as neural networks or support vector
machines, which construct explicit predictive models during training, our enhanced
k-NN approach retains the training data and performs computations at the prediction
stage. This design offers advantages in terms of interpretability, adaptability to newly
acquired data, and improved handling of non-linear spatial relationships characteristic
of indoor positioning environments.

In our endeavour to optimise k-NN and Wk-NN algorithms for Wi-Fi fingerprinting
in indoor positioning, significant emphasis is placed on calibrating their parameters.
Through the exploration of various tuning techniques, we strive to improve the
accuracy and efficiency of these algorithms, thereby advancing Wi-Fi fingerprinting
technology for indoor positioning.

The outlined procedure describes the key components of our methodology:

4.4.1 Tuning the k-value for k-NN & Wk-NN

In k-NN and Wk-NN, the parameter k denotes the number of samples from the
fingerprint dataset. Setting a low k-value, such as 1, may be insufficient, as it relies
on only a single sample to estimate the final position. In contrast, a high k-value can
degrade the model performance. Previous studies have often employed a fixed k-value
across all models evaluated. However, our observations indicate that the optimal k-
value may vary for each class or model, rather than being universally applicable across
algorithms.

85



Chapter 4. Positioning Estimation Algorithm 4.4. Enhancement Methodology

Therefore, we adopt an approach where we test different k-values ranging from
1 to 25. For each experimental configuration, we generate a model using various k-
values and evaluate its performance. This iterative process allows us to determine
the most effective k-value for each specific model, refining the overall accuracy of the
algorithms.

4.4.2 Dataset Size and Configuration Analysis

The size of the dataset emerges as a crucial factor influencing the generalisability of
matching algorithms. To elucidate the impact of database size on the performance
of k-NN and Wk-NN algorithms, we conduct comprehensive experiments with varied
configurations, ranging from subsets of the UJIIndoorLoc dataset to its entirety. This
investigation aims to assess the scalability of the algorithms concerning the volume
of available training data.

The UJlIndoorLoc database includes data from three buildings, namely BLDO,
BLD1, and BLD2, each featuring multiple floors. Specifically, BLD0O and BLD1 have
four floors, while BLD2 has five floors. Our exploration entails experimentation with
diverse configurations, including both individual buildings and the complete dataset.

The datasets are represented as fixed-size vectors, where each index corresponds
to 520 WAPs deployed across the three buildings at Jaume I University, Spain. These
vectors encapsulate the original RSSI intensity values, ranging from 0 (indicating the
highest signal) to -104 (representing the lowest signal) in decibels-milliwatts (dBm),
with a default value of 100 dBm assigned for undetected WAPs [15].

In configuring the dataset, we examine both the complete dataset and each
building separately to evaluate the performance of the algorithms under varying data
sizes and compositions.

4.4.3 Incorporating Distance Weighting Schemes

In the k-NN algorithm, the distance weight (w) is uniform across all neighbours
considered. Conversely, in Wk-NN, two distinct distance weighting schemes are
employed: inverse distance and squared inverse distance, which are commonly used to
formulate the Weighted k-NN variant. While k-NN treats all neighbours with equal
importance, Wk-NN introduces a weighting mechanism that assigns varying degrees
of importance to neighbouring points based on their proximity in signal space.

Our investigation explores the impact of distance weighting within the k-NN
algorithm by examining different weight functions and configurations. This process
is crucial to understanding how such weighting improves the adaptability of the
algorithm to fluctuations in signal strengths and enhances the precision of position
estimation.  These investigations are conducted using the optimal parameters
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identified in prior stages, ensuring a systematic and rigorous evaluation of algorithmic
performance.

In the following equations, let p € R™ denote the fingerprint vector of the target
sample (i.e., the point being localised), and ¢ € R™ denote the fingerprint vector
of one of its k nearest neighbours, where m is the number of signal features. The
Euclidean distance d between p and q is computed as:

d=|p—ql2= (4.1)

where p; and g; are the j-th signal strength values of vectors p and gq, respectively.
The two weighting schemes are then defined as follows:

1
winverse<p7 q) = C_l’ (42)

(4.3)

Wsquared inverse (p ) q) =

d?’

where Winverse aNd Wsquared inverse represent the weights assigned to neighbour g
based on its distance from the target point p. These schemes ensure that closer
neighbours contribute more significantly to the final estimated location than those
further away:.

The overall procedure for parameter tuning and algorithmic enhancement, as
detailed throughout this Section, is summarised in the pseudo-code presented in
Algorithm [2] which outlines the systematic exploration of k-values, distance weighting
schemes, and dataset configurations. This structured approach ensures reproducibility
and clarity in evaluating the impact of each optimisation step.

Integrating these methodological components provides a holistic understanding
of the factors affecting the performance of k-NN and Wk-NN algorithms in Wi-Fi
fingerprint-based indoor positioning. In the following sections, we will present the
experimental results and engage in an in-depth discussion regarding the implications
of our findings on the optimisation of these algorithms for real-world applications.
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Algorithm 2 Parameter Tuning and Enhancement for k-NN and Wk-NN Algorithms

1: Input: UJlIndoorLoc dataset, k-values range K = {1,2,...,25}, distance weight
types W = {None, Inverse, Squared Inverse}
2: Output: Optimised model accuracy and parameter configuration

3: for each building or dataset configuration do

4 Extract training and testing sets

5 for each algorithm in {k-NN, Wk-NN} do

6: for each k € K do

7 for each weight function w € W applicable to algorithm do

8 Train model with parameters (k,w)

9 Evaluate model on test set

10: Record accuracy and parameter setting

11: end for

12: end for

13: end for

14: end for

15: return Best-performing model configuration(s) and corresponding evaluation
metrics

4.5 Experiment and Results

The modelling and testing procedures were carried out using the same simulation
setup in Section [3.7 The modelling applies the k-NN and Wk-NN algorithms to each
model for each configuration. While Section established baseline performance
using the standard k-NN approach with default parameters, this section presents the
results after implementing the parameter optimisation and algorithm enhancements
described in Section [4.4 This structured presentation allows for a clear before-
and-after comparison that highlights the specific contributions of our algorithmic
improvements.

Following this procedure, rigorous tests were conducted to evaluate the perfor-
mance of the k-NN and Wk-NN algorithms on the UJIIndoorLoc dataset.

Table presents a comparative performance evaluation of different distance
metrics used in the k-NN algorithm for indoor positioning on the complete UJI
Datasets. The table contains the following key information: Distance Metrics,
Data Representation, and Performance Metrics (Location Success and Error). This
comprehensive comparison provides the empirical foundation for selecting the most
appropriate distance metric in our enhanced positioning algorithm, balancing the
trade-offs between accuracy and floor/building detection reliability.
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4.5.1 K-Value on Complete Dataset

The performance results presented in Table |4.2]and Figure demonstrate significant
improvements over the previous findings. In particular, the use of the correlation
distance with exponential representation achieved a remarkable success rate of
98.15%. Moreover, the use of the same distance metric, combined with exponential
representation on the complete dataset, resulted in a notable reduction in the
MAE, which was 7.64 metres. These results highlight a substantial performance
improvement compared to previously reported findings presented in Table [4.1]

4.5.2 K-Values on Individual Building

Analysis of the findings presented in Table reveals variations in MAEs among
different buildings.  This discrepancy prompted an examination of the signal
distributions within each building, as shown in Figure [{.2 Specifically, BLD1 has
fewer RPs than the other buildings, whereas BLD2 has a higher count of RPs and an
associated error range of 9 metres. In contrast, BLDO exhibits a lower MAE range of
5 metres. Further investigation revealed that only two mobile devices were used to
survey BLDO0, whereas a diverse array of devices was employed for the other buildings.
The variability in device usage may contribute to the observed differences in MAEs.
An overview of the optimal results is summarised in Table

4.5.3 Weighted k-Nearest Neighbours (Wk-NN)

The transition from k-NN to Wk-NN involves incorporating distance weights (w). In
this iteration, we use only the correlation distance and exponential data representa-
tion, as this combination demonstrated superior performance in previous experiments.
The evaluation includes testing each distance weight, such as inverse and squared
inverse, on the complete dataset and individual building configurations. Additionally,
recalibration of the k-value was necessary due to the observed improvements following
the application of distance weights. Consequently, we have increased the k-value from
24 to 50 and documented the optimal results where k > 1 in Table[d.5] Specifically, the
most favourable outcome achieves a MAE of 7.39 metres, surpassing the performance
of the k-NN algorithm.

4.5.4 Comparison with Other Studies

To ensure a fair and comprehensive comparison, we evaluated our optimally tuned
WK-NN algorithm using identical dataset configurations. Specifically, we selected
studies with similar settings, using both training and validation datasets, regardless
of the algorithm or methodology employed. Essentially, our comparison focuses on
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Table 4.2: Best Performance of K Value on Different Distance Metrics and Data
Representations using Complete UJI Datasets

Distance Metrics Data Rep. Location Success (%) Error (m)
k BLD FLO Mean k MAE

Cityblock
Pos 1 98.88 89.28 94.05 16 11.41
Exp 1 99.00 90.81 9491 1 10.52
Pow 1 99.36 9090 95.13 1 9.89

Euclidean

Pos 17,19 99.36 91.26 9531 1 9.19

Exp 5 99.55 92.79 96.17 1 8.58

Pow 6 99.73 93.15 9644 2 8.76
Minkowski P3

Pos 8 9991 9099 9545 5 9.13

Exp 6,8 99.73 93.60 96.66 2 8.69

Pow 5 99.73 93.87 9680 1 8.65
Minkowski P4

Pos 9,19 99.82 91.08 9545 2 892

Exp 7,11 100 94.05 97.02 2 8.39

Pow 6 99.82 94.05 9693 2 8.42
Minkowski P5

Pos 8 100 90.90 9545 2 8.95

Exp 5 100 94.14 9707 2 8.30

Pow 11 99.82 94.23 97.02 2 857
Cosine

Pos 24 100 93.96 9693 13 7.82

Exp 57 99.55 93.60 96.57 1 8.52

Pow 21 100 96.30 98.15 23 7.72
Correlation

Pos 22,24 100 9387 96.89 24 7.85
Exp 22,23 100 96.30 98.15 22 7.64
Pow 20,22 100 96.21 98.10 23 7.69
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Table 4.3: Performance on Floor Hitting Rate and Error for Each Building

Building Distance Data k Hit Rate k MAE

No. Metrics  Rep.
Cityblock  Pos 9-11 97.20 10 5.47846
Exp 3 97.01 4 5.29077
Pow 4 97.38 4 5.42837
BLDO  puclidean Pos 19 97.76 3 549774
Exp 9 97.38 1 5.57302
Pow 4,7 97.01 5 5.25164
Cosine Pos 8,9 97.76 8  5.74659
Exp 1 97.57 4  5.16713
Pow 1 97.57 6  5.39378
Cityblock  Pos 2 77.85 3 11.9846
Exp 6 79.47 3 11.8343
Pow 6,10 79.47 2 11.2378
BLD1  guclidean Pos 18 7850 23 111771
Exp 18-24 81.75 14 10.3903
Pow 4, 20 83.71 21 10.6452
Cosine Pos 24 85.34 21  9.54734
Exp 24 85.66 15 9.98617
Pow 21 93.81 3 9.57655
Cityblock  Pos 1,2 90.29 9 12.9376
Exp 1 94.02 1 11.3889
Pow 1 94.77 1 11.0013
BLD2 " Euclidean Pos 2 9552 1 11.1046
Exp 4 97.38 6  10.0375
Pow 3-5 97.01 5 10.3945
Cosine Pos 6,8 97.01 22 9.45524
Exp 8-10 97.01 8 9.79197

Pow 22,24 97.38 9  9.72947
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Table 4.4: Performance Summary

BLD No. Dist. Metrics Data Rep. Hit Rate MAE
kK (%) k (m)

BLDO Exp Correlation 1 9794 5  5.17979
BLD1 Exp Correlation 23 9348 23 9.16244
BLD2 Exp Correlation 22 97.01 22 9.24040
Average 7.86087
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Figure 4.2: Distribution of Signals on Each Building
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Table 4.5: Performance Summary of Distance Weight combined with Exp Data
Representation and Correlation Distance

BLD No. Weight HR (%) MAE

k BLD FLO (Mean) k (m)

012 1/d 20,26 100 96.30  98.15 26 7.39643
1/d? 20,43 100  96.21 98.10 26 7.44725

0 1/d 2 - 97.94 - 2 5.57302
/& 2 ~ 9794 - 24 552751

1 1/d 42,43 - 94.13 - 26 9.02968
1/d? 43,46 - 93.48 - 26 9.25612

2 1/d 2-5 - 97.01 - 29 9.03861
1/d? 4,5 - 97.01 - 35 8.95107

experiments conducted with the complete dataset, including validation datasets for
testing where feasible. Table presents our results alongside those of other studies.

The comparison clearly illustrates the substantial improvement in both the mean
success rate and MAE achieved with our proposed approach. This enhancement
highlights the innovative design and Wk-NN’s superior performance compared to
alternative methodologies.

4.6 Summary and Conclusion

4.6.1 Summary

The experimental investigations in this chapter systematically evaluated and opti-
mised k-NN and Wk-NN algorithms for Wi-Fi fingerprinting using the UJIIndoorLoc
dataset. A consistent k-value was employed for Longitude and Latitude when
calculating the MAE to establish generalisable parameters. It was observed that
the Correlation distance function, particularly when combined with exponential data
representation, consistently yielded strong performance. For instance, optimal k-
values (e.g., 22 and 24 for Correlation distance) were identified as well-suited for
large, sparse datasets, with distinct optimal k-values emerging for different model
configurations, though correlation and cosine distances showed robust performance
across various k-values.

Our research highlights that the combination of the Correlation distance function
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Table 4.6: Positioning Performance Comparison with other Studies

Reference Location HR (%) MAE (m)
BLD FLO Mean
Torres-Sospedra et al. (2014)[15] - - 89.92 7.90
Torres-Sospedra et al. (2015) [186] - - 95.20 6.19
Gan et al. 2019 [202] 100 95.41 - 6.40
CNNLoc: Song et al. 2019 |129] 100 96.03 - 11.78
Liu et al. 2021 [203] 99.64 91.18 - 8.39
CCpos: Qin et al. 2021 [204] - - - 12.4
Elesawi et al. 2021 [200] 100 95.24 - 11.78
Tang et al. 2022 [208] 100 9420 - 8.42
Proposed WKNN 100 96.30 98.15 7.39

and exponential data representation stands out as one of the most effective algorithmic
choices for the UJIIndoorLoc dataset. The integration of inverse distance weighting
into the Wk-NN algorithm led to the lowest Mean Absolute Error (MAE) for
the complete multi-building dataset (BLDO012), achieving 7.39 metres. While the
classification success rates for building and floor identification remained comparable
between the optimised k-NN and Wk-NN, the reduction in coordinate error by Wk-NN
is a significant finding. The inverse distance weight function was generally superior
for the entire dataset, though optimal configurations varied slightly for individual
buildings.

Based on these comprehensive evaluations, the optimal configuration for k-NN
was identified as using the Correlation distance function with exponential data
representation and a k-value of 22. For the enhanced Wk-NN approach, the optimal
setup involves the Correlation distance function, exponential data representation, an
inverse distance weighting scheme, and a k-value of 26.

4.6.2 Conclusion

This chapter successfully addressed the objective of enhancing Wi-Fi fingerprinting-
based indoor positioning through the systematic optimisation of k-NN and Wk-NN
algorithms. The primary achievement lies in the development and empirical
validation of an optimally tuned Wk-NN configuration that significantly improves
positioning accuracy on the complex, multi-building UJIIndoorLoc dataset.

The rigorous analysis of hyperparameters confirmed that the choice of k-value,
distance metric, and RSSI data representation profoundly impacts performance.
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Specifically, the combination of the Correlation distance function with exponential
data representation emerged as a highly effective strategy. Furthermore, the
systematic application of inverse distance weighting in the Wk-NN algorithm was
shown to reduce the Mean Absolute Error to 7.39 metres for the complete dataset,
a notable improvement over baseline k-NN and competitive with existing literature
(as detailed in Table [4.5.4). These findings underscore the value of careful parameter
tuning and algorithmic refinement.

The investigation into different dataset configurations (complete dataset versus
individual buildings) provided insights into the algorithms’ behaviour under varying
data distributions and environmental characteristics, contributing to a better under-
standing of their practical applicability.

A key contribution of this work is the provision of a comprehensive performance
benchmark for k-NN and Wk-NN algorithms on the UJIIndoorLoc database, detailing
optimal parameter settings. This framework and the identified optimal configurations
(e.g., Wk-NN with Correlation distance, exponential representation, inverse weight,
and k=26) offer a valuable resource for the research community. It facilitates
more informed comparisons for future studies and aids in the design of machine
learning-based Wi-Fi fingerprinting indoor positioning systems. The optimised Wk-
NN algorithm developed in this chapter forms a robust positioning engine for the
subsequent system-level investigations in this thesis.
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Chapter 5
Radio Map Optimisation

This chapter explores the optimisation of radio map fingerprinting to address three
significant optimisations: heterogeneity, dimensionality, and fingerprint updating.
These challenges present considerable obstacles in Radio Map Fingerprinting (RMF)
systems. The Radio Map Optimisation (RMO) in the context of Wi-Fi fingerprinting-
based Indoor Positioning Systems refers to a comprehensive set of strategies aimed
at enhancing the performance, scalability, and adaptability of the radio map.
Specifically, RMO involves: (i) dimensionality reduction to compress and accelerate
fingerprint matching processes; (i) compensation for device heterogeneity in RSSI
measurements to improve robustness; and (iii) the implementation of auto-update
mechanisms that allow the radio map to evolve with minimal manual calibration.
These strategies collectively address the critical challenges of accuracy, efficiency, and
long-term maintenance in large-scale deployments.

Addressing heterogeneity in RSSI device measurements is crucial for enhancing
system accuracy. Meanwhile, reducing dataset complexity through dimensionality re-
duction is essential for minimising computational time and managing large databases
effectively. Additionally, implementing auto-update mechanisms ensures that each
query entry in the matching process is saved for future reference, thus improving
system adaptability to environmental changes and reducing human calibration costs.
Collectively, these solutions contribute to the efficient management of large fingerprint
databases.

5.1 Introduction

Radio Map Fingerprinting (RMF) has emerged as a promising technique for indoor
positioning and localisation, especially in environments where GPS signals are
unreliable or unavailable. The core concept behind RMF is to construct a database,
the radio map, containing signal characteristics (typically RSSI) meticulously recorded
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at known locations within the target area. During the online positioning phase, real-
time RSSI measurements from a mobile device are compared against this radio map
to infer the device’s location.

In the context of this thesis, Radio Map Optimisation refers to a multifaceted
process of enhancing the radio map’s efficacy and efficiency for indoor positioning.
This involves the systematic application of techniques to improve the quality of
the fingerprint data, reduce the resources required for storing and querying the
map, and enhance the map’s adaptability to dynamic environmental conditions and
diverse user devices. The primary objectives of such optimisation are to achieve
superior positioning accuracy, minimise computational overhead, reduce the human
effort associated with initial calibration and ongoing maintenance, and ensure robust
performance across heterogeneous scenarios.

This chapter delves into key aspects of RMF optimisation by addressing three
significant challenges: signal measurement heterogeneity, high data dimensionality,
and the imperative for continuous fingerprint updating. Heterogeneity in RSSI
measurements, often stemming from device diversity and fluctuating environmental
factors, can degrade system accuracy if not properly managed. Concurrently, the
high dimensionality of fingerprint data, particularly in environments with numerous
access points, can lead to increased computational burden and database management
complexities. Effective dimensionality reduction is therefore essential. Furthermore,
the dynamic nature of indoor environments necessitates mechanisms for automated
radio map updates, ensuring the long-term viability and accuracy of the positioning
system whilst minimising manual recalibration efforts. Addressing these challenges
collectively contributes to the development of scalable and efficient RMF-based indoor
positioning systems.

RMF is a crucial component of Wi-Fi fingerprinting-based IPS. The RSSI RMF
technique involves creating a radio map of indoor environments based on RSSI values.
This method relies on collecting RSSI fingerprints at various locations within a
building to establish a database, enabling position estimation by matching real-time
RSSI measurements with the closest fingerprints in the database [138].

Despite its advantages, RMF faces several challenges that can impact its accuracy
and scalability. Omne primary challenge is dealing with heterogeneity in the radio
environment, which arises from factors such as device diversity, signal propagation
characteristics, and environmental dynamics. Heterogeneity can result in significant
variations in RSSI measurements, making it difficult to achieve consistent and reliable
positioning performance. Another challenge is the high dimensionality of RMF,
which can lead to large database sizes and increased computational complexity
during the matching process. As the number of WAPs or signal sources increases,
the dimensionality of the fingerprints also increases, potentially causing overfitting,
higher storage requirements, and longer processing times. Furthermore, constructing

98



Chapter 5. Radio Map Optimisatin®. Methodologies for Radio Map Optimisation

and maintaining RMF can be time-consuming and labour-intensive, often requiring
manual calibration and periodic updates to account for environmental changes. This
is particularly challenging in large-scale deployments or dynamic environments, where
RMF may become outdated or inaccurate over time.

The widespread adoption of RSSI fingerprinting in IPS is due to its accessibility
and high accuracy [200]. This technique involves collecting RSSI measurements at grid
points in indoor environments during an offline phase to build a fingerprint database
[45], which is then used for localisation during the online phase [24]. Numerous
studies underscore the importance of RSSI fingerprinting in IPS, highlighting its
ability to improve performance through techniques such as RSSI clustering [20].
Despite challenges such as maintaining RMFs through frequent surveys [211], RSSI
fingerprinting remains effective for accurate indoor positioning based on radio signal
characteristics. Furthermore, innovative methods, such as ViFi, which uses a Multi-
Wall Multi-Floor (MWMF') propagation model for RSSI prediction, contribute to
optimisation [24], as does leveraging spatial relationships between RSSI fingerprints
[212]. To address computational challenges associated with k-NN and Wk-NN;|
the literature explores RMF data optimisation approaches, such as clustering and
optimisation rules. These strategies involve grouping similar fingerprint locations and
limiting distance calculations based on signal strength patterns [165].

The remainder of this chapter is dedicated to exploring specific strategies for
RMF optimisation. We will propose and evaluate methods for mitigating device-
induced heterogeneity, for prudent dimensionality reduction of the fingerprint dataset,
and for implementing an adaptive auto-updating mechanism for the radio map.
Furthermore, techniques for the efficient management of the resultant large-scale
fingerprint databases will be considered. Through rigorous experimentation and
detailed analysis, using the UJIIndoorLoc dataset as a benchmark, this chapter aims
to provide valuable insights into the efficacy of these optimisation techniques and
their collective impact on overall IPS performance, particularly in terms of accuracy,
computational efficiency, and operational adaptability in diverse indoor settings.

5.2 Methodologies for Radio Map Optimisation

In line with the previously established definition of Radio Map Optimisation,
this section presents specific methodologies and analyses aimed at achieving these
optimisation goals. These methodologies are designed to address the critical
challenges of heterogeneity in signal measurements, to reduce the dimensionality of the
fingerprint data, and to incorporate an adaptive auto-update mechanism for the radio
map. Additionally, strategies for managing the potentially large databases generated
during the fingerprinting process are discussed.

In this section, we present different methodologies and analyses to optimise RMF.
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These methodologies are designed to address heterogeneity, reduce dimensionality,
and incorporate an auto-update fingerprint mechanism. It also includes strategies for
managing the large databases generated during the fingerprinting process. RMF is a
technique for indoor localisation that relies on a pre-collected database of RSSI from
RPs within the environment. Given a user’s device and its measured RSSI fingerprint
(unique RSSI signature), the system estimates the user’s location by finding the RP
in the database with the most similar fingerprint. The similarity can be measured
using various distance metrics, such as FEuclidean distance.

5.2.1 Heterogeneity Issue

Heterogeneity in RMF can stem from various factors, such as device variation, signal
transmission properties, and environmental changes. Heterogeneity poses a significant
obstacle to achieving high accuracy with indoor Wi-Fi fingerprinting. It affects the
system by causing fluctuations in RSSI. Ideally, RSSI should remain stable for a given
location, but heterogeneity makes this more complex. There are several reasons for
RSSI fluctuations, including;:

e Device Hardware: Different devices (phones, tablets) have varying antenna
designs and signal processing capabilities. This can lead to different RSSI
readings even at the same spot.

e Environmental factors: Walls, furniture, and even people can absorb or reflect
Wi-F1i signals, causing fluctuations in RSSI depending on the user’s position and
surroundings.

e Time-based variations: Signal strength can fluctuate due to network congestion
or changes in WAP configurations.

These variations impact localisation accuracy in several ways:

e Fingerprint Database Mismatch: The fingerprint database, built with reference
RSSI measurements from a specific device, might not match the RSSI readings
from a different device used for localisation. This mismatch leads to inaccurate
location estimates.

e Environmental Sensitivity: If the environment changes significantly between
fingerprint collection and localisation (e.g., furniture rearrangement), RSSI
variations become more pronounced, further reducing accuracy.
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5.2.2 Heterogeneity Effect

To illustrate the effect of device heterogeneity on positioning estimation accuracy, we
present Figure |5.1| which details the devices used to create the UJI dataset across
three multi-floor buildings at Jaume I University (UJI). These are all Android devices
from various manufacturers such as Samsung Galaxy Nexus, HT'C One, and Nexus 4
[15]. Figure highlights the extensive array of mobile devices employed throughout
the data collection phase. This diversity in device models underscores the inherent
heterogeneity within the dataset, a factor that can potentially influence the accuracy
of positioning estimation algorithms.

Notably, our observations reveal that building 0 (BLDO0) was surveyed using only
two distinct devices. This is consistent with the findings detailed in Section and
supports the results presented in Table [£.3] Specifically, we note that the MAE for
BLDO falls within the range of 5 meters, whereas other buildings exhibit errors ranging
from 9 to 11 meters. These discrepancies underscore the significant impact of device
heterogeneity on the performance of positioning estimation algorithms. Figure [5.3
illustrates the variety of devices that construct the validation dataset. Furthermore,
of the 25 devices used in the creation of the UJI database, 16 were utilised to construct
the training dataset, while 11 devices contributed to the validation dataset; see Figure
In particular, only phone IDs 13 and 14 were used in both datasets. This diversity
in device usage underscores the richness of the dataset, which, while beneficial, also
introduces complexities that may contribute to positioning errors.

After conducting further tests using only devices (PHONEID) 13 and 14 from
the validation dataset, notable improvements in accuracy were observed compared
to the results obtained in Section with our proposed algorithm, Wk-NN. The
overall MAE rate for the complete datasets was reduced to 6.3940. Subsequently,
we focused on evaluating Building 0 (BLDO), which had its training and validation
datasets created using the same device IDs 13 and 14. Impressively, the results for
BLDO showed a significantly improved MAE of 4.6639. Conversely, Building 1 (BLD1)
exhibited a MAE rate of 8.2010, while Building 2 (BLD2) displayed a MAE rate of
7.7291 metres.

5.2.3 Mitigate Heterogeneity

Several approaches exist to mitigate heterogeneity in Wi-Fi fingerprinting for indoor
positioning:

e Calibration Techniques: Some methods involve calibrating the RSSI readings
from different devices to a reference device or using signal processing techniques
to normalise the data.
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Reference Points in the UJlindoorLoc Data
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e Data Preprocessing: Fingerprint preprocessing can be applied to account for
variations by considering factors such as the standard deviation of RSSI readings
or using probabilistic approaches.

e Machine Learning: Machine learning models can be trained on data with
inherent heterogeneity to recognise patterns and improve the matching process
between reference and live RSSI measurements.

As calibration techniques are implemented exclusively during the offline phase,
they are not included in our research. Instead, our focus is on leveraging advanced
preprocessing and machine learning techniques to mitigate heterogeneity in RSSI
variations. Heterogeneity in signal strength can be represented as a vector of signal
strengths from different access points. If there are n access points, the signal
strength can be represented as a vector S = [s1, Sg, ..., S,]. Heterogeneity in Wi-Fi
fingerprinting presents a challenge, but researchers are actively developing methods
to mitigate it. By incorporating calibration techniques, advanced data preprocessing,
and machine learning, the accuracy of Wi-Fi fingerprinting for indoor localisation can
be significantly improved.

In Section [5.2.2] we explored the inherent variability in RSSI readings, a crucial
component derived from Wi-Fi chipsets embedded in mobile and laptop devices or
WAPs. This variability stems from the diverse manufacturing processes of these
chipsets, resulting in inconsistencies in RSSI measurements. Such discrepancies
contribute to positioning errors, particularly evident during both the site survey phase,
as exemplified by the UJI dataset collected from 25 different devices, and the online
phase, where slight discrepancies may arise between the RSSI data in the RMF and
those from the querying device.

The challenge of heterogeneity in RSSI fingerprinting poses a significant obstacle
for indoor positioning systems, necessitating the development of advanced techniques
and methodologies for effective mitigation. ML algorithms, which include both
supervised and unsupervised approaches, offer promising avenues to address device
heterogeneity in indoor positioning systems [213]. By leveraging ML techniques, such
systems can adapt to the diverse RSSI patterns generated by different devices, thereby
enhancing positioning accuracy amidst heterogeneity.

Furthermore, adopting hybrid combinations of signal measurement principles, such
as RSSI, CSI, and TOA, presents a comprehensive approach to tackling heterogeneity
in RSSI fingerprinting [20]. Integrating multiple signal measurement techniques
broadens the scope of information captured, leading to more robust and accurate
indoor localisation results. Leveraging distance and similarity measures within Wi-
Fi fingerprinting systems also holds promise in addressing heterogeneity challenges
[186]. By incorporating both natural RSSI data and architectural information, these
systems achieve a nuanced understanding of the indoor environment, accounting for
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variations in signal strength as well as structural constraints. Moreover, techniques
such as normalisation, filtering, or outlier removal can be applied to the collected RSSI
data to mitigate noise and reduce the impact of outliers. This, in turn, enhances the
system’s capacity to manage heterogeneity in RSSI fingerprinting effectively.
Overall, mitigating heterogeneity in RSSI fingerprinting for indoor positioning
systems requires a multifaceted approach, integrating machine learning algorithms,
hybrid signal measurement principles, distance and similarity measures, and advanced
propagation models. By synergistically deploying these techniques, indoor localisation
systems can overcome the challenges posed by device heterogeneity and environmental
variations, thereby achieving more reliable and accurate positioning results.

5.2.4 Dimensionality Issue

The proliferation of access points and the accumulation of signal measurements con-
tribute to the dimensionality of fingerprint databases, thus increasing computational
complexity and storage requirements. High-dimensional RMF can lead to overfitting,
increased storage requirements, and longer processing times during matching. Large
fingerprint databases can be computationally expensive to manage and compare.
The collected data are high-dimensional, with each access point representing a
dimension. To manage this high dimensionality, researchers use dimensionality
reduction techniques such as PCA. These techniques transform high-dimensional data
into a lower-dimensional space, thereby reducing system complexity and improving
efficiency.

5.2.4.1 Principal Component Analysis (PCA)

PCA is employed to transform high-dimensional signal data into a lower-dimensional
subspace while maximising variance retention, thus simplifying subsequent processing
tasks. It is widely used for feature extraction, where principal components are derived
from the eigenvectors and eigenvalues of the covariance matrix of the data.

This technique identifies a set of orthogonal principal components (PCs) that
capture the most significant variance in the data. Fingerprint data can be projected
onto a subspace spanned by these PCs, achieving dimensionality reduction without
compromising accuracy. The projected data Y can be obtained using:

Y =XW, (5.1)
where:

o X ¢ RM*N represents the original fingerprint data matrix with dimensions
M x N, where M is the number of samples (reference points) and N is the
number of features (Wi-Fi access points).
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o W c RV*K ig the transformation matrix composed of the top K principal
components (i.e., the leading eigenvectors of the covariance matrix of X), where
K < N.

o Y c RM*K yepresents the projected data matrix in the reduced K-dimensional
subspace.

This projection preserves the directions of maximal variance in the original dataset,
allowing the indoor positioning model to operate with fewer features while maintaining
robustness and scalability.

5.2.5 Auto-Update Mechanism

One effective strategy involves implementing machine learning algorithms capable
of continuous learning from new queries and subsequently updating the fingerprint
database [69]. By using machine learning techniques, the system can adapt to
environmental changes and improve its accuracy over time without requiring manual
intervention.

Furthermore, integrating deep learning models, such as CNNs, can enhance the
system’s self-learning capabilities by enabling it to extract intricate patterns from
RSSI data [22]. These models facilitate efficient processing of incoming queries,
pattern identification, and updating of the fingerprint database to enhance localisation
accuracy.

Crowdsourcing data for RMF construction can also significantly contribute to
the self-learning process of fingerprinting systems [211]. By amalgamating data
from multiple sources, the system can continuously refine and update its fingerprint
database based on real-time information, thereby reducing reliance on manual
calibration and lowering maintenance costs.

Moreover, integrating Bayesian probability and online sequential learning algo-
rithms can further enhance the system’s adaptability to environmental dynamics and
improve localisation precision [100]. These algorithms enable real-time updating of the
fingerprint database based on new queries, ensuring that the RMF remains accurate
and up-to-date.

Traditional RMF involves creating a static RMF used for localisation without
updates. However, this approach proves inadequate for dynamic indoor environments
where signal strength can fluctuate over time due to various factors. Therefore, a
mechanism is necessary to update the RMF to reflect these changes.

Maintaining and updating the RMF can be costly and time-consuming, often
necessitating manual calibration. To address this challenge, we propose an auto-
update fingerprint mechanism in our framework. This mechanism learns from user
queries and utilises this information to update the fingerprinting.
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Our proposed auto-update mechanism addresses this need by saving each incoming
query for future reference. This data is then used to update the fingerprinting,
allowing the system to learn and adapt over time. This mechanism not only improves
the accuracy of the system but also reduces the need for manual calibration, thereby
lowering costs.

Implementing the auto-update mechanism involves several steps. First, when a
query enters the system, it is matched with the existing fingerprints in the RMF. The
result of this matching process is saved along with the query, forming a repository of
query-result pairs.

Next, this repository is used to update the fingerprints. The system learns from
the query-result pairs and updates the fingerprints in the RMF accordingly. This
update can be performed periodically or whenever a significant amount of new data
is added to the repository.

The following steps outline the operation of the auto-update mechanism:

e Incremental Learning: New signal measurements obtained during user queries
are incrementally integrated into the fingerprint database, ensuring that the
system remains up-to-date and reflective of real-time conditions.

e Feedback Loop: Establishing a feedback loop mechanism to capture user feed-
back on localisation accuracy and adjust fingerprinting parameters accordingly
facilitates continuous improvement and refinement of the system.

e Anomaly Detection: Employing anomaly detection techniques to identify and
flag anomalous signal measurements enables the system to distinguish between
genuine environmental changes and spurious deviations.

To address the challenges associated with manual calibration and updating RMF,
we propose an auto-update mechanism that leverages user queries to continuously
refine and update the fingerprint database.

The auto-update mechanism can be represented as a function f that updates the
fingerprint database D based on a new query g and its result 7:

D' = f(D,q,r), (5.2)
where D’ represents the updated database.

5.2.5.1 User Query Incorporation

During the positioning phase, when a user queries the system with real-time
RSSI measurements, the system estimates the user’s location based on the current
fingerprint database. The user’s actual location, if available (e.g., through manual
input or additional sensors), can be incorporated into the fingerprint database as a
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new data point, effectively updating the RMF. Let D,y be the fingerprint database
and Qgua be the set of user queries. The updated fingerprint database D,,.,,, after
incorporating user queries, can be represented as:

Dnew = Dold U Qdataa (53>

where U is the set-union operation, incorporating user queries Qgqs, into the existing
fingerprint database D,4.

5.2.5.2 Active Learning

Active learning techniques can be used to selectively query users for their actual
locations when the system is uncertain or when the potential information gain is
high. This approach can help prioritise the acquisition of valuable data points for
updating the fingerprint database while minimising the burden on users.

By incorporating machine learning, deep learning, crowd-sourcing, and advanced
algorithms, indoor positioning systems can achieve auto-update capabilities in the
RMEF'. These technologies enable the system to continuously learn from new queries,
adapt to environmental changes, and improve localisation accuracy over time, thereby
overcoming the limitations of human calibration and reducing long-term costs.

5.2.6 Database Management Strategies

The fingerprinting process generates large databases that need to be efficiently
managed. This is a significant challenge in the field of RMF. In this section, we
discuss the strategies for managing these databases in our proposed methodology.

The RMF process involves collecting signal strength information from multiple
access points within an indoor environment. This information is then used to create
an RMF, which is essentially a database of fingerprints. As the number of access
points and the size of the environment increase, the size of this database can become
quite large. Efficient management of this large database is a significant challenge.

To address this challenge, several strategies for managing the databases generated
during the fingerprinting process have been developed. These strategies include the
use of efficient data structures for storing the data and algorithms for the quick
retrieval of relevant information.

5.2.6.1 Efficient Data Structures

The choice of data structure for storing fingerprints can significantly impact the
efficiency of the system. Using a tree-based data structure, such as a k-d tree
or a ball tree, to store the fingerprints can be an effective strategy. These data
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structures facilitate the efficient storage of high-dimensional data and enable rapid
nearest-neighbour searches, which are crucial for the fingerprint-matching process.

5.2.6.2 Fast Retrieval Algorithms

In addition to efficient data structures, there a rapid retrieval algorithms for managing
databases. These algorithms, such as approximate nearest-neighbour search methods,
enable the swift retrieval of relevant fingerprints from the database. Rapid retrieval
is essential for ensuring the real-time performance of the system.

5.2.6.3 Indexing and Data Structures

Utilising effective indexing techniques, such as spatial indexing (e.g., R-trees,
quadtrees) or inverted indexing, can improve efficient fingerprint retrieval and
matching. Moreover, employing appropriate data structures, such as hash tables
or binary search trees, facilitates organised and rapid access to fingerprint data.

5.2.6.4 Clustering and Compression

Clustering algorithms can group similar fingerprints, thereby reducing the overall
database size by storing representative fingerprints (cluster centroids) instead of
individual data points. Moreover, compression techniques, such as quantisation or
dimensionality reduction, can be applied to further decrease storage requirements.
However, it is important to note that clustering is not a foolproof solution, as it
does not eliminate heterogeneity. Poor feature selection can also lead to less effective
clusters, and clustering algorithms may be computationally intensive.

5.3 Proposed Approach

To address the challenges of heterogeneity, dimensionality, and auto-update in
the RSSI fingerprinting technique, we propose a comprehensive approach that
incorporates various methods to optimise RMF. Our approach has been tested
using the UJIIndoorLoc database, which is detailed in Section We utilised
the UJlIndoorLoc dataset to explore heterogeneity, auto-update, and the efficient
management of large fingerprint databases. We employed the following combination
of techniques:

5.3.1 Handling Heterogeneity

To mitigate the effects of heterogeneity, we employed the following techniques.
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5.3.1.1 Data Preprocessing

The initial offline phase involves collecting RSSI RMF data by gathering signal
strength information from multiple access points within the indoor environment.
Due to factors such as missing information and inherent heterogeneity in RSSI data,
stemming from different types of access points, devices used for collecting RSSI, and
varying signal strengths, preprocessing is essential. This preprocessing stage aims to
address heterogeneity by employing techniques to normalise the data and standardise
it to a common scale.

As discussed in Section [3.6.3] we preprocess the datasets, handling missing values,
filtering irrelevant data, and normalising RSSI values.

5.3.1.2 Feature Normalization

Feature normalisation aims to bring RSSI measurements from different devices to a
common scale. This ensures that the positioning system treats measurements from
various devices uniformly, regardless of their original scale. A common technique
for normalisation is Z-score normalisation, also known as standardisation. The
implementation is as follows:

1. Calculate the mean and standard deviation: Compute these statistics
for RSSI measurements from each Wi-Fi WAP across all devices during the
calibration phase.

2. Normalise RSSI Measurements: For each RSSI scalar measurement x;; € R
— where i denotes the WAP index and j denotes the device or sample index —
apply the Z-score transformation:

dyy = T M (5.4)

)
0;

where p; and o; are the mean and standard deviation of RSSI values for WAP
1 across all samples, respectively.

3. Store Normalised Data: Store the normalised RSSI values £;; along with
their corresponding device and WAP identifiers in the database or RMF.

As discussed in Section [3.6.4] we adopt exponential data representation, which has
demonstrated suitability for RSSI RMF.
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5.3.2 Reduce Dimensionality

Dimensionality reduction is achieved via Principal Component Analysis (PCA), as
detailed in the previous Section[5.2.4.1] PCA is a widely used technique that projects
high-dimensional data into a lower-dimensional subspace while retaining the most
significant variance. This transformation is particularly beneficial for large-scale Wi-
Fi fingerprinting, as it reduces computational cost and storage without compromising
localisation accuracy.

The integration of PCA using equation with our approach proceeds as follows:

1. Apply PCA to the preprocessed fingerprint data to extract principal compo-
nents.

2. Select a subset of components that capture a predefined percentage of total
variance (e.g., 90%).

3. Project both the fingerprint data and user query vectors onto the subspace
spanned by the selected components.

This approach reduces storage requirements for the fingerprint database and
enhances the efficiency of similarity calculations during localisation. PCA focuses
on reducing the dimensionality of data by transforming it into a new set of features
called PCs. These PCs capture the most significant variations in the original data. In
Wi-Fi fingerprinting, PCA can be used to reduce the number of RSSI measurements
considered, which is beneficial when dealing with a large number of access points.

5.3.3 Auto-Update

Maintaining the accuracy of a Wi-Fi fingerprinting system necessitates manual up-
dates following environmental changes, which can be inefficient and time-consuming.
Our solution introduces an auto-update mechanism, detailed in Algorithm to
automatically update the RMF based on user queries and feedback, as illustrated
in Figure [5.5]

5.3.3.1 User Query Integration

Let Q = q1,q-,...,q, denote a set of user queries, where each query gq; is a vector
containing the RSSI measurements from nearby WAPs for user i.
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Algorithm 3 Auto-Update Algorithm

Initialise @ as a set of user queries
Initialise the model parameters using the initial radio map or a subset of calibration
data
for each query g; in Q do
Estimate the user’s position Z; by finding the fingerprint f; in the database that
minimizes a distance metric between g; and f;
Calculate the position error e; as the difference between the estimated position
Z; and the actual user position z;
if @; matches an existing fingerprint f; in the database then
Calculate 0 based on the estimated error e;
Update the fingerprint f; using the weighted averaging formula:
fupdatedl— =0- fz + (1 - 6) *q;
else
Estimate the fingerprint fz for the queried location using predictive models
or interpolation techniques
Calculate d based on the estimated error e;
Update the fingerprint using the weighted averaging formula:
fupdatedi =0 fz + (1 - 6) " q;
end if
Update the model parameters using the learning algorithm chosen based on
(@i, ;) and e;
end for
Periodically evaluate the system’s performance using metrics like MAE and adjust
the learning rate to control the adaptation speed
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5.3.3.2 Localisation and Error Estimation

1. For each query g;, the system estimates the user’s location (£;) by identifying the
fingerprint f; in the database that minimises a distance metric (e.g., Euclidean
distance) between g; and f;.

2. The localisation error e; is computed as the difference between the estimated
location (z;) and the actual user location (z;), which is obtained through user
feedback or external sources (e.g., GPS).

5.3.3.3 Fingerprint Database Update

As illustrated in Figure [5.6] the fingerprint database is updated using a weighted
averaging approach. This method updates or incorporates fingerprints based on new
user queries and their proximity to existing or estimated reference points. The general
formula for updating or creating a fingerprint entry using a user query g; is:

finew — 5ficurrent + (1 o 6)q“ (55)
where:

o f7“"is the newly updated or incorporated fingerprint associated with a location
i.

e q; is the user’s currently measured RSSI vector (query).

e J is a weighting factor (0 < § < 1). Its value is typically determined based on
the estimated error e; of the initial position estimate derived from g;. A higher
error e; might lead to a lower ¢, thus giving more weight to the new user query
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g; for a more substantial update or for creating a new fingerprint if ff"" is

an estimation.

frurrent represents the existing information in the radio map for location i. This

term can take two forms:

— If query q; is deemed sufficiently close to an existing fingerprint in the
database (denoted as f;), then ffm" = f;. The formula then updates
this existing fingerprint.

— If query q; does not closely match any existing fingerprint, but its location
can be reliably estimated (e.g., through user feedback or interpolation
from nearby RPs), an estimated fingerprint for that location, fi, might be
generated. In this scenario, ffurrent = fi, and the formula helps to refine
this estimated fingerprint with the actual user measurement q;. This is
particularly relevant when incorporating new data points into sparse areas

of the radio map.

This weighted averaging mechanism allows the system to autonomously update the
RMF by combining existing or estimated fingerprint information with new user
queries, with the weighting factor ¢ balancing the confidence between the established
radio map data and the new observations.

This approach enables the system to adapt to new queries and update the RMF
even when an exact match is absent in the database, leveraging predictive models or
interpolation to estimate the fingerprint for the queried location.

5.3.3.4 Implementation Steps

1.

Prepare the datasets and select algorithm models for classification and regression
tasks.

Initialise the model parameters using the initial RMF or a subset of calibration
data.

As new user queries (g;, ;) arrive:

e (Calculate the localisation error e;.

e Update the model parameters using the selected learning algorithm based
on (g, x;) and e;.

Periodically evaluate the system’s performance using metrics such as MAE and
adjust the learning rate to control the adaptation speed.
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Figure 5.6: Implementation Steps of Auto-Update Mechanism

This proposed method offers several benefits, including reduced manual calibration
efforts, adaptation of the fingerprint database to dynamic environments and user
behaviour, and improved accuracy and robustness of the positioning system over
time.

5.3.4 Efficient Management of Large Databases

The incremental growth of RMF requires efficient database management strategies
over time to accommodate this expansion. Implementing auto-updates leads to an
increase in the size of the RMF.

The challenges associated with managing large fingerprint databases include
storage requirements, retrieval efficiency, and computational complexity. To address
these challenges, we use the following strategies:

e Employing techniques for efficiently storing and retrieving fingerprint data,
such as indexing methods, data compression algorithms, and dimensionality
reduction techniques.

e Evaluating the performance of database management strategies in terms of
storage requirements, retrieval time, and positioning accuracy.
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By employing these strategies, we aim to optimise the management of large
fingerprint databases and ensure scalability and efficiency in indoor positioning
systems.

5.4 Experimental Setup

This section describes the experimental setup used to evaluate the effectiveness of our
proposed RMF optimisation approach.

To assess the effectiveness of the proposed methodologies, we conducted ex-
periments using the UlJlIndoorLoc dataset, a widely used benchmark for indoor
localisation research.

5.4.1 UJlIndoorLoc dataset

The experimental evaluation of the proposed methodology uses the UJIIndoorLoc
dataset, a widely recognised benchmark dataset in the field of indoor localisation.
The UJlIndoorLoc dataset comprises Wi-Fi fingerprint measurements collected from
multiple buildings on a university campus, encompassing diverse environmental
conditions and architectural layouts. Each fingerprint measurement includes the
signal strength readings from multiple WAPs observed at a specific location within
the indoor environment, along with the corresponding ground truth coordinates. The
dataset provides a rich source of real-world data for evaluating the performance of
indoor localisation algorithms, making it well-suited for our experimental purposes.
Full details of UJIIndoorLoc have been discussed in Section B.6l This dataset is
preprocessed using the techniques discussed in Section to handle heterogeneity
and reduce dimensionality.

5.4.2 Experimental Environment

The experiments were conducted using MATLAB, a powerful numerical computing
environment widely used for data analysis, algorithm development, and visualisation.
The MATLAB code developed for the experiments utilises various libraries and func-
tions for data preprocessing, feature extraction, machine learning, and performance
evaluation.

We utilised several MATLAB toolboxes and libraries for implementing the
proposed methodologies, including:

e Signal Processing Toolbox: For preprocessing and filtering the RSSI measure-
ments.
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e Statistics and Machine Learning Toolbox: For implementing dimensionality
reduction techniques (e.g., PCA), feature selection methods, and machine
learning algorithms (e.g., Wk-NN).

e Optimisation Toolbox: For optimising various parameters and hyperparameters
within the proposed methodologies.

e Mapping Toolbox: For visualising and analysing the spatial distribution of
fingerprints and localisation results.

e Image Processing Toolbox: For assisting in managing the storage requirements
and computational complexity when applying a data compression strategy using
DCT and incremental updates.

5.4.3 FEvaluation Metrics

To assess the performance of the proposed methodologies, we used several evaluation
metrics described in Sections 3.2.21

5.4.4 Experimental Procedure

The experimental procedure involves the following steps:

1. Data Preprocessing: The UJIIndoorLoc dataset is preprocessed to clean and
normalise the Wi-Fi signal strength measurements, remove outliers, and extract
relevant features for fingerprinting.

2. Model Training: Baseline and optimised RMF models are trained using the
preprocessed dataset. The baseline model does not incorporate any optimisation
techniques, while the optimised models leverage the proposed methodologies for
handling signal heterogeneity, dimensionality reduction, and auto-update RMF.

3. Evaluation: The trained models are evaluated using the test portion of the
UlJIIndoorLoc dataset. The localisation accuracy and mean positioning error
are calculated to assess the performance of each model.

4. Results Analysis: The experimental results are analysed to evaluate the ef-
fectiveness of the proposed methodology in improving the accuracy, robustness,
and efficiency of RMF systems. Comparative analyses are conducted to contrast
the performance of baseline and optimised models.
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By analysing the localisation accuracy metrics under different scenarios, we can
evaluate the effectiveness of our proposed approach compared to a baseline RMF
method without optimisation techniques.

This section outlines the experimental setup for evaluating the proposed method-
ology using the UJIIndoorLoc dataset in the MATLAB environment. The subsequent
section will present the experimental results and provide information on the perfor-
mance of the optimised RMF system.

5.5 Results and Discussion

5.5.1 Heterogeneity Mitigation

To mitigate the effects of heterogeneity in RMF, we evaluated the performance of
the handling techniques through data preprocessing. Figure shows the CDF
of positioning errors before and after the implementation of data preprocessing
techniques, including standardisation, missing value imputation, and exponential
data representation. The preprocessing significantly reduces positioning errors, as
evidenced by the mean positioning error decreasing from 15.84 metres to 8.58
metres (see Table [5.1). This improvement can be attributed to the mitigation
of hardware differences between the mobile devices used for fingerprinting, as
well as the enhancement of weak signal strengths, thereby improving classification
and regression performance. The RSSI data undergoes preprocessing, including
exponential transformation and standardisation of signal strength values. This
preprocessing step plays a crucial role in normalising the data, mitigating device
heterogeneity in RSSI measurements, and rendering it more suitable for utilisation
within the k-NN algorithm.

5.5.2 Dimensionality reduction

RMF comprises 520 features of different WAPs in approximately 20,000 RPs, which
can significantly increase processing time. The impact of dimensionality reduction on
the number of principal components chosen (N) in PCA affects the accuracy of the
localisation, such as the mean positioning error. Our main objective was to ensure
that the positioning error levels remained similar or close to the condition without
dimensionality reduction. We applied PCA to our baseline k-NN algorithm, aiming
to reduce the dimensionality of the radio dataset. We generated a plot showing how
the mean positioning error changes with different numbers of principal components.
This can help determine the optimal number of components to use for our specific
use case. Figure [5.8a]illustrates the impact of PCA on the baseline k-NN algorithm.
We observed the best positioning error at 120 principal components. Despite a slight
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Figure 5.7: CDF of Positioning Errors with and without Data Preprocessing

increase in the positioning error, the reduction in algorithm calculation time was
significant, decreasing from 31 seconds to 15 seconds, as shown in Table [5.1]

Effect of PCA Dimensionality Reduction on Positioning Error

Effect of PCA Di ionality Reduction on Positioning Error
T T T T T T
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Figure 5.8: Effect of PCA Dimensionality Reduction on Positioning Error

Subsequently, we tested our tuned Wk-NN algorithm (k = 26, correlation distance
+ preprocessed data) to identify the optimal position error with PCA. Figure
displays the elbow curve, indicating that the lowest mean positioning error of
7.49 metres was achieved with 180 principal components. Although this result is
approximately 0.1 metres higher than the best result obtained without PCA (7.39
metres), the percentage change from 7.39 to 7.49 metres is only approximately 1.35%.
Furthermore, the computational time was halved, from 28 seconds to 14 seconds, as
demonstrated in Table[5.1] This achievement represents a significant advance in RMF
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KNN BaseLine 98.83 75.33 87.08 15.84 35.74

KNN + Pre-processed Data 99.64 92.52  96.08 8.58 14.82
KNN + Preprocessed + PCA (120) 1 99.91 93.34 96.76  8.06 8.55
Tuned WKNN 26 100 96.31 98.15  7.39 28.19

Tuned WKNN + PCA (193) 26 99.82 9577 9779 749 12.50
Tuned WKNN + PCA (95%) 26 9991 9486 9739 794 8.18
Tuned WKNN + PCA (99.5%) 26 99.91 9568 9779 749 12.18

Description K BLD FLO Success MAE Time
1
1

Table 5.1: Algorithms performance in different RM Optimisation

optimisation and system efficiency. Given that indoor positioning systems operate in
real-time, the rapid response of the matching algorithm during the operational phase
improves the overall quality of service provided by the system.

After applying PCA to reduce the dimensionality of the UJIIndoorLoc data, which
proved effective, we considered determining the number of principal components based
on a certain threshold of explained variance (e.g. 95%) instead of a fixed number (193).
We applied this approach and achieved optimal results of an ME 7.49 and a success
rate of 97.79%, at a threshold of explained variance of 99.5%, as shown in Figure
and Table [5.1] This provided the fastest calculation time, about 12 seconds and
the ME and success rate obtained are similar to the results for the fixed PC of 193,
in our case. Notably, PCA leads to a reduction in data size, which helps reduce
storage requirements in the long run while maintaining the efficiency of the matching
algorithm.

PCA is a strong choice for reducing dimensionality while preserving most of the
information. The optimal reduction in the number of principal components chosen
(N) depends on the dataset used and the desired trade-off between accuracy and
computation time.

5.5.3 Auto-update

A strategy has been developed to integrate new query data into the fingerprint
database and update the positioning model accordingly. This auto-update mechanism
is essential for adapting to changes in the environment or signal propagation
characteristics over time. To evaluate its performance, we simulated changes by
introducing new data points as new user queries.

For this evaluation, we preserved 30% of the validation dataset to be used as user
queries. By comparing the MAE obtained with and without the user query-based
fingerprint update mechanism, it is possible to assess how the auto-update approach
improves accuracy over time as user data is integrated. Figure illustrates this
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Figure 5.9: MAE vs PCA Explained Variance Threshold

slight improvement. Although the success rate does not change before and after
the update, it shows improvement compared to the result presented in Table as
97.94%. This improvement can be attributed to the gradual refinement of the model’s
understanding of user queries over time. With the auto-update approach enabled, the
model incorporates feedback from user queries, allowing adaptation and refinement
of its predictions based on real-world usage patterns. As a result, although the
success rate remains consistent, the ME decreases slightly, indicating a more accurate
positioning system overall. This iterative learning process, depicted in Figures [5.12
and [5.13] showcases how the model’s performance evolves as it continuously integrates
new data and adjusts its parameters.

The core concept here is the weighted averaging method, where the delta is
calculated based on the error. In our implementation, delta serves as a weighting
factor based on the estimated error, ensuring that higher error values lead to lower
delta, giving more weight to the user data for a more significant update. Thus,
we compute delta as the inverse of the error, with a small constant added to the
denominator to prevent division by zero and limit the maximum value of delta.

First, calculate the error:

error = |&; — predictedLocation|

Next, calculate the delta based on the error and add a small constant to prevent
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5.5. Results and Discussion
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division by zero:
1

delta =
(error +0.01)

Finally, limit the maximum value of delta to 1:

delta = min(d, 1)

In this method, delta is calculated as the inverse of the error, with a small constant
of 0.01 added to the error to prevent division by zero. The min function is then applied
to limit the maximum value of delta to 1. However, it is important to note that this
approach to calculating delta based on error may not be optimal for all use cases.
Experimenting with different methods for calculating delta is advisable to determine
the most effective approach for each specific dataset and model.

Following the auto-update process, the performance of the updated model is
evaluated to assess the extent of improvement. Plots of actual vs. predicted
locations, as depicted in Figure are typically generated to visualise the model’s
performance.

The model is updated with the new fingerprint in each iteration of the loop.
However, depending on the size of the user queries and the complexity of the
model, this process could potentially be time-consuming. If performance becomes a
concern, it may be necessary to reduce the frequency of model updates. To conserve
computational resources, reducing the frequency of model updates is a common
strategy. Batch updates are employed, where instead of updating the model with
each new fingerprint, a collection of new fingerprints is accumulated, and the model
is updated with the entire batch at once. In our experiment, we implemented batch
processing by initialising a batch size (in our case, 43) and initialising arrays to store
the batch of new fingerprints and their corresponding locations as shown in Algorithm
[l This approach allows the algorithm to update the models in batches, enhancing
efficiency and potentially reducing memory usage.

5.5.4 Database Management

As the fingerprint database and user query data expand, it becomes imperative to
consider computational efficiency by exploring techniques such as approximate nearest
neighbour search, data compression, and distributed computing. Integrating these
techniques with the strategies developed in the previous sections can significantly
enhance the efficiency and scalability of RMF systems, particularly for resource-
constrained and real-time applications of indoor positioning systems.

Following the implementation of optimisation strategies, including data prepro-
cessing, dimensionality reduction, and auto-update mechanisms, we experimented
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Algorithm 4 Auto-Update Mechanism in Batch Process

Initialise predictedLocations, errors as empty lists
Set batchSize to 43
Initialise batch Fingerprints for Longitude, Latitude, Floor and Building as empty
lists
Set yTrain for Longitude, Latitude, Floor, Building to corresponding columns of
yTrain
for i from 1 to height of zUpdatePCA do
Predict location for each model using zUpdatePCALJi
Add predicted location to predictedLocations
Calculate error for each model
Add error to errors
Calculate delta for each model
Perform update for each model
Add updated fingerprint and actual location to batch for each model
if size of batchFingerprintsLongitude is greater than or equal to batchSize then
Convert updated fingerprint to a table
Set variable names of batchFingerprintsTable to those of xTrainPCA
Add updated fingerprint and actual location to training set
Update the models
Clear the batch
end if
end for
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Figure 5.14: Database Storage Requirements

with various data compression strategies, such as data clustering and Discrete
Cosine Transform (DCT), to address the challenges of managing large fingerprint
databases. We integrated these database management strategies into our existing
RMF optimisation framework. We employed a KD-tree-based nearest-neighbour
searcher for efficient storage and retrieval of fingerprint data based on location
coordinates. Additionally, we applied compression techniques such as gzip and DCT
to further reduce storage requirements. Figure shows the effect of storage before
and after applying data compression. However, after evaluating their impact on
performance, we chose to retain PCA as the most effective technique. PCA effectively
reduces the dimensionality of our data, thereby lowering storage requirements, while
maintaining an acceptable level of performance, as discussed in Section [5.5.2

We measured and compared storage size, retrieval time, and positioning accuracy
before and after applying compression and indexing techniques, as depicted in Figure
bI5

The integration of indexing and data compression strategies involved implementing
spatial indexing using KD-tree and PCA. We evaluated the performance of these
strategies by measuring storage requirements, retrieval time, and positioning accuracy
before and after implementation. The results, shown in Figure [5.16] highlight the
success in maintaining effective database operation after the auto-update, despite the
high memory usage, as depicted in Figure |5.17,
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Figure 5.16: Performance Evaluation of Database Management Strategies
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Figure 5.17: Memory Usage Before and After Update

Figures [5.15], [5.16], [5.17, [5.14] and the tabulated results in Table provide
a comprehensive evaluation of the performance improvements achieved through
the integration of optimisation techniques, compression methods and database
management strategies within an RMF system. These findings contribute significantly
to the discourse surrounding the optimisation of indoor positioning systems in
resource-constrained environments.

Beginning with an analysis of data size and compression ratio, the original dataset,
comprising 89,336,130 bytes, was reduced substantially to 30,429,573 bytes after
compression. This marked compression ratio of approximately 2.94 underscores the
efficacy of the employed compression techniques in significantly reducing storage
requirements.

The investigation of positioning error, a critical metric for assessing system
accuracy, revealed only marginal changes between the mean positioning errors before
and after updates. This consistency suggests that the optimisation and compression
procedures did not adversely affect the system’s accuracy in localising users within
indoor environments.

Moreover, the constancy of the success rates both before and after updates,
remaining at 97.9434%, underscores the robustness of the system’s performance across
different operational states. This steadfast accuracy in user localisation reinforces the
system’s reliability even during the implementation of optimisation measures.
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However, the temporal analysis reveals notable shifts in processing time. While the
system exhibited a slight increase in processing time from 6.60 seconds before updates
to 8.66 seconds after updates, the auto-update mechanism caused a substantial
rise in processing duration, escalating from 6.60 seconds to 299.73 seconds. This
stark increase underscores the computational overhead associated with updating the
database, necessitating a balance between system responsiveness and the frequency
of auto-updates.

Memory utilisation emerged as another critical consideration, with a significant
increase in memory usage from 31,446,252 bytes before updates to 117,383,064 bytes
after updates. This marked increase of 85,936,812 bytes highlights the resource
implications of implementing optimisation and compression techniques, particularly
concerning memory consumption.

Overall, the findings encapsulate a nuanced understanding of the interplay be-
tween optimisation strategies, compression methodologies, and database management
techniques within RMF systems. While these interventions succeed in reducing
data size and maintaining accuracy, they also introduce trade-offs in processing
time and memory utilisation. Consequently, a sensible balance between performance
optimisation and resource efficiency is imperative to ensure the seamless operation of
indoor positioning systems in real-world contexts. These modifications significantly
improve the efficiency and scalability of RMF systems to handle large fingerprint
databases, particularly in resource-constrained and real-time scenarios of indoor
positioning systems.

Metric Value
Original data size 89,336,130 bytes
Compressed data size 30,429,573 bytes
Compression ratio 2.9358
MAE before update 7.5423 meters
MAE after update 7.5385 meters
Success rate before update 97.9434%
Success rate after update 97.9434%
Time before update 6.60 seconds
Auto-update time 299.73 seconds
Time after update 8.66 seconds
Memory usage before update 31,446,252 bytes
Memory usage after update 117,383,064 bytes
Increase in memory usage due to update | 85,936,812 bytes

Table 5.2: Performance Metrics
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As part of future research directions, we could explore additional techniques,
such as approximate nearest-neighbour search, data compression, and distributed
computing, to further enhance the efficiency of RMF systems. Investigating
the impact of various compression algorithms and indexing techniques on model
performance could provide valuable insights into designing efficient RMF systems.

Examining the influence of various compression algorithms and indexing tech-
niques on model performance could offer valuable insight into designing efficient RMF
systems. Additionally, exploring the feasibility of re-compressing data for online
operation and its impact on real-time performance could be considered in future
studies.

While data compression techniques can help manage large datasets in indoor
positioning systems, it is essential to carefully consider the choice of compression
algorithm and its impact on model performance. Experimenting with various
approaches and thoroughly evaluating their impact on system performance are crucial
steps toward achieving an optimal balance between storage efficiency, computational
efficiency, and model performance.

As observed during the experiments, one of the primary challenges encountered by
the fingerprint-based method is the substantial data size of the RMF, wherein each
fingerprint sample comprises the RSSI of surrounding WAPs. In practical terms, this
means the widespread deployment of Wi-Fi networks results in the detection of a large
number of WAPs, many of which are non-informative and redundant. Additionally,
some WAPs may have weak signals due to the considerable distance between the
user and the WAPs, leading to inconsistencies within the RM. These inconsistencies
complicate not only the classification process but also escalate the computational costs
during the online phase.

The classification process’s reliance on a vast database renders it impractical for
real-time systems due to the associated computational burden. Consequently, there
is a pressing need to mitigate computational costs to reduce time delays and conserve
memory resources in real-time systems. Strategies aimed at optimising the RMF
and reducing computational costs are imperative for enhancing the efficiency and
feasibility of real-time fingerprinting-based methods.

The framework we present demonstrates an auto-update system that updates its
models with new data, which can be useful in scenarios where the environment changes
over time. The models are evaluated in each iteration, allowing for the monitoring
of their performance as they update. We selected the Wk-NN algorithm for its
simplicity and effectiveness in many classification and regression tasks. The use of
PCA helps to reduce the dimensionality of the data, which can improve the efficiency
and performance of the k-NN models. The proposed framework also demonstrates
good practices in data preprocessing, such as the handling of missing values and
transforming the data to a suitable scale. Utilising correlation-based distance and
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inverse distance weighting in the k-NN models can improve their accuracy by giving
more importance to closer neighbours and features more correlated with the response.

Unfortunately, MATLAB lacks support for some advanced database management
strategies, such as distributed database management, caching, and prefetching.
These strategies are typically implemented at the database management system
(DBMS) level and would require a DBMS supporting these features, such as MySQL,
PostgreSQL, or MongoDB.

Nevertheless, we confidently provide a framework that effectively guides the
efficient design of Wi-Fi Fingerprinting IPS systems. Our approach has efficiently
optimised the RMF database, resulting in an overall improvement in system
performance when compared with baseline methods and state-of-the-art techniques
from the literature. Although using the updated dataset in a small amount may not
fully reveal future performance implications, it provides a good starting point for
exploring the best available options for designing an efficient IPS system.

5.6 Summary and Conclusion

5.6.1 Summary

This chapter investigated critical strategies for Radio Map Fingerprint (RMF)
optimisation within Wi-Fi based Indoor Positioning Systems (IPSs), focusing on
enhancing system accuracy, efficiency, and adaptability. The research specifically
addressed the challenges of signal heterogeneity due to device variability, the high
dimensionality of fingerprint data, the need for dynamic RMF updates, and the
efficient management of large fingerprint databases.

A quantitative, experimental approach was adopted using the UlJIIndoorLoc
dataset to evaluate a proposed suite of optimisation techniques. Key findings from
this investigation include:

e Heterogeneity Mitigation: The application of data preprocessing techniques,
notably signal standardisation and the use of an exponential data representation,
proved effective in mitigating RSSI variations arising from device differences.
This contributed to a significant reduction in mean positioning error from 15.84
metres (baseline) to 8.58 metres after preprocessing.

e Dimensionality Reduction: Principal Component Analysis (PCA) was
successfully employed to reduce the dimensionality of the RMF. It was
demonstrated that with an optimal number of principal components (e.g., 180
components for the tuned Wk-NN; or by retaining 99.5% explained variance),
the computational time for the positioning algorithm could be approximately
halved (e.g., from 28 seconds to around 12-14 seconds) while maintaining a
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mean positioning error (7.49 metres) very close to that achieved with the full-
dimension dataset (7.39 metres). This also contributes to reduced data storage
requirements.

e Auto-Update Mechanism: An auto-update mechanism for the RMF,
leveraging user queries and a weighted averaging approach, was proposed and
evaluated. Simulations indicated that this mechanism can lead to incremental
improvements in positioning accuracy over time (e.g., MAE slightly improving
from 7.5423m to 7.5385m after updates) by adapting the radio map to new data,
thereby reducing the reliance on manual recalibration.

e Database Management: Strategies for managing the incrementally growing
RMF, including the use of KD-trees for efficient nearest-neighbour search and
evaluation of data compression (though PCA was primarily adopted for its dual
benefit of dimensionality reduction and implicit compression), were considered.
The experiments showed that while auto-updates increase database size and
memory usage, the system maintained effective operation.

Collectively, these findings support the hypothesis that a structured approach
to RMF optimisation, incorporating data preprocessing, dimensionality reduction,
and adaptive update mechanisms, can substantially enhance the overall efficiency,
scalability, and long-term viability of Wi-Fi fingerprinting-based IPS.

5.6.2 Conclusion

The research presented in this chapter makes a significant technical contribution
by demonstrating a practical and effective framework for optimising Radio Map
Fingerprints in Wi-Fi based indoor positioning. The primary contribution is the syn-
ergistic application and evaluation of a multi-faceted optimisation strategy,
encompassing heterogeneity mitigation, PCA-based dimensionality reduction, and an
RMF auto-update mechanism, which collectively enhances system performance on a
large-scale, real-world dataset.

It was concluded that effective data preprocessing is crucial for addressing device
heterogeneity, leading to substantial initial gains in accuracy/[cite: 1804]. The strategic
use of PCA offers a compelling trade-off, drastically reducing computational load and
storage needs with only a minimal impact on positioning accuracy, a key finding
for developing scalable systems. Furthermore, the proposed auto-update mechanism
provides a pathway towards more adaptive and self-maintaining IPS, reducing the
lifecycle costs associated with manual RMF updates.

While the implemented database management techniques (KD-tree indexing and
the benefits of PCA for data size reduction) proved effective, the chapter also
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acknowledges the computational overhead and increased memory usage associated
with auto-updating large RMFs. These considerations highlight the practical
challenges in deploying fully autonomous and continuously learning RMF systems.

The findings affirm that optimised RMFs are fundamental to achieving efficient
and scalable indoor positioning. This chapter’s work provides valuable insights and
empirically validated techniques for addressing key limitations in Wi-Fi fingerprinting,
thereby contributing to the advancement of more robust and practical indoor
positioning solutions for applications such as navigation, asset tracking, and location-
based services. The optimised RMF and insights gained herein also inform the design
of the cloud-based architecture presented in Chapter 6.
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IPS Cloud-based System Design

In this chapter, we develop and design a framework for the cloud-based Indoor
Positioning System (henceforth referred to as CB-IPS) to simulate a CB-IPS system.
We conduct a thorough conceptual analysis and testing of the proposed design
framework and cloud paradigm to achieve an efficient design. CB-IPS is proposed
and tested to offer scalability, efficiency, and radio map storage management, where
central cloud and edge cloud layers are used to distribute datasets.

6.1 Introduction

The use of wireless technology has grown significantly. Many smart devices are
used indoors to foster intelligent environments, especially when there is a need for
location awareness. Cloud computing facilitates seamless implementation of the IPS,
particularly when scalability is required. The cloud infrastructure provides cost-
effectiveness and efficient performance to support many on-premise services.

CB-IPS offers positioning, localisation, and navigation services over the Internet.
By delivering these services, they eliminate the need for complex installations and
administration, leveraging cloud and other computing paradigms to ensure high
availability, computational power, storage capabilities, and ubiquitous computing,
thereby avoiding overloading the user’s device. However, the efficient design and
management of such systems present significant challenges due to the generation and
storage of large databases during the fingerprinting process.

The adoption of CB-IPSs has gained popularity due to their high availability,
computational and storage capabilities, and ubiquitous computing. Offering a range
of benefits, including preventing overloading of the user device [169], [214].

In this research, we explore the design considerations of indoor positioning
systems within the cloud environment. We also summarise the challenges of this
implementation and define the perspective of future indoor positioning and navigation
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systems through the cloud infrastructure. Then, the cloud architecture using an IPS
is described and envisioned.

We explore the use of cloud computing and edge cloud technologies in the
indoor positioning system to enhance performance and more effectively manage large
databases of fingerprinting data. In addition, we review current technologies used for
indoor positioning systems and survey ongoing research within this field. Although
many new positioning methods have been developed in recent years, little has been
done to integrate them into a robust, reliable, and cost-effective system, especially
when using cloud computing. To address this need, the chapter presents a clear step-
by-step approach that avoids key challenges in developing such a system, including
complexity, context, ambiguity, and data handling.

In this chapter, we develop and design an indoor positioning system using MAT-
LAB and the UJIIndoorLoc Dataset for system modelling and simulation. We explore
various design frameworks and algorithms to achieve an efficient design, supported
by conceptual analysis and system modelling, to manage large-scale fingerprint
databases. This exploration aims to provide a comprehensive understanding of the
system’s functionality and identify potential areas for improvement.

6.2 System Architecture

Let us first outline a conceptual model to offer a high-level overview of a Wi-
Fi fingerprint indoor positioning system. It is important to note that the actual
implementation of such a system may vary according to the specific requirements and
constraints of the indoor environment. Moreover, the system performance can be
further enhanced by integrating additional information, such as signal propagation
models, building layouts, or user movement patterns.

An IPS based on Wi-Fi fingerprinting typically comprises three main components,
as illustrated in Figure [6.1]  Firstly, there is the Wi-Fi infrastructure, which
encompasses a set of WAPs deployed throughout the indoor space. This infrastructure
is typically connected to an Internet Service Provider (ISP) for Internet access and
communication purposes.

Within this network, there is a Positioning Server (PS), which may be located
either locally on-premise or remotely in the cloud. This server facilitates the processing
and analysis of Wi-Fi signals to estimate the positions of mobile devices within the
indoor environment. Finally, the system enables IPS operations on mobile devices,
such as smartphones or laptops. These mobile devices use the Wi-Fi infrastructure
to communicate with the Positioning Server, allowing users to access location-based
services and applications.

This conceptual model provides a foundational framework for understanding
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Figure 6.1: Schematic of a Generic Wi-Fi IPS

the key components and functions of a Wi-Fi fingerprinting indoor positioning
system. However, it is essential to acknowledge that actual implementation may
involve additional complexities and considerations tailored to specific use cases and
environments.

The indoor Wi-Fi fingerprinting positioning system operates through two distinct
phases, offline and online, as discussed in Chapter B However, in our research,
conducted as a software-based simulation using an open-source Wi-Fi fingerprint
dataset (UJIIndoorLoc), we omit the offline phase. Therefore, our research focuses
exclusively on the online phase, and our modelling efforts do not involve direct
collection of RSSI data from WAPs. Instead, we rely on the available RSSI data
from the UlJIIndoorLoc dataset, processed through a range of algorithms. This
methodology, in conjunction with the intricate interplay between system components
(e.g., operation, matching, and data management), allows us to conduct system-
level modelling, facilitating the simulation and evaluation of diverse algorithms and
frameworks.

6.3 System Model

Our system model assumes an indoor area covered by a Wi-Fi-based indoor positioning
system featuring a WLAN deployed on a single floor of a building. We assume that
M WAPs are distributed throughout the area, ensuring comprehensive coverage. To
facilitate location estimation, we define a square grid on the two-dimensional floor
plan, limiting the estimated positions of MDs to points on this grid.

With the grid structured to include L points along both the x and y axes, we derive
L x L = L? potential positions within the area. Each location can be represented by
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a label (x,y), signifying its 2D coordinates (usually latitude and longitude) on the
floor plane, with all coordinates maintaining a zero height (z = 0). During the offline
phase, a total of N = L? RSSI vectors are collected through site surveys conducted at
predetermined grid points or RP. These RSSI measurements are meticulously recorded
in an RMF database, with each entry mapping the grid coordinates (z,y) to the
corresponding RSSI values from all WAPs in the area. In the online phase, a sample
RSSI vector is obtained from all WAPs at the current MD’s position. This vector is
then compared against all existing entries in the database, with the fingerprint entry
exhibiting the closest match used as an estimate of the user’s current location.

To formalise our system modelling, we utilise mathematical constructs, employing
sample and fingerprint vectors in estimating MD locations. The sample vector r
comprises RSSI samples measured at the MD from the M WAPs in the area, with each
r; (in dBm) treated as a Gaussian random variable. We assume mutual independence
among all 7;, with a known standard deviation ¢ (in dB) and the means E[r;| = p;.
Conversely, the fingerprint vector f in the RMF comprises a means of all RSSI random
variables at a specific location from the M WAPs. To determine the MD’s position,
we calculate the Euclidean distance (d(r, f)) between the RSSI vector sample r and
the fingerprint f (as per the distance definitions in Section .

The diagram in Figure illustrates a platform-independent system architecture
based on a server. In this scenario, the MD (typically a mobile phone) has no software
installed and only participates by periodically sending packets over Wi-Fi. This
requirement is typically satisfied by most Wi-Fi-enabled devices, including mobile
phones, as probe requests are sent at set intervals to search for new networks in the
area [215]. As no additional software can be added to the device, the handling of
RSSI data and positioning must be performed externally on a server.

In such a system, signals emitted by an MD are received by nearby WAPs and
forwarded to a central server, where a PS processes the data and provides access to the
RMF database. An MD in the area can then access the positioning system through
its browser or app using the user interface (UI) and Transmission Control Protocol
(TCP) applications to communicate with the server. The MDs in this system typically
run on Android operating systems, such as smartphones or tablets, because of their
open-source nature and large user base.

Additionally, in our system modelling, we incorporate the following constraints:

e The user or device is static with no movement to provide positioning, not a
trajectory.

e 2-D model coordinates (X, Y) are used instead of 3-D model (X, Y, Z) in room
space, although elevator dimensions (Z) are considered for predicting the floor
level.

137



Chapter 6. IPS Cloud-based System Design 6.4. Cloud Architecture

Indoor Environment _————_|ndoor Positioning System using Wi-Fi Fingerprinting

Positioning Server

Fingerprinting Database

\ -
/I’
\ ﬁ - S
\\(x, hz) yd
o '\5\___’/
0 |User sends RSSI measurements from availble WAPs to enuiry its position
3 P
° — B —
Mobile User Position Tl T
({ ~wap

Figure 6.2: Wi-Fi Fingerprinting Technique

6.4 Cloud Architecture

The design and structure of a cloud computing environment encompass the various
components and layers that make up the cloud architecture. According to the
deployment model or the service level agreement (SLA)[216], the cloud architecture
can be provided as:

e Infrastructure as a Service (IaaS): At the base level of the cloud architecture
lies Infrastructure as a Service (IaaS), which provides virtualised computing
resources over the Internet. This includes virtual machines, storage, and
networking components, allowing users to deploy and manage their applications
without having to invest in physical hardware.

e Platform as a Service (PaaS): Paa$S builds on top of TaaS, offering a platform
for developers to build, deploy, and manage applications without worrying about
the underlying infrastructure. PaaS providers offer tools and services such
as development frameworks, databases, and application runtime environments,
streamlining the application development process.

e Software as a Service (SaaS): SaaS delivers software applications over the
Internet on a subscription basis. Users can access these applications through a
web browser without having to install or maintain any software locally. SaaS
offerings cover a wide range of applications, including email, web applications,
and more.
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Cloud architecture can be deployed in various availability models|216], including
public, private, and hybrid clouds. Public clouds are hosted and managed by third-
party providers, offering resources to multiple tenants over the Internet. Private
clouds, on the other hand, are dedicated to a single organisation and hosted either
on-premise or by a third-party provider. Hybrid clouds combine elements of both
public and private clouds, allowing organisations to leverage the benefits of both
deployment models. One of the key advantages of cloud architecture is its ability to
scale resources up or down based on demand. Scalability refers to the ability to add
or remove resources dynamically to handle fluctuations in workload, while elasticity
refers to the automatic scaling of resources in response to changes in demand|216).

Overall, cloud architecture plays a crucial role in enabling organisations to harness
the power of cloud computing, providing a scalable, flexible, and cost-effective
platform for deploying and managing their I'T resources and applications.

6.4.1 Cloud Paradigms

Cloud computing is a key technology that enables large-scale technological innovation.
As emerging technologies like IPS continue to evolve, cloud platforms offer a diverse
array of computing paradigms|140], known as:

e Cloud Computing (CC): Cloud computing refers to the delivery of computing
services, including servers, storage, databases, networking, software, and more,
over the Internet (the cloud). Cloud computing enables users to access
resources and services on demand, without the need for on-site infrastructure or
management. It offers scalability, flexibility, and cost efficiency to organisations
of all sizes.

e Edge Computing (EG): Edge computing extends the capabilities of cloud
computing to the edge of the network, closer to the source of data generation or
consumption. In edge computing, data processing and analysis are performed
locally on edge devices, such as routers, gateways, or [oT devices, rather than
relying solely on centralised cloud servers. This reduces latency, bandwidth
usage, and dependency on cloud infrastructure, making it ideal for real-time
applications and use cases where data needs to be processed quickly.

e Fog Computing (FC): Fog computing is an extension of edge computing that
emphasises the distribution of computing resources and services between the
cloud and the edge of the network. In fog computing, intermediate computing
nodes, called fog nodes, are deployed at various points in the network to provide
computing, storage, and networking services closer to the edge devices. Fog
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computing enables efficient data processing, analysis, and storage at the network
edge, while still leveraging the scalability and resources of the cloud.

e Mist Computing (MC): Mist computing is a newer paradigm that focuses on
pushing computing and data processing even closer to the data source than edge
computing. Mist computing involves deploying lightweight computing resources,
such as micro data centres or edge servers, directly on or near the edge devices
themselves. This allows for ultra-low latency and real-time processing of data
at the device level, without the need to transmit data to centralised cloud or
edge servers. Mist computing is particularly suitable for highly distributed
and latency-sensitive applications, such as industrial IoT, smart cities, and
autonomous vehicles.

Although cloud computing provides centralised computing resources over the
Internet, edge computing, fog computing, and mist computing aim to distribute
computing resources closer to the edge of the network or data source, allowing faster
response times, improved scalability, and better support for real-time applications
[140]. The advancement of computing paradigms of using Edge and Fog computing
in IPS is quite good, as a network of peripheral devices such as mobile phones and
WAPs, which are connected to the Fog layer Routers, gateways, and servers to perform
indoor position estimates. Unlike CC, which processes data in a central public cloud,
connected devices on the EC and FC paradigms send data to the cloud or receive data
from the cloud as and when needed. Such an architecture reduces latency and enables
energy-efficient data processing. EC is best suited for real-time sensitive systems such
as IPS with strict deadlines.

However, because of resource limitations in computing power and memory, EC
is insufficient for meeting some of the system requirements. Therefore, the FC
architecture concept is the paradigm that can process data faster than CC and closer
to EC performance. Both EC and FC can provide a decentralised service across a
large area, which serves the purpose of scalability for the IPS system that a cloud-
based solution can offer. Thus, the IPS service would greatly benefit from real-time
processing and lower latency on a larger scale. Additionally, the service can be
geographically distributed for coverage scalability or in the event of instabilities in
the central data processor [140], [216], [217].

Furthermore, cloud platforms offer versatile deployment options, including private,
public, community, or hybrid clouds, thereby catering to a variety of organisational
requirements and preferences [216]. This strategic shift towards cloud-based archi-
tectures not only aligns with the evolving needs of indoor positioning services but
also underscores the importance of leveraging cloud technologies in enhancing system
efficiency and scalability.
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6.4.2 TIPS Cloud Challenges

Numerous challenges associated with the deployment of IPS on the cloud have been
documented [140], [216]-[219]. Common specific challenges in CB-IPS include the
following;:

e Privacy and Security: Security remains a fundamental concern within the
cloud computing paradigm, encompassing issues such as the loss of confidential
user data, data leakage, and breaches of personal privacy [218]. However, these
concerns can be mitigated through data encryption, adherence to standards,
and service level agreements [216].

e Protocols and Standards: CB-IPS may employ diverse protocols to establish
and maintain communication between various cloud-computing paradigms and
edge devices. Given the heterogeneity of devices used by users and service
providers, adherence to protocols is crucial to mitigate communication issues
and ensure a common language [216].

e Real-time (Latency-sensitive) Services: Positioning and indoor navigation
services require real-time responses with minimal latency to ensure a seamless
user experience. The inherent distance between cloud computing location
services and end-users, coupled with communication and processing overheads,
introduces latency in service delivery [167]. However, cloud models like MC and
FC may help reduce latency to some extent as they are closer to the end-user.

Furthermore, the main limitation of the cloud-based Wi-Fi fingerprinting ap-
proach, as proposed by contemporary systems such as [167], [220], [221], is its
dependence on a server-centric system architecture. While this architecture enables
the system’s functionality, it introduces several critical issues. The addition of a
positioning server increases hardware costs and creates a single point of failure. If
the server encounters hardware failures, power outages, or security breaches, the
availability of the location service is compromised [216].

In addition, server access involves communication costs and requires continuous
network connectivity, which may not be feasible during network downtimes due to
maintenance or disasters. This compromises the overall robustness of the positioning
system. As a result, system administrators must implement strategies such as backup
servers, uninterrupted power supplies, encryption, and authentication protocols to
ensure service availability and security. However, these measures inevitably increase
the deployment and operational costs of the positioning system.
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6.4.3 CB-IPS Design

The initial design phase involved a comprehensive review of theoretical work on
CB-IPS [140], [169], |170], [173], [216]-[218], [221]-[223], analysing various methods
and systems employed. Subsequently, conclusions drawn from these studies were
synthesised to develop an efficient design for CB-IPS.

Traditionally, indoor positioning services have been based primarily on on-premises
platforms such as LAN and WAN. However, the growing interest in indoor positioning
has spurred the development of methods and techniques for cloud-based indoor
location services. This transition extends from back-end services to end-to-end cloud
solutions, accommodating various service models, such as SaaS, PaaS, or IaaS [217].

From a software and system development perspective, the design of CB-IPS can
be segmented into three key stages: UI Design, Data Design, and Process Design
[224]. Although software developers typically prioritise user interfaces, this research
concentrates on the data and process design aspects of the system, as depicted in
Figure [6.3], to meet the user’s specific functional and non-functional requirements.

Functional requirements (FRs) govern the execution of the system and encompass
behavioural specifications regarding inputs and outputs. In the context of CB-
IPS, these may include ensuring resource and service availability, responding to user
requests, calculating position estimations, and transmitting user location estimations.
These functional requirements, often supported by non-functional requirements
(NFRs), are also known as quality requirements. NFRs establish criteria to support
the operation of the system, focusing on aspects such as scalability, reliability, and
security. Unlike functional requirements, NFRs delineate the desired behaviour of
functions, also referred to as performance requirements. Each utilisation of these
NFRs delineates behavioural scenarios through one or more functional requirements
[225]. For example, an NFR for scalability may dictate that the system should be able
to handle a tenfold increase in user traffic without significant performance degradation.
Similarly, a reliability NFR may specify that the system must maintain an uptime of at
least 99.9% over a specified period. Lastly, a security NFR may require that user data
be encrypted both in transit and at rest to mitigate the risk of unauthorised access.
Each of these NFRs influences the functional requirements and design decisions within
the IPS framework.

Furthermore, within FRs, achieving varying levels of accuracy in indoor positioning
depends on the level of service and the nature of the activities that are being
performed. For example, while precise positioning is critical for robot navigation,
a university environment may not require high positioning accuracy to locate
classrooms. Consequently, algorithms executed on High-Performance Computing
(HPC) platforms are likely to yield superior position estimation and accuracy
compared to those on edge or fog computing. The emphasis on functional and non-
functional requirements in CB-IPS design underscores the importance of addressing
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Figure 6.3: Design Requirements Process for Cloud-based IPS

current research focuses in fingerprint positioning. A primary objective in this
domain is to reduce computational complexity while simultaneously improving
positioning accuracy. This goal is particularly significant in Wi-Fi positioning, where
the positioning terminal typically comprises a battery-powered device with limited
computational capabilities. Challenges further arise with the management of large
fingerprint databases, as exhaustive searching of all fingerprints demands significant
computational resources, thereby compromising positioning efficiency.

Given an understanding of the capabilities and limitations of cloud computing,
IPS stands to benefit significantly from a hybrid combination of cloud paradigms.
This approach aligns with user non-functional requirements, such as fast response
time and privacy preservation, which can be effectively met through edge computing.
Meanwhile, central cloud resources can handle high-performance computational
operations. Thus, cloud computing emerges as a strategic solution, with PaaS offering
a particularly appealing option due to its flexibility and control. In our system design
case, PaaS proved to be the most suitable option.

By harnessing the computational power of cloud servers and the flexibility of
computing paradigms, the burden on the positioning terminal can be mitigated,
leading to improved efficiency and scalability in positioning services. This strategic
shift towards cloud-based architecture not only enhances computational capabilities
for fingerprint positioning but also holds promise for addressing the evolving needs
and complexities of indoor positioning systems.

6.5 Proposed CB-IPS Architecture

Based on the insights gleaned from our preceding sections and the outcomes of our
testing results, particularly in Chapters (4 and 5) where notable achievements were
observed in the classification task, achieving a commendable 100% building hit rate
and approximately 96% floor hit rate. However, despite these successes, the regression
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tasks concerning longitude and latitude did not show significant improvement. This
leads to the following conclusion:

Initial Assumptions:
e BLD = 100% represents the certainty of being within a particular building.
e ['LO =~ 96% represents the confidence level in floor estimating.
Identifying the Building (BLD):

BLD = 100%.
Estimating the Floor (FLO):

FLO ~ 96%.
Estimated Floor: FLO.

Utilising Floor Fingerprint Data:

The pseudocode of the algorithm is presented in the Algorithm Appendix,
Algorithm [5] as a function. We incorporate both above-floor and below-floor data, if
available, to refine the estimation of the target floor. For example, if BLDO is identified
with FLO1, this forces the model to prepare floor data, including the current floor
FLOL1, the below floor FLOO and the above floor FLO2.

Enhancing Computational Algorithm:

By integrating the estimated floor F' LO and complementary data from adjacent
floors, our goal is to improve the precision of regression tasks to determine longitude
and latitude.

Regression Task for Longitude and Latitude:

Algorithm(BLD, FLO, Above-Floor Data, Below-Floor Data)

6.5.1 Model Description

Figure[6.4]illustrates the high-level architecture of the proposed IPS fingerprint indoor
positioning system based on the cloud. The proposed CB-IPS architecture presents
an innovative approach to serving multi-floor buildings by integrating central cloud
computing and edge computing paradigms. To mitigate computational complexity,
we propose utilising cloud-based distributed fingerprinting methods tailored for multi-
building and multi-floor settings. In this architecture, each floor is assigned a
dedicated PS operating on the PaaS model, facilitating online positioning using
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Algorithm 5 loadFloorData(buildingID, floorID)

floorsLoaded <— empty cell array
% Load current floor
filename «+ constructFilename(buildingID, floorID)
if filename exists as a file then
load data from filename
floor Data < data
append filename to floorsLoaded
display ”Current Loaded floor: filename”
else
raise error " File filename does not exist.”
end if
% Load adjacent floor above if it exists
filename_adj_above <+ constructFilename(buildingID, floorID + 1)
if filename_adj_above exists as a file then
load data from filename_adj_above
append data to floorData
append filename_adj_above to floorsLoaded
display ” Above Floor Loaded: filename_adj_above”
end if
% Load adjacent floor below if it exists
if floorID > 0 then
filename_adj_below <+ constructFilename(buildingID, floorID - 1)
if filename_adj_below exists as a file then
load data from filename_adj_below
append data to floorData
append filename_adj_below to floorsLoaded
display ”Below Floor Loaded: filename_adj_below”
end if
end if
return floorData
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Figure 6.4: Diagram of Proposed CB-IPS

current floor data alongside existing data from adjacent floors. This allocation
minimises computational costs and enhances system efficiency.

For simulation and evaluation purposes, we used the UJIIndoorLoc dataset, which
encompasses three buildings with varying floor structures. Virtual provision servers
at the edge layer serve as virtual machines (VMs) for online floor operations. During
positioning operations, two options are considered: either preloading prepared RMFs
onto each floor server or dynamically loading required floor data during simulation
operations to streamline system complexity. We opt for the latter option as expressed
in the Algorithm [5, to simplify system operations, avoiding the need for establishing
21 edge servers and database partitions as required by the former option.

The partitioning technique is employed to utilise only relevant floor data for
positioning operations on each specific floor, incorporating data from adjacent floors
if applicable. This clustering criterion minimises noise from distant sources of RSSI in
the RMF, enhancing the accuracy of position estimations by ensuring a more accurate
reflection of RP distributions.

The data centre or central cloud serves as the system’s hub, overseeing data flow
and operations, as shown in Figure[6.5] Securely hosts accumulated big data from the
fingerprint database and identifies the correct building and floor for communication
with edge servers, facilitating the loading of specific floor data.

Database partitioning and clustering strategies enhance retrieval efficiency and
reduce computational complexity by segmenting radio map fingerprinting data based
on building ID and floor number before regression model training. This approach
facilitates the training of separate models for each floor, further optimising retrieval
efficiency.
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Figure 6.5: Schematic CB-IPS System Design

Our proposed design adopts a caching mechanism and a distributed approach
to construct the fingerprint database, facilitating efficient and scalable database
management. We also employ the proposed Wk-NN algorithm described in for
location estimation that balances simplicity and efficiency, making it ideal for real-
time IPS operation, leveraging the scalability and elasticity of cloud computing to
manage the fingerprint database and perform location estimation tasks effectively.

6.5.2 Implementation Environment
The CB-IPS prototype was fully implemented and evaluated in MATLAB using the
experimental setup discussed in Section [6.5.7] Key steps were as follows:

e Data Import & Preprocessing:

— The UJIIndoorLoc dataset (three buildings, 1,174,692 RSS records) was
imported using built-in MATLAB functions (readtable, table2array).

— Outliers and missing RSS values were handled via median filtering and
simple imputation.

— Z-score normalisation (Section 5.3) and PCA-based dimensionality reduc-
tion (Section 5.4) were applied using zscore and pca functions.

e Cloud—Edge Architecture Simulation:

— The central cloud node was emulated as a MATLAB class (CloudServer)
managing the global fingerprint database.
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— Edge nodes were instantiated as separate MATLAB objects (EdgeNode),
cach loading floor-specific RMFs via the loadFloorData function (Algo-
rithm [5)).

— Communication between cloud and edge was simulated through function
calls and shared MATLAB workspaces rather than network sockets.

e Positioning & Evaluation:

— The weighted £-NN algorithm (Section was executed at the edge node
level via a MATLAB script (runPositioning.m).

— Batch queries were simulated by reading a subset of the dataset and issuing
concurrent calls (via parfor loops) to emulate up to 500 simultaneous
requests.

— Response times and localisation errors were recorded using tic/toc and
aggregated for performance plots (Figs 6.6-6.9).

This setup ensured that all components of the proposed CB-IPS architecture
(Fig. were faithfully represented within a single MATLAB environment, allowing
reproducible and controlled experimentation on a standard laptop platform.

6.5.3 Scalability Measures in CB-IPS

The scalability of our proposed system is intrinsic to its design, leveraging the
capabilities of cloud computing to accommodate any building or floor within the
system. Regardless of the number of users or the geographic area covered, our CB-
IPS system can dynamically adjust to meet demand fluctuations, benefiting from the
scalability features offered by cloud technology.

6.5.4 Privacy Measures in CB-IPS

The proposed system prioritises user privacy by storing only a dataset in the central
cloud database for the detection of buildings and floors. This database is used only for
the classification task when identifying the correct building and floor for the system.
Other responses for the regression task (e.g. longitude and latitude) that reveal the
estimated position are hosted in the edge layer by floor servers. Thus, user-sensitive
information regarding positioning is kept separate in the edge layer, not in the central
cloud.

148



Chapter 6. IPS Cloud-based System Design  6.5. Proposed CB-IPS Architecture

6.5.5 Response Time Optimisation Strategies

In our proposed system, the implementation of the edge-cloud paradigm ensures that
computations are performed closer to the user, thereby guaranteeing quick response
times. To mitigate inherent latency in a cloud environment, where operations are
conducted remotely from the user’s physical location, our system employs two levels
of online operation, each optimised for efficient response times:

1. Cache Mechanism: The system incorporates a cache mechanism that
instantly responds if the user’s query is present in the system memory. This
mechanism enhances response times by retrieving pre-stored data from memory,
eliminating the need for time-consuming computations.

2. Floor Servers on Edge Layer: The second level of operation involves floor
servers situated at the edge layer. As seen in Figure by decentralising
processing power closer to the user, these servers facilitate faster responses to
online operations, significantly reducing latency.

6.5.6 Resource Management Strategies

Our system model incorporates several resource management strategies to optimise
memory usage and processing efficiency:

e Caching Memory-Efficient: We implement a Least Recently Used (LRU)
caching strategy within the cache mechanism. The LRU cache removes the
least recently used items first when the cache is full and a new item needs to
be added. This strategy ensures that the cache size never exceeds the specified
maximum size, helping to control memory usage efficiently. The cache size can
be adjusted based on specific requirements and available system memory. Our
caching implementation is presented in Algorithms Appendix, Algorithms []
and

e Edge-Layer Storage Optimisation : Floor data is loaded only for floor-
specific operations, conserving system storage space and processing resources,
as presented in our Algorithm [5] Additionally, Compression and decompression
strategies can be implemented to further optimise storage at the edge layer.

In this system, the data for each floor is stored separately in the local or remote
edge server. When a user’s query is received, the system first checks the cache memory
for an exact match. If an exact match is found, the system reveals the position.
Otherwise, the query is sent to the central cloud to identify the building and floor.
After identifying the building and floor, the system retrieves the relevant floor data
from the edge server, estimates the position using the floor storage data, sends the
estimated position to the user, and saves a copy in the cache data file for future use.
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Algorithm 6 LRUCache Implementation

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

procedure pUT(key, value)
if obj.cache.isKey(key) then
node <— obj.cache(key)
node.value < value
obj.IruList.moveToHead(node)
else

if obj.cache.Count > obj.maxSize then
node < obj.Irulist.removeFromTail()

obj.cache.remove(node.key)
end if

newNode < obj.lruList.insert AtHead (key)

new N ode.value < value
obj.cache(key) < newNode
end if
end procedure
procedure GET(key)
if obj.cache.isKey(key) then
node < obj.cache(key)
obj.IlruList.moveToHead(node)
return node.value
else
return ||
end if
end procedure
procedure ISKEY (key)
return obj.cache.isKey(key)
end procedure
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Algorithm 7 Doubly Linked List

1: procedure INSERTATHEAD (key)
2 newNode < Node(key)
3 if isempty(obj.head) then
4 obj.head <— newNode

5: obj.tail <— newNode

6 else

7 newNode.next < obj.head

8 obj.head.prev <— newNode

9 obj.head <— newNode

10: end if

11: obj.numMisses <— obj.numMisses + 1
12: return newNode

13: end procedure

14: procedure REMOVEFROMTAIL

15: node < obj.tail

16: if —isempty(obj.tail) then
17: if obj.tail.prev # [| then
18: obj.tail < obj.tail.prev
19: obj.tail.next < ||

20: else

21: obj.head + []

22: obj.tail + ||

23: end if

24: end if

25: return node

26: end procedure
27: procedure MOVETOHEAD(node)
28: if node # obj.head then

29: if node == obj.tail then

30: obj.tail <— node.prev

31: obj.tail.next < ||

32: else

33: node.prev.next <— node.next
34: node.next.prev <— node.prev
35: end if

36: node.prev < ||

37: end if
38: end procedure
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Algorithm 8 Node Class

1:
2
3
4:
5
6:

procedure NODE(key)

obj.key < key
obj.value < ||
obj.prev < [|
obj.next « [|

end procedure

6.5.7 Experimental Setup

The proposed CB-IPS was implemented and tested using MATLAB R2023a on a
Lenovo laptop (Intel(R) Core(TM) i5-8265u CPU@ 1.60GHz, 1.80 GHz, 8 GB of
RAM, Windows 10, 64-bit). All components of the system—including the central
cloud server, edge floor nodes, and caching mechanism—were implemented as modular
simulation scripts within MATLAB. Although simulated on a single device, the
architecture was logically partitioned to emulate distributed cloud-edge operations,
thereby maintaining architectural fidelity for performance evaluation.

The experimental setup involved the following steps:

Dataset Import: UJlIndoorLoc Training and Validation datasets were
imported into the simulation environment.

System Implementation: The proposed CB-IPS architecture, incorporating
an edge computing layer for floor-specific positioning and a central cloud server
for building and floor detection, was implemented.

User Query Representation: Each test scenario was represented by a user
query, consisting of RSSI values at RPs, from the Validation dataset at 100%
for baseline and with 30% used for caching scenarios.

Positioning Operation: User queries were sent to the system to initiate the
positioning operation.

Cache Memory Check: Upon receiving a user query, the system first checks
the cache memory for an exact match. If found, the system returned the
corresponding position; otherwise, the query was forwarded to the central cloud.

Building and Floor Identification: The central cloud identified the building
and floor associated with the user query and communicated with the respective
edge floor server to estimate the position using stored floor data.
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e Position Estimation: A fingerprinting algorithm, such as weighted k-NN, was
implemented to estimate the user’s location on the identified floor.

e Result Delivery: The estimated position was sent to the user, and a copy was
stored in the cache data file for future reference.

This experimental setup allowed a thorough evaluation of the proposed CB-
IPS architecture in various scenarios, ensuring robustness and scalability in indoor
positioning applications.

6.5.8 Experimental Conditions

To experiment, it is necessary to determine the floor on which the user is located so
that only the related fingerprint dataset for that particular floor is run in the edge
layer. This can be achieved in two ways:

e Firstly, by establishing a physical connection link to the edge layer that only
checks the user inquiries on the local edge storage of that particular floor.
However, this topology is beyond our scope.

e The second, to analyse the user queries, which are RSSI measurements, to
determine which floor the user is on. This process needs to be done on the
central cloud, which hosts the entire dataset of buildings/areas, to infer which
floor the user is on and then redirect to the corresponding floor edge layer for
processing the position estimation.

Simulating cloud computing will involve integrating cloud services into the
proposed IPS model. This includes simulating data transmission from the user’s
mobile device to the cloud, cloud-based processing, and result retrieval. Synthetic data
generation will not be employed; instead, existing datasets will be used to simulate
users’ RSSI readings and environmental conditions, which are essential for testing
algorithms in realistic scenarios.

6.5.9 Evaluations and Testing Scenarios

Positioning accuracy is evaluated using the metrics described in (3.2.2] For evaluation
purposes, we identified two dataset configurations and different scenarios to conduct
our experiments:

1. First: Using complete Validation dataset at 100% without caching implemen-
tation. This is the baseline to evaluate the proposed system. The following
testing scenarios were implemented:
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Scalability Testing: Simulates increasing numbers of concurrent user
queries to measure response times and throughput under load. The
system’s scalability in accommodating a high demand of concurrent user
queries is a good measure to test how the system is capable of delivering
its services under different loads.

Fault Tolerance Testing: Evaluates the system’s resilience to failures
in cloud components, edge components, and data storage by simulating
failure scenarios and measuring recovery time and availability. For the CC
component, we simulate a failure by introducing delays of 300 milliseconds
as errors and measure the time taken to recover and process the queries
correctly. The Edge component and data storage failures are simulated
with delays of 200 milliseconds and 100 milliseconds, respectively.

Latency Testing: Assesses the system’s response time under different
scenarios, including normal load, high load, and poor network conditions.
Under normal load, queries are processed without any artificial delays;
under high load, a 100 millisecond delay was introduced, and under poor
network conditions, a 500 millisecond delay was introduced due to packet
loss, for example.

2. Second: Using a copy of 30% from the validation dataset to evaluate the caching
mechanism, and to evaluate the proposed system. To ensure a systematic
approach to testing and validating the effectiveness of our caching mechanism,
the following scenarios were applied:

Cold Start Scenario: Test performance when the cache is empty.

Repeated Query Scenario: Test repeated queries to ensure the cache hits
are being leveraged.

Mixed Training and Testing: Ensure caching works during both phases.
Measure Performance: To ensure measurements for all metries are included.

Analyse Results: Compare the metrics for different scenarios to the
baseline.

To gauge the effectiveness of our system, evaluations were conducted across
diverse scenarios and parameters to thoroughly assess the system’s performance under
different conditions. We meticulously analysed the experimental results, aiming to
understand how our proposed system improved accuracy, scalability, and efficiency
compared to traditional IPS systems.

Our evaluation procedure is robust, providing valuable information on the
strengths and limitations of our proposed system. This rigorous assessment framework
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Metrics | Value (m)
MAE 7.3893
RMSE 11.0641

Table 6.1: Positioning Error Metrics

facilitated informed decision-making and laid the foundation for further optimisations
and advancements in indoor positioning technology.

6.6 Results and Discussion

In this chapter, our main focus is on improving the regression tasks; hence, the
accuracy of the system in identifying the correct building and floor is not a concern,
as presented in our proposal assumptions.

6.6.1 Dataset Configuration (1)
6.6.1.1 Positioning Accuracy

We test the positioning accuracy of the system by comparing the estimated positions
with the ground truth positions using the complete validation dataset. Table
shows different evaluation metrics. The MAE of the proposed system is 7.3893, which
is slightly improved compared to our previous results of 7.39.

As we can see in Figure[6.7], the 2D plot visualises the true vs. estimated positions
when using the full validation dataset. Figure shows the empirical cumulative
distribution function (ECDF) of positioning errors. The plot provides a comprehensive
look at the distribution of positioning errors. Key observations include:

e Approximately 70% of errors are less than 10m.
e 90% of errors are less than 20 m.

e The maximum error is bounded at approximately 60 m.

Figure shows a histogram representing the distribution of positioning errors
for the proposed cloud-based indoor positioning system. The x-axis represents the
positioning error in metres, while the y-axis represents the probability density. From
the histogram, we can observe that the highest bar corresponds to positioning errors
between 0-10m, indicating that a significant portion of the estimated positions
have relatively small errors within this range. The probability density gradually
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Figure 6.6: ECDF of Positioning Errors using full validation dataset

decreases as the positioning error increases, with some smaller bars representing larger
positioning errors of up to approximately 50 - 80 m.

This distribution of positioning errors suggests that the system is capable of
providing reasonably accurate position estimates for most cases, with a clustering
of errors within the lower range. However, it also highlights the presence of some
larger errors, which could be attributed to various factors such as signal interference,
environmental conditions, or limitations in positioning algorithms.

The proposed CB-IPS system achieves 90% accuracy within a 20 m error range.
While this level of granularity may not be sufficient for applications requiring room-
level accuracy (e.g., surgical navigation or AR gaming), it is acceptable for floor-
level navigation in large public buildings, rough indoor asset tracking, emergency
personnel guidance, or visitor assistance systems in hospitals or universities. These
use cases tolerate higher localisation uncertainty and prioritise scalable deployment
and reliability.

Overall, the distribution of positioning errors provides a comprehensive view
of the system’s performance and serves as a starting point for further analysis,
benchmarking, and optimisation efforts. By combining these results with domain
knowledge and application requirements, researchers can refine the proposed system
and contribute to the advancement of indoor positioning technologies.
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6.6.1.2 Scalability

We evaluated the system’s ability to handle an increasing number of concurrent user
queries. By simulating multiple users requesting position estimates simultaneously.
We obtained the following outcome. The line plot in Figure shows the system’s
response times under different numbers of concurrent user queries. As shown in
Figure[6.9] the system exhibits an initially high response time at very low concurrency
levels, which then sharply decreases and stabilises as the number of concurrent queries
increases. However, the response time appears to grow linearly, suggesting that the
system can handle higher loads without experiencing exponential growth in response
times.

The observed linear growth in response times is a positive indication of the system’s
scalability. However, it is important to note that the maximum number of concurrent
queries tested is 1,000, which may not be representative of the actual load the system
might encounter in real-world scenarios. Further testing with higher loads or stress
tests could provide more insight into the system’s scalability limits.

In addition, Figure shows a response time anomaly, where the initial rise in
response time for a small number of concurrent queries (e.g., 2-10) is attributed to
system initialisation overhead and MATLAB interpreter latency. As concurrency
increases, resource utilisation improves, and latency is amortised across multiple
threads, reducing the average response time. Although not shown in Figure it
is anticipated that system saturation could occur at concurrency levels beyond those
tested, potentially resulting in increased response times.

Furthermore, Figure displays the system’s throughput (number of queries
processed per second) under different numbers of concurrent user queries. The
throughput increases linearly with the number of concurrent queries, which aligns with
the linear growth observed in the response times in Figure [6.9 The linear increase
in throughput suggests that the system can effectively utilise additional resources
(e.g., cloud computing resources) to handle higher loads. However, it is important
to consider the potential trade-off between throughput and response times, as higher
throughput may come at the cost of increased response times.

6.6.1.3 Fault Tolerance

We test the system’s ability to handle failures or errors in the cloud component, edge
component, and data storage, introducing simulated failures, and observe the system’s
behaviour. Figure shows a bar chart that represents the availability of the system
in a different single failure scenario. The availability is approximately 97% across the
three failure scenarios, indicating that the system can recover from a cloud component
failure relatively quickly and maintain a high level of availability.

Figure displays the recovery time for the three different scenarios (cloud
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Figure 6.11: Availability for Failure Scenarios

component, edge component, and data storage). The recovery time represents the
duration it takes for the system to recover from the failure and resume normal
operations. The recovery time for the cloud component is around 17 seconds, making
it the longest recovery duration. In contrast, the data storage component takes about
15 seconds, and the edge component has the shortest recovery time of roughly 9
seconds.

While the availability result in Figure seems promising, the recovery time of
17 seconds for a cloud component failure may be considered relatively high for a real-
time positioning system. In practical scenarios, users might require faster recovery
times to ensure uninterrupted service. Potential solutions could include implementing
redundancy or failover mechanisms for critical cloud components, as well as improving
failure detection and recovery processes.

Overall, the results demonstrate the system’s ability to handle failures, scale to
manage increased loads, and maintain reasonable response times and throughput
under varying conditions. However, there are areas for improvement, such as reducing
recovery times for critical failures and further optimising the system’s performance
under extreme loads.

It should be noted that these results are based on simulations, and real-world
performance may differ due to various factors, such as network conditions, hardware
specifications, and the complexity of positioning algorithms. Continuous monitoring,
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optimisation, and load testing in real-world scenarios would be necessary to ensure
the system’s reliability and performance in production environments.

6.6.1.4 Latency

Figure [6.13| shows the response times for position estimation in the proposed cloud-
based indoor positioning system under different load and network conditions. It
compares the system’s latency in three scenarios:

e Normal Load: The system operates under typical computational load and
network conditions. The response time is approximately 1.2 seconds.

e High Load: The system is subjected to increased computational load,
simulating a scenario with many concurrent users or complex positioning
calculations. Despite the high load, the response time remains relatively stable
at around 1.4 seconds, showing only a slight increase compared to the normal
load scenario.

e Poor Network Condition: This scenario tests the system’s performance
when network connectivity is suboptimal, such as in areas with weak signal
strength or high network congestion. The response time increases to about 1.8
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Figure 6.13: Response Times for Different Scenarios

seconds, indicating that network conditions have a more significant impact on
the system’s latency compared to computational load.

The results demonstrate that our CB-IPS maintains a reasonable response time of
under 2 seconds across all tested scenarios. The system architecture and design seem
to handle variations in computational load effectively, as evident from the minimal
difference in response times between the normal and high load scenarios. However, the
system’s performance is more sensitive to network conditions, with poor connectivity
resulting in a noticeable increase in response time. This highlights the importance
of a reliable and efficient network infrastructure for the optimal functioning of our
cloud-based positioning system.

Our proposed CB-IPS using edge computing improves the system’s resilience
against poor network conditions, where some positioning calculations are performed
closer to the user devices. This helps reduce the dependency on network connectivity
and potentially improves response times in challenging network environments.

6.6.2 Dataset Configuration (2)

In this test, we used a 30% copy of the validation dataset to test caching performance.
When a new user query comes in, the system will first check the cache memory. If
there is an exact match, it will return the position. If not, the query will be sent
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to the central cloud to identify the building and floor, then communicate with the
respective edge-floor server to estimate the position using the stored floor data. The
estimated position will then be sent to the user, and a copy will be stored in the cache
data file for future use.

6.6.2.1 Caching Performance

We tested the effectiveness of the caching strategy by evaluating the cache hit
rate, memory usage, and overall performance across different scenarios. The results
demonstrate varying impacts on performance metrics when introducing caching into
the proposed cloud-based indoor positioning system. As we can see in Figure [6.14
the baseline scenario is compared with a cold start scenario. The MAE and RMSE
values are identical between the two scenarios (7.39 m for MAE and 11.06 m for
RMSE), indicating that the introduction of caching does not impact the positioning
accuracy when the cache is empty. While in Figure [6.15] introduces a mixed scenario
in which some queries can be served from the cache, while others require processing
by the central cloud and edge floor servers. Compared to the baseline, the mixed
scenario shows a slight increase in RMSE (from 11.06 m to 11.14 m) and MAE (from
7.39 m to 7.42 m). This suggests a minor degradation in positioning accuracy in the
mixed scenario. Figure focuses on the impact of repeated queries. Contrary to
the initial analysis, the repeated queries scenario shows a significant increase in both
RMSE and MAE compared to the baseline. RMSE increased from 11.06 to 23.36 m,
while MAE increased from 7.39 to 23.36 m. This substantial increase in error metrics
suggests that the caching mechanism may introduce errors when handling repeated
queries, possibly due to outdated or imprecise cached positions.

Figure [6.17| provides a comprehensive view of the system’s performance metrics
across all scenarios. The MAE values confirm the observations from the previous
figures. Regarding execution time, the cold start scenario shows a slight improvement
over the baseline. The mixed scenario demonstrates an increase in execution time,
likely due to both training and testing samples being processed for cache testing.
Unsurprisingly, the repeated queries scenario exhibits the lowest execution time, only
1.82 seconds, which is expected due to a small number of queries repeated to the
system, which can easily provide instant position estimation without involving the
CC and other resources, such as processing and calling the RMF. Therefore, in the
repeated queries scenario, the MAE has the highest error because the positioning
accuracy is calculated against 30% of the datasets that do not adequately represent
the entire dataset, resulting in a high error rate.

In conclusion, while caching demonstrates potential benefits by optimising system
resource usage, the observed increase in positioning errors for repeated queries and
the rise in execution time in the mixed scenario highlight areas needing further
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investigation. We suggest that the caching strategy may require refinement to handle
mixed scenario queries more effectively and to minimise execution time. Future work
should focus on optimising the caching mechanism to address these issues and enhance
overall system performance in various applications.

6.7 Summary and Conclusion

6.7.1 Summary

This chapter addressed the challenges of designing scalable and efficient Indoor
Positioning Systems (IPS) by proposing and evaluating a novel Cloud-Based
Indoor Positioning System (CB-IPS) framework. The research utilised
MATLAB simulations and the UlJlIndoorLoc dataset to model and assess this
framework, which integrates central cloud computing with edge computing paradigms
to enhance performance and manage large Wi-Fi fingerprinting radio maps. The core
objective was to improve system scalability, processing efficiency, radio map storage
management, and user privacy, while maintaining competitive positioning accuracy.

The proposed CB-IPS architecture features a distributed model where building and
floor identification (classification tasks) are handled by a central cloud component,
while fine-grained coordinate estimation (regression tasks) occurs at edge servers
dedicated to specific floors. This partitioning, combined with a strategy of loading
only relevant floor-specific (and adjacent-floor) RMF data at the edge, was designed
to minimise computational load and improve response times. A cache mechanism was
also incorporated to further optimise response times for repeated queries.

Key findings from the experimental evaluation include:

e Positioning Accuracy: The CB-IPS framework, leveraging the floor-specific
data distribution and the optimised Wk-NN algorithm from Chapter 4, achieved
a Mean Absolute Error (MAE) of 7.3893 metres on the complete UJIIndoorLoc
validation dataset. This result is competitive with, and in some cases surpasses,
those reported in existing literature for the same dataset reported in Table

e Scalability and Fault Tolerance: The system demonstrated an ability to
handle increasing numbers of concurrent user queries with linear growth in
response times and throughput. It also showed resilience, maintaining high
availability (approx. 97%) during simulated failures of cloud, edge, and data
storage components, though recovery times for cloud failures (approx. 17
seconds) suggest areas for further optimisation.

e Latency: Response times for position estimation were maintained under 2
seconds across normal load, high load, and simulated poor network conditions,
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indicating effective handling of computational load by the architecture.

e Caching Performance: The LRU caching mechanism showed potential in
reducing execution time for repeated queries (1.82s). However, it also led to a
degradation in positioning accuracy (MAE increasing to 23.36m) when tested
with a limited subset of data for repeated queries, indicating that the caching
strategy requires further refinement to balance speed with accuracy, particularly
concerning cache representativeness and update policies.

e Resource Management and Privacy: The distributed architecture inher-
ently supports privacy by processing detailed coordinate estimation at the edge
layer, with only building/floor level data managed centrally. Loading floor data
on demand at edge nodes also optimises memory and storage.

These findings collectively underscore the viability of the proposed CB-IPS framework
for creating more efficient, scalable, and manageable indoor positioning solutions.

6.7.2 Conclusion

This chapter makes a key technical contribution by presenting the design, im-
plementation (via simulation), and comprehensive evaluation of a novel
Cloud-Based Indoor Positioning System (CB-IPS) architecture tailored
for Wi-Fi fingerprinting. The core novelty of this architecture lies in its hybrid
approach, strategically partitioning responsibilities between central cloud resources
and distributed edge computing nodes to optimise both large-scale data management
and real-time positioning performance.

The research successfully demonstrated that such a CB-IPS framework can achieve
competitive positioning accuracy (MAE of 7.3893m on the UlJlIndoorLoc dataset)
while offering significant advantages in scalability, fault tolerance, and efficient
resource utilisation. The specific design choice of using the central cloud for coarse
localisation (building/floor detection) and edge servers for fine-grained, floor-specific
coordinate estimation (utilising optimised RMF's from Chapter 5 and algorithms from
Chapter 4) proved effective in balancing computational loads and enhancing user
privacy.

The integration and evaluation of a caching mechanism highlighted its potential
for improving response times but also revealed challenges in maintaining accuracy
with cached data, pointing to necessary future refinements. The system’s robust per-
formance under simulated load and failure scenarios further validates the architectural
design choices.

Ultimately, this chapter contributes a well-defined and empirically evaluated
blueprint for developing scalable and efficient cloud-enhanced Wi-Fi fingerprinting
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IPS. The findings illustrate the pivotal role of edge computing in managing real-time
processing demands and distributed radio map data. The proposed CB-IPS is well-
suited for deployment in large-scale indoor environments like hospitals, university
campuses, and shopping malls, providing a foundation for diverse location-based
services and contributing to the advancement of intelligent indoor environments.
The work presented herein directly addresses the research questions concerning the
utilisation of cloud architectures for accurate, private, scalable, and responsive IPS.
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Conclusions and Future Work

7.1 Conclusion

This thesis has presented a comprehensive investigation into the efficient design and
implementation of scalable Wi-Fi fingerprinting-based Indoor Positioning Systems
(IPS). The research has systematically addressed key challenges in the field, spanning
position estimation algorithms, Radio Map Fingerprint (RMF) optimisation, and the
strategic use of cloud-based architectures. The work culminates in a robust framework
and a set of empirically validated techniques that significantly enhance the accuracy,
efficiency, and scalability of Wi-Fi fingerprinting IPS.

The major technical contributions and findings of this research are summarised as
follows:

Firstly, a rigorous optimisation of k-Nearest Neighbour (k-NN) and Weighted
k-NN (Wk-NN) position estimation algorithms was conducted (Chapter []). This
empirical study on the UJIIndoorLoc dataset identified that the Correlation distance
function, when combined with an exponential data representation and an optimised
k-value (e.g., k=26 for Wk-NN with inverse distance weighting), yields superior
performance. Specifically, the optimally tuned Wk-NN algorithm achieved a Mean
Absolute Error (MAE) of 7.39 metres, providing a highly efficient and relatively low-
complexity solution for accurate position estimation. This work also established a
valuable performance benchmark for these foundational algorithms on a standard
dataset.

Secondly, this research developed and validated a multi-faceted RMF optimi-
sation framework (Chapter |5) to tackle critical issues of signal heterogeneity, data
dimensionality, and RMF maintenance. Key achievements include:

o Effective mitigation of device-induced RSSI heterogeneity through data prepro-
cessing techniques, significantly reducing initial positioning errors.
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e Successful application of Principal Component Analysis (PCA) for dimensional-
ity reduction, which was shown to approximately halve computational time for
positioning algorithms with minimal degradation in accuracy (e.g., maintaining
an MAE around 7.49 metres while using significantly fewer features).

e Proposal and initial validation of an auto-update mechanism for the RMF,
demonstrating the potential for adaptive learning from user queries to improve
accuracy over time and reduce manual recalibration efforts.

These strategies collectively enhance the practicality and reduce the operational
overhead of maintaining Wi-Fi fingerprint databases.

Thirdly, the thesis introduced and evaluated a novel Cloud-Based Indoor
Positioning System (CB-IPS) architecture (Chapter @ that strategically leverages
cloud computing, edge computing, and cache technologies. This framework offers a
scalable and reliable solution by:

e Partitioning tasks: Utilising the central cloud for coarse localisation (building
and floor identification, achieving up to 100% building and 96.3% floor hit rates)
and edge servers for fine-grained, floor-specific coordinate estimation (achieving
an MAE of 7.3893 metres).

e Enhancing resource management through distributed RMF storage and on-
demand data loading at the edge.

e Addressing privacy concerns by processing sensitive location data primarily at
the edge layer.

e Demonstrating robustness through fault tolerance and latency tests, maintaining
response times under 2 seconds even under varying load conditions.

The CB-IPS framework provides a blueprint for developing efficient and resilient large-
scale indoor positioning services.

This research was initiated to address several critical questions concerning the
design and implementation of efficient and scalable Wi-Fi fingerprinting-based IPS.
The work presented provides substantial insights into these questions:

1. What is the most efficient and yet least complex position estimation algorithm
suitable for the IPS based on Wi-Fi Fingerprinting techniques? This the-
sis demonstrated (Chapter that an optimally tuned Weighted k-Nearest
Neighbour (Wk-NN) algorithm, specifically employing the Correlation distance
function with exponential data representation and inverse distance weighting,
provides an excellent balance of high accuracy (MAE of 7.39m on UJIIndoorLoc)
and computational efficiency, outperforming baseline k-NN without resorting to
overly complex models.
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2. How can a Wi-Fi Fingerprinting-based IPS achieve scalable and reliable perfor-
mance, making it simple, efficient, and competitive with state-of-the-art systems
while ensuring acceptable positioning services? Scalability and reliability were
addressed through the RMF optimisation techniques (Chapter [5)), such as
PCA for reduced data handling, and the CB-IPS architecture (Chapter @
The CB-IPS framework, with its distributed cloud-edge design, efficient data
management, and caching, demonstrates a clear pathway to achieving scalable,
reliable, and efficient performance competitive with existing systems, delivering
acceptable positioning accuracy for many indoor applications.

3. How can cloud architectures be wutilised to maintain the required accuracy,
privacy, and response time while providing scalability to the IPS? Chapter [0]
detailed how a hybrid cloud-edge architecture can be strategically employed.
The central cloud manages overall coordination and coarse localisation, while
edge nodes handle computationally intensive, latency-sensitive fine localisation
for specific floors. This distribution maintains accuracy (MAE 7.3893m),
enhances privacy by processing detailed location data locally at the edge, ensures
low response times via edge processing and caching, and provides inherent
scalability through the cloud model.

4. What approaches can be employed to enhance the positioning accuracy and
scalability of Wi-Fi RSSI-based systems, with a focus on simplifying database
fingerprinting complezity using an edge-computing architecture? This research
proposed several approaches: RMF optimisation techniques (Chapter [5)) such
as data preprocessing to handle heterogeneity and PCA to reduce database
dimensionality, significantly simplifying complexity. The auto-update mecha-
nism further aids in managing RMF evolution. The edge computing aspect of
the CB-IPS architecture (Chapter @ directly simplifies database handling by
partitioning the RMF and processing data locally, enhancing both accuracy (by
using focused data) and scalability.

In summary, this thesis has successfully demonstrated that through systematic
algorithm optimisation, intelligent radio map management, and a well-designed cloud-
edge architecture, Wi-Fi fingerprinting can be a highly effective, scalable, and efficient
technology for a wide range of indoor positioning applications. The findings emphasise
that an integrated approach, considering all aspects of the IPS from signal processing
to system architecture, is crucial for advancing the field and overcoming its inherent
challenges.
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7.2 Future Work

While this thesis has made significant contributions to the efficient design of scalable
Wi-Fi fingerprinting IPS, several avenues for future research and development emerge
from this work, aiming to further enhance performance, adaptability, and practical
applicability:

e Advanced Machine Learning Integration: Explore the integration of
more sophisticated machine learning models, particularly deep learning ar-
chitectures (e.g., Convolutional Neural Networks, Recurrent Neural Networks,
Transformers), for both fingerprint feature extraction and position estimation.
These models may offer improved handling of complex signal patterns and
environmental dynamics, potentially leading to higher accuracy, especially in
challenging scenarios.

e Dynamic RMF Maintenance and Self-Adaptation: Further develop the
auto-update RMF mechanisms (explored in Chapter [5]) into fully autonomous,
self-adapting systems. This could involve incorporating unsupervised or semi-
supervised learning for detecting environmental changes and updating the radio
map without requiring explicit user feedback, leveraging techniques like active
learning or reinforcement learning to intelligently query for updates when
uncertainty is high.

e Robustness to Environmental and Device Dynamics: Investigate ad-
vanced techniques to improve system robustness against severe environmental
changes and greater device heterogeneity. This includes research into domain
adaptation methods and transfer learning to enable radio maps created with
one set of devices or in one state of the environment to be effectively used with
others or as the environment evolves.

e Optimisation of Caching Strategies for CB-IPS: The caching mechanism
introduced in Chapter [6] showed promise but also areas for improvement
regarding accuracy. Future work should focus on more intelligent caching
strategies, such as predictive caching based on user movement patterns, adaptive
cache eviction policies, and ensuring the freshness and representativeness of
cached RMF data segments.

e Real-World Deployment and Large-Scale Trials: While simulations on
datasets like UJIIndoorLoc provide valuable insights, deploying the proposed
CB-IPS framework in diverse, large-scale real-world environments (e.g., entire
university campuses, large hospitals, multi-story shopping complexes) is crucial.
Such trials would validate performance under operational conditions and reveal
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practical implementation challenges related to real-time data ingestion, network
latency, and system administration.

e Enhanced Sensor Fusion: Explore tighter integration of Wi-Fi fingerprinting
with other available sensors on mobile devices (e.g., IMUs for Pedestrian Dead
Reckoning, magnetometers, barometers for floor detection) within the proposed
cloud-edge framework. Fusion at different levels (data, feature, or decision)
could enhance accuracy, provide smoother tracking, and improve robustness in
areas with sparse Wi-Fi coverage.

e Energy Efficiency for Mobile Devices: Investigate methods to reduce the
energy consumption of the positioning process on mobile devices, particularly
in the context of continuous tracking within the CB-IPS framework. This could
involve optimising the frequency of Wi-Fi scans and data transmission to the
edge/cloud.

e Security and Privacy in CB-IPS: While the proposed CB-IPS architecture
considers privacy through data partitioning, further research into advanced
privacy-preserving techniques (e.g., federated learning for RMF updates, dif-
ferential privacy for query submissions) specifically for cloud-based positioning
services is warranted.

Addressing these future research directions will be essential for pushing the boundaries
of Wi-Fi fingerprinting technology, leading to even more precise, reliable, adaptable,
and user-friendly indoor positioning systems capable of meeting the evolving demands
of modern smart environments.
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