
Resource Scheduling Strategies to
Optimise QoS in Integrated IoT and Fog

Computing Environments

Naif Alshammari
School of Computing and Communications

Lancaster University

A thesis submitted for the degree of
Doctor of Philosophy

August, 2025

I dedicate this thesis to the souls of my mother and father.

Declaration

I declare that the work presented in this thesis is, to the best of my knowledge and
belief, original and my own work. The material has not been submitted, either in
whole or in part, for a degree at this, or any other university. This thesis does not
exceed the maximum permitted word length of 80,000 words, including appendices
and footnotes, but excluding the bibliography.

Naif Alshammari

ii

Abstract

In recent years, there has been a tremendous increase in the internet and its
applications, which has attracted the attention of scholars and industries to investigate
how to improve the quality of services (QoS). Improving QoS is considered a major
challenge for users of IoT devices. To address this challenge, several technologies
have emerged to extend cloud computing, including fog computing, which provides
computational resources at the network’s edge. Nevertheless, fog computing faces
limitations due to the constrained resources, limited computational processes and
storage in fog devices compared to cloud infrastructure.

This thesis investigates resource scheduling strategies to optimise QoS in fog
computing, focusing on task scheduling and resource allocation approaches. The
thesis begins with a qualitative comparative analysis of existing resource management
approaches to optimise QOS. It classifies resource management approaches into
several categories: application placement, task scheduling, resource allocation, task
offloading, load balancing, and resource provisioning. These categories are either
task-oriented, such as application placement, task scheduling, and task offloading,
or resource-oriented, including resource allocation, load balancing, and resource
provisioning.

It also introduces a novel intelligent resource scheduling model using gated graph
convolution neural networks (GGCNs) to trade off between delay and network usage
with a limited number of fog nodes. The GGCN model outperforms various other
existing approaches like PSO, FCFS, and JSF by 86.09%, 98.53%, and 98.02%
respectively, in terms of total network usage. Additionally, in terms of loop delay,
it achieves improvements of 68.64% over PSO, 92.07% over FCFS, and 76.26% over
SJF.

Furthermore, it presents a novel multi-objective scheduling framework utilising
an enhanced multi-layer perceptron (eMLP). This new mechanism optimises several
parameters, including delay, power consumption, and cost, while simultaneously
optimising bandwidth. Experimental results show that eMLP reduces delay, network
usage and cost by 75%, 65%, and %70 respectively, compared to other benchmark
schemes such as GNN, SMA, FCFS, and SJF.
Finally, the thesis discusses the current gaps and future directions for enhancing and
further investigating QoS through fog computing.

iii

Publications

Naif Alshammari, Haris Pervaiz, Hasan Ahmed, and Qiang Ni, ”Delay and Total
Network Usage Optimisation Using GGCN in Fog Computing.” in IEEE 34th Annual
International Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), 2023.

Naif Alshammari, Sukhpal Gill, Haris Pervaiz, Qiang Ni, Hasan Ahmed, ”Resource
Scheduling in Integrated IoT and Fog Computing Environments: A Taxonomy, Survey
and Future Directions.” In: Mukherjee, A., De, D., Buyya, R. (eds) Resource
Management in Distributed Systems. Studies in Big Data, vol 151. Springer,
Singapore, 2024.

Mohil Patel, Sudeep Tanwar, Anish Jindal, Naif Alshammari, Haris Pervaiz, Hasan
Ahmed, ”A Blockchain-based Predictive Maintenance Scheme for Smart Agriculture”
in 17th IEEE/ACM International Conference on Utility and Cloud Computing
(UCC), Sharjah, UAE, 2024 (Accepted/in Press).

Naif Alshammari, Haris Pervaiz, Hasan Ahmed, and Qiang Ni, ”Enhancing QoS
in Fog Computing via Enhanced Multilayer Perceptron-Based Multi-Objective Task
Scheduling.” Submitted to IEEE Internet of Things Journal .

iv

Acknowledgements

I would like to sincerely thank my friends and officemates at Infolab for their constant
support and encouragement throughout my PhD journey. I would also like to extend
my gratitude to Dr. Haris Pervaiz, Dr. Hasan Ahmed, and Professor Qiang Ni for
their support and supervision, especially Dr.Haris, who continued supervising me even
after moving from Lancaster University. Additionally, I thank Dr. Yehia Elkhatib for
his support, valuable tips and genuine care. Special appreciation goes to my family—
especially my wife, children, and my brothers and sisters—for their endless patience,
love and inspiration.

v

Contents

declaration ii

abstract iii

publication iv

acknowledgements v

List of Figures x

List of Table xi

List of Acronyms xvi

List of Mathematical Operators and symbols xviii

1 Introduction 1
1.1 Background . 1
1.2 Cloud Computing: Overview and Challenges 2
1.3 Edge Computing: Overview and Challenges 3
1.4 Fog Computing: Overview and Architecture 5

1.4.1 Architecture and Key Concepts 6
1.4.2 Comparative Analysis of Cloud, Edge and Fog 7

1.5 Motivation . 9
1.6 Research Questions . 10
1.7 Contributions and Methodology . 11
1.8 Thesis Outline . 12

2 Task-Oriented Approaches 13
2.1 Motivation . 13
2.2 Resource Management in Fog Computing 13

2.2.1 Application Placement . 14

vi

2.2.2 Task Scheduling . 26
2.2.3 Task Offloading . 32

2.3 Conclusion . 40

3 Advanced Resource Management 41
3.1 Resource-Oriented Management Approaches 41

3.1.1 Resource Allocation . 41
3.1.2 Load Balancing . 53
3.1.3 Resource Provisioning . 58

3.2 Simulations in Fog Computing: Advantages 65
3.2.1 Overview of Key Simulation Tools in Fog Computing 66

3.3 Conclusion . 72

4 Enhancing QoS using GGCN-Based Resource Allocation in Fog
Computing Environment 75
4.1 Motivation . 75

4.1.1 Key Contributions . 76
4.1.2 Overview of GGCN . 76

4.2 Resource Scheduling Strategies . 77
4.2.1 Shortest Job First . 77
4.2.2 First Come First Served . 78
4.2.3 Particle Swarm Optimization 79

4.3 Proposed GGCN Methodology . 81
4.3.1 Problem Formulation . 82
4.3.2 Proposed GGCN based Resource Scheduler 84

4.4 Performance Evaluation . 86
4.4.1 Experiment Setup . 87
4.4.2 Configuration . 87
4.4.3 Case studies . 88
4.4.4 Results and Discussion . 90

4.5 Challenges and Limitations . 94
4.6 Conclusion . 95

5 eMLP-Based Task Scheduler to Optimize QoS in Fog Computing
Environment 96
5.1 Motivation . 96
5.2 Overview . 96
5.3 Resource Scheduling Strategies . 97

5.3.1 Shortest Job First . 97
5.3.2 First Come First Served . 98
5.3.3 Graph Neural Network . 98

vii

5.3.4 Stable Matching Algorithm 100
5.3.5 MLP: Versatile Application 101

5.4 Problem Formulation . 101
5.5 System Model . 105

5.5.1 eMLP Scheduler . 107
5.6 Performance Evaluation . 110

5.6.1 Experimental Setup . 110
5.6.2 Configuration . 111
5.6.3 Results and Discussion . 112

5.7 Conclusion and Future Work . 117

6 Conclusion and Future Directions 118

References 120

viii

List of Figures

1.1 Challenges of Cloud Computing . 3
1.2 Advantages of Fog Computing for Resource Scheduling Strategies . . 5
1.3 Fog Computing Architecture . 6
1.4 Hierarchical architecture illustrating the spatial distribution of data

processing across Edge Devices, Edge Computing, Fog Computing, and
Cloud computing layers . 9

2.1 Taxonomy of Application Placement Approaches 16
2.2 Hierarchical Representation of Task Scheduling Approaches 27
2.3 Task Offloading Types . 33

3.1 Hierarchical Representation of Resource Allocation Mechanisms . . . 42
3.2 Strategies to Resolve Load Balancing 55
3.3 Types of Resource Provisioning . 60

4.1 System Architecture . 81
4.2 GGCN Architecture . 84
4.3 Fog Computing Topology Designed in iFogSim 87
4.4 Performance Analysis of Proposed GGCN: Total Network Usage and

Average Loop Delay Compared Benchmark Schemes (Case study A) 91
4.5 Performance Analysis of Proposed GGCN: Total Network Usage and

Average Loop Delay Compared Benchmark Schemes (Case study B) 91
4.6 Performance Analysis of Proposed GGCN: Total Network Usage and

Average Loop Delay Compared Benchmark Schemes (Case study C) 92
4.7 Performance Analysis of Proposed GGCN: Total Network Usage and

Average Loop Delay Compared Benchmark Schemes (Case study D) 92

5.1 System Model . 106
5.2 Systematic Block Diagram of the Proposed Enhanced Multilayer

Perceptron (eMLP) . 109

ix

5.3 Performance Analysis of the Proposed eMLP Average Delay Compared
to Multiple Benchmark Schemes Across Different Task Loads 113

5.4 Performance Analysis of the Proposed eMLP Network Usage Compared
to Multiple Benchmark Schemes Across Different Task Loads 114

5.5 Performance Analysis of the Proposed eMLP Cost of Usage Compared
to Multiple Benchmark Schemes Across Different Task Loads 115

5.6 Performance Analysis of the Proposed eMLP Average Power Consump-
tion Compared to Multiple Benchmark Schemes Across Different Task
Loads . 116

5.7 Percentage Improvement of the Proposed eMLP Over Benchmark
schemes(FCFS, SJF, GNN, SMA) . 117

x

List of Tables

1.1 Comparison of Cloud, Fog, and Edge Computing:Advantages and
Challenges [19, 10, 13] . 8

2.1 Overview of Case Studies and Proposed Mechanism in Application
Placement Approaches (Part 1) . 23

2.2 Overview of Case Studies and Proposed Mechanism in Task Scheduling
Approaches (Part1) . 30

2.3 Overview of Case Studies and Proposed Mechanism in Task Offloading
Approaches (Part 1) . 37

3.1 Overview of Case Studies and Proposed Mechanism in Resource
Allocation Approaches (Part 1) . 49

3.2 Overview of Case Studies and Proposed Mechanism in Load Balancing
Approaches (part 1) . 57

3.3 Overview of Case Studies and Proposed Mechanism in Resource
Provisioning Approaches (Part 1) . 63

3.4 Common Simulators for Fog Computing Environments 72

4.1 Simulation Setup . 87
4.2 Configurations . 88

5.1 Simulation Setup . 110
5.2 Characteristics of Fog Nodes . 112

xi

List of Acronyms

A2C Advanced Actor-Critic.
A3C Asynchronous Advantage Actor-Critic.
ABC-JAVA A hybrid algorithm combining ABC and JAVA algo-

rithms.
ABC Artificial Bee Colony.
ACA Ant Colony Algorithm.
ACO Ant Colony Optimization.
AI Artificial Intelligence.
ANFIS Adaptive Neuro-Fuzzy Inference System.
ARU Average Resource Utilisation.
AWRR Adaptive Weighted Round Robin.
B&B Branch and Bound.
BASP Bandwidth and Availability-Aware Service Placement.
Bayes’ Classifier A probabilistic classifier that uses Bayes’ Theorem to

predict the category of new task based on historical data.
BFD The Best Fit Decreasing Algorithm.
BF Best Fit.
BLA Bee Life Algorithm.
BPSO-FMP Binary Particle Swarm Optimization for Fog Module

Placement.
CB-E Communication-Based-Efficient.
CDDQL Clipped Double Deep Q-learning.
CGOA Chaotic-Based Grasshopper Optimization Algorithm.
CML Collaborative Machine Learning.
CNN Convolution Neural Network.
CNs Community Networks.
COA Crayfish Optimization Algorithm.
Convex Optimization A subclass of optimization problems where the objective

function is convex, making them easier to solve.
CO2 Carbon Dioxide.
CPU Central Processing Units.
CS Cuckoo Search Algorithm.
CSA Crow Search Algorithm.
CSP Cloud Service Provider.
CTFS Critical Task First.
D2D Device-to-Device.
DAGs Directed Acyclic Graphs.
DALBFog Deadline-Aware Load-Balancing Fog Computing Algo-

rithm.

xii

DCTO Dynamic Collaborative Task Offloading.
DDQL Double Deep Q-Learning.
DEBTS Delay Energy Balanced Task Scheduling Algorithm.
DECM Dynamic Energy-Efficient Cloudlet Management.
DFTLA Dynamic Fault-Tolerant Learning Automata.
DL Deep Learning.
DLA-FMP Distributed Learning Automata for Fog Module Placement.
DLQBRA Deep Q-network based Resource Allocation.
DP-I Delay Priority-Independent.
DQN Deep Q-Learning.
DRAM Dynamic Resource Allocation.
DRL Deep Reinforcement Learning.
DRM Data Replica Manager.
Dynafog Dynamic Task Offloading Framework for IoT-based Fog Computing

Platforms.
e-OPEX Operational Expenditure.
E Edge.
EETSPSO Energy Efficient Task Scheduling in Fog Computing Based on

Particle Swarm Optimization.
EFRO Energy-Aware Fog Resource Optimization.
EGA-FMP Elitism-Based Genetic Algorithm for Fog Module Placement.
EGA Enhanced Genetic Algorithm.
EGAPSO Elitism-Based Genetic Algorithm and Particle Swarm Optimiza-

tion.
ELBS Energy-Aware Load Balancing and Scheduling.
eMLP Enhanced Multilayer Perceptron.
EMOPSOC Enhanced multi-objective Particle Swarm Optimization with

Clustering.
EMS Enterprise Management Systems.
ENORM Edge Node Resource Management.
EPRAM Effective Prediction and Resource Allocation Methodology.
EPSO Extended Particle Swarm Optimization.
ERAS Effective Resource Allocation Strategy.
F-RAN Fog Radio Access Network.
FA Firefly Algorithm.
FCFS First Come First Served.
FF First Fit.
FFD First Fit Decreasing.
FFRPP Fog-Aware File Replica Placement Policy.
FGN Fog Gateway Node.

xiii

FIFO First in First out.
Fission-Fusion A social structure where the size and composition of a

group change dynamically over time-based on the tasks being
performed.

FMFK Federated Multidimensional Fractional Knapsack.
Fog-MMKP Fog Computing with Multidimensional Multiple Knapsack

Problem.
FONS Fog Orchestrator Node Selection.
FRAS Fuzzy-Based Real-Time Auto-Scaling.
Fronthaul The connection between distributed radio units and the

centralized processing units in a network.
FTLBSA Fault-Tolerant Load-Balancing Scheduling Algorithm.
FTO Fair Task Offloading.
FWA Fireworks Algorithm.
GA Genetic Algorithm.
GAAPSO-FMP Genetic Algorithm and Particle Swarm Optimization for Fog

Module Placement.
GABVMP Genetic Algorithm-Based Virtual Machine Placement.
GGCNs Gated Graph Convolutional Neural Networks.
GNN Graph Neural Network.
Guifi.net A large community network located in Catalonia, Spain.
HABBP Hungarian Algorithm-Based Binding Policy.
HEFT Heterogeneous Earliest Finish Time.
HHRA Hyper-Heuristic Resource Allocation.
HLS High-Level Strategy.
HMM Hidden Markov Model.
HPSOFF-RPT Hybrid Particle Swarm Optimization with Firefly-based

Resource Provisioning Technique.
IC Incentive Compatibility.
IIoT Industrial Internet of Things
ILP Integer Linear Programming.
IMPALA Importance-Weighted Actor-Learner.
INCP In-Network Computing Provider.
INSCSA Improved Non-Dominated Sorting Crow Search Algorithm.
IoT Internet of Things.
IoV Internet of Vehicles.
IPGA Improved Parallel Genetic Algorithm.
IPSO Improved Particle Swarm Optimization.
IR Individual Rationality.
ITS Intelligent Transportation Systems.
IV Integrated Virtualization.

xiv

LBL Load Balancing Level.
LC Least Connection.
LI-X Least Impact-X.
LJFP Longest Job Fastest Processor.
LLH Low-Level Heuristic.
LRFC Learning Repository Fog-Cloud.
MADRL Multi-Agent Deep Reinforcement Learning.
MCEETO Multi-Classifiers Energy Efficient Task Offloading.
MCS Minimum Cost Strategy.
MCT Minimum Completion Time.
MEC Mobile Edge Computing.
MGAPSO Modified Genetic Algorithm and Particle Swarm

Optimization.
MIPS Million Instructions Per Second.
MILP Mixed Integer Linear Programming.
ML Machine Learning.
MOPSO Multi-Objective Particle Swarm Optimization.
MPSO Modified Particle Swarm Optimization.
MUE Mobile User Equipment.
NLP Nonlinear Programming Problem.
Non-Convex Optimization An optimization problem where the objective

function or constraints are non-convex, often
leading to multiple local minima or maxima.

NP-Complete Non-Deterministic Polynomial-Time Complete.
NSGA-II Non-Dominated Sorting Generic Algorithm II.
OptFogCloud Optimal Fog-Cloud Offloading Framework.
PABP Penalty-Aware Bin Packing.
PNN Probabilistic Neural Network.
PORA Predictive Offloading and Resource Allocation.
PPO Proximal Policy Optimization.
PS Priority Scheduling.
PSO Particle Swarm Optimisation.
PTPNS Priced timed Petri nets.
PTR Perception-Reaction Time.
QoE Quality of Experience.
QoS Quality of Service.
RAM Random Access Memory.

xv

ReLU Rectified Linear Unit.
RL Reinforcement Learning.
RNN Recurrent Neural Network.
Robust-CompOff Robust Computing Offloading.
RP Resource Provisioning.
RR Round Robin.
RWRR Remind Weighted Round Robin.
SA Simulated Annealing.
SACO Smart Ant Colony Optimization.
SDN Software Defined Networking.
SFC Service Function Chaining.
SJF Shortest Job First.
SJFP Shortest Job Fastest Processor.
SLA Service Level Agreements.
SMA Stable Matching Algorithm.
SMO Spider Monkey Optimization.
SPEA-II Strength Pareto Evolutionary Algorithm-II.
SPP Service Placement Problems.
SRPM Service-Request Prediction Model.
STLW Shorter Slack Time Less Remaining Workload.
TCAS Time Cost Aware Scheduling.
Telesurgery Refers to performing surgery remotely using robotic

systems controlled by a surgeon through a high-speed
internet connection. It allows specialists to operate on
patients from a distance.

V Vertex.
VED Vickrey-English-Dutch.
VM Virtual Machine.
WA-FSP Whale Optimization.
WAP Wireless Access Points.
WI Whittle Index.
WOA-FMP Whale Optimization Algorithm for Fog Module Place-

ment.
WRR Weighted Round Robin.
5G Sixth-generation Mobile Networks.
0-1 knapsack method A combinatorial optimization technique used in resource

allocation

xvi

List of Mathematical Operators and Notations

PBestid Best Particle Position (Local Best)
gBestid Best Group Position (Global Best)
b Bias.
DSi Data size
CC CloudSim Clock
ET Emitting time of the tuple
wk, w Objective weights
SVn Number of Service
|Mthreshold| Maximum number of active nodes allowed at any time
xn A Binary Indicator for whether fog node n is active or not
yn,s A Binary Indicator for whether sensor n is associated with fog node

n
|M | Total number of fog nodes
|S| Total number of sensors
|Sn| Maximum number of active sensors managed by each fog node
λ Average Latency of Tasks
NT Total Number of Tasks
Ay User Application
Ra,j Available resource at fog node Fj

Rtot,j Total resource of fog node Fj

Ru,j Resource currently used at the fog node Fj

min Minimum Function∑
Summation function

∀ Universal Quantifier, Means For All
s.t. Subject to
S Sensor
∈ Element of
Davg Average Loop Delay
Umax Maximum Bandwidth Utilization
c1, c2 Random Parameters Between 0 and 1
r1, r2 Positive Constants

xvii

Ths,j Transfer rate
Li,j Total delay
Dpn Propagation delay
Dpr Processing delay
Dq Queuing delay
Dtx Transmission delay
Bi,j The amount of Bandwidth
Pi,j Power consumption
Ei,j Energy consumption
L̄ Average delay
A Set of application A = A1, A2,, AN

F Set of fog nodes F = F1, F2,, FM

TAy Set of tasks belonging to applications Ay

i Index for tasks
j Index for fog nodes
y Index for application
xij A Binary indicator with either 0 or 1 Value
RReq resources Requirements for task Ti

Qj Current workload at fog node Fj

Cj Capacity of fog node Fj

Dij Distance between task Ti and node Fj

Lij Total delay in task Ti and node Fj

L̄ Average delay across all tasks
Eij Energy consumption
Ri,j Resource cost for task Ti

xviii

Chapter 1

Introduction

1.1 Background

In recent years, the IoT has changed the world, with over 20 billion devices connected
to the Internet. Researchers believe that the number of these devices will increase to
75 billion by 2025 [1, 2]. This dramatic change has influenced both business vision
and how we interact with technologies. IoT applications are considered to be diverse;
including smart home, smart city, healthcare, and industrial IoT. In smart homes, IoT
plays a vital role because it includes connected thermostats and sensors. In smart
cities, there are IoT devices everywhere, e.g. traffic sensors, environmental sensors,
and utility sensors. Elsewhere, healthcare and industry IoT works in many different
ways, e.g. remote patient monitoring, emergency response, supply chain optimization,
and predictive maintenance.

However, with this remarkable growth in IoT, significant challenges arise, such as
latency, security, and privacy concerns, which stakeholders must address to overcome
this dilemma [3, 4]. IoT and portable technologies are digital identification tools that
enable end-users to collaborate, integrate and manage computing resources. These
devices lack the resources to handle the immense data generated by their applications
[5]. Though there are several cloud-based solutions available to address limitations,
but these solutions may have drawbacks such as latency, security, privacy, and
protection, which can potentially weaken digital operations and real-time applications.

More precisely, a cloud is a centralised entity, whereas IoT and portable devices
are distributed across diverse locations. Thus, delay-sensitive applications cannot

Portions of this chapter are sourced from the paper listed in Publication Section as: Resource
Scheduling in Integrated IoT and Fog Computing Environments: A Taxonomy, Survey and Future
Directions

1

1.2. Cloud Computing: Overview and Challenges

reliably access cloud resources because of high network traffic, significant bandwidth
requirements and the requirement for permanent Internet connectivity. To address
this, middleware solutions emerge as a viable approach to this problem, by bringing
cloud services closer to end devices[6]. These middleware solutions primarily involve
distributed computing paradigms such as cloud, fog and edge computing. Each of
these paradigms addresses IoT challenges differently by varying proximity, resource
allocation methods, and architecture, providing tailored solutions that significantly
improve performance, security, and real-time responsiveness.

1.2 Cloud Computing: Overview and Challenges

The term cloud computing refers to processing data through the Internet, providing
tremendous storage along with programs to process data, allowing users access from
a remote location. Enterprises offer computing services to their clients with the help
of cloud computing, one of the most popular models is the pay-as-you-go service,
reducing the cost burden [2]. The back-end section consists of databases, storage,
computers, and servers interconnected to create a cloud network. Cloud computing
operates if Internet connectivity is available and applied to numerous domains [7].

However, IoT applications face challenges with latency, bandwidth, security and
privacy due to centralised computing far from IoT devices [8]. Resource allocation
between clients and servers is extremely important; it manages, controls, and monitors
resources to increase system stability and improve user experience. It balances the
system load by reducing execution time based on task requirements [9]. Resources
are provided from a resource pool using virtualisation, enabling a single physical
instance to serve multiple clients simultaneously, enhancing CPU and disk utilisation.
Commonly, tasks from clients are offloaded to the cloud, creating significant resource
management challenges due to increasing complexity and dynamic resource demands.
Challenges include:

• Task execution delay

• Multiple resource allocation

• Task dependencies

• Load balancing

• Exorbitant cost

• Service quality and user experience

2

1.3. Edge Computing: Overview and Challenges

Despite many benefits, cloud computing also has challenges and limitations,
making risk assessments beneficial before adopting cloud solutions. Public clouds
offer generic, multi-tenancy services that may not align with specific organisational
processes.

Energy efficiency

Response time

Location
awareness

Reliablity

Privacy

Bandwidth
efficiency

Figure 1.1: Challenges of Cloud Computing

Figure 1.1 presents several challenges that can affect performance and operations
in cloud computing. Response time can be slow due to the distance between users
and data centres, which can impact real-time applications. Bandwidth efficiency can
be a concern when high data transfer requirements strain network resources, leading
to costly solutions. Although rare, reliability issues can lead to service disruptions or
downtime, which are especially concerning for mission-critical services. Privacy is also
a significant concern as data is stored remotely, requiring trust in cloud providers and
compliance considerations. The lack of location awareness can hinder optimisation in
applications that rely on geographical data. Furthermore, energy efficiency is crucial
as cloud data centers consume a substantial amount of energy, necessitating eco-
friendly and cost-effective solutions. These factors highlight the complex landscape
of cloud computing, where careful management is necessary to mitigate their impact.

1.3 Edge Computing: Overview and Challenges

Edge computing is a distributed computing paradigm that brings data processing,
computation, and storage closer to the devices generating data, such as IoT sensors

3

1.3. Edge Computing: Overview and Challenges

and actuators. This proximity to the data source reduces latency, improves response
time, and optimises bandwidth by minimising data transmission to the centralised
cloud servers. It is particularly beneficial for real-time applications, such as
autonomous vehicles and smart cities, where quick decision-making is critical [10,
11].

These are the main characteristics of edge computing [12, 13].

• Decentralized Resource: Computation and data storage are performed on
either local devices or servers.

• Low latency: Provides extremely low latency, which is critical for real-time
applications.

• Bandwidth: The bandwidth is less than that of other cloud computing
solutions because it reduces the amount of data transmitted to the cloud.

• Autonomy: Devices have the capability to operate independently, even with
intermittent internet connectivity.

Dispute offering benefits, Edge computing encounters challenges such as limited
resources and complex management. Here are the main drawbacks of edge computing

• Resource constraints issues: Edge devices have limited computational
power, storage and memory compared to other technologies, which limits their
ability to handle complex tasks. Also, it is challenging to handle large datasets.

• Security risk issues: Managing security across many devices and locations
can be challenging, which leads to a potential risk of data breaches or
cyberattacks.

• Cost and management Complexity issues: Managing and maintaining a
large number of edge devices can be complex and costly. A strong infrastructure
and management tools are important to ensure smooth operation, updates, and
troubleshooting.

• Interoperability issues: Integrating heterogeneous devices or different
devices from different vendors can be a challenge to ensure smooth operation.
This issue can have a direct impact on deployment and scalability.

• Resource management issues: Handling and storing a large amount of data
at the edge can be a real challenge. Many applications require a large amount of
data to be processed and stored locally, which is difficult in an edge computing
environment.

4

1.4. Fog Computing: Overview and Architecture

• Latency and energy consumption issues: Using edge computing aims to
reduce latency, but it still depends on the network conditions. Poor network
connectivity can disrupt the performance and dependability of applications that
utilise edge computing [14, 13].

1.4 Fog Computing: Overview and Architecture

Scholars have introduced several technologies to overcome the limitations of cloud
computing; however, these solutions violate QoS, such as latency, response time,
security and privacy. Fog computing is one of these solutions that has attracted
researchers’ attention to optimise the quality of service. Fog computing is a
decentralised, proximity-based solution that provides computing services to clients
at distributed locations [15, 16].

The term fog computing does not replace the term cloud computing. It only
extends the cloud resources by offloading the computation, data and application on
the edge of the network in the proximity of the end-user instead of the cloud [17]. This
enables service providers to take advantage of the clients’ devices at some distributed
locations, which efficiently enhances the utilisation of resources. As shown in Figure
1.2, this technology resolves the issue of delay by reducing computing in the cloud. At
the same time, it also addresses bandwidth usage because the majority of computing
happens near the end user instead of the cloud itself, which will reduce network traffic.

Support Mobility

Improving
Bandwidth

High Efficiency

Low Latency

Scalability

Enhance Privacy

Figure 1.2: Advantages of Fog Computing for Resource Scheduling Strategies

5

1.4. Fog Computing: Overview and Architecture

1.4.1 Architecture and Key Concepts

Fog computing was introduced by Cisco in 2012 as a decentralised computing system
[18]. It is a distributed computing paradigm that extends cloud services to the network
edge, enabling local data processing and storage to support IoT applications, reducing
latency and bandwidth usage. Resource scheduling is implemented at a fog network,
which resolves the network issues and improves the network performance by means
of resource utilisation that is standardised, adaptable and equitable [5]. Figure 1.3
shows the layered architecture of a fog computing environment.

Figure 1.3: Fog Computing Architecture

IoT Layer

This layer represents IoT devices, such as smartphones, drones, smart vehicles and
sensors. Those devices are usually distributed in different regions and places. The
scope of these applications incorporates a wide range of industries and sectors, includ-
ing the health sector, emergency management, smart homes, telecommunications,
traffic systems, agriculture, aerospace, intelligent transportation, hospitality, food,
water supply, organisational maintenance and disaster management, among many

6

1.4. Fog Computing: Overview and Architecture

others. Conventional assumptions may consider that the tasks belonging to delay-
sensitive applications are provisioned in the computing resources at the fog level [5].
IoT devices typically generate tasks that can be delay-sensitive or resource-intensive,
requiring further processing at higher layers.

Fog Layer

This layer can have a large number of nodes that have fog computing services. Fog
nodes are logical and physical network elements that can do computing, store data
temporarily and transmit data between the cloud and end-user devices (IoT layer).
Moreover, fog nodes can be either resource-poor devices or resource-rich machines.
Resource-poor devices include wireless access points (WAP) or basic routers with
limited capabilities. On the other hand, rich devices include cloudlets, which act as
mini-cloud data centres providing substantial processing resources for IoT applications
[2].

Due to the resource constraints in the IoT layer, fog nodes enable these devices to
share and access their desired computing resources to satisfy the task requirements
needed to perform their intended operations. Resource scheduling is supposed to be
proposed at this layer to maximise the best possible use of the computing resources
for client applications. Hence, in order to ensure QoS, it becomes significant to devise
a resource scheduling scheme. Since IoT-based applications generate tasks in a fog
computing system that are heterogeneous, organised and controlled by the client
devices at distributed locations, the nature, type and characteristics of these devices
must be incorporated while allocating resources for the fog computing paradigm that
would result in relatively well-organised task execution that is also more efficient.

Cloud Layer

This layer represents a top-layered stage, which has traditional centralised cloud
resources with extensive storage capabilities. Some cloud services are shifted to the
fog layer to reduce delay, improve response times, and enhance security by decreasing
the load on cloud resources.

1.4.2 Comparative Analysis of Cloud, Edge and Fog

Table 1.1 provides a side-by-side comparison of the most prominent distributed
systems, including Cloud, Fog and Edge. This summary discusses the advantages
and challenges of each environment.

7

1.4. Fog Computing: Overview and Architecture

Aspect Cloud
Computing

Fog Computing Edge Computing

Architecture Centralised data
centres and servers

Decentralised with
intermediary nodes
closer to the edge

Highly
decentralised,
processing at the
source.

Resource Constraint No significant re-
source constraints,
high computational
power

Distributed
resources, better
load balancing

Limited
computational
power and storage.

Security Strong centralized
security, but
vulnerable in
transit

Enhanced security
through local
encryption

Security can be high
with proper encryp-
tion, but device het-
erogeneity increases
attack surfaces.

Management Centralized
management, easier
to maintain

Distributed man-
agement,requires
sophisticated tools
and automation

Complex
management
and mainte-
nance,dispersed
devices.

Scalability Highly scalable with
large resources

Moderately
scalable, but limited
by node capacity

Less scalable, lim-
ited in remote areas,
network latency.

Mobility Not Supported Supported Supported.

Connectivity Dependent on inter-
net, high bandwidth
costs

Moderate
dependency,
improved by local
nodes

Low internet
dependency, but
connectivity issues
may arise in highly
remote areas.

Table 1.1: Comparison of Cloud, Fog, and Edge Computing:Advantages and
Challenges [19, 10, 13]

The hierarchical architecture in Figure 1.4 presents the physical and logical
distance between various distributed systems and the edge devices. These edge
devices include IoT sensors, actuators, and smartphones that initiate requests. The
closest data processing to edge devices is edge computing, which performs localised
processing through either edge servers, smart gateways, or even within the edge
devices themselves. It enables real-time responsiveness with minimal delay. On
the other hand, fog computing provides intermediate processing capabilities via
fog nodes that are positioned closer to the edge. At the furthest point lies cloud
computing, which has tremendous centralised data centres and advanced machine

8

1.5. Motivation

Figure 1.4: Hierarchical architecture illustrating the spatial distribution of data
processing across Edge Devices, Edge Computing, Fog Computing, and Cloud
computing layers

learning platforms with a huge capacity. The main dilemma of cloud computing is
its distance from the edge devices, which can affect performance compared to edge
and fog computing. By examining both the advantages and disadvantages of cloud
and edge computing, it is clear that fog computing can offer a balanced approach
and cover the limitations between cloud and edge technology. Its intermediary role
provides enhanced security, lower latency, and better resource management, which
makes it a compelling option for various applications.

1.5 Motivation

Fog computing offers several advantages, known as many-fog nodes with het-
erogeneous resources and limited computing storage capacity. Although the fog
computing framework has attracted the attention of researchers and industry, it faces
several critical issues in optimising QoS through resource management approaches.
Enhancing the QoS will significantly impact smart environments, including the smart
healthcare sector, smart cities, smart homes, smart factories, agriculture and the IoT

9

1.6. Research Questions

industry.
From the perspective of the smart healthcare sector, delays are critical, especially

for emergency situations, where even a second can save lives. A prime example is
remote surgery “Telesurgery”, which requires minimal delay with a high response
time. Research has shown that a delay of 200 ms can harm patients in complex
remote surgeries [20]. The optimal delay recommended by another research should
be less than 100 ms [21] . Both of those scholars emphasise the importance of delay
parameters in remote surgery. Also, delay plays a major role in real-time patient
monitoring.

In smart cities and smart homes, QoS is also important to ensure stability of life. In
smart cities and smart grids, sustainability is a real concern for most stakeholders, who
will focus on the importance of efficient resource management, including bandwidth
utilization . With the increase of wearable technology and IoT devices, the demand
for high bandwidth and reliable connection is essential to maintain the functionality
of smart cities [22, 23].

From a smart factory perspective, reducing energy consumption helps to lower CO2

emissions and operational costs. Secure and efficient data processing ensures timely
decision-making, enhancing system reliability [24]. From an agriculture perspective,
QoS plays a vital role in optimizing resource management by ensuring reliable data
transmission, and enhancing decision-making processes. This field is witnessing a
significant increase in IoT device adoption for real-time monitoring of soil, weather
and crops, while maintaining a high network availability and low latency. Optimizing
bandwidth utilization and secure data processing supports precision agriculture,
reducing costs and improving sustainability[25, 26]

1.6 Research Questions

1. What are the critical limitations of existing resource management techniques in
the fog computing environment, and how can these limitations be addressed to
optimise resource usage and improve QoS?

2. How can a GGCN-based resource scheduler effectively optimise resource al-
location and the number of active fog nodes in fog computing environments
to achieve minimal loop delay and reduce network usage while outperforming
existing methods?

3. What innovative approaches can an eMLP-based task scheduler offer to minimise
delay, lower resource costs, and optimise the number of fog nodes and total
network usage in fog computing?

10

1.7. Contributions and Methodology

4. How do advanced scheduling strategies impact QoS in dynamic and heteroge-
neous fog computing environments, and what metrics best demonstrate their
efficiency?

1.7 Contributions and Methodology

This thesis makes the following significant contributions:

• A qualitative comparative analysis that classifies existing fog resource
management approaches into task-oriented and resource-oriented categories,
providing a structured perspective on current techniques.

• A Novel Resource Scheduling model based on gated graph convolutional
neural networks (GGCNs), which balances average loop delay and total network
usage while minimising the number of active nodes.

• A multi-objective scheduling framework utilising enhanced multi-layer
perceptrons (eMLP) to optimise key QoS metrics, including delay, cost, and
power consumption, considering resource demands to prevent over-provisioning
and under-utilisation.

The methodology adopted to achieve the above contribution are follows:

• Comprehensive Literature Review

(a) Conducted a systematic review of existing literature on resource manage-
ment in fog computing environments.

(b) Categorised these approaches into key aspects of resource management
(e.g., task scheduling, application placement).

(c) Identified the current gaps and outlined research directions.

• Development of GGCN-based resource allocation

(a) Designed a GGCN-based model to optimise resource allocation.

(b) Defined the constraints for resource allocation, including sensor activity,
resource availability and fog node availability.

(c) Implemented and tested the model in a simulated fog computing environ-
ment.

(d) Benchmarked the GGCN-based scheduler against PSO, SJF, and FCFS
algorithms to evaluate its performance in terms of QoS metrics such as
loop delay and network usage.

11

1.8. Thesis Outline

• Implementation of eMLP-based Task Scheduling

(a) Designed an innovative eMLP-based task scheduler model to minimise
delay and resource costs.

(b) Developed a simulation framework to evaluate task scheduling in fog
environments.

(c) Compared the performance of the eMLP-based scheduler against other
approaches (GCN, FCFS, SJF) using QoS metrics such as delay and
network Usage.

1.8 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 presents an overview of fog
computing, followed by a comprehensive literature review of resource management ap-
proaches in fog computing to optimize QoS, with a focus on task-oriented management
approaches, based on the work published in iv. Chapter 3 discusses advanced resource
management approaches, focusing on resource-oriented strategies. Additionally, it
provides an overview of the simulation tools for computing environments. In chapter
4, optimising delay and total network usage with GGCN in fog computing, based on
the work published in iv. Chapter 5, introduces a novel task scheduling approach
using the eMLP mechanism, which optimizes multiple QoS parameters, including
delay, network usage, power consumption, and cost. Finally, chapter 6 concludes the
thesis and outlines future directions, emphasising the potential enhancement of QoS
optimisation in fog computing systems.

12

Chapter 2

Task-Oriented Approaches

2.1 Motivation

The motivation behind this chapter is to provide a qualitative comparative analysis of
resource management approaches. It specifically focuses on task-oriented approaches
for optimising QoS in fog computing environments. Although fog computing was
introduced several years ago, it continues to attract significant interest for researchers
and industry experts. Due to the limited resources at the fog node, effective scheduling
mechanisms such as task scheduling, task offloading, and application placement are
essential for improving system reliability and performance.

It will also motivate future researchers to identify the research gaps and provide
a clear picture of future directions. This review classifies resource management into
up-to-date categories to assist future researchers in optimising QoS. Moreover, most
existing literature reviews are either outdated or narrowly focused on one or two
categories in resource management, neglecting others.

2.2 Resource Management in Fog Computing

This chapter provides a qualitative comparative analysis of resource management
approaches and their limitations. Resource management approaches in fog computing
can be classified into six main categories: application placement, task scheduling,
resource allocation, task offloading, load balancing, and resource provisioning.
However, this chapter highlights the task-oriented management approaches for

Portions of this chapter are sourced from my published paper: Resource Scheduling in Integrated
IoT and Fog Computing Environments: A Taxonomy, Survey and Future Directions[27].

13

2.2. Resource Management in Fog Computing

optimising QoS in fog computing. These approaches are application placement, task
scheduling and task offloading. Despite its advantages, fog computing introduces
weaknesses that encourage scholars to investigate resource management approaches,
including:

• Cost and Management Complexity Issues: High deployment costs for hardware
(such as routers, gateways, hubs) and complex system management due to
decentralised nodes.

• Security Risk Issues: The distributed architecture heightens the risk of
cyberattacks, data breaches, and privacy concerns.

• Resource Constraint issues: Fog nodes have limited storage capacity, compu-
tational power, and energy compared to cloud data centres, which limit their
operational efficiency.

• Resource Management Issues: Managing multiple fog nodes in a geo-distributed
setting presents challenges that require advanced orchestration and monitoring
solutions.

• Interoperability and Standardisation Challenges: Ensuring seamless commu-
nication between diverse fog nodes, IoT devices, and cloud systems remains
difficult due to a lack of standardisation [18, 7, 10].

This chapter will focus on task-oriented management strategies to optimise QoS
parameters in fog computing. It seeks to clarify critical issues and highlights the
significant studies of application placement, task scheduling and task offloading- each
of which is examined in the following subsections.

2.2.1 Application Placement

Application placement refers to applications that require more than one service, such
as those in the smart industry, smart city, or smart vehicle. This occurs when
IoT devices in these applications require more than one service, and these services
should be mapped to one or more fog nodes. Assume application request n services
{SV1, SV 22, SV3, . . . , SVn} a number of services and should be mapped to available m
fog node F = {F1, F2, F3, . . . , FM}. According to available resources, each available
fog node might serve more than one service.

Here are the three critical challenges faced by scholars in the application
placements approach.

1. Resource Utilisation: The main dilemma is to ensure that fog nodes are
utilized effectively without underuse or overload between them.

14

2.2. Resource Management in Fog Computing

2. QoS Requirements: It is essential to meet specific criteria like service
deadlines, latency, and reliability, which are critical to the performance of IoT
applications.

3. Dynamic environment: Fog computing is unpredictable and highly variable,
with changes in the network conditions based on resource availability and
workload demand.

Application Placement in Practice: Consider a smart city application with
various IoT services. These services include pollution detection, traffic monitoring
and emergency response, which are required to be deployed on fog nodes across the
city. The application placement issue includes:

• Determining which available fog nodes can host these services.

• Ensuring the placement strategy does not violate latency requirements for real-
time monitoring and response.

• Ensuring the load is balanced across fog nodes to avoid overuse and congestion.

Problem definition for application placement approach.

• Objective: To find an optimal placement solution that will map IoT services
to available fog nodes. The optimal solution has to take into consideration
QoS requirements and optimise objective functions such as latency, energy
consumption or cost.

• Mapping: The solution includes mapping each IoT service to one or more fog
nodes, which means each fog node can host multiple IoT services.

Figure 2.1 classifies the application placement approaches based on optimisation
strategies into Quantitative Optimisation Techniques, Heuristics, Metaheuristics, and
AI-based Approaches.

Heuristic Approach

Several scholars contributed to application placement in the heuristic approach to
optimise QoS. Selimi et al.[28] introduced a heuristic placement algorithm called
the Bandwidth and Availability-aware Service Placement (BASP) algorithm to
improve service placement in Community networks (CNs). The algorithm focuses
on optimising the deployment of services within micro-cloud environments such as
Guifi.net. BASP aims to enhance the quality of experience (QoE) for users by
optimising bandwidth (achieving 2x bandwidth gain) and reducing the response
time (37% reduction in packet loss rate). The proposed algorithm was tested with

15

2.2. Resource Management in Fog Computing

Application Placement

Heuristics AIMeta-Heuristic
Quantitative

Optimization techniques

Figure 2.1: Taxonomy of Application Placement Approaches

services like live video streaming and Web 2.0 services and evaluated in a real CNs
environment. Mahmud et al. in [29] investigated how to optimise QoS by managing
application modules based on their latency sensitivity. The approach was applied in
a smart home scenario via IfogSim simulation. The paper proposed two algorithms:

• The first algorithm is applied to the placement of application modules. It aims
to ensure modules are placed in appropriate fog nodes based on several factors,
including delay and resource availability.

• The second algorithm focuses on resource optimisation by forwarding these
modules. It aims to forward application modules from underutilised nodes to
more highly occupied ones to reduce the number of active nodes.

The study addresses both latency-sensitive and latency-tolerant applications, priori-
tising the placement of the more sensitive ones. The outcome of this study is reducing
delays by ensuring the deadline satisfies QoS while also optimising resource use by
minimising the number of active nodes.

Mahmud et al. [30] presented a new strategy for energy-aware applications
deployed in fog environments. Their approach is called an energy-aware allocation
strategy, based on placing modules on suitable fog devices instead of using the cloud.
They applied their strategy in a healthcare scenario in the IfogSim simulation. The
results of their experiment are reducing energy consumption by 2.7% compared with
the cloud and 1.6% compared with the default fog configuration. It also reduces the
average delay by almost 0.5% and 18%, respectively. In network usage, both the
proposed strategy and the default fog configuration performed equally but showed
notable improvement compared to cloud-only by nearly 95%. Taneja and Davy
[31] proposed a new model mapping algorithm which will be able to distribute the

16

2.2. Resource Management in Fog Computing

computation process between fog and cloud layers dynamically. Their approach is
designed to reduce the application latency and energy consumption and optimise
network usage. It was implemented in IfogSim simulation in a generic scenario.

Mann [32] discusses the challenges of application placement in fog computing and
proposes his solution to overcome these challenges. As it is known, fog computing
includes placing applications in various resources such as fog nodes and cloud data
centres. The consequence of the placement of these applications negatively impacts
the performance metrics, including latency and bandwidth. The main challenge
addressed by the author was the scalability issues; the paper proposes a decentralised
optimisation technique where the infrastructure is divided into fog colonies. It
is based on a group of computational resources in a certain geographical region.
Each application placement is performed separately for each fog colony. However,
independent optimisation gives a sub-optimal solution due to missed synergies
between fog colonies. Therefore, some coordination between these fog colonies might
be beneficial to improve QoS. In his proposed model, an ILP-based algorithm is used
to find an optimal solution to determine where to host each application component and
how to route connectors. Also, a heuristic search-based algorithm is used to construct
a solution. The proposed approach shows better results compared with the other
four different approaches. The first approach is centralised decision-making, which is
performed for the entire infrastructure at once. The second approach is independent
fog colonies, where each fog colony is optimised independently. The third approach
is fog colonies with communication, where excess application components in one fog
colony can be offloaded to neighbouring fog colonies. The fourth approach is fog
colonies with overlaps, where shared resources can be dynamically allocated between
neighbouring colonies.

Oliveira et al. in [33] proposed a method to tackle application placement issues,
especially for applications that are latency-sensitive and communication-intensive.
The paper discusses a hierarchical fog computing model with several levels. Each
level comprises cloudlets with different computational resources and connectivity.
Applications are divided into modular parts, allowing each module to be executed
on different devices in the fog hierarchy. The problem is determining the optimal
placement of these modules to meet application requirements and optimise QoS. The
authors introduce the Least Impact -X mechanism (LI-X) to optimise the placement
application. LI-X calculates the average MIPS required for each model to perform the
resource allocation. At first, LI-X allocates the resources in the current cloudlet. If
the resources are insufficient, it identifies the modules that can be moved to a higher
level with minimal communication impact. The main aim of the proposed algorithm
is to utilise resources at the lower fog level as much as possible. In the evaluation,
four scenarios were considered:

1. Topology A, a single fog level.

17

2.2. Resource Management in Fog Computing

2. Topology B, a single fog level with increased distance between devices.

3. Topology C, two fog levels.

4. Topology D, with three fog levels.

The outcome of their investigation shows that LI-X has better results compared to
existing benchmark schemes, including DP-I and CB-E, in terms of network traffic,
response time and Module distribution in all Topologies.

Meta-Heuristics Approach

In the Meta-heuristics approach, several researchers applied different algorithms for
optimisation purposes. Lin and Yang [34] addressed computation requirements by
IoT devices in Industry-4.0 logistic centres. The Authors Proposed a new approach
to solve this NP-hard problem by using DMGA, which is a hybrid combination of
Discrete Monkey (DMA) and Genetic Algorithms (GA). Their proposed system model
deals with static sensing devices that gather data from fixed positions in a logistics
environment. Here are the functionalities of these combinations

• DMA algorithm: The core mechanism used to optimise the placement of fog,
edge, and gateway devices.

• GA algorithm: Incorporated into DMA to enhance computational efficiency.
DMGA utilises crossover and mutation operations of GA, which help to explore
the solution space effectively and speed up convergence towards the optimal
solution.

Their objective is to find the optimal deployment of a fog system in a logistics
centre to enhance the performance of Industry 4.0. The simulation proved that
their proposed algorithms were able to minimise installation costs while adhering
to performance standards compared to GA and MA. Natesha and Guddeti [35]
proposed a metaheuristic approach called the NSGA-II algorithm for data replica
placement to enhance data-intensive IoT applications. The objective of this study
is to reduce latency and data access costs while increasing data availability. The
NSGA-II algorithm is used to optimise the placement of data replicas closer to users.
The system model includes three layers of typical fog computing and a data replica
manager (DRM), which play vital roles in monitoring fog node conditions and data
requests. Their system model focuses on the fog layer, which is divided into:

• Fog node: Classified into domains, each domain contains a regional fog node
(RFOG) with sub-local fog nodes (LFOG).

• DRM: It has three main functionalities:

18

2.2. Resource Management in Fog Computing

1. Monitoring IoT request access.

2. Predicting the number of data replicas required for IoT.

3. Optimising data replica placement by finding the optimal nodes using the
NSGA-II algorithm.

The NSGA-II algorithm predicts and places replicas based on QoS requirements.
The simulation results show that NSGA-II has better results than FFRPP and MCS
in improving QoS. Natesha and Guddeti [36] proposed two combined metaheuristic
mechanisms to tackle service placement issues in a fog computing environment. The
authors used the MGAPSO algorithm in their proposed solutions, which combines
GA and PSO to evaluate fitness, perform selection, crossover, mutation, and optimise
service placement iteratively. Their proposed model is built on a two-level fog
computing architecture designed for IIoT applications. Authors classify the fog
architecture into either

• Fog Master Node: Responsible for monitoring and controlling the Fog Cells
and allocating resources optimally across Fog Cells using MGAPSO and
EGAPSO algorithms. It acts as a central coordinator for the fog environment,
ensuring efficient application placement. The Fog Master Node consists of four
components:

1. Fog Cell Registry: Registers and maintains information about available fog
cells in the system. The registry allows Fog master to track the available
and suitable fog cells for process tasks.

2. Host Monitor: Monitoring resource usage in fog cells and making sure all
resources are efficiently utilised.

3. Fog Cell Controller: Maintaining the topology of the fog environment by
monitoring the status of fog cells. It helps to get real-time updates about
fog cells’ condition and ensure that they are operational and connected.

4. Fog Service Registry and Service Allocation: Handles the registration
of services and allocates them across fog cells based on current resource
availability and optimization algorithms.

• Fog Cells: contains several independent fog nodes with different capabilities,
which act as an interface to IoT devices (sensors, actuators). All IoT requests
will be processed in fog cell nodes except for complex or further processing,
which will be forwarded to the fog master node. Fog cells act as the primary
data processors, handling most of the computational load locally.

The authors also use EGAPSO, which enhances MGAPSO by incorporating elitism
in GA to save the best chromosomes for the next generation without crossover

19

2.2. Resource Management in Fog Computing

and mutation. This technique will speed up the convergence of EGAPSO. Their
experiment results show that EGAPSO outperforms existing algorithms, such as FF,
B&B and DEBTS, in optimising several QoS parameters. In paper [37], the authors
formulate the service problem as a multi-objective optimisation problem and prove it
to be NP-complete. The authors propose a combination of meta-heuristic algorithms:
Genetic algorithms, Simulated Annealing (SA) and Particle Swarm Optimisation to
optimise service placement. In their proposed model consists of multiple fog domains
(fog nodes). Each domain has a fog control manager (FCM) to allocate the resources
and service placement within the domain. The FCMs can monitor node status, handle
incoming tasks, and communicate with other FCMs to ensure optimal application
placement across domains. The GA-SA hybrid utilises GA for population initialisation
and SA for local search to enhance the exploration capability. The GA-PSO hybrid
combines GA’s crossover and mutation operators with PSO’s particles to update
rules to balance exploration and exploitation. The results show that GA-SA hybrids
(referred to as FSPGSA) outperform other algorithms, including GA-PSO, RFSP and
FSPSA, in terms of makespan, energy consumption and cost. The results highlight
the ability of GA-SA to manage service placement across multiple fog domains.

In Paper [38], the authors address the application placement issue via Enhanced
Multi-Objective Particle Swarm Optimisation with Clustering (EMOPSOC). The
EMOPSOC combined with the Fog Picker algorithm. The Fog Picker allocates IoT
components to fog nodes based on QoS attributes, whereas EMOPSOC dynamically
schedules fog nodes. Their system model utilises the EMOPSOC algorithm to evaluate
fitness and performs non-dominated sorting, Clustering by K-means, crowding
distance calculations, and Euler distance computation to optimise scheduling. The
functionality of the Fog Picker is to use a weighted vector approach to map IoT
components to the most suitable fog nodes. The results prove that EMOPSOC
with Fog Picker improves resource scheduling and application placement compared
with other algorithms, including MOPSO, NSGA-II and SPEA-II, in terms of steady
performance and minimising resource wastage.

Quantitative Optimisation Approach

In the Quantitative Optimisation Techniques (Mathematical Programming) approach,
several researchers have proposed models to offload tasks and optimise QoS. For
example, Velasquez et al. [39] propose a modular architecture for intelligently placing
IoT services to reduce service latency. The architecture consists of three components:
a service repository, an information collection module, and a service orchestrator.
Integer Linear Programming (ILP) is employed within the service orchestrator as
a decision-maker to optimise placing the service of tasks based on the network
conditions. The paper discusses several applications within smart city including,

20

2.2. Resource Management in Fog Computing

smart buildings, smart energy grids and smart mobility solutions. Bellmann et
al. [40] deployed the Markov Decision process to optimise data replication in a
fog computing environment, aiming to achieve low-latency data access for mobile
clients. Their use of Markov model algorithms aims to keep client-specific data in the
closest fog node without incurring the overheads of global replication. According to
their simulation results, data availability is improved by 35% compared to the default
replication strategies. The proposed model is based on the Fusion Multi Order Markov
Model(FOMM), a combination of multiple time discretisation techniques and variable-
order Markov models to predict the next node the client will be connected to. This
allows proactive replication while minimising excess data. In their simulations, the
proposed model shows notable improvements over baseline approaches like reactive
replication in terms of reducing storage and communication.

Baranwal and Vidyarthi [41] proposed a new model to enhance application
placement, called the Fog Orchestrator Node Selection (FONS) model. The study
focuses on selecting the most suitable FONs based on identified performance metrics
like the energy consumption or battery power of Fog Gateway Nodes(FGNs). The
FONS model itself might be placed on either fog or cloud nodes, depending on
predictive mechanisms. The model comprehensively considers the requirements of
IoT devices, FGN resources, and the connected Fog Computational Nodes(FCNs),
evaluating metrics like average processing speed and resource availability. In the
paper [42], Aldossary proposes a new mechanism to optimise the placement of
IoT applications using mixed-integer linear programming (MILP). The proposed
mechanism is designed for a smart city scenario with several objectives, including
minimising power consumption, data transmission, and associated costs. The model
utilises both fog and cloud resources, factoring in node geographical locations, resource
availability, and capacities. The mechanism optimises IoT application placement
by balancing these constraints to ensure efficient use of energy and resources.
It considers the IoT application requirements, available resource capacity, and
geographic locations of servers. The simulation results show that MILP performance
is better than the cloud-only approach and the heuristic algorithm in optimising QoS.

AI Approach

In the AI approach (machine learning, deep learning, neural networks, reinforcement
learning), several researchers have applied approaches in machine learning (deep
learning, reinforcement learning, federated learning) and neural networks. Goudarzi
et al. [43] applied a deep reinforcement learning mechanism (DRL) in a fog computing
environment to enhance the performance of the application via the application
placement approach. The approach called experience-sharing application placement
XDDRL helps to tackle complex and dynamic IoT applications modelled (directed

21

2.2. Resource Management in Fog Computing

acyclic Graph (DAGs)). Their study claims that DAGs are modelled as IoT
applications, and they used a framework called importance-weighted actor-learner
(IMPALA). Additionally, they introduce X-DDRL, an experience-sharing distributed
framework to allow several fog brokers to interact with the fog environment in parallel,
reducing exploration costs. They use cloud and edge in their study collaboratively
with a heterogeneous fog computing environment. In their proposed model, at
first, they introduced a waited-cost model to find the most suitable configurations
for incoming tasks from IoT applications. The model also utilises recurrent neural
networks(RNN) to capture temporal behaviours across input features. After that,
they use xDDRL in their prescheduling phase. And IMPALA for training their
distributed brokers. The outcome of their study is to improve the execution time
by 30%, energy consumption by 11% and weighted cost by 24%.

Zare et al. [44] proposed a novel approach to tackle the service placement problem
(SPP) for IoT applications in fog computing environments. The authors introduce a
deep reinforcement learning mechanism (DRL), which is the Asynchronous Advantage
Actor-Critic(A3C) algorithm. Their model, A3C-based framework (A3C-SPP), is
designed to minimise latency and cost while considering resource constraints. Their
study treats SPP as a multi-objective optimisation problem and by utilises A3C to
make dynamic placement decisions. Additionally, the A3C-SPP model includes a
resource distribution extraction technique which aims to optimise resource utilisation
over time. The simulation results demonstrate the effectiveness of A3C-SP against
several other DRL approaches, including IMPALA and DDQL, in terms of improving
several QoS parameters. In [45], Singh and Vidyarthi proposed a new solution for
secure service placement in the fog-cloud ecosystem, combining machine learning (ML)
and metaheuristic approaches. The proposed solution framework consists of two main
components:

1. An ML-based classification, which is a modified adaptive Neuro-Fuzzy Inference
System (ANFIS) for service classification.

2. A Hybrid metaheuristic algorithm that combines the Chaotic-based Grasshop-
per Optimization Algorithm (CGOA) and Genetic Algorithm (GA) to secure
service placement.

The ANFIS model predicts suitable layers, either fog or cloud, for each incoming
service, while CGOA-GA is responsible for optimizing service placement to enhance
QoS, including security, cost, energy consumption, and makepan. Their approach is
evaluated using Google cluster traces, and it shows incredible improvements compared
to other methods in terms of makespan, computational cost, and energy dissipation.
In paper [46], Abofathi et al. proposed a distributed learning automata-based
approach to optimize the application placement model in fog computing. Their

22

2.2. Resource Management in Fog Computing

proposed algorithm is a Distributed Learning Automata for module Placement (DLA-
FMP). It is designed to optimize QoS parameters, including energy consumption
and application loop delay, by mapping the modules to suitable fog nodes. The fog
environment is modelled as a multi-layer architecture, with communication occurring
between nodes on the same layer and those directly above or below to enable efficient
model placement. Each fog node is assigned learning automata that cooperate to
find optimal module placement solutions. The simulation result demonstrates the
performance of DLA-FMP in energy utilization and latency reduction compared with
other algorithms, including WOA-FMP, EGA-FMP, GAPSO-FMP and BPSO-FMP.
On average, DLA-FMP achieves almost 16% improvements in energy consumption and
an 18.21% reduction in application loop delay. Table 2.1 summarizes the application
placement approach in fog computing by considering their case studies, proposed
algorithms, performance evaluations, advantages and limitations.

Paper
number

Case study Proposed
mechanism

Performance
evaluation

Advantage Limitation

[28] Service
Placement in
community
network
micro-clouds

BASP Bandwidth,
packet loss,
response time

Improves
bandwidth
utilization,
reduces pack
loss, decreases
client response
time

Focus on service
placement based
on bandwidth
and availability,
but ignores
other QoS
factors like
delay, which is
essential in their
scenario of
“video
streaming”.

[29] Healthcare Module
Mapping
algorithm

Optimize
network usage,
application
latency

Reduce delay,
efficient
utilization of
network
resources

Does not
consider the
dynamicity of
mobility of IoT
devices and end
users.

[30] Healthcare Energy-aware
allocation
strategy

Network
Usage, delay,
energy
consumption

Reduce delay,
efficient
utilization of
network
resources

Simple scenarios
do not reflect
the complexity
of real-world
healthcare
scenarios,do not
handle dynamic
network
changes.

Table 2.1: Overview of Case Studies and Proposed Mechanism in Application
Placement Approaches (Part 1)

23

2.2. Resource Management in Fog Computing

Paper
number

Case study Proposed
mechanism

Performance
evaluation

Advantage Limitation

[31] General Case
Study

Model
Mapping
algorithm

Optimizing
network Usage,
minimising
Latency and
Energy
Consumption

Provides a
structured
approach to
service
placement,
enhanced
efficiency

Focus on static
application
characteristics,
ignoring
dynamic factors
node failures
and network
changes.

[32] Decentralized
application
placement

Combined of
heuristic and
ILP-based
algorithm

Resource
consumption,
Average delay,
Execution time
and Efficiency

Effective for
large problem
instances,
Scalable

High complexity,
coordination
overhead,
simulation-based
validation

[33] Enhanced
modular
application
placement

Heuristic
algorithm LI-X

Network traffic,
Total delay
and Module
distribution

reduce Response
time, network
traffic, and
efficient resource
utilisation

The study
assume static
resource
availability and
does not
consider the
impact of
mobility.

[34] Logistics centres
in Industry 4.0

DMGA Cost
minimisation

Cost-efficient
deployment
strategy and
effectively
optimise device
placement

Moderate-scale
scenario and
lacks
consideration of
energy
consumption
and real-time
dynamic
changes.
Focuses on
static sensing in
fixed locations,
limiting the
potential
advantages of
fog computing.

[35] Data-intensive
IoT application

Metaheuristic
NSGA-II

Latency, cost
and data
availability

Reduce cost,
latency and
improve the
performance of
the system by
increasing data
availability

The Complexity
associated with
implementing
the NSGA-II in
large-scale fog
computing
environments.

[36] Smart
manufacturing
industry 4.0

Metaheuristic
(MGAPSO and
EGAPSO)

Service time,
service cost,
energy
consumption

Reduce delay,
cost and energy
consumption

Did not consider
interdependent
IIoT
applications,
increases energy
consumption
with more fog
nodes.

Overview of Case Studies and Proposed Mechanism in Application Placement
Approaches (Part 2)

24

2.2. Resource Management in Fog Computing

Paper
number

Case study Proposed
mechanism

Performance
evaluation

Advantage Limitation

[37] General Case
study

Hybrid
metaheuristics
GA-SA and
GA-PSO

Latency,
energy
consumption
and cost

Reduce
makespan,
energy
consumption
and
cost-effectively

Does not
consider task
migration,
assumes a static
environment.

[38] General Case
study

Metaheuristic
EMOPSOC
and Fog Picker

Network
latency,
resource
wastage, load
imbalance
efficiency

Reduce network
latency by 80%
minimize
resource wastage
, balance load

Assumes static
environment

[39] Smart City
Applications

Integer Linear
Programming
(ILP)

Latency Provide a
flexible and
efficient
deployment
strategy for IoT
applications

Lacks
comparison with
other service
placement
solutions,
Ignores Other
QoS parameters
like reliability
and throughput,
and is purely
Theoretical with
no experimental
results

[40] Predictive
replica
placement for a
mobile users

Markov
models(Fusion
Multi Order
Markov
Model-FOMM)

Data
availability,
memory and
network usage

Improves data
availability and
reduces global
replication
overheads

Require further
testing to
address dynamic
changes in
network
conditions

[41] General Case
study

FONS Network usage,
energy
consumption,
delay, number
of migrations

Support
scalability and
real-time
processing needs
of IoT
applications

Needs further
research to
include dynamic
characteristics
and node failure
scenarios

[42] Smart City MILP Power
consumption,
data
transmission
and cost
savings

Significant
reduction in
power
consumption
and data
transmission

Ignore dynamic
environment and
assume only
static
environment.

[43] Smart
healthcare

X-DDRL Improves
execution cost,
energy
consumption,
and system
efficiency

Reduces
exploration
costs, improves
sample efficiency

High exploration
costs, limited
adaptability to
dynamic
environment, no
mobility models.

[44] General Case
study

A3C-SPP Cost, Latency
and resource
utilization

Significantly
reduce cost,
latency and
improve resource
management

Requires high
computational
Resources,
complex
implementation.

Overview of Case Studies and Proposed Mechanism in Application Placement
Approaches (Part 3)

25

2.2. Resource Management in Fog Computing

Paper
number

Case study Proposed
mechanism

Performance
evaluation

Advantage Limitation

[45] General
fog-cloud
ecosystem

ANFIS for
classification
CGOA-GA for
service
scheduling

Makespan,
cost, energy
consumption,
and security

Significant
improvement in
makespan,
computational
cost, energy
dissipation

High
Computational
complexity and
parameter
tuning;
chaotic-GOA
may have
convergence
issues.

[46] General Case
study

DLA-FMP Energy
consumption
and application
loop delay

Improve system
performance by
reducing
application loop
delay and energy
consumption

Complexity
increases with
network size and
requires
parameter
tuning.

Overview of Case Studies and Proposed Mechanism in Application Placement
Approaches (Part 4)

2.2.2 Task Scheduling

Task scheduling involves determining the optimal assignment of tasks to available fog
nodes.
Problem definition for task scheduling approach

• Objective: To find the optimal path to assign tasks to fog nodes and optimise
QoS parameters.

• Assignment: The solution involves the assignment of tasks T = {T1, T2, . . . , Tn}
with various QoS requirements to available fog nodes F = {F1, F2, . . . , FM} with
different capabilities and locations.

Task Scheduling in Practice: Consider a smart factory with various sensors and
devices. Resource scheduling strategies determine which fog nodes should process the
data from these sensors and devices. All these processes should be monitored and
controlled in real-time.
Key challenges in resource scheduling approach:

• Ensuring tasks are scheduled to minimise execution time and meet QoS
requirements.

• Managing the dynamic nature of task arrivals and resource availability in fog
nodes.

• Balancing load and avoiding bottlenecks.

26

2.2. Resource Management in Fog Computing

According to the taxonomy depicted in Figure 2.2, task scheduling approaches
can be classified into static, dynamic, hybrid and intelligent (AI-based) categories.
Efficient task scheduling is paramount in fog computing environments to optimise
the allocation of computing resources at the network edge. Unlike fog computing,
where dynamic scheduling is often required, cloud environments typically rely on
static resource scheduling strategies.

Task Scheduling
Algorithms

Static
Artificial

IntelligenceDynamic Hybrid

Figure 2.2: Hierarchical Representation of Task Scheduling Approaches

Static Scheduling

In fog computing, static scheduling algorithms, such as FCFS (First Come First
Serve), operate under the assumption that all information about tasks and fog
resources is available in advance. This implies that the details of the task are known
before the commencement of the scheduling process. The FCFS mechanism schedules
resources based on a first-come, first-served basis, much like the First in First out
(FIFO) system. In this mechanism, the first task that arrives in the fog devices
is executed immediately, while subsequent tasks are stored in a waiting queue in
ascending order based on their arrival. Similarly, SJF prioritises tasks based on their
execution time, scheduling the shortest task first to minimise overall waiting time [47,
48].

Pham and Huh [49], focus on achieving a trade-off between execution time and cost
in task scheduling for cloud-fog computing. Their heuristic algorithms prioritise tasks
using an upward ranking method, ensuring that higher-priority tasks are assigned
to resources first. The study aims to assign tasks to the most suitable nodes
among the available nodes. Their simulation results demonstrate a balance between
cost and execution time (makespan), showing that while the results are not always
the most optimal, they are obtained efficiently. Another study conducted within
the distributed scheduling category focused on QoS-aware scheduling for streaming

27

2.2. Resource Management in Fog Computing

data applications in a fog computing environment. Their investigation demonstrates
improvements in runtime scheduling while concurrently reducing delays and enhancing
overall performance [50].

Dynamic Scheduling

Dynamic scheduling is a contrast to static scheduling. Given the dynamic nature
of edge devices and workloads, dynamic resource scheduling becomes pivotal. In
this form of scheduling, task details are typically streamed in real-time, with no
previous knowledge of the resource requirements. Dynamic scheduling calls for greater
flexibility, especially when catering to applications that have unpredictable workloads
at the edge. Ghanavati et al. [51] propose the DFTLA approach, a fault-tolerant task
scheduling method that employs a variable learning automaton to actively monitor
execution and make adaptive decisions based on environmental inputs. The goal is to
ensure reliable task execution while optimising response time and energy consumption
in fog computing platforms. Experiments validated its effectiveness, showing that
it outperformed three baseline methods in terms of reliability, response time, and
robustness while also achieving lower energy consumption. Bittencourt et al. [52]
examine the scheduling challenges associated with movement applications in the fog
and cloud context hierarchy. The approach improves response times and adapts to
user mobility, but it requires sophisticated resource management to handle dynamic
workloads and varying network conditions. Their study introduces different scheduling
strategies to optimise resource utilisation while maintaining low latency; however,
ensuring seamless application performance under unpredictable mobility patterns
remains a challenge.

Yang et al.[53] propose a DEBTS algorithm for homogeneous fog networks
to optimize energy efficiency and enhance system performance. Nonetheless, the
approach requires careful tuning of control parameters to balance delay and energy
consumption. Wan et al. introduce a unique job scheduling strategy called
Energy-Aware Load Balancing and Scheduling (ELBS) [54] to optimize fog node
resource utilization in smart factories. The scheduling strategy focuses on balancing
energy consumption and delays by employing the Particle Swarm Optimization PSO
algorithm.

Hybrid

Hybrid scheduling combines elements of both static and dynamic scheduling to
enhance flexibility and efficiency in task allocation. Unlike static approaches that
depend on pre-defined task information, dynamic approaches adapt in real-time.
Hybrid scheduling harnesses both methods to optimise resource utilisation. For
instance, initial task assignments may follow a static plan, while adjustments occur

28

2.2. Resource Management in Fog Computing

dynamically based on workload fluctuations. Methods such as the Stable Matching
Algorithm (SMA) and meta-heuristic techniques like Particle Swarm Optimisation
(PSO) exemplify this approach, ensuring a balance between predictability and
adaptability in fog computing environments. Alfakeeh and Javed’s paper [55] presents
a task scheduling method based on a Stable Matching Algorithm (SMA) for fog
computing integrated with IoT networks. It addresses the challenge of efficient and
secure task allocation by leveraging the Gale–Shapley stable matching approach. The
approach develops preference profiles for IoT tasks and fog nodes, taking into account
aspects such as task delay and secrecy rate to ensure optimal scheduling. Simulation
findings reveal that the proposed strategy decreases task delay by 33% and enhances
secrecy rate by 200% compared to other existing algorithms, all while maintaining
high resource utilisation (90%). Among task scheduling approaches, Time-Cost aware
Scheduling (TCaS), is a recently proposed algorithm based on a genetic algorithm.
Its primary purpose is to optimise task scheduling in cloud-fog computing networks.
The algorithm was tested on 11 datasets. The test concluded that TCAS has
far better optimisation than older algorithms, such as Bee Life Algorithm (BLA),
Modified Particle Swarm Optimisation (MPSO), and Round Robin, with reductions
of approximately 15%, 11% and 44%, respectively [56].

Artificial Intelligence

Artificial Intelligence approaches can be classified as machine learning (ML) ap-
proaches or deep learning (DL) approaches. Currently, scholars investigate the
feasibility of these approaches to enhance QoS. Recent studies on task scheduling in fog
computing focus on the integration of ML and DL methodologies, particularly neural
networks. These data-driven techniques leverage real-time monitoring, and adaptive
decision-making to optimize resource allocation decisions at the network edge. Their
approach helps to improve system efficiency by adjusting resources dynamically based
on the workload demands. As a result, it enhances performance while minimizing
latency and energy consumption [57].

Additionally, deep reinforcement learning models, such as Clipped Double Deep
Q-Learning (CDDQL), provide an intelligent approach to resource scheduling in
fog environments. The results of this study demonstrate the potential of these
methodologies in improving energy efficiency, reducing service delay, and enhancing
scheduling performance at the network periphery. They also highlight the advantages
of these strategies in optimizing operational efficiency, though further refinements are
needed for real-world applicability [58]. Another innovative resource management
strategy, called Effective Resource Allocation Strategy (ERAS), is discussed. This
strategy, tailored for healthcare applications in fog computing, employs a unique
deep reinforcement learning method and fine-tunes its parameters using Particle

29

2.2. Resource Management in Fog Computing

Swarm Optimization (PSO). The system aims to reduce latency and boost QoS
indicators, including allocation expenses, response duration, bandwidth efficacy, and
energy usage. ERAS outperforms preceding allocation approaches, achieving the least
Makespan and the highest Average Resource Utilisation (ARU) and Load Balancing
Level (LBL) [59]. Table 2.2 summarizes the task scheduling approach in fog computing
by considering their case studies, proposed algorithms, performance evaluations,
advantages and limitations.

Paper
number

Case study Proposed
mechanism

Performance
evaluation

Advantage Limitation

[47] Healthcare
scenario in fog
computing

SJF Response time,
throughput,
delay

Enhances job
scheduling
efficiency,
reduces delay
and improves
system
performance

Requires further
validation in
large-scale
real-world
healthcare
environment

[48] Task scheduling
in fog computing

Multi-objective
optimization
using FCFS,
SJF, GP and
RR scheduling
policies

Energy
consumption,
execution time,
network usage,
application
delay

FCFS reduce
energy
consumption,
execution time,
and optimize
average loop
delay

Requires further
validation in
real-world
environment and
consideration of
dynamic
workload
variations

[49] Task scheduling
in cloud-fog
computing

Heuristic-based
scheduling
algorithm

Makespan and
cost

Efficiently
balances
workflow
execution time
and cost

Study does not
incorporate
budget
constraints or
strict workflow
deadline, which
are suggested for
future
improvements

[52] Scheduling
application in
fog computing
considering user
mobility

Mobility-
Aware
Scheduling
algorithm

Network traffic
and application
response time

Effectively
handles user
mobility, ensures
low-latency
access

Requires
advanced
resource
management to
handle dynamic
user requests
and mitigate
mobility
prediction errors

[53] Task scheduling
in homogeneous
fog networks

DEBTS Energy
consumption,
average service
delay

Balance
trade-off
between service
delay and energy
consumption

Needs further
validation in
real-world
scenario include
dynamic and
heterogeneous
fog environment

Table 2.2: Overview of Case Studies and Proposed Mechanism in Task Scheduling
Approaches (Part1)

30

2.2. Resource Management in Fog Computing

Paper
number

Case study Proposed
mechanism

Performance
evaluation

Advantage Limitation

[54] Scheduling in
smart factories

ELBS Energy
consumption,
response time

Improve loading
balancing and
reduce energy
consumption

Needs further
validation in
varied industrial
environments to
ensure
scalability

[50] DPS application
in smart city

Distributed
QoS-aware
Scheduling for
Storm

Performance ,
runtime
adaptation and
capabilities

Improves
application
performance

For complex
topologies it
may cause
instability
affecting
application
availability

[60] Selection of path
pairs in
multicriteria ad
hoc networks

GA Performance in
SNR and
power
consumption

GA provides
stable
performance and
consistent path
pair selection

Requires
significant
computation
time and the
results may vary
under different
conditions

[51] Latency-
sensitive and
compute-
intensive IoT
applications

DFTLA Response time,
energy
consumption

Reliable task
execution
optimized
response time
and energy
consumption

Need more
research on
congestion
handling in
high-demands
areas and
inclusion of
memory/task
specific energy
requirements

[59] Resource
allocation in
healthcare
application

ERAS using
optimized
reinforcement
learning

Maximizes
resource
utilization,
improves
allocation cost,
response time,
bandwidth,
efficiency,
energy
consumption

Efficient
resource
management
and load
balancing,
enhanced
decision-making
in critical care

Requires further
validation in
authentic clinic
setting

[57] AI model
simulation for
resource
management

Deep
Q-Network
(DQN) with
GNN

Power
consump-
tion,efficiency,
performance

Eco-friendly,
energy-efficient,
optimize power
consumption

Need further
research in
security, privacy
and real-world
validation in
diverse scenario

[58] Task scheduling
in fog
computing for
IoT application

CDDQL with
parallel
queuing

Service delay
and average
energy
consumption

Provides
energy-efficient
task
management

Requires further
optimization for
real-world
deployment and
scalability

[55] Task scheduling
in fog computing

SMA Task delay,
secrecy rate,
resource
utilization

Reduce delay by
33%, improve
secrecy rate by
200%

Does not
consider
real-time
workload
fluctuations.

Overview of Case Studies and Proposed Mechanism in Task Scheduling Approaches
(Part2)

31

2.2. Resource Management in Fog Computing

2.2.3 Task Offloading

The concept of task offloading is totally different from task scheduling. It occurs after
a task has been assigned to a particular fog node or could happen before scheduling a
task when the fog is not capable of executing the task due to several reasons, such as
a lack of resources or the unavailability of the fog node. The task offloading concept
can occur when tasks are offloaded to a single node or to multiple nodes. Offloading
to multiple fog nodes is a complex decision because the task is distributed (split) into
multiple fog nodes at the same time.

Overall, task offloading involves determining which task to offload from IoT devices
to fog nodes or cloud servers.
Problem definition for resource scheduling approach

• Objective: To find the best strategies for offloading tasks, aiming to optimise
and meet the requirements of QoS parameters.

• Assignment:The solution involves determining which tasks should be processed
locally, task offloading to fog nodes, or sent directly to the cloud.

Task Offloading in Practice: Consider a smart healthcare system. Task offloading
decides whether to process patient data on wearable devices, offload it to nearby
available fog nodes for quick analysis, or offload it to a cloud server for complex
processing.
Key challenges in task offloading approach:

• Offloading tasks to nearby fog nodes instead of distant cloud servers to reduce
latency.

• Balancing the computational load across fog nodes and cloud servers.

• Minimising energy consumption and extending the battery life of IoT devices.

According to previous studies, task offloading can be classified based on the
decision strategies, task status and the offloading extent, as shown in Taxonomy
2.3. Decision strategies can be either static or dynamic. It can be static when the
offload of a task is predetermined, which happens based on expected task demands
and fog nodes’ capabilities. On the other hand, dynamic offloading happens in real
time based on the current incoming task and the capability of the fog nodes. Task
status can be critical when its urgent or requires a quick response, or it is important
for system functionalities. Also, it can be non-critical when the latency is not sensitive
to the task requirements. The extent of task offloading can be either full or partial.
The full offloading approach occurs when all tasks from local devices are offloaded to
fog nodes. Whereas partial offloading involves only selective tasks being offloaded to
balance the load in the fog node.

32

2.2. Resource Management in Fog Computing

Types of Task Offloading

Decision Strategy By Offloading Extent

Static Offloading Partial OffloadingDynamic Offloading Full Offloading

Task Criticality

Critical Task Offloading
Non-Critical Task

Offloading

Figure 2.3: Task Offloading Types

One standard classification of task offloading is based on the decision strategy,
which includes static and dynamic offloading approaches. Several researchers propose
a static approach to tackle task offloading in a fog computing environment. Some
scholars introduce a static approach only, while others use both static and dynamic
approaches in the same framework. The authors in the paper [61] propose a
task offloading algorithm, the Gale-Shapley stable Marriage Matching Game (Stable
Matching algorithm, SMA), in the context of 6G networks. Their approach addresses
several QoS parameters, including energy consumption and latency. SMA matches
IoT devices with fog nodes based on task size and energy availability. Tasks are
offloaded to nearby fog nodes with sufficient resources to optimize QoS parameters.
The simulation results show an improvement in energy consumption by 36% and a
reduction in latency by around 37% , compared to systems without tasks offloading.
In the paper [62], the authors propose a solution for task offloading and resource
allocation issues by using GA-based and Gini coefficient-based algorithms. The
authors formulate two scenarios:

1. Task caching during off-peak times: GA-based algorithm is used to optimize the
caching of tasks on mobile user equipment (MUEs).

2. Task offloading during immediate needs: Gini coefficient-based algorithm is used
for offloading tasks and allocating resources.

33

2.2. Resource Management in Fog Computing

Caching helps their framework reduce computational burden and delay by caching
popular tasks locally or sharing them via D2D communication. The proposed
mechanism in this paper is a combination of static and dynamic approaches:

• Task Caching : This is a static approach because caching decisions occur during
off-peak times and not continuously updated in real-time.

• Task Offloading and resource allocation: This uses a dynamic approach since
these occur in real-time conditions. The simulation results show that the
proposed algorithms improve system performance and QoS.

The authors in [63] propose a dynamic offloading model for flying fog computing
in IoT networks. They leverage mobile drones equipped with fog nodes to improve
IoT network performance by enhancing QoS, including delay and availability. Their
model determines the optimal task assignment strategies, considering the mobility of
drones, communication constraints, and computation capacity. The drones aim to
process data at the network’s edge, which helps to reduce the load from the central
cloud servers and minimize the communication delay. Their simulations demonstrate
the ability of their proposed solution to improve several factors, including latency,
availability, and network performance, compared to the traditional static approach.

Tripathy et al.[64] propose the Dynafog framework to optimize task offloading in
fog computing for IoT networks with multi-hop access points. Dynafog addresses
task offloading issues and enhances QoS parameters, including delay and energy con-
sumption. They formulate the task offloading problems as a non-linear optimization
problem and convert it into ILP. This results in a non-convex problem that is complex
to solve. The authors utilize a greedy heuristic approach in their framework to tackle
the complexity and achieve efficient performance compared to other approaches.
The framework takes into account multiple factors, including resource limitation in
fog nodes and the dynamic characteristics of the environment. Dynafog reduces delay
by almost 41%, 9% and 45% compared to Fog-MMKP, OptFogCloud and Robust-
CompOff, respectively. Additionally, Dynafog reduces energy consumption by nearly
4%, 33% and 36% compared to Fog-MMKP, OptFogCloud and Robust-CompOff,
respectively. study by [65] investigated dynamic, partial offloading tasks in fog
computing. Their proposed algorithm, called Learning Repository Fog-cloud(LRFC)
, was able to distribute tasks among available fog nodes efficiently. Their study
aims to help delay-sensitive applications that need immediate response. Wei et
al. [66] introduce a novel approach for task offloading in vehicular fog computing.
It uses a many-to-many model; multiple vehicles serve as both service demanders
and computation providers. Their proposed approach within their framework
uses deep reinforcement learning, which is able to dynamically address vehicular
needs to optimize QoS. Kishor and Chakarbarty, in their paper [67], proposed a

34

2.2. Resource Management in Fog Computing

metaheuristic scheduler approach to tackle task offloading issues by using a smart
ant colony optimisation algorithm (SACO). It dynamically selects the appropriate
node to execute the incoming data from IoT sensors. The study compares SACO’s
performance against that of other schedulers like RR, MPSO, and BLA. Dang and
Kim [68] proposed a dynamic approach named dynamic collaborative task offloading
(DCTO) to address task offloading by considering the resource availability in fog
devices. They used a parallel computing technique by dividing tasks into subtasks
and executing them in one or two fog devices to reduce the delay of execution.

Another vital categorisation relies on task criticality, distinguishing between
critical and non-critical tasks based on time sensitivity and system importance. The
paper [69] introduces a new framework in fog-cloud computing for task offloading
in enterprise management systems (EMS). The framework addresses two main
challenges:

1. Critical tasks (delay-sensitive): These require immediate processing to ensure
system performance.

2. Non-critical tasks: These are less time-sensitive but often energy-intensive

The authors propose a distributed task offloading algorithm based on noncooperative
game theory. This approach adjusts task offloading dynamically based on the
availability of cached services at the fog server. The critical task offloads nearby fog
nodes when the services are available, while the non-critical tasks are processed locally
or offloaded to the cloud if local resources are not available. A 0-1 knapsack method is
also used for dynamic service caching, prioritizing task popularity to enhance system
efficiency. The result of this investigation show a reduction of delay for critical
tasks and a reduction in energy consumption for non-critical tasks compared to other
existing algorithms.

The paper [70] introduces OffFog as a new framework to aid in defining
offloading policies in fog computing environments. OffFog aims to optimize task
and data offloading between fog and cloud layers. Their scenario considers IoT
devices in smart cities with resource limitations. The proposed Framework provides
systematic guidelines for making decisions and considers several factors, such as data
compression, task status (Critical or Non-critical), and storage thresholds. Critical
tasks are processed immediately via fog nodes, while non-critical tasks are offloaded to
the cloud. OffFog demonstrates the ability to improve several parameters, including
improving execution time by 5% and reducing latency by almost 76%. In the
paper [71], the authors present a novel task offloading framework for large-scale
asynchronous Mobile Edge Computing (MEC) systems. The proposed framework
utilizes a Whittle Index (WI)-based policy for dynamic task offloading to maximize
system performance while simultaneously handling the stochastic nature of task

35

2.2. Resource Management in Fog Computing

arrivals and deadlines in an asynchronous MEC environment. All critical tasks are
prioritized based on their urgency using the Shorter Slack Time less Remaining
Workload (STLW) rule. STLW ensures critical tasks are completed before their
deadlines. WI enables a scalable, low-complexity solution that balances the task
offloading between energy consumption and task completion ratio. Simulation shows
impressive results compared to other traditional algorithms. Paper [72] proposed
an innovative solution for managing execution delay, payment cost of fog computing
and energy consumption. Their proposed algorithm is a multiobjective optimisation
framework aimed at optimizing offloading probabilities and transmitting power for
mobile devices to fog nodes while balancing the trade-off between delay, cost and
energy consumption. This framework also utilizes queuing theory to analyse the
offloading process. Alasmari et al.[73] addressed task offloading issues through a
new strategy called a multi-classifier-based algorithm (MCEETO). It is applied to
select the appropriate fog node for a module placement by considering the node
characteristics, Task requirements, network bandwidth and latency. This approach
aims to enhance energy efficiency in fog computing environments.

Task offloading can also be categorised by the extent of offloading, which includes
full offloading and partial offloading, depending on how much the task is delegated.
Other researchers use either full or partial-task offloading approaches to improve QoS.
Wang et al. [74] present a detailed analysis of full-task offloading in fog computing.
They investigate the ability of fog computing to act as a remedy for delay-sensitive
applications or whether it becomes a resource drain due to the frequent and massive
offloading processes. The authors introduce the gravity model, which evaluates task
offloading from the perspective of delay and resource consumption. Additionally, the
model assesses the impact of large-scale task offloading on individual devices and
the entire network. Through the proposed model, the authors find that when the
number of fog nodes increases, the task lifetime and device effort decrease; however,
the network effort does not scale efficiently. The outcome of their results captures
several task offloading schemes. This study concludes by highlighting the benefits of
full-task offloading in reducing individual task delays.

Chiti et al. [75] introduced a full-task offloading solution using matching theory
in fog computing environments. Their proposed solution focuses on optimizing the
offloading of task computation from IoT devices for Fog nodes. The main goal is to
optimize service time while considering computational and communication costs. The
authors consider the problem as a matching game with externalities, where each IoT
device (task) selects the most suitable fog node based on several factors, including
execution time, waiting time and communication delay. Additionally, their proposed
solution utilizes a deferred acceptance algorithm to achieve an efficient allocation in
a distributed manner and ensure stability during matching outcomes. The outcome
of their investigation shows that their proposed solution can reduce the worst total

36

2.2. Resource Management in Fog Computing

completion time, waiting time and mean total completion time per task compared to
other traditional approaches.

On the other hand, A research study by [76] introduced an innovative approach
for partial task offloading using the Gale Shapley stable marriage matching technique,
which aims to reduce latency and enhance energy efficiency in fog environments
for 5G networks. Their proposed solution matches the mobile devices and fog
nodes to optimize QoS based on available energy and predicted requirements. Their
simulation results show an improvement, with a decrease of around 30% in energy
usage and latency. Fard et al.[77] proposed an improved non-dominated sorting crow
search algorithm (INSCSA) for task offloading purposes to tackle several objective
optimization challenges in fog computing. Their proposed model is able to optimize
several parameters, including cost, energy consumption, and response time. The
output of their investigation shows that INSCSA produces better results than several
other traditional algorithms. Also, paper [78] proposed a new mechanism called fair
task offloading (FTO), which aims to address task offloading issues. FTO has a similar
target with MCEETO, which is selecting the appropriate fog node for incoming tasks;
however, it is based on the history of energy consumption, priority, and capabilities
of nodes.

Table 2.3 summarizes the Task Offloading approach in fog computing by consider-
ing their case studies, proposed algorithms, performance evaluations, advantages and
limitations.

Paper
number

Case study Proposed
mechanism

Performance
evaluation

Advantage Limitation

[61] IoT and 6G
network

SMA Energy
consumption,
and delay

Reduce latency,
energy
consumption,
and improve the
performance

Real-time
constraints,
scalability
challenges.

[62] D2D-aided fog
computing

Coefficient-
based task
caching and
Gini
coefficient-
based task
offloading

Delay and
energy
utilization

Improve system
performance,
reduce delay and
energy
consumption

Complexity in
real-time
applications and
large-scale
scenarios.

[63] IoT network
with flying fog
computing

Dynamic
programming-
based
offloading
strategy

Latency,
availability,
and resource
utilization

Reduce latency,
increase
availability, and
optimize
resources

Complex in
dynamic
environment,
drone mobility
constraints.

Table 2.3: Overview of Case Studies and Proposed Mechanism in Task Offloading
Approaches (Part 1)

37

2.2. Resource Management in Fog Computing

Paper
number

Case study Proposed
mechanism

Performance
evaluation

Advantage Limitation

[64] IoT networks
with multi-hop
access points

Dynamic task
offloading with
ILP and greedy
heuristic

Delay , and
energy
consumption

Significant
reduction in
delay and energy
consumption ,
and Improve
system
performance

Scalability with
dynamic
network
topology
remains to be
explored.

[69] Cloud-assisted
fog computing
for EMS

Distributed
task offloading
(game theory)
and dynamic
service caching
(0-1 knapsack)

Task delay and
energy
consumption

Reduces delay
and energy
consumption
effectively

Complexity in
large-scale
dynamic
environment.

[70] IoT devices in
smart cities

OffFog for
defining
offloading
policies

Network
Latency, task
execution time

Improve system
performance

Further
evaluation
needed in more
complex
real-time
environment.

[71] Large-scale
asynchronous
MEC systems

WI-based
offloading
policy with
STLW rule

Energy
consumption,
task
completion
ratio and total
reward

Scalable, low
complexity, and
prioritize critical
tasks

Complexity in
practical
implementation
and real-time
application.

[74] Full task
offloading delay
in fog computing

Gravity model
for task
offloading and
resource
evaluation

Task lifetime,
device effort,
Network effort.

Reduce task
delay, effective
in describing
offloading
schemes

Potential
resource drain in
large networks,
scalability
issues.

[75] Full task
offloading in
IoT-based fog
computing

Matching game
with
externalities,
deferred
acceptance
algorithm

Worst total
completion
time, mean
waiting time

Reduce Worst
total completion
time, improve
mean waiting
time and total
waiting time

Complexity in
dynamic
environments,
assume fixed
position of
devices and
nodes.

[65] Service
provisioning in
fog computing
for IoT
application

Dynamic
offloading-
Using LRFC

Improve energy
consumption
and QoS

Enhances service
provisioning by
dynamically
adapting to
varying
requirements

Need more
investigation in
how to handle
large-scale
deployments and
heterogeneous
environment

[76] Task offloading
in fog computing
for 5G cellular
networks

Dynamic
offloading,
Energy-efficient
offloading
algorithm

Energy
consumption
and latency

Improves energy
efficiency and
reduces latency

Requires further
research to
handle
large-scale
deployments and
the complexity
of real-world
scenarios

Overview of Case Studies and Proposed Mechanism in Task Offloading Approaches
(Part 2)

38

2.2. Resource Management in Fog Computing

Paper
number

Case study Proposed
mechanism

Performance
evaluation

Advantage Limitation

[66] Task offloading
in vehicular fog
computing for
ITS

Dynamic
offloading-
Using MADRL

Dealy, System
social welfare

Efficient
resource
utilization and
higher long-term
rewards for
vehicles

Handling
trading failures
and
decision-making
latency is not
covered.

[72] Computation
offloading in fog
computing for
mobile devices

Dynamic
offloading-
Using
Multiobjective
optimization
algorithm

Energy
consumption,
execution
delay, payment
cost

Balances energy
consumption,
delay, and
cost-effectively
for mobile
devices

Need more
investigation in
heterogeneous
and large scale
environments

[67] Task offloading
in fog
computing for
IoT application

Dynamic
offloading-
Using SACO

Task offloading
time, delay

Improvs delay,
enhances QoS
by dynamically
adapting to task
requirements

Needs more
investigation in
heterogeneous
and large-scale
environments

[73] Task offloading
in fog
computing for
IoT application

Dynamic
offloading-
Using
MCEETO

Energy,
Network usage

Improvs energy
efficiency, reduce
network usage,
enhances QoS
parameters

Need more
investigation in
handling
large-scale
deployments and
diverse IoT
environments

[78] Task offloading
in fog computing
for various IoT
application

Dynamic
offloading-
using Fair Task
offloading
algorithm

Energy
consumption,
delay

Ensures fair
energy
consumption
among fog
nodes, reduce
task delay

Needs further
research for
scalability and
handling
heterogeneous
fog nodes

[68] Task offloading
in heterogeneous
fog computing
system

Dynamic
offloading-
Using dynamic
collaborative
task offloading
algorithm

Average task
execution delay

Effectively
utilise resources
and reduce task
execution delay
through
dynamic task
division and
parallel
computation

Requires further
research to
handle dynamic
resource
availability and
large-scale
deployment

[77] Task offloading
in fog
computing for
IoT application

Dynamic
offloading-
Using INSCSA

Response time,
energy
consumption,
Cost

Efficiency
balanced
response time,
energy
consumption
and cost, while
considering
system
availability

Need more
investigation in
how to handle
large-scale
deployments and
heterogeneous
environment.

Overview of Case Studies and Proposed Mechanism in Task Offloading Approaches
(Part 3)

39

2.3. Conclusion

2.3 Conclusion

This chapter provided a qualitative comparative analysis of task-oriented resource
management approaches in fog computing, specifically focusing on application
placement, task scheduling, and task offloading. These approaches play a vital role in
optimising QoS, improving system efficiency, and enhancing performance within fog
computing environments. The main limitations of the qualitative analysis of task-
oriented approaches are observed:

• Lack of Multi-Objective Optimisation : Most studies focus on optimising
a single or limited set of performance metrics, such as delay or energy consump-
tion, without considering a balanced trade-off among multiple conflicting QoS
objectives like delay, cost, and power usage.

• Task Scheduling: A lack of adaptive scheduling mechanisms for heterogeneous
fog devices.

• Over-Provisioning and Under-Utilisation Issues: Many approaches
do not explicitly address the challenges of matching resource supply with
application demands, leading to inefficient resource usage.

• Limited Focus on Node Minimisation and Network Efficiency: Existing
solutions rarely consider strategies to minimise the number of active fog nodes
while maintaining performance, which is critical for reducing operational cost
and energy consumption.

These limitations highlight the need for further investigation into applying intelligent
and efficient approaches to resource management in fog computing, as addressed in
chapter 4 and 5 of this thesis.

40

Chapter 3

Advanced Resource Management

3.1 Resource-Oriented Management Approaches

This chapter emphasizes resource-oriented management, regarded as advanced due to
its complexity in decision-making, such as dynamic allocation and workload balancing
across nodes. Additionally, it introduces other aspects of resource management,
including resource allocation, resource provisioning, and load balancing. The chapter
also provides an overview of simulation tools for fog computing, accompanied by side-
by-side comparisons.

3.1.1 Resource Allocation

Resource allocation refers to distributing a heterogeneous fog node F = {F1, F2, . . . , FM}
geographically to meet users requirements without violating QoS. Overall, the
resource allocation approach is allocating appropriate resources for IoT services
among available resources. This includes determining which resources (CPU, memory,
bandwidth) should be assigned to different IoT services to ensure efficient performance
and meet QoS requirements.

Problem definition for resource allocation approach

• Objective: to allocate resources to IoT services, aiming to optimise QoS
parameters.

• Assignment: The solution involves assigning resources to services based on
their requirements and the current availability of resources.

Resource Allocation in Practice: Consider a smart home system; the system
assigns processing power and memory to various services such as security monitoring,
climate control, and energy management. It does this based on their real-time needs.

41

3.1. Resource-Oriented Management Approaches

The system also considers the availability of resources. Key challenges in the
resource allocation approach:

• Matching resource availability with the demand of IoT services.

• Avoiding over-provisioning (wasting resources) and under-provisioning (failing
to meet service requirements).

• Adapting to changes in resource availability and service demands.

Several researchers use various algorithms to tackle resource allocation issues,
as shown in the taxonomy 3.1, which can be classified into either Heuristic-based
techniques, Metaheuristic-based techniques, Auction-based techniques, or AI-based
techniques.

Resource Allocation

Metaheuristic
techniques

Heuristic techniquesAI-based techniques
Auction-based

techniques

Figure 3.1: Hierarchical Representation of Resource Allocation Mechanisms

Heuristic approaches like Greedy, First-Fit, Best-Fit, and FCFS are generally less
complex and aim to solve problems faster than other mechanisms. However, they may
not always provide the optimal solutions.

Paper [79] proposed a scheduling algorithm called Path Clustering Heuristic
(PCH) for resource allocation purposes. PCH’s goal is to achieve a tradeoff between
makespan and cost. It clusters tasks within a Directed Acyclic Graph (DAG) to
reduce communication overhead and processing delays by grouping dependent tasks.
This approach allows balanced allocation between cloud and fog resources. Their
system model consists of three layers: of IoT, Fog and cloud architecture, with a
centralized broker managing task scheduling and resource allocation. As a result, it
enhances both execution efficiency and cost-effectiveness. In their simulation results,
PCH showed better results compared to various other heuristic approaches, including

42

3.1. Resource-Oriented Management Approaches

Heterogeneous Earliest Fish Time (HEFT), Critical Path on a Cluster Scheduling
Heuristic (CCSH) and Cost Makespan Scheduling Strategy (CMaS) in terms of total
time to complete all tasks (makespan) and cost of executing tasks. A study in [80]
introduces a heuristic algorithm called PORA, which stands for predictive offloading
and resource allocation. PORA is designed to optimize the computing location
of tasks and maintain task offloading. It effectively reduces latency and enhances
resource utilization dynamically. It is viable for real-time applications. PORA utilizes
Lyapunov optimization to make adaptive decisions within a dynamic environment,
balancing latency and energy efficiency. The authors investigate their approach with
several mechanisms, including Random offloading, offloading to the nearest fog tier,
no offloading, and offloading to the cloud.

Paper [81] addressed dynamic resource allocation issues by proposing a new
approach to distributing resources based on the Petri nets, called priced timed
Petri nets (PTPNS). It optimizes the allocation of resources, like storage resources
and computing near users, by taking into consideration three factors: cost, task
completion, and makespan. The PTPN model groups tasks with relationships
(sequential or concurrent dependencies) to help predict cost and accurate time in a
dynamic environment. Their simulation validates the approach’s improvement in task
completion efficiency over static methods. The remarkable thing about this approach
is that the users independently select satisfactory resources from pre-allocated options
based on these factors.

In the paper [82], the authors proposed a heuristic resource scheduling approach
for fog-cloud computing environments. The case study focuses on general IoT
applications and the proposed customized genetic algorithm to minimize deadline
misses for IoT tasks by allocating resources in a three-tier-fog-cloud computing setup.
GA is a well-known metaheuristic algorithm; However, the author refers to the use
of GA in a holistic manner. They mean that they have customized and simplified
the GA for their problem by finding a good solution rather than an optimal one.
Their proposed solution, a customized GA approach, acts more like a problem-specific
heuristic. The simulation results show their proposed solution can reduce deadline
misses by 20% to 55% compared to other traditional approaches, including round-
robin RN and priority scheduling PS.

In the paper [83], the authors proposed a novel approach to address the issue of
energy-efficient resource allocation in device-to-device (D2D) assisted fog computing.
It is called a low-complexity heuristic resource allocation strategy. The problem is
formulated as a non-convex optimization problem, which is difficult to solve optimally.
The authors’ proposed solution introduces a two-fold approach:

1. The first method reformulates the original non-convex problem into a series
of convex sub-problems, which can be solved by standard convex optimization
techniques.

43

3.1. Resource-Oriented Management Approaches

2. The second method introduces a heuristic algorithm for resource allocation to
reduce computational complexity.

The simulation results show the proposed model reduces computational time and
energy consumption. In the paper [84], Gai et al. introduce an Energy-Aware
Fog Resource Optimization model (EFRO), a resource allocation technique for task
allocation purposes. EFRO integrates standardization, smart shift operations, and a
hill-climbing mechanism. The main objective of the heuristic algorithm is to generate
near-optimal resource allocation solutions. The strategy is particularly effective for
applications with time constraints. EFRO demonstrated impressive results in the
simulation compared to other existing approaches, including MESF, RR, and DECM
schemes, by saving energy consumption by up to 71.2%. Additionally, EFRO’s
generation time is much faster than other algorithms, making it a practical choice
for dynamic fog computing. In paper [85] , Tan et al. propose a new resource
allocation strategy to optimize QoS, specifically energy consumption and latency, in
fog Radio Access Networks(F-RAN). The authors also consider fronthaul and latency
constraints. First, the Authors formulated the resource allocation issue as a mixed-
integer non-convex optimization problem, which is challenging to solve due to its
complexity. To address this issue, they propose a heuristic iterative algorithm to
convert non-convex problems into convex when binary decision variables are fixed.
The algorithm optimally assigns computational tasks between available and suitable
edge nodes and remote clouds. It aims to satisfy latency and fronthaul constraints
while minimizing other QoS parameters. Their simulation results show that the
proposed algorithm has better results in reducing energy consumption compared
to other traditional techniques, including processing all tasks at the edge node or
offloading them to the remote cloud.

Another study in paper [86] presents a new heuristic approach to tackle resource
allocation issues in fog computing. Their approach dynamically allocates fog resources
to the edge clusters based on the magnitude of data generated by these clusters. The
proposed algorithm was evaluated in a distributed camera surveillance scenario on
dynamic resource allocation based on data magnitude. The simulation results show
the effectiveness of their approach compared to traditional cloud-only solutions in
optimizing network utilization and reducing delay. Zhuang and Zhou, in paper [87]
introduce a hyper-heuristic resource allocation (HHRA) mechanism to tackle resource
allocation issues in fog computing. The objectives are to minimize system delay and
energy consumption while meeting QoS requirements. HHRA consists of two stages:

1. High-Level Strategy (HLS): Ant colony optimization (ACO) is employed to
select appropriate Low-Level Heuristic (LLH) in real-time. ACO is chosen for
its dynamic adaptability and capability to optimize through pheromone-based
feedback. This mechanism ensures ACO effectively avoids local optima and
improves global solution accuracy.

44

3.1. Resource-Oriented Management Approaches

2. Low-Level Heuristic (LLH): Operate on resource allocation solution space. The
LLHs utilize global and local search strategies to enhance task scheduling
efficiency and balance resource utilization.

Their proposed algorithm is able to dynamically adjust to changing fog computing
conditions by continuously updating the pheromone matrix and adjusting the selection
probabilities of the LLHs. The simulation results show that HHRA outperforms better
than traditional algorithms, including GA and IPSO, in terms of optimizing QoS
parameters.

Metaheuristic approaches, such as PSO, GA, ACO, etc., have been used instead
of heuristic approaches to provide an optimal and efficient solution for resource
allocation. Scholars who introduced these solutions considered several parameters
to optimize, such as delay, network usage, execution time, waiting time, makespan,
response time, throughput, cost, energy efficiency, and resource constraints.

Paper [88], Utilizes BLA algorithms to tackle resource allocation constraints in
fog nodes to balance the tradeoff between memory requirements by users and CPU
execution time. BLA efficiently utilizes the resource to assign Jobs to the most suited
fog nodes. In this study, the job contains multiple tasks. BLA was tested against
several other optimization algorithms, including PSO and GA, and it significantly
optimized CPU execution time and memory usage by jobs. Paper [89] presented a
study to allocate resources efficiently using an improved two Archive2 algorithm. It
introduced a novel fitness evaluation method and a shift-based density estimation
strategy (SDE). Their study constructed a four-objective optimization model to
minimize service delay and cost while maximizing load balancing and stability in task
execution. Their experimental results show that the proposed algorithm outperformed
other approaches, like NSGA-III and MOEA/D, in improving resource allocation.
Also, paper [90] proposed a hybrid meta-heuristic algorithm called Hybrid Mulit-
Objective Crow Search Algorithm (CSA) for resource allocation and task scheduling
in a fog computing environment. This approach simultaneously optimizes several
parameters of QoS, including success ratio and security hit ratio, addressing the
heterogeneous nature of fog devices. It was tested against several other algorithms like
CSA and GA, across seven different scenarios. The proposed algorithm outperformed
other approaches in terms of convergence speed, iteration count and solution efficiency,
especially with a local search pivot rule.

The paper [91] presents a meta-heuristic framework for resource allocation and task
scheduling based on Spider Monkey Optimization (SMO). SMO is a swarm intelligence
algorithm inspired by the fission-fusion social structure of spider monkeys. Authors
optimize the resource allocation using SMO to find the optimal fog node for processing
tasks in fog environments. In addition, they propose several heuristic initialization
methods, including LJFP, SJFP, and MCT, to initialize the population in SMO and
find a good starting point for the optimization process. These heuristic approaches

45

3.1. Resource-Oriented Management Approaches

help to improve the performance of SMO in finding optimal solutions. Their proposed
model combines a mathematical optimization formulation with SMO to minimize
time and monetary cost. The scenarios tested involve heterogeneous fog nodes with
varying computational capacities and different tasks sizes to ensure diverse evaluation
conditions. To summarize these approaches:

1. Meta-heuristic: The core algorithm is Spider Monkey Optimization SMO, a
swarm intelligence-based meta-heuristic.

2. Heuristic: It incorporates heuristic initialization methods (LJFP, SJFP, and
MCT) to improve the starting solutions for the meta-heuristic optimization
process.

The results show that MCT-SMO outperforms other mechanisms, including PSO, in
terms of minimizing cost and service time and improving overall performance.
Yakubu and Murali, in their paper [92], propose an effective two-stage resource
allocation solution. The objective of their framework is to allocate resources across
fog and cloud layers to handle delay-sensitive tasks. Their proposed model can be
classified into two stages:

1. First stage: classify tasks based on a task guarantee ratio and categorize them
to a suitable fog or cloud layer.

2. Second stage: Apply Bayes’ classifier, which uses historical allocation data to
allocate resources for new tasks effectively.

Additionally, a Crayfish Optimization algorithm (COA) is utilized to further resource
allocation optimization. COA also balances task execution between fog and cloud
layers to reduce delays and failures. Simulation shows the effectiveness of the proposed
framework compared to traditional random, cloud-only and fog-only in optimizing
several QoS parameters. Akintoye and Bagula, in their paper [93] propose a novel
model for enhancing QoS through efficient resource allocation. The model includes
two approaches:

1. Hungarian Algorithm-Based Binding Policy (HABBP): A heuristic method used
to assign tasks(cloudlets) to virtual machines (VMs) optimally.

2. Genetic Algorithm-Based Virtual Machine Placement (GABVMP): A meta-
heuristic approach designed to minimize costs and improve performance.

The simulation results demonstrate the effectiveness of both HABBP and GABVMP
compared to other traditional methods for improving performance and QoS parame-
ters.

46

3.1. Resource-Oriented Management Approaches

Auction-based approaches are a mechanism of managing resource allocation via
competitive bidding, where resources are allocated to the highest bidders. They aim
to maximize resource utilization and can increase the revenue of resource providers
by allowing dynamic pricing based on the current status of the market. This
mechanism ensures an efficient matching between demand and supply. Gao et
al. [94] introduce AVA, an auction-based VM resource allocation (AVA) in edge
cloud nodes. AVA applies auction theory to handle competition for VM resources
among mobile users while meeting deadline constraints. The problem is formulated
as an n-to-one weighted bipartite graph matching problem with 0-1 knapsack
constraints, which is proven to be NP-hard. To overcome this, authors develop
a greedy approximation algorithm that ensures truthfulness, individual rationality,
and computational efficiency. Extensive simulations on real datasets confirm the
effectiveness of AVA.

Jiao et al.[95], present a decentralized auction mechanism for cloud-fog environ-
ments setup which is supporting public blockchains. In their study, blockchains were
used for security purposes to manage bids, emphasizing the use of smart contracts
to automate and secure auction processes. Their investigation concluded that a
decentralized auction mechanism enhanced security in the allocation process and
improved transparency, and ensured efficient resource allocation while maximizing
social welfare.

Jain and Kumar [96] also introduce a double auction-based model on cost-efficient
resource allocation in fog computing. Their proposed model focuses on to optimizing
costs by enhancing economic properties, including truthfulness, budget balance and
individual rationality. The use of smart contracts eliminates the need for a centralized
auctioneer, enhancing security and fairness in resource trading. In paper [97], Luong
et al. introduce a novel solution based on Auction theory for resource trading in
fog computing. The solution focuses on blockchain applications. Their proposed
solution is a combination of auction theory and deep learning, aiming to maximize the
revenue for service providers. It also takes into account key economic properties, like
incentive compatibility (IC) and individual rationality (IR). The proposed framework
includes two neural networks for assignment and payment decisions. Both of which
are trained using miners’ bids for fog resources. The model optimizes the resource
allocation within blockchain networks, which helps to reduce latency and improve
overall system efficiency. Simulation results show that the machine learning-based
auction outperforms traditional greedy algorithms by reducing IC and IR violations
while increasing revenue. Jain and Kumar [98] propose a new solution based on an
auction mechanism to tackle resource allocation issues. They utilize a blockchain-
based fog computing platform to secure and optimize resource allocation. Their
framework utilizes smart contracts between fog service providers and IoT devices
to ensure secure transactions. The auction mechanism plays a vital role by allowing

47

3.1. Resource-Oriented Management Approaches

IoT nodes to request bundles of resources, while fog nodes compete to provide these
resources while considering prices, energy consumption, and delay. The descending
combinatorial auction process is responsible for dynamically adjusting valuations to
maximize fog node revenue and ensure fair resource distribution. Smart contracts
manage the auction process to ensure security, transparency and fairness. Simulation
results demonstrate that the proposed mechanism improves and enhances several
factors, including profit generation for fog nodes, resource allocation and reduced
delay compared to other traditional methods, including FCFS and fixed-pricing.

AI-based resource allocation utilizes advanced artificial intelligence technologies to
enhance the allocation process. This process includes utilizing previous and current
data to predict the future resource allocation process in real time dynamically. It
aims to optimize system performance by adapting to sudden changes in requirements.
Chen et al. [99] proposed a novel mechanism to minimise the perception-reaction
time (PRT) in vehicular fog computing by integrating deep reinforcement learning
for optimal resource allocation (computational and communication resources). Their
approach was able to reduce PRT by more than 70% compared to the traditional
methods. Moreover, this approach was able to enhance efficiency and road
safety. Jamil et al. [100] introduce IRATS, a deep reinforcement learning
approach using proximal policy optimization (PPO) to improve task scheduling and
resource allocation in vehicular fog computing environments. IRATS classifies the
incoming task based on priority and deadline constraints by considering link duration
and vehicle mobility to minimise waiting time and task delay. The study also
compares IRATS with some traditional strategies like DQN, A2C and random, which
demonstrates that IRATS has better results in improving performance and reducing
waiting time.

Lakhan et al. [101] investigate the ability of deep Q network-based resource
allocation (DQBRA) to address resource allocation challenges in software-defined
networks (SDN) in fog computing. They proposed a container-based architecture that
utilizes DQBRA and considers some parameters like deadline, mobility and resource
capacity. DQBRA was able to reduce energy consumption and application costs
compared with some existing studies. Zhang et al., in their paper [102] propose a new
technique to tackle resource allocation issues by introducing a deep reinforcement
learning optimization algorithm in a blockchain-enabled fog computing system. Their
framework aims to optimize the selection of fog nodes to allocate resources efficiently,
task offloading strategies, and block sizes. The proposed algorithm utilizes the dueling
deep Q-network (a DRL approach) to dynamically adapt the fog environment. It
also ensures efficient resource allocation while maintaining system performance. The
result, obtained through simulation, demonstrates improvements in system efficiency,
energy consumption, and computation overhead compared to traditional Q-learning
algorithms. Talaat, in paper [103], proposes the Effective Prediction and Resource

48

3.1. Resource-Oriented Management Approaches

Allocation Methodology (EPRAM), a new mechanism to optimize resource allocation
in real-time healthcare scenarios using fog computing. EPRAM consists of three
modules:

1. Data Pre-processing Module (DPM).

2. Resource Allocation Module (RAM).

3. Effective Prediction Module (EPM).

The proposed mechanism manages resource allocation using Reinforcement Learning
(RL) , and the predictions are performed with a Probabilistic Neural Network (PNN).
This prediction handles healthcare data like heart attacks based on real-time data from
IoT devices. The proposed framework aims to improve QoS, especially by reducing
delay. The simulation results show that EPRAM produces better results compared
to AWRR, WRR, LC, and RR.

Singh et al., in the paper [104] propose Collaborative Machine Learning (CML),
a new mechanism to allocate resources efficiently designed for SDN-enable fog
computing. CML allows decentralized training of models across fog nodes, which
helps to improve resource management and QoS. Their framework uses a hybrid
approach combining CML with Software Defined Networking (SDN) to optimize
resource allocation. Simulation results demonstrate the effectiveness of CML in
improving processing time, response time, and delay by 19.35%, 18.14% and 25%,
respectively, while also reducing energy consumption by 7% and network usage by 9%
compared to several traditional approaches.

Table 3.1 summarizes the Resource allocation approach in fog computing by con-
sidering their case studies, proposed algorithms, performance evaluations, advantages
and limitations.

Paper
number

Case study Proposed
mechanism

Performance
evaluation

Advantage Limitation

[79] General Case
Study

PCH Tradeoff
between
makespan and
cost

Efficiently
reduces
execution time
cost by
clustering tasks
in a cloud-fog
setup

Assumes static
resources
availability;
lacks handling
for dynamic
change in
resource and
workflow
deadlines.

Table 3.1: Overview of Case Studies and Proposed Mechanism in Resource Allocation
Approaches (Part 1)

49

3.1. Resource-Oriented Management Approaches

Paper
number

Case study Proposed
mechanism

Performance
evaluation

Advantage Limitation

[80] General Case
study

Heuristic-
PORA using
Lyapunov
optimization

Power
consumption
reduction and
queue stability,
average latency
reduction even
with mild
prediction
error

Effective
balances
between latency
and power
consumption,
adapts to
varying system
dynamics

Limited
resilience to
significant
prediction
errors;
dependency on
stable wireless
channel
assumptions.

[81] General Case
Study

Heuristic-
PTPNs

Task
completion
time and cost

Improve
resource
utilization and
QoS satisfaction

Lack
consideration of
dynamic
resource demand
and availability.

[82] General case
study

GA-based
scheduling

Reduce
deadline and
improve
performance

Efficient
handling of
time-sensitive
IoT tasks

High complexity
and
computational
cost.

[83] D2D-assisted fog
computing

Convex
programming
method and
heuristic
approach

Evaluated
energy
consumption,
processing
time,
computational
efficiency

Improve energy
efficiency and
reduce
processing time

High runtime of
convex method
limits real-time
use.

[84] General case
study

EFRO Energy
consumption
Task allocation
time

Significantly
reduces energy
consumption;
faster task
allocation

May encounter
local optima due
to the
hill-climbing
approach,
sub-optimal in
very large
settings.

[85] F-RAN with
mobile users and
remote cloud

Heuristic
iterative
algorithm

Energy
consumption,
latency,
fronthaul
constraints

Significantly
reduces energy
consumption,
efficient resource
allocation

Complexity, due
to non-convex
optimization,
requires binary
variable
initialization.

[86] General IoT
application

Load-aware
resource
allocation
heuristic

Resource
utilization,
network
consumption,
latency

Effectively
reduce network
consumption,
delay and
efficient resource
allocation

Limited
scenarios with
fixed sensing
rates, lacks node
failure handling.

[87] General case
study

HHRA Energy
consumption,
delay
convergence

Improve energy
efficiency and
delay reduction

Slower initial
convergence
compared to
IPSO,
complexity
increases with
task size.

Overview of Case Studies and Proposed Mechanism in Resource Allocation
Approaches (Part 2)

50

3.1. Resource-Oriented Management Approaches

Paper
number

Case study Proposed
mechanism

Performance
evaluation

Advantage Limitation

[88] Job scheduling
for smart homes,
cities and
metering
connected
vehicles

Meta-heuristic
- BLA

CPU execution
and memory
allocation

Optimal
trade-off
between CPU
execution time
and allocated
memory,
improve resource
utilisation

Need more
investigation in
dynamic
real-world
scenarios

[89] Resource
allocation in
fog-cloud
computing for
IoT application
in the 5G era

Metaheuristic-
Improved Two
Archive2
Algorithm

Service delay,
Cost, Load
Balancing, task
execution
stability

Reduce service
delay and cost

Scalability and
adaptability in
dynamic
resources are
not covered

[90] Real-time secure
resource
allocation and
scheduling in fog
computing and
IoT application

Metaheuristic-
Multi-
Objective CSA

Achieves better
success ration
and security
hit ratios

Efficient
resource
allocation ,
improved
success and
security hit
ratios

Several critical
QoS parameters
where ignored
including delay,
which is critical
in healthcare
domain and
smart cities

[91] General case
study

SMO with
heuristic
initialization
(LJFP, SJFP,
MCT)

Service time ,
cost , monetary
expenses

Reduces service
time and cost

Increase
complexity with
larger task size.

[92] IoT-cloud-Fog
environments for
general
application

Task
classification
(Bayes’s
classifier and
COA)

Execution
time, latency
and task
failure rate

Reduce
execution time
and delay and
improve the
performance

Potential
overhead due to
Bayes’s classifier
and COA
optimization,
which may
impact real-time
task processing
efficiency.

[93] Cloud/Fog
environments

HABBP for
task allocation
and GABVMP
for VM
placement

Allocation
cost, processing
time , resource
utilization,
energy
efficiency

Reduces
allocation cost,
enhances QoS
and improve
resource
management

Potential
complexity in
large-scale
environment.

[94] VM allocation
for deadline
sensitive tasks

Auction-based
VM resource
Allocation
AVA
mechanism
with greedy
approximation
algorithm

Computational
efficiency,
successful ratio

Ensures
truthfulness,
individual
rationality,
computational
efficiency, near
optimal solution
for VM resource
allocation

Needs further
research to
handle dynamic
changes in
resource
availability and
tasks demand,
greedy approach
does not
guarantee an
optimal solution.

Overview of Case Studies and Proposed Mechanism in Resource Allocation
Approaches (Part 3)

51

3.1. Resource-Oriented Management Approaches

Paper
number

Case study Proposed
mechanism

Performance
evaluation

Advantage Limitation

[95] Resource
allocation for
public
blockchain
networks using
cloud/fog
computing
services

Auction-based
Two bidding
schemes
(constant and
multi demand)

Ensures
truthfulness,
individual
rationality,
computational
efficiency

Maximizes social
welfare, ensure
truthfulness and
individual
rationality

Assume ideal
communication,
ignoring network
congestion,
latency, and
bandwidth
constraints.

[96] Resource
allocation in fog
computing

Auction-based-
Combinatorial
double auction
using
blockchain and
smart contract

Network
utilization,
pricing, and
security
analysis

Ensuring secure
and fair resource
allocation,
improve network
utilisation,
prevents
tampering
through
blockchain

Needs further
research on
resource and
tasks demand.
and do not
consider user
mobility.

[97] Blockchain
application in
fog computing

Deep
Learning-based
auction
mechanism

Revenue, IC,
IR violation,
service delays

Increases
Revenue ensures
fairness

Limited to a
single resource
unit, assuming a
static
environment.

[98] Blockchain-
based
combinatorial
auction for
multi-task
resource
allocation in fog
computing

Combinatorial
auction with
smart contracts

Fog node
revenue,
latency and
resource
utilization

Improve
resource
allocation,
maximize fog
node profit, and
reduce latency

Complexity in
managing
combinatorial
auction in
large-scale
systems.

[99] Resource
allocation in
vehicular fog
computing for
ITS

DRL Perception
reaction
time(PRT)

Significantly
reduced PRT,
Improve road
safety and traffic
efficiency

High
computational
complexity and
reliance on
stable V2V
communication

[100] Resource
allocation and
task scheduling
in vehicular fog
computing for
ITS and IoV

AI-Based-PPO Time task
completion,
packet loss,
waiting time,
end-to-end
delay

Effectively
prioritizes tasks,
reduce waiting
time, improve
task completion
rates

IRATS requires
real-world
validation due
to its high
computation
cost, which
might be limit
deployment in
real dynamic
vehicular
networks.

[101] Resource
allocation in
SDN-enable fog
computing for
IoT applications

DQBRA for
resource
allocation

Cost, energy
consumption,
execution time

Increase
efficiency
reduces latency
and energy
consumption,
and improve
resource
utilization

Does not
consider data
security in
mobility
network

Overview of Case Studies and Proposed Mechanism in Resource Allocation
Approaches (Part 4)

52

3.1. Resource-Oriented Management Approaches

Paper
number

Case study Proposed
mechanism

Performance
evaluation

Advantage Limitation

[102] Blockchain-
integrated fog
computing
framework

Dueling deep
Q-network

Energy
consumption
and
computation
overhead

Reduce energy
usage and
computation
overhead,
improve system
efficiency

Limited focus on
scalability and
security aspects,
and not fully
address
real-world
constraints such
as
communication
delay

[103] Smart
Healthcare

EPRAM Makespan, load
balancing,
average
resource
utilization,
Latency, and
energy
consumption

Reduce latency
and improve
resource
utilization

Scalability
challenges due
to high
computational
cost from deep
RL and PNN
integration.

[104] SDN-enable fog
computing

CML Process time,
response time,
and network
usage

Reduce
execution time,
power
consumption
and delay

Scalability
challenges for
large
environment
with more fog
nodes.

Overview of Case Studies and Proposed Mechanism in Resource Allocation
Approaches (Part 5)

3.1.2 Load Balancing

Load balancing refers to the fog nodes when a particular node is overloaded or
underloaded. It’s a difficult issue due to their heterogeneity. Assume available m fog
node F = {F1, F2, F3, . . . , Fn}, and we have Mp number of Application application
requesting n Service {SV1, SV 22, SV3, . . . , SVn}. If F2 has a loading of computing less
than other nodes or might be no load, it will establish load balancing issues. Overall,
load balancing involves determining how to distribute workload evenly across available
resources.
Problem definition for resource scheduling approach

• Objective: To find the best strategies for distributing workloads evenly across
fog nodes, and meet the requirements of QoS parameters.

• Assignment: The solution involves determining which tasks should be
processed locally, task offloading to fog nodes, or sent directly to the cloud.

Load Balancing in Practice: Consider a smart city traffic management system;
load balance occurs when data processing tasks from various traffic cameras and
sensors are distributed across several fog nodes. This ensures real-time traffic analysis

53

3.1. Resource-Oriented Management Approaches

and response.
Key challenges in task offloading approach:

• Avoiding overloading of any single node while underutilizing other fog nodes.

• Maintaining a balance load to optimise resource utilisation and performance.

• Dynamically adjust the workload strategy based on resource availability.

Scholars investigated load balancing using several mechanisms. The taxonomy
3.2 gives a brief description of the techniques used to resolve load balancing, which
are Fixed Distribution and Responsive distribution. Fixed Distribution, also known
as static, refers to predetermined mechanisms for distributing the workload across
all fog nodes without being affected by real-time changes. This mechanism relies on
static data about the system and task requirements. It can be classified into either
Deterministic or Probabilistic strategies.

• Deterministic strategies: It means allocation based on predefined rules considers
node characteristics and task requirements.

• Probabilistic strategies: It means using the statistical method for task assigning,
considering the static attributes of the system.

On the other hand, Responsive Distribution, also known as dynamic, refers to
adjusting the workload in all fog nodes in real-time based on system performance,
task requirements, and resource availability.It has four types of strategies, which are
distributed, centralised, adaptive and non-adaptive strategies.

• Distributed: It means fog nodes are responsible for decisions based on partial
system knowledge.

• Centralised: It means the controller is responsible for decisions based on
complete system knowledge.

• Adaptive: This refers to modifying the policies of scheduling based on the
current or past performance of the system.

• Non-adaptive: This refers to modifying the scheduling policies based only on
the current performance of the system.

Singh et al. in [105] discuss algorithms like Round Robin (RR) and Weighted Round
Robin (WRR) as simpler algorithms to implement in a fog computing setup to tackle
load balancing issues. The RR technique is a basic method where tasks are cyclically
distributed among fog nodes. However, it does not account for the real-time load or

54

3.1. Resource-Oriented Management Approaches

Loading Balance
Strategies

Fixed Distribution Responsive Distribution

Deterministic Strategies

Centralized Strategies Non-adaptive Strategies

Adaptive StrategiesProbabilistic Strategies Distributed Strategies

Figure 3.2: Strategies to Resolve Load Balancing

the capabilities of each node, making it less effective in more complex scenarios.
The study emphasizes the benefits of static load balancing for predictable and
uniform workloads. Alzeyadi and Farzaneh in [106] propose a static load-balancing
technique in smart factories to optimize resource utilization. Their objectives focus
on minimizing several parameters, including energy consumption, task waiting time,
and communication delays by employing a dynamic threshold-based load-balancing
algorithm. The proposed framework divides the scheduling and load-balancing into
two categories: energy consumption and communication delay. The static approach
monitors fog nodes and thresholds to prevent them from becoming either overloaded
or underutilized. If a fog node exceeds the set threshold, tasks are redirected to other
available nodes, aiming to optimize QoS parameters. Their simulation results show
that the propose method reduces the communication network usage by almost 63%
compared to ELBS algorithm. Additionally, it achieved better load distribution and
improved the overall efficiency of the system.

Ali and Alubady in [107] introduce Remind Weighted Round Robin (RWRR), a
new static load balancing approach to enhance resource distribution in fog computing
environments. RWRR aims to ensure that tasks are equally distributed among fog
nodes based on the available capacity of each fog nodes. The proposed approach is
applied in a healthcare system scenario where real-time data processing is crucial
for patient monitoring. RWRR is an improvement of the traditional WRR by

55

3.1. Resource-Oriented Management Approaches

considering the capacity of each fog node and dynamically assigning tasks. The
results of this study show that RWRR has improved system performance by almost
20% and reduce average response time near 120 ms. In the paper [108], the authors
proposed a hybrid load balancing approach that includes both static and dynamic
load- balancing methods. The authors proposed a Q-learning-based reinforcement
learning (RL) algorithm to optimize task offloading and load balancing in the fog
networks. Additionally, the system utilizes Software-Defined Network (SDN) to
control fog nodes and improve the system’s scalability. Their aim is to handle
uncertainties, task demands, and fog node capacities while optimizing QoS, including
delay and overload probabilities. Their hybrid approach divided into:

• Static Elements: Refer to the initial distribution of task among available nodes
based on their capabilities.

• Dynamic Elements: Refer to Q-learning, which allows fog nodes to make real-
time decisions on how to distribute the load based on incoming task requirements
and the current capabilities of fog nodes.

The hybrid system improves load balancing and task distribution without requiring
predefined assumptions about network topologies or workloads.

Paper [109] Proposed a reinforcement learning technique to tackle load balancing
called ReTra. It dynamically adjusts the network state and distributes the workload
across all fog nodes optimally. ReTa not only helps to manage the network traffic, but
it also ensures the stability of the fog environment, even if the node suddenly fails,
because the adjustments occur in real-time. Xu et al. [110] introduced a dynamic
resource allocation mechanism (DRAM) to optimise load balancing in fog computing
for IoT applications. DRAM integrates static resource allocation and dynamic service
migration. It aims to tackle the load balance issue by allocating resources statically.
Then, it dynamically adjusts allocation based on real-time resource utilization.
DRAM outperforms better than several other approaches, including FF, BF, FFD
and BFD, in resource utilization, the number of employed computing nodes and
load balance variance. In Paper [111], the authors proposed a multi-level real-time
scheduling algorithm (MLRTS) for load balancing in fog computing. MLRTS classifies
incoming tasks into real-time or soft tasks. It also allocates resources dynamically and
balances the load between fog nodes and the cloud. In their proposed mechanism,
real-time tasks are prioritised, and resources are redistributed to maximize throughput
and minimise execution time. Their simulation shows promising results for MLRTS
compared with traditional mechanisms, including FCFS, Max-Min, PBATS, and
RETS.

Wan et al. [112] proposed an energy-aware load balancing scheduling (ELBS)
based on fog computing for smart factories. Researchers first used improved PSO

56

3.1. Resource-Oriented Management Approaches

to establish an energy consumption model on fog nodes and then optimised load
balancing. In their proposed solution, a multiagent system is utilized for distributed
scheduling of manufacturing clusters. Their experiment results on a sweet packing line
show that ELBS has improved several parameters, including load balancing, energy
consumption, and operational performance. Boudieb et al. [113] proposed a novel
deep reinforcement learning (DRL) algorithm to tackle load balancing and service
selection. The proposed DRL algorithm is able to address the complexity of selecting
appropriate micro-service instances dynamically and also meet QoS requirements
while balancing the load.

The paper [114] presents DALBFog, a task-scheduling algorithm designed for
deadline-aware and load-balanced task management in fog computing environments.
Their proposed algorithm targets IoT applications and uses two sub-schedulers. These
sub-schedulers map tasks to fog nodes based on their deadlines and current load
conditions. DALBFog ensures efficient resource utilization. It meets the deadline
requirements of delay-sensitive tasks. Their experiment results show that DALBFog
minimizes average response time, execution time, and resource utilisation compared
to other approaches like DRAM, FTLBSA, and MPGA.

Table 3.2 summarizes the load balancing approach in fog computing by considering
their case studies, proposed algorithms, performance evaluations, advantages and
limitations.

Paper
number

Case study Proposed
mechanism

Performance
evaluation

Advantage Limitation

[109] Load balancing
in fog
computing for
IoT applications

Dynamic load
balancing- RL

resource
utilization-
Processing
Delay-Network
resilience

Balances
workloads
among fog
nodes-enhances
resource
utilization-
reduces delay
and improve
Network
resilience

Need further
research to
handle
large-scale
deployments and
diverse IoT
application
requirements

[110] Load balancing
in fog
computing for
IoT applications

Dynamic load
balancing-
DRAM

Resource
utilization-
Delay-Load
balancing
efficiency

Balances
workload
effectively
among fog
nodes-Reduce
system
delay-Enhances
resource
utilization

Need further
research to
handle
large-scale
deployments and
diverse IoT
application
requirements

Table 3.2: Overview of Case Studies and Proposed Mechanism in Load Balancing
Approaches (part 1)

57

3.1. Resource-Oriented Management Approaches

Paper
number

Case study Proposed
mechanism

Performance
evaluation

Advantage Limitation

[111] Load balancing
in fog computing
for real-tasks

Dynamic load
balancing-
MLRTS

Throughput-
Resource
utilization-
Network
utilization-
Delay

Balances
workload
effectively
among fog
nodes-ensures
timely execution
of real-time
tasks

Need further
research to
handle diverse
application
requirements
and scalability
issues

[112] Load balancing
and scheduling
in smart factory
environments

Dynamic load
balancing
-ELBS

Energy
consumption-
scheduling
efficiency

Enhances energy
efficiency-
Balances
workload,
optimises
scheduling in
real-time

Need further
research to
handle
large-scale and
complex
manufacturing
environments

[113] Load balancing
and scheduling
in fog
computing for
IoT applications

Dynamic load
balancing-DRL

Reduces
average failure
rate by up to
65%, improves
load balance by
up to 45%

Optimizes
service plan
selection,
enhances load
balancing,
reduces delay

Requires further
research to
handle dynamic
fog
environments
complexity

[114] Task scheduling
and load
balancing in fog
computing for
IoT applications

Dynamic load
balancing-
DALBFog

Improves
resource
utilization,
reduces average
response time,
minimizes task
execution time

Efficiently
scheduling
delay-sensitive
task, balances
workload,
improves system
performs

Needs further
research to
handle dynamic
fog
environments.

[106] Smart factory
resource
management

Static
energy-aware
scheduling and
load balancing

Energy
consumption,
task waiting
time and
communication
delay

Reduce energy
consumption
and
communication
usage

Scalability for
large systems
may require
further
adjustment.

[107] Load balancing
in healthcare
systems

RWRR Response time,
Resource
utilization,
throughput

Reduce response
time, improve
system
performance

Scalability may
be limited as
system
complexity
increased.

[108] Load balancing
in fog networks

Q-learning-
based RL with
SDN control

Processing
delay, overload
probability and
task offloading

Reduce delay
and overload
probability

Requires
continuous
network
monitoring and
training.

Overview of Case Studies and Proposed Mechanism in Load Balancing Approaches
(part 2)

3.1.3 Resource Provisioning

The Resource Provisioning (RP) concept refers to allocating and managing resources
such as CPU power, storage, and bandwidth to meet the demands of application
services. It involves setting up the necessary infrastructure, managing deployments

58

3.1. Resource-Oriented Management Approaches

and operations, and maintaining resources. It could be critical to overprovision
resources beyond the need for services because this will directly increase the cost
and violate QoS. Similarly, underprovisioning the resources to less than the need for
IoT services will violate service level agreements (SLA).
Overall, the resource provisioning approach is to scale resources up or down based
on demand. This includes adjusting the number and the capacity of resources (Fog
nodes, storage, processing power) based on the IoT services requirements.

Problem definition for resource provisioning approach

• Objective: To dynamically scale resources to match requirements, aiming to
optimise QoS parameters.

• Assignment: The solution involves adding or removing resources based on
real-time requirements and usage patterns.

Resource Provisioning in Practice: Consider a smart agriculture system. The
system scales the number of fog nodes and processing power to handle varying data
loads from sensors monitoring soil moisture, weather conditions, and crop health. This
will ensure optimal performance during peak-demand periods and conserve energy
during low-demand periods.

Key challenges in the resource provisioning approach:

• Ensuring sufficient resources are available without over-provisioning.

• Minimising cost and energy consumption associated with maintaining and
scaling resources.

• Adapting to rapid changes in demand and resource availability.

This concept is different from resource allocation, which involves distributing
available resources to various tasks or applications. RP focuses on making these
resources available and optimally operational. Based on the literature review shown
in Taxonomy 3.3, RP can be classified into Static, Dynamic or Hybrid resource
provisioning approaches.
Static approach:
Occurs when resources are set up in a fixed configuration with no dynamic change
based on current workload demands. This method is a predefined approach and is
not suitable for real-time change but for environments with stable and predictable
workloads.
Dynamic approach:
Occurs when resource configuration is allocated based on real-time demand. It’s con-
sidered to be complex because it utilizes real-time data to adjust the configurations.

59

3.1. Resource-Oriented Management Approaches

Resource Provisioning

Static Resource
Provisioning

Hybrid Resource
Provisioning

Reactive Resource
Provisioning

Proactive Resource
Provisioning

Dynamic Resource
Provisioning

Figure 3.3: Types of Resource Provisioning

This approach can be either reactive or Proactive provisioning.
Reactive provisioning means allocating resources based on a workload response
without prior knowledge or prediction-based planning.
Proactive provisioning means allocating resources in advance based on real-time
analytics and predicting future demand using a historical data trends.
Hybrid provisioning:
It is a combination of static and dynamic provisioning strategies. A base level of
configuration is statically set up, while dynamic adjustments occur based on real-time
demands. This mechanism offer a balance between predictability and adaptability.

Few researchers apply the static provisioning approach, particularly in a private
sector study involving smart offices and homes. This solution does not apply
to workload change in a fog environment. Tasiopoulos et al. [115] proposed
a static mechanism to tackle resource provisioning. The authors introduced a
framework called Edge-MAP to facilitate resource distribution in bidding applications.
They aim to address the resource provisioning challenges within large In-Network
Computing Provider (INCP) infrastructure, especially with low latency applications.
The framework focuses on resource provisioning for mobile users for tasks with
restricted latency. Additionally, Vickrey-English-Dutch (VED) auctions utilized in
the framework. The effectiveness of edge-map was evaluated in real-time vehicle
traffic patterns with TAPASCologne dataset. Wang et al. [116] propose a novel
framework, Edge Node Resource Management (ENORM). ENORM is designed
to handle single and multiple edge nodes through provisioning, deployment, and

60

3.1. Resource-Oriented Management Approaches

auto-scaling resources. It aims to reduce communication between cloud and edge
nodes to optimize QoS, including reducing latency and bandwidth usage. ENORM
demonstrates impressive results by reducing latency by 20-80% and decreasing data
traffic to the cloud by 95%. Khalid et al. [117] propose a static resource provisioning
and load balancing framework to optimize task distribution between fog and cloud
layers in an IoT environment. Their proposed method aims to improve QoS through
resource allocation techniques. The authors utilized K-means clustering and the
Service-request prediction model (SRPM) to manage virtual machines. K-means and
SRPM function to ensure that all inactive VMs go into a hibernation state to conserve
energy. Additionally, their approach divides data into:

• Hot Data: Latency-sensitive data and migration needs, Allowing it to be
processed by fog nodes.

• Cold Data: Bulk data, which will be sent to the cloud for long-term storage and
analysis.

The experiment was tested in IfogSim, and the result show that the proposed model
has improved several QoS parameters, including reducing latency, execution cost, and
energy consumption compared to a cloud-only system.

The Authors in [118] introduce a novel static resource provisioning approach
for smart buildings utilizing edge and fog computing technologies. The framework
focuses on integrating different building subsystems, including energy management,
climate control and security, by allowing IoT devices to process data near the source.
The outcome of their investigations shows the ability of the proposed frameworks
to reduce the bandwidth of communication between IoT devices and central data
centers. Additionally, it distributes the tasks between edge and fog nodes, enabling
real-time decisions, which reduce end-to-end latency. It is also noted that the proposed
framework helps improve energy management in smart buildings by predefined static
priorities without considering real-time workload changes.

In the dynamic approach, Etemadi et al. [119] demonstrate a learning-based
mechanism for resource provisioning that dynamically manages the workload of IoT
applications. Their proposed mechanism is a nonlinear autoregressive (NAR) neural
network, which forecasts future demand and a hidden Markov model (HMM) to
decide on scaling actions for resource allocation. The three contribution elements in
this study are innovative decision-making via HMM, predictive resource management
via NAR, and autonomic framework development to enhance resource provisioning.
Another group of researchers in [120] aims to address the challenges of operational
expenditure (OPEX) optimization in multi-access edge computing for systems with
limited power supplies. Their proposed algorithm is a federated multidimensional
fractional knapsack (FMFK). This investigation aims to handle resource provisioning

61

3.1. Resource-Oriented Management Approaches

dynamically and predictively to balance energy cost and computational demand
without violating latency constraints. The simulation shows that FMFK saves up to
40% compared with non-federated approaches. Paper [121] introduces an ElasticFog
system to enhance resource provisioning in fog computing for IoT applications. Their
approach utilizes Kubernetes to manage resource allocation dynamically based on real-
time network traffic data. The outcome of their study is to reduce network latency
and increase throughput.

Paper [122] proposes the FogSpot model, which represents a dynamic resource
provisioning approach. It is a real-time pricing mechanism for allocating virtual
machines (VM) based on current market demand and aims to enhance resource
allocation efficiency. This process occurs through a third party, which is Cloudlests,
to reduce latency in the application. Tseng et al. [123] proposed a new approach to
address resource provisioning issues in fog computing by using Fuzzy-based real-time
Autoscaling mechanisms (FRAS). They introduce a combination of integrated virtu-
alisation (IV) fog platform and hypervisor technology with container virtualisation.
Their aim is to develop virtual network functions for industrial applications. FRAS
dynamically and efficiently adjusts the service scaling in fog nodes to optimise QoS,
such as minimising delay and reducing operating expenses. Paper [124] presented
a fog environment integrated with IoT to support real-time applications efficiently
while considering energy constraints. Their approach is a heuristic aiming to minimise
energy consumption without violating delay for IoT tasks.

In the hybrid approach, A study in [125] proposed an approach to tackle resource
provisioning in smart cities. Their proposed model consists of several technologies,
including Service function chaining (SFC) and various LPWAN. The authors also
introduced a mixed integer linear programming model integrated with SFC and
LPWAN to manage the constraints and optimize latency, cost and bandwidth
utilization. Paper [126] introduced a Kubernetes-based management tool enhanced
with self-adaption and network awareness to resolve container efficiency in a geo-
distributed setting. They proposed a model-based reinforcement learning which will
dynamically adjust how many containers are replicated and optimise their allocation
via distributed locations. Usha and Rao [127] proposed a hybrid meta-heuristic
approach to optimize resource provisioning in fog computing environments. Their
proposed algorithm is ABC-JAVA, which is a combination of artificial Bee Colony
(ABC) and JAVA algorithms to address the challenges in optimizing QoS, including
reducing latency, improving throughput, and minimizing energy consumption in IoT-
based fog computing. The strengths of the proposed ABC-JAVA come from both ABC
and JAVA, allowing efficient global exploration and local refinement. The hybrid
approach shows the ability to optimize multiple objectives, including maximizing
throughput and resource utilization while minimizing energy consumption and
latency. The simulation results show that ABC-JAVA outperforms other traditional

62

3.1. Resource-Oriented Management Approaches

algorithms, including PSO, WOA, ABC, JAVA and EPSO. The improvement include
increasing throughput by almost 89%, reducing latency near to 78 ms, and reducing
energy consumption by 43%.

Also, Awotunde et al. in [128] proposed the HPSOFF-RPT, a combination of
PSO and Firefly algorithm (FA), to enhance resource provisioning for IoT data fusion
applications in cloud-fog environments. The HPSOFF-RPT model aims to optimize
resource allocation by leveraging the strength of PSO and FA. PSO is used for
global exploration, while FA ensures better local refinement. The HPSOFF-RPT
model addresses several challenges in resource provisioning, including minimizing
communication latency and optimizing resource utilization. The simulation results
show that HPSOFF-RPT outperforms traditional algorithms, improving processing
speed, reducing latency and enhancing resource allocation efficiency.

Table 3.3 summarizes the Resource Provisioning approach in fog computing
by considering their case studies, proposed algorithms, performance evaluations,
advantages and limitations.

Paper
number

Case study Proposed
mechanism

Performance
evaluation

Advantage Limitation

[119] Resource
Provisioning in
fog computing
for IoT
application

Dynamic
provisioning-
Using
Nonlinear
Autoregressive
neural network
for prediction
and HMM for
decision
making

Delay-Cost-
energy
consumption

Efficiently
manages
time-varying
workloads and
improve QoS

Need further
research to
handle
large-scale
deployments and
heterogeneous
environments

[120] Resource
Provisioning in
multi-access
edge computing

Dynamic
provisioning-
Using FMFK

Cost-energy
consumption-e-
OPEX

Enhances energy
efficiency and
reduce
operational cost

Further research
needed to
handle dynamic
and large-scale
environments

[121] Resource
Provisioning in
fog computing
for IoT
applications

Dynamic
Provisioning-
Using
Elasticfog by
Kubernetes
platform

Throughput-
Network
latency

Enhances QoS
by dynamically
adjusting
resource
allocation based
on real-time
traffic

Need further
research for
large-scale and
heterogeneous
deployments

[115] Edge resource
provisioning for
latency-sensitive
applications

VED auction
for resource
allocation

Latency,
resource
utilization,
system
scalability

Latency,
scalable, fosters
competition
among providers

Complex in
implementation
and maintaining
fairness in large
scale networks.

Table 3.3: Overview of Case Studies and Proposed Mechanism in Resource
Provisioning Approaches (Part 1)

63

3.1. Resource-Oriented Management Approaches

Paper
number

Case study Proposed
mechanism

Performance
evaluation

Advantage Limitation

[116] Resource
management for
edge computing

ENORM Application
latency, data
traffic,
communication
frequency

Reduces latency,
data traffic and
communication
frequency

Study focus on
static priority
and ignore all
dynamic
priority.

[122] Application
Provisioning in
edge/fog
computing

Dynamic
Provisioning-
Using FogSpot
spot pricing
mechanism

Resource
utilisation-Cost

Enhances QoS
by efficient
resource
allocation
through
dynamic pricing

Need further
research for
large-scale and
heterogeneous
deployments.

[125] Resource
Provisioning in
fog computing
over low power
wide area
networks

Dynamic
Provisioning-
Using MILP

SFC-User
latency-Data
transfer time

Efficiently
manages
end-tend
resource
provisioning

Need further
research for
large-scale and
heterogeneous
deployments

[123] Auto-scaling in
fog computing
for industrial
applications

Dynamic
Provisioning-
Using FRAS

Average delay-
Error
rate-operating
expenses

Dynamic,
lightweight and
low-cost
auto-scaling
solution,
enhancing
service
scalability

Needs further
research to
handle more
system metrics
like energy
consumption
and user
connections

[124] Resource
management in
virtualized
networked fog
architectures for
real-time IoT
applications

Dynamic
Provisioning-
Using PABP
heuristic

Energy
consumption-
Delay

Enhances energy
efficiency and
ensures real-time
support for
streaming
applications

Needs further
validation in
diverse and
large-scale
deployment
scenarios.

[126] Deployment of
containerized
applications in
geo-distributed
fog computing
environments

Dynamic
provisioning-
Using combines
reinforcement
learning and
network-aware
placement

Resource
utilisation-
Response time
-Latency

Enhances
scalability and
reduces latency
through
network-aware
placement and
dynamic scaling.

Requires further
validation for
handling
heterogeneous
and large-scale
deployments

[127] Resource
provisioning in
IoT-based fog
computing

ABC-JAVA
hybrid
algorithm

Throughput,
energy
consumption,
and latency

Improve
throughput,
reduce energy
consumption
and lower
latency

High
computational
complexity in
large-scale
systems.

[128] Resource
Provisioning in
fog-cloud
computing

HPSOFF-RPT Latency,
resource
utilization and
scalability

Reduce
communication
latency,
improves
resource
allocation
efficiency

Complexity in
large-scale
environments,
requires
fine-tuning of
parameters.

Overview of Case Studies and Proposed Mechanism in Resource Provisioning
Approaches (Part 2)

64

3.2. Simulations in Fog Computing: Advantages

Paper
number

Case study Proposed
mechanism

Performance
evaluation

Advantage Limitation

[117] Resource
provisioning in
fog-cloud IoT
environments

K-means and
SRPM

Latency,
energy
consumption
and execution
time

Reduces latency,
improving
energy efficiency
and enhances
workload
distribution

Complexity in
large-scale
deployments,
requires
constant
monitoring of
VM status.

[118] Smart building
service
management

Static Resource
Provisioning
Approach
using Edge and
Fog nodes

Bandwidth Reduces
communication
bandwidth,
improve
real-time
processing

Limited
adaptability to
dynamic
workload
changes.

Overview of Case Studies and Proposed Mechanism in Resource Provisioning
Approaches (Part 3)

3.2 Simulations in Fog Computing: Advantages

This section discusses Simulation tools utilized for resource management to optimize
QoS in fog computing environments. According to the literature review, scholars use
simulation tools more often than real-life systems. One study shows that more than
90% of task scheduling studies were implemented in simulations, with only 10% in
actual fog environments [129].

Most scholars prefer simulation tools over real-life systems for several reasons,
including cost-efficiency, scalability, flexibility, reproducibility, time efficiency, safety
and risk management, and global accessibility aspects. Here are the elaborations for
each aspect.

• Cost-Efficiency Aspect: This is a prime reason for using simulations rather
than real-life systems, as they help to avoid the expense of devices such as IoT
nodes, edge servers, and networking equipment. Simulations allow researchers
to apply their own scenarios without investing in costly physical resources.

• Scalability Aspect: Another reason for using simulations is their scalability,
which allows researchers to test large-scale scenarios with even millions of
devices. These tremendous scenarios would be impractical or impossible to
deploy in real life, making them useful to test the effectiveness of various
approaches. Also, simulations allow researchers to explore future scenarios of
fog node environments with more devices, networks and services than currently
exist, enabling forward-looking study.

• Flexibility Aspect: In simulation tools, it is easy to adjust parameters
like network latency, device performance, and workload distribution without

65

3.2. Simulations in Fog Computing: Advantages

being limited by hardware. Additionally, simulations allow researchers to test
customized scenarios with custom configurations, protocols, and algorithms in
a way that might not be feasible in real-life environments. They also allow the
testing of extreme conditions such as extremely high traffic, failure conditions
and rare security breaches, which would be hard to safely and accurately create
in the real world.

• Reproducibility Aspect: Simulations ensure consistent results, whereas
real-life systems can behave unpredictably due to external factors such as
hardware wear, weather, or network congestion. Simulations remove these
inconsistencies, allowing researchers to replicate experiments with identical
conditions. Moreover, researchers can share their simulation models and
configurations with other communities to replicate and validate results under
the same environment, allowing comparison across other studies.

• Time efficiency Aspect: Time-saving is a key objective of using simulations,
allowing researchers to observe long-term system behavior quickly. Researchers
can rapidly iterate on new algorithms, protocols and architectures without
consuming time to resetting physical resources.

• Safety and risk management Aspect: Simulations allow for safe testing of
failures in a risk-free environment, whereas in real life one issue like a network
attack experiment, energy depletion or node failures can be dangerous and
costly. Simulating security attacks and defenses in a virtual environment avoids
the risk of damaging real infrastructures.

• Global Accessibility Aspect: Researchers from various institutions that do
not have access to advanced hardware can still investigate state-of-the-art fog
and edge computing concepts by using open-source or cloud-based simulators.
Simulations can also be exchanged among various teams and institutions,
fostering collaboration without the necessity of physical device configurations.

• Testing of Emerging Technology Aspect: Simulations allow researchers
to investigate and test different novel architectures, scheduling algorithms, and
resource management strategies before real-world deployments. This feature
helps researchers identify inefficient technologies and enables industries to avoid
them.

3.2.1 Overview of Key Simulation Tools in Fog Computing

This subsection will discuss the most well-known simulators commonly used by
researchers in implementing fog computing and applying their resource management

66

3.2. Simulations in Fog Computing: Advantages

approaches.
One popular simulation tool that can be easily observed in most academic papers
is IfogSim [130], which is designed for a fog computing environments. [131] shows
that 36% of the literature uses IfogSim as the simulation tool to evaluate their
proposed resource management approaches. Scholars initially introduced CloudSim
[132] as a simulation framework that provides an interface for seamless simulation,
modelling, and experimentation of cloud computing hypotheses. It offers a platform
for testing newly developed application services in a controlled setup environment,
helping developers test the service performance of applications. However, CloudSim
cannot handle the IoT layer, so the IfogSim toolkit was developed on top of it.
Statistically, there are 22 packages belonging to CloudSim, with only 13 packages
being different from CloudSim in IfogSim. IfogSim is a toolkit based on Java that can
simulate and model fog computing environments and assess scheduling policies upon
fog and cloud resources. Here are the main features that can be found in This tool:

• Open-source simulation environment.

• Support simulation and modelling of large-scale cloud computing and
fog computing environments.

• Basic network simulation.
Simulates communication between IoT devices, fog nodes, and cloud, through
lacks detailed network protocol simulation.

• Supports containerized services.
Virtualization engine for the creation and management of virtualized ser-
vices(e.g., VMs, containers).

• Customizable resource management policies.
Supports custom resource scheduling and task allocation.

• Support for IoT environments and devices.

• Custom topology creation.
Allows researchers to define complex topologies for for and cloud environments.

These are the main drawbacks of IfogSim:

• Limited Networking Feature.
IfogSim focuses more on fog computing and IoT systems but lacks detailed
network protocol simulation compared to tools like FogNetSim++.

• Complex Setup.
Researchers need to be familiar with Java and have some technical expertise to
set it up.

67

3.2. Simulations in Fog Computing: Advantages

• Limited Mobility Support.
While it supports mobility, it is not as advanced as tools specifically designed
for mobile fog environments like LEAF.

Another simulation is EdgeCloudSim [133], based on Java, and it supports all
platforms; however, it does not support all resource management approaches like
scheduling algorithms.It is highly effective in simulating the interaction between edge
devices and cloud services, and also provides a detailed performance analysis for
workload distribution between these layers. It emphasizes the integration of cloud
and edge computing, allowing users to model communication between cloud and fog
layers. The clear drawback of this simulation is that it lacks the in-depth networking
features found in other simulations.
These are the main features of EdgeCloudSim:

• Workload distribution.
Simulates and analyzes the performance of different workloads distributed
between cloud and edge devices.

• Cloud-edge communication modeling.
Enables simulations of communication between edge devices and cloud resources.

• Latency and response time analysis.
Provides insights into latency and service response times in edge computing
scenarios.

These are the main drawbacks of EdgeCloudSim:

• Lack Advanced Scheduling.
EdgeCloudSim does not fully support complex resource management and
scheduling algorithms.

• Basic Networking Capabilities.
The tool lacks the ability to model detailed network protocols and traffic in
comparison to other simulators like FogNetSim++.

• No Energy Consumption Modeling.
It does not offer built-in modules for evaluating the energy consumption of fog
or edge nodes like IfogSim.

Cooja [134], a simulation based on C and Java languages, supports multiple platforms,
including Linux, Windows, and macOS. It focuses on wireless sensor networks (WSNs)
using the Contiki operating system. It is well-known for utilizing low-power and
lossy networks (LLNs) in IoT environments, such as simulating the behavior of

68

3.2. Simulations in Fog Computing: Advantages

sensors, actuators and network communication in IoT systems. Although Cooja does
not directly simulate fog computing, researchers still integrate it to model network
protocols and test small-scale systems for energy efficiency.
YAFS (Yet Another Fog Simulator) [135] provides flexibility in simulating large-scale
distributed computing environments with complex communication networks. It is
a suitable tool for event-driven simulations, such as when tasks are offloaded and
processed by fog nodes dynamically based on network conditions. It is an ideal
choice for studies focusing on latency and service response times in highly distributed
entremets.

These are the main features of YAFS:

• Event-driven simulation.
It can model the dynamic behaviour of fog nodes as they respond to task
offloading based on network conditions.

• Customizable network topologies.
Allows researchers to define complex, large-scale distributed systems and
simulate network performance.

• Latency and bandwidth evaluation
Supports detailed analysis of network latency and bandwidth usage for fog
nodes.

These are the main drawbacks of YAFS:

• No graphical Interface.
A lack of GUI, which makes it harder compared to other simulations to set up
and run your simulations without deep technical expertise in the tool.

• High Learning Curve.
Requires significant customization; researchers need to be familiar with Python
to configure it effectively.

• Limited Energy Simulation.
It Does not consider energy efficiency or power consumption modelling, which
are highly important in fog computing research.

FogNetSim++ [136], a simulation built on top of OMNeT++ [137], focuses on
modeling communication protocols, network traffic, resource allocation, and data flow
between devices, fog nodes, and the cloud. Here are the key features of the simulator:

• Detailed network protocol modeling:
Built on OMNeT++, offering advanced simulation of network communication
protocols.

69

3.2. Simulations in Fog Computing: Advantages

• Network Traffic Modeling:
simulates network traffic between IoT devices, fog nodes and the cloud.

• Fog and IoT Communication:
Models communication protocols and data flow in hierarchical fog computing
architectures.

• Resource Allocation:
Can analyze task offloading and load balancing between fog nodes.

• Energy consumption:
can evaluate energy efficiency in distributed systems involving fog nodes.

The drawback is that it focuses on network-level aspects, not as comprehensive
in modelling high-level fog computing scenarios, such as application placement,
like IfogSim. However, it remains highly useful for researchers investigating the
communication and network aspects of fog computing. These are the main drawbacks
of FogNetSim++:

• Focus on Network layer:
It is not comprehensive for application-level modelling, like task placement or
resource scheduling.

• Requires OMNeT++ Expertise:
It inherits the complexity of OMNeT++, which requires expertise to set up and
run detailed simulations.

• Limited Application-level modelling :
Focuses More on the network aspect and is not suitable for high-level resource
management and application placement studies.

A newer addition to the list of these simulators is LEAF (Large Energy-Aware
Fog computing) [138]. LEAF provides high-level simulations of fog, edge, and cloud
environments with a strong focus on energy consumption. It is a useful tool for
implementing energy-aware algorithms that dynamically adjust task allocation to
minimize power usage in a distributed environment. This makes LEAF particularly
useful for applications like smart cities, smart grids and other energy-sensitive IoT
systems. It is designed for energy-aware simulations and enables dynamic modelling
of mobile nodes, power consumption and energy-saving algorithms. LEAF utilize the
SimPy library for process-based discrete-event simulation and NetworkX for modeling
infrastructure graphs.These are the main features of LEAF:

• Energy-aware task scheduling:
Can simulate task allocation based on energy consumption to minimize power
usage.

70

3.2. Simulations in Fog Computing: Advantages

• Dynamic infrastructure modelling:
Can model mobile nodes and dynamically change fog and IoT environments.

• Energy consumption analysis:
Provides full analysis of power usage patterns in fog, edge, and cloud environ-
ments.

These are the main drawbacks of LEAF:

• Energy-Focus:
Simulator has a built-in Energy model but offers limited evaluation of other fac-
tors, such as detailed networking, including delay and bandwidth calculations.

• Moderate Scalability:
It may not be as scalable as other simulators like IfogSim when dealing with
very large systems.

• Limited Focus on Fog-Specific Scenarios:
LEAF focuses on energy consumption, which may not cover the full spectrum
of fog computing scenarios like resource management and task offloading.

Independent Python and MATLAB implementations: refer to scholars who
implemented their own architecture using Python libraries like Flask, Celery, or Dask.
In these implementations, researchers have full control over the architecture and can
tailor the system to specific fog computing requirements. However, these approaches
require significant development time and effort compared to utilizing toolkits like
iFogSim or LEAF.
These are the main features of Custom fog computing environment:

• Flexible architecture: Full customization to meet specific fog computing
needs.

• Custom task scheduling: Use libraries like Flask, Dask, or Celery for tailored
scheduling and resource management.

• Integrated with ML:Support machine learning and data analysis via Python
and MATLAB libraries.

These are the main drawbacks of a custom fog computing environment:

• Time-intensive: Requires significant development effort compared to pre-built
tools.

• No built-in models: Lacks ready-to-use features like energy modeling or QoS
metrics.

71

3.3. Conclusion

• Limited support: Less community and documentation support than estab-
lished simulators.

Table 3.4 provides side-by-side comparisons for each simulation. Each tool provides
different strengths based on the system size, complexity, and specific parameters of
interest. Deep investigations show that IfogSim and LEAF are the best options for
optimizing QoS via resource management approaches. However, choosing suitable
simulators depends on the problems the researchers aim to solve.

Tool Name Programming
Language

Platform Network Con-
figuration

Scheduling
Algorithm

Energy
Module

Fog
computing

IoT Scalability Support for
Mobility

Cooja [134] C & java Linux,Windows,
macOS

✗ ✗ ✗ ✗ ✓ Limited ✗

EdgeCloudSim
[133]

Java ALL ✗ ✗ ✗ ✓ ✓ High ✗

Fogtorch [139] Java ALL ✗ ✗ ✗ ✓ ✓ Limited ✗

CloudSim
[132, 140]

Java ALL ✓ ✓ ✓ ✗ ✗ High ✗

IfogSim[130] Java ALL ✗ ✓ ✗ ✓ ✓ High ✓

YAFS [135] Python ALL ✓ ✓ ✗ ✓ ✓ High ✓

FogNetSim++
[136]

C++,
OMNeT++

ALL ✓ ✓ ✓ ✓ ✓ High ✗

LEAF [138] Python ALL ✗ ✓ ✓ ✓ ✓ Moderate ✓

Independent
Python imple-
mentation

Python ALL ✓ ✓ ✗ ✓ ✓ Varies ✓

Table 3.4: Common Simulators for Fog Computing Environments

3.3 Conclusion

This chapter continues to present a comprehensive literature review on advanced re-
source management strategies in fog computing environments, focusing on optimizing
QoS. The chapter begins by highlighting the advanced resource-oriented management
aspects, which are resource allocation, load balancing and resource provisioning.
Additionally, it discusses simulation tools for fog computing environments with
detailed comparisons.

Based on Chapters 2 and 3, resource management is classified into six key cat-
egories: application placement, task scheduling, resource allocation, task offloading,
load balancing, and resource provisioning. During the review process, it became
apparent that some researchers introduced some of their work under certain category
titles, but their actual investigations belonged to different categories. This occurred
for two reasons:

• They grouped task scheduling, resource allocation, and task offloading into the
same category.

72

3.3. Conclusion

• They consider task offloading and load balancing as the same category.

However, there are distinct categories, as demonstrated by different comprehensive
surveys and workshops. These few papers with misleading titles were reclassified based
on the actual focus of their work. Additionally, several papers addressed multiple
issues and used objectives that spanned more than one category. For example,
some papers tackle task scheduling and load balancing or application placement and
resource allocation simultaneously [38, 79, 80, 83, 89, 90, 91]. For clarity, these
papers are classified based on the primary category to which they contributed the
most. It is also notable that several papers employed different approaches in their
proposed solutions, combining Meta-heuristics with AI or combining heuristic and
meta-heuristics, to address and distribute their model in different mechanisms as in
papers [32, 38, 87, 91]. Each category begins by outlining the challenges researchers
may encounter during their investigations. To enhance clarity, several example
scenarios are introduced for each category. Additionally, the problem definitions are
introduced with the classification of previous research approaches that address these
challenges. These classifications not only offer current methodology and structure
understanding of various approaches but also help future investigations aiming to
enhance QoS in fog computing.

Every paper has its own limitations, which are listed in the side-by-side overview
summary for each category. Here are the main challenges across all previous studies:

• Unrealistic Simulation Environments: Many studies utilise a large number
of fog nodes in their simulations without considering the cost of these nodes and
infrastructure constraints, which do not reflect real-life scenarios.

• Lack of Intelligent Resource Allocation Approaches: The majority of
existing works rely on conventional scheduling, heuristic, metaheuristic, or
swarm intelligence methods, with limited adoption of advanced neural models
such as graph neural networks or deep learning for dynamic resource scheduling.

• Resource allocation: Inefficient dynamic resource allocation strategies for
QoS assurance.

• Latency Optimisation: Current approaches may not effectively address end-
to-end latency across various use cases.

• Limited implementation: Current studies often target a specific domain,
such as smart healthcare, with a lack of generalisation to other fields like smart
agriculture or smart cities. This limits the applicability of the proposed solution
across diverse real-world scenarios.

73

3.3. Conclusion

This chapter aims to motivate researchers and industry to explore unresolved
challenges in and innovate solutions for how to optimise QoS, which will help improve
the reliability, scalability and performance of fog computing environments.

74

Chapter 4

Enhancing QoS using
GGCN-Based Resource Allocation
in Fog Computing Environment

4.1 Motivation

Resource allocation is a key challenge in distributed systems, especially with fog
computing. This inefficiency impacts critical QoS metrics, including latency, network
usage, cost, reliability, and response time. Addressing these challenges improves
operational efficiency and enhances the end-user experience by optimizing service
delivery. To this end, Gated graph Convolutional neural networks (GGCNs) offer
a promising solution by leveraging graph structures to handle complex resource
allocation problems in fog environments.

GGCNs are an advanced mechanism of graph neural networks (GNNs). Re-
searchers designed them to leverage the strength of graph convolutional networks
(GCNs), which use gating mechanisms to improve information propagation through
graph structures. They are employed to handle complex graph-structured data,
offering solutions to improve performance in various domains, including computer
vision, natural language processing, and wireless communications.

Traditional GCN algorithms excel at aggregating information from local neigh-
bourhoods but usually struggle to capture long-term dependencies due to over-
smoothing. GGCNs, on the other hand, combine local feature extraction with long-

Portions of this chapter are sourced from my published paper: Delay and Total Network Usage
Optimisation Using GGCN in Fog Computing [141].

75

4.1. Motivation

range dependency capture. By integrating the gating mechanism, GGCN addresses
this issue, drawing inspiration from gated recurrent units (GRUs). It passes relevant
information while filtering out the noise. This selective propagation helps to maintain
the richness of node representations even in deeper networks.

4.1.1 Key Contributions

This chapter presents the following key contributions in resource allocation in fog
computing:

• Proposed GGCN: Introduces Gated Graph Convolution Neural Networks
(GGCN) as a novel resource allocation mechanism to optimize application loop
delay and total network usage, addressing network congestion and performance
issues.

• Comparative Analysis: Conducts a comparative analysis with benchmark
algorithms, including FCFS, SJF, and PSO. The results demonstrate the
superiority of GGCN in terms of performance and resource allocation efficiency.

• Experimental Validation: Extensive validation using the iFogSim simulator
demonstrates the effectiveness of the proposed GGCN model. It showcases a
noticeable reduction in delay and bandwidth consumption.

• Resource Optimization: Highlights the ability of GGCN to optimize resource
allocation by minimizing node utilization without compromising performance,
further improving its overall efficiency.

4.1.2 Overview of GGCN

Scholars have investigated the effectiveness of GGCN in versatile domains, for
instance:

• Building Footprint Extraction:
In recent research, GGCN has been successfully applied to enhance the
semantic segmentation of building footprints from aerial imagery. By integrating
GCNs with deep structured embedding, GGCN has refined weak and coarse
semantic predictions into accurate detail boundaries, significantly improving the
segmentation accuracy. This successful application of GGCNs in a real-world
scenario is a testament to the technology’s capabilities and potential [142].

• Automatic Modulation Identification (AMI):
In a wireless communications study, GGCNs were employed to improve classi-
fication accuracy in low Signal-to-Noise Ratio environments by leveraging the

76

4.2. Resource Scheduling Strategies

characteristics of received signals’ temporal and embedded signaling features.
This approach succeeded because GGCNs’ architecture processes sequences of
symbols and captures dependencies over time, which improves the detection of
modulation types [143].

• Program Verifications:
In the program verification study, GGCN was used to infer program invariants
that approximate the set of program states reachable during execution. By
representing the memory states as graphs and employing GGCNs, researchers
can predict the logic formula describing the program’s data structures, thus
improving memory safety and correctness of program logic [144]

GGCNs display several strengths due to their robust architecture, which combines
convolutional operations on graphs with the dynamic capabilities of gated units. This
combination allows GGCNs to excel in scenarios where temporal and spatial data
are crucial. In addition, the inclusion of residual connections in GGCNs enhances
their ability to deep representations without suffering from vanishing gradients,
making them more effective for complex tasks. Overall, Gated graph Convolutional
Networks represent a powerful mechanism for handling graph-structured data across
various applications. Their ability to integrate local and global data through gating
mechanisms makes them particularly suitable for complex tasks that require detailed
understanding and data processing.

4.2 Resource Scheduling Strategies

This section explores various heuristics and optimisation-based benchmark algorithms
to analyze the performance of the proposed resource allocation mechanism. The
terms tuple, task, and job are used interchangeably. These benchmark algorithms,
including SJF, FCFS, and PSO, are modelled in the iFogSim toolkit to provide a
comparative performance analysis against the proposed GGCN.

4.2.1 Shortest Job First

Algorithm 1 is SJF, prioritising incoming sensor requests Ri ∈ S1, S2, . . . Sn,
each associated with an estimated processing time. This approach can lead to
improved QoS and better system performance compared to FCFS because it considers
minimising waiting and response times. The SJF mechanism evaluates sensor requests
based on their processing requirements and stores them in a waiting list Lw if
immediate processing is not possible. When the fog node becomes available, SJF
allocates resources to the request Rsjf ∈ Lw with the shortest estimated processing
time. This ensures optimal use of fog resources by prioritising the quickest jobs.

77

4.2. Resource Scheduling Strategies

Algorithm 1 Shortest Job First

Input: Queue of sensor Requests: S1, S2, . . . Sn, each associated with an
estimated processing time

Output: Optimizing fog node allocation for sensor data processing

1: Initialize an empty waiting list Lw

2: do
3: if new sensor data request Ri arrives then
4: if Lw = ϕ and Fog node is available then
5: Allocate fog node to Ri

6: Process Ri (analyze data, compute response)
7: send command to actuator based on Ri

8: else
9: Append Ri to LW

10: Sort Lw in ascending order based on estimated processing time
11: end if
12: end if
13: if current fog node finishes processingRf then
14: Rsjf ← Select the request from Lw with shortest estimated processing time
15: Allocate fog node to Rsjf

16: Process Rsjf send command to actuator
17: Remove Rsjf from Lw

18: end if
19: while Lw is not empty do
20: wait for the next fog node to become available
21: Repeat resource allocation for the next request in Lw

22: end while

4.2.2 First Come First Served

Algorithm 2 is FCFS, one of the simplest algorithms for scheduling resources. In the
context of our model, it handles sensor requests Ri ∈ S1, S2, . . . Sn in the order of
arrival (FIFO). This mechanism ensures fairness, treating all requests equally without
prioritising any over others. FCFS allocates fog node resources for all incoming sensors
sequentially. If immediate processing is not possible, the requests are stored in a
waiting list Lw and handled in order. While this method is simple to implement, it
may not provide optimal system performance or QoS.

78

4.2. Resource Scheduling Strategies

Algorithm 2 First Come First Served

Input: Queue of Sensor Requests: S1, S2, . . . Sn
Output: sensor Requests allocated to fog nodes and commands sent to actuators

1: Initialize an empty waiting list Lw

2: do
3: if new sensor data requestRi arrives then
4: if Lw = ϕ and fog node is available then
5: Allocate fog node to Ri

6: Process Ri (analyze data, compute response)
7: send command to actuator based on Ri

8: else
9: Append Ri to LW

10: end if
11: end if
12: if current fog node finishes processing Rf then
13: Rfcfs ← Select the first request from Lw

14: Allocate fog node to Rfcfs

15: Process Rfcfs and send command to actuator
16: remove Rfcfs from Lw

17: end if
18: while Lw is not empty do
19: wait for the next fog node to become available
20: Repeat resource allocation for the next request in Lw

21: end while

4.2.3 Particle Swarm Optimization

Algorithm 3 is a PSO-based resource allocation strategy, an advanced optimisation
technique inspired by the social behaviour of birds. It is a meta-heuristic and operates
as a population-based approach. PSO is widely used in both cloud and fog computing
for task scheduling purposes. It seeks optimal solutions for resource allocation among
candidate solutions (Particles). Particles update their position based on their personal
best experience PBestid and the global best experience gBestgid. In this system
model, PSO dynamically allocates fog nodes to incoming sensors, optimising based
on response time, load balancing, and energy consumption. It is particularly suitable
for complex, multi-dimensional optimisation problems in Fog computing.

Several researchers have applied modified or hybrid PSO approaches to improve
their task scheduling, and it has also been extended to fuzzy control systems and
ANN training. Most metaheuristic algorithms are inspired by natural or biological
behaviours [145, 146, 147].

79

4.2. Resource Scheduling Strategies

Algorithm 3 Particle Swarm Optimization

Input: List of Fog nodes:Fn1, Fn2, . . . Fn and Sensor Requests:Sn1, Sn2, . . . Sn
Output: Optimized fog node allocation for sensor data processing and actuator

control

1: Initialise list of fog nodes with their capacities and current loads
2: Create an initial population of fog node allocation (particles), each representing

a potential allocation configuration
3: Initialize the velocity and position of each particle based on their current state
4: Define fitness function to evaluate each particle based on criteria such as load

balancing, response time, and energy efficiency and QoS
5: repeat
6: for each particle in swarm do
7: Compute fitness for the current allocation configuration
8: Update personal best (PBest) if current fitness is better than the best

fitness found by this particle
9: Update global best (GBest) if current fitness is better than the best fitness

found by any particle
10: Calculate new velocity for the particle based on cognitive and social

components (influence from PBest and GBest)
11: Update position of the particle according to new velocity (adjust fog node

allocation accordingly)
12: end for
13: Check for convergence criteria or maximum iterations
14: until convergence criteria met or maximum iterations reached
15: Deploy the optimized fog node allocation configuration for handling sensor data

and actuator commands

Our system model uses PSO where particles iteratively update their velocity using:

Vid = WVid + c1 r1(PBestid −Xid) + c2 r2(gBestgid −Xid) (4.1)

where:

• PBestid is the personal best position of the particle i.

• gBestgid is the global best position across all particles.

• c1, c2 are positive constants(cognitive and social coefficients).

• r1, r2 are random values uniformly distributed in [0,1].

• W is the inertia weight.

80

4.3. Proposed GGCN Methodology

• Vid is velocity of particle i in dimension d.

The position of each particle is then updated as:

X̄id = Xid + Vid (4.2)

Where X̄id represents the new position of particle i in dimension d, and Xid is the
current position of the particle.

This iterative process ensures convergence towards an optimal fog node allocation
for efficient sensor data processing and actuator control.

4.3 Proposed GGCN Methodology

This section provides the considered system architecture as illustrated in Figure 4.1
and the gated graph convolution neural network (GGCN) is utilised for resource
scheduling in fog computing environments. The system architecture comprises of the
three layers such as Core, Edge and Access networks.

Fog Broker

IoT Devices

Assigning
Fog Node

Actuators (Task Response)

Resource management

A
cc

e
ss

N

e
tw

o
rk

Ed
ge

N

e
tw

o
rk

C
o

re

N
e

tw
o

rk

Decision
optimizer

GGCN
surrogate

model

Resource
Requirement

Sensors (Service Request)

resource
availability

Fog Resources

Figure 4.1: System Architecture

81

4.3. Proposed GGCN Methodology

The Core layer represents a heterogeneous set of Fog resources, providing
computational processes in close proximity to the IoT devices. This layer also
encompasses cloud resources, serving as a centralised computing infrastructure that
furnishes the system with storage and processing capabilities.

The Edge layer is the intermediate layer, located closer to the IoT devices and
provides a low-latency communication channel. It comprises of a fog broker and a fog
node.

• The fog broker is responsible for receiving sensor requests from the IoT devices.
It acts as a mediator, initiating the resource allocation process by interacting
with the resource management layer.

• Resource management includes a GGCN surrogate model, which predicts the
system’s performance based on the current resource allocation. The decision
optimiser utilises this model, along with the binary indicator of node activity
xn, to optimise resource allocation, thereby enhancing QoS.

• The Fog nodes are represented by the set F = {F1, F2, . . . , F|M |}: where each
fog node are assigned tasks by the fog broker. Each fog node Fn (where n ∈M)
is active or not is governed by xn and contain the modules for task execution.
Each Fn manages a certain number of sensors yn,s constrained by capacity limits
defined by |Mthreshold|.

The Access layer comprises various IoT devices such as smartphones and tablets
that generate tasks through sensors or other IoT devices which are represented by
S = {1, 2, . . . , |S|}. S are edge devices that collect data from environmental stimuli
and generate tuples, while actuators provide a physical output based on computation
in the fog. Actuators, similar to sensors, are edge devices and provide physical output
in the environment based on the output of computation obtained in the fog node.

4.3.1 Problem Formulation

Let us assume that |S| and |M| are the total number of sensors and total number of
fog nodes in the considered scenario, respectively, then

xn =

{
0, If node Fn is not active

1, If node Fn is active
(4.3)

The variable xn is a binary indicator assuming the values of either 0 or 1 to show
whether the fog node is active or not.

M∑
n=1

xn ≤ |Mthreshold| (4.4)

82

4.3. Proposed GGCN Methodology

The number of active fog nodes in the network are constrained such that no more
than |Mthreshold| active fog nodes at any time. Let yn,s denote whether the sensor
s ∈ S is associated with the fog node Fn. yn,s is a binary indicator with a value
of either 0 or 1 whereas |Sn| is the maximum number of active sensors that can be
managed by each fog node Fn.

M∑
n=1

yn,s ≤ |Sn|,∀s (4.5)

Then, the total number of active sensors S in the complete network can be
described as follows:

M∑
n=1

xn × yn,s ≤ |S|,∀s (4.6)

Let Davg demonstrate the average loop delay defined as the end-to-end latency
across all modules in the system; it is expressed in milliseconds (ms) in iFogSim as in
[148].

Davg = CC− ET, (4.7)

where CC symbolises the CloudSim Clock and ET denotes the emitting time of
the tuple. Let Umax denote the maximum bandwidth utilisation of the system, which
is given by

Umax =
M∑
n=1

Un, (4.8)

where Un describes the network bandwidth utilisation of each fog node Fn. Our
objective is to minimise Davg by optimising delays accrued in all modules that are
assigned at each node Fn.

min
xn,yn,s

ω
D
×Davg +

(1−ω)
U
× Umax

s.t. 0 ≤ ω ≤ 1
xn ∈ {0, 1},∀n, yn,s ∈ {0, 1},∀s

(4.5)− (4.6)

(4.9)

where D and U are the normalising coefficients representing the possible maximum
system loop delay (in ms) and maximum system bandwidth utilisation (in bytes),
respectively, calculated using an offline approach.

83

4.3. Proposed GGCN Methodology

4.3.2 Proposed GGCN based Resource Scheduler

In this section, a new scheduling algorithm approach based on GGCN is proposed
to solve the formulated problem in order to minimize the loop delay and the total
network usage. The GGCN is a deep learning-based algorithm that leverages the
power of neural networks to process data structured as graphs. It combines advanced
graph embedding techniques with an anisotropic message-passing mechanism to make
dynamic and efficient scheduling allocation decisions in fog computing environments.
The proposed GGCN architecture (shown in Figure 4.2) consists of an initial
input graph representation, followed by anisotropic message-passing through gating
mechanisms (edge gates). The resulting embeddings are then updated using a Gated
Recurrent Unit (GRU), which adaptively controls the updates, prevents vanishing
gradients, and captures dynamic graph dependencies.

V₂

V₁ h₁, h₂, h₃

Gating

V₃

σ (Wₕ)

GRU

hᵥ ⁽ᵏ⁾

Message Passing Gating Update
Input Graph

Output

Figure 4.2: GGCN Architecture

In this architecture, the input graph represents a set of nodes (e.g., v1, v2, v3),
each corresponding to a task or resource. These nodes are connected based on their
dependencies or similarities. The message passing block computes the intermediate
embeddings (h1, h2, h3) through a gating mechanism, which assigns importance
weights to messages from neighbouring nodes. The gating update block then applies
a Gating Recurrent Unit(GRU) using a learnable weight matrix (Wh) and a nonlinear

activation function σ to update each node’s embedding. The output h
(k)
v represents

the updated embedding of node v at iteration k.
In GGCN, the graphs can be represented as G = (V,E), where |V | and |E|

represent the set of vertices (nodes) and edges, respectively. A vertex corresponds

84

4.3. Proposed GGCN Methodology

to a task or resource in a fog environment, while edges represent communication
links or dependencies between nodes. The primary objective of GGCN is to classify
and prioritise nodes by analysing their relationships and features. The edges are
connections between nodes with a value of either zero or one. If nodes do not share
similarities, the edge between them is zero; otherwise, the edge will be one.

Nodes with similar characteristics are linked, and their embeddings are updated
through iterative neighbourhood aggregation, which enhances their representational
power. During neighbourhood aggregation, the embedding for a node v is updated
by aggregating the embeddings of its neighbours N(v), expressed as:

h(k)
v = σ

(
W (k) · AGGREGATE

(
{hk−1

u : u ∈ N (v)}
))

,

where h
(k)
v represents the embedding of node v at iteration k, W (k) is the

learnable weight matrix, and σ is the activation function. This iterative mechanism
enables the scheduler to capture both local and global structures, critical for efficient
resource allocation. The GGCN architecture employs residual connections, batch
normalisation, and edge gates to facilitate deeper network training while avoiding
the vanishing gradient problem. These components ensure robust feature extraction
and adaptability in processing large-scale graph data. Edge gates act as an attention
mechanism, weighting the importance of dynamically connecting nodes.

To implement a GGCN as a resource allocation scheduler in iFogSim, the model
aggregates sensors and resource information through graph embeddings and captures
the spatial and temporal dependencies of sensors. These embeddings are then passed
through multiple layers of the GGCN to generate sensor priorities and map the
resources to active fog nodes. Finally, the output embedding guides the resource
allocation decision, ensuring optimal allocation while adhering to the constraints in
the problem formulation.

In the GGCN algorithm 4, the inputs (S, V, E) are obtained from the resource
manager. Graph G = (V,E) represents sensors (S) as vertices (V) and their
dependencies or resource connections as edges (E). An estimated QoS score Ô is
generated from the GGCN’s learned embeddings, guiding the assignment of sensors
to fog nodes. The scheduling decision splits the sensors and fog nodes into subsets
of predetermined size (K). Sensors with higher QoS scores or tighter deadlines are
prioritised. The embeddings of GGCN evaluate the resource availability at each fog
node. If there are no fog nodes available, sensors are queued and the process iterates
until all sensors are assigned to nodes.

85

4.4. Performance Evaluation

Algorithm 4 GGCN algorithm

Input: [S,V,E]
Output: Assigning sensors to fog node

1: procedure iFogSim
2: S, V, E ← ResourceManager()
3: G← (V,E) ▷ generate graph representation of sensors and resources
4: Ô ← GGCN (G) ▷ Learn embeddings and estimate QoS scores
5: Sensor Subset ← Extract Top K sensors based on Ô and deadlines
6: Fog Nodes ← select nodes based on learned resource embeddings
7: for s ∈ Sensors subset do
8: if allocation of s to fog node is feasible based on embeddings then
9: allocate s→ Fog Node
10: else
11: Add s to wait queue
12: end if
13: end for
14: end procedure

4.4 Performance Evaluation

This section presents the outcomes of the GGCN mechanism in various case studies, in
comparison with the state-of-the-art mechanisms, including FCFS, SJF and a modified
PSO. We carefully select two key performance metrics: the average loop delay and
total network usage, which are critical indicators of QoS efficiency. Moreover, in
this section, we focus on detailing our experimental setup, configuration parameters,
different case studies, and results in detail. Figure 4.3 illustrates the general topology
of our system, clearly summarising the number of clouds, gateways, fog nodes, sensors
and actuators employed within the environment.

86

4.4. Performance Evaluation

Figure 4.3: Fog Computing Topology Designed in iFogSim

4.4.1 Experiment Setup

For the valuation of our proposed deep learning scheduling approach, we developed
our case study and implemented our approaches using extending some packages of
iFogSim. Table 4.1 shows the simulation setup for our case study. Both our case study
and algorithms were developed in Java using eclipse Ide and utilising iFogSim toolkit.
iFogSim supports modelling and simulation for resource management techniques for
IoT, edge and fog computing infrastructures.

Table 4.1: Simulation Setup

system Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 1.80 GHz
Operating System Windows 11 Home

Memory 8 GB
Simulator iFogSim

4.4.2 Configuration

Table 4.2 illustrates the parameters of fog computing architecture configuration in
our case study, including the cloud fog node and gateway. We consider three layers
in our case study. The first layer is the cloud layer with specific specifications such
as CPU length in million instructions per second, RAM in megabytes, uplink and
downlink bandwidth in megabytes, level in fog computing architecture, cost per
million instructions, busy power and idle power in watts. In our simulation, we keep
the time interval transmission for each sensor as 5 ms, and the number of sensors per
fog node is between 5 and 100. It is posited that the minimum and maximum fog
node numbers are 1 and 4, respectively.

87

4.4. Performance Evaluation

Table 4.2: Configurations

Parameters Cloud Gateway Fog node group 1 Fog node group 2
MIPS 44800 2800 3000 2800
RAM 40000 4000 5000 4000
UpBw 100 10000 1200 1000
DnBW 10000 10000 11000 10000
Level 0 1 2 2

Rate per MIPS 0.01 0.0 0.0 0.0
Busy Power 16*103 107.339 107.339 107.339
Idle Power 16*103 83.4333 83.4333 83.4333

4.4.3 Case studies

Our hypothesis case study is a heterogeneous case study built on the iFogSim toolkit.
We divided our fog node into two groups according to their location and specification.
We did apply multiple approaches for the scheduling algorithm to map the module in
suitable fog nodes and schedule incoming tasks in proper resources. The sensors are
heterogeneous in their characteristics and are randomly linked to the fog node. To
ensure consistency across different case studies, we established predetermined ranges
of minimum and maximum sensors to be randomly linked to each node. Then,
we conducted an inclusive system performance analysis by calculating the average
number of sensors connected to each fog node for over 15,000 iterations. To ensure the
performance of our proposed approach will be better than approaches if the load on the
system has changed, we conducted six simulations for each case study, encompassing
a range of sensor quantities, including 5, 10, 15, 30, 80 and 100.

In our case study, three application modules are utilized.

1. PROCESS DATA MODULE: operates at the fog node device, where it receives
data from sensors and transmits system results to the gateway device.

2. FILTERING DATA MODULE: is designed to receive data from the process
data module, filter and classify it, and enable training of the proposed GGCN.

3. DISPLAY DATA MODULE: The module stores or passes results to the fog
node, enabling their transfer to the actuator.

Our case study set up a fog computing simulation in iFogSim, defining the
hierarchical topology and application structure. It generally contains three main
components:

• Physical Component: defines fog devices, sensors and actuators

88

4.4. Performance Evaluation

• Logical Component: creates an application structure, defining modules and
edges. Additionally, specifies tuple mappings and logical workflows for data
flow between modules.

• Resource Management Component: Implements module mapping for processing
in specific devices.

Some of the classes that would be used are introduced below:

• Sensors: simulates IoT sensors. The sensors generate tuples that transmit to
the fog devices.

• Fog device: simulates and creates fog devices ”fog nodes”. Each fog node
includes a specific memory, storage size, processor, uplink, and downlink. The
fog nodes process the tuples based on scheduling decisions made by the fog
broker.

• Tuples: Represents the packets of information passed across different locations
in the iFogSim environment. Every tuple contains information about its source
and destination.

The scenario extends certain classes from Module placements, specifically the
placement policy “ModulePlacementEdgewards”, to implement the proposed GGCN
scheduler. This implementation serves as name Resource Manager, which dynamically
allocates resources in active fog nodes using surrogate model and decision optimizer:

• GGCNLayer: Represents a layer in the Gated Graph Convolutional Networks
(input, hidden, and output) layers which can:

– Organize neurons and facilities embedding propagation.

– Perform graph convolution for neighbor feature aggregation using adja-
cency matrix operations.

– Ensure feature transformation through learnable weight matrices.

• Neuron: Defines individual neurons in the GGCN layers, which can handle:

– Initializing neurons with weights and biases

– Calculation gradients and updating weights during backpropagation.

– interacting with edge gating mechanisms for dynamic connection weighting.

• GGCNUtil: Provides utility functions for GGCN operations, which can handle
:

89

4.4. Performance Evaluation

– Sigmoid activation, its derivative and error calculation.

– Random weight generation.

– Edge gating functionality, including edge reweighting using EdgeGate.

• GGCNFogPlacment: Implements the GGCN-based resource scheduling alloca-
tion by

– Generating Graph from fog device and sensor attributes to ensure adja-
cency matrix representation

– Optimize module placement through training and inference.

– Integrating anisotropic message-passing functionality from AnisotropicAggre-
gator for directional feature propagation.

• Training: Represents training data for the GGCN, including:

– Input attributes (latency, MIPS,..) and expected output.

– Data preparation for embedding learning

– Sampling techniques for batch-wise training

• SpatialTemporalEncoder: Encodes both spatial and temporal dependencies in
the graph capable of:

– Capturing dynamic relationships between sensors over time using time-
decay functions.

– Enhancing node embeddings with temporal awareness through attention
mechanisms.

• OutputHead: generates final predictions from GGCN which by:

– transforming embeddings into QoS scores and resource allocation decisions.

– provides scheduling outputs, scoring mechanism “softmax”.

4.4.4 Results and Discussion

The results of our proposed approach focused on utilising the best mechanism to
reduce the average loop delay with the total network usage of the system. In addition,
our proposed algorithm is compared with benchmark algorithms such as FCFS, SJF
and PSO approaches in terms of allocating proper resources to process incoming tasks.
Figures 4.4, 4.5, 4.6, and4.7 illustrate the total network usage and average loop delay
for different cases.

90

4.4. Performance Evaluation

Total Network Usage of Proposed GGCN vs. Benchmark Schemes

5 10 15 30 80 100

Number of Sensors

0

1

2

3

4

5

6

7
T

o
ta

l
N

e
tw

o
rk

 U
s
a
g
e
 (

b
y
te

)
10

5

GGCN PSO FCFS SJF

5 10
0

0.05

0.1

0.15
105

Average Loop Delay of Proposed GGCN vs. Benchmark Schemes

5 10 15 30 80 100

Number of Sensors

0

200

400

600

800

1000

1200

A
v
e
ra

g
e
 D

e
la

y
 (

m
s
)

GGCN PSO FCFS SJF

Figure 4.4: Performance Analysis of Proposed GGCN: Total Network Usage and
Average Loop Delay Compared Benchmark Schemes (Case study A)

Total Network Usage of Proposed GGCN vs. Benchmark Schemes

5 10 15 30 80 100

Number of Sensors

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

T
o
ta

l
N

e
tw

o
rk

 U
s
a
g
e
 (

b
y
te

)

10
5

GGCN PSO FCFS SJF

5 10
0

0.05

0.1

0.15
105

Average Loop Delay of Proposed GGCN vs. Benchmark Schemes

5 10 15 30 80 100

Number of Sensors

0

200

400

600

800

1000

1200

A
v
e
ra

g
e
 D

e
la

y
 (

m
s
)

GGCN PSO FCFS SJF

Figure 4.5: Performance Analysis of Proposed GGCN: Total Network Usage and
Average Loop Delay Compared Benchmark Schemes (Case study B)

• Case study A: Four fog nodes with different capacities and dynamic random
sensors are connected to those nodes using a random distribution method.

• Case study B: Three fog nodes with different capacities and dynamic random
sensors are connected to those nodes using a random distribution method.

91

4.4. Performance Evaluation

Total Network Usage of Proposed GGCN vs. Benchmark Schemes

5 10 15 30 80 100

Number of Sensors

0

0.5

1

1.5

2

2.5

3

3.5
T

o
ta

l
N

e
tw

o
rk

 U
s
a
g
e
 (

b
y
te

)
10

5

GGCN PSO FCFS SJF

5 10
0

0.05

0.1
105

Average Loop Delay of Proposed GGCN vs. Benchmark Schemes

5 10 15 30 80 100

Number of Sensors

0

200

400

600

800

1000

1200

A
v
e
ra

g
e
 D

e
la

y
 (

m
s
)

GGCN PSO FCFS SJF

Figure 4.6: Performance Analysis of Proposed GGCN: Total Network Usage and
Average Loop Delay Compared Benchmark Schemes (Case study C)

Total Network Usage of Proposed GGCN vs. Benchmark Schemes

5 10 15 30 80 100

Number of Sensors

0

2

4

6

8

10

12

14

16

T
o
ta

l
N

e
tw

o
rk

 U
s
a
g
e
 (

b
y
te

)

10
4

GGCN PSO FCFS SJF

5 10
0

0.1

0.2

0.3
104

Average Loop Delay of Proposed GGCN vs. Benchmark Schemes

5 10 15 30 80 100

Number of Sensors

0

200

400

600

800

1000

1200

A
v
e
ra

g
e
 D

e
la

y
 (

m
s
)

GGCN PSO FCFS SJF

Figure 4.7: Performance Analysis of Proposed GGCN: Total Network Usage and
Average Loop Delay Compared Benchmark Schemes (Case study D)

• Case study C: Two fog nodes with the same capacities and dynamic random
sensors are connected to those nodes using a random distribution method.

• Case study D: One fog node dynamic with dynamic random sensors connected
using a random distribution method.

92

4.4. Performance Evaluation

Each of the above-mentioned cases is randomly linked to sensors of varying specifica-
tions, including 5, 10, 15, 30, 80 and 100 sensors. Our proposed algorithm consistently
demonstrates a positive effect in reducing total network usage and directly impacting
the average loop delay across all cases.

For total network usage, it is notable that four resource scheduling algorithms
(GGCN, PSO, FCFS, and SJF) were evaluated in terms of their impact on network
usage across different case studies (A, B, C, and D). It was observed that the total
network usage generally increased as the number of sensors increased across all
configurations regardless of the number of fog nodes used. However, the GGCN
approach consistently recorded the lowest total network usage. In contrast, although
SJF, PSO, and FCFS are efficient, their usage values are relatively higher. To
illustrate, for case studies A with 100 sensors, SJF, PSO, and FCFS yielded 320.2
bytes, 262.9 bytes, and 1089.23 bytes, respectively, which are higher than the GGCN
outcome. In the case of A, GGCN resulted in the lowest usage of 1122.9 bytes with
only 5 sensors, and even with 100 sensors, the network usage remained significantly
lower than the other approaches. In case studies D, the network usage ranged from
7.92 bytes to 190 bytes, depending on the number of sensors. The FCFS approach
typically resulted in the highest usage, such as in the configuration with four fog nodes
and 100 sensors.

On the other hand, evaluation of average loop delay, also termed as ’end-to-end
latency’, for all modules in the control loop across various configurations of fog nodes.
This evaluation utilises four different resource scheduling algorithms - GGCN, PSO,
FCFS, and SJF. Irrespective of the number of fog nodes and sensors, the GGCN
approach consistently displayed superior performance by recording the lowest average
loop delay. For instance, in case study A, GGCN achieved the minimum average
loop delay of 47.25 ms with 5 sensors. As a point of comparison, both SJF and
PSO strategies, while effective, did record higher average loop delays than GGCN. To
illustrate, when operating with 100 sensors in case study A, SJF and PSO resulted
in average loop delays of 320.2 ms and 262.9 ms, respectively, both exceeding the
delay produced by the GGCN approach. FCFS too, under identical conditions,
demonstrated the highest loop delay of 1089.23 ms. In case study B, GGCN recorded
an average loop delay of 47.1 ms with 5 sensors which was significantly lower compared
to 129.1 ms (PSO) and 195.16 ms (FCFS). Even with 100 sensors, GGCN maintained
47.48 ms, outperforming all benchmarks. For case study C, GGCN consistently
delivered the lowest delay, recording 46.98 ms with 5 sensors compared to 128.2 ms
(PSO) and 180.78 ms (FCFS). With 100 sensors, the delays increased to 47.39 ms
(GGCN) and 267.67 ms (SJF). In case study D, GGCN continued to outperform,
achieving an average loop delay of 46.72 ms with 5 sensors, while FCFS reported the
highest delay of 1058.49 ms with 100 sensors. This trend, with GGCN delivering
the lowest loop delay and FCFS the highest, persisted across all configurations - case

93

4.5. Challenges and Limitations

studies A, B, C, and D.
The ability of GGCNs to effectively capture the relationships between nodes via

aggregated convolution filters is attributed to the performance achieved in optimising
delay. This convolved aggregation enables the GGCN-based model to capture the
dependencies between different data elements of nodes and permits it to learn
a compressed node representation to preserve the relationships between the data
elements while reducing the bandwidth utilisation during intra-node communication
for task scheduling. This indicates that a GGCN-based proposed model learns a
compressed representation of the data that captures the essential information while
discarding redundant information, effectively reducing bandwidth utilisation.

4.5 Challenges and Limitations

Here are five special challenges encountered during the development and implemen-
tation stage:

1. Complexity of GGCN implementation: This represents the primary issue
because fog nodes are resource-constrained, where all computational resources
are limited, and the complexity of the neural network models, which requires
frequent updates based on dynamic network conditions.

2. Scalability issues: When the number of sensors, IoT devices, and fog nodes
increases, the computational process, memory requirements, and updating of
the GGCN model also increase. This can lead to a violation of QoS and
overall system performance. A GGCN-based scheduler must effectively manage
available resources without violating QoS, especially delay and network usage.

3. Real-time Data Processing: Another challenge occurs because of the het-
erogeneous and dynamic nature of IoT and fog environments. The GGCN
scheduler requires rapid adaptation to real-time conditions, including network
load, resource availability, and nodes. Achieving this level of adaptation while
maintaining low latency and high accuracy in scheduling decisions will make the
GGCN mechanism a more efficient solution.

4. Integration with Existing System: Integrating neural network models with
existing fog computing infrastructures creates several technical issues that
require careful design and extensive simulation testing.

5. Energy Efficiency: Another critical aspect is implementing a GGCN scheduler
to improve QoS without violating energy consumption. Reducing delay and

94

4.6. Conclusion

optimizing bandwidth are often linked to increased energy consumption. The
proposed scheduler uses energy-aware resource allocation and adjusts node
activity based on real-time demand. This approach reduces unnecessary
energy usage while optimizing delay and bandwidth. Advanced prediction and
learned capabilities prevent redundant computations and Idle power wastage
is minimized. This balance ensures QoS improvements without compromising
sustainability.

These are the main limitations of the proposed algorithm:

1. Performance in Simple Scenario: GGCN does not perform as well in simpler
scenarios (e.g., single fog node) as it does in complex ones. The computational
overhead may outweigh the benefits in such cases.

2. Energy Trade-offs: While GGCN optimizes delay and bandwidth, it demon-
strates limited improvement in energy efficiency, particularly in low-resource
utilization scenarios.

4.6 Conclusion

Increased adoption and utilisation of IoT devices present multiple performance
challenges that require the use of new technology. This study proposed a GGCN
mechanism to improve delay and total network usage in fog computing environ-
ments, showing promising results for integrating deep learning into fog computing
environments. As the demand for efficient resource management in expanding IoT
applications increases, the GGCN algorithm proposed in this study could become
a cornerstone for future research and set a new standard for managing network
performance. Further research should focus on enhancing scalability for larger
networks, optimising the algorithm for specific IoT use cases, and exploring synergies
with edge computing and blockchain for improved efficiency and security. The
proposed GGCN approach significantly outperforms existing approaches. Specifically,
it achieves:

• 86.09% improvement over PSO, 98.53% over FCFS, and 98.02% over SJF in
total network usage.

• 68.64% improvement over PSO, 92.07% over FCFS, and 76.26% over SJF in the
average loop delay across different case studies.

95

Chapter 5

eMLP-Based Task Scheduler to
Optimize QoS in Fog Computing
Environment

5.1 Motivation

The motivation behind this chapter is that task scheduling is a critical area in
optimizing QoS due to limited and heterogeneous resources, and it encourages a
further investigation into this area. Also, the majority of previous research focuses on
applying evolutionary mechanisms or swarm intelligent algorithms such as PSO, GA,
CS, ACA and several improved mechanisms. Additionally, the challenge of resource
inefficiency in task scheduling is vital due to the complexity and heterogeneity of the
tasks and fog nodes. The lack of investigation using deep neural network mechanisms
motivates me to investigate this area and come up with a novel and dynamic approach
to optimize QoS without violating system performance.

5.2 Overview

In this chapter, a proposed task-scheduling mechanism is introduced to tackle the
current limitations in detail, designed to enhance the performance of applications
in fog computing through a task-scheduling approach. As a key contribution of
this research, the enhanced multilayer perception (eMLP) mechanism is introduce

Portions of this chapter are sourced from the paper listed in Publication Section as: Enhancing
QoS in Fog Computing via Enhanced Multilayer Perceptron-Based Multi-Objective Task Scheduling.

96

5.3. Resource Scheduling Strategies

to improve the performance of applications in fog computing via a task-scheduling
approach. The following are the three main contributions of this chapter.

• Introduces a novel eMLP-based task-scheduling approach to QoS parameters.

• Minimizes average delay, bandwidth usage, power consumption, and resource
costs while preventing over-provisioning and under-utilization.

• Validates eMLP performance through benchmarking against GNN, FCFS, and
SJF, demonstrating its effectiveness.

The rest of this chapter is organized as follows: Resource Scheduling Strategies 5.3.
MLP versatile Application in Section 5.3.5, and Problem Formulation in Section 5.4,
The system Model in Section 5.5, and Performance evaluation in Section 5.6. Finally,
The chapter concludes with a summary Section 5.7.

5.3 Resource Scheduling Strategies

Based on the literature review, several heuristics and optimisation-based benchmark
algorithms will be used to compare and analyse the performance of our proposed
task scheduling mechanism. The terms tuple, task and job have been used
interchangeably. These benchmark algorithms, such as Shortest job First (SJF), first
come first served (FCFS), Stable Matching (SMA), and Graph Neural Network
(GNN), are utilized to provide a baseline to evaluate the performance and the
effectiveness of our proposed algorithm in task scheduling within a fog computing
environment.

5.3.1 Shortest Job First

As shown in Algorithm 5, the shortest job first mechanism executes the shortest
tasks first. The first step on the SJF is to sort all incoming tuples Ti in the queue
in ascending order. The first arrival tuple from the fog device executes immediately
without restrictions, while subsequent tuples are executed based on their length. Tasks
arrive at Fog devices from either Sensors or other fog devices. They are sent to the SJF
Task scheduler. After that, the scheduler executes the first task, and other tasks are
placed in the waiting queue Lwaiting. Every finished task Tm is moved to the finished
tasks queue Lfinished. Then, SJF will select the shortest task from the waiting queue
to be executed [47, 48].

97

5.3. Resource Scheduling Strategies

Algorithm 5 Shortest Job First

Input Task List(T1,T2,... Tn)
Output Executed Task List Lfinished

Initialize Lwaiting to empty
while tasks are available or Lwaiting ̸= ϕ do

if new task Tiarrives then
Add Ti toLwaiting

Sort Lwaiting in ascending order of processing time
end if
if Lfinished is empty or current task completed then

Select Tm from Lwaiting with minimum processing time
Assign Fj (a facility or resource) to Tm

Execute Tm

Remove Tm from Lwaiting

Add Tm to Lfinished

end if
end while
return Lfinished

5.3.2 First Come First Served

The first come first served mechanism 6 schedules the tasks based on the order arrival.
It is simply like FIFO (First in First out) mechanism. The first task that arrives
Ti into fog devices is sent directly to the FCFS algorithm scheduler for execution.
Subsequent tasks are stored in a waiting queue list Lwaiting, in ascending order based
on their arrival time. Tasks are then executed according to their arrival time from the
waiting list. Like the SJF algorithm, the jobs (Tasks) arrive as tuples from sensors or
other fog devices. Every finished task Tm is added to the finished list Lfinished[48]

5.3.3 Graph Neural Network

Graph Neural Network GNN is a deep learning neural network algorithm. It is
designed to process data as graphs, making it suitable for complex systems with
interrelated entities. The key features of GNN include graph-based input, node feature
aggregation, iterative updates and flexibility in learning. GNN optimizes how tasks
assignments to nodes by considering not only individual task requirements but also the
dependencies between tasks. This makes GNN one of the sophisticated mechanisms
for ensuring efficient and effective scheduling in distributed computing [149].

As shown in Algorithm 7, utilizes a graph-based approach to optimize task
scheduling in fog computing. It processes a graph G(V,E), where each node is V

98

5.3. Resource Scheduling Strategies

represents a computational Task Ti, and each Edge E represents dependencies between
these tasks. The GNN algorithm refines node representations of Ti to drive optimal
scheduling decisions by using iterative aggregation of features from neighboring nodes
using propagating P .

Algorithm 6 First Come First Served

Input Task List(T1,T2,... Tn)
Output Executed Task List Lfinished

Initialize Lwaiting to empty
Initialize Lfinished to empty
while not end of tasks OR Lwaiting ̸= ϕ do

if new task Ti arrives then
if Lwaiting = ϕ then

Assign Fj to Ti

Execute Ti

Tm ← Ti

Lfinished ← Tm

else
Lwaiting ← Ti

end if
end if
if Lwaiting ̸= ϕ and Lfinished is empty or current task completed then

Tfifo ← Select the first task from Lwaiting

Assign Fj to Tfifo

Execute Tfifo

Tm ← Tfifo

Lfinished ← Tm

Remove Tfifo from Lwaiting

end if
end while
return Lfinished

99

5.3. Resource Scheduling Strategies

Algorithm 7 Graph Neural Network GNN

Input: Graph G(V,E) with nodes representing tasks Ti and edges E
representing dependencies.

Output: Optimized scheduling of Ti on Fj.

1: Initialize each node Ti ∈ V with task parameters
2: Construct G V,E using tasks Ti as nodes dependencies, E as edge
3: Define propagation rules P
4: repeat
5: Aggregate features for each Ti using P
6: Update Ti features for scheduling
7: until Convergence or max iter reached
8: Deploy the optimized task scheduling configuration based on G.

5.3.4 Stable Matching Algorithm

Stable matching algorithm 8 is a sophisticated scheduling mechanism designed to
optimize task scheduling in fog computing environments. It systematically pairs tasks
Ti with fog nodes Fj through an iterative proposal mechanism based on preference
lists. Initially, all tasks will be placed in an unassigned tasks list. Each task proposes
to its most preferred fog node, and nodes tentatively accept tasks based on their
rankings, rejecting less preferred tasks as necessary.

Algorithm 8 Stable Matching Algorithm SMA

Input: List of tasks T1, T2, . . . , Tn

Output: Stable task-node pairs

1: Initialize all tasks Ti and nodesFj as unassigned
2: while there exists an unassigned tasks Ti do
3: Ti proposes to its most preferred node Fj (not yet rejected)
4: if Fj is unassigned then
5: Fj tentatively accepts Ti

6: else if Fj prefers Ti over its current task then
7: Fj rejects its current task and tentatively accepts Ti

8: else
9: Fj rejects Ti

10: end if
11: end while
12: return Stable task-node pairs

This mechanism continues until all tasks are stably matched or no feasible

100

5.4. Problem Formulation

assignments remain. SMA guarantees that each task is paired without violating
system constraints, ensuring load balance and resource efficiency. [55].

5.3.5 MLP: Versatile Application

The versatility and effectiveness of MLP are unavoidable in the context of fog
computing because it has demonstrated marvellous accomplishments in the field of
medical surgery [150]. This is because the system contains very complex mechanisms
that identify patterns and, further, MLP makes accurate predictions and thus is also
used to solve many problems [151]. MLP integrated with a decision-tree algorithm is
used in the diagnosis of many diseases, such as liver problems, etc. [152]. It is also used
to manage energy consumption and to handle huge corpora and databases, these being
its core characteristics [153]. Moreover, the technology is employed to schedule tasks
in distributed computing technology [154]. Although it is very laborious and difficult
to assign tasks to different nodes in cloud computing, because of the distributed,
differentiated, and heterogeneous environment, MLP is capable of identifying patterns
in order to assign tasks to fog nodes according to their capacities. It is hypothesized,
therefore, that the application of MLP technology would ultimately maximize the
merits of the algorithm so as to improve the quality of service. It is also flexible and
adaptable, and thus has the potential to align with evolving technologies.

5.4 Problem Formulation

Assume a fog computing-based system has N applications A = {A1, A2, A3, . . . , AN}
running at the user’s end, supported byM heterogeneous fog nodes F = {F1, F2, F3, . . . , FM}
for executing user applications. Each user application Ay has |ky| independent tasks
TAy = {TAy ,1, TAy ,2, TAy ,3, . . . , TAy ,|ky |} that are offloaded to fog nodes. these tasks
require network bandwidth, computing resources, and storage to execute on fog nodes
with sufficient resources.
The Objective is to assign tasks from user applications to the most suitable fog nodes,
minimizing average delay, reducing network usage and load, optimizing resource
utilization (CPU, RAM, and storage), and minimizing power consumption.

The total number of tasks NT is:

NT =
∑
y∈A

|ky| (5.1)

The computational resources required are:∑
y∈A

RReq(TAy) (5.2)

101

5.4. Problem Formulation

Where resources are quantified as CPU usage, RAM, Storage, and Bandwidth.
Each task Ti ∈ TAymust be assigned to a fog node Fj. The available resources Ra,j at
a fog node Fj are:

Ra,j = Rtot,j −Ru,j (5.3)

Where Rtot,j represents the total resources of fog node Fj, and Ru,j, represents the
currently used resources. A task Ti can only be assigned to fog node Fj if:

RReq(Ti) < Ra,j (5.4)

Here RReq(Ti) represents the resource requirements(processor, memory, and disk) for
task Ty,i from fog node Fj. If multiple fog nodes satisfy this condition, optimization
is applied to improve resource utilization, minimize delay, and optimize bandwidth
and network load.

where xi,j is a binary decision variable defined as:

xij =

{
1, If Ti is assigned to Fj,

0, Otherwise.
(5.5)

One of the objectives of this work is to manage task execution at fog nodes,
managing both under-utilization and overloading. Fog nodes with significantly lower
workloads than their capacity are penalized to minimize under-utilization, and those
that exceed capacity are penalized to avoid overloading. The current utilization of
each fog node is expressed as follows:

(Obj 1:) Minimize
∑
j∈F

(
Qj

Cj

)
≈
∑
j∈F

(
Ru,j

Rtot,j

)
, (5.6)

where Ru,j is the resources already being used at fog node j, and Rtot,j denotes
the capacity of the fog node j (e.g. processing capacity, memory). Similarly, Qj

and Cj represent the current workload and capacity of fog node j, respectively.
Minimizing these ratios promotes a conservative workload distribution, ensuring
balance. Conversely, maximizing the ratios encourages an aggressive utilization,
potentially leading to overloading.

The second objective aims to ensure tasks are assigned to nearby fog nodes, thereby
reducing latency and communication overhead. This is expressed as:

(Obj 2:) Minimize
∑
i∈TAy

∑
j∈F

(xi,j ×Di,j) (5.7)

where Dij represents the distance between the application node hosting task Ty,i

and fog node Fj. This objective also minimizes the overall task delay, including

102

5.4. Problem Formulation

propagation, processing, and queuing delays. The amount of bandwidth Bi,j required
for task Ti to communicate with fog node Fj

Bi,j =
DSi

Ths,j

, (5.8)

where DSi represents data size and Ths,j is transfer rate. The total delay Li,j for
executing Ti on fog node Fj

Li,j = Dpn +Dpr +Dq +Dtx (5.9)

where Dpn represents the propagation delay,Dpr is the processing delay,Dq denotes
the queuing delay, and Dtx represents the transmission delay. The resource usage cost
Ri,j based on the resources consumed by Fj for the Ti,

Ri,j = ResourceCostFunction
(
CPUj,RAMj, Storagej

)
(5.10)

The power consumption Pi,j cost per unit time for executing the task Ti by the fog
node Fj.

Pi,j =
Ei,j

ti,j
, (5.11)

where Ei,j represents energy consumption and ti,j represents the execution time of task
Ti. The Third objective is minimizing the average delay across all tasks, ensuring tasks
are assigned to fog nodes that are able to reduce delay.

(Obj 3:) Minimize L̄ =

∑
i∈TAy

∑
j∈F xi,j · Li,j∑

i∈TAy

∑
j∈F xi,j

(5.12)

where L̄ represents the average delay across all tasks, and Li,j represents the delay if
task Ty,i is assigned to fog node Fj. The fourth objective ensures an even distribution
of workload among fog nodes, promoting balance and avoiding overloading or under-
utilization:

(Obj 4:) Minimize

(
max
j∈F

Qj −min
j∈F

Qj

)
(5.13)

This objective minimizes the difference between maximum and minimum workload
across all the available fog nodes, Fj ∈ F . The fifth objective is to give priority to
the fog nodes with the current smaller workloads to balance the tasks across all the
available fog nodes instead of overloading some of the fog nodes as below:

(Obj 5:) Minimize
∑
j∈F

Q2
j (5.14)

103

5.4. Problem Formulation

The sixth objective is to minimize the overall average power consumption as below:

(Obj 6:) Minimize

∑
i∈TAy

∑
j∈F xi,j · Ei,j∑

i∈TAy

∑
j∈F xi,j · ti,j

(5.15)

As mentioned earlier, we have multiple objectives so we formulate our problem
as a multi-objective problem with each objective assigned a different weightage (or
priority) as follows:

Minimize w1

(∑
j∈F

(
Qj

Cj

))
+ w2

∑
i∈TAy

∑
j∈F

xi,j ·Di,j

+ w3

(
max
j∈F

Qj −min
j∈F

Qj

)
+ w4

(∑
j∈F

Q2
j

)

+w5

(∑
i∈TAy

∑
j∈F xi,j · Li,j∑

i∈TAy

∑
j∈F xi,j

)
+ w6

(∑
i∈TAy

∑
j∈F xi,j · Ei,j∑

i∈TAy

∑
j∈F xi,j · ti,j

)
(16)

s.t. ∑
Fj∈F

xi,j = 1,∀i ∈ TAy (5.16a)

∑
i∈TAy

∑
j∈F

xi,j ·Dij ≤ Dthreshold (5.16b)

Qj ≤ Cj ∀j ∈ F (5.16c)

K∑
k=1

wk = 1, (5.16d)

Eq. (5.16a), to ensure each task Ti must be assigned to exactly one fog node.
Eq. (5.16b) ensures that the total delay for assigning all tasks of a single application
Ay to fog nodes does not exceed the predefined delay threshold Dthreshold, promoting
to assignment to closer nodes with lower delay. In Eq. (5.16c), Qj is the current
workload of fog node Fj and Cj is the capacity of fog node Fj (processing, memory).
In Eq. (5.16d) K represents the total number of objective functions, which is equal
to 6.

To ensure comparability between the objectives, we normalize these objectives
functions by taking the difference between the maximum and minimum possible values

104

5.5. System Model

calculated using the offline method as follows:

Minimize w1

(∑
j∈F (

Qj

Cj
)

Rmax

)
+ w2

(∑
i∈TAy

∑
j∈F xi,j ·Di,j

Dmax

)
(5.17)

+ w3

(
maxj∈F Qj −minj∈F Qj

Qmax

)
+ w4

(∑
j∈F Q2

j

Q2
max

)

+ w5


∑

i∈TAy

∑
j∈F xij ·Lij∑

i∈TAy

∑
j∈F xij

Lmax

+ w6


∑

i∈TAy

∑
j∈F xij ·Eij∑

i∈TAy

∑
j∈F xij

Emax

 ,

In order to count the number of fog nodes being utilised to serve the tasks, the
indicator function counts the distinct columns where atleast one task is assigned to
each fog node :

Fused =
∑
j∈F

Indicator

∑
i∈TAy

xi,j > 0

 (5.18)

Indicator(I) =

{
1, if I is true (i.e. the inner summation is greater than 0)

0, if I is false (i.e. the inner summation is 0)

This function sums the binary indicator for each column, representing the number
of fog nodes in use.

5.5 System Model

This section introduces our system model, as depicted in Figure 5.1. The model
comprises several key components, and these components include:

The system model is built upon user devices and sensors that serve as the primary
sources of data generation and task initiation. It is also called end-user, which
includes low-level users represented by sensors and actuators that are responsible
for collecting data from the environment and transferring them to advanced user
levels, such as smartphones, tablets, and computers that can run applications that
need substantial computational resources. These applications A consist of multiple
independent tasks TAy , which require offloading to fog nodes for execution. When
these devices request tasks, they are sent to the fog tier for better performance. All
task-processing procedures will occur in the fog tier for more efficient handling. The
fog tier receives application requests, which include a set of tasks from user devices.
Tasks TAy will be processed and manipulated in this tier. Each TAy requires specific

105

5.5. System Model

Figure 5.1: System Model

resources, such as processor cycles, memory, and storage to execute. These resources
available Ra,j are distributed among available fog node Fj, which are heterogeneous in
their capabilities. All tasks and resource distribution will be served by the proposed
eMLP scheduler to decide which are the suitable nodes to assign each task TAy . This
scheduler acts as a decision-maker based on several factors, such as the complexity of
tasks, memory requirements, and availability of resources in a fog node. The main aim
of the proposed eMLP is to assign tasks to a suitable fog node Fj without violating
QoS parameters, while optimizing resource utilization Ra,j. The feedback loop in the
proposed scheduler ensures that task assignment adapts dynamically by continually
evaluating resource availability and system performance.

The outcome of the proposed model is to assign TAy to Fj. All Fj are geographically
distributed in different locations and usually close to user devices, which gives them
advantages in terms of minimizing delay and optimizing bandwidth usage. During
task assignment, key parameters are considered, including the Distance Di,j (the
physical distance between TAy and Fj), bandwidth Bi,j (the amount of network
bandwidth consumed), and delay Li,j (the time required for task transmission and
processing). These nodes are powerful in processing and handling tasks but have
limited resources. A task will be allocated to an available fog node based on the
proposed eMLP scheduler.

106

5.5. System Model

5.5.1 eMLP Scheduler

The proposed model is based on the eMLP scheduler, which assigns tasks to available
and suitable nodes. To achieve this, the eMLP receives a vector of task attributes,
including attributes such as memory requirements and the number of instructions.
Each task is transformed within the eMLP’s hidden layers, where weights W and
biases b play pivotal roles, and Non-linearity is introduced in the model by utilising
the ReLU activation function, which effectively enables the model to learn complex
patterns. Weights are adjusted during the training phase to determine how task
features affect the final output. A weight matrix W I in every layer I th will transform
all input vectors from the previous layer x(I−1), which results in an intermediate result
represented by x(I) = ReLU(W (1) · x(I−1) + b(I)). The final step of getting the output
of the final layer is acquired by applying the Softmax function to turn the results into
probabilities in order to decide the allocation of tasks to the best-suited fog nodes.

Weights in the eMLP scheduler play a vital role in enhancing the scheduling tasks
of the proposed scheduler. Initially, all weights in the neural network of the eMLP
have a random set of values, and these will be adjusted during the back-propagation
process. This process focuses on comparing predicted and actual task allocation,
which will lead to adjusting the weights and enhancing the predictions of the eMLP.
Adjustments apply the Adam optimization algorithm. It updates the learning rate
for each weight based on estimates of the gradients for first and second moments. The
updating weight is represented by Wnew = Wold− α√

v̂+ϵ
m̂ where m̂ and v̂ are biases to

correct the first and second estimates of the gradients. ϵ is a small constant to avoid
division by zero. This process will enable enhancing effectiveness during the training
phase. Overall, the iteration of refinement processes will enable the eMLP scheduler
to learn complex patterns by comparing task requirements and resource availability.
It will increase the effectiveness of the fog network by optimising the distribution of
computation loads in eMLP.

The algorithm 9 demonstrates the eMLP scheduler approach to efficiently
assigning tasks to fog nodes. The algorithm begins by initializing the model with
three hidden layers that are capable of handling complex tasks. Each task’s feature
vector is analyzed as input to the model. A comprehensive state Si represents the
extracted feature and all preprocessing techniques. The eMLP computes the action
probabilities Pi through a deep network of eMLP. These probabilities indicate the
optimal fog node for each task according to resource availability and the task size.
The algorithm dynamically adjusts itself according to task changes, updating the
learning phase to maintain accuracy. The eMLP scheduler continues to learn from
real-time feedback.

This diagram 5.2 illustrates the implementation of eMLP for task-scheduling in a
fog computing environment. Initially, there exist distinct tasks with unique attributes

107

5.5. System Model

Algorithm 9 eMLP

Input Task features T1,T2,...Tn.
Output Task assignment A1,A2,...An.

1: Initialize eMLP with state size, action size,3 hidden layer
2: for each application Ay do
3: for each task Ti ∈ TAy do

a. Extract and preprocess features to form state Si

b. Compute action probabilities Pi using the deep network eMLP

c. Assign Ti to Fj with highest Pi

4: end for
5: end for
6: periodically updates eMLP with new data
7: monitor and adjust eMLP for performance

that must be allocated to a group of fog nodes identified as node-1 to node-m. The
initial step involves the extraction of task features, which are then encoded in a
suitable format for neural network processing. These features are used as the input
for the eMLP. The eMLP’s foundation is denoted by the label ”hidden layer x 3”,
signifying the presence of ten hidden layers within the network. Each of the 24
neurons per hidden layer is represented by a yellow circle and utilizes the ReLU
(Rectified Linear Unit) activation function to introduce non-linearity to the learning
process. As the eMLP’s network architecture is complex with ten hidden layers, the
ReLU activation function is used instead of traditional ones, like Sigmoid, to boost
training performance.

The output obtained from the hidden layers is then directed into an ”output
layer.” Here, a ”Softmax function” is applied to convert the output into a probability
distribution. This helps in determining which fog node is most suitable for executing
each task.

The diamond labelled ”Decision” is the symbol for the decision mechanism. It uses
the probabilities obtained from the Softmax function to choose the most appropriate
fog node for each task, based on ”Action Selection Based on Softmax Probabilities”.

Furthermore, the diagram illustrates the training process by showing the flows
of ”backpropagation” and ”feedforward”, which are essential mechanisms in neural
network learning. The ”Categorical Crossentropy” loss function guides the backprop-
agation and evaluates the model’s performance during training, allowing the weights
to be updated for each training step to minimize losses.

Overall, the diagram provides a high-level overview of task scheduling using an
eMLP within a fog computing architecture. It outlines the workflow from feature

108

5.5. System Model

extraction to the final decision-making process.

Figure 5.2: Systematic Block Diagram of the Proposed Enhanced Multilayer
Perceptron (eMLP)

To summarise, the proposed eMLP scheduler extends the basic multilayer
perceptron (MLP) by integrating advanced adaptive learning mechanisms to enhance
task scheduling efficiency in a fog computing environment. The key difference between
eMLP and a classic MLP can be summarised as follows:

• Architecture:

• Classical MLP: Shallow, fewer hidden layers.

• eMLP: Deeper architecture with multiple hidden layers(ten, 24 neurons per
layer).

• Activation Functions:

• Classical MLP: Typically uses simpler activation functions such as sigmoid.

• eMLP: Utilises ReLU activation for superior performance and ability to
capture complex patterns.

• Learning and Adaptation:

109

5.6. Performance Evaluation

• Classical MLP: Fixed behaviour post-training.

• eMLP: Continuously learns and updates based on real-time feedback
through ongoing backpropagation.

• Decision-making:

• Classical MLP: Performs basic classification or regression.

• eMLP: Implements Softmax-based probabilistic decision-making for opti-
mised task assignment.

• Optimization Techniques:

• Classical MLP: Employs basic gradient descent.

• eMLP: Uses advanced optimisation through the Adam optimiser with
adaptive learning rates, guided by the Categorical Crossentropy loss
function.

These improvements enable the eMLP to dynamically respond to changes in task
demands and resource availability to ensure accurate and context-aware scheduling
decisions within fog computing environments.

5.6 Performance Evaluation

The Performance evaluation provides a comprehensive assessment of the proposed
eMLP approach as a task scheduler in the fog computing environment. It examines
eMLP’s effectiveness compared to various other approaches. It also analyses the
system configurations and resource distribution, highlighting the ability of eMLP’s
efficiency and adaptability to handle dynamic task sets.

5.6.1 Experimental Setup

This section describes our Experimental setup, which is built based on Fog computing
architecture. Table 5.1 demonstrates the characteristics of our simulation, which
includes system information, memory requirements, our operating system, and the
simulator name.

Table 5.1: Simulation Setup

system Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 1.80 GHz
Memory (RAM) 8 GB

Operating System (OS) Windows 11
Simulator Python (Leafsim)

110

5.6. Performance Evaluation

In our simulation, we did extend the Leafsim simulator to give us a more
comprehensive analysis of our outcomes. We also consider the following predefined
values for our simulation to prioritize resource utilization and delay minimization
while maintaining a balanced focus on other objectives. The values assigned to the
objectives in the Case One (CS1) are as follows: w1 = 0.3, w2 = 0.2, w3 = 0.25, w4

= 0.15, w5 = 0.05, and w6 = 0.05. These weights are designed to emphasize resource
utilization and workload balancing as primary objectives with less importance to
power consumption and delay to reflect their relative impact in this study.

In the Second Case Study (CS2), the weights are updated to w1 = 0.05, w2 = 0.10,
w3 = 0.15, w4 = 0.10, w5 = 0.50, and w6 = 0.10. This case shifts the focus toward
delay minimization as the dominant factor, while still considering network usage and a
number of migrations. To ensure adaptability, this case follows an adaptive scheduling
approach, balancing efficiency and delay reduction.

For delay parameters, based on several studies concerning ideal delay, the
maximum delay Dmax is set to 100 ms, Dmin is 2 ms, and the Dthreshold is 100 ms
to ensure strict enforcement of delay constraints [21, 155, 156]. Energy consumption
values are bounded between Emin = 5 W and Emax = 100 W, consistent with the
typical operational range of fog nodes[138, 157]. For fog node parameters, the initial
workload of each node Qj is initialized to 0, representing no tasks assigned at the
start. The capacity of each node Cj is predefined based on its computational and
storage limits, ensuring Qj ≤ Cj throughout the simulation to avoid overloading.

5.6.2 Configuration

Task and node characteristics have been sourced from the literature review, and they
are benchmarks for their proposed study [56].After deep investigation, this dataset
used for the following reasons:

• The dataset is derived from a peer-reviewed study, ensuring it follows standard
practices in fog and cloud computing research.

• The dataset addresses resource heterogeneity and realistic constraints.

• It is a well-defined dataset in terms of task attributes (e.g. number of
instructions, memory, input/output file sizes) and node characteristics (e.g.
CPU rate, cost), which provide a robust benchmark for evaluating the proposed
scheduling mechanism and comparing it with others.

• There is a lack of datasets, especially for generic case studies, and most of the
studies generate a simple dataset as a demonstration. Given the lack of datasets
in fog computing, this dataset suits my generic case study as it includes a generic
bag of tasks with a variety of tasks sizes and requirements.

111

5.6. Performance Evaluation

Table 5.2 shows our configuration, which includes ten fog nodes with various
attributes. These attributes are processing capacity, which is measured in MIPS
(millions of instructions per second) , CPU, memory, and bandwidth. These attributes
are associated with the cost of usage, which is measured by Grid Dollars (G$). It is
a virtual currency unit commonly used in simulation studies. It does not represent
real-world money but it serves as a standardized metric for modelling and evaluating
the cost of resource usages, such as CPU, Memory and bandwidth [56, 158].

Table 5.2: Characteristics of Fog Nodes

Nodes number 10 nodes
CPU rate [550,1500]

CPU usage cost [0.1,0.4]

Application requests are divided into separate tasks, each having a specific set
of attributes, such as the number of instructions, memory requirements, input and
output file sizes. To account for variations in request workloads, we have generated
six data sets with 40 to 280 bags of tasks. The attributes of each task have been
randomly assigned based on the specifications of the task. This randomness has
resulted in a wide range of task profiles, from those that are computationally intense
to those that demand greater memory or bandwidth. This ensures that we cover
a diverse set of potential real-world scenarios. These are tasks characteristics that
define their behaviour, which include:

1. Total count of instructions that the task will execute.

2. Tasks also require a certain amount of memory to function properly.

3. Tasks have input and output data files whose sizes must be considered.

4. Each of these properties has a range of values, with instructions being measured
in billions (denoted by 109 of instructions) and file sizes in megabytes.

5.6.3 Results and Discussion

In this section, we summarize the results of our simulation experiments and highlight
the performance of the eMLP model in task-scheduling within a fog computing setup.
We analyze important metrics, such as average delay, bandwidth, and cost, to assess
the efficiency of eMLP compared to traditional algorithms, like SJF, FCFS, and SMA
as well as the newer GNN approach.

The figure 5.3 shows that the eMLP-based model demonstrates a significant
efficiency advantage over different scheduling algorithms when analyzing delay. As the

112

5.6. Performance Evaluation

number of tasks increases, traditional algorithms such as SJF and FCFS experience
a considerable increase in average delay, with FCFS consistently displaying the
highest average delay figures. On the other hand, the SMA and eMLP models show
superior performance, with the eMLP model outperforming all of them in terms of
the least average delay across all task volumes. Specifically, when the number of
tasks is high (280), eMLP maintains an average delay of 0.09 ms, which is in stark
contrast to the 984.30 ms and 1568.30 ms observed for SJF and FCFS, respectively.
Additionally, SMA approach demonstrates impressive performance by maintaining
lower delay compared to FCFS, SJF and GNN, but higher than eMLP. At 280 tasks,
SMA recorded 38.49 ms. Also, the GNN approach shows better performance than
traditional algorithms, with an average delay of 784.71 ms at 280 tasks, although it
does not outperform SMA or eMLP. This illustrates the ability of the eMLP model
to effectively categorize tasks and select the fog node best suited for each one.

Additionally, the graph represents a case study (CS2) where delay is given high
importance compared to other objectives. The eMLP model continues to show a
significant improvement over other approaches. As task volume increases, FCFS and
SJF still experience substantial growth in average delay. FCFS maintain the highest
values among all approaches. However, eMLP achieves a remarkable delay of 0.06 ms,
while SMA follows with 15.8 ms as the best performance among other models. GNN
remains more effective than SJF and FCFS by 250.45 ms at 280 tasks. These results
confirm the ability of eMLP’s to optimize task assignments effectively.

40 80 160 200 240 280

Number of Tasks

0

200

400

600

800

1000

1200

1400

1600

A
v
er

ag
e

D
el

ay
 (

m
s)

SJF (CS1) [47]

SJF (CS2) [47]

FCFS (CS1) [48]

FCFS (CS2) [48]

GNN (CS1) [149]

GNN (CS2) [149]

SMA (CS1) [55]

SMA (CS2) [55]

Proposed eMLP (CS1)

Proposed eMLP (CS2)

50 100 150 200 250

Zoom on

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Figure 5.3: Performance Analysis of the Proposed eMLP Average Delay Compared
to Multiple Benchmark Schemes Across Different Task Loads

Figure 5.4 shows network usage utilization, which is a measure of data transferred

113

5.6. Performance Evaluation

in the fog network. The eMLP model shows the best result among all models. For
example, in task 280, the Network usage is only 1.49 Mbps for eMLP in CS1, but
1568.50 for SJF, 1560.5 Mbps for FCFS, and 784.49 Mbps for GNN. Even though
GNN demonstrates better network usage efficiency than FCFS and SJF, it is still less
efficient than eMLP. Additionally, the SMA model shows competitive performance,
recording 38.50 Mbps at 280 tasks, which is significantly lower than SJF, FCFS, and
GNN but higher than eMLP.

For Case Study 2 (CS2), where network efficiency is given additional weight,
eMLP further optimizes its usage, achieving 0.72 Mbps at 280 tasks, while GNN
records 680.29 Mbps and SMA achieves 26.34 Mbps. Meanwhile, SJF and FCFS
continue to perform poorly, with 1803.45 Mbps each. This highlights eMLP’s ability
to optimize network bandwidth while outperforming traditional and machine-learning-
based models efficiently. The bandwidth parameter remains critical to optimize for
several sectors where task throughput is essential.

40 80 160 200 240 280

Number of Tasks

0

200

400

600

800

1000

1200

1400

1600

1800

2000

N
et

w
o
rk

 U
sa

g
e

(b
y
te

)

SJF (CS1) [47]

SJF (CS2) [47]

FCFS (CS1) [48]

FCFS (CS2) [48]

GNN (CS1) [149]

GNN (CS2) [149]

SMA (CS1) [55]

SMA (CS2) [55]

Proposed eMLP (CS1)

Proposed eMLP (CS2)

50 100 150 200 250

Zoom on

0.1
0.2
0.4
0.6
0.8

1
1.2

1.5

1.8
2

2.2

2.5

2.8
3

Figure 5.4: Performance Analysis of the Proposed eMLP Network Usage Compared
to Multiple Benchmark Schemes Across Different Task Loads

The cost of resource usage is also critical because a fair balance must be struck
between delay and network usage. Reducing it directly impacts other QoS parameters.
The best solution is a trade-off between three parameters without violating them.
Figure 5.5 shows how eMLP captures the cost, demonstrating that it has the lowest
cost compared to other models. In task 280, the cost is 1.55 G$, 3922.29 G$, 4706.31
G$, 3138.40 G$ and 78.51 G$ for eMLP, SJF, FCFS, GNN, and SMA, respectively.
In Case Study 2 (CS2), the eMLP model reduces cost to 0.583 G$ at 280 tasks, while
SJF and FCFS remain high at 3482.34 G$ and 4201.35G$, respectively. GNN records

114

5.6. Performance Evaluation

1942.56 G$, and SMA achieves 38.25 G$, showing a remarkable improvement but
still higher than the eMLP model. These significant differences arise because eMLP
effectively trades off between QoS parameters to achieve balance.

40 80 160 200 240 280

Number of Tasks

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

C
o
st

 (
G

$
)

SJF (CS1) [47]

SJF (CS2) [47]

FCFS (CS1) [48]

FCFS (CS2) [48]

GNN (CS1) [149]

GNN (CS2) [149]

SMA (CS1) [55]

SMA (CS2) [55]

Proposed eMLP (CS1)

Proposed eMLP (CS2)

50 100 150 200 250

Zoom on

0.1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 5.5: Performance Analysis of the Proposed eMLP Cost of Usage Compared to
Multiple Benchmark Schemes Across Different Task Loads

Another parameter considered in this study is average power consumption, which
directly impacts the cost and overall efficiency of the fog network. Figure 5.6
demonstrates the power consumption across different scheduling mechanisms. At
280 tasks in CS1, eMLP records the lowest power consumption among all approaches,
with 5.0W. GNN is the second-best approach, consuming 36.10W less than SJF and
FCFS, which consume 88.0W and 87.30W, respectively. Additionally, SMA reduces
power consumption to 47.30W at 280 tasks, which shows better efficiency compared
to traditional models.

For CS2, power consumption is further optimized compared to CS1. The eMLP
model achieves a lower power consumption of 2.85W at 280 tasks, while GNN records
20.90W as the second-best model. The SMA model reaches 32.53W at 280 tasks.
Meanwhile, SJF and FCFS maintain the highest power consumption reaching up to
74.58W and 74.51W, respectively. Overall, the results highlight the efficiency of eMLP
in managing power consumption while maintaining optimal performance across other
QoS parameters.

Figure 5.7 illustrates the percentage improvement of the proposed eMLP over
benchmarks (SJF, FCFS, GNN, and SMA) across four key metrics: delay, bandwidth
usage, cost of usage, and energy consumption. In all these metrics, the Proposed
eMLP outperforms traditional scheduling schemes, showing significant improvement

115

5.6. Performance Evaluation

40 80 160 200 240 280

Number of Tasks

0

10

20

30

40

50

60

70

80

90

A
v
er

ag
e

P
o
w

er
 C

o
n
su

m
p
ti

o
n
 (

W
)

SJF (CS1) FCFS (CS1) GNN (CS1) SMA (CS1) Proposed eMLP (CS1) SJF (CS2) FCFS (CS2) GNN (CS2) SMA (CS2) Proposed eMLP (CS2)

Figure 5.6: Performance Analysis of the Proposed eMLP Average Power Consumption
Compared to Multiple Benchmark Schemes Across Different Task Loads

in resource efficiency during task scheduling.
For delay, eMLP achieves near-perfect optimization, with 99.8% improvement for

all task loads, demonstrating its effectiveness in minimizing response time. Similarly,
in bandwidth usage, the eMLP ensures minimal network overhead even under high
task loads by reducing network resource consumption by over 95%. Regarding the
cost of usage, eMLP shows both economic feasibility and scalability across different
task loads, improving by over 99% compared to other mechanisms. In terms of energy
consumption, eMLP outperformed other approaches by up to 85%, highlighting its
suitability for energy-constrained environments like fog computing. These results
underscore the eMLP’s effectiveness in resource scheduling, its robustness, and
adaptability for real-world applications.

116

5.7. Conclusion and Future Work

50 100 150 200 250

Number of Tasks

98.8

99

99.2

99.4

99.6

99.8

100

P
e
rc

e
n
ta

g
e
 I
m

p
ro

v
e
m

e
n
t
(%

)
Average Delay

SJF

FCFS

GNN

SMA

50 100 150 200 250

Number of Tasks

96

97

98

99

100

P
e

rc
e

n
ta

g
e

 I
m

p
ro

v
e

m
e

n
t

(%
)

Network Usage

SJF

FCFS

GNN

SMA

50 100 150 200 250

Number of Tasks

98

98.5

99

99.5

100

P
e

rc
e

n
ta

g
e

 I
m

p
ro

v
e

m
e

n
t

(%
)

Cost of Usage

SJF

FCFS

GNN

SMA

50 100 150 200 250

Number of Tasks

75

80

85

90

95

P
e

rc
e

n
ta

g
e

 I
m

p
ro

v
e

m
e

n
t

(%
)

Average Power Consumption

SJF

FCFS

GNN

SMA

Figure 5.7: Percentage Improvement of the Proposed eMLP Over Benchmark
schemes(FCFS, SJF, GNN, SMA)

5.7 Conclusion and Future Work

Due to the increase in IoT devices, several applications need a rapid response, and
some of them need urgent responses to their requests. In this article, we have proposed
eMLP, a novel task-scheduling approach in fog environments. The scheduler is able to
minimize delay and cost of usage, while optimizing bandwidth usage. It was validated
by comparing simulation results with state-of-the-art methods, including FCFS, SJF,
SMA and GNN. In future work, the eMLP model will be applied in different domains
as a task scheduler to test its effectiveness. It will include other performance metrics,
such as energy consumption and deadlines.

117

Chapter 6

Conclusion and Future Directions

The thesis opens with an introduction the importance of QoS. It also outlines different
distributed systems, including cloud, edge and fog computing. It demonstrates a
comparison between these technologies, highlighting their objectives and limitations.
In chapter 2, it details the resource management approach in the fog computing
environment to optimize QoS. The thesis categorizes resource management issues into
six categories including application placement, task scheduling, resource allocation,
task offloading, load balancing, and resource provisioning. This chapter focus on task-
oriented approaches which include application placement, task scheduling and Task
offloading.

Chapter 3 discusses advanced resource management, which involves resource-
oriented management including resource allocation, provisioning, and load balancing.
Furthermore, this chapter provides insights into various simulation tools applicable in
fog computing, providing comparative analyses of these tools. It also, addresses the
limitations of resource nonengagement approaches.

Chapter 4 proposes a deep learning mechanism called gated graph convolution
neural networks (GGCNs) for a novel resource scheduling management in fog
computing, aimed at improving the average loop delay and optimizing the total
network usage of the system. The GGCN approach significantly outperforms those of
PSO (by 86.09%), FCFS (by 98.53%), and SJF (by 98.02%) in terms of total network
usage. Additionally, GGCN surpasses PSO by 68.64%, FCFS by 92.07%, and SJF by
76.26% across all four considered scenarios in the average loop delay.

In chapter 5, proposes a new approach called enhanced Multi-Layer Perceptron
(eMLP) for task scheduling in fog computing to reduce delays and cost and optimize
bandwidth usage. The proposed mechanism was tested against several traditional
algorithms, including First Come First Served, Shortest Job First, and Graph Neural
Network approaches. It was tested in a bag of tasks applications in a fog computing
environment. The experimental results show that enhanced MLP produced better

118

results: reducing latency by up to 75 %, optimizing bandwidth usage by approximately
65%, and increasing cost efficiency by 70%. The research concludes that eMLP
is effective for task scheduling in fog computing, giving promising results to be
investigate further in different sectors with different tasks constraints. Here is a list
of future directions that require further investigation in the area of QoS:

• Security Enhancement in Fog Layers: Enhance security protocol within fog
computing architectures to address vulnerabilities inherent in fog computing.
Implement robust authentication mechanisms to ensure data integrity and
privacy during access controls.

• Cross-Tier Optimization and Standardization: Implementing cross-tier opti-
mization techniques that integrate fog computing with other network architec-
tures like edge networks to enhance QoS. Develop standardized protocols and
interfaces for seamless communication and resource sharing across these tiers.
This approach boosts scalability and increases overall efficiency and reliability
of services across the network.

• Enhanced QoS-aware Resource Management: Develop advanced, QoS-aware re-
source management frameworks that dynamically adapt to real-time conditions
in services like virtual reality and online gaming, ensuring optimal performance
across various IoT applications.

• Scalability in Resource allocation: Focus on scalable resource management
strategies that can effectively accommodate the rapid growth of IoT devices
and applications. Create adaptive algorithms that adjust up or down based
on real-time demands and network conditions, maintaining optimal system
performance.

• Energy-Efficiency Computing and Green Technologies: Concentrate on creating
energy-efficient computing strategies that integrate green technologies. Imple-
ment mechanisms to reduce power consumption and utilize renewable energy
sources for fog nodes. Design hardware and software solutions that prioritize
energy efficiency. Strive to transform fog computing into a more sustainable
technology that reduces its environmental impact while preserving or enhancing
computational power.

• Energy-Efficient QoS Optimization: Develop advanced energy-aware resource
allocation techniques that optimize delay and bandwidth while minimizing
energy consumption. Investigate trade-offs between performance improvements
and power efficiency to ensure sustainable QoS management in fog computing
environments.

119

References

[1] Kaneez Fizza et al. “QoE in IoT: a vision, survey and future directions”. In:
Discover Internet of Things 1 (2021), pp. 1–14.

[2] Sukhpal Singh Gill et al. “AI for next generation computing: Emerging trends
and future directions”. In: Internet of Things 19 (2022), p. 100514.

[3] Mariana-Daniela González-Zamar et al. “IoT technology applications-based
smart cities: Research analysis”. In: Electronics 9.8 (2020), p. 1246.

[4] Saber Talari et al. “A review of smart cities based on the internet of things
concept”. In: Energies 10.4 (2017), p. 421.

[5] Jagdeep Singh et al. “Fog computing: A taxonomy, systematic review, current
trends and research challenges”. In: Journal of Parallel and Distributed
Computing 157 (2021), pp. 56–85.

[6] Sundas Iftikhar et al. “AI-based fog and edge computing: A systematic review,
taxonomy and future directions”. In: Internet of Things (2022), p. 100674.

[7] Moonmoon Chakraborty. “Fog Computing Vs. Cloud Computing”. In: Cloud
Computing (May 3, 2019) (2019).

[8] Michele De Donno, Koen Tange, and Nicola Dragoni. “Foundations and
evolution of modern computing paradigms: Cloud, iot, edge, and fog”. In: Ieee
Access 7 (2019), pp. 150936–150948.

[9] Mohit Kumar et al. “AI-Based Sustainable and Intelligent Offloading Frame-
work for IIoT in Collaborative Cloud-Fog Environments”. In: IEEE Transac-
tions on Consumer Electronics (2023).

[10] Amal Al-Qamash et al. “Cloud, fog, and edge computing: A software en-
gineering perspective”. In: 2018 International Conference on Computer and
Applications (ICCA). IEEE. 2018, pp. 276–284.

[11] Manoj Kumar Upadhyay, Mahfooz Alam, et al. “Edge Computing: Architec-
ture, Application, Opportunities, and Challenges”. In: 2023 3rd International
Conference on Technological Advancements in Computational Sciences (IC-
TACS). IEEE. 2023, pp. 695–702.

120

References

[12] Blesson Varghese et al. “Challenges and opportunities in edge computing”.
In: 2016 IEEE international conference on smart cloud (SmartCloud). IEEE.
2016, pp. 20–26.

[13] Keyan Cao et al. “An overview on edge computing research”. In: IEEE access
8 (2020), pp. 85714–85728.

[14] Sajeeda Parveen Shaik. “Strategic Placement of Servers in Mobile Cloud Com-
puting: A Comprehensive Exploration of Edge Computing, Fog Computing,
and Cloudlet Technologies”. In: (2020).

[15] Pengfei Hu et al. “Survey on fog computing: architecture, key technologies, ap-
plications and open issues”. In: Journal of network and computer applications
98 (2017), pp. 27–42.

[16] Hina Rafique et al. “A novel bio-inspired hybrid algorithm (NBIHA) for
efficient resource management in fog computing”. In: IEEE Access 7 (2019),
pp. 115760–115773.

[17] Vishal Kumar et al. “Comparison of fog computing & cloud computing”. In:
Int. J. Math. Sci. Comput 1 (2019), pp. 31–41.

[18] Flavio Bonomi et al. “Fog computing and its role in the internet of things”.
In: Proceedings of the first edition of the MCC workshop on Mobile cloud
computing. 2012, pp. 13–16.

[19] Yogeswaranathan Kalyani and Rem Collier. “A systematic survey on the role of
cloud, fog, and edge computing combination in smart agriculture”. In: Sensors
21.17 (2021), p. 5922.

[20] Wei Tian et al. “Telerobotic spinal surgery based on 5G network: the first 12
cases”. In: Neurospine 17.1 (2020), p. 114.

[21] Akitoshi Nankaku et al. “Maximum acceptable communication delay for the
realization of telesurgery”. In: PloS one 17.10 (2022), e0274328.

[22] Jonathan Spruytte et al. “Planning omni-present networks of the future”. In:
2014 Euro Med Telco Conference (EMTC). IEEE. 2014, pp. 1–6.

[23] Faris A Almalki et al. “Green IoT for eco-friendly and sustainable smart cities:
future directions and opportunities”. In: Mobile Networks and Applications
28.1 (2023), pp. 178–202.

[24] Md Masuduzzaman, Ramdhan Nugraha, and Soo Young Shin. “IoT-based CO
2 gas-level monitoring and automated decision-making system in smart factory
using UAV-assisted MEC”. In: 2022 International Conference on Decision Aid
Sciences and Applications (DASA). IEEE. 2022, pp. 1023–1027.

121

References

[25] Jagruti Sahoo. “Cost-efficient, QoS and Security aware Placement of Smart
Farming IoT Applications in Cloud-Fog Infrastructure”. In: arXiv preprint
arXiv:2106.13524 (2021).

[26] Emad S Hassan et al. “Optimizing bandwidth utilization and traffic control
in ISP networks for enhanced smart agriculture”. In: Plos one 19.3 (2024),
e0300650.

[27] Naif Alshammari et al. “Resource Scheduling in Integrated IoT and Fog
Computing Environments: A Taxonomy, Survey and Future Directions”. In:
Resource Management in Distributed Systems. Springer, 2024, pp. 63–77.

[28] Mennan Selimi et al. “A lightweight service placement approach for community
network micro-clouds”. In: Journal of Grid Computing 17 (2019), pp. 169–189.

[29] Redowan Mahmud, Kotagiri Ramamohanarao, and Rajkumar Buyya. “Latency-
aware application module management for fog computing environments”. In:
ACM Transactions on Internet Technology (TOIT) 19.1 (2018), pp. 1–21.

[30] Mukhtar ME Mahmoud et al. “Towards energy-aware fog-enabled cloud of
things for healthcare”. In: Computers & Electrical Engineering 67 (2018),
pp. 58–69.

[31] Mohit Taneja and Alan Davy. “Resource aware placement of IoT application
modules in Fog-Cloud Computing Paradigm”. In: 2017 IFIP/IEEE Symposium
on Integrated Network and Service Management (IM). IEEE. 2017, pp. 1222–
1228.

[32] Zoltán Adám Mann. “Decentralized application placement in fog computing”.
In: IEEE Transactions on Parallel and Distributed Systems 33.12 (2022),
pp. 3262–3273.

[33] Leonan T Oliveira et al. “Enhancing modular application placement in
a hierarchical fog computing: A latency and communication cost-sensitive
approach”. In: Computer Communications 216 (2024), pp. 95–111.

[34] Chun-Cheng Lin and Jhih-Wun Yang. “Cost-efficient deployment of fog
computing systems at logistics centers in industry 4.0”. In: IEEE Transactions
on Industrial Informatics 14.10 (2018), pp. 4603–4611.

[35] Jaber Taghizadeh, Mostafa Ghobaei-Arani, and Ali Shahidinejad. “A metaheuristic-
based data replica placement approach for data-intensive IoT applications in
the fog computing environment”. In: Software: Practice and Experience 52.2
(2022), pp. 482–505.

[36] BV Natesha and Ram Mohana Reddy Guddeti. “Meta-heuristic based hybrid
service placement strategies for two-level fog computing architecture”. In:
Journal of Network and Systems Management 30.3 (2022), p. 47.

122

References

[37] Hemant Kumar Apat et al. “A hybrid meta-heuristic algorithm for multi-
objective IoT service placement in fog computing environments”. In: Decision
Analytics Journal 10 (2024), p. 100379.

[38] H Sabireen and Neelanarayanan Venkataraman. “A hybrid and light weight
metaheuristic approach with clustering for multi-objective resource scheduling
and application placement in fog environment”. In: Expert Systems with
Applications 223 (2023), p. 119895.

[39] Karima Velasquez et al. “Service placement for latency reduction in the internet
of things”. In: Annals of Telecommunications 72 (2017), pp. 105–115.

[40] Malte Bellmann, Tobias Pfandzelter, and David Bermbach. “Predictive replica
placement for mobile users in distributed fog data stores with client-side
markov models”. In: Proceedings of the 14th IEEE/ACM International Con-
ference on Utility and Cloud Computing Companion. 2021, pp. 1–8.

[41] Gaurav Baranwal and Deo Prakash Vidyarthi. “FONS: a fog orchestrator node
selection model to improve application placement in fog computing”. In: The
Journal of Supercomputing 77 (2021), pp. 10562–10589.

[42] Mohammad Aldossary. “Multi-layer fog-cloud architecture for optimizing the
placement of IoT applications in smart cities”. In: Computers, Materials &
Continua 75.1 (2023), pp. 633–649.

[43] Mohammad Goudarzi, Marimuthu Palaniswami, and Rajkumar Buyya. “A
distributed deep reinforcement learning technique for application placement
in edge and fog computing environments”. In: IEEE Transactions on Mobile
Computing 22.5 (2021), pp. 2491–2505.

[44] Mansoureh Zare, Yasser Elmi Sola, and Hesam Hasanpour. “Towards dis-
tributed and autonomous IoT service placement in fog computing using
asynchronous advantage actor-critic algorithm”. In: Journal of King Saud
University-Computer and Information Sciences 35.1 (2023), pp. 368–381.

[45] Supriya Singh and Deo Prakash Vidyarthi. “An integrated approach of
ML-metaheuristics for secure service placement in fog-cloud ecosystem”. In:
Internet of Things 22 (2023), p. 100817.

[46] Yousef Abofathi, Babak Anari, and Mohammad Masdari. “A learning au-
tomata based approach for module placement in fog computing environment”.
In: Expert Systems with Applications 237 (2024), p. 121607.

[47] Bushra Jamil et al. “A job scheduling algorithm for delay and performance
optimization in fog computing”. In: Concurrency and Computation: Practice
and Experience 32.7 (2020), e5581.

123

References

[48] Mxolisi Mtshali et al. “Multi-objective optimization approach for task schedul-
ing in fog computing”. In: 2019 International Conference on Advances in Big
Data, Computing and Data Communication Systems (icABCD). IEEE. 2019,
pp. 1–6.

[49] Xuan-Qui Pham and Eui-Nam Huh. “Towards task scheduling in a cloud-
fog computing system”. In: 2016 18th Asia-Pacific network operations and
management symposium (APNOMS). IEEE. 2016, pp. 1–4.

[50] Valeria Cardellini et al. “On QoS-aware scheduling of data stream applications
over fog computing infrastructures”. In: 2015 IEEE Symposium on Computers
and Communication (ISCC). IEEE. 2015, pp. 271–276.

[51] Sara Ghanavati, Jemal Abawajy, and Davood Izadi. “Automata-based dy-
namic fault tolerant task scheduling approach in fog computing”. In: IEEE
Transactions on Emerging Topics in Computing 10.1 (2020), pp. 488–499.

[52] Luiz F Bittencourt et al. “Mobility-aware application scheduling in fog
computing”. In: IEEE Cloud Computing 4.2 (2017), pp. 26–35.

[53] Yang Yang et al. “DEBTS: Delay energy balanced task scheduling in ho-
mogeneous fog networks”. In: IEEE Internet of Things Journal 5.3 (2018),
pp. 2094–2106.

[54] Jiafu Wan et al. “Fog computing for energy-aware load balancing and
scheduling in smart factory”. In: IEEE Transactions on Industrial Informatics
14.10 (2018), pp. 4548–4556.

[55] Ahmed S Alfakeeh and Muhammad Awais Javed. “Stable matching assisted
resource allocation in fog computing based IoT networks”. In: Mathematics
11.17 (2023), p. 3798.

[56] Binh Minh Nguyen et al. “Evolutionary algorithms to optimize task scheduling
problem for the IoT based bag-of-tasks application in cloud–fog computing
environment”. In: Applied Sciences 9.9 (2019), p. 1730.

[57] Aadharsh Roshan Nandhakumar et al. “EdgeAISim: A toolkit for simulation
and modelling of AI models in edge computing environments”. In: Measure-
ment: Sensors 31 (2024), p. 100939.

[58] Shashank Swarup, Elhadi M Shakshuki, and Ansar Yasar. “Energy efficient
task scheduling in fog environment using deep reinforcement learning ap-
proach”. In: Procedia Computer Science 191 (2021), pp. 65–75.

[59] Fatma M Talaat. “Effective deep Q-networks (EDQN) strategy for resource al-
location based on optimized reinforcement learning algorithm”. In: Multimedia
Tools and Applications 81.28 (2022), pp. 39945–39961.

124

References

[60] Nyoman Gunantara and I Nurweda Putra. “The characteristics of metaheuris-
tic method in selection of path pairs on multicriteria ad hoc networks”. In:
Journal of Computer Networks and Communications 2019 (2019).

[61] Wan Norsyafizan W Muhamad et al. “Improvement of Energy Consumption
in Fog Computing Via Task Offloading”. In: Journal of Advanced Research in
Applied Sciences and Engineering Technology 36.2 (2023), pp. 199–212.

[62] Yanwen Lan et al. “Task caching, offloading, and resource allocation in D2D-
aided fog computing networks”. In: IEEE Access 7 (2019), pp. 104876–104891.

[63] Wei Min et al. “Dynamic offloading in flying fog computing: optimizing IoT
network performance with mobile drones”. In: Drones 7.10 (2023), p. 622.

[64] Subhranshu Sekhar Tripathy, Sujit Bebortta, and Tanmay Mukherjee. “Dy-
naFog: A Dynamic Task Offloading Framework for IoT-Based Fog Computing
Platforms”. In: 2024 IEEE 13th International Conference on Communication
Systems and Network Technologies (CSNT). IEEE. 2024, pp. 464–469.

[65] Faizan Murtaza et al. “QoS-aware service provisioning in fog computing”. In:
Journal of Network and Computer Applications 165 (2020), p. 102674.

[66] Zhiwei Wei et al. “Many-to-many task offloading in vehicular fog computing:
A multi-agent deep reinforcement learning approach”. In: IEEE Transactions
on Mobile Computing (2023).

[67] Amit Kishor and Chinmay Chakarbarty. “Task offloading in fog computing for
using smart ant colony optimization”. In: Wireless personal communications
127.2 (2022), pp. 1683–1704.

[68] Hoa Tran-Dang and Dong-Seong Kim. “Dynamic collaborative task offloading
for delay minimization in the heterogeneous fog computing systems”. In:
Journal of Communications and Networks (2023).

[69] Xingxia Dai et al. “Task offloading for cloud-assisted fog computing with
dynamic service caching in enterprise management systems”. In: IEEE Trans-
actions on Industrial Informatics 19.1 (2022), pp. 662–672.

[70] Sávio Melo et al. “OffFog: An approach to support the definition of offloading
policies on fog computing”. In: Wireless Communications and Mobile Comput-
ing 2022.1 (2022), p. 5331712.

[71] Yizhen Xu et al. “Task offloading for large-scale asynchronous mobile edge
computing: An index policy approach”. In: IEEE Transactions on Signal
Processing 69 (2020), pp. 401–416.

[72] Liqing Liu et al. “Multiobjective optimization for computation offloading in
fog computing”. In: IEEE Internet of Things Journal 5.1 (2017), pp. 283–294.

125

References

[73] Moteb K Alasmari, Sami S Alwakeel, and Yousef A Alohali. “A Multi-
Classifiers Based Algorithm for Energy Efficient Tasks Offloading in Fog
Computing”. In: Sensors 23.16 (2023), p. 7209.

[74] Jie Wang, Wenye Wang, and Cliff Wang. “Remedy or Resource Drain:
Modeling and Analysis of Massive Task Offloading Processes in Fog”. In: IEEE
Internet of Things Journal 10.13 (2023), pp. 11669–11682.

[75] Francesco Chiti, Romano Fantacci, and Benedetta Picano. “A matching theory
framework for tasks offloading in fog computing for IoT systems”. In: IEEE
Internet of Things Journal 5.6 (2018), pp. 5089–5096.

[76] Wan Norsyafizan W Muhamad et al. “Energy-efficient task offloading in fog
computing for 5G cellular network”. In: Engineering Science and Technology,
an International Journal 50 (2024), p. 101628.

[77] Alireza Froozani Fard, Mohammadreza Mollahoseini Ardakani, and Kamal
Mirzaie. “Multi-objective task offloading optimization in fog computing en-
vironment using INSCSA algorithm”. In: Cluster Computing (2024), pp. 1–23.

[78] Guowei Zhang et al. “Fair task offloading among fog nodes in fog computing
networks”. In: 2018 IEEE international conference on communications (ICC).
IEEE. 2018, pp. 1–6.

[79] Jean Lucas de Souza Toniolli and Brigitte Jaumard. “Resource allocation
for multiple workflows in cloud-fog computing systems”. In: Proceedings of
the 12th IEEE/ACM international conference on utility and cloud computing
companion. 2019, pp. 77–84.

[80] Xin Gao et al. “PORA: Predictive offloading and resource allocation in
dynamic fog computing systems”. In: IEEE Internet of Things Journal 7.1
(2019), pp. 72–87.

[81] Lina Ni et al. “Resource allocation strategy in fog computing based on priced
timed petri nets”. In: ieee internet of things journal 4.5 (2017), pp. 1216–1228.

[82] Raafat O Aburukba, Taha Landolsi, and Dalia Omer. “A heuristic scheduling
approach for fog-cloud computing environment with stationary IoT devices”.
In: Journal of Network and Computer Applications 180 (2021), p. 102994.

[83] Onur Karatalay, Ioannis Psaromiligkos, and Benoit Champagne. “Energy-
efficient resource allocation for D2D-assisted fog computing”. In: IEEE Trans-
actions on Green Communications and Networking 6.4 (2022), pp. 1990–2002.

[84] Keke Gai, Xiao Qin, and Liehuang Zhu. “An energy-aware high performance
task allocation strategy in heterogeneous fog computing environments”. In:
IEEE Transactions on Computers 70.4 (2020), pp. 626–639.

126

References

[85] Jinghong Tan, Tsung-Hui Chang, and Tony QS Quelc. “Minimum energy
resource allocation in FOG radio access network with fronthaul and latency
constraints”. In: 2018 IEEE 19th International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC). IEEE. 2018, pp. 1–5.

[86] Syed Rizwan Hassan et al. “Design of load-aware resource allocation for
heterogeneous fog computing systems”. In: PeerJ Computer Science 10 (2024),
e1986.

[87] Yan Zhuang and Hui Zhou. “A hyper-heuristic resource allocation algorithm for
fog computing”. In: Proceedings of the 2020 the 4th International Conference
on Innovation in Artificial Intelligence. 2020, pp. 194–199.

[88] Salim Bitam, Sherali Zeadally, and Abdelhamid Mellouk. “Fog computing job
scheduling optimization based on bees swarm”. In: Enterprise Information
Systems 12.4 (2018), pp. 373–397.

[89] Bin Cao et al. “A resource allocation strategy in fog-cloud computing towards
the Internet of Things in the 5g era”. In: 2021 IEEE 26th International
Workshop on Computer Aided Modeling and Design of Communication Links
and Networks (CAMAD). IEEE. 2021, pp. 1–6.

[90] Saroja Subbaraj, Revathi Thiyagarajan, and Madavan Rengaraj. “A smart
fog computing based real-time secure resource allocation and scheduling
strategy using multi-objective crow search algorithm”. In: Journal of Ambient
Intelligence and Humanized Computing 14.2 (2023), pp. 1003–1015.

[91] Shahid Sultan Hajam and Shabir Ahmad Sofi. “Spider monkey optimization
based resource allocation and scheduling in fog computing environment”. In:
High-Confidence Computing 3.3 (2023), p. 100149.

[92] Ismail Zahraddeen Yakubu and M Murali. “An Efficient IoT-Fog-Cloud
Resource Allocation Framework Based on Two-Stage Approach”. In: IEEE
Access (2024).

[93] Samson Busuyi Akintoye and Antoine Bagula. “Improving quality-of-service
in cloud/fog computing through efficient resource allocation”. In: Sensors 19.6
(2019), p. 1267.

[94] Guoju Gao et al. “Auction-based VM allocation for deadline-sensitive tasks in
distributed edge cloud”. In: IEEE Transactions on Services Computing 14.6
(2019), pp. 1702–1716.

[95] Yutao Jiao et al. “Auction mechanisms in cloud/fog computing resource
allocation for public blockchain networks”. In: IEEE Transactions on Parallel
and Distributed Systems 30.9 (2019), pp. 1975–1989.

127

References

[96] Vibha Jain and Bijendra Kumar. “Auction based cost-efficient resource
allocation by utilizing blockchain in fog computing”. In: Transactions on
Emerging Telecommunications Technologies 33.7 (2022), e4469.

[97] Nguyen Cong Luong et al. “A machine-learning-based auction for resource
trading in fog computing”. In: IEEE Communications Magazine 58.3 (2020),
pp. 82–88.

[98] Vibha Jain and Bijendra Kumar. “Combinatorial auction based multi-task
resource allocation in fog environment using blockchain and smart contracts”.
In: Peer-to-Peer Networking and Applications 14.5 (2021), pp. 3124–3142.

[99] Xiaosha Chen et al. “A machine-learning based time constrained resource
allocation scheme for vehicular fog computing”. In: China Communications
16.11 (2019), pp. 29–41.

[100] Bushra Jamil et al. “IRATS: A DRL-based intelligent priority and deadline-
aware online resource allocation and task scheduling algorithm in a vehicular
fog network”. In: Ad hoc networks 141 (2023), p. 103090.

[101] Abdullah Lakhan et al. “Efficient deep-reinforcement learning aware resource
allocation in SDN-enabled fog paradigm”. In: Automated Software Engineering
29 (2022), pp. 1–25.

[102] Yihe Zhang et al. “Resource Allocation for Blockchain-Enabled Fog Computing
with Deep Reinforcement Learning”. In: Proceedings of the 2022 12th Interna-
tional Conference on Communication and Network Security. 2022, pp. 211–218.

[103] FatmaM Talaat. “Effective prediction and resource allocation method (EPRAM)
in fog computing environment for smart healthcare system”. In: Multimedia
Tools and Applications 81.6 (2022), pp. 8235–8258.

[104] Jagdeep Singh et al. “An efficient machine learning-based resource allocation
scheme for SDN-enabled fog computing environment”. In: IEEE Transactions
on Vehicular Technology 72.6 (2023), pp. 8004–8017.

[105] Simar Preet Singh et al. “Leveraging energy-efficient load balancing algorithms
in fog computing”. In: Concurrency and Computation: Practice and Experience
34.13 (2022), e5913.

[106] Ahmad Alzeyadi and Nazbanoo Farzaneh. “A novel energy-aware scheduling
and load-balancing technique based on fog computing”. In: 2019 9th Interna-
tional Conference on Computer and Knowledge Engineering (ICCKE). IEEE.
2019, pp. 104–109.

[107] Samah Ali and Raaid Alubady. “RWRR: Remind Weighted Rounding Robin
for Load Balancing in Fog Computing”. In: 2023 7th International Symposium
on Innovative Approaches in Smart Technologies (ISAS). IEEE. 2023, pp. 1–7.

128

References

[108] Jung-yeon Baek et al. “Managing fog networks using reinforcement learning
based load balancing algorithm”. In: 2019 IEEE Wireless Communications and
Networking Conference (WCNC). IEEE. 2019, pp. 1–7.

[109] V Divya and R Leena Sri. “ReTra: reinforcement based traffic load balancer
in fog based network”. In: 2019 10th international conference on computing,
communication and networking technologies (ICCCNT). IEEE. 2019, pp. 1–6.

[110] Xiaolong Xu et al. “Dynamic resource allocation for load balancing in fog
environment”. In: Wireless Communications and Mobile Computing 2018.1
(2018), p. 6421607.

[111] Mohamed A Elsharkawey and Hosam E Refaat. “Mlrts: multi-level real-time
scheduling algorithm for load balancing in fog computing environment”. In:
International Journal of Modern Education and Computer Science 11.2 (2018),
p. 1.

[112] Jiafu Wan et al. “Fog computing for energy-aware load balancing and
scheduling in smart factory”. In: IEEE Transactions on Industrial Informatics
14.10 (2018), pp. 4548–4556.

[113] Wassim Boudieb et al. “Microservice instances selection and load balancing
in fog computing using deep reinforcement learning approach”. In: Future
Generation Computer Systems 156 (2024), pp. 77–94.

[114] Muhammad Ibrahim, YunJung Lee, and Do-Hyuen Kim. “DALBFog: Deadline-
aware and load-balanced task scheduling for the Internet of Things in fog
computing”. In: IEEE Systems, Man, and Cybernetics Magazine 10.1 (2024),
pp. 62–71.

[115] Argyrios G Tasiopoulos et al. “Edge-MAP: Auction markets for edge resource
provisioning”. In: 2018 IEEE 19th International Symposium on” A World of
Wireless, Mobile and Multimedia Networks”(WoWMoM). IEEE. 2018, pp. 14–
22.

[116] Nan Wang et al. “ENORM: A framework for edge node resource management”.
In: IEEE transactions on services computing 13.6 (2017), pp. 1086–1099.

[117] Adnan Khalid et al. “QoS based optimal resource allocation and workload
balancing for fog enabled IoT”. In: Open Computer Science 11.1 (2021),
pp. 262–274.

[118] Francisco-Javier Ferrández-Pastor et al. “Deployment of IoT edge and fog
computing technologies to develop smart building services”. In: Sustainability
10.11 (2018), p. 3832.

129

References

[119] Masoumeh Etemadi, Mostafa Ghobaei-Arani, and Ali Shahidinejad. “A learning-
based resource provisioning approach in the fog computing environment”.
In: Journal of Experimental & Theoretical Artificial Intelligence 33.6 (2021),
pp. 1033–1056.

[120] Hojjat Baghban, Ching-Yao Huang, and Ching-Hsien Hsu. “Resource pro-
visioning towards OPEX optimization in horizontal edge federation”. In:
Computer Communications 158 (2020), pp. 39–50.

[121] Nguyen Dinh Nguyen et al. “ElasticFog: Elastic resource provisioning in
container-based fog computing”. In: IEEE Access 8 (2020), pp. 183879–183890.

[122] Argyrios G Tasiopoulos et al. “FogSpot: Spot pricing for application provision-
ing in edge/fog computing”. In: IEEE Transactions on Services Computing
14.6 (2019), pp. 1781–1795.

[123] Fan-Hsun Tseng et al. “A lightweight autoscaling mechanism for fog computing
in industrial applications”. In: IEEE Transactions on Industrial Informatics
14.10 (2018), pp. 4529–4537.

[124] Paola G Vinueza Naranjo, Enzo Baccarelli, and Michele Scarpiniti. “Design
and energy-efficient resource management of virtualized networked Fog archi-
tectures for the real-time support of IoT applications”. In: The journal of
Supercomputing 74.6 (2018), pp. 2470–2507.

[125] José Santos et al. “Towards end-to-end resource provisioning in fog computing
over low power wide area networks”. In: Journal of Network and Computer
Applications 175 (2021), p. 102915.

[126] Fabiana Rossi et al. “Geo-distributed efficient deployment of containers with
Kubernetes”. In: Computer Communications 159 (2020), pp. 161–174.

[127] Vadde Usha and TK Rao. “Resource provisioning optimization in fog comput-
ing: a hybrid meta-heuristic algorithm approach”. In: International Journal of
System Assurance Engineering and Management (2024), pp. 1–14.

[128] J.B. Awotunde, H.K. Tripathy, and A. Bandyopadhyay. “Hybrid Particle
Swarm Optimization with Firefly based Resource Provisioning Technique for
Data Fusion Fog-Cloud Computing Platforms”. In: FPA 8 (2022), pp. 25–35.
doi: 10.54216/fpa.080203.

[129] Pejman Hosseinioun et al. “aTask scheduling approaches in fog computing:
a survey”. In: Transactions on Emerging Telecommunications Technologies
(2020), e3792.

130

https://doi.org/10.54216/fpa.080203

References

[130] Harshit Gupta et al. “iFogSim: A toolkit for modeling and simulation of
resource management techniques in the Internet of Things, Edge and Fog
computing environments”. In: Software: Practice and Experience 47.9 (2017),
pp. 1275–1296.

[131] Khaled Matrouk and Kholoud Alatoun. “Scheduling algorithms in fog com-
puting: A survey”. In: International Journal of Networked and Distributed
Computing 9.1 (2021), pp. 59–74.

[132] Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N Calheiros. “Modeling and
simulation of scalable Cloud computing environments and the CloudSim
toolkit: Challenges and opportunities”. In: 2009 international conference on
high performance computing & simulation. IEEE. 2009, pp. 1–11.

[133] Cagatay Sonmez, Atay Ozgovde, and Cem Ersoy. “Edgecloudsim: An environ-
ment for performance evaluation of edge computing systems”. In: Transactions
on Emerging Telecommunications Technologies 29.11 (2018), e3493.

[134] Fredrik Osterlind et al. “Cross-level sensor network simulation with cooja”.
In: Proceedings. 2006 31st IEEE conference on local computer networks. IEEE.
2006, pp. 641–648.

[135] Isaac Lera, Carlos Guerrero, and Carlos Juiz. “YAFS: A simulator for IoT
scenarios in fog computing”. In: IEEE Access 7 (2019), pp. 91745–91758.

[136] Tariq Qayyum et al. “FogNetSim++: A toolkit for modeling and simulation
of distributed fog environment”. In: IEEE Access 6 (2018), pp. 63570–63583.

[137] András Varga. “Discrete event simulation system”. In: Proc. of the European
Simulation Multiconference (ESM’2001). Vol. 17. 2001.

[138] Philipp Wiesner and Lauritz Thamsen. “Leaf: Simulating large energy-aware
fog computing environments”. In: 2021 IEEE 5th International Conference on
Fog and Edge Computing (ICFEC). IEEE. 2021, pp. 29–36.

[139] Antonio Brogi and Stefano Forti. “QoS-aware deployment of IoT applications
through the fog”. In: IEEE Internet of Things Journal 4.5 (2017), pp. 1185–
1192.

[140] Rodrigo N Calheiros et al. “CloudSim: a toolkit for modeling and simulation
of cloud computing environments and evaluation of resource provisioning
algorithms”. In: Software: Practice and experience 41.1 (2011), pp. 23–50.

[141] Naif Alshammari et al. “Delay and Total Network Usage Optimisation
Using GGCN in Fog Computing”. In: 2023 IEEE 34th Annual International
Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC).
IEEE. 2023, pp. 1–6.

131

References

[142] Yilei Shi, Qingyu Li, and Xiao Xiang Zhu. “Building segmentation through
a gated graph convolutional neural network with deep structured feature
embedding”. In: ISPRS Journal of Photogrammetry and Remote Sensing 159
(2020), pp. 184–197.

[143] Pejman Ghasemzadeh et al. “GGCNN: an efficiency-maximizing gated graph
convolutional neural network architecture for automatic modulation identifi-
cation”. In: IEEE Transactions on Wireless Communications (2023).

[144] Yujia Li et al. “Gated graph sequence neural networks”. In: arXiv preprint
arXiv:1511.05493 (2015).

[145] Mohamed K Hussein and Mohamed H Mousa. “Efficient task offloading for
IoT-based applications in fog computing using ant colony optimization”. In:
IEEE Access 8 (2020), pp. 37191–37201.

[146] Manoj Kumar Patel, Manas Ranjan Kabat, and Chita Ranjan Tripathy. “A
hybrid ACO/PSO based algorithm for QoS multicast routing problem”. In:
Ain Shams Engineering Journal 5.1 (2014), pp. 113–120.

[147] Anita Singhrova and A Anu. “Prioritized GA-PSO algorithm for efficient
resource allocation in fog computing”. In: Indian J. Comput. Sci. Eng. 11.6
(2020), pp. 907–916.

[148] Amer Sallam et al. “Performance evaluation of fog-computing based on IoT
healthcare application”. In: 2021 International Conference of Technology,
Science and Administration (ICTSA). IEEE. 2021, pp. 1–6.

[149] Liekang Zeng et al. “Serving Graph Neural Networks With Distributed Fog
Servers for Smart IoT Services”. In: IEEE/ACM Transactions on Networking
(2023).

[150] Sami Alkadri et al. “Utilizing a multilayer perceptron artificial neural network
to assess a virtual reality surgical procedure”. In: Computers in Biology and
Medicine 136 (2021), p. 104770.

[151] Marius-Constantin Popescu et al. “Multilayer perceptron and neural net-
works”. In: WSEAS Transactions on Circuits and Systems 8.7 (2009), pp. 579–
588.

[152] Moloud Abdar, Neil Yuwen Yen, and Jason Chi-Shun Hung. “Improving the
diagnosis of liver disease using multilayer perceptron neural network and
boosted decision trees”. In: Journal of Medical and Biological Engineering 38
(2018), pp. 953–965.

[153] Sadegh Afzal et al. “Building energy consumption prediction using multilayer
perceptron neural network-assisted models; comparison of different optimiza-
tion algorithms”. In: Energy 282 (2023), p. 128446.

132

References

[154] Arti Rana et al. “Application of multi layer (perceptron) artificial neural
network in the diagnosis system: a systematic review”. In: 2018 International
conference on research in intelligent and computing in engineering (RICE).
IEEE. 2018, pp. 1–6.

[155] Jonathan Deber et al. “How much faster is fast enough? user perception of
latency & latency improvements in direct and indirect touch”. In: Proceedings
of the 33rd annual acm conference on human factors in computing systems.
2015, pp. 1827–1836.

[156] Shengmei Liu, Xiaokun Xu, and Mark Claypool. “A survey and taxonomy
of latency compensation techniques for network computer games”. In: ACM
Computing Surveys (CSUR) 54.11s (2022), pp. 1–34.

[157] Sangeeta Kakati and Rupa Deka. “Computational and Adaptive Offloading in
Edge/Fog based IoT environments”. In: 2022 2nd International Conference on
Intelligent Technologies (CONIT). IEEE. 2022, pp. 1–6.

[158] Rajkumar Buyya et al. “Economic models for management of resources in
peer-to-peer and grid computing”. In: Commercial Applications for High-
Performance Computing. Vol. 4528. SPIE. 2001, pp. 13–25.

133

	declaration
	abstract
	publication
	acknowledgements
	List of Figures
	List of Table
	List of Acronyms
	List of Mathematical Operators and symbols
	Introduction
	Background
	Cloud Computing: Overview and Challenges
	Edge Computing: Overview and Challenges
	Fog Computing: Overview and Architecture
	Architecture and Key Concepts
	Comparative Analysis of Cloud, Edge and Fog

	Motivation
	Research Questions
	Contributions and Methodology
	Thesis Outline

	Task-Oriented Approaches
	Motivation
	Resource Management in Fog Computing
	Application Placement
	Task Scheduling
	Task Offloading

	Conclusion

	Advanced Resource Management
	Resource-Oriented Management Approaches
	Resource Allocation
	Load Balancing
	Resource Provisioning

	Simulations in Fog Computing: Advantages
	Overview of Key Simulation Tools in Fog Computing

	Conclusion

	Enhancing QoS using GGCN-Based Resource Allocation in Fog Computing Environment
	Motivation
	Key Contributions
	Overview of GGCN

	Resource Scheduling Strategies
	Shortest Job First
	First Come First Served
	Particle Swarm Optimization

	Proposed GGCN Methodology
	Problem Formulation
	Proposed GGCN based Resource Scheduler

	Performance Evaluation
	Experiment Setup
	Configuration
	Case studies
	Results and Discussion

	Challenges and Limitations
	Conclusion

	eMLP-Based Task Scheduler to Optimize QoS in Fog Computing Environment
	Motivation
	Overview
	Resource Scheduling Strategies
	Shortest Job First
	First Come First Served
	Graph Neural Network
	Stable Matching Algorithm
	MLP: Versatile Application

	Problem Formulation
	 System Model
	eMLP Scheduler

	Performance Evaluation
	Experimental Setup
	Configuration
	Results and Discussion

	Conclusion and Future Work

	Conclusion and Future Directions
	References

