







Universidade do Minho

# Individual differences in heritage language experience: A meta-analysis of influences on sentence repetition

Sophie Bennett<sup>(1)</sup>, Cristina Flores<sup>(2)</sup>, Padraic Monaghan<sup>(1)</sup>, and Patrick Rebuschat<sup>(1,3)</sup>
1. Lancaster University, UK, 2. University of Minho, Portugal, 3. University of Tübingen, Germany

## Background

- A heritage language (HL) is acquired naturalistically, independent of the majority language (ML) spoken predominantly in the country of residence
- Age, age of onset of the ML, and HL exposure can affect language proficiency, widely measured through sentence repetition tasks
- Variation exists between studies in these results, the methods and measures
- Aim: Estimate the size of these effects across the literature

## Research questions

- 1. To what extent is sentence repetition affected by HL experience (age, age of onset of the ML, and HL exposure)?
- 2. Is this effect moderated by whether testing is in the **HL or ML**?
- 3. Is the main effect moderated by task design

(the number of sentences and scoring system)?

## Methods

#### 1. Identification

of **404** records identified from databases and other sources

### 2. Screening

of studies on the effect of
HL experience on
sentence repetition in the
HL and/or ML

#### 3. Inclusion

of **30** studies based on eligibility criteria

#### 4. Data extraction

of publication and participant information, language exposure, task design, research quality and statistics

### Results

#### Effect of HL experience on sentence repetition overall

| Author(s) and Year               | k  |                                                  | Weights (%)  | Fisher's z [95% CI] |
|----------------------------------|----|--------------------------------------------------|--------------|---------------------|
| Abed Ibrahim et al., 2019        | 2  | <b>├</b>                                         | 2.8          | -0.36 [-1.03, 0.32] |
| Andreou et al., 2021             | 2  | <del>  ■</del>                                   | 2.7          | 0.17 [-0.51, 0.86]  |
| Antonijevic-Elliott et al., 2020 | 4  | <del></del>                                      | 3            | -0.23 [-0.88, 0.42] |
| Armon-Lotem et al., 2021         | 2  | <del></del>                                      | 2.9          | 0.14 [-0.51, 0.79]  |
| Armon-Lotem et al., 2011         | 8  | <del>                                     </del> | 4            | 0.11 [-0.45, 0.67]  |
| Chiat et al., 2013               | 2  | <u> </u>                                         | 2.5          | 0.39 [-0.33, 1.10]  |
| Cho et al., 2021                 | 8  | <del>  ■  </del>                                 | 3.3          | 0.32 [-0.29, 0.93]  |
| Correia et al., 2024             | 6  | <del></del>                                      | 3.6          | 0.43 [-0.16, 1.02]  |
| De Cat, 2020                     | 6  | <del></del>                                      | 3.9          | 0.04 [-0.53, 0.61]  |
| Fleckstein et al., 2018          | 2  | <del> </del>                                     | 2.4          | 0.40 [-0.32, 1.13]  |
| Franck & Delage, 2022            | 1  | <del>  •</del>                                   | 1.9          | 0.03 [-0.78, 0.84]  |
| Friesen et al., 2022             | 6  | <del>  ■  </del>                                 | 3.8          | -0.54 [-1.12, 0.03] |
| Hamann et al., 2020              | 20 | <b>├──■</b>                                      | 4.3          | -0.12 [-0.66, 0.42] |
| Kaltsa et al., 2020              | 8  | <u> </u>                                         | 3.8          | -0.52 [-1.10, 0.05] |
| Komeili et al., 2020             | 3  | <u> </u>                                         | 2.9          | 0.37 [-0.29, 1.04]  |
| Kunduz et al., 2024              | 2  | <del>-</del>                                     | 2.6          | 0.44 [-0.25, 1.13]  |
| Makrodimitris & Petra, 2021      | 4  | <del>┊</del> ■                                   | 3.3          | 0.51 [-0.10, 1.13]  |
| Meir, 2018                       | 20 | <del>                                     </del> | 4.3          | 0.07 [-0.47, 0.61]  |
| Papastefanou et al., 2019        | 6  |                                                  | 3.7          | 0.46 [-0.12, 1.04]  |
| Quirk, 2021                      | 10 | \ <del>-</del>                                   | 3.9          | 0.49 [-0.07, 1.06]  |
| Scheides & Tuller, 2016          | 16 | <b>⊢</b> ■                                       | 3.9          | 0.61 [ 0.04, 1.18]  |
| Sheng et al., 2021               | 6  | <u> </u>                                         | 3.7          | 0.12 [-0.46, 0.70]  |
| Simon-Cereijido et al., 2020     | 4  | <u> </u>                                         | 3.5          | 0.28 [-0.32, 0.88]  |
| Sopata & Dlugosz, 2022a          | 6  | <b>├──₽</b>                                      | 3.8          | 0.00 [-0.57, 0.58]  |
| Sopata & Dlugosz, 2022b          | 3  | <b>├</b>                                         | 3.1          | 0.09 [-0.55, 0.73]  |
| Soto-Corominas et al., 2022      | 12 |                                                  | 4.2          | 0.20 [-0.34, 0.75]  |
| Thordardottir et al., 2013       | 1  | <u> </u>                                         | 1.5          | 0.40 [-0.52, 1.31]  |
| Torregrossa et al., 2024         | 8  | <u> </u>                                         | 3.8          | 0.06 [-0.51, 0.64]  |
| Tuller et al., 2018              | 46 |                                                  | 4.4          | 0.04 [-0.49, 0.57]  |
| Wood & Hoge, 2019                | 2  |                                                  | 2.5          | 0.59 [-0.11, 1.30]  |
| Pooled Estimate                  |    | <b>♦</b>                                         | Total: 100 % | 0.15 [ 0.04, 0.26]  |
|                                  | _  | <u> </u>                                         |              |                     |
|                                  | -2 | -1 0 1                                           | 2            |                     |

## General findings

- n = 30, k = 229
- Weak positive correlation with sentence repetition accuracy
- Moderated by testing language
  - HL results (r = .36, p < .0001)
  - ML results (r = -.02, p < .0001)</li>

## Sentence repetition task design

- No significant effect of number of sentences
- No significant effect of scoring system

## No evidence of publication bias

# Subgroup analyses

# Age

- n = 25, k = 72
- Weak positive correlation with sentence repetition accuracy (r = .28, p < .0001)
- No significant effect of testing language

## Age of onset of the majority language

- n = 16, k = 56
- No evidence that it affects sentence repetition overall
- Moderated by testing language
  - HL results (r = .22, p = .012)
  - ML results (r = -.20, p < .0001)

## **Exposure to the heritage language**

- n = 15, k = 85
- No evidence that it affects sentence repetition overall
- Moderated by testing language
  - HL results (r = .35, p < .0001)
  - ML results (r = -.09, p < .0001)

# Conclusion

- Age at time of testing positively correlates with language proficiency
- The higher the age of ML onset and HL exposure, the higher the proficiency in the HL
- The higher the age of ML onset and HL exposure, the lower the proficiency in the ML BUT the effect of exposure is small
- Task design does not moderate these effects

## **Future research:**

- → More consistent and comprehensive reporting practices
- → More research on the effect of HL input quality on language proficiency, particularly in adolescents and adults

