IAGA 2025

Ariel

Soft X-Ray Emission from Uranus's Magnetosheath

Titania

Dan Naylor¹, Licia Ray¹, Will Dunn², Jamie Jasinski³, Carol Paty⁴

¹Space and Planetary Physics Group, Lancaster University, ² University College London, ³ NASA Jet Propulsion Laboratory, ⁴ University of Oregon

d.naylor@lancaster.ac.uk

Uranus's Magnetosphere

- Unusual and complex environment
- Seasonal and diurnal variability
- Moon-sourced neutrals and plasma debated
- Single Voyager 2 flyby

Uranus's Magnetosphere

Space & Lancaster Planetary Physics University

 Unusual and complex environment Magnetopause

Neutral torus

Magnetopause

Interaction between the

Seas varial Can we image the interaction between the magnetosphere and solar wind in X-rays?

 Moon-sourced neutrals and plasma debated

Single Voyager 2 flyby

d.naylor@lancaster.ac.uk

IAGA 2025 05/09/2025

Soft X-Ray Emission & Imaging

- CX between highly charged ions and neutrals generates soft X-rays
- Dynamic, global view of system
- SMILE and LEXI missions aim to image terrestrial magnetosheath

Credit: ESA

d.naylor@lancaster.ac.uk

What Dictates X-Ray Emission?

Emission given in photon cm⁻³ s⁻¹

Neutral density: Sum over n reflects different species Magnetosheath ion density

Relative velocity between ions and neutrals Cross sections
– hydrogen-like
and oxygenlike. Contains
branching ratio
term

Magnetosheath Properties

 Apply Shue et al. (1997) model for magnetopause and bow shock:

$$r_{\rm MP} = r_0 \left(\frac{2}{1 + \cos \theta}\right)^K$$

• MP standoff distance ($r_0 = 16 \, R_U$) and flaring (K = 0.6) estimated from Voyager 2 flyby

- Magnetosheath density: 0.4 cm⁻³
- O⁷⁺ CX considered
- Velocity-dependent abundances from Whittaker & Sembay (2016)

Neutral Densities

d.naylor@lancaster.ac.uk

- Exosphere included (Herbert et al., 1987)
- Three models:

Naylor et al. (submitted)

- Pre-Voyager 2 estimates:
 Eviator & Richardson
 (1986), minimal & maximal
- Post-Voyager 2 inferences:
 Cheng (1987)
- System potentially plasmadepleted (Jasinski et al., 2024)

IAGA 2025 05/09/2025

Neutral Densities

d.naylor@lancaster.ac.uk

- Exosphere included (Herbert et al., 1987)
- Three models:
 - Pre-Voyager 2 estimates: **Eviator & Richardson** <u>(1986), minimal & maximal</u>
 - Post-Voyager 2 inferences: Cheng (1987)
- System potentially plasmadepleted (Jasinski et al., 2024)

IAGA 2025 05/09/2025

Predicted Emission Rates

Top View

Side View

- Varies between 10⁻¹⁰ and 10⁻¹³ photon cm⁻³ s⁻¹
 - Moon sources vital
- Varies with:
 - Season
 - Solar wind driving
- Only includes O⁷⁺ CX

Detecting the Emission

Sum emission along a line of sight for intensity:

$$I = \int P \frac{d\Omega}{4\pi} dl = \frac{1}{2} \int P dl$$

Intensity given in photon cm⁻² s⁻¹

Consider 3 soft X-ray imagers (SXIs):

SXI	FOV	$A_{effective}$ (cm ²)	Imaging Distance (R _U /au)
SMILE	26.5° × 15.5°	9.6	260/0.630
LEXI	9.1° × 9.1°	44.18	925/1.87
Future	53° × 31°	100	100/0.297

Detecting the Emission

Sum emission along a line of sight for intensity:

$$I = \int P \frac{d\Omega}{4\pi} dl = \frac{1}{2} \int P dl$$

Intensity given in photon cm⁻² s⁻¹

Consider 3 soft X-ray imagers (SXIs):

SXI	FOV	$A_{effective}$ (cm ²)	Imaging Distance (R _U /au)
SMILE	26.5° × 15.5°	9.6	260/0.630
LEXI	9.1° × 9.1°	44.18	925/1.87
Future	53° × 31°	100	100/0.297

Can We Detect the Emission?

- SMILE detects ~100 photons in $\frac{1}{4}$ planetary rotation at 260 R_{II}
- Future SXI has ~3 s detection time per photon
- Implications for an orbiter

Next Steps: Magnetospheric Cusps

- Predicted to be soft X-ray beacons:
 - Allow solar wind to reach deep into magnetosphere
 - Exospheric density important
 - Pole-on configurations at ice giants
- Adapting Lin et al. (2010)
 magnetopause model to Uranus

Conclusions

- Neutral density is key factor in determining magnetosheath emission, which is dependent on moon-sources
- Emission higher at equinox and varies with solar wind changes
- Emission rates potentially underestimated
- Current technology may be sufficient but technology advancements important to consider

Conclusions

Look out for Naylor et al., Estimating Soft X-Ray Emission from Uranus's Magnetosheath, in JGR Space Physics

- Neutral density is key factor in determining magnetosheath emission, which is dependent on moon-sources
- Emission higher at equinox and varies with solar wind changes
- Emission rates potentially underestimated
- Current technology may be sufficient but technology advancements important to consider

Simple model with promising results that justify further development!

Extra Slides: Neutral Model Effect on Space & Lancaster Emission Planetary Physics University

Neutral Model	Equinox			Solstice		
Neutral Woder	$P \text{ (photon cm}^{-3} \text{ s}^{-1})$	$ au_{ m int} \left({ m h} ight)$	$N_{1/4}$	$P \text{ (photon cm}^{-3} \text{ s}^{-1})$	$ au_{ m int} \; ({ m h})$	$N_{1/4}$
Cheng	6.71×10^{-13}	68.5	0	3.78×10^{-13}	75.7	0
ER Min	2.76×10^{-10}	0.0785	54	2.54×10^{-10}	0.0740	58
ER Max	6.64×10^{-10}	0.0482	89	4.85×10^{-10}	0.0416	103

Naylor et al. (in review)

Extra Slides: Solar Wind Variations

SW State	Equinox			Solstice		
DW State	P (photon cm σ s τ) $\tau_{\rm int}$ (n) $N_{1/4}$ P (photon cm	$P ext{ (photon cm}^{-3} ext{ s}^{-1})$	$ au_{ m int} \; ({ m h})$	$N_{1/4}$		
Fast Wind	3.98×10^{-10}	0.0829	51	2.91×10^{-10}	0.0762	56
V2 1	1.00×10^{-10}	0.222	19	7.83×10^{-11}	0.174	24
V2 2	5.64×10^{-10}	0.0569	75	4.12×10^{-10}	0.0506	85

Naylor et al. (in review)

Extra Slides: SXI Configurations Planetary Phys

Lancaster Maniversity

SXI Configuration	Equinox		Solstice		
5A1 Configuration	$ au_{ m int} \; ({ m h})$	$N_{1/4}$	$ au_{ m int} \; ({ m h})$	$N_{1/4}$	
SMILE	0.0482	89	0.0416	103	
LEXI	0.102	42	0.0793	54	
Future SXI	7.94×10^{-4}	5428	8.89×10^{-4}	4848	

Naylor et al. (in review)