

Assessment of a multi-receiver low-frequency electromagnetic-induction for estimating soil moisture content in field experiments with winter wheat (*Triticum aestivum*)

Peter Shanahan, Andrew Binley, Ian Dodd (Lancaster University) Richard Whalley, Chris Watts, Rhys Ashton, Eric Ober (Rothamsted Research)

Content

- Introduction to crop phenotyping
- Methods
- Inversion modelling of electromagnetic induction data
- Discussion
- Conclusions

Soil moisture profiles

- Drought tolerance in winter wheat
- (*Triticum aestivum*) is crucial for global food security
- Crop roots have different effects on soil
- Traditional measurement methods are invasive, spatially limited and labour intensive

Lancaster

Environment Centre

LANCASTEI

Wasson et al. (2012), J. Exp. Botany

Aim

 Can electromagnetic induction (EMI) geophysics provide rapid estimation of soil moisture profiles influenced by crop roots?

Field sites

- Woburn Experimental Farm
- Two sites:
 - Butt Close = sandy loam
 - Warren Field = silt-clay loam
- 24 treatments:
 - 23 winter wheat varieties
 - Control, 'fallow'
 - <u>4 replicates in 96 plots</u>
 - 7 x 2 m plots
- Conventional measurements:
 - Water content
 - Temperature
 - Penetration resistance

Lancaster Environment Centre

Field measurements of σ_a

- Electromagnetic induction (EMI)
- Mini-Explorer (GF Instruments, CZ)
- 3 coil separations:
 - 1. 0.32 m
 - 2. 0.71 m
 - 3. 1.2 m
- 2 modes:
 - Vertical coplanar (VC, 'low')
 - Horizontal coplanar (HC, 'high')
- Drift bases
- Apparent electrical conductivity ($\sigma_{a,EM}$)
 - Formation factor (Archie, 1942)
 - σ_{water}
 - $\sigma_{surface}$
 - Texture

Lancaster

Electrical resistivity tomography (ERT)

- Imaging soil electrical conductivity (σ)
- Calibration of EMI (Lavoué et al., 2010, Near Sur. Geophys.)
- Comparison against EMI data
- 4 x 31 m long arrays at each site (each span 12 plots)

Ratio inversion ERT - Butt Close

7

Ratio inversion ERT - Warren Field

EMI σ_a calibrations from ERT

- Method based on Lavoué et al. 2010 and von Hebel et al., in press.
- EMI σ_a ($\sigma_{a,EM}$) compared to calculated σ_a from ERT data ($\sigma_{a,ERT}$) for 12 plots per ERT array (48 per site)
- $\sigma_{a,ERT}$ calculated from McNeill (1980):

Field measurements of σ_a - Butt Close σ_a calibration

Lancaster Environment Centre

_ _ _ _ 95% confidence interval of mean

10

Field measurements of σ_a - Warren Field σ_a calibration

VC1 (CS=0.25 m) 60-60-HC3 (CS=1.8 m) 50-50-14 May 13 Jun σ_{a,ERT} (mS m⁻¹) 40-40-20 Jun 27 Jun 30-30-9 Jul 1 Aug 20-20-10-10-R²=0.52, p<0.001 R²=0.34, p<0.001 0-0-20 30 40 10 50 60 20 30 50 60 n 10 40 $\sigma_{a,EM}$ (mS m⁻¹) **Regression** line

_ _ _ _ _ _ 95% confidence interval of mean

Lancaster

EMI inversion

- Multiple models of soil σ
- Markov chain Monte Carlo search-based inversion algorithm (JafarGandomi and Binley, 2013, J. App. Geophys.)
- Simple approach with cumulative sensitivity (McNeill, 1980)
- Uncertainty from model

Comparing $\Delta \sigma$ between winter wheat varieties

0.0 Fit of logistic curve to data 0.5 Depth m 1.0 $\Delta\sigma$ at depth (n) from **EMI** inversion 1.5 Avalon Robigus 2.0 -20 -15 -10 -5 10 0 5 △ Conductivity mS m⁻¹

Genstat (V. 16) S-shape logistic curve:

$$\Delta_{Conductivity} = A + \frac{C}{1 + e^{-b(depth - M)}}$$

Where: $A = \Delta \sigma$ at surface $C = \Delta \sigma$ at depth

b = constant

M = inflection depth (m)

(Warren Field: 14 May – 1 August)

Quantitative comparison between winter wheat drying depth (Warren Field)

.0 -.2-Drying depth, M (m) -.4--.6--.8-Deep drying -1.0-Santiago -Spark -Dover -Hobbit -Hystar -JB Diego -Rht3 -Rialto -Robigu s -Xi19 Avalon Battalion Gatsby -Kielder -Rht1 Rhtc Cadenza Paragon Consort Gladiato Grafton Istabrac

Approach is under test in 2014 by:

Lancaster

- i. comparison with neutron-probe data, and
- the use of a mapping population to search for known rooting QTLs

EMI and soil water: Butt close

Lancaster

EMI and soil water: Warren Field

Conclusions

Lancaster LANCASTER Environment Centre UNIVERSITY

- Inverted EMI field data reveals patterns of deceasing soil electrical conductivity with time similar to soil moisture profiles.
- EMI inversion results have uncertainty, but data are consistent for two sites and over 24 treatments.
- We can infer significant differences in soil drying depth between winter wheat varieties based on preliminary analysis.

Lancaster Environment Centre

Thank you

p.shanahan@lancaster.ac.uk

