A Modified Fractionally Co-integrated VAR for Predicting Equity and Index Returns

Xingzhi Yao

Department of Economics, Lancaster University

November 2015

Xingzhi Yao (Lancaster University)

Slides - Methods Fair 2015

1/2015 1/14

• Traditional approach

э

- ∢ ⊢⊒ →

- Traditional approach
 - VAR (*Sims*, 1980): I(0) variables

- Traditional approach
 - VAR (*Sims,1980*): *I*(0) variables
 - VECM (Johansen, 1991): long- and short-run relationships among I(1) variables

- Traditional approach
 - VAR (*Sims,1980*): *I*(0) variables
 - VECM (Johansen, 1991): long- and short-run relationships among I(1) variables
- New approach: many economic & financial variables are fractionally integrated/long memory

- Traditional approach
 - VAR (*Sims,1980*): *I*(0) variables
 - VECM (Johansen, 1991): long- and short-run relationships among I(1) variables
- New approach: many economic & financial variables are fractionally integrated/long memory
 - fractionally integrated VAR (FIVAR) (Nielsen, 2004): I(d) variables

- Traditional approach
 - VAR (*Sims,1980*): *I*(0) variables
 - VECM (Johansen, 1991): long- and short-run relationships among I(1) variables
- New approach: many economic & financial variables are fractionally integrated/long memory
 - fractionally integrated VAR (FIVAR) (*Nielsen, 2004*): I(d) variables
 - fractionally co-integrated VAR (FCVAR) (*Johansen, 2008*): long- and short-run relationships among I(d) variables

 \bullet Our approach: a modified FCVAR containing both I(0) and I(d) variables

$$\Delta^d X_t = \alpha \beta' \Delta^{d-b} L_b X_t + \sum_{i=1}^k \Gamma_i \Delta^d L_b^i X_t + \varepsilon_t$$

Image: Image:

 • Our approach: a modified FCVAR containing both I(0) and I(d) variables

$$\Delta^d X_t = \alpha \beta' \Delta^{d-b} L_b X_t + \sum_{i=1}^k \Gamma_i \Delta^d L_b^i X_t + \varepsilon_t$$

• Traditional model system: $X_t \sim I(d)$

• Our approach: a modified FCVAR containing both I(0) and I(d) variables

$$\Delta^d X_t = \alpha \beta' \Delta^{d-b} L_b X_t + \sum_{i=1}^k \Gamma_i \Delta^d L_b^i X_t + \varepsilon_t$$

- Traditional model system: $X_t \sim I(d)$
- Our model system: $X_t = (x_t, y_t, z_t)'$, where $x_t, y_t \sim I(d), z_t \sim I(0)$

• Our approach: a modified FCVAR containing both I(0) and I(d) variables

$$\Delta^d X_t = \alpha \beta' \Delta^{d-b} L_b X_t + \sum_{i=1}^k \Gamma_i \Delta^d L_b^i X_t + \varepsilon_t$$

- Traditional model system: $X_t \sim I(d)$
- Our model system: $X_t = (x_t, y_t, z_t)'$, where $x_t, y_t \sim I(d), z_t \sim I(0)$
 - does the introduction of I(0) variable affect the fractional co-integration between I(d) variables?

• Little consensus on how to test for fractional co-integration

3 🕨 🖌 3

Image: A matrix and a matrix

- Little consensus on how to test for fractional co-integration
 - Semiparametric: Regression-based estimator; Spectral matrix estimator

- Little consensus on how to test for fractional co-integration
 - Semiparametric: Regression-based estimator; Spectral matrix estimator
 - Parametric: FCVAR model

- Little consensus on how to test for fractional co-integration
 - Semiparametric: Regression-based estimator; Spectral matrix estimator
 - Parametric: FCVAR model
- Factors affecting the co-fractional relation between long memory variables

- Little consensus on how to test for fractional co-integration
 - Semiparametric: Regression-based estimator; Spectral matrix estimator
 - Parametric: FCVAR model
- Factors affecting the co-fractional relation between long memory variables
 - regime switching

- Little consensus on how to test for fractional co-integration
 - Semiparametric: Regression-based estimator; Spectral matrix estimator
 - Parametric: FCVAR model
- Factors affecting the co-fractional relation between long memory variables
 - regime switching
 - Haldrup and Nielsen (2006): fractional co-integration in the full sample with no separation into regimes ⇒ misleading inference

- Little consensus on how to test for fractional co-integration
 - Semiparametric: Regression-based estimator; Spectral matrix estimator
 - Parametric: FCVAR model
- Factors affecting the co-fractional relation between long memory variables
 - regime switching
 - Haldrup and Nielsen (2006): fractional co-integration in the full sample with no separation into regimes ⇒ misleading inference
 - structural breaks

- Little consensus on how to test for fractional co-integration
 - Semiparametric: Regression-based estimator; Spectral matrix estimator
 - Parametric: FCVAR model
- Factors affecting the co-fractional relation between long memory variables
 - regime switching
 - Haldrup and Nielsen (2006): fractional co-integration in the full sample with no separation into regimes \implies misleading inference
 - structural breaks
 - Christnesen and de Magistris (2010): common level shifts => fractional co-integration

- Little consensus on how to test for fractional co-integration
 - Semiparametric: Regression-based estimator; Spectral matrix estimator
 - Parametric: FCVAR model
- Factors affecting the co-fractional relation between long memory variables
 - regime switching
 - Haldrup and Nielsen (2006): fractional co-integration in the full sample with no separation into regimes ⇒ misleading inference
 - structural breaks
 - Christnesen and de Magistris (2010): common level shifts ⇒ fractional co-integration
 - *Kellard et al. (2015)*: uncommon breaks \implies spurious fractional co-integration

.

Econometric Framework

Xingzhi Yao (Lancaster University)

Slides - Methods Fair 2015

э 5 / 14

Traditional FCVAR Model-implied and realisd variance

• Let
$$X_t \sim I(d)$$

$$\Delta^{d} X_{t} = \underbrace{\alpha \beta' \Delta^{d-b} L_{b} X_{t}}_{\text{long-run equilibrium}} + \underbrace{\sum_{i=1}^{k} \Gamma_{i} \Delta^{d} L_{b}^{i} X_{t}}_{\text{short-run dynamics}} + \varepsilon_{t}$$

•
$$\Delta^d = (1-L)^d$$
, $L_d = 1 - \Delta^d$, ε_t is i.i.d. $(0, \Omega)$

• α : the vector of loadings, β' : the cointegrating vector, Γ_i governs the short-run dynamics

•
$$eta' X_t \sim I\left(d-b
ight)$$
, $1>d\geq b>0$

- weak co-fractional relation: 0 < b < 0.5
- strong co-fractional relation: $0.5 < b \le d$

• (1) Does the introduction of *I*(0) variable affect the fractional co-integration between *I*(*d*) variables?

- (1) Does the introduction of *I*(0) variable affect the fractional co-integration between *I*(*d*) variables?
 - yes by using FCVAR, shocks associated with the I(0) variable have a permanent effect on I(d) variables

- (1) Does the introduction of *I*(0) variable affect the fractional co-integration between *I*(*d*) variables?
 - yes by using FCVAR, shocks associated with the I(0) variable have a permanent effect on I(d) variables
 - solution: a particular model design to ensure shocks are transitory

- (1) Does the introduction of *I*(0) variable affect the fractional co-integration between *I*(*d*) variables?
 - yes by using FCVAR, shocks associated with the I(0) variable have a permanent effect on I(d) variables
 - solution: a particular model design to ensure shocks are transitory
 - the first row of α matrix consists of zero elements only

• (2) How to make the two error correction terms both result in the I(0)?

▶ ∢ ⊒

٠

• (2) How to make the two error correction terms both result in the I(0)?

$$\Delta^{b} Y_{t} = \alpha \beta' L_{b} Y_{t} + \sum_{i=1}^{k} \Gamma_{i} \Delta^{b} L_{b}^{i} Y_{t} + \varepsilon_{t}$$

۲

• (2) How to make the two error correction terms both result in the I(0)?

 $\Delta^{b} Y_{t} = \alpha \beta' L_{b} Y_{t} + \sum_{i=1}^{k} \Gamma_{i} \Delta^{b} L_{b}^{i} Y_{t} + \varepsilon_{t}$

• $Y_t = (\Delta^{d-b} RV_t, \Delta^{d-b} VIX_t^2, r_t)'$

۲

• (2) How to make the two error correction terms both result in the I(0)?

 $\Delta^{b} Y_{t} = \alpha \beta' L_{b} Y_{t} + \sum_{i=1}^{k} \Gamma_{i} \Delta^{b} L_{b}^{i} Y_{t} + \varepsilon_{t}$

•
$$Y_t = (\Delta^{d-b} RV_t, \Delta^{d-b} VIX_t^2, r_t)'$$

• $\beta' = \begin{pmatrix} 1 & \beta_1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, thus $\beta' Y_t \sim I(0)$ (note: $\alpha_{11} = 0$ and $\alpha_{12} = 0$)

Predictive R-square Implied by the M-FCVAR

• Write the M-FCVAR in a moving average representation and let $e3' \equiv (0, 0, 1)$, the impulse responses, Φ_j , is constructed by (α, β, k, b)

$$r_t = e3' \sum_{i=0}^{\infty} \Phi_i \varepsilon_{t-i}$$

• Decompose return into the expected and unexpected part

$$r_t^h = \underbrace{e3'\sum_{j=0}^{h-1}\sum_{i=j+1}^{\infty} \Phi_i \varepsilon_{t+j-i}}_{\text{expected (A)}} + \underbrace{e3'\sum_{j=0}^{h-1}\sum_{i=0}^{j} \Phi_i \varepsilon_{t+j-i}}_{\text{unexpected (B)}}$$

• Return predictability over h horizons implied by the M-FCVAR model

$$R_h^2 = rac{var(A)}{var(A) + var(B)}$$

Simulation Outcome: d=b=0.4

Xingzhi Yao (Lancaster University)

Slides - Methods Fair 2015

11/2015 10 / 14

Simulation Outcome: d=0.6, b=0.4

Xingzhi Yao (Lancaster University)

Slides - Methods Fair 2015

11/2015 11/

11 / 14

Simulation Outcome: d=b=0.6

Xingzhi Yao (Lancaster University)

11/2015 12

12 / 14

Simulation Outcome: R-square

Xingzhi Yao (Lancaster University)

Slides - Methods Fair 2015

11/2015 13 / 14

Thank you!

<ロト </p>