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Abstract— The problem of identification of secondary path in 

active noise control applications is dealt with fundamentally 

using time-domain adaptive filters. The use of adaptive 

frequency domain subband identification as an alternative has 

some significant advantages which are overlooked in such 

applications. In this paper two different delayless subband 

adaptive algorithms for identification of an unknown secondary 

path in an ANC framework are utilized and compared. Despite 

of reduced computational complexity and increase convergence 

rate this approach allows us to use non-stationary audio signals 

as the excitation input to avoid injection of annoying white 

noise. For this purpose two non-stationary music and speech 

signals are used for identification. The performances of the 

algorithms are measured in terms of minimum mean square 

error and convergence speed. The results are also compared to 

the time domain NLMS algorithm for the same scenario. The 

proposed delayless algorithms have a closed loop structure with 

DFT filterbanks as the analysis filter. To eliminate the delay in 

the signal path two different weights transformation schemes 

are compared. 

 

Index Terms— Active Noise Control (ANC), Delayless subband 

adaptive filter, Frequency domain adaptive filter 

I. INTRODUCTION 

Increase in the number of industrial equipment has 

made acoustic noise a major problem in modern societies. 

Although these are traditionally handled by using passive 

techniques like enclosures, barriers and silencers they are 

large, costly and ineffective at low frequencies. To 

overcome the shortcomings of passive techniques active 

noise control is proved to be a viable complement [1]. 

The simplest scenario for implementation of an active 

noise control system is the experimental duct and 

associated schematic shown in Fig. 1 [2]. The reference 

signal  is fed to the adaptive filter by the reference 

microphone. Error microphone receives the superposition 

of primary noise from the noise source through unknown 

primary plant and the secondary noise is sent through the 

canceling loudspeaker. The residual noise received at the 

error microphone is shown as  in Fig. 1 and used to 

update the weights of the adaptive filter. Based on the 

principle of superposition the primary noise  is 

canceled by the secondary noise of equal amplitude but 

opposite phase . In most of real active noise control 

systems not only the primary noise has a non-stationary 

nature but also the surrounding environment is time 

varying and prone to change [3, 4, 5]. One of the 

commonly used adaptive algorithms to cope these 

problems is the so called Filtered-x least mean square 

 

 

 

Figure 1. Single channel active noise control setup and it 

schematic [2]. 

 

algorithm [7]. The idea of filtered-x family of algorithms 

revolves around this fact that the reference signal should 

be filtered with an estimation of secondary path. Despite 

of simple and widely used filtered-x LMS algorithm in 

different applications analysis shows that the algorithm 

performs poorly in front of highly correlated and non-

stationary incident noises [6]. On the one hand increase in 

the length of the adaptive filter results in increase in the 

complexity of the system, increased level of minimum 

mean square error, and reduction in convergence speed of 

the least mean square (LMS) algorithm. On the other 

hand, FxLMS algorithm has limited capability in tracking 

non-stationary signals and its stability robustness is 
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subject to changes based on the accuracy of the estimated 

model of the secondary path [6, 7, 8]. To address the slow 

convergence, incapability of the algorithm in tracking 

non-stationary signal, and reducing the computational 

burden of the algorithm some variants are proposed [9, 

10, 11, 23]. One way to improve the robustness of 

algorithm with respect to the inaccuracies of the 

secondary path is online identification of secondary path 

[12, 13, 14]. In all of these approaches identification is 

performed in time-domain. However, a more effective 

method which is the focus of this paper is to identify the 

secondary path in the frequency domain. In this method 

by decomposing the signal to different subbands it is 

possible to generate signals whose frequency range 

corresponds to the passband of the analysis filters. 

Further downsampling of subband signals results in 

reduced spectral dynamic range. At the same time the 

length of the adaptive filters in subband techniques is 

shorter allowing larger step sizes to be used and again 

increase the convergence rate [22].  

Early approaches in subband structures relied on 

overlapping filterbanks and critical subsampling [15]. 

However, it resulted in aliasing components in the output. 

In [16], non-overlapping filterbanks were introduced but 

it resulted in spectral gaps. Subband structure based on 

the polyphase decomposition is introduced in [17]. 

Filterbank structures with critical sampling of subband 

signals with sparse subfilters have been discussed in [18]. 

It results in better convergence behavior. In [19], adaptive 

filtering in subbands has been discussed for 

computational savings and better convergence rate. 

Adaptive cross filter between the subbands have been 

employed for the perfect reconstruction. Adaptive 

filtering at a lower decimation rate, due to subband 

processing, reduces the computational complexity. Also, 

the reduction of spectral dynamic range in each subband 

leads to faster convergence. However, the main anomaly 

of such kind of algorithm is the delay introduced in the 

signal path due to bandpass filters in the subband used to 

derive bandpass signals. The structure developed in [20], 

reduces the delay significantly. In this, adaptive weights 

are calculated in the subband and then collectively 

transformed into the full band filter coefficients. An 

additional advantage of this technique is reduction in the 

aliasing effects. An improvement of this structure by 

introducing the fractional delays in the polyphase 

component of the prototype filter is proposed in [21]. 

This eliminates the need for adaptive cross filters and 

hence the unknown system is modeled more accurately in 

a closed loop scheme.  

In this paper the problem of identification of secondary 

path in ANC systems using delayless subband adaptive 

filtering is investigated. To avoid injection of auxiliary 

noise in ANC applications it is highly desirable to 

identify the secondary path using the existing music or 

speech signals. Due to the non-stationary nature of these 

signal adaptation of filter weights is challenging task. 

Here the performances of two adaptive subband filters for 

such applications in terms of speed of convergence, 

achievable minimum mean square error, and 

computational complexity are compared. The remainder 

of the paper is organized as follows. In section II, the 

structure of the delayless frequency domain adaptive 

system identification is introduced. Different weight 

transformation schemes and computational complexity of 

different algorithms are compared in section III. 

Simulation results are presented in section IV and finally 

concluding remarks are given in section V. 

II. DELAYLESS FREQUENCY DOMAIN ADAPTIVE 

FILTERING 

The block diagram of the delayless frequency domain 

active sound control system is shown in the Fig. 2. The 

adaptive filter W(z) is implemented directly in the time 

domain to avoid delay caused by collecting N samples. 

The convolution is performed by multiplication in the 

frequency domain. It is to be noted that although full 

band filter weights is in the time domain all the filter 

updating is performed in the frequency domain. In Fig. 1 

P(z) in the block diagram represents the transfer function 

from the noise source to the error source. Convolution of 

the reference signal x(n) with the primary path impulse 

response, gives the desired signal d(n). The length of the 

primary adaptive filter is L. The reference signal in the 

secondary path is decomposed into subband signals by 

using polyphase FFT. A DFT filter bank, is constructed 

from the K length prototype filter by modulation. The 

analysis filters of an M-channel DFT filter bank are 

obtained as:   = − � / , � = , , . . . −  
(1) 

    Here, H(z) is the real valued prototype low pass filter 

with a cutoff frequency of π/M. Shifting of low pass 
filters to the right by the multiples of 2π/M gives the 
complex modulated bandpass filters. The impulse 

response coefficients of  and −  are complex 

conjugates of each other. Therefore, for real valued 

signals only the first M/2+1 subbands need to be 

processed. The pseudo error signal is also decomposed 

into number of subbands using the same DFT filter bank 

as above. Here, e(n) is the residual noise from the error 

sensor. The weight adaptation is applied on the subfilters 

using the subband signals ,�  and ,� . A subband 

regressor  for the subfilters �  of length , is 

defined as follows:  ≡ [ ,� , ,� − , . . . ,� −+ ]� 

(2) 

for i=0,1,...,M-1, where D=M/2 is the decimation factor. 

Each column of u holds a subband regression vector. The 

use of FFT to decompose the signals into subbands leads 

to significant amount of computational savings; however, 

it introduces circular convolution and circular correlation. 

This can be further nullified by overlapping of input 

samples.  

  Delayless subband system eliminates the signal path 

delay caused by the analysis and synthesis filter banks. 

The fullband filtered reference signal and the pseudo 

error signal is decomposed into number of subbands 



using analysis filters in the DFT filterbanks. All the 

subband signals are downsampled by the decimation 

factor  . Subband weight adaptation is done by closed 

loop feedback mechanism. The fullband error signals are 

fed to subband adaptive filters which finally converges to 

optimal Weiner solution. The filter weights in each 

subband is adjusted using complex normalized LMS 

algorithm defined as: � + = � + � ∗‖ ‖ ,�  
(3) 

Here, � is the step size for the adaptation algorithm. Its 

value affects the convergence speed, steady state error 

and stability of the adaptive filter. The subbands adaptive 

weight vector of ℎ subband are defined as � = [�  � . . . � �− ]� (4) 

These weights are then transformed from subband to 

fullband by weight transformation scheme. The filter 

weights are transformed into frequency domain by  

point FFT; this results in � = �[� ] = [�  � . . . � − ]�  (5) 

where �  is the subband adaptive weights. These 

weights are properly stacked and then inverse 

transformed every  samples to get the wide band filter 

coefficients.  

 

Figure 2.  Delayless active sound control using subband. 

 � = �[� ]= [� − � − … � − ]� (6) 

III. DIFFERENT WEIGHT TRANSFORMATION SCHEMES 

The weight transformation is greatly dependent on the 

characteristics of the analysis filter bank used for the 

subband decomposition. Two different weight 

transformation schemes are explained below. 

A. Frequency Sampling Method ([20]) 

  In this method DFT filterbank consists of complex 

modulated bandpass filters. As the subband signals are 

complex valued, subband adaptive weights are also 

complex valued. Weight transformation maps the 

complex subband tap weights into an equivalent set of 

real valued full band tap weights. The weight 

transformation consists of the following steps:  

1. For the first M/2 +1 subbands the weight vectors are 

transformed by the FFT to obtain Ms DFT coefficients for 

each subband.  

2. The DFT coefficients obtained above are stacked to 

form the first L/2 points of an L element vector from 

index 0 to L/2-1. It is completed by setting L/2th point to 

zero and then using the complex conjugate values from 

index 1 to L/2 -1 in reversed order. The inverse FFT of 

the L element vector gives the fullband tap weights. The 

frequency stacking rules are listed as follows:  

1. For ∈ { ; / − }, � = �� , where �  and ��  denote the FFT coefficients of the fullband filter 

and the ℎ  subband filter, respectively; = [ / ] 
where [.] denotes the rounding towards the nearest 

integer; and = / , where �� denotes a modulus b.  

2. For / / , � / =   

3. For ∈ { / + ; − }, � = � − ∗.  

B. DFT filter bank with fractional delays ([21]) 

Weight transformation for critically decimated subband 

adaptive filtering can be done by using DFT filterbank by 

using lowpass prototype filter as th band filter. 

Analysis DFT filter bank with fractional delays can be 

obtained by using last polyphase component as − = −Δ���  where Δ  denotes the integer part of 

the delay. Also, the length of the adaptive subfilters needs 

to be increased by one sample for accurate modelling of 

the unknown system. The subband tap weights to full 

band weight transformation can be done through the 

following steps:  

1. Compute an  point IFFT on each of  columns of 

the matrix formed by impulse response of the adaptive 

subfilters � . This result gives the impulse response 

of the fractionally delayed polyphase component ′ = / , where , . . . , −  are the 

polyphase component of the fullband filter � .  

2. Take = ′ , for the first polyphase 

component. For the consequent components the impulse 

response of ′  is convolved with the fractional delay −  as  

  − ����+ = ′ −  (7) 

3. Discard the first polyphase component, discard the last 

sample and for the subsequent samples discard the first Δ +  samples and retain the next −  samples. 

The fullband filter can be constructed from these 

polyphase components as  

� = ∑−
= −  

(8) 



The computational complexity of the delayless 

subband structure can be divided into these parts:  

1. Filter bank operations  

2. Subband weight adaptation  

3. Fullband filtering  

4. Weight transformation  

The detailed breakdown of computational 

requirements of two weighting transformation schemes 

can be found in references [20, 21] and is not repeated 

here. The computational complexity for Morgan and 

Merched algorithms are plotted with varying number of 

subbands in Fig. 3. As can be seen Merched performs 

much better from this point of view. Moreover in both 

algorithms by increase in the number of subbands 

delayless structure impose less computational burden to 

the whole algorithm.  

 

Figure 3. Comparison of computational complexity of the 

algorithms proposed in [10] and [11]. 

IV. SIMULATION RESULTS 

Simulations were done in MATLAB to verify the 

performance of the proposed delayless active noise 

control algorithm. Two different types of signals were 

used as the excitation signal to identify the secondary 

path. Speech signal with sampling frequency of 16 KHz 

and music signal with sampling frequency of 44.1 KHz 

were considered for this purpose. The reason for selection 

of these two signal types is the fact that these are usually 

the audio signals sent through secondary loudspeakers in 

an integrated audio and ANC system. This aids to avoid 

injection of auxiliary annoying noise during the operation 

of system. Further to that it is worthy to note that these 

two signals have different frequency and non-stationary 

characteristics that make adaptive identification of 

secondary path a challenging task. The energy of the 

speech signal is concentrated mostly at lower frequencies 

whereas music has a broader range. In time domain, 

music signal is fairly continuous but speech signal have 

paused between words and phrases. For comparison the 

frequency spectrum of speech and music signals are 

plotted in Figs. 4 and 5 respectively. 

The experimental ANC setup in which the secondary 

path S(z) is aimed to be identified is shown in Fig. 1. The 

reference signal u(n) is subjected to polyphase FFT 

transformation with blocks of 1024 samples for each 

iteration. The prototype low pass filter used to achieve 

the DFT filterbank is selected to be of the order 255. It 

has passband edge frequency at 6 KHz and cutoff 

frequency of π/8. The bandpass filters in the subbands are 

the frequency shifted version of the prototype low pass 

filter. The length of the full band adaptive weight vector 

is 1024. M = 32 filter bank is used with each subband 

having 8M weight vectors. The value of the stepsize µ 

has been set differently for different algorithms. The 

value of stepsize for Merched algorithm is set to be 0.3, 

however, this value for Morgan algorithm is 0.2 for the 

speech as excitation signal. For the music signal it is set 

to 0.15. The values of step sizes are chosen such that the 

fastest possible response is achieved before the adaptive 

algorithms go unstable.  

The minimum mean square error of the identification 

error after convergence of the adaptive algorithms for 

both music and speech signals compared to the time-

domain NLMS algorithm are plotted in Figs. 6, 7, 8 and 

9. As can be seen the attained minimum mean square 

error for Merched algorithm is better that the two others. 

Besides among the three algorithms the time domain 

NLMS algorithm is not converging to the right model at 

all. To compare the algorithms in terms of the speed of 

convergence the normalized misalignment is calculated 

from equation (9).  � �  � � �� = � ‖� −�‖‖�‖     (9) 

This value shows the distance of the adaptive weight 

vector form its optimal weights vector b by calculating 

their norm. The learning curves for Merched and Morgan 

algorithms for both speech and music signals are shown 

in Figs. 10 and 11 by plotting the normalized 

misalignment given in (9). Comparison of results with 

respect to the time-domain NLMS algorithm reveals that 

Merched algorithm performs much better than all other 

algorithms and time domain NLMS algorithm has the 

slowest convergence rate. Considering all simulation 

results it can be seen that Merched algorithm has superior 

performance with respect to other in term sof 

computational complexity, convergence speed and 

achievable minimum mean square error.  

V. CONCLUSION 

Analysis and synthesis filter banks are essential parts 

of the subband adaptive filtering. However, they tend to 

increase the overall signal path. In this paper, the 

performances of two frequency domain delayless 

adaptive filters for identification of the secondary path in 

an ANC system are compared. Two types of audio 

signals, i.e. music and speech signals are used as 

excitation signals for adaptive system identification. 

Simulation results show that due to the wideband and 

non-stationary nature of the excitation signals commonly 

used time-domain NLMS algorithm fails to give an 

accurate result. Nevertheless, among subband algorithms 

Merched is performing significantly better than the others 
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both in terms of convergence speed and achievable 

minimum mean square error. This is due to the fact that 

the use of fractional delay in the weight transformation 

scheme will cancel aliasing effects in subbands. It is also 

proved that this algorithm is less computational complex 

than the others. 

 

Figure 4. Single sided amplitude spectrum of speech. 

 

Figure 5. Single sided amplitude spectrum of music. 

 

Figure 6. Convergence in terms of Mean Square Error (in dB): 

Speech (Merched vs NLMS). 

 

Figure 7. Convergence in terms of Mean Square Error (in dB): 

Speech (Morgan vs NLMS) 

 

Figure 8.  Convergence in terms of Mean Square Error (in dB): 

Music (Merched vs NLMS). 

 

Figure 9. Convergence in terms of Mean Square Error (in dB): 

Music (Morgan vs NLMS). 
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Figure 100. Normalized misalignment learning curves: Speech 

 

Figure 111. Normalized misalignment learning curves: Music    
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