
Towards a Context Aware Multipath-TCP
Richard Withnell

School of Computing and Communications
Lancaster University

r.withnell@lancaster.ac.uk

Christopher Edwards
School of Computing and Communications

Lancaster University
c.edwards@lancaster.ac.uk

Abstract—Multi-homing has become ubiquitous in the mobile
domain. Despite this, mobile devices are not yet capable of fully
realizing the potential of the increasing variety and availability
of network resources. Multipath-TCP (MPTCP) is one of the
most prominent technologies for multi-homed mobile devices,
that is able to effectively tackle both resource pooling and
mobility. Despite the success of MPTCP we believe that the
implementation can be enhanced for the mobile domain, by
increasing the granularity of control a device has over how
its network interfaces are used. In this paper we present
and evaluate MPTCP - Context Aware (MPTCP-CA), which
introduces a policy oriented approach to the management and
control of MPTCP connections. Our evaluation demonstrates
three use cases that leverage context awareness to improve the
utilization of multiple network interfaces with respect to the users
requirements.

Index Terms—Mobile Devices, Multipath-TCP, Network Man-
agement, Context Aware, Cross Layer

I. INTRODUCTION

In the mobile domain demand for a variety of high band-
width applications such as media streaming, cloud storage and
real time video conferencing has seen a vast increase in recent
years and is predicted to quadruple by 2019 [1]. This increase
in demand for bandwidth while mobile can not be met by
the cellular network alone, leading to a number of off-loading
solutions, combining a range of access technologies such as
WiFi and Femto Cells. Despite the presence and availability of
access points enabling off-loading the network stack is still not
equipped to effectively balance and migrate traffic between the
available network connections. Typical policies used by smart
devices are based on the availability of an access medium,
as opposed to dynamically allocating the network resource
based on quality or application demand. For example, the
cellular network is commonly used as a fall back when no
WiFi connectivity is available. To improve the current mobile
connectivity model we propose three requirements for the
network stack;

1) Mobility – Both horizontal and vertical handover should
be efficient, seamless and have minimal impact on the
users quality of experience.

2) Resource Pooling – Combine the devices available
network resource to help meet the current demand for
high bandwidth applications as proposed in [2].

3) Intelligent Resource Usage – Adaptively allocate net-
work resource based on the requirements of the appli-
cations and the mobile device.

The most prolific effort to date in addressing these issues
is Multipath-TCP (MPTCP) [3]. Current MPTCP research
has mainly focused on the resource pooling aspect of using
multiple network interfaces simultaneously[4], as well as the
benefits of enabling seamless and efficient mobility [5] [6].
MPTCP in its current form however fails to address our final
goal for mobile connectivity, this can lead to sub-optimal
usage of the available network resource in regards to the users
requirements. To address the problem of intelligent resource
usage we propose Multipath-TCP - Context Aware (MPTCP-
CA). MPTCP-CA provides a new cross-layer approach to
the management and utilization of a mobile devices network
resource, with a core focus on leveraging context awareness
combined with a high level policy definition. We believe that
by exploiting context and taking into account user policies for
network resource usage, we can not only improve the quality
of experience of the users applications, but also improve the
ability for a smart device to meet the users needs.

In this paper we first provide a background of the current
state of Multipath-TCP. We then go on to present our proposed
architecture for MPTCP-CA, including a discussion on how
context and policy decisions can be applied to improve the
efficient utilization of network resources. Finally, we present
a preliminary evaluation, demonstrating three use cases in
which we use MPTCP-CA to exploit multi-homing and context
awareness; including application priority, power consumption
and wireless link quality.

II. MULTIPATH-TCP

Multipath-TCP [3] is the foremost attempt to both stan-
dardize and implement a deployable multipath extension to
TCP. MPTCP functions by creating a number of TCP sub-
flows between two remote end-points. MPTCP has two key
advantages over single path TCP; multiple network interfaces
can be used simultaneously to increase throughput and the
use of multiple independent paths improves resiliency, in the
event of failure. Additionally MPTCP is transparent to the
application, requiring no modification to take advantage of
multipath communications.

A. Interface Management

The current implementation of MPTCP provides a simple
interface controlling the MPTCP capability of each network
interface. Three different options are currently available, a
specific interface can either be set to enabled, disabled or to
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Fig. 1: Architecture for the MPTCP-CA implementation.

act as a backup. In backup mode the interface is only used in
the event no other network interface is available to be used.

B. Path Managers

The path manager module of the Linux MPTCP imple-
mentation, is responsible for controlling the establishment
of TCP subflows. This section discusses some of the key
implementations of alternative MPTCP Path Managers.

1) Full Mesh: The full mesh path manager creates a TCP
subflow for every pair of IP addresses present at the two end
points. The server advertises its available IP addresses to the
client and for each advertised address the path manager creates
a subflow for each of its own addresses. This path manager
attempts to take advantage of both resource pooling and path
diversity, to improve both bandwidth and resilience.

2) ndiffports: The ndiffports path manager is very simple, it
creates a pre-determined number of subflows between a single
pair of IP addresses between the hosts. This path manager can
be beneficial in a data center environment, in which the hosts
are single-homed but the network load balances TCP flows
across redundant paths.

3) Cross Layer: To the best of our knowledge at present
there are only two other proposals for cross-layer MPTCP
path managers. In [7] the author focuses on using link quality
information at the MAC layer to improve the decisions about
how subflows are managed. Based on link quality estimation
subflows are labeled either active or inactive. If the link
quality is poor the subflow becomes inactive and its in-
flight packets are re-transmitted using other available subflows.
In [8], the authors propose that information from the user
space can be used to inform the number of subflows that
are created in a cloud environment. For example, if there are
multiple redundant paths in a cloud infrastructure the user
space application informs the MPTCP path manager of the
available paths, leading to the optimal number of subflows
being created.

III. MULTIPATH-TCP - CONTEXT AWARE

At the core of MPTCP-CA is a new cross layer path man-
ager that is able to create and destroy subflows over specific

network interfaces or paths as the context of the network or
mobile device changes. When we discuss context we take this
to mean the state of the device, the active applications and the
available network connectivity. In order to benefit from this
awareness we propose a policy oriented model that describes
how the network interfaces should be used in any given context
and how they should react upon change. These policies can be
described in terms of; application priorities, bandwidth limits
per interface or by reacting to changes in the devices state
such as battery capacity. For the remainder of this section we
describe the proposed policy definition and architecture for
MPTCP-CA. An overview of the proposed design can be seen
in Fig 1.

A. Policy Definition

Policies are defined and processed as a set of conditions
and actions to execute when the conditions are met. Each
condition is defined using a key, value and comparator. The
key indicates the context that is to be monitored, while the
value and comparator define when the associated actions are
to be triggered. For example; when the battery voltage is less
than 3.4V, disable the cellular interface. The context modules
are dynamically loaded at run time, providing a flexible and
extensible policy definition. Additionally, an individual policy
may contain multiple conditions and actions, such that all
conditions must be true before the actions are executed.

B. Architecture

The core split of the implementation is between the kernel
space and the user space, as shown in Fig 1. The main path
manager module resides in the kernel space and provides
hooks via a netlink interface to allow communication with
the user space component. When a new MPTCP connection
is established, the path manager notifies the user space appli-
cation, providing it with a unique token for the connection.
This token identifies which TCP subflows belong to the same
MPTCP connection. The user space application will then
respond by making the appropriate netlink calls, which contain
the necessary information to establish or close subflows for a
specified interface, depending on the defined policies.

The core logic of the proposed path manager resides in user-
space, this is to maximise the configurability and flexibility of
the solution. It will also allow the path manager to be extended
with an API, that will enable applications to provide the path
manager with their specific requirements. These requirements
include network metrics such as throughput or latency. The
user space is made up of a number of modules;

1) Context Manager: The context manager, is responsible
for parsing the user defined policies, and ultimately making
the decisions about how network interfaces are used based on
the information it receives from the monitoring and context
modules.

2) Context Modules: The context modules integrate with
the mobile device, obtaining the contextual information for
the manager to use. This could represent network metrics such
as the strength of a wireless signal or network layer metrics
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Fig. 2: Evaluation topology used when comparing MPTCP to
MPTCP-CA.

such as available bandwidth, latency and loss. Alternatively
this could also include device specific metrics such as the
remaining capacity of the battery.

3) Link Monitor: The link monitor hooks into the routing
subsystem using netlink in order to receive updates when ever
network interface availability changes. This initially provides
the context manager with the set of IP addresses that can be
used to create additional subflows.

4) Application Monitor: The application monitor uses the
netfilter connection tracking library to obtain a constant feed of
active connections, this includes information for all transport
protocols. This will provide a complete view of the current
network application context, supplementing the MPTCP based
information received from the kernels path manager.

IV. EVALUATION

To evaluate the initial prototype of MPTCP-CA, we have
implemented a subset of the proposed system described in
Section III, including the kernel and user space path managers,
which incorporates a simple policy engine to inform when
to create or close MPTCP subflows. The evaluation system
consist of a real world test-bed based on a Raspberry Pi
acting as a mobile device, shown in Fig 2. The Raspberry
Pi is powered by a 2000mAh battery and equipped with
both WiFi and Cellular network interfaces as well as a smart
battery monitor that is able to provide voltage and current
readings. We compare the performance of MPTCP with the
full mesh path manager to our implementation of MPTCP-
CA, across three different use cases. The use cases consist
of; application prioritisation, adjusting the network interface
usage for energy consumption and pre-empting handover as
signal strength decreases.

A. Application Policies

In the experiment shown in Fig 3, an initial application
(App One) is in the background actively downloading content,
this could represent receiving software updates or syncing files
with cloud storage. After 20 seconds the user starts a second
application (App Two), App Two then proceeds to download
a small 10MB file that the user is interested in, so should be
downloaded as quickly as possible. In Fig 3a, both App One
and App Two establish MPTCP connections, creating subflows
for both the WiFi and cellular network interfaces. When App
Two becomes active, both applications share the available
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Fig. 3: TCP flows competing for network resource for (a)
MPTCP and (b) MPTCP-CA. App One represents the through-
put of background activity and App Two represents the
throughput of the users active application. WiFi and Cellular
refers to the throughput achieved over the individual links.

bandwidth equally, leading to App Two taking 18 seconds
to download its content. In Fig 3b, a policy has been defined
that states App Two should receive priority over App One in
terms of bandwidth. When App One starts, the user space path
manager is aware that both network interfaces are free to be
used, and subsequently creates subflows for each path. When
App Two starts, MPTCP-CA recognizes the conflict and gives
App Two priority by removing App One’s WiFi subflow. This
forces App One to only use the cellular interface, giving App
Two exclusive access to the higher bandwidth WiFi interface.
This reduces the time App Two takes to download the users
file to 11 seconds, which is 38% faster.

B. Energy Consumption

Mobile devices are limited in terms of battery capacity,
therefore it is important to not only maximize battery life, but
to also effectively balance this while trying to maximize the
users quality of experience. In the experiment shown in Fig 4,
the user is assumed to be watching a movie using Adaptive
HTTP Streaming while mobile. As the amount of bandwidth
changes the quality of video that the user receives adapts to
minimize re-buffering. Both the WiFi and cellular interfaces
have been enabled to maximize the quality of the video
stream that is being viewed. This increases the total energy
consumption required to view the video, and depending on
the length, the battery capacity could be run down prematurely.
When using the full mesh path manager as shown in Fig 4a,
both interfaces are used indefinitely for the duration of the
video. In this state, the total current draw for the Raspberry
Pi, including WiFi and Cellular is approximately 0.96 Amps.
At this rate the device would only remain turned on for a little
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Fig. 4: Energy consumption while streaming video for (a)
MPTCP and (b) MPTCP-CA.
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Fig. 5: Handover of WiFi to Cellular with (a) MPTCP and (b)
MPTCP-CA.

over 2 hours, given the 2000mAh battery used. In Fig 4b,
MPTCP-CA identifies that the battery capacity is too low
and the current draw is too high to maintain, this causes the
Cellular subflow to be closed, allowing the network interface
to fall into a sleep state, dropping the average current draw
from 0.96 Amps to 0.73 Amps, extending the lifespan of
the battery. Due to the adaptive application context, reducing
the available bandwidth and subsequently lowering the video
quality to increase battery life may be beneficial to the user.

C. Link Quality

In the experiment shown in Fig 5, the cellular interface is
set to act as a backup to be used when the WiFi interface

disconnects. To determine disconnection, we emulate signal
strength using the model proposed in [9], with the user moving
at 1.4 Meters per second away from the WiFi access point.
When the signal strength reaches approximately -88dBm, the
WiFi interface is disabled. In Fig 5a, the behavior of the stock
MPTCP implementation is shown. When the WiFi interface
disconnects it takes up to two seconds for the cellular subflow
to start transmitting data, leading to the throughput dropping to
zero for approximately two seconds, corroborating the results
presented in [6]. In Fig 5b, MPTCP-CA is monitoring the
signal strength, as it approaches the point of disconnection a
new subflow is preemptively created over the cellular interface.
As the cellular subflow is created before the WiFi disconnects
the throughput does not drop to zero, improving the seamless
nature of the handover.

V. CONCLUSION

In this paper we have proposed the need for more intelligent
usage of the available network resource to assist in meet-
ing application requirements. To meet this demand we have
implemented MPTCP-CA which leverages context awareness
to improve the flexibility and management of Multipath-TCP
subflows. The implementation has been evaluated, demonstrat-
ing the benefits of improved subflow management in three
different use cases. The evaluation has shown that using
MPTCP-CA we are able to; increase throughput for prioritized
application, use battery capacity to determine which network
interfaces to use and improve handover by pre-emptively
creating new subflows on secondary interfaces.
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