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Abstract—In this paper we propose a performance analysis of
the robust evolving cloud-based controller (RECCo) according
to the different initial scenarios. RECCo is fuzzy rule-based
(FRB) controller with non-parametric antecedent part and PID-
type consequent part. Moreover, the controller structure (the
fuzzy rules and the membership function) are created based
on the on-line streaming data. The advantage of the RECCo
controller is that do not require any a priory knowledge of the
controlled system. The algorithm starts with zero fuzzy rules
(zero data clouds) and evolving during the process control. The
PID parameters of the controller are initialed with zeros and are
adapted in on-line manner. According to the zero initialization
of the parameters the new adaptation law is proposed in this
article to solve the problems in the starting phase of the process
control. Several initial scenarios were theoretically propagated
and experimentally tested on model of heat-exchanger plant.

I. INTRODUCTION

Fuzzy system theory and fuzzy sets were firstly introduced

by Prof. Lotfi. A Zadeh in [1]. Since then an impressive growth

of fuzzy systems from both the theoretical and applied points

of view is evident. The primary expectations were that the

fuzzy sets would find the applications in non-technical systems

(linguistic, economy, etc.), but the reality is that the fuzzy

systems are widely used in control applications ( [2], [3], [4],

[5], [6]).

Controlling the complex and nonlinear processes is rep-

resent by dividing the problem into several locally linear

problems/solutions. Local linearizion of the system provides

satisfactory results but only for a certain range of operating

conditions. In therms of fuzzy theory, the nonlinear system is

represent with more local problems modeled with individual

rules (each rule represent a local model) and furthermore, they

are combined (according to the fuzzy membership functions)

to describe the global behavior of the nonlinear system. Fuzzy

controllers represent an approach for solving the nonlinearity

process control problem.

The classical nonlinear control systems based on the Takagi-

Sugeno (TS) fuzzy model [7] is one of the most popular and

widely used for different applications ( [8], [9], [10], [11]).

It is made up of a IF-THEN fuzzy rules representing local

linear input/output relations of the nonlinear system. The first

part (IF) of the conditional is termed the antecedent, and the

second part (THEN) is the consequent. Another fuzzy rule

based (FRB) system was introduced by E. Mambdani in [12],

[13]. The main difference between the TS FRB systems and

Mamdani, is the way of how the consequent part is defined.

In TS fuzzy systems the antecedent part is fuzzy and the

consequent part is functional while in the Mamdani FRB

systems both parts are fuzzy. The challenge in this type of

FRB systems is setting the parameters of the fuzzy set (at

least two parameters per fuzzy set). In [14] the authors have

analyzed that the fuzzy rules and membership functions should

be predefined to map numerical data into linguistic terms and

to make fuzzy reasoning work. But there is no guarantee that

the predefined knowledge will produce permanent solutions

in case of changing environment and changing condition. Due

to this problem there were developed several approaches for

on-line adaptation of the fuzzy parameters ( [15], [16]).

New FRB system ANYA was introduced in 2001 by An-

gelov [17]. This approach does not require explicit predefini-

tion of the antecedent part and allows the controller structure

(the membership function, fuzzy rules, fuzzy set, etc.) to be

created based on on-line streaming data. Simplified antecedent

part in this case is non-parametric and it is formed by grouping

the data samples with similar properties into data clouds.

The clouds have no specific shape, parameters or boundaries.

ANYA uses the relative density measure of the current data

sample according to the existing clouds to determine the

membership to the particular cloud. The density measures

takes into account the distances to all previous data samples

and can be calculated recursively. The consequent part of

the ANYA type FRB system can still be same as in TS or

Mamdani FRB system.

In [18], [19], [20] a new control algorithm RECCo was

introduced, which is based on ANYA FRB system. RECCo

(Robust Evolving Cloud-based Controller) starts with zero

fuzzy rules (zero data clouds) and with empty controller’s

parameters. During the process control the structure of RECCo

evolves and the parameters of the controller are adapted. The

control algorithm do not requires any a priory knowledge of

the controlled system.

In this paper we present a performance analysis of the

RECCo algorithm according to the different initial situations.

The idea and the goal is to test the performance with both

theoretical and practical implementation.



The rest of this article is organized as follows. Section II

describes the robust evolving cloud-based controller and his

structure. The adaptation law in section III is presented. Finally

in section IV different simulation scenarios are analyzed and

presented as a proof of concept for the proposed assumptions.

The main conclusions are summarized in section V.

II. THE STRUCTURE OF THE RECCO CONTROLLER

A special feature of the RECCo is that no a priori infor-

mation about the controlled process is needed. Theoretically,

the controller could be initialized from the first data sample

received. But of course, any existing information can be used

to suitably initialize the controller parameters. After this, for

every incoming sample the controller gains are adapted and if

the certain conditions are satisfied, a new cloud is created.

In this section we present the robust cloud-based controller

structure with non-parametric antecedents. As we already

mentioned, this method applies the concept of fuzzy data

clouds and relative data density to define antecedents. Each

data element is associated on-line to one of the existing

clouds (if current data is close enough according to a chosen

similarity measure) or a new fuzzy rule (cloud) is created. The

concept does not employ membership functions in the classical

sense. Degree of fulfillment is based on the distances between

samples and the corresponding cloud relative density. At this

point we have to mention that already two different similarity

measures were used: Euclidean [21] [19] and Mahalanobis

[20] distances. In this paper a simpler Euclidean distance

is used according to the fact that both methods produced

satisfying results.

The structure of ANYA was initially introduced in [21].

The authors proposed simplified FRB system of the following

form:

Ri : IF (x ∼ Xi) THEN (ui) (1)

where the operator ∼ denotes the fuzzy membership expressed

linguistically as ’is associated with’. The number of the rules

is defined by the number of the data clouds c (i = 1, 2, . . . , c),
and usually changes with time. Xi denotes the i-th cloud in

the data space where x = [x1, x2, . . . , xn]
T

is the controller’s

input and ui denotes its output in the i-th fuzzy domain. The

contribution of a particular controller output in a certain fuzzy

domain to the actual control output is given by the normalized

relative density:

λi
k =

γi
k

c∑
j=1

γj
k

i = 1, . . . , c (2)

where γi
k is the local density of the i-th cloud for the current

data xk.

When a new data sample arrives, we compute c separate

densities γj
k that define how “close” a new sample is relative

to the existing clouds. According to the calculated densities,

the current data sample is finally associated with the cloud

with maximal density and all the parameters of this particular

cloud are updated.

In [19] and [18] the local density of the i-th cloud is defined

by Cauchy kernel as follows:

γi
k =

1

1 +
∑k−1

j=1 (d
i
kj)

2

k−1

(3)

where k is the current time instant and
∑k−1

j=1 (d
i
kj)

2 is the

sum of the square of Euclidean distances (dikj = ‖xk −xj‖2)

between the new data xk and all the data points of the i-th
cloud. Furthermore, (3) can be recursively written as follows:

γi
k =

1

1 + ‖xk − μi
k‖2 + σi

k − ‖μi
k‖2

(4)

where μi
k is the mean value of the cloud’s data points and σi

k is

the variance. Both of them can be recursively calculated using

following equations for mean value and variance, respectively:

μi
k =

k − 1

k
μi
k−1 +

1

k
xk (5)

σi
k =

k − 1

k
σi
k−1 +

1

k
‖xk‖2 (6)

Initial condition for the mean value is μi
1 = x1 and for the

variance is σi
1 = ‖x1‖2.

Once we classified the current data sample to one of the

clouds and updated its properties we can do the defuzzification

of the FRB system. As we said above, the ANYA FRB system

can work with both Mamdani and TS consequents. Therefore,

if we consider the weighted average for the defuzzification,

the output of the controller becomes:

uk =

c∑
i=1

λi
ku

i =

c∑
i=1

γi
ku

i

c∑
i=1

γi
k

(7)

where ui denotes the i-th rule consequent and normalized

relative density (2) is used.

Depending on the system dynamics we defined first order

linear reference-model with corresponding time constant τ .

We have to note here that larger time constant usually produce

better results especially in terms of robustness at the cost of

a lower speed. In our case our reference model is defined as:

yrk+1 = ary
r
k + (1− ar)rk 0 < ar < 1 (8)

where rk is the reference signal set by the operator. Parameter

ar is the pole of the first order discrete reference model and

defines the transient dynamics. For systems with fast sampling,

ar can be approximated by (1 − Ts

τ ) where Ts defines the

sampling period. In all our experiments we used τ = 40 and

Ts = 2s which follows to ar = 0.95. The values of the

time constant and the sampling time are convenient for the

dynamics of the studied heat-exchanger plant.

In this approach, the PID-based rule consequents of the

following form are proposed:

ui
k = P i

kεk + IikΣ
ε
k +Di

kΔ
ε
k +Ri

k (9)



where εk = yrk − yk−1 is the tracking error (the differ-

ence between the reference model and the process output).

P i
k, I

i
k, D

i
k are controller gains and Ri

k is compensation of

the operating point for each cloud i = 1, . . . , c. Discrete-time

integral (Σε
k) and discrete derivative (Δε

k) of the tracking error

εk are recursively computed as:

Σε
k =

k−1∑
κ=0

εκ = Σε
k−1 + εk−1 (10)

Δε
k = εk − εk−1 (11)

In this paper the input data is defined as follows:

x =
[

εk
Δε ,

yr
k−rmin

Δr

]T
(12)

where Δr = rmax − rmin and Δr depends on the operating

system area and Δε = Δr
2 . In this case we are mostly

interested in the region where we expect the majority of the

data samples.

III. ADAPTATION OF THE CONTROLLER

In this section we introduce the adaptation scheme of the

RECCo controller’s parameters and furthermore, we expose

different initial scenarios and analyze the possible problematic

situations. An improved adaptation of the RECCo controller

is proposed, where the absolute value of error is used. New

adaptation method proposed is used only in the starting phase

of the RECCo evolving system and afterwards, the adaptation

continues as originally proposed in [18] and [19].

In the starting phase the controller gains are adapted as

follows:

ΔP i
k = αP Gsignλ

i
k

|ekεk|
1 + r2k

ΔIik = αI Gsignλ
i
k

|ekΔε
k|

1 + r2k

ΔDi
k = αD Gsignλ

i
k

|ekΔε
k|

1 + r2k

ΔRi
k = αR Gsignλ

i
k

εk
1 + r2k

i = 1, . . . , c

(13)

where rk is the reference signal, ek = rk − yk−1 is

the difference between the reference signal and the pro-

cess output and λi
k is a normalized relative density. The

constants αP , αI , αD, αR are the adaptation gains, and the

Gsign = ±1 represent the constant sign of the monotonic

plant. Furthermore, the controller gains vector is defined as

θik =
[
P i
k, I

i
k, D

i
k, R

i
k

]T
and the adaptation of parameters is

done only for the current active cloud while the others are

kept constant. Adaptation is defined as follows:

θik = θik−1 +Δθik (14)

The absolute values in (13) prevent undesirable transient

response of the system in the starting phase of the adaptation

process. We firstly need to note that the first cloud’s parameters

are initialized with zero values (θ1k = [0, 0, 0, 0]
T

). Second,

according to the parameter projection mechanism (which will

be discussed later) the controller parameters are defined in the

range [0,∞]. Taking into account the zero initialization and

the parameter projection we need to avoid negative values of

the part Δθik in (14) in the starting phase. There is no sense

of controlling the process with zero values of the controller.

In the starting phase we need to ensure that the part Δθik in

(14) will be positive.

Analyzing the sign of the elements that are part of (13)

we consider that some of them are always positive. Those are

constants αP , αI , αD, αR, normalized relative density λi
k, and

the summation 1+ r2k. In our case we also consider a positive

monotonic plant (Gsign = 1). Remaining elements from the

(13) are ekεk and ekΔ
ε
k. Only these two products could be

negative (the multiplier and the multiplicand have different

sing). As we said above in the starting phase we want to avoid

such kind of situations. We can also notice that in (13) the

parameter ΔRi
k do not consist absolute value operator. This is

because the parameter present the compensation in operating

point that might be positive or negative.

The following scenarios describe all the possible situations

that could appear in the starting phase of the process control.

These situations (also presented in Fig. 1) analyze the different

initial values of the process output (y0) in comparison to

the reference value (r0) and moreover, propagate the possible

ways of how the process output might react:

1) IF (y0 > r0 and yk > yrk) THEN
(ek < 0 and εk < 0 and Δε

k < 0)
The product ekεk > 0
The product ekΔ

ε
k > 0

2) IF (y0 > r0 and yk < yrk) THEN
(ek < 0 and εk > 0 and Δε

k > 0)
The product ekεk < 0
The product ekΔ

ε
k < 0

3) IF (y0 < r0 and yk < yrk) THEN:

(ek > 0 and εk > 0 and Δε
k > 0)

The product ekεk > 0
The product ekΔ

ε
k > 0

4) IF (y0 < r0 and yk > yrk) THEN:

(ek > 0 and εk < 0 and Δε
k < 0)

The product ekεk < 0
The product ekΔ

ε
k < 0

From the scenarios from 1) to 4) we can notice that only in

the second and forth scenario we have a undesirable situation

where products ekεk and ekΔ
ε
k are negative. To avoid this

in the starting phase we simply use the absolute values of the

mention products (13). In case when the products are positive,

using the absolute values do not change the performance of the

adaptation law. Our assumption here is that the performance of

the process control will be improved in case when the absolute



values are used in the starting phase.

The another question then arises, ”When the starting phase

finishes (omit the absolute values in (13))?” and when to con-

tinue the adaptation without calculating the absolute values?

We consider that the period of five time constants (5τ ) is

enough time to deal with the problem describe above. The

time constant is defined in section II according to the chosen

linear reference model.

When dealing with adaptive control algorithms one needs

to have in mind the potential instability of the system that can

occur [22]. There exist many known approaches that make

adaptive laws more robust [23], [24]. In [18] and [19] several

supervisory mechanisms were included in the adaptive law to

prevent parameter drift and instability. In this article we will

employ the same ones (dead zone ddead in the adaptive law,

parameter projection
[
θ, θ

]
, leakage σL in the adaptive law

and interruption of adaptation [umin, umax]). The general idea

behind the dead zone in the adaptive law is that the adaptation

is simply switched off if the absolute value of the error is small

[19]. All the supervisory mechanisms of the adaptive law are

the same as were proposed in [18] and [19].

IV. SIMULATION STUDY

In the section III we presented four different scenarios that

might appear during the starting phase of the process control

and furthermore, we propagated the possible trajectories of the

output signal. In this section we present more detail analysis

of two scenarios (the second and the third). Our goal is to

confirm the assumptions exposed in section III which foresees

that using the adaptation law with absolute values will improve

the performance of the process control in starting phase.

For the purpose of testing our assumptions we chose the

model of a heat exchanger (HE) plant. The basic idea of

controlling the HE is to control the output temperature (output

signal yk) in the second water circuit with the water flow

(control signal uk) in the first circuit.

All the simulations shown in this section are started with

no a priori knowledge about the controlled process and the

RECCo controller is started with zero fuzzy rules. Fuzzy

membership functions and fuzzy rules (clouds) are evolved

during the process control. Also the parameter settings are

the same for all experiments, and only the initial value of

the output signal y0 is different, because our goal is to show

that the algorithm successfully works for different starting

scenarios.

The parameters in RECCo algorithm are separated into tree

subgroups (process, evolving and adaptive parameters). In the

group of process parameters are the time constant reference

model τ = 40 s, sampling time of the system Ts = 2 s, and

minimal and maximal value of the reference signal (rmin = 10
and rmin = 50). In the second group are evolving parameters

which define “why”, “when” and “how many” clouds are

going to be created. Due to the normalized data space the

parameter γmax can be fixed to 0.93. The minimal number

of data samples between the last created cloud and the new

cloud is defined with parameter nadd = 20, and moreover, the

maximal number of clouds that could be created is defined

with cmax = 100. The third group of parameters define the

adaptive law of the RECCo controller and are described in

section III. The adaptation gains αP , αI , αD, and αR are equal

to 0.1, the dead zone is ddead = 0.05, parameter projection

is
[
θ, θ

]
= [0,∞], and the leakage is σL = 10−6. The output

of the RECCo controller (actuator’s interval) is defined in the

range [0, 20].
As we already said, in this section we present analysis of

the second and third scenario described in section III. For both

scenarios we provided experiments where first, the absolute

value in (13) is omitted and second the absolute value in

starting phase is used. The Fig. 2 presents the situation when

the initial value of the output signal (output temperature) is

bigger than the reference value (y0 = 40 > rk = 30). In

Fig. 2 the first row present the results without absolute values

in adaptation law, and the second row present the results

where the new adaptation law is used (13). In top left and

bottom left plots in Fig. 2 are shown the reference rk, the

model-reference yrk, and the output signal yk. It is obvious

that using the adapting law as (13) provides better results

and the RECCo algorithm very quickly evolve and adapt his

structure to control the system. In this case we confirmed our

assumptions that new adaptation will provide better results.

The second pair of plots (in the middle of Fig. 2) show the

control signals uk. In the third pair of plots are presented the

tracking error εk and process error ek.

The third scenario from the section III describe the situation

when the initial output value of the controlled system is lower

than the desired reference (y0 = 20 < rk = 30). In this

case we assumed that there will be no big difference between

the two approaches (without and with absolute value). In Fig.

3 are shown the results of the experiment. First row present

the results without and second row with absolute value in the

adaptation law (13). In first pair of plots the reference rk, the

model-reference yrk, and the output signal yk are shown. In

this case it is intuitively not so obvious which performance is

better. We measured the rise time Tr (black dashed line) and

settling time Ts (green dashed line) due to compare the results.

For both quality and performance measures the new adaptation

law using the absolute values provides better results. The

middle plots in Fig. 3 the control signals are shown. We can

notice that in this case it is not very big difference. The last

plots show the tracking error εk and the process error ek.

V. CONCLUSION

The RECCo controller is adaptive and evolving algorithm

which starts with zero fuzzy rules (zero data clouds) and with

zero initial values of the controller parameters. Furthermore,

the adaptation law is error driven and downward limited so

we want to avoid situations where in the starting phase we

have negative error. In this paper we proposed an solution and

improvement in the adaptation law were in the starting phase

an absolute value of the tracking and process error is used.

Through the theoretical and experimental analysis in this paper

we showed that using this approach we improve the efficiency
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Fig. 1. Four different scenarios for analyzing the starting phase of the process control. In each figure a reference signal rk , model-reference yrk , and output
signal yk are shown.

of the RECCo controller. These are the real life scenarios when

the initial value of the output signal is bigger than the desired

reference.
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Fig. 2. Compassion between the process control performances where calculating the adaptive law is implemented without (first row) and with (second row)
absolute value in (13). Initial value of output signal is yk = 40 and the reference is rk = 30.
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Fig. 3. Compassion between the process control performances where calculating the adaptive law is implemented without (first row) and with (second row)
absolute value in (13.) Initial value of output signal is yk = 20 and the reference is rk = 30.
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controller for a hydraulic plant,” in Evolving and Adaptive Intelligent
Systems (EAIS), 2013 IEEE Conference on, April 2013, pp. 1–8.
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