
School of Computing and Communications
Lancaster University

Novel Security Mechanisms for Wireless Sensor
Networks

Ibrahim Ethem Bagci
B.Sc.
M.Sc.

Submitted for the degree of
Doctor of Philosophy

January 2016



To my family ...

i



Abstract

Wireless Sensor Networks (WSNs) are used for critical applications such as health care,

traffic management or plant automation. Thus, we depend on their availability, and

reliable, resilient and accurate operation. It is therefore essential that these systems

are protected against attackers who may intend to interfere with operations. Existing

security mechanisms cannot always be directly transferred to the application domain of

WSNs, and in some cases even novel methods are desirable to give increased protection

to these systems.

The aim of the work presented in this thesis is to augment security of WSNs by

devising novel mechanisms and protocols. In particular, it contributes to areas which

require protection mechanisms but have not yet received much attention from the research

community. For example, the work addresses the issue of secure storage of data on sensor

nodes using cryptographic methods. Although cryptography is needed for basic protection,

it cannot always secure the sensor nodes as the keys might be compromised and key

management becomes more challenging as the number of deployed sensor nodes increases.

Therefore, the work includes mechanisms for node identification and tamper detection by

means other than pure cryptography.

The three core contributions of this thesis are (i) Methods for confidential data

storage on WSN nodes. In particular, fast and energy-efficient data storage and retrieval

while maintaining the required protection level is addressed. A framework is presented

that provides confidential data storage in WSNs with minimal impact on sensor node

operation and performance. This framework is further advanced by combining it with

secure communication in WSNs. With this framework, data is stored securely on the flash

ii



file system such that it can be directly used for secure transmission, which removes the

duplication of security operations on the sensor node. (ii) Methods for node identification

based on clock skew. Here, unique clock drift patterns of nodes, which are normally a

problem for wireless network operation, are used for non-cryptographic node identification.

Clock skew has been previously used for device identification, requiring timestamps to be

distributed over the network, but this is impractical in duty-cycled WSNs. To overcome

this problem, clock skew is measured locally on the node using precise local clocks.

(iii) Methods for tamper detection and node identification based on Channel State

Information (CSI). Characteristics of a wireless channel at the receiver are analysed using

the CSI of incoming packets to identify the transmitter and to detect tampering on it. If

an attacker tampers with the transmitter, it will have an effect on the CSI measured at

the receiver. However, tamper-unrelated events, such as walking in the communication

environment, also affect CSI values and cause false alarms. This thesis demonstrates

that false alarms can be eliminated by analysing the CSI value of a transmitted packet

at multiple receivers.

iii



Declaration

This thesis is a presentation of my original research work. No part of this thesis has been

submitted elsewhere for any other degree or qualification. All work is my own unless

otherwise stated. The work was carried out under the guidance of Dr Utz Roedig, at

Lancaster University's School of Computing and Communication.

29\mathrm{t}\mathrm{h} January 2016

Ibrahim Ethem Bagci

Copyright c\bigcirc 2016 by Ibrahim Ethem Bagci.

``The copyright of this thesis rests with the author. No quotations should be published or

information and results derived from this thesis without acknowledgement.""

iv



Acknowledgements

I would like to express my gratitude to my supervisor, Utz Roedig, for his endless

guidance, advice, support and encouragement during my doctoral study. He has helped

in many ways. I feel extremely lucky to have him as my supervisor.

I would like to thank my examiners, Stephen Hailes and David Hutchison, for their

comments and suggestions. I am also indebted to my previous supervisors, Bulent Tavli

and Kemal Bicakci, for their encouragement to pursue a PhD degree.

I have had wonderful colleagues and friends in the department who have helped

and supported me. I would like to thank James Brown, Steven Simpson, Paul Alcock,

Alex King, Martin Bor, Jose Linares, Noor Shirazi, John Vidler, James Hadley, Arsham

Farshad, Mohammad Reza Pourmirza and Arash Ghamari. I am also grateful to our

current and former research support staff Carol, Aimee, Richard, Debbie, Liz, Barbara

and Charlotte.

I have collaborated with great researchers during my PhD. I would like to thank

Thiemo Voigt, Shahid Raza, Antony Chung, Matthias Schulz, Matthias Hollick and Ivan

Martinovic.

I have had many good friends in Lancaster. They have made my life more bearable.

I would like to thank Hayat, Muzeyyen, Ibrahim, Sertac, Hasan, Mehdi, Mahmoud,

Gaurav, Arooj, Yehia, Federica, Musab, Yusuf, Ebru, Bulut and Leticia. I would also

like to thank my friends Tugrul, Tuba, Yusuf, Halil and Ulvi in Manchester.

Last but not least, I am grateful to my family for their prayers and supports. I would

like to thank my best friend and twin brother Enes, my elder sister Elif, and my parents.

v



Publications

Some of the materials in this thesis are published in various conferences and workshops.

These publications and my contributions on them are listed below.

1. Ibrahim Ethem Bagci, Mohammad Reza Pourmirza, Shahid Raza, Utz Roedig, and

Thiemo Voigt. Codo: Confidential Data Storage for Wireless Sensor Networks. In

Proceedings of the 9th IEEE International Conference on Mobile Adhoc and Sensor

Systems (MASS'12), vol.Supplement, pp.1-6, 8-11 October 2012

Contributions: I contributed to the idea of the paper. I implemented Codo

framework on Contiki operating system. I did the most of the evaluation of the

proposed mechanism. I am the main author of the paper.

2. Ibrahim Ethem Bagci, Shahid Raza, Tony Chung, Utz Roedig, and Thiemo Voigt.

Combined Secure Storage and Communication for the Internet of Things. In

Proceedings of the 10th Annual IEEE Communications Society Conference on

Sensor, Mesh and Ad Hoc Communications and Networks (SECON'13), pp.523-531,

24-27 June 2013.

Contributions: I contributed to the idea of the paper. I implemented the extension

for IPsec on Contiki operating system. I did the most of the evaluation of the

proposed mechanism. I am the main author of the paper.

3. Ibrahim Ethem Bagci and Utz Roedig. Node Identification Using Clock Skew.

In Proceedings of the 5th Workshop on Real-World Wireless Sensor Networks

(RealWSN'13), pp. 111-123, 19-20 September 2013.

Contributions: I contributed to the idea of the paper. I implemented clock

vi



sampling code on Contiki operating system, and linear programming code for clock

skew calculation on MATLAB. I did the most of the evaluation of the proposed

mechanism. I am the main author of the paper.

4. Ibrahim Ethem Bagci, Utz Roedig, Matthias Schulz, and Matthias Hollick. Short

Paper: Gathering Tamper Evidence in Wi-Fi Networks Based on Channel State

Information. In Proceedings of the 7th ACM Conference on Security and Privacy

in Wireless \& Mobile Networks (WiSec'14), pp. 183-188, 23-25 July 2014.

Contributions: I contributed to the idea of the paper. I implemented tamper

detection code on MATLAB. I did the most of the evaluation of the proposed

mechanism. I am the main author of the paper.

5. Ibrahim Ethem Bagci, Shahid Raza, Utz Roedig, and Thiemo Voigt. Fusion:

coalesced confidential storage and communication framework for the IoT. Security

and Communication Networks, 2015, DOI: 10.1002/sec.1260.

Contributions: I contributed to the idea of the paper. I implemented the extension

for IPsec on Contiki operating system. I did the most of the evaluation of the

proposed mechanism. I am the main author of the paper.

6. Ibrahim Ethem Bagci, Utz Roedig, Ivan Martinovic, Matthias Schulz, and Matthias

Hollick. Using Channel State Information for Tamper Detection in the Internet

of Things. In Proceedings of the 31st Annual Computer Security Applications

Conference (ACSAC'15), 2015.

Contributions: I contributed to the idea of the paper. I did the experiments. I

implemented tamper detection code on MATLAB. I did the most of the evaluation

of the proposed mechanism. I am the main author of the paper.

vii



Table of Contents

Abstract ii

Declaration iv

Acknowledgements v

Publications vi

Table of Contents viii

List of Acronyms xvi

1 Introduction 1

1.1 Problem Statement and Thesis Aims . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2.1 Confidential Data Storage for Wireless Sensor Networks . . . . . . 4

1.1.2.2 Node Identification Based on Clock Skew . . . . . . . . . . . . . . 4

1.1.2.3 Tamper Detection and Node Identification Based on Channel State

Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background and Related Work 7

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Information Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Wireless Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 IEEE 802.15.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.4 6LoWPAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.5 IPsec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.5.1 IPsec for 6LoWPAN . . . . . . . . . . . . . . . . . . . . . . . . . . 12

viii



2.1.6 IEEE 802.11n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.6.1 Beamforming and Spatial Expansion . . . . . . . . . . . . . . . . . 15

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Confidential Data Storage in Wireless Sensor Networks . . . . . . . . . 18

2.2.2 Node Identification Based on Clock Skew . . . . . . . . . . . . . . . . . 20

2.2.3 Tamper Detection and Node Identification Based on Channel State

Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Confidential Data Storage for Wireless Sensor Networks 24

3.1 Confidential Data Storage for Wireless Sensor Networks . . . . . . . . . . . 24

3.1.1 Limitations of Existing Solutions . . . . . . . . . . . . . . . . . . . . . 26

3.1.2 Codo: Confidential Data Storage Framework . . . . . . . . . . . . . . . 27

3.1.3 Codo Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.3.1 Coffee File System (CFS) Optimisation . . . . . . . . . . . . . . . 30

3.1.3.2 Codo Extensions for CFS . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.4 Codo Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.4.1 cfs write() Performance . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.4.2 cfs read() Performance . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.4.3 Cache Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Combined Storage and Communication for Internet of Things . . . . . . . 41

3.2.1 The Secure Storage and Communication Framework . . . . . . . . . . 43

3.2.1.1 Communication Component . . . . . . . . . . . . . . . . . . . . . . 44

3.2.1.2 Storage Component . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1.3 Framework Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.1.5 Security Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.2.1 Storage Overheads . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.2.2 Performance Gains . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.2.3 Energy Consumption . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Node Identification Based on Clock Skew 61

4.1 Clock Skew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.1 Definition of Clock Skew . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.2 Clock Skew Determination . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.2.1 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.2.2 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.3 Clock Skew Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Remote Clock Skew Determination . . . . . . . . . . . . . . . . . . . . . . . 66

ix



4.2.1 The Impact of Network Jitter . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.2 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Local Clock Skew Determination . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.1 Local Clock Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.2 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.3 Processing Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.4 Sampling Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Tamper Detection and Node Identification Based on Channel State

Information 76

5.1 Tamper Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1.1 Single Receiver Tamper Detection . . . . . . . . . . . . . . . . . . . . . 80

5.1.2 Multi-Receiver Tamper Detection . . . . . . . . . . . . . . . . . . . . . 81

5.1.2.1 Threshold Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.2.2 Time-Wise Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 Single Receiver Tamper Detection . . . . . . . . . . . . . . . . . . . . . 86

5.2.1.1 Experiment 1: Device Movement . . . . . . . . . . . . . . . . . . . 87

5.2.1.2 Experiment 2: Device Replacement . . . . . . . . . . . . . . . . . 90

5.2.1.3 Experiment 3: Pedestrians . . . . . . . . . . . . . . . . . . . . . . 91

5.2.1.4 Experiment 4: Baseline . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.2 Multi-Receiver Tamper Detection . . . . . . . . . . . . . . . . . . . . . 94

5.2.2.1 Controlled Movement . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.2.2 Uncontrolled Movement . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Conclusion and Future Work 112

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Threat Models and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Bibliography 119

x



List of Figures

2.1 A typical multi-hop Wireless Sensor Network. . . . . . . . . . . . . . . . 9

2.2 A simple diagram of IEEE 802.15.4 protocol stack. . . . . . . . . . . . . 10

2.3 LOWPAN IPHC encoding in IPv6 Over Low Power Wireless Personal

Area Networks (6LoWPAN). . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 General LOWPAN NHC encoding in 6LoWPAN. . . . . . . . . . . . . . 11

2.5 An example of Encapsulating Security Payload (ESP) Security Associa-

tionss (SAs) taken from an Internet Protocol Security (IPsec) configuration

file on Ubuntu operating system. . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 LOWPAN NHC EH encoding in 6LoWPAN. . . . . . . . . . . . . . . . . 13

2.7 LOWPAN NHC ESP encoding in 6LoWPAN. . . . . . . . . . . . . . . . 13

2.8 A Multiple Input Multiple Output (MIMO) system consisting of a trans-

mitter and a receiver with 2 antennas. . . . . . . . . . . . . . . . . . . . 15

2.9 An Orthogonal Frequency Division Multiplexing (OFDM) signal in the

frequency domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 The Contiki Coffee File System (CFS) . . . . . . . . . . . . . . . . . . . . 29

3.2 Execution time for sequential writes of 16byte blocks to CFS using a log

record size of 256byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Writing of 2048byte in blocks of 256byte, 64byte, 32byte and 16byte using

cfs write(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Reading of 2048byte in blocks of 256byte, 64byte, 32byte and 16byte using

cfs read(). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

xi



3.5 A: Traditional Operation: 1 - Data is requested from the node. 2 - The

application forwards the request to the file system. 3 - The data is

decrypted and passed to the application. 4 - The application sends data

for transmission to the IP stack which secures the data. 5 - The data is

transmitted. B: Combined Secure Storage and Communication: 1 - Data

is requested from the node. 2 - The application forwards the request to

the file system. 3 - The secured data is directly passed into the IP stack.

4 - Data is transmitted without cryptographic processing. . . . . . . . . . 42

3.6 A compressed and ESP secured IPv6/User Datagram Protocol (UDP)

packet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7 Storage overheads for different payload sizes. . . . . . . . . . . . . . . . . 52

3.8 Duration of different operations involved in preparing single packet for

transmission with software and hardware encryption. . . . . . . . . . . . . 54

3.9 Duration of different operations involved in preparing single packet for

transmission with software and hardware encryption when storing ESP

encrypted fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.10 Duration of different operations involved in preparing single packet for

transmission with software and hardware encryption when using a non-

matching Internet Protocol (IP) address. . . . . . . . . . . . . . . . . . . . 57

3.11 Duration of different operations necessary to prepare a single packet

for transmission when using the combined storage and communication

framework and when using individual storage and communication security

solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 Clock skew estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 The measured clock skew using five Zolertia Z1 nodes with remote clock

skew determination. 5 observations are carried out using 2500 timestamp

samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 The measured clock skew using five Zolertia Z1 nodes with local clock

skew determination. 5 observations are carried out using 600 timestamp

samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 The measured clock skew of five Zolertia Z1 nodes with remote local clock

skew determination. 10 independent observations with 600 timestamp

samples are used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Node 1 skew for different sample sizes and sample period of 7.8125ms and

1s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xii



5.1 Effects of environmental changes and tampering on Channel State Infor-

mation (CSI) amplitude values of the 9th subcarrier of the 2nd antenna.

Environmental changes and tamper events have a similar effect on CSI

amplitude values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Amplitude CSI values for different experiments and antenna/stream com-

binations. Warmer colors represents higher amplitude values. Events such

as device movement/replacement and environmental changes are visible. . 86

5.3 Experiment 1 - Tamper evidence over time with device movement. Model

outputs for packets received with different spatial streams are combined

into the overall model to produce a single tamper evidence value. . . . . . 88

5.4 Experiment 2 - Tamper evidence over time in an environment with device

replacement (tampering) at t = 10min. Tamper evidence levels are rising

faster for smaller window sizes tw. . . . . . . . . . . . . . . . . . . . . . . 90

5.5 Experiment 3 - Tamper evidence over time in an environment with move-

ment at t = 15min, t = 16min and t = 17min. Tamper evidence levels

are lower for larger window sizes tw. . . . . . . . . . . . . . . . . . . . . . 92

5.6 Experiment 4 - Tamper evidence in a tamper free environment. The

tamper evidence value remains static at a low level over a long period of

time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7 A laptop and an antenna used in the experiments. Only the antenna is

tampered (moved or rotated) during the experiments. . . . . . . . . . . . 95

5.8 Controlled movement experiment layout. Receivers are shown as R1-4, and

transmitter is shown as T. The environment is static during the experiment.

A person is walking occasionally or waiting in Room 1 or Room 2. . . . . 96

5.9 CSI amplitude values of 2nd antenna of Receiver 3 during the controlled

movement experiment. Amplitude values change occasionally due to

movement until a tamper event at time t = 21.5min. . . . . . . . . . . . . 96

5.10 Euclidean distance in the controlled movement experiment. Tampering

is induced at t = 21.5min. Distance values at each receiver increase

occasionally until this time due to movement. . . . . . . . . . . . . . . . . 97

5.11 Mahalanobis distance in the controlled movement experiment. Tampering

is induced at t = 21.5min. Distance values at each receiver increase

occasionally until this time due to movement. . . . . . . . . . . . . . . . . 98

5.12 Earth Mover's distance in the controlled movement experiment. Tampering

is induced at t = 21.5min. Distance values at each receiver increase

occasionally until this time due to movement. . . . . . . . . . . . . . . . . 99

xiii



5.13 Tamper decisions (qi) for each individual receiver in the controlled move-

ment experiment using Euclidean distance and max(D\tau ) as threshold.

False alarms due to movement are present before the tampering event at

t = 21.5min. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.14 Multi-receiver tamper decisions (Qi) for the controlled movement exper-

iment. All receivers are taken into account and max(D\tau ) is used as

threshold. False alarms are avoided (FalsePositiveRate(FPR) = 0) while

the tamper event is correctly identified (For Euclidean and Mahalanobis

distance algorithms with TruePositiveRate(TPR) = 1 and for the Earth

Mover's distance algorithm with TPR = 0.94). . . . . . . . . . . . . . . . 100

5.15 Uncontrolled movement experiment layout. People are moving in the

rooms and in the corridor inducing CSI variations. . . . . . . . . . . . . . 101

5.16 Euclidean distance for the uncontrolled movement experiment. Tamper

events are indicated with vertical lines. Distance values of each receiver

show tampering and also movement during office hours. . . . . . . . . . . 101

5.17 Receiver Operating Characteristic (ROC) curve of the 4 receivers. . . . . 103

5.18 FPRs and TPRs with different thresholds. FPRs are always 0 during the

night time. max(D\tau ) gives high FPRs. \gamma EER reduces both FPRs and

TPRs. \gamma FNR=0 gives more balanced results. . . . . . . . . . . . . . . . . . 104

5.19 Effect of time-wise filtering on FPRs and TPRs when using \gamma FNR=0 as the

threshold. tw = 60 s reduces FPRs to 0, but it also reduces TPRs. . . . . 105

5.20 Effect of number of receivers to make a decision on FPRs and TPRs,

when using \gamma FNR=0 as the threshold and without using time-wise filtering.

Increasing the number of receivers reduces both FPR and TPR. . . . . . . 106

5.21 TPRs for different tamper events when using \gamma FNR=0 as the threshold and

without using time-wise filtering. . . . . . . . . . . . . . . . . . . . . . . . 107

xiv



List of Tables

3.1 Writing of 2048byte in 8 blocks of 256byte. . . . . . . . . . . . . . . . . . . 37

3.2 Reading of 2048byte in 8 blocks of 256byte. . . . . . . . . . . . . . . . . . 39

3.3 Experiment setup details used for evaluation. All experiments use ESP

encryption and authentication. The combined storage and communication

framework is used for different aspects. UDP checksum re-calculation is

assumed in some settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Obtained p-values describing how clearly nodes can be distinguished

from each other node. The smaller the value the more clearly nodes are

distinguishable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Obtained p-values when comparing a node with itself. Values are larger

(2 magnitudes) then the ones shown in Table 4.1. . . . . . . . . . . . . . . 68

4.3 p-values using Linear Programming (LP) and Linear Regression (LR) with

10 observations, 600 samples, 1s sample period. . . . . . . . . . . . . . . . 72

4.4 p-values using LR with 10 observations, 200 samples, 7.8125ms sample

period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1 The different tamper events and their times. . . . . . . . . . . . . . . . . . 102

5.2 FPRs and TPRs when using max(D\tau ) as the threshold. . . . . . . . . . . 103

5.3 Time ranges of tampered and untampered states for ROC calculation. . . 104

5.4 EERs for all the receivers in the uncontrolled experiment. . . . . . . . . . 104

5.5 Threshold values for each receiver. . . . . . . . . . . . . . . . . . . . . . . 105

xv



List of Acronyms

6LoWPAN IPv6 Over Low Power Wireless Personal Area Networks

AES Advanced Encryption Standard

AH Authentication Header

AP Access Point

CBC Cipher-block chaining

CCA Clear Channel Assessment

CFR Channel Frequency Response

CFS Coffee File System

CIR Channel Impulse Response

CPU Central Processing Unit

CSI Channel State Information

CSS Chirp Spread Spectrum

CTR Counter

DCO Digitally Controlled Oscillator

DTLS Datagram Transport Layer Security

DSSS Direct Sequence Spread Spectrum

DSUWB Direct Sequence Ultra Wideband

ECC Elliptic Curve Cryptography

EER Equal Error Rate

ESP Encapsulating Security Payload

xvi



FN False Negative

FNR False Negative Rate

FP False Positive

FPR False Positive Rate

FTP File Transfer Protocol

FTSP Flooding Time Synchronization Protocol

ICV Integrity Check Value

IKE Internet Key Exchange

IoT Internet of Things

IP Internet Protocol

IPsec Internet Protocol Security

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

IV Initialization Vector

LP Linear Programming

LR Linear Regression

MF Management Frame

MIMO Multiple Input Multiple Output

MISO Multiple Input Single Output

MMSE Minimum Mean Square Estimator

MTU Maximum Transmission Unit

NH Next Header

NIC Network Interface Card

OFDM Orthogonal Frequency Division Multiplexing

PSSS Parallel Sequence Spread Spectrum

RAM Random Access Memory

xvii



RF Radio Frequency

ROC Receiver Operating Characteristic

RSSI Received Signal Strength Indication

RSS Received Signal Strength

RTC Real-time Clock

SA Security Associations

SDR Software Defined Radio

SN Sequence Number

SPI Security Parameter Index

SSL Secure Sockets Layer

SVD Singular Value Decomposition

TLS Transport Layer Security

TP True Positive

TPM Trusted Platform Module

TPR True Positive Rate

TOR The Onion Router

UDP User Datagram Protocol

WPAN Wireless Personal Area Network

WSN Wireless Sensor Network

xviii



Chapter 1

Introduction

Embedded systems are computer systems designed to handle a specific task, and they

are often based on microcontrollers. Microcontrollers are small computers made of

processor(s), memory and peripherals on a single circuit board. With increasing devel-

opments on microcontroller technology, embedded systems became the most common

form of computers. They are being used in everyday objects like smart phones, electric

toothbrushes, cars and credit cards. Other reasons for popularity of embedded systems

are the improvements to wireless technologies and integration of them with the embedded

systems. These networked embedded systems are the building blocks of Wireless Sensor

Networks (WSNs).

WSNs are made of sensor nodes that sense the environment conditions and report

back to a central station, usually called the sink. Sensor nodes are low-power embedded

systems, and have sensing, processing and communication capabilities. WSNs are used

in many application scenarios. Enabling Internet Protocol (IP) on WSNs, as well as on

other networked embedded systems, led to realisation of the Internet of Things (IoT). It

was estimated by Cisco that there were over 12.5 billion IoT objects used in 2010, and it

is predicted to be 50 billion by 20201.

WSNs use different wireless protocols based on their application requirements. Some

of these protocols include IEEE 802.15.4 and IEEE 802.11 standards, or proprietary pro-

1https://www.cisco.com/web/about/ac79/docs/innov/IoT\.IBSG\.0411FINAL.pdf

1

https://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf


Chapter 1 Problem Statement and Thesis Aims

tocols. New hardware technologies capable of handling different protocols simultaneously

on a single device are also being developed. These technologies increase the usage of

WSNs even more.

1.1 Problem Statement and Thesis Aims

WSNs are used in many application scenarios, including critical applications such as

healthcare, traffic management and plant automation. These applications should work re-

liably, resiliently and accurately. Therefore, securing of these applications is of paramount

importance. There are many security solutions proposed for traditional computer systems,

but such solutions are designed to run on computers equipped with vast amounts of pro-

cessing power and memory, making it impossible to apply them directly on low-powered

sensor nodes that have limited processing and memory capabilities. Thus, existing

security solutions should be revised, or new solutions should be proposed, to be able to

secure WSNs.

The work presented in this thesis aims to enhance security of WSNs by designing

novel mechanisms and protocols that will help to optimise the usage of limited node

resources. The work contributes to areas that require protection mechanisms but have

not yet received much attention from the research community. The issue of secure storage

of data on sensor nodes is addressed, and mechanisms for node identification by means

other than pure cryptography are presented.

1.1.1 Motivation

Security in WSNs has to consider more than just the communication links. In particular,

sensor nodes make use of large local storage space in the form of flash memory to fulfil their

tasks. For example, a security camera attached to a sensor node may record images and

only provide image data (or the result of an image processing algorithm) on request. This

stored data on smart objects must be secured as well in addition to the communication

links used to access and transport this data. This is particularly important as sensor

nodes may be easy to access and to retrieve by an attacker. Furthermore, sensor nodes

2



Chapter 1 Problem Statement and Thesis Aims

are expected to be cheap and deployed in large quantities. It can be expected that devices

are thrown away at the end of their lifetime, and that a proper decommissioning process

in which data would be erased is not commercially viable. Therefore, the stored data on

sensor nodes should be cryptographically protected. Methods for efficient secure storage

using cryptographic methods are presented in this thesis.

Although cryptographic methods are essential for protection, they are expensive for

sensor nodes that have limited battery life and scarce processing power. Key management

also becomes more challenging with the number of deployed sensor nodes increasing.

Necessity for cryptographic methods should be reduced as much as possible. Further-

more, cryptographic methods cannot address all the security problems. For example, a

surveillance system might use wireless cameras to monitor critical infrastructures such

as an airport or power plant. Classical cryptography can be used to authenticate data

transmitted from the camera devices. However, tampering with a device (e.g. movement

or change of viewpoint) cannot be detected using cryptographic methods. For these

reasons, it is desirable to provide an additional layer of defence. An attacker may also

obtain key material and replace a node in the deployment to inject false observation data.

For these reasons, it is desirable to provide an additional layer of defence. To prevent

these kinds of attacks, various methods have been proposed to bind the identification

and authentication to the device hardware. Using special custom chips or hardware char-

acteristics of the device are some of the options. Custom chips are expensive and require

changes on the node design. Therefore, mechanisms that use hardware characteristics of

the device are more desirable. This thesis presents mechanisms for node identification

and tamper detection that do not require cryptographic operations or any additional

hardware.

1.1.2 Contributions

The three core contributions of this thesis are:

1. Methods for confidential data storage on WSN nodes.

2. Methods for node identification based on clock skew.

3



Chapter 1 Problem Statement and Thesis Aims

3. Methods for tamper detection and node identification based on Channel State

Information (CSI).

1.1.2.1 Confidential Data Storage for Wireless Sensor Networks

Many WSNs are used to collect and process confidential information. Confidentiality

must be ensured at all times and, for example, solutions for confidential communication,

processing or storage are required. To date, the research community has addressed mainly

the issue of confidential communication. Efficient solutions for cryptographically secured

communication and associated key exchange in WSNs exist. However, as many WSN

applications rely heavily on available on-node storage space, which is easily exposed to

an attacker, it is essential to ensure the confidentiality of that stored data. This thesis

presents Codo, a confidential data storage solution, which balances platform performance

and security requirements. An implementation of Codo for the Contiki WSN operating

system is provided, along with a performance evaluation.

Following from this work, the confidential data storage framework is combined with

secure communication in WSNs, more specifically in IoT. The future IoT may be based

on the existing and established IP. Many IoT application scenarios will handle sensitive

data. However, as security requirements for storage and communication are addressed

separately, work such as key management or cryptographic processing is duplicated. This

part of the thesis presents a framework that allows us to combine secure storage and

secure communication in the IP-based IoT. We see how data can be stored securely such

that it can be delivered securely upon request without further cryptographic processing.

1.1.2.2 Node Identification Based on Clock Skew

Clocks on wireless sensor nodes experience a natural drift. This clock skew is unique

for each node as it depends on the clock's manufacturing characteristics. Clock skew

can be used as unique node identifier that is useful for node authentication. We will

see how clock skew of a node's clock can be measured directly on the node by utilising

the available high-precision radio transceiver clock. A detailed implementation of this

4



Chapter 1 Problem Statement and Thesis Aims

proposed local clock skew tracking method for the Zolertia Z1 platform is presented. We

see how the required sampling effort to accurately measure clock skew can be determined.

How clock skew measurements can be aligned with existing transceiver operations in

order to avoid an increase in energy consumption is also discussed.

1.1.2.3 Tamper Detection and Node Identification Based on Channel State Infor-

mation

Wireless devices are often used in application scenarios with strict security requirements.

Examples are physical intrusion detection systems commonly used to protect factories,

airports or government buildings. In such scenarios, additional security features such as

tamper detection are highly desirable to complement traditional cryptographic mecha-

nisms. In this work, we see how to use CSI, extracted from off-the-shelf 802.11n Wi-Fi

cards, to calculate a tamper-evidence value for transmitters. This value enables detection

of tampering due to device movement or replacement. Algorithms for tamper-evidence

value computation are described, and the interpretation of this value is discussed and its

effectiveness is evaluated. Unfortunately, not only tamper events lead to CSI fluctuations;

movement of people in the communication environment has an impact too. Analysis of

CSI values of a transmission simultaneously at multiple receivers is proposed to improve

distinction of tamper and movement events. A moving person is expected to have an

impact on some but not all communication links between transmitter and the receivers.

A tamper event impacts on all links between transmitter and the receivers. The necessary

algorithms for the proposed multi-receiver tamper detection method are described. In

particular, the tamper detection capability in practical deployments with varying intensity

of people movement is analysed. In our experiments, the proposed system deployed in a

busy office environment is capable of detecting 53\% of tamper events while creating zero

false alarms.

5



Chapter 1 Thesis Outline

1.2 Thesis Outline

Chapter 2 begins with a brief background about the topics related to the works in the

thesis. It then gives an overview of the related work in security of WSNs, and discusses

the related work for the individual chapters of the thesis.

Chapter 3 explains Codo, the confidential data storage solution for WSNs. It gives

a design specification, explains the implementation, and evaluates the different aspects

of Codo. The chapter then explains the framework for combined secure storage and

communication for IoT with a detailed implementation and evaluation.

Chapter 4 describes our clock-skew-based node identification method. It describes

the local clock skew determination process and gives an analysis of clock sampling

requirements.

Chapter 5 explains tamper detection mechanism based on CSI. It describes a method

for tamper evidence computation and gives a detection analysis.

Chapter 6 summarizes the chapters with overall conclusion of the thesis, and discusses

the future work.

6



Chapter 2

Background and Related Work

This chapter first gives a brief background in Section 2.1 about the topics on which the

works in the thesis are based. It then discusses the related work for individual chapters

in Section 2.2.

2.1 Background

This thesis proposes novel security mechanisms for Wireless Sensor Networks (WSNs).

Therefore, this section starts with brief background on Information Security (Section 2.1.1)

and WSNs (Section 2.1.2). A combined secure storage and secure communication frame-

work is proposed in Chapter 3. This framework uses IPv6/6LoWPAN and IPsec/ESP

protocols, and necessary background is given in Sections 2.1.4 and 2.1.5. Chapter 5

proposes a node identification and tamper detection mechanism using Channel State

Information (CSI) of 802.11n networks. An overview of the 802.11n standard is given in

Section 2.1.6.

Background information given here is mainly brief explanations of the concepts. More

detailed information is given about the proposed solutions in each chapter if necessary.

2.1.1 Information Security

Information Security is a practice of protecting data on a computer system from those

with malicious intentions. Its key goals are Confidentiality, Integrity, Availability and

7



Chapter 2 Background

Non-repudiation:

\bullet Confidentiality is the prevention of disclosure of the information to unauthorized

parties.

\bullet Integrity is the prevention of modification of the information by unauthorized

parties.

\bullet Availability is the ability to provide the information to authorized parties when it

is needed.

\bullet Non-repudiation is the prevention of a sending/receiving party of a transaction

from denying that it sent/received the transmission.

Access Control is another important concept in Information Security. It controls who

can access the information on a computer system. It usually consists of three steps:

\bullet Identification is claiming what something is or who someone is, for example,

providing a user name to a system.

\bullet Authentication is verifying the claim, for example asking a password for a given

user name.

\bullet Authorization is giving someone or something permission to a given system after

passing identification and authentication steps.

This thesis proposes a combined confidential storage and communication framework,

that efficiently provides integrity, in Chapter 3. Clock skew values are used to identify

sensor nodes in Chapter 4. These values can further be used for authentication. In

Chapter 5, channel characteristics are used to identify wireless devices and detect

tampering.

2.1.2 Wireless Sensor Networks

A Wireless Sensor Network (WSN) is a wireless network consisting of sensor nodes that are

small, low-powered, embedded devices. A sensor node typically has a microcontroller, a

8



Chapter 2 Background

Sink node

Sensor nodes

Figure 2.1: A typical multi-hop Wireless Sensor Network.

radio transceiver, a battery and several sensors. Each monitors and senses the environment,

and reports back to a central node, usually called the sink. Data is generally sent from a

node to the sink in a multi-hop fashion, where the intermediate nodes between the node

and the sink participate in the sending operation. A typical multi-hop WSN is depicted

in Figure 2.1.

WSNs are used in many application scenarios such as environmental, health, home,

industrial, military, and so on. Based on the application requirements, they use different

wireless protocols. The most popular of these is the IEEE 802.15.4 standard. WSNs

also use the IEEE 802.11 standard, Bluetooth and proprietary protocols. An application

can use multiple protocols at the same time as well. One example scenario is a home

automation system consisting of a wireless camera, a connected light switch, a temperature

sensor and a controller that controls these devices. The wireless camera uses 802.11, the

light switch uses a proprietary protocol (for example LightwaveRF), and the temperature

sensor uses 802.15.4 to connect to the controller. Additionally, new hardware technologies

capable of handling different protocols simultaneously on a single device also exist.

2.1.3 IEEE 802.15.4

The IEEE 802.15.4 standard defines the physical layer and media access control for

low-data-rate Wireless Personal Area Networks (WPANs), which require low-cost and

low-speed communication between devices. 802.15.4 specifies wireless communication

techniques, wireless spectrum to be used and media access control algorithms. A simple

diagram of the standard is shown in Figure 2.2.

9



Chapter 2 Background

IEEE 802.15.4

868/915 MHz

Physical Layer

IEEE 802.15.4

2.4 GHz

Physical Layer

IEEE 802.15.4

Media Acces Layer

Upper Layers

(ZigBee, ISA100.11a, WirelessHART, ...)

Figure 2.2: A simple diagram of IEEE 802.15.4 protocol stack.

802.15.4 can operate on three different frequency bands: 2.4 GHz (global), 915 MHz

(North America), and 868 MHz (Europe). Data rates are 20 to 250 kbps and the

transmission range of the devices varies between 10m and 100m. 802.15.4 uses Direct

Sequence Spread Spectrum (DSSS) (most common), Parallel Sequence Spread Spectrum

(PSSS), Chirp Spread Spectrum (CSS) or Direct Sequence Ultra Wideband (DSUWB)

technologies for the physical layer modulation technique.

Media access control enables the control of the 802.15.4 packets transmitted over

the air. It provides management and data services to the upper layers. Upper layer

specifications such as ZigBee, ISA100.11a and WirelessHART extend the standard based

on the application requirements.

2.1.4 6LoWPAN

Every device on the Internet has a numerical label, called Internet Protocol (IP) address,

that is used for device identification and location addressing. Internet Protocol version

4 (IPv4) is the most used version of the IP protocol. IPv4 has a 32-bit address space,

and it can assign 232 addresses. With the increase of the devices available on the Internet,

more addresses than IPv4 could handle were needed. Therefore, Internet Protocol version

6 (IPv6) was proposed. IPv6 has a 128-bit address space allowing 2128 addresses, more

than 7.9\times 1028 times as many as IPv4 can offer.

Although IPv6 allows a huge number of devices to be addressed on the Internet, low

powered networked embedded devices were being left out from the Internet because of their

10



Chapter 2 Background

0 1 1 TF NH NLIM CID SAC SAM M DAC DAM

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15BIT:

TF  : Traffic Class

NH  : Next Header

HLIM: Hop Limit

CID : Context Identifier

SAC : Source Address Compression

SAM : Source Address Mode

M   : Multicast Compression

DAC : Destination Address Compression

DAM : Destination Address Mode

Figure 2.3: LOWPAN IPHC encoding in 6LoWPAN.

Var-len ID Compressed Next Header...

Figure 2.4: General LOWPAN NHC encoding in 6LoWPAN.

limited processing ability and small packet size. WSNs mostly use the 802.15.4 standard,

and packet sizes in 802.15.4 are too small to use IPv6. The Maximum Transmission Unit

(MTU) must be at least 1280 bytes in IPv6, while the packet size of 802.15.4 is 127 bytes.

IPv6 Over Low Power Wireless Personal Area Networks (6LoWPAN) was introduced to

this end, and it allowed embedded devices to use the IP protocol. 6LoWPAN-enabled

devices can send and receive IPv6 packets over 802.15.4-based networks, thanks to the

encapsulation and header-compression mechanisms of 6LoWPAN. It compresses the IPv6

header, and increases the payload carried in 802.15.4 frames. Enabling IP on networked

embedded systems led to the realisation of the Internet of Things (IoT).

Header-compression mechanisms defined by 6LoWPAN use LOWPAN IPHC for IP

header compression and LOWPAN NHC for the next-header compression. Figure 2.3

shows the LOWPAN IPHC header. The IP header length is reduced to 2 bytes for

single-hop networks and to 7 bytes for multi-hop networks with LOWPAN IPHC. When

the next header field is set to 1 in LOWPAN IPHC, the next header of compressed

IPv6 header will be encoded with LOWPAN NHC. A general LOWPAN NHC header

is shown in Figure 2.4. The length of LOWPAN NHC header can be 1 or more bytes.

The first variable bits are used to identify the next header type, and the remaining

bits encode the header information. 6LoWPAN defines LOWPAN NHC for only IP

extension header (LOWPAN NHC EH) and the User Datagram Protocol (UDP) header

11



Chapter 2 Background

[01]  # ESP SAs using 192 bit long keys (168 + 24 parity)

[02]  add 192.168.1.100 192.168.2.100 esp 0x201 -E 3des-cbc

[03]          0x7aeaca3f87d060a12f4a4487d5a5c3355920fae69a96c831;

[04]  add 192.168.2.100 192.168.1.100 esp 0x301 -E 3des-cbc

[05]          0xf6ddb555acfd9d77b03ea3843f2653255afe8eb5573965df;

Figure 2.5: An example of ESP SAs taken from an IPsec configuration file on Ubuntu operating
system.

(LOWPAN NHC UDP).

The combined secure storage and communication framework proposed in Chapter 3

is based on IPv6/6LoWPAN protocols.

2.1.5 IPsec

IPv6 communications between two end points are secured by Internet Protocol Secu-

rity (IPsec). IPsec is a protocol suite that includes Authentication Header (AH) and

Encapsulating Security Payload (ESP). AH provides integrity and data origin authenti-

cation. ESP provides integrity, data origin authentication and also confidentiality. IPsec

uses Security Associations (SA) that keep the bundle of algorithms and parameters

necessary for AH and ESP operations. There is also a 32-bit indexing parameter, called

the Security Parameter Index (SPI), in each SA that is used by a receiver to identify the

correct SA.

An example of ESP SAs taken from an IPsec configuration file on the Ubuntu operating

system is shown in Figure 2.5. There are two 192-bit keys defined for communications

from 192.168.1.100 to 192.168.2.100 and from 192.168.2.100 to 192.168.1.100 on lines 3

and 5, respectively. The numbers after each esp keyword represent SPIs, and they must

be unique. The 3DES algorithm in CBC mode is used for encryption.

2.1.5.1 IPsec for 6LoWPAN

IPsec is defined for IPv6, and it is not suitable to use directly on 6LoWPAN packets.

Therefore, a definition for AH and ESP encodings for 6LoWPAN is provided in [RDH+12],

in addition to the IP extension header and the UDP header encodings. They use IP

extension header (LOWPAN NHC EH) to link AH (LOWPAN NHC AH) and ESP

12



Chapter 2 Background

1 1 1

0 1 2 3 4 5 6 7BIT:

EID: Extension Header ID

NH : Next Header

0 EID NH

Figure 2.6: LOWPAN NHC EH encoding in 6LoWPAN.

1 1 1

0 1 2 3 4 5 6 7BIT:

SPI: Security Parameter Index

SN : Sequence Number

NH : Next Header

0 NHSPI SN

Figure 2.7: LOWPAN NHC ESP encoding in 6LoWPAN.

(LOWPAN NHC ESP) extension headers.

LOWPAN NHC EH header is shown in Figure 2.6. The Extension Header ID field

is used to identify whether the next header is an AH or ESP header. The Next Header

field is set to 1 to indicate that the next header is LOWPAN NHC encoded.

Since only IPsec/ESP is used in Chapter 3, an explanation of the LOWPAN NHC AH

extension header is omitted here. The LOWPAN NHC ESP extension header is depicted

in Figure 2.7. Its fields are defined as follows:

\bullet The first four bits in the LOWPAN NHC ESP represent the NHC ID defined for

ESP. These are set to 1110.

\bullet If SPI = 00: the default SPI for the 802.15.4 network is used, and the SPI field is

omitted. We set the default SPI value to 1. This does not mean that all nodes use

the same SA, but that every node has a single preferred SA, identified by SPI 1.

If SPI = 01: First 8 bits of the SPI are carried inline; the remaining 24 bits are

elided.

If SPI = 10: First 16 bits of the SPI are carried inline; the remaining 16 bits are

elided.

If SPI = 11: All 32 bits of the SPI are carried inline.

\bullet If SN = 0: The first 16 bits of the sequence number are used. The remaining 16

bits are assumed to be zero.

13



Chapter 2 Background

If SN = 1: All 32 bits of the sequence number are carried inline.

\bullet If NH = 0: The next header field in ESP will be used to specify the next header,

and it is carried inline.

If NH = 1: The next header will be encoded using LOWPAN NHC. In case

of ESP, this would require the end systems to perform 6LoWPAN compres-

sion/decompression and encryption/decryption jointly.

Combined secure storage and communication framework proposed in Chapter 3 is

based on IPsec/ESP protocols.

2.1.6 IEEE 802.11n

The IEEE 802.11 standard specifies the physical layer and media access control for

wireless local-area network communications. 802.11n is an amendment to 802.11, and it

was first proposed in 2002 and its final draft was approved in 2009. 802.11n can operate

on 2.4 or 5 GHz frequency bands, and it provides data rates from 6 to 600 Mbit/s.

Wireless systems based on 802.11 standards are called Wi-Fi systems.

The 802.11n standard uses a Multiple Input Multiple Output (MIMO) technique,

where multiple antennas are used by both transmitter and receiver. MIMO helps to

improve the network reliability and performance with spatial diversity and spatial

multiplexing techniques. Network reliability can be improved with spatial diversity

by sending the same data from all the antennas, and network performance can be

improved with spatial multiplexing by sending independent data streams from different

spatial dimensions. Transmitters decide which technique to use according to the channel

conditions. Therefore, receivers have to estimate the amplitude changes and phase shifts

on the channel, and report back this information to the transmitters. The estimation of

the channel is called Channel State Information (CSI). An example of a MIMO system

consisting of a transmitter and a receiver with 2 antennas is shown in Figure 2.8.

14



Chapter 2 Background

Transmitter Receiver

Figure 2.8: A MIMO system consisting of a transmitter and a receiver with 2 antennas.

Frequency

Am
pl
itu
de

Channel

Subcarriers

Figure 2.9: An OFDM signal in the frequency domain.

2.1.6.1 Beamforming and Spatial Expansion

802.11n uses Orthogonal Frequency Division Multiplexing (OFDM) as a modulation

scheme. In OFDM, information is sent by multiple subcarriers (or subchannels) sc within

the same single channel. An example of an OFDM signal in the frequency domain is

depicted in Figure 2.9.

The wireless channel can be described linearly on each subcarrier as a matrix Hsc
R\times T

where the signals of each transmission antenna T sc
1 . . . T sc

T are projected onto the reception

antennas Rsc
1 . . . Rsc

R . Transmitters can perform beamforming or spatial expansion using

filtering matrices Fsc
T\times S instead of directly transmitting data streams over each trans-

mission antenna. Spatial expansion improves reliability (but also increases redundancy)

by expanding a data stream to several transmission antennas. Beamforming improves

performance by allowing the transmission of multiple spatial streams Ssc
1 . . . Ssc

S in parallel.

The transmitter performs Singular Value Decomposition (SVD) on the channel matrix

and decides whether spatial expansion or beamforming should be used. If we represent

the CSI matrix as Msc
R\times S measured for each subcarrier sc, the channel can be modelled

as

15



Chapter 2 Related Work

\left[      
Rsc

1

...

Rsc
R

\right]      =

\left[      
Hsc

1,1 . . . Hsc
1,T

...
. . .

...

Hsc
R,1 . . . Hsc

R,T

\right]      
\left[      
F sc
1,1 . . . F sc

1,S

...
. . .

...

F sc
T,1 . . . F sc

T,S

\right]      
\underbrace{}  \underbrace{}  \left[         

M sc
1,1 . . . M sc

1,S

...
. . .

...

M sc
R,1 . . . M sc

R,S

\right]         

\left[      
Ssc
1

...

Ssc
S

\right]      

which can be written in a shorter form as

Rsc = Hsc
R\times TF

sc
T\times SS

sc = Msc
R\times SS

sc

where R, T and S are the numbers of reception antennas, transmission antennas and

spatial streams, respectively. Here, Rsc, Fsc and Ssc are the corresponding signal vectors

per subcarrier sc.

Chapter 5 uses CSI values of 802.11n OFDM networks for tamper detection. CSI

values for each subcarrier provide rich information about the wireless channel.

2.2 Related Work

Security research in WSNs has received much attention over the years with the increasing

use of WSNs. Unlike the wired or conventional wireless networks, WSNs operate with

sensor nodes that have limited resources in terms of processing, memory, power or

bandwidth. Therefore, traditional security solutions cannot be applied to WSNs directly,

and so security needs special care.

We proceed with an overview of existing work on security in WSNs. The following

sections then explain the existing work in detail related to the each chapters of the thesis.

Researchers have presented attacks against the functions of different network protocol

16



Chapter 2 Related Work

layers of WSNs [CMYP09b]. These attacks can be applied to a single layer or multiple

layers of the protocol, and they include jamming, collusion, unfairness, etc. Cryptography

is the first solution that comes to mind to circumvent most of these attacks, as is the

case in any other systems.

Various cryptographic algorithms are investigated for their suitability to the require-

ments of sensor nodes with limited resources [CMYP09b]. New cryptographic libraries,

methods and platforms are also proposed. Arazi et al. proposed an RSA-based framework

against DoS attacks that causes an attacker's resources to become exhausted before the

sensor's resources do [AQR07]. secFlek is a Trusted Platform Module (TPM) based on a

public-key platform that provides energy efficiency and fast security [SHCO08, HCSO09].

Liu et al. proposed TinyECC, a flexible and configurable Elliptic Curve Cryptogra-

phy (ECC) library for WSNs [LN08]. Application of pairing-based cryptography to

WSNs and its implementation were investigated in [SKSC09]. Kothmayr et al. pro-

posed an end-to-end security solution for IoT-based on Datagram Transport Layer

Security (DTLS) [KHS+11].

Cryptographic operations come with the key-management problem. Considering the

dynamic structure of WSNs, key management becomes more troublesome [CMYP09b,

JBMC10, CY05]. An asynchronous key-distribution scheme for WSNs was proposed in

[Han09]. The scheme does not need time synchronization, making it an efficient solution.

A new key-management method was proposed by Nilsson at al. [NRLV08]. Their method

provides backward and forward secrecy. Hang et al. proposed a new key-agreement

protocol [HUW11]. The protocol is based on Diffie-Hellman key-agreement and provides

perfect forward secrecy. Gauge et al. presented a solution for secure key assignment

for WSNs [GSM09]. The solution is easy and convenient to use and robust against

eavesdroppers.

There are security architectures for WSNs that use these cryptographic and key-

management solutions. The most popular ones are TinySec [KSW04] and MiniSec

[LMPG07]. TinySec is the first link-layer security architecture for WSNs. Although

it achieves low energy consumption, it reduces the level of protection. MiniSec is the

17



Chapter 2 Related Work

successor of TinySec, and achieves low energy consumption while providing higher security.

Both TinySec and MiniSec are implemented on the TinyOS operating system. Casado et

al. proposed ContikiSec, a security architecture for the Contiki operating system [CT09].

Various security issues in WSNs like secure routing [CMYP09b], secure data ag-

gregation [OM07, Yu09, BJT12], secure localization [ZCHX09, MSS10], secure code

dissemination [LON08, TOZJ09], and broadcast authentication [RYLZ09], have also been

addressed. Intrusion detection [KBG+09, WFA09] and anomaly detection [ZB11] meth-

ods have been investigated for WSNs. Analyses of memory protection [KKS07, CAE+07],

code injection [FC08], buffer overflow [GN08], software-based attestation [CFPS09], and

access control [FGS09] have also received attention in the research community [GFN11].

There are also privacy-oriented works, including query privacy [CYS+10], privacy for

data aggregation [ILM\'e10], source-location privacy [SHZ+09, KFLFS11], event-source

unobservability [YSZ+08, BGTB11] and sink unobservability [BBT11].

The next sections will discuss the related work in detail for the individual chapters

of the thesis: (i) Confidential Data Storage in WSNs; (ii) Node Identification Based on

Clock Skew; (iii) Tamper Detection and Node Identification Based on CSI.

2.2.1 Confidential Data Storage in Wireless Sensor Networks

Existing work proposes many novel security mechanisms and approaches for WSNs

[CMYP09a]. However, the existing work is mostly focused on securing communication.

Still, there are several contributions on secure file storage in WSNs which is most related to

the presented work. The existing solutions cover individual aspects of Codo (confidential

secure storage framework presented here), such as key management or integration with

available flash memory structure, but do not address all aspects.

Bhatnagar and Miller presented a secure and reliable file system [BM07]. A unique

seed is assigned to each node before the deployment and nodes use this seed to generate

keys. Every encryption operation uses a newly generated key. The key generation process

cannot be reversed and, therefore, when an adversary steals the node he cannot decrypt

already encrypted data and he can only access a small amount of data which is not

18



Chapter 2 Related Work

encrypted yet. This approach is very secure but prevents a node from accessing stored

data, which is necessary for any in-network processing. In contrast, Codo allows nodes

to access stored data for processing.

Systems described by Pietro et al. [PMST08] and Girao et al. [GWMA07] are similar

to the previous described solution. All of these solutions use key generation methods

that prevent nodes from accessing data locally.

Ren et al. proposed a secure, dependable and distributed storage scheme [RRZ08].

Different to the previous solutions, they suggest public key encryption to ensure data

confidentiality. In this case, the stored data can also not be accessed by nodes. In

addition, public key cryptography requires more processing than symmetric cryptography

as used in Codo.

Considering its speed and better security (e.g. resistant to cold boot attacks) hardware-

based storage encryption has been made available lately by many vendors. An example

company Ironkey [Iro] manufactures secure USB flash drives in which implemented

hardware-based AES 256-bit encryption in CBC mode. Codo is different to these

solutions as it does not rely on special storage hardware.

In the second part of this work, the secure storage framework is combined with secure

communication solutions in IoT to remove the duplication of security operations on

the sensor node. Solutions for secure communication and secure storage of data in the

IP-based IoT exist, but these functions are generally designed and operated independently

of each other. To the best of our knowledge, this is the first work that aims to combine

both aspects. Secure storage solutions are discussed above. The secure communication

solutions will be discussed in the next paragraphs.

Communication in the IoT can be secured on different layers. The IoT uses the IEEE

802.15.4 [IEE03] link-layer. IEEE 802.15.4 link-layer security is the current state-of-the-

art security solution for the IP-connected IoT; it defines data encryption and integrity

verification.

IEEE 802.15.4 security does not provide end-to-end security when connecting an

IEEE 802.15.4 network via a gateway router to the existing Internet. Thus, additional

19



Chapter 2 Related Work

solutions exist that protect data traveling from Internet hosts to the border router. For

example, ArchRock PhyNET [Arc08] applies IPsec in tunnel mode between the gateway

router and Internet hosts.

To achieve true end-to-end security between Internet hosts and smart objects, an

IPsec extension for 6LoWPAN has been proposed [RDH+12]. Unmodified Internet hosts

can communicate directly with smart objects. The border router applies 6LoWPAN

header compression in order to enable efficient transport of IPsec packets in IEEE 802.15.4

networks. This mechanism is used for the framework proposed in the thesis.

End-to-end security can be provided by using Transport Layer Security (TLS) or its

predecessor Secure Sockets Layer (SSL). SSL has been proposed as security mechanism

for the IoT by Hong et al. [HKH+10]. Foulagar et al. propose a TLS implementation for

smart objects [FMMA06].

2.2.2 Node Identification Based on Clock Skew

Clock skew is the deviation of a clock from the true time. Fingerprinting devices using

clock skew is carried out by comparing frequencies of two clocks, one of them generally

assumed to represent the true time.

Kohno et al [KBC05] has shown that clock skew of devices can be measured to

fingerprint devices. It is shown that the clock skew of each device is unique and stays

fairly consistent over time.

Zander et al. [ZM08] improved clock skew measurement by applying a technique called

synchronized sampling. They demonstrated that synchronization of samples reduces the

quantisation error and hence improves skew determination quality.

Jana et al. [JK08] used clock skew to fingerprint wireless devices. The motivation

for their work was the detection of fake wireless access points. Their work demonstrates

that emitting timestamped beacons with high frequency allows for precise clock skew

calculation. According to their observations, 50 to 100 beacons are sufficient to estimate

clock skew accurately enough to identify individual nodes.

Arackaparambil et al. [ABSK10] demonstrated a clock skew spoofing attack in 802.11

20



Chapter 2 Related Work

networks by using virtual interfaces. In their work they propose methods to combat clock

skew spoofing and propose standardised interfaces that would allow network providers to

publish clock skew information.

Huang et al. [HTW+08] demonstrated clock-skew-based identification in wireless

sensor networks in the context of the Flooding Time Synchronization Protocol (FTSP)

[MKSL04]. FTSP provides coarse estimation of clock skew based on current offset and

previous skew (it uses linear regression on the past 8 data points).

Uddin et al. [UC10] demonstrated that sensor nodes have a unique clock skew and

that the clock skew of a node can easily be monitored.

Murdoch et al. [Mur06] split skew into two components, a constant and a variable

part. The variable part is affected by temperature changes and this effect was used to

reveal node identities in the The Onion Router (TOR) network by influencing CPU load

and hence the temperature of devices leading to measurable clock skew changes.

The proposed mechanism in the thesis differs from existing approaches as clock skew is

measured locally on nodes. It is believed that this is a necessary step towards a practical

system as variations in communication delays cannot be avoided in any real-world WSN

deployment. Furthermore, it is shown how clock skew measurements fit with energy-

efficient operations of sensor nodes and investigate the required sampling effort in detail.

Existing work with the exception of Huang et al. [HTW+08] calculate clock skew offline

after a long sequence of samples are collected, using a linear programming approach.

Huang et al. [HTW+08] calculate clock skew online using a linear regression approach

which is adapted in this work.

2.2.3 Tamper Detection and Node Identification Based on Channel State

Information

Existing work can be grouped into two main categories: transmitter identification

and transmitter localisation. Transmitter identification aims to use received signal

characteristics to identify the transmitting device (or class of device). Transmitter

localisation aims to use the received signal characteristics to determine the location (or

21



Chapter 2 Related Work

area) of the transmitter. The work presented in this thesis falls into both areas. It

differs from existing work in four main ways: (i) Most existing work is not based on

802.11n OFDM and no work so far has incorporated the fact that dynamic adaptation

of the number of spatial independent streams in 802.11n must be taken into account.

(ii) Existing work is mostly aimed at rejecting individual messages from an attacker,

while the aim of this work is to determine a tamper-evidence value based on a number

of incoming transmissions. (iii) Existing work does not evaluate the relation between

transmitter movement and detection capability of a detection system. (iv) Existing

tamper detection systems do not work in practical deployments as they do not address

properly the separation of environmental and tamper events.

A number of recent works aim at transmitter localisation using channel characteristics.

Li et al. [LXMT06] proposed a method for PHY layer authentication based on measuring

the Channel Frequency Response (CFR). Three USRP/GNURadio Software Defined

Radios (SDRs) are deployed at different locations and used as transmitter, receiver and

attacker. Transmitter and attacker send packets alternately to the receiver. By employing

a change-point detector, transmissions can be distinguished. Patwari et al. [PK07] used

Channel Impulse Response (CIR) information to construct link signatures for location

distinction. A history of N  - 1 transmission signatures is compared with the Nth

transmission signature using the Euclidean distance to decide whether the transmission

is from a new location. The method in [PK07] analyses features in the time domain

whereas [LXMT06] operates in the frequency domain. Additionally, [LXMT06] uses a

complex-valued signature where the phase information is included, while [PK07] uses a

real-valued signature where the phase information is excluded. Zhang et al. [ZFPK08]

combined the best features of [LXMT06] and [PK07], which are (i) the advantage of

operating in the time domain and (ii) the advantage of using complex-valued signatures.

Recently, Jiang et al. [JZL+13] proposed a source-authentication method to detect

spoofing attacks on 802.11n Management Frames (MFs) by using CSI. Although this

work is not aimed at location distinction, it uses the same source of information (CSI) as

used in this thesis. It is shown that amplitude of CSI changes for injected frames. To

22



Chapter 2 Related Work

the best our knowledge, this work is the closest one to the work presented in this thesis

in terms of source of information, encoding methods and test devices. However, the work

does not consider encoding using independent spatial streams as it is used in practical

802.11n deployments. Faria et al. [FC06] created signalprints based on Received Signal

Strength (RSS) information to identify wireless devices with respect to their locations.

However, the method proposed here uses a richer set of channel characteristics.

In addition to location identification, PHY-layer information is also used for device

identification. Brik et al. [BBGO08] used modulation errors to identify 802.11 devices

caused by modulator circuitry. The transient part of the RF signal was used to identify

802.11 [US07] and 802.15.4 [DC09] devices. Danev et al. [DHBC09] used RF burst

information to identify RFID transponders. Xiong et al. [XJ13] identified Wi-Fi clients

by looking at the angle-of-arrival information of clients' incoming signals by leveraging

multi-antenna Access Points (APs). More detailed information about device identification

based on PHY-layer information can be found in [DZC12].

23



Chapter 3

Confidential Data Storage for

Wireless Sensor Networks

In the first part of this chapter, the Codo framework will be explained. Codo provides

confidential data storage in Wireless Sensor Networks (WSNs) with minimal impact on

sensor node operation and performance1. Combined secure communication and secure

storage in WSNs will be explained in the second part of the chapter. This combination

removes the duplication of security operations on the sensor node.

3.1 Confidential Data Storage for Wireless Sensor Networks

In many WSNs sensor data is transferred immediately to a sink for analysis and/or

storage. In such application cases no data is stored on nodes and confidentiality of stored

information is not an issue. However, a number of (recent) applications use available on-

node storage space to add new features or to improve network performance. For example,

on-node storage may be used as insufficient network capacity is available to transport all

gathered data from all nodes to the sink. Instead, stored data is pre-processed by nodes

and only processing results are transmitted. The sink may as well request processing or

transmission of stored data.

1This chapter is based on the papers titled ``Codo: Confidential Data Storage for Wireless Sensor
Networks"", ``Combined Secure Storage and Communication for the Internet of Things"" and ``Fusion:
coalesced confidential storage and communication framework for the IoT"".

24



Chapter 3 Confidential Data Storage for Wireless Sensor Networks

An example application is industrial process monitoring and control [SSW+09]. Sen-

sors may be used to collect and store vast amounts of data on production processes.

Nodes process sensor data and transmit results to a sink node. At times, the sink may

request nodes to process sensor data over specific time periods (e.g. to calculate the

average of a sensor reading over a recent set time period) or request all sampling points

in a specific time period. Such specific data requests may be necessary for error diagnosis

or to calibrate the overall production processes. As sensors store information about

production processes, it is of vital interest to a company to keep such information hidden

from competitors. If a node is removed from the facility, it should not be possible to

retrieve the stored data.

To secure data stored on nodes it has been proposed to simply encrypt the data

before storage using key chains (see for example [BM07, RRZ08]). Such a naive approach

ensures confidentiality but at the same time restricts a node's capability and does not

consider performance issues. Such existing solutions do not enable nodes to access already

stored data for in-network data processing on nodes and do not allow us to balance

performance and security concerns. Furthermore, existing solutions are not tailored

to hardware specifics such as flash memory layout or available hardware support for

cryptographic algorithms.

In the first part of this chapter we present Codo, a framework for efficient confidential

data storage on sensor nodes. Codo addresses the aforementioned shortcomings present

in existing solutions. Codo allows for confidential data storage while enabling in-network

data processing on nodes. Security concerns and performance can be balanced by

deciding how much unencrypted data can be present on a node at any given point in

time. Encrypted data storage is aligned with flash memory layout and cryptographic

hardware support. The specific contributions of this work are:

\bullet Codo: We give a design specification of the efficient confidential data storage

framework.

\bullet Codo Implementation: We detail the implementation of Codo for the Contiki

operating system [DGV04] running on a Tmote Sky. In particular, we show the

25



Chapter 3 Confidential Data Storage for Wireless Sensor Networks

integration of Codo with the Contiki flash file system Coffee [TDZV09].

\bullet Codo Evaluation: We evaluate the different aspects of Codo and quantify perfor-

mance implications.

Existing confidential data storage solutions have a number of shortcomings and

limitations. Rather than addressing each aspect individually it is necessary to tackle all

aspects together; as it is then possible to optimize usage of limited node resources. Next

we discuss shortcomings of existing solutions and then describe Codo, the confidential

storage framework that addresses these.

3.1.1 Limitations of Existing Solutions

Security Issues Most existing solutions encrypt all data with a single key before storage.

Only the owner of the key (for example, the sink) is able to decrypt stored data. Such

a solution has the drawback that security depends on a single point of failure; if the

key is revealed all data can be accessed. A better approach is to store chunks of data

using individual keys (for example, as described by Bhatnagar et al. [BM07] where

an irreversible key chain starting with a random seed is constructed). With such an

approach, a single key loss does not lead to a total loss of confidentiality. However, such

a solution still does not address the important WSN aspect of in-network processing

on nodes. Many sensor node applications rely on the nodes' ability to process previous

stored data. Mechanisms to retrieve keys for previously stored chunks of data must be

available. Another approach is to use public key cryptography [RRZ08]. Private keys are

stored in the sink, therefore an adversary cannot decrypt the data. However with this

approach, the stored data can also not be accessed by nodes. Furthermore, public key

cryptography generally requires a lot of processing resources that are not available on

sensor nodes.

Performance Issues Existing security solutions focus on optimizing encryption perfor-

mance (for example, by optimizing encryption algorithms [SOS+08] or by employing

specialised cryptographic hardware [HCSO09]). However, performance gains that result

26



Chapter 3 Confidential Data Storage for Wireless Sensor Networks

from looking at a secure storage solution from a systems perspective are largely ignored.

In existing solutions, data is generally encrypted as soon as it produced (for example,

in [BM07, RRZ08, PMST08, GWMA07]). However, for many applications it is from a

security perspective possible to cache data unencrypted before performing bulk encryption

and storage. Obviously, the amount of data that can be cached unencrypted will depend

on the specific application.

Hardware Issues Current solutions are hardware agnostic, which leads to inefficiencies.

Flash memories used on sensor nodes are restricted in terms of read and write capabilities.

It is often only possible to access chunks of data rather than in individual bytes and

it is always more efficient to process data in chunks. Thus, crypto mechanisms should

operate on chunk sizes that reflect hardware capabilities. Existing solutions also ignore

that hardware support for cryptographic operations exists on WSN nodes. Hardware

support is generally available for secure communication but it is possible to re-use these

features for secure storage. Again, the cryptographic hardware is optimised for specific

data chunk sizes and, if used in the context of storage, these hardware restrictions must

be taken into account.

3.1.2 Codo: Confidential Data Storage Framework

Codo tackles the aforementioned limitations and shortcomings of existing confidential

data storage solutions. The framework aims to realize confidential data storage with

minimal impact on node operation and performance. Nodes should be able to store

and access stored data as possible without confidential storage. Nodes should prevent

performance degradation due to the additional security functions as much as possible.

In our proposed storage framework data is organised in DataChunks. Some unen-

crypted data is cached to improve performance; depending on application security and

performance needs it can be decided how much unencrypted cached data can be present.

To improve performance only complete DataChunks are cryptographically processed.

The size of DataChunks is matched to the capabilities of storage hardware (e.g. page

sizes) and to the capabilities of the encryption hardware (e.g. buffer size of cryptographic

27



Chapter 3 Confidential Data Storage for Wireless Sensor Networks

processor).

DataChunk Size The DataChunk size SD is determined by a number of factors. These

are:

\bullet Cryptographic Algorithm: The cryptographic algorithm usually operates on fixed

block sizes SB. The DataChunk size should therefore be aligned with this block

size. Thus, the DataChunk size SD must be a multiple of SB.

\bullet Cryptographic Hardware Support: If cryptographic hardware support is available

it is normally operating most efficiently on a block size of SC . The transfer of data

to and from the crypto processor has a fixed cost element (addressing, loading

operations, etc.) and a variable cost element that depends on the data size to be

processed. SC is a multiple of SB but in many practical setting SC = SB. Again,

SD must be a multiple of SC .

\bullet Flash Memory: Flash memory is organized in pages of size SP . Depending on the

flash memory hardware the page size implies different constraints. For example,

with some hardware it is only possible to read or write a whole page. Other

hardware allows to read or write parts of a page but writing or reading of complete

pages is most efficient (as the fixed cost of addressing has to be paid only once for all

data associated with the page). It is therefore reasonable to align the DataChunk

size with the page size. SP should be therefore a multiple of SD.

SP = aSD = bSB = bSC

b \equiv 0 (moda)

\forall a, b \epsilon 1N+

Data Caching To increase the performance of the system, unencrypted DataChunks are

cached. Write operations are cached and encryption is carried out after a certain number of

DataChunks are accumulated. Likewise, if previously stored data must be read/modified

28



Chapter 3 Confidential Data Storage for Wireless Sensor Networks

Flash 
Memory
N Erase 
Sectors

Storage
Hardware

File System
Abstraction

Sector 1 Sector 2 Sector N

M Pages 
per
Sector

File

File 
Header

Log File
(for File1)

Reserverd Space

Pointer to P3
Pointer to P5

File1

Pointer to Microlog

Microlog 
Header

Used Space

Figure 3.1: The Contiki Coffee File System (CFS)

the complete corresponding DataChunk is decrypted and cached. Increasing the size

of the cache leads to better performance; however, with this approach the amount of

unencrypted data present in the system would be bigger. Decreasing the size of the

cache leads to better security, but at this time the system performance decreases. The

number of unencrypted DataChunks ND allowed in the system at any given time is a

configuration parameter.

Key Management In the current implementation of our framework, encryption keys are

pre-shared. Future implementations might be enhanced with dynamic key-management

protocols such as Internet Key Exchange (IKE) [KHNE10].

3.1.3 Codo Implementation

Codo is implemented as an extension of Contiki's [DGV04] Coffee File System (CFS)

[TDZV09]. CFS organizes files as a collection of similar sized pages (see Figure 3.1) that

have generally the same size as the underlying flash memory pages2. For each new file,

2It is possible to map several Contiki file system pages into one flash memory page. However, this
only makes sense if the flash memory hardware is able to support operations on parts of a page.

29



Chapter 3 Confidential Data Storage for Wireless Sensor Networks

a header is created and a number of consecutive free pages are allocated. New data is

directly written to the empty pages in the file. If pages with existing content are modified,

a so called micro log file (also simply referred to as log file) is used. For modifications, a

micro log file is created and linked with the original file which contains a sequence of log

records that have the same size as a page in the original file. Each log record points to

the original page in the file and contains the updated information. If data is accessed,

the CFS checks first whether newer data is available in the log file before accessing the

original file. After a certain number of changes, the log file is filled and it is merged with

the original file to form a new consolidated file. The old file and micro log file are marked

for garbage collection to be recycled. The micro log structure is used as the flash memory

hardware does not allow us to overwrite pages directly. Before overwriting a hardware

page, it is necessary to format and clear an entire erase sector containing many pages.

This would be inefficient when used frequently and the use of a log file reduces erase sector

formats to a minimum performed at convenient times by the CFS garbage collection.

The CFS exposes standard functions such as cfs open(), cfs write(), cfs read(),

cfs seek() and cfs close() to the application for interaction with the file system.

3.1.3.1 CFS Optimisation

Codo makes use of the micro log as cache structure to hold unencrypted data. Thus,

every read and write call involves the micro log structure and therefore it is important

that it is performing efficiently.

Figure 3.2 shows the measured execution times of 10 consecutive cfs write() using

16byte blocks, a log record size of 256byte and a log file size of 4 records. CFS APP

shows the execution time of CFS when appending to a file. In this case the microlog

structure is bypassed and data is written directly to the file in the flash. CFS MOD

shows the execution time when writing to a file that has been modified at some point;

in this case the log structure is used and execution times are significantly higher (13.5

times higher for the first write operation). With CFS MOD it is checked if a log record

for the page that data is written to exists already in the micro log file. If this is the

30



Chapter 3 Confidential Data Storage for Wireless Sensor Networks

 0.1

 1

 10

1 2 3 4 5 6 7 8 9 10

E
xe

cu
tio

n 
T

im
e 

T
 [m

s]

Write [n]

Sequential 16byte cfs_write()

CFS_APP
CFS_MOD

Opt. CFS_MOD
Opt. CFS_MOD + RAM

Figure 3.2: Execution time for sequential writes of 16byte blocks to CFS using a log record size
of 256byte.

case the existing log record is read and then merged with the new data that should be

written and the result is placed into a new log record in the micro log file. Obviously,

when using a large log record size (e.g. 256byte) and writing small amounts of data (e.g.

16byte) large portions of log records remain unused. Furthermore, copying data from an

existing log record to a new log record is time consuming. Finally, frequent costly merge

operations are necessary as the log file fills quickly (merging is executed with writes 5

and 9 in the example).

To improve log file efficiency we optimised its execution and modified its behaviour

slightly. If data has to be written to a log file but existing data in an existing log record

does not have to be overwritten, the new data is simply added to the existing log record.

This CFS optimisation is possible if the flash memory hardware allows partial writes to

memory pages. The optimisation results in a significant performance gain (now the first

write is 5.7 times more costly than CFS APP).

In a final optimisation step, we place the log file structure in RAM rather than in the

flash memory. This results in further improvements as can be seen in Figure 3.2 and write

operations involving the log file structure are of comparable speed to direct flash write

operations (The first write is now only 1.3 times more costly than CFS APP). Using

RAM for the log file structure is not without problems. Data loss is possible in case of a

31



Chapter 3 Confidential Data Storage for Wireless Sensor Networks

Algorithm 1 A simple Contiki application program using CFS with and without Codo
extension.
[01] PROCESS THREAD(cfs test process, ev, data) \{ 
[02] PROCESS BEGIN();

[03] char buf[100];

[04] char *filename = ""msg file"";

[05] int fd; int n=0;

[06] fd = cfs open(filename, CFS READ);

[07] \#ifdef CFS CRYPT

[08] while(n!`sizeof(buf)) \{ 
[09] n+=cfs read(fd,buf+n, sizeof(buf)-n);

[10] if(n!`sizeof(buf))

[11] PROCESS WAIT UNTIL(ev == KEY READY);

[12] \} 
[13] \#else

[14] cfs read(fd,buf, sizeof(buf));

[15] \#endif

[16] cfs close(fd);

[17] PROCESS END();

[18] \} 

power failure and some platforms may not have RAM to spare for cache placement.

The outlined file system optimisations lead also to improvements of similar scale for

read operations. We use the described optimised CFS variant for our Codo implementa-

tion.

3.1.3.2 Codo Extensions for CFS

To implement Codo with Contiki's CFS it is necessary to i) modify and extend function

calls provided by the existing CFS library and to ii) modify and extend the behavior of

internal CFS components. We detail these necessary modifications in the next paragraphs.

CFS Function Calls

Algorithm 1 shows a simple Contiki program that uses the CFS library. The definition

in line 7, 13 and 15 is used to switch the API semantic between CFS with Codo

(CFS CRYPT) and standard CFS.

Without CFS CRYPT a file is opened in line 6 using cfs open() for reading which

is indicated via the flag CFS READ. In line 14 cfs read() is used to read data from the

file. cfs close() (line 16) is used to close the open file.

With CFS CRYPT, if data to be read using cfs read() (line 9) is not yet available

32



Chapter 3 Confidential Data Storage for Wireless Sensor Networks

in the micro log file (which acts as cache holding unencrypted DataChunks), the security

manager component (see next section for details) is triggered to fetch the key required

to decrypt the next DataChunk. The program leaves cfs read() before completion

of the read process and blocks on ev == KEY READY. When the key is obtained by the

security manager, it sends a signal to the waiting application process. When cfs read()

is now called again it will be able to decrypt the next data for which a key is now

present. Multiple executions of cfs read() with following PROCESS WAIT UNTIL may

be necessary to complete one read as a sequence of different keys may be required.

The call to cfs read() with following PROCESS WAIT UNTIL (line 8 to line 12) can be

combined within one C macro to hide the complexity of multiple function entries from

the programmer.

cfs write() is used in a similar way to cfs read().

cfs open() supports the additional flag CFS NO CRYPT to indicate that a specific

newly opened file should not be encrypted. Thus, the file system can hold encrypted and

unencrypted files at the same time.

We add also two additional functions to the CFS API: cfs read crypt() and

cfs write crypt(). These two functions can be used to read and write the encrypted

data directly. If data is still in unencrypted form in the cache cfs read crypt() will

perform encryption of the data. The security manager may have to be informed to fetch

necessary keys and multiple calls to cfs read crypt() followed by PROCESS WAIT UNTIL

might be necessary. These two functions are particularly useful for situations in which an

encrypted file must be transported over the network to the sink or another sensor node.

With these functions it is possible to avoid re-encryption of data for data transport and

the already securely stored data can be directly placed in network packets.

We provide a cfs merge(), which can be used to execute the processing costly merge

of file and log file at a convenient time (for example, at times the system is idle).

cfs close() is modified to ensure that a merge is executed to ensure that all

unencrypted cached data is encrypted and stored in the file. cfs close() may require

multiple function calls with PROCESS WAIT UNTIL as keys may have to be organized by

33



Chapter 3 Confidential Data Storage for Wireless Sensor Networks

the security manager for encryption.

CFS Components

Micro Log As described, the CFS uses the micro log files to handle flash memory

read/write specifics. For the Codo implementation we modify the log file such that it

becomes in addition a cache holding unencrypted DataChunks. In the standard CFS,

the log file is used for modifying write operations. In our CFS extension, read and initial

write operations also operate on the log file.

Whenever data is read from the file, it is first checked if the data is present in

unencrypted form in the log file. If not, the key associated with the data is requested

via the security manager component and, upon obtaining the key, the data is decrypted

and transferred to the log file. New data is always written to the log file. When the

maximum size of the log file is reached, the log file must be cleared and merged with the

original file.

Security Manager The security manager is implemented as a Contiki thread that is

responsible for i) generating new keys if needed ii) communicating with the sink to store

and retrieve keys. The security manager has room to store exactly one key, which may

be lost when a node is captured by an attacker. Keys are exchanged between sink and

nodes using public key cryptography.

The CFS can ask the security manager via a function call for a key to a specific

DataChunk of a file. This request contains three parameters: file id, DataChunk id and

flags. file id is the filename which is a unique identifier, DataChunk id is the number

of the DataChunk for which a key is required. flags indicates if the requested key is for

a portion of the file that has never been used before. If this is the case, the security

manager has two options. First, it can create the requested key, inform the file system

and then transmit the key to the sink for storage. Second, it can send a request to the

sink for a new key and, when a response arrives, inform the file system. If flags indicate

that a key for a previously used DataChunk is needed the security manager must send a

request for the key to the sink.

34



Chapter 3 Confidential Data Storage for Wireless Sensor Networks

Cryptographic Functions For encryption/decryption we use AES in Counter (CTR)

mode with 128bit key length provided by either by hardware (e.g. via the CC2420 radio

chip present on many sensor node platforms) or the open source MIRACL [Cer] library

if hardware support is not available.

3.1.4 Codo Evaluation

We evaluate the Codo implementation based on Contiki's CFS using a Tmote Sky sensor

node. To evaluate system performance we analyse the execution times of the CFS

function calls. Execution times are important indicators as they are a measure for system

responsiveness and are directly proportional to a node's energy consumption. We use the

CFS optimisations described in Section 3.1.3 and investigate performance with the log

file residing in flash memory and RAM.

The cryptographic hardware support of the Tmote's CC2420 radio chip requires a

minimum block size of SC = 16byte. The Tmote provides an ST M25P80 flash memory

with a page size of SP = 256byte. We therefore select a DataChunk size of SD = 256byte

to obtain a well matched system (see Section 3.1). For encryption/decryption we use

AES in counter mode (CTR) with 128bit key length provided by either the CC2420 radio

chip (CFS CRYPT HW) or the open source MIRACL [Cer] library (CFS CRYPT SW).

The file system is set to use a log record size of SL = 256byte to match flash memory

page size. Furthermore, the system is configured to use NL = 4 log records which means

that SL \cdot NL = 1024byte of unencrypted data can be present on the system at any given

point in time.

3.1.4.1 cfs write() Performance

In this first experiment, a file of size 2048byte is written using a sequence of cfs write()

calls. With each cfs write() call SW bytes are written to the file system (SW \in 

\{ 16, 32, 64, 256\} ). The execution time of each cfs write() call is measured. The

experiments are repeated using the original CFS in append mode (CFS APP), the original

CFS in modify mode (CFS MOD) (data is appended, but the file is assumed to be modified

35



Chapter 3 Confidential Data Storage for Wireless Sensor Networks

 0
 50

 100
 150
 200
 250
 300

CFS_APP

CFS_MOD

CFS_CRYPT_SW

CFS_CRYPT_SW_M

CFS_CRYPT_HW

CFS_CRYPT_HW_M

Ex
ec

ut
io

n 
Ti

m
e 

T 
[m

s]

Sequential write of 2048byte

256byte write
64byte write

32byte write
16byte write

Figure 3.3: Writing of 2048byte in blocks of 256byte, 64byte, 32byte and 16byte using
cfs write().

and therefore the log file is also used), Codo CFS with software (CFS CRYPT SW) and

hardware supported (CFS CRYPT HW) encryption and Codo CFS with additional RAM

supported log file (CFS CRYPT SW M and CFS CRYPT HW M). In this experiment,

the Security Manager holds all 8 required keys for the 2048byte sized file locally and

a performance penalty due to a key exchange protocol is not observed. If keys are

exchanged over the network, key exchange times have to be added to the experimental

results.

The experimental results are shown in Figure 3.3. Using CFS APP and SW = 256byte

the time to write all 2048byte to the file system is 18.3ms. In this mode, the file system

does not make use of the log file structure and data is directly written to the file structure

in flash memory. With CFS MOD the time increases significantly to 54.8ms as the

log file structure is involved in the writing process. Each write is directed to a log

record in the log file in flash memory, and when all log records are filled a merge is

executed to integrate log file and original file. CFS CRYPT SW and CFS CRYPT HW

are functionally identical to CFS MOD but when the log file is merged with the original

file, encryption has to be performed. Thus, with CFS CRYPT SW and CFS CRYPT HW

36



Chapter 3 Confidential Data Storage for Wireless Sensor Networks

write CFS APP CFS CRYPT SW CFS CRYPT HW CFS CRYPT HW M

1 2.29ms 4.06ms 4.12ms 1.43ms

2 2.29ms 3.14ms 3.17ms 1.40ms

3 2.29ms 2.93ms 3.02ms 1.40ms

4 2.29ms 2.93ms 2.93ms 1.37ms

5 2.29ms 168.67ms 90.39ms 63.45ms

6 2.29ms 3.14ms 3.14ms 1.40ms

7 2.29ms 2.99ms 2.96ms 1.37ms

8 2.29ms 2.93ms 2.96ms 1.37ms

Table 3.1: Writing of 2048byte in 8 blocks of 256byte.

execution times are 190.8ms and 112.7ms. With RAM caching, execution time reduces

further to 151.6ms and 73.2ms (CFS CRYPT SW M and CFS CRYPT HW M).

The overall time of writing 2048byte to the file is not distributed equally among the

8 separate executions of cfs write() with SW = 256byte (see Table 3.1). The first

cfs write() takes for CFS CRYPT SW and CFS CRYPT HW slightly more time than

the following three as time to create the log file structure in flash memory is needed.

The 5th write takes considerably more time than previous writes as the log file of size

NL = 4 is full and a merge must be executed before a log record can be written. During

merge, encryption is performed, which takes significant processing time. The use of

encryption hardware support improves encryption performance by 47\%. When using

CFS CRYPT HW M, the first 4 write operations are faster then CFS APP as data is

written to the cache located in RAM.

When decreasing the write size SW to 64bytes, 32bytes and finally 16bytes the overall

time necessary to write the file of 2048bytes increases (see Figure 3.3). This is not

surprising as each cfs write() call is associated with additional overhead. For example,

the overall time necessary to write file of 2048bytes length increases from 112.7ms to

211.6ms to when switching from SW = 256byte to SW = 16byte with CFS CRYPT HW.

It has to be noted that CFS CRYPT HW M outperforms CFS MOD for SW = 16byte.

This means that under this condition Codo, which performs caching and encryption,

outperforms the standard CFS when operating on files that have been modified.

37



Chapter 3 Confidential Data Storage for Wireless Sensor Networks

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

CFS_APP

CFS_MOD

CFS_CRYPT_SW

CFS_CRYPT_SW_M

CFS_CRYPT_HW

CFS_CRYPT_HW_M

Ex
ec

ut
io

n 
Ti

m
e 

T 
[m

s]

Sequential read of 2048byte

256byte read
64byte read

32byte read
16byte read

Figure 3.4: Reading of 2048byte in blocks of 256byte, 64byte, 32byte and 16byte using
cfs read().

Summary Codo CFS is relatively expensive in comparison to CFS. However, CFS

does not provide data confidentiality and this feature cannot be implemented at zero

cost. For example, overall execution time for writing SW = 256byte increases with Codo

CFS (CFS CRYPT HW M) compared to CFS (CFS APP) by a factor of 4. However,

individual write operations that do not require merging and encryption are faster with

Codo (CFS CRYPT HW M) (By a factor of 1.6 for the first write with SW = 256byte).

Furthermore, within an application scenario, it might be possible to schedule costly merge

and encrypt operations at times the system is idle and, thus, overheads for providing

confidentiality may not impact overall system performance.

3.1.4.2 cfs read() Performance

In this second experiment, the file created in the previous experiment (2048byte file

size) is read using a sequence of cfs read() calls. With each cfs read() call, SW

bytes are read from the file system (SW \in \{ 16, 32, 64, 256\} ). The execution time of each

cfs read() call is measured. The time necessary for reading the complete file is shown

for all file system modes in Figure 3.4.

38



Chapter 3 Confidential Data Storage for Wireless Sensor Networks

read CFS APP CFS CRYPT SW CFS CRYPT HW CFS CRYPT HW M

1 3.14ms 232.03ms 134.31ms 100.56ms

2 3.11ms 38.24ms 18.77ms 15.66ms

3 3.17ms 38.36ms 18.80ms 15.66ms

4 3.11ms 38.30ms 18.86ms 15.69ms

5 3.17ms 231.45ms 133.88ms 100.22ms

6 3.11ms 38.24ms 18.77ms 15.63ms

7 3.11ms 38.30ms 18.83ms 15.66ms

8 3.14ms 38.33ms 18.86ms 15.78ms

Table 3.2: Reading of 2048byte in 8 blocks of 256byte.

Using CFS APP and SW = 256byte the time to read all 2048byte is 25.1ms.

With CFS MOD the time increases to 30.6ms. With CFS CRYPT SW and

CFS CRYPT HW execution times are 693.2ms and 381.1ms; with CFS CRYPT SW M

and CFS CRYPT HW M times are 608.8ms and 295.1ms. Again, the overall time

of reading 2048byte to the file is not distributed equally among the 8 separate exe-

cutions of cfs read() with SW = 256byte (see Table 3.2). The first cfs read() of

CFS CRYPT SW, CFS CRYPT HW and CFS CRYPT HW M requires a merge as this

first read is performed after the previous experiment in which the file was written and

the log file structure was filled. Also the 5th read requires a merge as the log file is filled.

All 8 reads require reading from the flash memory followed by decryption followed by

placing of the decrypted data in the log file structure.

When decreasing the read size SW to 64bytes, 32bytes and finally 16bytes the overall

time necessary to read the file of 2048bytes increases as shown in Figure 3.4. However,

the times necessary for individual cfs read() calls have an uneven distribution. For

example, for SW = 16byte with CFS CRYPT HW M the first read requires 99.8ms as it

includes a merge, decryption of 256byte of data and placement of this data in the cache

(the log file). The next 15 read operations require 0.5ms each as the decrypted data is

now available in the cache. The 16th operation requires 14.8ms as a new block of 256byte

is decrypted and moved to the cache.

Summary Reading a securely stored file requires considerable more effort than reading

the file from the original CFS. For example, the overall time to read a 2048byte file

39



Chapter 3 Confidential Data Storage for Wireless Sensor Networks

in 256byte blocks with CFS CRYPT HW M increases by a factor of 11.7. However,

not every read operation is equally expensive. For example, when using a read size of

SW = 16byte with CFS CRYPT HW M read operations increase by a factor of 1.3; only

when merge and/or decryption operations are necessary read operations are much more

costly.

3.1.4.3 Cache Performance

Instead of using Codo, which enables caching of unencrypted data, one could

use a simple solution (CFS SIMPLE), which encrypts/decrypts data before calling

cfs write()/cfs read() of the original Contiki file system. CFS SIMPLE would

only be usable if it is ensured that data is accessed in whole blocks that can be en-

crypted/decrypted in full. Hence, CFS SIMPLE is only useful to provide a baseline for

comparison here but it is not a practically usable alternative.

Writing 256bytes of data using CFS SIMPLE HW takes 11.7ms (9.4ms for hardware

supported encryption and 2.3ms for writing to flash memory) when writing to a file that

has not been modified yet and hence the log file structure is not in use. In comparison,

CFS CRYPT HW M requires only 1.4ms as the data is written to the cache in RAM. A

performance penalty only occurs for writes when the log file structure is full and a merge

has to be performed (see previous paragraphs).

We note a similar performance difference for read operations. CFS SIMPLE HW

requires 12.5ms while CFS CRYPT HW M requires only 1.4ms if the data is found in

the cache structure.

The performance difference between CFS SIMPLE HW and CFS CRYPT HW M

diminishes when handling smaller amounts of data in each read and write operation. This

is due to the fact that then encryption/decryption times are comparable to times necessary

for flash read/write operations. For example, when writing 16bytes CFS SIMPLE HW

requires 1.2ms while CFS CRYPT HW M requires 0.6ms.

Summary The caching functionality provides a performance benefit for individual

read and write operations. Sensor network applications that access files sequentially

40



Chapter 3 Combined Storage and Communication for Internet of Things

(e.g. writing a continuous log file) may benefit from the increased read/write speed

effective for most operations. However, applications that really benefit from the cache

functionality are applications that access the same data in a file multiple times. For

example, some applications may record sensor data and then perform periodically complex

data processing which requires multiple reads of the previously recorded data.

Following from this work, Codo is combined with secure communication in WSNs, more

specifically in Internet of Things (IoT). This new mechanism will be explained in the

next section.

3.2 Combined Storage and Communication for Internet of

Things

The IoT is becoming a reality and vast numbers of smart objects are interconnected via

the Internet Protocol (IP). A number of applications in this context handle sensitive

information. For example, smart objects may be used for patient monitoring in hospitals,

implementations of security systems in airports or to monitor crucial business processes

in factories. Thus, security mechanisms are required to ensure confidentiality, integrity

and authenticity of the collected information.

Due to resource limitations of smart objects it is not feasible to use the existing IP

protocol throughout the entire IoT. IP header compression, as defined in the IPv6 Over

Low Power Wireless Personal Area Networks (6LoWPAN) [MKHC07] framework, is used

in wireless IEEE 802.15.4 networks which smart objects generally use for interconnectivity.

6LoWPAN header compression and decompression is carried out by gateway nodes

when relaying packets between IEEE 802.15.4 networks and the existing IP network

infrastructure.

As the IoT relies on the established and tested IP protocol it is reasonable to also

use security mechanisms defined in this context. The Internet Protocol Security (IPsec)

[SK05] framework defines security mechanisms for IP networks and it is supported by

41



Chapter 3 Combined Storage and Communication for Internet of Things

Application

DATA

DATA

DECRYPTENCRYPT

1

2
4

3

5

IP-Stack File System

Application

DATA

DATA
1

2

4

IP-Stack File System

DATA

DATA

DATADATA

3

DATA

Node NodeA: B:

Figure 3.5: A: Traditional Operation: 1 - Data is requested from the node. 2 - The application
forwards the request to the file system. 3 - The data is decrypted and passed to the
application. 4 - The application sends data for transmission to the IP stack which
secures the data. 5 - The data is transmitted.
B: Combined Secure Storage and Communication: 1 - Data is requested from
the node. 2 - The application forwards the request to the file system. 3 - The
secured data is directly passed into the IP stack. 4 - Data is transmitted without
cryptographic processing.

nearly all hosts currently in use. A definition of IPsec 6LoWPAN extensions [RDH+12]

exists which allows smart objects to participate in IPsec secured communication. Thus,

secure communication in the IoT using standardised mechanisms is feasible.

Smart objects now provide vast amounts of storage space due to the recent advances

in flash memory technology. IoT applications rely on this storage space in order to

improve system performance [TD11]. It is therefore becoming more important to not

only secure communication but also to protect sensitive data while it is stored on smart

objects. Various secure storage solutions exist that can be used to protect data on nodes.

The previously outlined secure communication and storage solutions have been

developed individually. It is not taken into account that tasks such as key exchange

or cryptographic processing are executed for both system components. Thus, in many

situations, cryptographic work performed by smart objects is unnecessarily carried out

twice or more. Given that smart objects are very resource limited devices it is desirable

to prevent such process duplication. Freed resources may be used to reduce hardware

complexity, improve energy consumption or to add additional application features.

We address the previously outlined shortcoming of existing solutions and provide

a design of a combined secure storage and communication framework that allows us

to reduce security related processing on smart objects (see Fig 3.5). In particular, we

consider the IP, 6LoWPAN and IPsec standards as the base for our work. We believe that

42



Chapter 3 Combined Storage and Communication for Internet of Things

a standard compliant solution is more desirable than a proprietary system. Furthermore,

it is safer to build on tested and trusted security mechanisms rather than designing an

entirely novel mechanisms. Data is stored securely on the flash file system such that it

can be directly used for secure transmission. This is not a trivial task as packet header

content of future transmissions must be considered when securing data for storage. We

show in this work that an IP-based combined secure storage and communication solution

is possible and that this can save up to 71\% of a node's security related processing effort.

A cost in regards to additional storage space is incurred as a result of the secure storage;

however, given that smart objects can now provide ample amounts of storage space we

do not see this as limiting factor. The specific contributions of this work are:

\bullet The definition of a framework for combined secure storage and communication for

IP/6LoWPAN networks.

\bullet An implementation of the framework for the Contiki operating system.

\bullet A detailed evaluation of the performance gains of the framework.

3.2.1 The Secure Storage and Communication Framework

Our proposed secure storage and communication framework is based on the established

IPv6/6LoWPAN protocols. IPv6/6LoWPAN defines IPsec/ESP (Encapsulating Security

Payload) that provides encryption and authentication of transmitted data packets. We

use the same cryptographic methods and data formats defined by ESP for data processing

before storage. This requires us to store not only data but also all header information

that is involved in the cryptographic processing. Encrypted data must be stored in ESP

compatible form such that requested data can be transmitted over the network without

further cryptographic processing. This requires us to anticipate content of communication

protocol header fields such as IP destination addresses, sequence numbers and checksums

at storage time. As IPsec is the base for communication and storage, the existing key

exchange mechanisms defined for IPsec can be reused for the storage element of the

framework.

43



Chapter 3 Combined Storage and Communication for Internet of Things

The next subsection describes IPsec/ESP usage in 6LoWPAN networks. This repre-

sents the communication element of our framework. More detailed information about

6LoWPAN and IPsec/ESP are given in Chapter 2. Thereafter follows a description of

the storage element of the framework. We then briefly discuss application layer protocols

that may be used with the framework and describe our Contiki-based implementation.

Finally we discuss expected performance gains and cost in terms of storage overhead and

provide a security analysis.

3.2.1.1 Communication Component

IPv6 uses IPsec [SK05] to secure IP communication between two end points. IPsec

is a collection of protocols that include Authentication Header (AH), which provides

authentication services, and ESP, which provides both authentication and privacy services.

A suite of encryption and authentication algorithms are also defined. A node keeps track

of Security Associations (SA) that specify how IP flows are treated in terms of security.

Each SA holds a Security Parameter Index (SPI), which is a 32-bit value used by a

receiver to identify the correct SA.

In an ESP [Ken05] packet data (for example, a UDP packet), padding, pad length

and next header information are encrypted. All header information may be authenticated

using the optional Integrity Check Value (ICV). In an 802.15.4 network an ESP header

will not be transmitted directly. Its compressed form as defined by 6LoWPAN is used

instead to reduce header overheads.

6LoWPAN defines header-compression mechanisms. LOWPAN IPHC is used for

IP header compression and LOWPAN NHC for the next-header compression. The NH

field in LOWPAN IPHC when set to 1 indicates that the next header following the

compressed IPv6 header is encoded with LOWPAN NHC. LOWPAN NHC has a length

of 1 or more octets, where the first variable length bits identify the next header type

and the remaining bits are used to encode header information. Currently, 6LoWPAN

defines LOWPAN NHC for the IP extension header (LOWPAN NHC EH) and the UDP

header (LOWPAN NHC UDP). A definition for ESP encoding (LOWPAN NHC ESP) is

44



Chapter 3 Combined Storage and Communication for Internet of Things

Octet 0 Octet 1 Octet 2 Octet 3

Integrity Check Value (ICV)

LOWPAN_IPHC Hop Limit Source Address

Destination Address LOWPAN_NHC_EH

LOWPAN_NHC_ESP Sequence Number

Initialization Vector (IV)

Source Port

Destination Port Length

Checksum

Source Address

Source Port

Length

UDP Payload (Variable)

Pad Length Next Header

Figure 3.6: A compressed and ESP secured IPv6/UDP packet.

provided in [RDH+12].

Figure 3.6 shows a UDP/IP packet secured with compressed ESP. An Initialization

Vector (IV) may be carried in the ESP packet if the selected encryption algorithm requires

transmission of this information with every packet. The shaded portion represents

encrypted data. Authentication can be provided using the ICV.

3.2.1.2 Storage Component

Data is stored securely such that it can be transmitted as ESP compliant packets

on request without additional cryptographic processing. This requires storage of all

cryptographically processed elements of the ESP packet within the file system. ESP

header elements that are not cryptographically processed and can be constructed with

little effort when data is requested and therefore do not have to be stored.

Data is stored as blocks representing the shaded part (and the ICV if authentication

is required) shown in Figure 3.6. If data stored within a block is requested the block is

read from the file system and the full packet, as shown in Figure 3.6, is assembled and

transmitted. The receiver may only be interested in part of the received data and some

undesirable transmission overhead may occur. However, typical applications will require

45



Chapter 3 Combined Storage and Communication for Internet of Things

bulk data transfer (large parts of a file) in which case such overheads do not occur. For

example, for further data analysis an application may request recorded sensor samples

within a particular time frame or, for performance debugging purposes, recorded link

quality metrics over a longer time period may be requested.

Some stored information is dependent on the communication relationship. At the

time of storage, assumptions regarding the forthcoming communication relationship must

be made in order to enable cryptographic processing. Elements to be considered are:

\bullet UDP Header: A UDP header is stored within the encrypted ESP payload. Assump-

tions regarding destination and source UDP port must be made at time of storage.

The destination IP address of packets is used within the IPv6 UDP checksum

calculation. Thus, IP source and destination address assumptions must be made as

well.

\bullet Initialization Vector (IV): The IV (if required) is used for ESP encryption. Most

protocols allow a counter mode where the IV for each packet is constructed by

adding a transmission sequence number to an initial IV.

\bullet Sequence Number (SN): The ESP header includes a sequence number. This

sequence number is not encrypted but it is included in the ICV calculation. If ESP

authentication is used a sequence number must be selected at time of storage in

order to generate a ICV for storage alongside the data.

UDP Header Construction: A UDP header has to be prepared at time of data storage.

The header consists of 4 fields of 2byte length: Source Port, Destination Port, Length

and Checksum.

The Length field is defined by the amount of data contained in the UDP packet. To

reduce packet overheads the amount of data contained in each UDP packet is selected

such that the maximum 802.15.4 frame size of 127byte is utilised.

The selection of a Source and Destination Port is not problematical. It can be assumed

that well known ports can be used for data retreival.

46



Chapter 3 Combined Storage and Communication for Internet of Things

The calculation of the Checksum field is challenging. The checksum is mandatory in

IPv6 and is calculated using a pseudo header. This pseudo header contains the IP Source

Address, the IP Destination Address, UDP Length and IP Next Header field. As the IP

Destination Address is included assumptions regarding the IP address requesting stored

information must be made. The checksum is calculated as the 16-bit one's complement

of the one's complement sum of the pseudo header, the UDP header, and the data.

It is a reasonable assumption that a particular host is used most of the time to request

information from nodes (e.g. the sink). The IP address of this node may be used for

storage preparation.

In some cases data may be requested from a different node and the IP destination

address used for checksum calculation does not match the destination of the data requestor.

In this situation it is possible to correct the checksum in a way that does not require

the decryption and encryption of all of the data again. Thus, performance is reduced as

part of the stored data must be cryptographically processed before transmission but it is

still beneficial in comparison with a system that does not combine secure storage and

transmission (see Section 3.2.2).

ESP can use encryption algorithms which operate on blocks (e.g. AES using 16byte

blocks). It is possible to decrypt only the first block of a larger stored ESP packet which

will contain the UDP header and its checksum. Since the UDP checksum algorithm is a

simple summation checksum re-calculation is trivial. By substituting the old destination

address for the new destination address, a new checksum can be calculated. Now the

first block of the ESP packet can be encrypted and it is ready for transmission to an

alternative destination.

IV Construction: The IV does not have to be stored in the file system together with

the encrypted ESP fields. An initial IV can be used and the storage block number is

added to construct the IV.

Sequence Number Construction: If authentication is required it is possible to also

store the ICV. As the ESP header includes a sequence number which is included in the

ICV calculation, it is necessary to predict at storage time what sequence numbers will be

47



Chapter 3 Combined Storage and Communication for Internet of Things

used during communication.

Data belonging to a file is stored as sequence of ESP encrypted blocks and we can

use the block number as ESP sequence number. IPsec allows us to reset the sequence

number counters at the start of a communication relationship by establishing a new SA.

Thereafter, data from the file can be delivered sequentially. In this setting we ensure that

the communication uses sequence numbers that were selected at time of data storage.

3.2.1.3 Framework Usage

Application Layer Protocol: Nodes store data securely which may be requested by Internet

hosts. Stored data has an application specific semantic. For example, sensor values may

be stored as a 4byte sensor value together with a 4byte timestamp and 2byte sequence

number. Nodes execute a storage application that is able to respond to queries such as

``send sensor samples recorded between 12:00:00 and 13:00:00"". A host executes a storage

application that is able to send these requests and to process arriving data. Host and

node storage applications use UDP for communication. Similar to the well known File

Transfer Protocol (FTP) protocol, separate flows are used for command and data transfer

which makes different IPsec security settings (including keys and security mechanisms)

for both channels possible.

Security Configuration: The IPsec SA defines how data flows are protected. The SA

holds secret keys, encryption algorithm descriptions and IP addresses to identify flows.

Each SA holds an SPI, which is a 32-bit value used by a receiver to identify the correct

SA.

If each file should be encrypted with a different key it is necessary to specify distinct

SAs that each use a unique SPI. The SPI is transmitted in the 6LoWPAN header in

compressed form (See Section 3.2.1.1). However, compression is only possible when

the default SPI value is used; otherwise SPI information must be carried within the

packet. Thus, the most frequently used file should use the default SPI in order to improve

efficiency. In a practical setting this is not an issue as most nodes are using a single large

file for storage of sensor data.

48



Chapter 3 Combined Storage and Communication for Internet of Things

3.2.1.4 Implementation

We implemented the outlined framework for the Contiki [DGV04] operating system. The

implementation uses Contiki's \mu IP stack with 6LoWPAN/IPsec extensions as defined

in [RDH+12] as the communication component. The storage component uses Contiki's

Coffee File System (CFS) [TDZV09] with Codo to provide file system security extensions.

The \mu IP stack was modified in order to enable direct passing of ESP encrypted packets

from the file system to the communication stack. On the host side we used a standard

Ubuntu Linux host.

For encryption/decryption we used AES in Counter (CTR) mode, with a 128bit key, in

either hardware (e.g. via the CC2420 radio chip present on many sensor node platforms)

or the MIRACL [Cer] library if hardware support is not available. If authentication

is required, AES-XCBC-MAC-96 is used to calculate the necessary ICV (provided via

cryptographic processor or the MIRACL library).

The maximum 802.15.4 payload is 127byte and the available MAC layer payload

size is 102byte. As seen in Figure 3.6, 7byte are required for the compressed 6LoWPAN

header, 12bytes are required for the compressed ESP header fields, 2bytes are required

for the ESP trailer fields, 12bytes are required for the ICV if it is used and 8bytes are

required for the UDP header. This leaves a maximum payload of 61byte. The AES

algorithm requires a minimum block size of 16byte. Thus, the maximum feasible amount

of data that can be stored per block before fragmentation must occur is 54byte. Storage

blocks contain 64byte of encrypted data (8byte encrypted elements of the UDP header,

2byte encrypted ESP trailer and 54byte payload). Other feasible payload sizes are 6,

22 and 38. To avoid padding, an application should align write operations with these

payload sizes.

At this point in time, our Contiki IPsec implementation does not support key exchange

mechanisms such as the IKE protocol. Keys are set manually before deployment. However,

for most application scenarios this would not be an issue limiting the framework's usability.

49



Chapter 3 Combined Storage and Communication for Internet of Things

3.2.1.5 Security Discussions

In this section we briefly discuss the security of the combined storage and communication

system. We consider key management, cryptographic algorithms, message encryption

and message authentication. In particular, we determine whether the combination of

secure storage and secure communication provides weaker security than systems treating

both subsystems individually.

Confidentiality - Communication is secured using IPsec's ESP procedures. The

solution does not deviate from procedures defined in the IPsec framework. An attacker

with access to the communication channel has access to the same information as an

attacker on any other ESP secured communication. If we consider IPsec a secure solution,

the provided solution can be considered secure as well.

Our implementation uses AES in CTR mode with 128bit keys. The best known

Advanced Encryption Standard (AES) attack for this key length is four times better

than exhaustive search [BKR11], and does not adversely affect its security.

Integrity and Authentication - When authentication is required, the ICV is calculated

and appended to the ESP. Here we have to balance security and performance needs.

Storing the ICV along with the ESP will ensure data integrity and authentication for

storage and communication. However, when storing ICVs along with the encrypted

payload it is necessary to select sequence numbers at the time data is stored. Hence,

sequence numbers are predictable and will repeat when stored file content is transmitted

repeatedly. Thus, protection against replay attacks in the communication channel is

weakened. On the other hand, we will have performance gains as the ICV does not have

to be computed at transmission time. If we decide to calculate the ICV before each

transmission the replay protection is strongly enforced while the performance gains are

reduced and stored data is missing integrity and authentication data.

To provide both strong data integrity and relatively weaker anti-replay functionalies

when the ESP authentication field (ICV) is also stored in flash memory, sequence numbers

should be in order before calculating ICVs for all the stored packets in a file, and the

sender's and receiver's counter should be reset (by establishing a new SA) prior to the

50



Chapter 3 Combined Storage and Communication for Internet of Things

transmission of a file.

Storage - Data is stored in the same format as it is later transmitted. An attacker

with access to the file system has the same information available as an attacker with

access to the communication channel. If transmitted information secured using ESP is

considered to be secure then information stored in the file system must be considered

secure as well.

Key Management - Data in flash memory is secured using the same key that is later

used for communication. Hence, transmission of the same stored data requires usage of

the same key on the communication link. It is not possible to negotiate a fresh key for

each communication relationship compared to when IPsec is used on its own. However,

many practical IPsec deployments use pre-shared fixed keys so we consider this a secure

option.

Similarly, if multiple nodes have to be able to access the same stored information

they will also have to use the same key for communication. This is similar to practical

situations where IPsec is used with a single pre-shared key.

The proposed system has difficulties with revocation of keys; if a new key is selected

data already stored in the flash file system must be re-encrypted, which is costly on

resource constrained systems.

3.2.2 Evaluation

In this section we first discuss the costs in terms of storage overhead that are associated

with the proposed scheme of combined storage and communication. Thereafter we analyse

the processing performance and energy consumption gains associated with our scheme.

We use our Contiki implementation for the Telos B platform.

3.2.2.1 Storage Overheads

Storing encrypted data together with the ESP fields that demand cryptographic processing

requires additional storage space compared to a solution which would only store encrypted

data.

51



Chapter 3 Combined Storage and Communication for Internet of Things

 0
 50

 100
 150
 200
 250
 300
 350
 400

 6  22  38  54

E
xt

ra
 s

to
ra

ge
 (

%
)

Payload size (byte)

Storing Encrypted Fields
Storing Encrypted Fields and ICV

Figure 3.7: Storage overheads for different payload sizes.

If only encryption is used an extra 10byte per stored data block is required. Thus, it is

better to store large blocks (large ESP packets) as this reduces the overhead. Figure 3.7

shows the overhead in dependency of the payload size. We show overheads for payload

sizes which align with the AES encryption block size of 16byte and that do not require

fragmentation when transmitted.

If authentication is also required then overheads increase as the ICV data of 12byte

has to be stored alongside the other encrypted information.

The results show that the proposed framework reduces the effective storage size of

the available flash storage space on nodes by 40.7\% when using a payload size of 54byte

and use of ICV. However, if we consider a common flash memory size of 16GB in which

a 10byte sensor reading is recorded every minute the time until the storage capacity is

exceeded is reduced from 3266years to 1329years. Both values are acceptable in any

deployment context and it can be concluded that the necessary storage overhead is not a

limiting factor of the proposed framework.

3.2.2.2 Performance Gains

The combined storage and communication framework provides performance improvements.

To analyse performance benefits in detail we use 4 different experiments. In all 4

experiments, ESP encryption and authentication is provided. The different experiments

are used to show increasing performance benefits with increasing integration of storage

and communication. Experiment A uses a system without the combining storage and

52



Chapter 3 Combined Storage and Communication for Internet of Things

communication. In these experiments (Experiment B, C, D) the framework is used in

different configurations.

Encryption Authentication UDP checksum re-calculation

Experiment A individual individual -

Experiment B combined individual not required

Experiment C combined individual required

Experiment D combined combined not required

Table 3.3: Experiment setup details used for evaluation. All experiments use ESP encryption
and authentication. The combined storage and communication framework is used
for different aspects. UDP checksum re-calculation is assumed in some settings.

Experiment A is the baseline experiment where data is read from flash memory, de-

crypted and re-encrypted for IPsec conformant transmission. In addition, authentication

is provided and an ESP ICV is constructed. In Experiment B, ESP encrypted fields are

stored in the flash memory and can be directly transmitted upon request. The ICV

for authentication is still constructed at transmission time. Experiment C differs from

Experiment B in terms of UDP checksum calculation. A non-matching IP address was

used at storage time and a re-calculated before transmission is necessary. In Experiment

D, ESP encrypted fields and the ESP authentication field (ICV) are stored in flash

memory and can be transmitted directly upon request. All of the experiments are carried

out with both software and hardware encryption. Table 3.3 summarises the experiment

settings.

Experiment A: Baseline experiment

In this experiment, data is read from a file and sent using conventional methods. ESP

conformant AES encryption is used for the storage component and communication

component to allow for comparison with the other experiments. Payload data is read in

blocks of 6, 22, 38 and 54bytes. The payload is decrypted and then re-encrypted for IPsec

transmission. ICV authentication data is constructed before transmission. Decryption is

carried out within the Contiki CFS; encryption and ICV calculation is carried out within

the Contiki \mu IP stack.

53



Chapter 3 Combined Storage and Communication for Internet of Things

 0

 5

 10

 15

 20

 25

 30

 35

 40

6 22 38 54

T
im

e 
(m

s)

Payload size (byte)

CFS reading
CFS decryption
ESP encryption

ESP ICV calculation
Other operations

(\bfa ) With software encryption.

 0

 5

 10

 15

 20

 25

 30

 35

 40

6 22 38 54

T
im

e 
(m

s)

Payload size (byte)

CFS reading
CFS decryption
ESP encryption

ESP ICV calculation
Other operations

(\bfb ) With hardware encryption.

Figure 3.8: Duration of different operations involved in preparing single packet for transmission
with software and hardware encryption.

Figure 3.8 shows the time that is necessary on a node to process one payload. The

processing time is measured from the start of the file system read operation to the

completion of the packet transmission. The total processing time is broken down to show

the contribution of significant individual operations:

\bullet CFS reading is the time required to read data from the file system.

\bullet CFS decryption represents the time necessary to perform data decryption.

\bullet ESP encryption represents the time necessary to encrypt the ESP payload.

\bullet ESP ICV calculation is the time required to produce authentication data.

\bullet Other operations summarises the duration of all other operations.

Figure 3.8a shows the processing duration breakdown when cryptographic processing

is carried out in software. The total time to prepare a single packet is 19.1ms, 25.2ms,

31.4ms and 37.6ms for 6byte, 22byte, 38byte and 54byte payload data, respectively. CFS

reading time is 8\%, CFS decryption time is 21.3\%, ESP encryption time is 21.5\% and

ESP ICV calculation time is 25.1\% of the overall processing time for 54byte payload.

Figure 3.8b shows the duration of operations when using hardware supported crypto-

graphic processing. Total times for preparing a single packet are 11.8ms, 14.5ms, 17.1ms

54



Chapter 3 Combined Storage and Communication for Internet of Things

 0

 5

 10

 15

 20

 25

 30

 35

 40

6 22 38 54

T
im

e 
(m

s)

Payload size (byte)

CFS reading
ESP ICV calculation

Other operations

(\bfa ) With software encryption.

 0

 5

 10

 15

 20

 25

 30

 35

 40

6 22 38 54

T
im

e 
(m

s)

Payload size (byte)

CFS reading
ESP ICV calculation

Other operations

(\bfb ) With hardware encryption.

Figure 3.9: Duration of different operations involved in preparing single packet for transmission
with software and hardware encryption when storing ESP encrypted fields.

and 19.7ms for the different payload sizes. CFS reading time is 15.1\%, CFS decryption

time is 12.5\%, ESP encryption time is 12.7\% and ESP ICV calculation time is 13.8\% of

the overall time when preparing 54byte of data.

Enabling hardware support improves performance by 38.1\%, 42.6\%, 45.5\% and 47.5\%

for 6byte, 22byte, 38byte and 54byte payloads, respectively.

The experiments show that when a 54byte payload is transmitted processing the node

spends 67.9\% of the preparation time on cryptographic processing (software supported).

This cryptographic processing time can be avoided by the proposed framework as we

show in the following experiments.

Experiment B: Storing ESP fields

In this experiment, ESP encrypted fields are stored in flash memory with the payload

data. 6, 22, 38 and 54byte payloads are used. As additional stored ESP fields are 10byte

length 16byte, 32byte, 48byte and 64byte must be read from the file system. Compared to

Experiment A CFS decryption and ESP encryption is now not necessary, so processing

time is saved.

Figure 3.9a shows the duration for different operations when preparing a single packet

for transmission with software encryption. Total times for preparing a single packet are

55



Chapter 3 Combined Storage and Communication for Internet of Things

12.5ms, 15ms, 17.6ms and 20.2ms; and improvements in system performance when it is

compared to the baseline experiment with software encryption are 34.6\%, 40.4\%, 43.9\%

and 46.3\%.

Figure 3.9b shows processing times when using hardware encryption. Total times

for preparing a single packet are 9.3ms, 10.7ms, 12.1ms and 13.5ms; and improvements

in system performance when it is compared to the baseline experiment with software

encryption are 51.3\%, 57.7\%, 61.6\% and 64.1\%.

It is notable that the CFS read time is less than in Experiment A even though more

data has to be read from the file system (e.g. instead of 54byte, 64byte are read as

ESP information is included). This is due to the fact that elements of the CFS can be

bypassed when directly reading encrypted data for transmission.

Experiment C: Using a non-matching IP address

This experiment is similar to Experiment B. The difference is the IP address of the

destination when carrying out ESP encryption for storage. The UDP checksum enclosed

in ESP packets must be corrected before transmission. The time necessary to perform

decryption of the 16byte block containing the checksum, its correction and encryption

of the 16byte block containing the corrected checksum is referred to as UDP checksum

preparation.

Figure 3.10a shows results using software encryption. The total time for preparing

a single packet is 15.3ms, 17.9ms, 20.4ms and 23ms; and improvements in system

performance when it is compared to the baseline experiment with software encryption

are 20.1\%, 29.1\%, 35.1\% and 38.9\% for the different payload sizes.

Figure 3.10b shows results when using cryptographic hardware support. Total times

are 10ms, 11.4ms, 12.8ms and 14.2ms; and improvements in system performance when

it is compared to the baseline experiment with software encryption are 47.6\%, 54.7\%,

59.2\% and 62.1\% for 6, 22, 38 and 54byte data.

The correction of the UDP checksum, which may be necessary in cases we cannot

anticipate the endpoint to which stored data must be delivered, is not very costly. For a

56



Chapter 3 Combined Storage and Communication for Internet of Things

 0

 5

 10

 15

 20

 25

 30

 35

 40

6 22 38 54

T
im

e 
(m

s)

Payload size (byte)

UDP checksum preparation
CFS reading

ESP ICV calculation
Other operations

(\bfa ) With software encryption.

 0

 5

 10

 15

 20

 25

 30

 35

 40

6 22 38 54

T
im

e 
(m

s)

Payload size (byte)

UDP checksum preparation
CFS reading

ESP ICV calculation
Other operations

(\bfb ) With hardware encryption.

Figure 3.10: Duration of different operations involved in preparing single packet for transmission
with software and hardware encryption when using a non-matching IP address.

54byte payload using hardware support the performance gain is only reduced from 64.1\%

to 62.1\%.

Experiment D: Storing ESP and ICV fields

In this experiment all options of the proposed framework are in use. Data is stored in

ESP compatible form alongside the ICV authentication data. In this case no encryption

processing is required when data is requested, and thus processing times are independent

from cryptographic algorithm implementations (hardware or software). The results are

shown in Figure 3.11a. For direct comparison we again show the results of Experiment A

(software encryption) in Figure 3.11b.

In this experiment, ESP encrypted fields and ESP authentication field (ICV) are

stored in flash memory together with the payload data. As encrypted fields have a length

of 10bytes and the authentication field (ICV) is 12bytes long, blocks of 28byte, 44byte,

60byte and 76byte have to be read for different payload sizes.

Compared to the previous two experiments, CFS read times increase as the additional

ICV has to be read. Total time for preparing a single packet is 8.1ms, 9.1ms, 10ms

and 10.9ms. Improvements in system performance when compared with the baseline

experiment with software encryption are 57.5\%, 64.1\%, 68.3\% and 71\% for 6, 22, 38 and

57



Chapter 3 Combined Storage and Communication for Internet of Things

 0

 5

 10

 15

 20

 25

 30

 35

 40

6 22 38 54

T
im

e 
(m

s)

Payload size (byte)

CFS reading Other operations

(\bfa ) Combined storage and communication

 0

 5

 10

 15

 20

 25

 30

 35

 40

6 22 38 54

T
im

e 
(m

s)

Payload size (byte)

CFS reading
CFS decryption
ESP encryption

ESP ICV calculation
Other operations

(\bfb ) Individual security processing

Figure 3.11: Duration of different operations necessary to prepare a single packet for transmis-
sion when using the combined storage and communication framework and when
using individual storage and communication security solutions.

54byte payload data.

These results show that the proposed framework of combined storage and communi-

cation can achieve significant performance gains. When the framework is used, requested

data can be delivered approximately 3 times faster as cryptographic processing is not

required at the time when data is prepared for delivery.

3.2.2.3 Energy Consumption

We have shown that combining secure storage and communication reduces processing

time on sensor nodes. However, it is not immediately clear if savings in processing

time translate to energy savings as the proposed mechanism changes usage patterns of

hardware components such as flash memory and hardware encryption.

We therefore compare energy consumption of the conventional storage method with

our combined storage and communication method. We use the setups previously described

as Experiment A and Experiment B. We use energy consumption values for CC2420 radio

operations and ST M25P80 flash operations from the Tmote Sky datasheet [Sky06], and

for CC2420 hardware cryptographic support from [ZDC11].

If 54byte data is required to be stored and transmitted later using the conventional

method, 54byte data has to be encrypted and written to the flash memory for storage;

58



Chapter 3 Chapter Summary

54byte data has to be read from the flash memory and has to be decrypted; 64byte data

has to be encrypted in IPsec; 80byte data has to be authenticated in IPsec and the packet

has to be transmitted, respectively. In case that 54byte of data is required to be stored

and transmitted using combined storage and communication method, 64byte data has

to be encrypted and written to flash memory for storage; 64byte data has to be read

from the flash memory; 80byte of data has to be authenticated and the packet has to be

transmitted.

The system is able to skip two cryptographic operations when using combined secure

storage and communication. Therefore, the energy consumption decreases by 32.1\%,

even when additional 10byte have to be written to and read from flash memory. We

do not detail energy savings for all other experiment combinations as discussed in the

previous section. However, in all cases our proposed method leads to energy savings. In

the worst-case, energy consumption decreases by 18.7\% (in Experiment D with 6byte

data size).

3.3 Chapter Summary

In the first part of this chapter we present Codo, a novel framework for confidential data

storage on sensor nodes. We have described and evaluated a Codo implementation for

Contiki. As described, Codo addresses a number of shortcomings in existing secure storage

solutions. Codo matches hardware capabilities with security requirements; in-network

processing capabilities are preserved while providing confidentiality; already encrypted

data in the file system can be used directly for communication.

Codo uses AES with a 128 bit key length. Given this key length, the best known

AES attack is four times better than an exhaustive search [BKR11], which requires a

brute force attack with 2126 keys. This is considered infeasible within a reasonable time

frame and, thus, we consider Codo to be secure. Security requires a processing overhead

which is considerable. This processing overhead is proportional to the increase in energy

consumption of a node as the CPU is active for longer. However, the CPU is generally

the smallest energy consumer (radio and sensors consume far more energy) and the

59



Chapter 3 Chapter Summary

overall increase in energy consumption is reasonable given the added security. The exact

reduction of node lifetime depends on the particular CPU type and sensor platform used.

In the second part of this chapter, we have shown that combined secure storage and

communication can reduce security related real-time processing on nodes dramatically

(up to 71\% reduction). As shown, this can be achieved while decreasing as well a node's

power consumption (up to 32.1\%). Furthermore, we have shown that this is possible

within the context of the IP protocol family which we believe will be used in the future

IoT. The described solution requires additional storage space on nodes. However, we

believe that currently available flash memory sizes can absorb these overheads.

Data on nodes must be secured when stored and transported in order to implement a

comprehensive security solution. As resource-constrained embedded systems are limited

in resources it is necessary to find efficient solutions. As shown in this chapter, the

proposed framework combining security aspects of storage and communication can help

to achieve this goal.

60



Chapter 4

Node Identification Based on Clock

Skew

All clocks on Wireless Sensor Network (WSN) platforms experience a natural drift. This

drift is unique to a node as it depends on the clock hardware1. For example, the drift of a

node's real-time clock is defined by unique properties of the quartz crystal used. For most

WSN applications, clock drift is a nuisance and mechanisms such as time synchronisation

protocols are put into place to combat it. However, in this work, we take advantage of a

node's unique clock drift pattern and use it to uniquely identify nodes.

Besides other security requirements, it must be possible to authenticate nodes and

sensor data provided by them. For example, a sink node must be able to verify that

data is provided by genuine nodes and not by an adversary. Classical cryptographic

methods can be used to implement authentication. In this case, shared keys are used

to identify nodes. As keys may become compromised (i.e. someone obtaines a copy)

which would allow an adversary to impersonate a node, methods have been developed

which bind authentication to a node's hardware. For example, a crypto chip such as the

Atmel ATSHA204 [Atm12] can be included in a node's design which holds cryptographic

material for authentication. In this case an attacker must obtain the crypto chip in order

to impersonate a node. However, crypto chips are expensive and require an additional

1This chapter is based on the paper titled ``Node Identification Using Clock Skew"".

61



Chapter 4

component to be integrated in the node design. Thus, we use an already present hardware

characteristic to derive a unique node identification; we use a node's unique clock skew

characteristic for identification.

In addition to the outlined security application, clock-skew-based identification is

useful for other tasks. For example, when commissioning nodes, unique identifiers such

as node IDs and communication addresses must be determined. Clock skew can also be

used in this broader context to generate unique identifiers.

Clock skew has been previously used as means of node identification. For example,

Kohno et al. [KBC05] have shown that clock skew is unique and can be used to identify

classical PCs in the Internet. Uddin et al. [UC10] have shown that this method can

be used in principle in the context of WSNs. Existing work determines clock skew by

comparing clocks on separate nodes (or nodes and a sink). For this process, it is necessary

to distribute timestamps over the underlying communication network and a constant

network delay is required. In a WSN context, this is an impractical requirement as

duty-cycled communication induces large network delay variances.

In this part of the thesis we move away from this limitation of existing work and we

measure clock skew locally on nodes. We discuss how this can be achieved in general,

describe an implementation of this method and provide a detailed analysis describing

clock sampling requirements and achievable quality. More specifically, the contributions

of the work are:

\bullet Local Skew Determination: We describe how the clock skew of a node's crystal-based

real-time clock can be measured locally using the high-precision clock available on

modern transceivers to create unique node identifiers. An implementation of this

method for the Zolertia Z1 platform using Contiki is described.

\bullet Analysis of Sampling Requirements: The achievable quality of the local clock skew

determination is compared with the quality of state of the art distributed methods.

The dependency of clock sampling effort and skew calculation quality is analysed

in detail. In this context, it is also shown how clock sampling can be aligned with

general transceiver operation in order to avoid a transceiver duty cycle increase.

62



Chapter 4 Clock Skew

Offset	  	  
(o)

Elapsed	  time
(tr)

1

1

N

N

Slope	  of	  the	  line	  is	  called	  clock	  skew.

Fitted	  line

Figure 4.1: Clock skew estimation.

4.1 Clock Skew

Clock skew could be determined by analysing the drift of a clock Cm with the help of

a stable reference clock Cr. However, in a practical setting, a stable reference clock is

generally not available and it is only possible to monitor one drifting clock with another

drifting clock. Hence, a measured clock skew value for a node reflects drift of the measured

clock and the used reference clock. Nevertheless, the determined clock skew value is

unique and dependent on the hardware characteristics of the clocks used.

4.1.1 Definition of Clock Skew

The measured clock Cm runs at frequency fs and the reference clock Cr runs at frequency

fr. To determine clock skew, timestamps of the measured clock and the reference clock

are taken periodically. Tm
1 and T r

1 are the first timestamps of both clocks taken at the

first sample point, Tm
i and T r

i are timestamps taken at the ith sample point. The elapsed

time of the measured clock Cm at the ith sample point is tmi = (Tm
i  - Tm

1 )/fm; the

elapsed time at the reference clock Cr is tri = (T r
i  - T r

1 )/fr. The offset -- the difference

between measured and reference clock -- at the ith sample point is oi = tmi  - tri . If we

sample N pairs of (tri , oi) for i \in \{ 1, ..., N\} and plot these pairs (the so called offset-set),

we obtain an approximately linear graph. It is possible to fit a linear function of the form

\delta \cdot trN + \varphi (4.1)

63



Chapter 4 Clock Skew

to these obtained measurement points. The slope \delta of the fitted linear function is called

the clock skew. Figure 4.1 demonstrates the clock skew estimation.

4.1.2 Clock Skew Determination

There are a number of methods available to fit a linear function. Depending on the exact

method used the definition of clock skew is also slightly altered. In the literature mainly

two methods are used in the context of clock skew calculation which we detail next and

use in the remainder of the work.

4.1.2.1 Linear Programming

Moon et al. [MST99] have shown that clock skew can be accurately estimated from a

set of samples using a Linear Programming (LP) method. LP finds a line \delta \cdot tri + \varphi that

upper bounds the offset-set. The problem constraint of LP is given as

\delta \cdot tri + \varphi \geq oi (4.2)

and the following function is minimized (object function):

1

N
.

N\sum 
i=1

(\delta \cdot tri + \varphi  - oi) (4.3)

LP delivers accurate results but has drawbacks when considering a WSN context.

Samples must be collected and stored before the calculation can begin. Furthermore,

a relatively complex solver for the LP must be available. If considering to execute the

calculation on a resource constrained node storage and calculation requirements may be

too excessive.

4.1.2.2 Linear Regression

Mar\'oti et al. [MKSL04] estimate clock skew using a form of Linear Regression (LR) in

their Flooding Time Synchronization Protocol (FTSP). The algorithm uses the average

elapsed time at the reference clock tr and the average offset o up to the ith sample point.

64



Chapter 4 Clock Skew

Then the skew is estimated by calculating:

\delta = (oi  - o)/(tri  - tr) (4.4)

For the FTSP 8 sample points are used to estimate the clock skew. We use this

algorithm with a varying number of sample points in order to have control over the

achievable quality of the skew estimation. Compared to LP the implementation is much

simpler and therefore more suitable for usage on resource constrained nodes.

4.1.3 Clock Skew Quality

In this work we aim to use clock skew to uniquely identify nodes. Hence it is important

that clock skew measurements on two nodes can be attributed to the individual nodes.

The collision probability (the likelihood that two nodes are seen as the same even though

they are different) should be as small as possible.

Clock skew measurement, for example using the previously described LP or LR

method, is subject to variation. Thus, as two nodes may have a skew values close to each

other, variance of the measured skew may make it hard to clearly attribute measurements

to individual nodes.

We use a t-test to compare the means of the measured clock skews of two nodes. The

t-test returns a test decision for the null hypothesis that the nodes are the same. The

alternative hypothesis is that the two nodes are not the same. The probability value

(p-value) returned by the t-test is the probability of rejecting the null hypothesis (two

nodes are the same) when the null hypothesis is true. Therefore, a small p-value indicates

that the means of clock skew measurements of two investigated nodes are unlikely to be

the same.

For the experimental evaluations described in later sections we use p-values to describe

quality of determined clock skew measurements.

65



Chapter 4 Remote Clock Skew Determination

4.2 Remote Clock Skew Determination

In existing work (for example, [UC10] and [HTW+08]) measured clock Cm and reference

clock Cr are located on different nodes in the network. For example, the reference clock

is the real-time clock of the sink node and the measured clock is the real-time clock of

the node to be identified. This remote clock skew determination is carried out as a node

generally provides only one accurate clock in its default configuration which is suitable

for skew calculations.

4.2.1 The Impact of Network Jitter

As shown in Section 4.1, timestamps Tm
i and T r

i are the ith sample taken at the same

point in time. When using remote clock skew determination Tm
i is taken first and the

timestamp is transmitted via the network to the reference node which then takes the

corresponding timestamp T r
i . Thus, T r

i is taken \Delta i after the sample T s
i . \Delta i is the

network delay associated with transmitting the ith timestamp of the measured clock.

The clock skew calculation as presented in Section 4.1 is still valid if the network delay is

constant (\Delta i = \Delta \forall i). Variations in \Delta i (network jitter) reduce the quality with which

the clock skew can be determined. In a practical WSN network jitter is high due to

the nature of duty-cycled communication. For example, when using a protocol such

as ContikiMAC [Dun11] the forwarding delay is dependent on when a sender transmit

request occurs relatively to the point in time when a receiver node enters its periodic

listen phase. Using standard ContikiMAC configuration settings, forwarding delays vary

between 0ms and 125ms (ContikiMAC uses channel check rate of 8Hz). This is too high

to measure the characteristics of clock skew.

Existing work uses remote clock skew determination in specific setups where nodes

are only one hop distance away and no duty cycling MAC protocols or significant

network traffic is present. In such a specific case network jitter is low and remote

skew determination is possible. However, in any practical setting this method has its

limitations.

66



Chapter 4 Remote Clock Skew Determination

1 2 3 4 5
−8
−7
−6
−5
−4
−3
−2
−1

0
1
2
3
4
5
6
7
8
9

10

Observations

C
lo

ck
 s

ke
w

s 
(p

pm
)

 

 

Node 1
Node 3
Node 4
Node 5

Figure 4.2: The measured clock skew using five Zolertia Z1 nodes with remote clock skew
determination. 5 observations are carried out using 2500 timestamp samples.

4.2.2 Experimental Evaluation

We use five Z1 nodes from Zolertia [Zol10] to carry out a baseline experiment using

remote clock skew determination. We use the results obtained in this experiment as

comparison for the local clock skew determination method we introduce later.

The Z1's external 32, 768Hz watch crystal is used for clock skew profiling. We label

the nodes from Node 1 to 5 and select Node 2 as the sink node. Nodes are one hop away

from a sink node and its external crystal clock is used as reference clock Cr. The nodes

run the Contiki operating system and use a NullMAC (no duty cycling MAC is present).

No other network traffic than the transmission of timestamps from the 4 measured nodes

is present in the network.

Timestamps Tm
i are transmitted every 4s from the nodes to the sink. When the sink

node receives a timestamp Tm
i it records the corresponding timestamp T r

i . The total

transmitted packet count is 2500 for every node. We repeat this operation 5 times (5

observations) and estimate the clock skew for each node. The clock skew is estimated

using the previous described LP method. This calculation is carried out offline after

collection of all timestamp samples. The result is shown in Figure 4.2; clock skew is

shown in ""part per million"" (ppm).

Figure 4.2 shows that nodes can be clearly identified by measuring clock skew. The

67



Chapter 4 Local Clock Skew Determination

Node 1 Node 3 Node 4 Node 5

Node 1 - 4.25E  - 06 3.19E  - 08 2.36E  - 08

Node 3 4.25E  - 06 - 3.91E  - 07 1.69E  - 07

Node 4 3.19E  - 08 3.91E  - 07 - 3.23E  - 03

Node 5 2.36E  - 08 1.69E  - 07 3.23E  - 03 -

Table 4.1: Obtained p-values describing how clearly nodes can be distinguished from each other
node. The smaller the value the more clearly nodes are distinguishable.

Node 1 Node 3 Node 4 Node 5

1.14E  - 01 9.43E  - 01 4.49E  - 01 3.54E  - 01

Table 4.2: Obtained p-values when comparing a node with itself. Values are larger (2 magnitudes)
then the ones shown in Table 4.1.

clock skew is stable enough over several observations. For some nodes it is easier to

distinguish them (for example, Node 1 and Node 4 are clearly separate nodes), others

have skew values close together (for example, Node 4 and Node 5). However, even though

some nodes are close together measured skew values can be clearly attributed to nodes.

How clearly nodes can be identified as separate (the quality of the skew values) can be

expressed using the previously outlined t-test. Table 4.1 shows the results of this analysis.

To provide some means of judging p-values we provide Table 4.2. Here, the means of

the first two observations of a node are compared with the mean of the third and forth

observation of a node; effectively p-values are generated where a node is compared with

itself and values are generated that are not distinguishable. As it can be seen, worst case

p-values in Table 4.1 are two orders of magnitude lower then in Table 4.2. This indicates

that the investigated set of nodes in this experiment is clearly uniquely identifiable via

measured clock skews.

4.3 Local Clock Skew Determination

To overcome the previously outlined limitations of remote clock skew determination (i.e.

the need of a constant network delay), it would be beneficial to use two local clocks on a

node for skew determination.

68



Chapter 4 Local Clock Skew Determination

4.3.1 Local Clock Sources

Most sensor node platforms provide two clock sources, the crystal-based real-time clock

and a processor internal Digitally Controlled Oscillator (DCO). However, these two

available local clocks cannot be used for skew determination as the DCO clock has a

much lower precision then the real-time clock. Thus, no stable clock skew values can be

determined using this setting.

However, most node platforms have a radio transceiver chip which has internally a

high-precision clock which is necessary for timing of data transmissions. In most cases it

is possible to access this resource and use it within the platform for other purposes than

transmission and reception of data.

The Zolertia Z1 platform we use for our work provides an 8MHz clock within the

CC2420 radio transceiver. We use the same approach that Pettinato et al. [PWEV12]

used to make use of the clock source of the radio. The Clear Channel Assessment (CCA)

pin of the radio is alternatively configured to output the internal radio clock signal [Tex13].

We connect the radio CCA pin with the external timer sources pin (TBCLK) of the

MSP430 processor. This allows us to use the radio clock as alternative clock source. As

this clock is of better quality than the crystal-based Real-time Clock (RTC) it is now

possible to use these two clocks to determine locally on the node a stable clock skew

value.

4.3.2 Experimental Evaluation

In this experiment we use the same 5 Z1 nodes as used for the previously described

baseline experiment. The Z1's external 32, 768Hz watch crystal (the measured clock

Cm) is used again for clock skew profiling. The CC2420 radio clock source is used as

reference clock Cr. Obviously, all nodes have their individual transceiver clock and, thus,

for each node skew profile an individual reference clock is used. Timestamps Tm
i and T r

i

are collected with an interval of 1s. The results determined using the LP method are

shown in Figure 4.3.

As can be seen, nodes are clearly identifiable in terms of observed clock skew. The

69



Chapter 4 Local Clock Skew Determination

1 2 3 4 5
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

Observations

C
lo

ck
 s

ke
w

s 
(p

pm
)

 

 

Node 1
Node 2
Node 3
Node 4
Node 5

Figure 4.3: The measured clock skew using five Zolertia Z1 nodes with local clock skew deter-
mination. 5 observations are carried out using 600 timestamp samples.

skew values are different to the values obtained remotely as shown in Figure 4.2. This

has to be expected as different reference clocks are used.

The calculated p-values for the five nodes are shown in Table 4.3. As can be seen

here, p-values are several magnitudes lower compared to the remote skew determination.

This means that individual nodes can be distinguished much more clearly. It has to be

noted that this significant improvement is achieved even though fewer sample points (600

compared to 2500) are taken and a shorter sample durations (1s compared to 4s) are

used.

We conclude that the local clock skew determination is much better than remote clock

skew determination as nodes can be more clearly identified. The collision probability

(the likelihood that two nodes are seen as the same even though they are different) is

greatly reduced. This is an important factor for the design of security mechanisms.

4.3.3 Processing Optimisation

So far, we have used the LP method to determine clock skew. This method is useful

and provides sufficiently accurate results (as previously shown) for local and remote

clock skew determination. However, LP is too complex to execute directly on resource

constrained nodes. We therefore use the LR method which is computationally more

70



Chapter 4 Local Clock Skew Determination

1 2 3 4 5 6 7 8 9 10
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

Observations

C
lo

ck
 s

ke
w

s 
(p

pm
)

 

 

Node 1, 1000 ms
Node 1, 125 ms
Node 1, 15.625 ms
Node 1, 7.8125 ms
Node 2, 1000 ms
Node 2, 125 ms
Node 2, 15.625 ms
Node 2, 7.8125 ms
Node 3, 1000 ms
Node 3, 125 ms
Node 3, 15.625 ms
Node 3, 7.8125 ms
Node 4, 1000 ms
Node 4, 125 ms
Node 4, 15.625 ms
Node 4, 7.8125 ms
Node 5, 1000 ms
Node 5, 125 ms
Node 5, 15.625 ms
Node 5, 7.8125 ms

(\bfa ) Clock skews using LP.

1 2 3 4 5 6 7 8 9 10
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

Observations

C
lo

ck
 s

ke
w

s 
(p

pm
)

 

 

Node 1, 1000 ms
Node 1, 125 ms
Node 1, 15.625 ms
Node 1, 7.8125 ms
Node 2, 1000 ms
Node 2, 125 ms
Node 2, 15.625 ms
Node 2, 7.8125 ms
Node 3, 1000 ms
Node 3, 125 ms
Node 3, 15.625 ms
Node 3, 7.8125 ms
Node 4, 1000 ms
Node 4, 125 ms
Node 4, 15.625 ms
Node 4, 7.8125 ms
Node 5, 1000 ms
Node 5, 125 ms
Node 5, 15.625 ms
Node 5, 7.8125 ms

(\bfb ) Clock skews using LR.

Figure 4.4: The measured clock skew of five Zolertia Z1 nodes with remote local clock skew
determination. 10 independent observations with 600 timestamp samples are used.

feasible. LR is expected to deliver results of lesser quality compared to the LP method. It

is therefore necessary to analyse if the quality of the results is still sufficient to distinguish

individual node clock skews.

Figure 4.4 shows a comparison of local skew determination using the LP and LR

skew calculation method (The figure also contains lines showing the effect of reducing the

sample period from 1s down to 7.8125ms; we discuss the effect of reduced sample period

in the next section). The corresponding p-values are given in Table 4.3. Interestingly,

71



Chapter 4 Local Clock Skew Determination

Method Node 1 Node 2 Node 3 Node 4 Node 5

Node1
LP - 1.30E  - 15 1.6E  - 24 8.13E  - 22 6.58E  - 19
LR - 1.92E  - 16 6.12E  - 25 1.74E  - 22 3.12E  - 19

Node2
LP 1.30E  - 15 - 1.63E  - 10 8.32E  - 21 1.21E  - 15
LR 1.92E  - 16 - 1.59E  - 11 8.79E  - 21 1.46E  - 16

Node3
LP 1.36E  - 24 1.63E  - 10 - 4.13E  - 20 8.29E  - 17
LR 6.12E  - 25 1.59E  - 11 - 7.01E  - 21 3.98E  - 17

Node4
LP 8.13E  - 22 8.32E  - 21 4.13E  - 20 - 2.03E  - 13
LR 1.74E  - 22 8.79E  - 21 7.01E  - 21 - 4.36E  - 14

Node5
LP 6.58E  - 19 1.21E  - 15 8.29E  - 17 2.03E  - 13 -
LR 3.12E  - 19 1.46E  - 16 3.98E  - 17 4.36E  - 14 -

Table 4.3: p-values using LP and LR with 10 observations, 600 samples, 1s sample period.

the LR method fares sightly better in terms of producing clearly distinguishable clock

skew values. This is contrary to what we would have expected. Clearly, LR therefore

represents a feasible option for clock skew calculation.

We have implemented the LR method of calculation for the Contiki operating system

(LP was executed in Matlab after data had been collected). The run-time complexity

of the LR algorithm is O(n). For the calculation of skew using 200 sample points an

execution time of 2.01ms is required which corresponds to an energy consumption of

0.027mJ .

4.3.4 Sampling Optimisation

So far we have demonstrated the feasibility of local clock skew determination using

relatively long sampling periods of 1s and and a relatively large sample size of 600

samples. It is beneficial to reduce as much as possible sample period and sample size.

Reducing the sample period and size allows for more energy-efficient operations and

enables us to obtain skew values faster. When reducing the sample period, less time

to observe skew is available and resolution of the used clocks can be a limiting factor.

When reducing the sample size less points are available to reduce variance of the obtained

result.

For local clock skew determination as presented in this work the transceiver clock

is required. This clock is only available if the transceiver chip is active. A duty-cycled

MAC protocol will aim to put the transceiver into an energy-efficient sleep state for as

72



Chapter 4 Local Clock Skew Determination

10 25 50 100 200 300 400 500 600

80

85

90

95

100

C
lo

ck
 s

ke
w

s 
(p

pm
)

(\bfa ) Node 1 using a 7.8125ms sample period.

10 25 50 100 200 300 400 500 600

85.8

85.9

86

86.1

86.2

86.3

86.4

86.5

C
lo

ck
 s

ke
w

s 
(p

pm
)

(\bfb ) Node 1 using a 1s sample period.

Figure 4.5: Node 1 skew for different sample sizes and sample period of 7.8125ms and 1s.

long as possible and only wake the transceiver for short durations for transmissions and

receptions. If short sample periods are feasible it is possible to align communication and

clock sampling and no additional transceiver chip wake times must be introduced. For

example, many slotted MAC protocols have transceivers periodically on for durations of

10ms to facilitate reception or transmission.

The required sample size should be as small as possible as this would allow us to

obtain a skew measurement fast. If we assume that sample periods are aligned with

natural transceiver activity we still have to wait until the transceiver was used sufficiently

73



Chapter 4 Chapter Summary

Node 1 Node 2 Node 3 Node 4 Node 5

Node 1 - 6.66E  - 10 6.14E  - 12 3.14E  - 16 3.37E  - 15

Node 2 6.66E  - 10 - 1.21E  - 04 3.25E  - 12 2.08E  - 12

Node 3 6.14E  - 12 1.21E  - 04 - 3.79E  - 12 1.92E  - 11

Node 4 3.14E  - 16 3.25E  - 12 3.79E  - 12 - 1.69E  - 09

Node 5 3.37E  - 15 2.08E  - 12 1.92E  - 11 1.69E  - 09 -

Table 4.4: p-values using LR with 10 observations, 200 samples, 7.8125ms sample period.

often before a skew measurement can be obtained.

We record 600 samples with four different sampling intervals: 1s, 125ms, 15.625ms

and 7.8125ms. These results are shown for 10 observations in Figure 4.4, using LP

and LR for analysis. Figure 4.5a and Figure 4.5b show changes in skew variance of 10

observations when modifying sample size and sample period.

It is clearly visible that skew variations experienced from one measurement to the

next are reduced when increasing sample period and/or sample size. The question is

what a feasible combination of sample size and sample period is. The answer will depend

on the application situation. However, generally it can be assumed that the shortest

feasible sampling period should be used as this helps in aligning sampling with general

transceiver activity. Then, the number of samples should be reduced up to a point a

sufficient quality (expressed as p-values) of skew calculation is ensured. For example, if

we assume that a sample period of 7.8125ms and a sample size of 200 is chosen, we obtain

p-values as shown in Table 4.4. These p-values are better than the p-values obtained via

remote skew determination. Thus, with these settings local skew detection can replace

remote skew detection without a loss in skew quality.

4.4 Chapter Summary

A node's unique clock skew can be used for node identification purposes. It is useful to

use this approach because node identification is bound to the hardware and no additional

components have to be incorporated in the node design. We have demonstrated that clock

skew can be determined reliably locally on nodes. Existing methods rely on jitter free

network communication which is unachievable in most practical WSN deployments. Thus,

74



Chapter 4 Chapter Summary

the presented work takes an important step towards practical clock skew identification.

We have shown that clock skew of a node's RTC can be determined locally using the

transceiver clock present in most WSN systems. We have shown that locally determined

skew values for nodes can be as unique and distinguishable as skew values determined in

a distributed fashion. A sample period of 7.8125ms and a sample size of 200 are sufficient

to determine clock skew locally with the same quality as a remote technique with a

sample period of 4s and a sample size of 2500. Also, the possible short sample period

of 7.8125ms allows us to take clock skew measurements during times the transciever

is active for communication. Additional transceiver active periods do not have to be

scheduled to achieve local clock skew determination.

75



Chapter 5

Tamper Detection and Node

Identification Based on Channel

State Information

A large number of Wireless Sensor Network (WSN) systems are using Wi-Fi as a means of

communication [BKR15]1. Wi-Fi devices are now commonplace and are often deployed in

application scenarios with strict security requirements. For example, wireless devices are

often part of physical intrusion detection systems used to protect critical infrastructure.

Wireless surveillance cameras might be used within a physical intrusion detection system of

an airport. An attacker may aim to change the camera's area of observation. Transmitted

image data would still be cryptographically authenticated and tamper detection would

require the inspection of the visual data. An attacker may also obtain key material and

replace a node in the deployment to inject false observation data. For these reasons, it is

desirable to provide an additional layer of defence that is able to indicate node tampering.

In this work, we use wireless channel characteristics to achieve this.

Communication environment changes can be observed via changes in channel charac-

teristics and this effect can be exploited for security purposes. Previous work exploited

1This chapter is based on the papers titled ``Short Paper: Gathering Tamper Evidence in Wi-Fi
Networks Based on Channel State Information"" and ``Using Channel State Information for Tamper
Detection in the Internet of Things"".

76



Chapter 5

channel characteristics to detect location changes [ZFPK08] or message injection [JZL+13].

In this work, we use those characteristics to detect tamper events for each node. In

particular, and in contrast to existing work, we consider transmissions over a varying

number of spatial dimensions in multi-antenna configurations of 802.11n Wi-Fi systems

(see Section 2.1.6 for details), and propose a tamper detection algorithm that works in

practical deployments.

In 802.11n, the frame preamble on the physical layer is used to compute Channel

State Information (CSI) for each incoming packet. We use this measurement for tamper

detection. Moving or replacing a transmitter changes the observed channel characteristics,

which results in an increasing tamper-evidence value. For example, a high tamper-evidence

value may be used to dispatch security personal to check integrity of a device.

Unfortunately, not only tamper events lead to CSI fluctuations; modifications of the

communication environment have an impact too. In particular, movement of people in

the communication environment has a noticeable influence on the CSI. As we will show in

Section 5.2.1, tamper detection based on CSI analysis is generally possible but it is hard

to distinguish tamper events from natural changes in the communication environment.

Thus, it is difficult to construct a practical security system based on CSI analysis as a

high number of false positives and a low number of true positives are detected. Figure 5.1

illustrates this challenge. The changing CSI amplitude value over time for just one

subcarrier is shown. As can be seen, tamper events and environmental changes (in this

case a person walking between sender and receiver) manifest in very similar ways.

To address this problem we propose to analyse CSI values from a single transmission

simultaneously at multiple receivers to improve distinction of tamper and movement events.

A moving person is expected to have an impact on some but not all communication links

while a tamper event is noticeable at all receivers. We describe the necessary algorithms

for the proposed CSI tamper detection method using multiple receivers. We analyse the

tamper detection capability in practical deployments with varying intensity of people

movement.

In this part of the thesis, we describe algorithms for tracking CSI values of Wi-Fi

77



Chapter 5

2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

2

4

6

8

10

Time (minutes)

C
S

I A
m

pl
itu

de
 V

al
ue

s

TamperingEnvironmental Changes

Figure 5.1: Effects of environmental changes and tampering on CSI amplitude values of the 9th

subcarrier of the 2nd antenna. Environmental changes and tamper events have a
similar effect on CSI amplitude values.

transmissions and show how to compute the tamper-evidence value. In particular, we

account for 802.11n's varying number of used spatial streams, and analyse detection

capability in practical deployments. To extract CSI information from off-the-shelf

hardware, we use the Linux 802.11n CSI Tool [HHSW11]. No additional transmissions

or protocol modifications are necessary for tamper detection. The contributions of this

chapter are:

\bullet Tamper Detection: We describe a method for device-specific tamper detection based

on per packet 802.11n CSI. The method handles varying numbers of spatial streams;

a feature used in 802.11n which is not yet considered by previous work. We also

describe a tamper detection algorithm that can be used in practical deployments

using multiple receivers.

\bullet Detection Analysis: We demonstrate that device movements of just 1 cm and

hardware replacements are clearly detectable. We analyse the tamper detection

capability of the proposed method using realistic deployment environments. We

describe system capability in these environments in terms of achievable False

Positive Rate (FPR) and True Positive Rate (TPR).

\bullet Tamper Detection Implementation: We describe how the proposed algorithms can

78



Chapter 5 Tamper Detection

be put to action in practical deployments. We discuss their application in the

future WSNs.

5.1 Tamper Detection

We use CSI of 802.11n packets in this work. As explained in Section 2.1.6, CSI is the

estimation of the channel conditions and represented as Msc
R\times S . It gives the amplitude

changes and phase shifts for each subcarrier sc.

We analyse the characteristics of a wireless channel at the receiver using CSI to

detect tampering on the transmitter. CSI values changes with the transmitter location

or hardware changes. However, CSI is also affected by tamper-unrelated events, like

changes in the communication environment due to moving people. These changes have

to be addressed in order to reduce false alarms. In the case that transmitter uses spatial

multiplexing, each transmission might be sent with different number of spatial streams,

as it is explained in Section 2.1.6.1. Different spatial streams have different CSI values,

and this aspect has to be addressed during the design of a tamper detection mechanism.

We first show the feasibility of tamper detection based on CSI using a single receiver.

In this setting, number of spatial streams S may vary between one and the number of

transmission antennas T . Then we provide a more reliable tamper detection mechanism

for practical deployments using multiple receivers. The transmitter must send broadcast

packets in this setting, because the receivers use the same link for tamper detection. If

the transmitter sends the packets in broadcast mode (i.e., receiver agnostic) it only uses

one spatial stream. Nodes transmit periodic broadcast beacons which can be picked up

by multiple receivers for CSI-based tamper detection.

Using single receiver or multiple receivers for tamper detection requires slightly

different algorithms to be able to handle different number of spatial stream settings. We

will show these algorithms in the following subsections.

79



Chapter 5 Tamper Detection

5.1.1 Single Receiver Tamper Detection

In the single receiver tamper detection algorithm, receivers collect and store \tau CSI

measurements Msc
R\times S,i\in 1...\tau . These CSI measurements are collected while the transmitter

is in a tamper free state and will be used for comparison with newly received CSI

measurements Msc
R\times S,i>\tau . A distance metric is used as existing works show that such

algorithms work well in this context (see related work [PK07, ZFPK08]). If the distance

is above a certain threshold, the algorithm decides there is a tamper event and triggers

an alarm.

A transmitter with T antennas can choose from one to T spatial streams. We create

T different models Modm=1...T , because each model requires its own training for the

corresponding spatial stream setting. Additionally, each model has one to m spatial

streams. Therefore, we need to generate models Modm=1...T,s=1...m for each spatial stream

s.

The algorithm uses only the amplitude information of a CSI measurement and omits

the phase information. The amplitude information is normalized by taking the Euclidean

norm of all values in dimensions sc and r. The Euclidean distance D i
m,s for a model

Modm,s is obtained by calculating the Euclidean distance between the stored \tau CSI

measurements and a new CSI measurement Msc
R\times S,i:

D i
m,s =

1

\tau 

\tau \sum 
j=1

\sqrt{}    R\sum 
r=1

SC\sum 
sc=1

\Biggl( 
| M sc

r,s,i| 
| | M sc

r,s,i| | 
sc,r
2

 - 
| M sc

r,s,j | 
| | M sc

r,s,j | | 
sc,r
2

\Biggr) 2

D i
m,s can have outliers as shown in Section 5.2. We are applying sample-wise and

time-wise moving average filter to D i
m,s in order to remove the outliers. The sample-wise

moving average filter takes the mean of k samples:

D i
m,s,\mathrm{s}\mathrm{a}\mathrm{m}\mathrm{p}\mathrm{M}\mathrm{A} =

i\sum 
j=i - k+1

Dj
m,s

k
for i \geq k

We take the time points ti when a packet arrives and the CSI of the packet is measured,

80



Chapter 5 Tamper Detection

and average these time points over a time window tw for time-wise moving average filter:

D i
m,s,\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{M}\mathrm{A} =

1

count(tj)

\sum 
j

tj\in (ti - tw,ti)

Dj
m,s for ti \geq tw

Finally, we take the time-wise moving average of all models Modm=1...T,s=1...m where

D i
m,s,\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{M}\mathrm{A} \not = 0 and average them to get the combined model Modc:

D i
c =

\biggl[ 
count
\forall s,m

\bigl( 
D i

m,s,\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{M}\mathrm{A} \not = 0
\bigr) \biggr]  - 1 T\sum 

m=1

m\sum 
s=1

D i
m,s,\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{M}\mathrm{A}

The resulting value D i
c is compared against a threshold to make a decision whether

there is a tampering or not. Here, we use the maximum and mean pair-wise distances

between all training CSIs Msc
R\times S,i\in 1...\tau for the threshold:

D\tau 
i,j =

\sqrt{}    R\sum 
r=1

SC\sum 
sc=1

\Biggl( 
| M sc

r,s,i| 
| | M sc

r,s,i| | 
sc,r
2

 - 
| M sc

r,s,j | 
| | M sc

r,s,j | | 
sc,r
2

\Biggr) 2

mean(D\tau ) = mean
\forall i,j

\bigl( 
D\tau 

i,j

\bigr) 
max(D\tau ) = max

\forall i,j

\bigl( 
D\tau 

i,j

\bigr) 
A further discussion about using those metrics, as well as applying the tamper

estimation to channel measurements is presented in the Evaluation section.

5.1.2 Multi-Receiver Tamper Detection

Here we provide a more reliable tamper detection mechanism for practical deployments

using multiple receivers. As the transmitters send their packets in broadcast mode in the

multi-receiver tamper detection, only one spatial stream is used (S = 1). Therefore, we

simplify the representation of the CSI matrices and use Msc
R when we are explaining the

multi-receiver tamper detection algorithm.

In the multi-receiver tamper detection algorithm, receivers collect and store \tau CSI

measurements Msc
R,i\in 1...\tau , as when using a single receiver. These CSI measurements are

81



Chapter 5 Tamper Detection

collected while the transmitter is in a tamper free state and will be used for comparison

with newly received CSI measurements Msc
R,i>\tau . A distance metric for comparison is

used again. If the distance is above a certain threshold, the algorithm decides there is a

tamper event and triggers an alarm.

We consider three distance algorithms this time: (i) Euclidean distance, (ii) Ma-

halanobis distance and (iii) Earth Mover's distance. The Euclidean distance gives the

distance between two points; in our case the distance of two CSI vectors. Mahalonobis

distance gives the distance between a point and a distribution, in our case the distance of

a new CSI vector and a distribution of \tau CSI vectors. And lastly, Earth Mover's distance

gives the distance between two distributions, in our case the distance of the distribution

of two CSI vectors.

The algorithm uses only the amplitude information of a CSI measurement and

omits the phase information. The amplitude information is normalized by taking the

Euclidean norm of all values in dimensions sc and r. Euclidean distance Di is obtained

by calculating the Euclidean distance between the stored \tau CSI measurements and a new

CSI measurement Msc
R,i.

Di =
1

\tau 

\tau \sum 
j=1

\sqrt{}    R\sum 
r=1

SC\sum 
sc=1

\Biggl( 
| M sc

r,i| 
| | M sc

r,i| | 
sc,r
2

 - 
| M sc

r,j | 
| | M sc

r,j | | 
sc,r
2

\Biggr) 2

Similarly, we omit the phase information in Msc
R,i and use normalized amplitude

information when computing Mahalanobis and Earth Mover's distance. We omit the

details of Mahalanobis and Earth Mover's distance algorithms here as they are well

documented in the literature [Mah36, RTG00]. We show in the evaluation Section 5.2.2.1

that the simplest distance computation method (Euclidean distance) is sufficient and

that the more sophisticated methods of Mahalanobis and Earth Mover do not provide

significantly better results.

To decide if tampering occurred, we need to set a threshold \gamma . If Di is greater than \gamma 

the algorithm will detect tampering (qi = 1), and otherwise a tamper free state (qi = 0)

82



Chapter 5 Tamper Detection

is assumed:

qi =

\left\{     0 if Di < \gamma 

1 if Di \geq \gamma 

As we will show in Section 5.2.1, when using one link (one receiver) to evaluate

tampering it is not possible to distinguish tamper situations and environmental changes.

Both events can push the distance value above the threshold. We will demonstrate this

effect in Section 5.2.2.1. To overcome this limitation, we aim to use multiple receivers for

CSI analysis. The assumption is that a tamper event will push the distance observed at

all receivers above the set threshold while a change in the environment will not result in

a sufficiently significant distance change at all receivers. We use an approach where a

majority vote is used (i.e. the distance is above the threshold at the majority of receivers

to declare tampering). Tampering with the transmitter device clearly must influence all

links and not just some.

Formally, the overall tampering decision Qi with qni being the tampering decision at

the individual receivers for a new received frame is:

Qi =

\left\{           
0 if

N\sum 
n=1

qni < N

1 if
N\sum 

n=1

qni = N

where N is the number of receivers. Here, the packet i must be received by all the

receivers for a decision to be made. This situation can occur in practice as the transmitted

beacon used for tamper detection may not be received at all stations.

5.1.2.1 Threshold Selection

The performance of the tamper detection largely depends on the selected threshold \gamma . If

the threshold is selected too high, some tamper events might be missed. If the threshold

is too low, the system is too sensitive and a large number of false detections may occur.

In this work, we consider 3 methods for threshold selection: (i) Maximum Distance, (ii)

83



Chapter 5 Tamper Detection

Equal Error Rate and (iii) Zero False Negative.

A simple and straightforward approach is to use the maximum distance of all captured

CSIs during the training phase Msc
R,i\in 1...\tau as the threshold:

D\tau 
i,j =

\sqrt{}    R\sum 
r=1

SC\sum 
sc=1

\Biggl( 
| M sc

r,i| 
| | M sc

r,i| | 
sc,r
2

 - 
| M sc

r,j | 
| | M sc

r,j | | 
sc,r
2

\Biggr) 2

max(D\tau ) = max
\forall i,j

\bigl( 
D\tau 

i,j

\bigr) 
This threshold works well when the environment is static, as we will show. However,

the algorithm does not provide good performance in terms of false alarms when the

environment is dynamic.

We use False Positive Rate (FPR), False Negative Rate (FNR) and True Positive

Rate (TPR) metrics to assess the detection mechanism. False Positive (FP) occurs

when the algorithm falsely decides there is tampering but actually there is not, False

Negative (FN) occurs when the algorithm misses a true tampering, and True Positive (TP)

occurs when the algorithm catches a tamper situation. We can create a Receiver Operating

Characteristic (ROC) curve by evaluating all possible thresholds. The ROC curve displays

the trade-off between FPR and TPR for a given system. A balanced threshold can be

found for a system by looking at the Equal Error Rate (EER). EER is the point where

FPR equals FNR on the ROC curve.

CSI data collected during a training phase can be used to calculate a ROC. The

threshold that gives the EER on the ROC curve, \gamma EER, can be used as a threshold. This

threshold gives a balanced result in terms of FPRs and TPRs. However, as we will show

in Section 5.2.2.2, \gamma EER is often too high. It gives very good FPR results, but at the same

time it causes very low TPRs. We thus need to decrease the threshold, and to this end we

propose to pick the maximum threshold where the ROC curve gives FNR = 0, \gamma FNR=0.

We will show in Section 5.2.2.2 that this threshold gives fair TPRs and, unfortunately,

provides FPR > 0. We propose to apply time-wise filtering to the overall decision to

84



Chapter 5 Evaluation

address this issue, which we detail next.

5.1.2.2 Time-Wise Filtering

We apply a time-wise filter to the overall decision Qi to reduce the FPRs. We consider

the points ti---when a packet i was received by all the receivers---and make a decision

over a window tw. The overall time-wise filtered decision Qi,tw is considered tampered if

all individual decisions in the window tw were tampered:

Qi,tw =

\left\{                 

0 if
\sum 
j

tj\in (ti - tw,ti)

Qj < count(tj)

1 if
\sum 
j

tj\in (ti - tw,ti)

Qj = count(tj)

Note that time-wise filtering used here is different than time-wise moving average

filter used in single receiver tamper detection. We average distance measurements over a

window tw in the single receiver setting. Here, we apply the filtering to overall decision

instead of applying it to distance measurements, and also we do not average the results.

Although time-wise filtering helps to reduce the FPRs, it will also reduce the TPRs.

This is a trade-off that needs to be considered. Also, before a decision can be made, data

points covering a full window must be collected. This increases the time until a decision

can be made (tamper detection is delayed).

5.2 Evaluation

We first evaluate the tamper detection using a single receiver. We show that device

movement and device replacement can both be detected. But we also show that false

alarms can be triggered by changes in the environment instead of tampering. Then we

evaluate multi-receiver tamper detection, of which we propose to overcome false alarms

caused by environmental changes.

85



Chapter 5 Evaluation

Distance to Original Location [cm]

S
ub

ca
rr

ie
rs

 

 

0 1 2 3 5 10 100

5

10

15

20

25

30

10

20

30

40

50

60

(\bfa ) Device Movement,
Experiment 1 (r = 3, s = 2)

Packet Number

S
ub

ca
rr

ie
rs

 

 

0 403 1243

5

10

15

20

25

30

10

20

30

40

50

60

(\bfb ) Device Replacement,
Experiment 2 (r = 1, s = 1)

Packet Number

S
ub

ca
rr

ie
rs

 

 

0 200 400 600 800

5

10

15

20

25

30

10

20

30

40

50

60

(\bfc ) Pedestrians,
Experiment 3 (r = 1, s = 2)

Packet Number

S
ub

ca
rr

ie
rs

 

 

1000 2000 3000 4000 5000

5

10

15

20

25

30

10

20

30

40

50

60

(\bfd ) Baseline,
Experiment 4 (r = 3, s = 3)

Figure 5.2: Amplitude CSI values for different experiments and antenna/stream combinations.
Warmer colors represents higher amplitude values. Events such as device move-
ment/replacement and environmental changes are visible.

5.2.1 Single Receiver Tamper Detection

For evaluation, we use as receiver an Intel 5300 Network Interface Card (NIC) (3 antennas)

which allows us to extract CSI measurements via the Linux 802.11n CSI Tool [HHSW11].

As sender, we use either an Intel 5300 NIC or an Apple Mac (3 antennas). Depending

on the transmitter decision, each packet is received encoded with up to three spatially

independent streams. In all experiments, the transmitter is set to send a packet once a

second.

In the first experiment (Experiment 1), we use an iMac as sender with an initial

distance of 1.5m between sender and receiver. After 15min we start to move the

transmitter by 1 cm; after 30min by 2 cm; after 44min by 3 cm; after 59min by 5 cm;

after 74min by 10 cm and finally after 88min by 100 cm. This experiment is to analyse

the detectability of device movement. In the second experiment (Experiment 2), we

86



Chapter 5 Evaluation

analyse detectability of device replacement. An Intel 5300 NIC is used as sender; the

distance is 240 cm between sender and receiver. After 10min the sender NIC is replaced

while not altering antenna positions. The third experiment (Experiment 3) is used to

analyse the impact of moving pedestrians. An iMac is used as sender with distance 1.5m

between sender and receiver. After 15min, 16min and 17min a person is moving slowly

through the communication path (taking about 10 s each time). In the last experiment

(Experiment 4), we leave an iMac sender at night transmitting over a distance of 4m.

This experiment serves as baseline without tampering or environmental changes.

Figure 5.2 gives a visual impression of the recorded CSI amplitude values for different

experiments for a subset of the overall CSI data. For example, Figure 5.2d shows 30 CSI

amplitude values for each incoming packet received at the third antenna r = 3 using

spatial stream s = 3 and being transmitted using S = 3 independent spatial streams.

Data for other antenna/stream combinations are not shown here but are later used in the

tamper detection mechanism. As can be seen in Figure 5.2, the different events within

the 4 experimental setups are clearly visible.

5.2.1.1 Experiment 1: Device Movement

As described in Section 5.1.1, we use individual models for each spatial stream setting to

analyse the CSI data of each incoming packet. For a received packet using one spatial

stream, one model is used (Mod1,1). For a received packet transmitted using two spatial

streams, two additional models are used (one for each received spatial stream; Mod2,1,

Mod2,2), and for a packet received using three spatial streams, three additional models

are used (Mod3,1, Mod3,2, Mod3,3). Thus, 6 spatial models can be created to analyse

incoming packets; however, in practice we did not observe a useful number of packets

(less than 50 packets during the entire experiment) using 3 spatial streams and, thus,

only 3 models become active in this experiment (Mod1,1, Mod2,1, Mod2,2). Figure 5.3

shows the model output for Mod1,1, Mod2,1, Mod2,2 and of the combined Model Modc

over the duration of the experiment. The output of Modc is the tamper-evidence level

that we use to decide if a node has been tampered with. Modc is created by combining

87



Chapter 5 Evaluation

0 15 30 44 59 74 88 103
0

0.2

0.4

0.6

Time [minutes]

T
am

pe
r 

E
vi

de
nc

e

 

 

D
D

sampMA
 (k=25)

D
timeMA

 (t
w

 = 180 s)

max(Dτ)

mean(Dτ)

(\bfa ) Mod1,1

0 15 30 44 59 74 88 103
0

0.2

0.4

0.6

Time [minutes]

T
am

pe
r 

E
vi

de
nc

e

 

 

D
D

sampMA
 (k=25)

D
timeMA

 (t
w

 = 180 s)

max(Dτ)

mean(Dτ)

(\bfb ) Mod2,1

0 15 30 44 59 74 88 103
0

0.2

0.4

0.6

Time [minutes]

T
am

pe
r 

E
vi

de
nc

e

 

 

D
D

sampMA
 (k=25)

D
timeMA

 (t
w

 = 180 s)

max(Dτ)

mean(Dτ)

(\bfc ) Mod2,2

0 15 30 44 59 74 88 103
0

0.2

0.4

0.6

Time [minutes]

T
am

pe
r 

E
vi

de
nc

e

 

 

D
c
 (t

w
 = 180 s)

max(Dτ)

mean(Dτ)

(\bfd ) Modc

Figure 5.3: Experiment 1 - Tamper evidence over time with device movement. Model outputs
for packets received with different spatial streams are combined into the overall
model to produce a single tamper evidence value.

the output of models Mod1,1, Mod2,1, Mod2,2 (see Section 5.1.1).

Before a model becomes operational, it requires a history size of \tau = 50 CSI data,

which means that, for each model, 50 packets with the appropriate number of spatial

streams must be received. A history size of 50 was chosen for the training phase as this

provided stable results for our experiments. In a different scenario a shorter training

phase might be possible. As the number of streams may change for each packet, a

different amount of time is required for each model before it is operational. In this

experiment, Mod1,1 becomes active first after t = 88 s, while Mod2,1 and Mod2,2 become

active at t = 314 s. The three models used for packets with three spatial streams never

become active as, throughout the entire experiment, not enough packets of this type

are received to fill the history. During this training phase, it must be ensured that no

tamper situation is present, which is the case in this experiment. (Tampering starts at

t = 15min.)

88



Chapter 5 Evaluation

As can be seen in Figure 5.3a, model Mod1,1 produces far fewer data points than the

other two models. The reason is that the 802.11n transmitter uses two spatial streams for

most transmissions, and transmissions using only one spatial transmission are rare. As a

result, there are time periods (e.g. between t = 14min and t = 30min) where the model

output is 0, which means that no recent data for this model is available and, thus, this

model in these periods is not useful as a contributor to the overall model Modc. However,

as long as data packets are received, there is at least one model active contributing to

Modc and, therefore, a tamper-evidence value is always provided. Only in situations

where no packet is received at all would no model be active; however, in a practical

setting, a lack of received data (or heart-beat messages) for a period of time may be

considered as a tamper situation anyway.

Tampering in the form of movement of the transmitter by 1 cm starts at t = 15min.

This event can clearly be seen in the tamper-evidence value provided by model Modc

(see Figure 5.3d). The tamper-evidence value increases from t = 15min onwards with a

gradient determined by the window size tw. A smaller window size would lead to faster

increase of the tamper-evidence value. However, as we will show in Experiment 3, it is

not always desirable to use a small window size, as a large window helps us to suppress

high tamper-evidence levels caused by movement instead of tampering. A threshold

could now be selected to decide a tamper-evidence level, beyond which the transmitter

would be no longer considered to be trustworthy. The max and mean values shown in

Figure 5.3d might help for threshold selection. For example, a threshold set to twice the

value of mean might be a useful selection.

As shown in Figure 5.3d, all tested positions of the transmitter different to the original

position are clearly visible as a tamper situation. It has to be noted that the tamper-

evidence value, which depends on movement distance, is not a monotone increasing

function. An increase in distance to the original device position may lead to a reduction

of the tamper-evidence value. However, no movement in our experiment set leads to

a tamper-evidence value that is close to the value associated with the un-tampered

situation.

89



Chapter 5 Evaluation

0 10 20
0

0.2

0.4

0.6

Time [minutes]

T
am

pe
r 

E
vi

de
nc

e

 

 

D
D

sampMA
 (k=25)

D
timeMA

 (t
w

 = 180s)

max(Dτ)

mean(Dτ)

(\bfa ) Mod1,1

0 10 20
0

0.2

0.4

0.6

Time [minutes]

T
am

pe
r 

E
vi

de
nc

e

 

 

D
D

sampMA
 (k=25)

D
timeMA

 (t
w

 = 180s)

max(Dτ)

mean(Dτ)

(\bfb ) Mod2,1

0 10 20
0

0.2

0.4

0.6

Time [minutes]

T
am

pe
r 

E
vi

de
nc

e

 

 

D
D

sampMA
 (k=25)

D
timeMA

 (t
w

 = 180 s)

max(Dτ)

mean(Dτ)

(\bfc ) Mod2,2

0 10 20
0

0.2

0.4

0.6

Time [minutes]

T
am

pe
r 

E
vi

de
nc

e

 

 

D
c
 (t

w
 = 30 s)

D
c
 (t

w
 = 180 s)

D
c
 (t

w
 = 300 s)

max(Dτ)

mean(Dτ)

(\bfd ) Modc, window size tw = 30 s, tw = 180 s and
tw = 300 s

Figure 5.4: Experiment 2 - Tamper evidence over time in an environment with device replace-
ment (tampering) at t = 10min. Tamper evidence levels are rising faster for smaller
window sizes tw.

From t = 74min onwards, we see a small periodic change in the output of Mod2,1 and

Mod2,2. This periodic change is potentially caused by an interferer (such as a heating

system) active during the experiment.

5.2.1.2 Experiment 2: Device Replacement

The results of this experiment are shown in Figure 5.4. We did not observe a useful

number of packets using 3 spatial streams and, thus, only 3 models become active in

this experiment (Mod1,1, Mod2,1, Mod2,2). Figure 5.4d shows the tamper-evidence value

which is the output of the combined model Modc. The output of Modc is shown for

different window sizes tw. Mod1,1 becomes first after t = 72 s, while Mod2,1 and Mod2,2

become active after t = 213 s when enough packets using 2 spatial streams are received

to fill the history of \tau = 50 values.

90



Chapter 5 Evaluation

At t = 10min the device is tampered with and the NIC is replaced. In this experiment,

we use external antennas connected to the NIC to ensure that only the device is replaced

while all antennas remain at exactly the same position.

We can clearly see in Figures 5.4b and 5.4c that the tamper-evidence value D changes

immediately. The output D\mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}\mathrm{M}\mathrm{A} is changing more slowly, as an average of values of

D over the past duration of tw = 180 s is used. Figure 5.4d shows the output of the

combined model for different window sizes tw (see Section 5.1.1). Obviously, using a

smaller window size leads to faster detection, but the algorithm would be more prone to

false alarms as outliers would make a greater contribution to the tamper-evidence value.

A threshold at twice the average tamper-evidence value, mean, could be used as

alarm threshold. In this case, the device replacement would be indicated after t = 605 s

when using a window size of tw = 30 s. With a window size of tw = 300 s, the replacement

would be indicated substantially after t = 678 s. However, using a smaller window size is

not without cost, as we will show in the next experiment.

5.2.1.3 Experiment 3: Pedestrians

In this experiment, a person walks slowly 3 times through the line of sight between sender

and receiver. The first walk is at t = 15min, the second at t = 16min, and the third at

t = 17min. Figure 5.5 shows the output of the models. Figure 5.5g shows the tamper-

evidence value, which is the output of the combined model Modc (see Section 5.1.1).

This is shown for different window sizes tw.

The walks are visible in the tamper-evidence value. However, for all selected window

sizes the tamper-evidence value returns after a while to the base line, indicating no

tamper situation. This is different to the previous two situations of device movement

and device replacement where the tamper-evidence value does not return to the original

value. As can be seen in Figure 5.5g, the window size influences the maximum tamper-

evidence value that is reached. Large windows suppress high tamper-evidence values for

environmental changes such as those caused by a pedestrian. When using a threshold at

twice the average tamper-evidence value, mean, an alarm situation can be avoided with

91



Chapter 5 Evaluation

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

0.2

0.4

0.6

Time [minutes]

T
am

pe
r 

E
vi

de
nc

e

 

 

D
D

sampMA
 (k=25)

D
timeMA

 (t
w

 = 180s)

max(Dτ)

mean(Dτ)

(\bfa ) Mod1,1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

0.2

0.4

0.6

Time [minutes]

T
am

pe
r 

E
vi

de
nc

e

 

 

D
D

sampMA
 (k=25)

D
timeMA

 (t
w

 = 180s)

max(Dτ)

mean(Dτ)

(\bfb ) Mod2,1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

0.2

0.4

0.6

Time [minutes]

T
am

pe
r 

E
vi

de
nc

e

 

 

D
D

sampMA
 (k=25)

D
timeMA

 (t
w

 = 180 s)

max(Dτ)

mean(Dτ)

(\bfc ) Mod2,2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

0.2

0.4

0.6

Time [minutes]

T
am

pe
r 

E
vi

de
nc

e

 

 

D
D

sampMA
 (k=25)

D
timeMA

 (t
w

 = 180s)

max(Dτ)

mean(Dτ)

(\bfd ) Mod3,1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

0.2

0.4

0.6

Time [minutes]

T
am

pe
r 

E
vi

de
nc

e

 

 

D
D

sampMA
 (k=25)

D
timeMA

 (t
w

 = 180s)

max(Dτ)

mean(Dτ)

(\bfe ) Mod3,2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

0.2

0.4

0.6

Time [minutes]

T
am

pe
r 

E
vi

de
nc

e

 

 

D
D

sampMA
 (k=25)

D
timeMA

 (t
w

 = 180s)

max(Dτ)

mean(Dτ)

(\bff ) Mod3,3

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

0.2

0.4

0.6

Time [minutes]

T
am

pe
r 

E
vi

de
nc

e

 

 

D
c
 (t

w
 = 30 s)

D
c
 (t

w
 = 180 s)

D
c
 (t

w
 = 300 s)

max(Dτ)

mean(Dτ)

(\bfg ) Modc, window size tw = 30 s, tw = 180 s and
tw = 300 s

Figure 5.5: Experiment 3 - Tamper evidence over time in an environment with movement at
t = 15min, t = 16min and t = 17min. Tamper evidence levels are lower for larger
window sizes tw.

92



Chapter 5 Evaluation

0 10 20 30 40 50 60 70 80 9095
0

0.2

0.4

0.6

Time [minutes]

T
am

pe
r 

E
vi

de
nc

e

 

 

D
D

sampMA
 (k=25)

D
timeMA

 (t
w

 = 180s)

max(Dτ)

mean(Dτ)

(\bfa ) Mod2,1

0 10 20 30 40 50 60 70 80 9095
0

0.2

0.4

0.6

Time [minutes]

T
am

pe
r 

E
vi

de
nc

e

 

 

D
D

sampMA
 (k=25)

D
timeMA

 (t
w

 = 180s)

max(Dτ)

mean(Dτ)

(\bfb ) Mod2,2

0 10 20 30 40 50 60 70 80 9095
0

0.2

0.4

0.6

Time [minutes]

T
am

pe
r 

E
vi

de
nc

e

 

 

D
D

sampMA
 (k=25)

D
timeMA

 (t
w

 = 180s)

max(Dτ)

mean(Dτ)

(\bfc ) Mod3,1

0 10 20 30 40 50 60 70 80 9095
0

0.2

0.4

0.6

Time [minutes]

T
am

pe
r 

E
vi

de
nc

e

 

 

D
D

sampMA
 (k=25)

D
timeMA

 (t
w

 = 180s)

max(Dτ)

mean(Dτ)

(\bfd ) Mod3,2

0 10 20 30 40 50 60 70 80 9095
0

0.2

0.4

0.6

Time [minutes]

T
am

pe
r 

E
vi

de
nc

e

 

 

D
D

sampMA
 (k=25)

D
timeMA

 (t
w

 = 180s)

max(Dτ)

mean(Dτ)

(\bfe ) Mod3,3

0 10 20 30 40 50 60 70 80 9095
0

0.2

0.4

0.6

Time [minutes]

T
am

pe
r 

E
vi

de
nc

e

 

 

D
c
 (t

w
 = 180 s)

max(Dτ)

mean(Dτ)

(\bff ) Modc, window size tw = 180 s

Figure 5.6: Experiment 4 - Tamper evidence in a tamper free environment. The tamper evidence
value remains static at a low level over a long period of time.

a window size of tw = 300 s, but not for a window size of tw = 30 s.

Comparing the results of this experiment with the results of the previous two experi-

ments, it becomes clear that the selection of the window size over which analysis results

are averaged has an influence on i) detection time and ii) suppression of false alarms.

5.2.1.4 Experiment 4: Baseline

This experiment was carried out at night to avoid fluctuations of channel characteristics

due to moving people and interference by electronic devices. Figure 5.6 shows the output

93



Chapter 5 Evaluation

of the models. We did not observe a useful number of packets using 1 spatial stream

and, therefore, Mod1,1 was not active in this experiment. The output of Modc when

using a window size of tw = 180 s is, as seen in Figure 5.6f, a flat line without significant

variation; the maximum tamper-evidence value for a window size of tw = 180 s is 0.17,

and the minimum is 0.15 within the 1.5 h duration. This demonstrates that a continuous

upgrade of the used history data (a retraining of the model) is not required. It can be

expected that, in a static and tamper-free environment, the tamper-evidence value is

stable.

5.2.1.5 Discussion

Detection: Our experiments have shown that device movement and device replacement

can both be detected. Even small device movements of just 1 cm are clearly visible in

the computed tamper-evidence value.

False Alarms: False alarms can be triggered by changes in the environment instead

of tampering. As shown, by selecting a large window size tw, false alarms can be avoided

in silent environment while reducing the detection speed. We will investigate false alarms

more in the following section where we evaluate multi-receiver tamper detection.

5.2.2 Multi-Receiver Tamper Detection

We start our evaluation for multi-receiver tamper detection with a controlled movement

experiment. In this experiment only one person is present and movement of the person

in the deployment area is known. This experiment is used to analyse how distance values

extracted from the CSI are affected by movement. Furthermore, the experiment shows

that the use of multiple receivers is an effective measure for distinguishing movement

and tamper events.

Thereafter an experiment with uncontrolled movement is carried out. Nodes are

deployed in an office environment in which office workers move around during the day.

At night there is less activity but occasionally people are present. In this experiment we

do not record the number of people or their movements. The purpose of this experiment

94



Chapter 5 Evaluation

Figure 5.7: A laptop and an antenna used in the experiments. Only the antenna is tampered
(moved or rotated) during the experiments.

is to see how different configurations of the tamper detection algorithm handle realistic

environments with different levels of activity. We use this experiment as well to evaluate

several different tamper situations to see how likely it is that different tamper situations

are to be detected.

We use off-the-shelf Toshiba NB250-108 laptops equipped with an Intel 5300 NIC

for our experiments. The laptops run Ubuntu 14.04 LTS with the 3.5.7 kernel. We use

the Linux 802.11n CSI Tool [HHSW11] to extract CSI from the Intel 5300 NICs. Each

NIC is equipped with a triple TP-Link TL-ANT2403N 802.11n omni-directional antenna.

Figure 5.7 shows one of the laptops with antenna. To induce tampering, the antenna is

moved or rotated.

5.2.2.1 Controlled Movement

We use 4 receivers and one transmitter deployed in an office building as shown in

Figure 5.8. The transmitter sends broadcast beacons with a 1 packet/second interval.

All receivers listen for these packets and extract the CSI from incoming packets.

A history size of \tau = 100 CSI readings is required before receivers calculate distance

values. Figure 5.9 shows as an example how the CSI amplitude values develop over time.

Values as received by the 2nd antenna of Receiver 3 are shown; similar data is available

95



Chapter 5 Evaluation

0 5 10 15 20 25 30 35 40 45 50

5

10

15

0

(m)

(m)

R2
R1

R3 R4
T

Room 1Room 2

Figure 5.8: Controlled movement experiment layout. Receivers are shown as R1-4, and trans-
mitter is shown as T. The environment is static during the experiment. A person is
walking occasionally or waiting in Room 1 or Room 2.

Time (minutes)

S
ub

ca
rr

ie
rs

 

 

2 4 6 8 10 12 14 16 18 20 22 24 26 28

5

10

15

20

25

30

2

4

6

8

10

12

14

16

18

Figure 5.9: CSI amplitude values of 2nd antenna of Receiver 3 during the controlled movement
experiment. Amplitude values change occasionally due to movement until a tamper
event at time t = 21.5min.

for the other 2 antennas. The x-axis shows the time in minutes, and the y-axis shows

the amplitude at each OFDM subcarrier. It can be seen that amplitude values change

occasionally due to movement of a person until tampering happens at time t = 21.5min

which is clearly visible. We detail movement patterns and tampering events in the next

paragraphs.

Figures 5.10, 5.11, and 5.12 show the distance value development over time at all

4 receivers using Euclidean, Mahalanobis, and Earth Mover's distance algorithms. We

show the Maximum Distance threshold max(D\tau ) in the figures. Figure 5.13 shows the

resulting tamper detection decision qi considering each receiver individually when using

96



Chapter 5 Evaluation

2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

0.2

0.4

0.6

0.8

1

Time (minutes)

E
uc

lid
ea

n 
D

is
ta

nc
e

 

 

Euclidean Distance

max(Dτ)

(\bfa ) Receiver 1

2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

0.2

0.4

0.6

0.8

1

Time (minutes)

E
uc

lid
ea

n 
D

is
ta

nc
e

 

 

Euclidean Distance

max(Dτ)

(\bfb ) Receiver 2

2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

0.2

0.4

0.6

0.8

1

Time (minutes)

E
uc

lid
ea

n 
D

is
ta

nc
e

 

 

Euclidean Distance

max(Dτ)

(\bfc ) Receiver 3

2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

0.2

0.4

0.6

0.8

1

Time (minutes)

E
uc

lid
ea

n 
D

is
ta

nc
e

 

 

Euclidean Distance

max(Dτ)

(\bfd ) Receiver 4

Figure 5.10: Euclidean distance in the controlled movement experiment. Tampering is induced
at t = 21.5min. Distance values at each receiver increase occasionally until this
time due to movement.

the Euclidean distance (We do not show the result for Mahalanobis, and Earth Mover

as these are very similar). The overall tamper decision Qi considering all 4 receivers

combined is shown in Figure 5.14 for Euclidean, Mahalanobis, and Earth Mover's distance

algorithms. The tamper event at t = 21.5min is clearly identified; movement events

before this time do not lead to a tampering report.

All the receivers start to report distance values after 100 seconds. At the beginning

of the experiment, a person is waiting in Room 1.

At time t = 3.5min, the person walks close to Receiver 4, waits next to Receiver 4 for

a minute, and then enters Room 1. We can see in the figures that this affects distance

values at Receiver 4 and very slightly at Receiver 3. Since we do not see any increase on

distance values of Receiver 1 and Receiver 2, the system will not create a false alarm

when considering data from all receivers.

At time t = 9.5min, the person walks very close to Receiver 3, waits next to Receiver 3

for a minute, and then enters Room 1. This affects the distance values of Receiver 3 and

97



Chapter 5 Evaluation

2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

2

4

6

x 10
5

Time (minutes)

M
ah

al
an

ob
is

 D
is

ta
nc

e

 

 

Mahalanobis Distance

max(Dτ)

(\bfa ) Receiver 1

2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

5

10

15
x 10

5

Time (minutes)

M
ah

al
an

ob
is

 D
is

ta
nc

e

 

 

Mahalanobis Distance

max(Dτ)

(\bfb ) Receiver 2

2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

1

2

3

4

x 10
6

Time (minutes)

M
ah

al
an

ob
is

 D
is

ta
nc

e

 

 

Mahalanobis Distance

max(Dτ)

(\bfc ) Receiver 3

2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

0.5

1

1.5

2
x 10

6

Time (minutes)

M
ah

al
an

ob
is

 D
is

ta
nc

e
 

 

Mahalanobis Distance

max(Dτ)

(\bfd ) Receiver 4

Figure 5.11: Mahalanobis distance in the controlled movement experiment. Tampering is
induced at t = 21.5min. Distance values at each receiver increase occasionally
until this time due to movement.

Receiver 4. Again, there is no significant change on the distance values of Receiver 1 and

Receiver 2.

At time t = 15.5min, the person walks very close to Receiver 1, waits next to

Receiver 1 for two minutes, then moves to Receiver 2 at time t = 17.5min and waits

next to Receiver 2 for a minute, and finally enters Room 2. We can see from the figures

that distance values increase for Receiver 3 and Receiver 4 at time t = 15.5min. This

is because the person needs to pass by Receiver 3 and Receiver 4 to go to Receiver 1.

Distance values for Receiver 3 and Receiver 4 go back to normal as distance values

for Receiver 1 increase. The system does not create a false alarm when considering all

receivers together as it does not see distance value increases above the threshold at all

receivers at the same time.

At time t = 21.5min, the person rotates the antenna of the transmitter 90\circ clockwise,

and enters Room 2. Now the system creates an alarm, since distance values of all the

receivers increase.

98



Chapter 5 Evaluation

2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

50

100

Time (minutes)

E
ar

th
 M

ov
er

’s
 D

is
ta

nc
e

 

 

Earth Mover’s Distance

max(Dτ)

(\bfa ) Receiver 1

2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

10

20

30

40

Time (minutes)

E
ar

th
 M

ov
er

’s
 D

is
ta

nc
e

 

 

Earth Mover’s Distance

max(Dτ)

(\bfb ) Receiver 2

2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

20

40

60

80

Time (minutes)

E
ar

th
 M

ov
er

’s
 D

is
ta

nc
e

 

 

Earth Mover’s Distance

max(Dτ)

(\bfc ) Receiver 3

2 4 6 8 10 12 14 16 18 20 22 24 26 28
0

20

40

60

80

100

Time (minutes)

E
ar

th
 M

ov
er

’s
 D

is
ta

nc
e

 

 

Earth Mover’s Distance

max(Dτ)

(\bfd ) Receiver 4

Figure 5.12: Earth Mover's distance in the controlled movement experiment. Tampering is
induced at t = 21.5min. Distance values at each receiver increase occasionally
until this time due to movement.

At time t = 24.5min, the person walks very close to Receiver 1, waits next to

Receiver 1 for a minute, and enters Room 2. Distance values of Receiver 1 and Receiver 2

slightly change during this period but remain above the threshold. Thus, the tamper

situation remains. The experiment terminates around time t = 28.5min.

Figure 5.13 shows decisions qi for each receiver (considering individual receiver results)

when using Euclidean distance algorithm and max(D\tau ) as the threshold. The x-axis

shows the time in minutes, and y-axis shows the decisions. Decision 0 means there is no

tampering, and decision 1 means there is tampering.

From Figure 5.13 we can see that false alarms exist when considering individual

receivers. FPRs are 0.08, 0.06, 0.11, and 0.12 for Receivers 1, 2, 3, and 4, respectively.

However, from Figure 5.14 we can see that multi-receiver tamper detection provides

the desired results. All the distance algorithms provide FPR = 0 result. Both Euclidean

and Mahalanobis distance algorithms have a TPR = 1, however, the Earth Mover's

distance algorithm provides only TPR = 0.94.

99



Chapter 5 Evaluation

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
0

1 Receiver 1 − FPR = 0.08

Time (minutes)
D

ec
is

io
n

 

 

Decision (q
i
)

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
0

1 Receiver 2 − FPR = 0.06

Time (minutes)

D
ec

is
io

n

 

 

Decision (q
i
)

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
0

1 Receiver 3 − FPR = 0.11

Time (minutes)

D
ec

is
io

n

 

 

Decision (q
i
)

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
0

1
Receiver 4 − FPR = 0.12

Time (minutes)

D
ec

is
io

n

 

 

Decision (q
i
)

Figure 5.13: Tamper decisions (qi) for each individual receiver in the controlled movement
experiment using Euclidean distance and max(D\tau ) as threshold. False alarms due
to movement are present before the tampering event at t = 21.5min.

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
0

1 Euclidean Distance, FPR = 0, TPR =1

Time (minutes)

D
ec

is
io

n

 

 

Decision (Qi)

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
0

1 Mahalanobis Distance, FPR = 0, TPR =1

Time (minutes)

D
ec

is
io

n

 

 

Decision (Qi)

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
0

1 Earth Mover’s Distance, FPR = 0, TPR =0.94

Time (minutes)

D
ec

is
io

n

 

 

Decision (Qi)

Figure 5.14: Multi-receiver tamper decisions (Qi) for the controlled movement experiment.
All receivers are taken into account and max(D\tau ) is used as threshold. False
alarms are avoided (FPR = 0) while the tamper event is correctly identified (For
Euclidean and Mahalanobis distance algorithms with TPR = 1 and for the Earth
Mover's distance algorithm with TPR = 0.94).

Euclidean, Mahalanobis, and Earth Mover's distance algorithms perform similarly.

This is somewhat surprising as they operate quite differently and one would have expected

that more complex distance algorithms capturing more information would provide better

100



Chapter 5 Evaluation

R2

R1

R3

R4

T

0 5 10 15 20 25 30 35 40 45 50 (m)

5

10

15

0

(m)

Figure 5.15: Uncontrolled movement experiment layout. People are moving in the rooms and
in the corridor inducing CSI variations.

Figure 5.16: Euclidean distance for the uncontrolled movement experiment. Tamper events are
indicated with vertical lines. Distance values of each receiver show tampering and
also movement during office hours.

results.

5.2.2.2 Uncontrolled Movement

The uncontrolled movement experiment is carried out in the same environment as the

controlled movement experiment. However, the transmitter and the 4 receivers are

located in different rooms as shown in Figure 5.15. People use the offices and corridors

and may also move chairs and other objects. Movement events of people and objects may

lead to false tamper detection which we aim to avoid. The transmitter sends broadcast

beacons for tamper detection with a 1 packet/second interval.

The experiment starts while the transmitter is in a tampered state. The transmitter

101



Chapter 5 Evaluation

\bfD \bfa \bfy \bfN \bfi \bfg \bfh \bft 

\bfT \bfi \bfm \bfe \bfT \bfy \bfp \bfe \bfT \bfi \bfm \bfe \bfT \bfy \bfp \bfe \bfT \bfi \bfm \bfe \bfT \bfy \bfp \bfe \bfT \bfi \bfm \bfe \bfT \bfy \bfp \bfe 

12:00 90\circ \mathrm{c}\mathrm{w} 12:10 180\circ \mathrm{c}\mathrm{w} 20:00 90\circ \mathrm{c}\mathrm{w} 20:10 180\circ \mathrm{c}\mathrm{w}

12:20 270\circ \mathrm{c}\mathrm{w} 12:30 360\circ (0\circ ) \mathrm{c}\mathrm{w} 20:20 270\circ \mathrm{c}\mathrm{w} 20:30 360\circ (0\circ ) \mathrm{c}\mathrm{w}

12:40 1 \mathrm{c}\mathrm{m} \mathrm{u}\mathrm{p} 12:50 1 \mathrm{c}\mathrm{m} \mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t} 20:40 1 \mathrm{c}\mathrm{m} \mathrm{u}\mathrm{p} 20:50 1 \mathrm{c}\mathrm{m} \mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}

13:00 1 \mathrm{c}\mathrm{m} \mathrm{d}\mathrm{o}\mathrm{w}\mathrm{n} 13:10 1 \mathrm{c}\mathrm{m} \mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t} 21:00 1 \mathrm{c}\mathrm{m} \mathrm{d}\mathrm{o}\mathrm{w}\mathrm{n} 21:10 1 \mathrm{c}\mathrm{m} \mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t}

13:20 2 \mathrm{c}\mathrm{m} \mathrm{u}\mathrm{p} 13:30 2 \mathrm{c}\mathrm{m} \mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t} 21:20 2 \mathrm{c}\mathrm{m} \mathrm{u}\mathrm{p} 21:30 2 \mathrm{c}\mathrm{m} \mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}

13:40 2 \mathrm{c}\mathrm{m} \mathrm{d}\mathrm{o}\mathrm{w}\mathrm{n} 13:50 2 \mathrm{c}\mathrm{m} \mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t} 21:40 2 \mathrm{c}\mathrm{m} \mathrm{d}\mathrm{o}\mathrm{w}\mathrm{n} 21:50 2 \mathrm{c}\mathrm{m} \mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t}

14:00 3 \mathrm{c}\mathrm{m} \mathrm{u}\mathrm{p} 14:10 3 \mathrm{c}\mathrm{m} \mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t} 22:00 3 \mathrm{c}\mathrm{m} \mathrm{u}\mathrm{p} 22:10 3 \mathrm{c}\mathrm{m} \mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}

14:20 3 \mathrm{c}\mathrm{m} \mathrm{d}\mathrm{o}\mathrm{w}\mathrm{n} 14:30 3 \mathrm{c}\mathrm{m} \mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t} 22:20 3 \mathrm{c}\mathrm{m} \mathrm{d}\mathrm{o}\mathrm{w}\mathrm{n} 22:30 3 \mathrm{c}\mathrm{m} \mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t}

14:40 4 \mathrm{c}\mathrm{m} \mathrm{u}\mathrm{p} 14:50 4 \mathrm{c}\mathrm{m} \mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t} 22:40 4 \mathrm{c}\mathrm{m} \mathrm{u}\mathrm{p} 22:50 4 \mathrm{c}\mathrm{m} \mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}

15:00 4 \mathrm{c}\mathrm{m} \mathrm{d}\mathrm{o}\mathrm{w}\mathrm{n} 15:10 4 \mathrm{c}\mathrm{m} \mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t} 23:00 4 \mathrm{c}\mathrm{m} \mathrm{d}\mathrm{o}\mathrm{w}\mathrm{n} 23:10 4 \mathrm{c}\mathrm{m} \mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t}

15:20 4 \mathrm{c}\mathrm{m} \mathrm{u}\mathrm{p} 15:30 5 \mathrm{c}\mathrm{m} \mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t} 23:20 4 \mathrm{c}\mathrm{m} \mathrm{u}\mathrm{p} 23:30 5 \mathrm{c}\mathrm{m} \mathrm{r}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}

15:40 5 \mathrm{c}\mathrm{m} \mathrm{d}\mathrm{o}\mathrm{w}\mathrm{n} 15:50 5 \mathrm{c}\mathrm{m} \mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t} 23:40 5 \mathrm{c}\mathrm{m} \mathrm{d}\mathrm{o}\mathrm{w}\mathrm{n} 23:50 5 \mathrm{c}\mathrm{m} \mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t}

16:00 30 \mathrm{c}\mathrm{m} \mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t} 16:10 60 \mathrm{c}\mathrm{m} \mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t} 00:00 30 \mathrm{c}\mathrm{m} \mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t} 00:10 60 \mathrm{c}\mathrm{m} \mathrm{l}\mathrm{e}\mathrm{f}\mathrm{t}

16:20 \mathrm{O}\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{l} 00:20 \mathrm{O}\mathrm{r}\mathrm{i}\mathrm{g}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{l}

Table 5.1: The different tamper events and their times.

antenna is rotated by 90\circ anticlockwise from its intended position. After a while the

antenna is rotated to its intended position, i.e., it is transited to the untampered state.

In both states (tampered and untampered) data for threshold selection as described in

Section 5.1.2.1 is collected. A history size of \tau = 100 CSI data is also collected during the

untampered state when we can ensure that the environment is free of movement. Then,

the setup is left for a long time in an untampered state. Then different tamper states are

induced during day time and later as well at night. The Euclidean distance metric is

used for evaluation. Figure 5.16 shows this distance value over time for all 4 receivers.

The experiment starts at 18:00 on 18th of May when the antenna of the transmitter

is rotated 90\circ anticlockwise from its intended position. The antenna is rotated to its

intended position at 12:06 on 19th of May. Several tamper situations are induced from

12:00 until 16:20 on May 20th (see Table 5.1 for details). To compare tamper detection

in busy and more quiet periods, the same tamper events are applied again starting 20:00

on May 20th. Training CSI values are collected at 01:00 on May 20th (shown as vertical

black line in Figure 5.16). Maximum distance values within the training data are also

shown in the figure as max(D\tau ). The distance values of the packets not received by a

receiver are shown as 0 in Figure 5.16. Tamper events are shown in Figure 5.16 with

vertical dashed lines at their corresponding times.

102



Chapter 5 Evaluation

\bfF \bfP \bfR \bfT \bfP \bfR 

\mathrm{N}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t} \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}
(01:02 - 08:00)

0 \mathrm{N}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t} \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}
(20:00 - 00:30)

0.999

\mathrm{D}\mathrm{a}\mathrm{y} \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}
(08:00 - 12:00)

0.831 \mathrm{D}\mathrm{a}\mathrm{y} \mathrm{t}\mathrm{i}\mathrm{m}\mathrm{e}
(12:00 - 16:00)

0.966

\mathrm{O}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{l}\mathrm{l}
(01:02 - 12:00)

0.769

Table 5.2: FPRs and TPRs when using max(D\tau ) as the threshold.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

 

 

Receiver 1
Receiver 2
Receiver 3
Receiver 4

Figure 5.17: ROC curve of the 4 receivers.

Maximum Distance Threshold Figure 5.16 shows that distance values are above

max(D\tau ) during office hours when there is no tampering. In a busy environment,

max(D\tau ) is too sensitive and a high FPR is the consequence. Using max(D\tau ) as the

threshold results in FPRs and TPRs as shown in Table 5.2. FPR results are divided

into three time regions: (i) Night time between 01:02 and 08:00 when the experiment

environment is less dynamic, (ii) Day time between 08:00 and 12:00 when the experiment

environment is dynamic, and (ii) Overall (day and night combined). TPR results are

also divided into two time regions: (i) Night time between 20:00 and 00:30 when the

experiment environment is less dynamic, (ii) Day time between 12:00 and 16:00 when

the experiment environment is dynamic. TPRs from different tamper events are aver-

aged resulting in a single TPR value (We will analyse TPR of individual tamper states

later). Although we obtain a high TPR for both time durations and also 0 FPR during

night time, we observe a high FPRs during day time. We thus conclude that using the

maximum distance threshold max(D\tau ) is not suitable for busy environments.

Equal Error Rate Threshold The experiment starts while the transmitter is in a

tampered state, then it is transited to untampered state after a while. We can use the

103



Chapter 5 Evaluation

\bfT \bfa \bfm \bfp \bfe \bfr \bfe \bfd \bfs \bft \bfa \bft \bfe 18:00 18\mathrm{t}\mathrm{h} \mathrm{o}\mathrm{f} \mathrm{M}\mathrm{a}\mathrm{y} - 12:06 19\mathrm{t}\mathrm{h} \mathrm{o}\mathrm{f} \mathrm{M}\mathrm{a}\mathrm{y}

\bfU \bfn \bft \bfa \bfm \bfp \bfe \bfr \bfe \bfd \bfs \bft \bfa \bft \bfe 12:06 19\mathrm{t}\mathrm{h} \mathrm{o}\mathrm{f} \mathrm{M}\mathrm{a}\mathrm{y} - 01:00 20\mathrm{t}\mathrm{h} \mathrm{o}\mathrm{f} \mathrm{M}\mathrm{a}\mathrm{y}

Table 5.3: Time ranges of tampered and untampered states for ROC calculation.

\bfR \bfe \bfc \bfe \bfi \bfv \bfe \bfr \bfone \bfR \bfe \bfc \bfe \bfi \bfv \bfe \bfr \bftwo \bfR \bfe \bfc \bfe \bfi \bfv \bfe \bfr \bfthree \bfR \bfe \bfc \bfe \bfi \bfv \bfe \bfr \bffour 

0.032 0.148 0.036 0.258

Table 5.4: EERs for all the receivers in the uncontrolled experiment.

FPR − Night FPR − Day FPR − Overall TPR − Night TPR − Day
0

0.2

0.4

0.6

0.8

1

R
at

e

 

 

max(Dτ)
γ
EER

γ
FNR=0

Figure 5.18: FPRs and TPRs with different thresholds. FPRs are always 0 during the night
time. max(D\tau ) gives high FPRs. \gamma EER reduces both FPRs and TPRs. \gamma FNR=0

gives more balanced results.

distance values from the initial tampered and untampered state to calculate the ROC

curve. The ROC curve can then be used to select a threshold based on the desired FPR

and TPR rates as previously discussed in Section 5.1.2.1. Table 5.3 shows the time ranges

of tampered and untampered states for ROC calculation. Figure 5.17 shows the ROC

curve of our 4 different receivers during this training time. Thresholds ranging from 0.001

to 1 with 0.001 intervals are applied to the distance values.

We calculate the EER for each receiver. The EER is the rate where the FPR and

FNR are equal. Table 5.4 shows the EERs for all the receivers. Figure 5.18 shows the

achievable FPRs and TPRs for the overall decision Qi using this threshold \gamma EER.

\gamma EER reduces the FPRs dramatically. The FPR during the day is 0.00024 and it

averages 0.00022 over the entire experiment. Unfortunately, the resulting detection

capability of the system is low; TPRs of only 0.148 during night time and 0.096 during

day time are achieved. However, for some applications it might be acceptable to have

such a low TPR.

104



Chapter 5 Evaluation

\bfR \bfe \bfc \bfe \bfi \bfv \bfe \bfr \bfone \bfR \bfe \bfc \bfe \bfi \bfv \bfe \bfr \bftwo \bfR \bfe \bfc \bfe \bfi \bfv \bfe \bfr \bfthree \bfR \bfe \bfc \bfe \bfi \bfv \bfe \bfr \bffour 

\mathrm{m}\mathrm{a}\mathrm{x}(D\tau ) 0.204 0.406 0.219 0.390

\gamma EER 0.577 0.519 0.500 0.507

\gamma FNR=0 0.419 0.386 0.355 0.396

Table 5.5: Threshold values for each receiver.

No filtering 10s 30s 60s
0

0.2

0.4

0.6

0.8

1

Time−Wise Filtering Duration

R
at

e

 

 

FPR − Night
FPR − Day
FPR − Overall
TPR − Night
TPR − Day

Figure 5.19: Effect of time-wise filtering on FPRs and TPRs when using \gamma FNR=0 as the threshold.
tw = 60 s reduces FPRs to 0, but it also reduces TPRs.

Zero False Negative Threshold If we select a threshold lower than the EER threshold,

we may have a chance to increase the TPR. We select the maximum threshold where the

ROC curve gives a FNR = 0, \gamma FNR=0. Table 5.5 shows the all thresholds for each receiver,

and Figure 5.18 shows the result Qi based on the threshold \gamma FNR=0. This threshold helps

to increase TPRs (0.69 during night and 0.7 during the day), but we also increase the

FPRs (0.045 during day and 0.041 overall). This threshold achieves a good TPR but the

FPR is too high for many practical applications. We apply time-wise filtering to address

this issue.

Time-Wise Filtering We use window sizes of tw \in \{ 10, 30, 60\} seconds, and the decision

is made that there is tampering when it was decided there was tampering for all individual

packets within the window. Figure 5.19 shows the effect of time-wise filtering over FPRs

and TPRs when using \gamma FNR=0 as the threshold. Increasing tw decreases the FPR. The

FPR is reduced from 0.045 to 0 during day time, and it is reduced from 0.04 to 0 overall

when tw = 60 s. However, using a 60 s window reduces the average TPR from 0.69 to

0.58 during night time, and from 0.7 to 0.53 during day time.

Clearly, it is possible even in a busy environment to use CSI-based tamper detection

without risking false alarms while detecting a reasonable number of tamper situations.

105



Chapter 5 Evaluation

1 Receiver 2 Receivers 3 Receivers 4 Receivers
0

0.2

0.4

0.6

0.8

1

Number of Receivers

R
at

e

 

 

FPR − Night
FPR − Day
FPR − Overall
TPR − Night
TPR − Day

Figure 5.20: Effect of number of receivers to make a decision on FPRs and TPRs, when using
\gamma FNR=0 as the threshold and without using time-wise filtering. Increasing the
number of receivers reduces both FPR and TPR.

Using Multiple Receivers Until now, all of the decisions were made by using reports

from all the receivers. All of the receivers needed to receive the packet, and that packet

had to provide a distance above the thresholds for all receivers. The question is how

many receivers should be used and what the contribution is of each additional receiver to

FPRs and TPRs.

We used a total of N = 4 receivers in the experiment. We can use 1, 2, 3, or all of

them to make a tamper decision. Figure 5.20 shows the tamper decision results when

using \gamma FNR=0 as the threshold and without using time-wise filtering. Results are averaged

for different combinations of receivers for a given number of receivers, n. For example, if

we use n = 3 we calculate the results using receivers \{ 1, 2, 3\} , \{ 1, 2, 4\} , \{ 1, 3, 4\} , and

\{ 2, 3, 4\} in groups and take the average.

Figure 5.20 shows that using an increasing number of receivers decreases the FPRs.

If we use more than 4 receivers to make a decision, we might obtain even better FPRs.

However, using more receivers also decreases TPRs.

Tamper Event Detectability Previously, all the TPRs from different tamper events

were averaged and shown as a single result. In this section, we analyse individual TPRs

for the different tamper states. We applied different tamper events during the day and

night. These tamper events are shown in Table 5.1.

Figure 5.21 shows the results when using \gamma FNR=0 as the threshold and without using

time-wise filtering. All the receivers are used to make a decision. Some receivers could

106



Chapter 5 Evaluation

0

0.2

0.4

0.6

0.8

1

90
°

18
0°

27
0°

36
0°  (

0° )
1c

m
 u

1c
m

 r
1c

m
 d

1c
m

 l
2c

m
 u

2c
m

 r
2c

m
 d

2c
m

 l
3c

m
 u

3c
m

 r
3c

m
 d

3c
m

 l
4c

m
 u

4c
m

 r
4c

m
 d

4c
m

 l
5c

m
 u

5c
m

 r
5c

m
 d

5c
m

 l
30

cm
 l

60
cm

 l
O

rig
in

al

Tamperings

T
P

R

 

 

Day
Night

(\bfa ) Tamperings during the day and the night times.

0

0.2

0.4

0.6

0.8

1

90
°

2c
m

 u
2c

m
 r

2c
m

 l
3c

m
 r

3c
m

 l
4c

m
 l

30
cm

 l
60

cm
 l

5c
m

 l
18

0°

4c
m

 r
1c

m
 l

27
0°

1c
m

 d
O

rig
in

al
1c

m
 u

5c
m

 r
5c

m
 d

36
0°  (

0° )
2c

m
 d

4c
m

 d
5c

m
 u

1c
m

 r
3c

m
 d

4c
m

 u
3c

m
 u

Tamperings

T
P

R

 

 

Day

(\bfb ) Tamperings during the day time, sorted by TPRs.

0

0.2

0.4

0.6

0.8

1

90
°

27
0°

1c
m

 u
3c

m
 r

3c
m

 l
4c

m
 r

4c
m

 l
5c

m
 r

5c
m

 l
1c

m
 d

1c
m

 l
O

rig
in

al
36

0°  (
0° )

3c
m

 d
30

cm
 l

2c
m

 u
5c

m
 u

2c
m

 d
1c

m
 r

3c
m

 u
2c

m
 r

18
0°

5c
m

 d
4c

m
 d

Tamperings

T
P

R

 

 

Night

(\bfc ) Tamperings during the night time, sorted by TPRs.

Figure 5.21: TPRs for different tamper events when using \gamma FNR=0 as the threshold and without
using time-wise filtering.

not receive beacons during the events 2 cm left at night, 4 cm up at night, and 60 cm

left at night. These results are not shown in the figure.

Figure 5.21a shows TPRs for tamper events in order of their execution while Fig-

ure 5.21b and Figure 5.21c show them ordered by TPR night and day values. We can

see from this that the magnitude of tampering (moved distance) does not correlate with

detectability. It can also be seen that most tamper events can clearly be detected while

107



Chapter 5 Evaluation

a minority are hard to detect.

The minimum TPR value during the day time is 0.0034, the maximum is 1, and the

average is 0.704. During the night time, the minimum TPR value is 0, the maximum is

1, and the average is 0.691.

5.2.2.3 Discussion

In the previous sections we have described and analysed multi-receiver CSI tamper

detection. Now we discuss how these methods can be put to work in practice to secure a

Wi-Fi based WSN setup. We first discuss potential capabilities of such a system based on

the previously shown evaluations. We then discuss how a practical Wi-Fi based system

can incorporate the methods described and, finally, we describe how such system can be

operated in a practical setting.

System Capability Many WSN systems are used to monitor and control critical infras-

tructure such as airports, refineries, hospitals or military installations. Additional layers

of defence guarding the installation against tampering and other attacks are desirable.

CSI tamper detection is a valuable building block in this context.

The evaluation has shown that in different deployment settings different FPR and

TPR rates are achievable. The level of tolerable FPR and required TPR depends very

much on the application scenario. The question is: in which application scenarios could

the described system be employed?

A large number of WSN systems are deployed in areas with little variation in the

environment. For example, systems are used to monitor and control production processes

in refineries or power plants. Workers move throughout these installations but movement

is limited; times of high activity are often known in advance (e.g. scheduled maintenance).

In these settings a minimal FPR is required (ideally zero) as false alarms require costly

investigation of the situation. On the other hand a high TPR is required to ensure that

tampering with devices is detected. Our evaluation shows that requirements of such a

setup can be fulfilled.

Other WSN setups are in relatively busy environments. For example, a wireless camera

108



Chapter 5 Evaluation

system used to monitor an office building would experience high levels of movement. In

such a setting a zero FPR can also be achieved but only when making some sacrifices on

the achievable TPR. However, if CSI tamper detection is used as an additional layer of

defence and not the only security mechanism a TPR below 1 may already bring significant

added value to the overall security of the system.

From our evaluations we conclude that CSI tamper detection is feasible with (i)

perfect FPR (FPR = 0) and perfect TPR (TPR = 1) in settings with limited movement;

and (ii) perfect FPR (FPR = 0) and good TPR (TPR = 0.53) in settings with high

levels of movement.

System Design A system using Wi-Fi enabled nodes would likely operate in an in-

frastructure mode. Devices such as cameras would transmit data via access points

interconnected by a fixed wired backbone. It can be assumed that multiple access points

are in communication range of a device. We therefore suggest extending the functionality

of access points to collect CSI information. The collected CSI information is then for-

warded to a central system which carries out CSI-based tamper detection. To enable CSI

collection at multiple access points nodes must transmit broadcast frames. This can be

achieved by having nodes transmit periodic beacons for the purpose of tamper detection

(in our experiments a one second interval was used). Using regular data transmissions of

the nodes is less suitable as 802.11n adjusts the number of spatial streams and CSI is

dependent on the number of spatial streams (see 5.2.1). However, existing beaconing of

nodes can be reused for the purpose of tamper detection. The system must allow secure

collection of CSI data at access points which we believe is not trivial but achievable.

Deployment and Operation A system using multi-receiver CSI tamper detection re-

quires a training phase when it is deployed. Depending on the application requirements,

different thresholds might be used (max(D\tau ), \gamma EER and \gamma FNR=0) to achieve the desired

FPR and TPR rates. The different thresholds have different complexity in terms of

deployment and training.

Using max(D\tau ) requires a very short training phase. In our experiments we used

109



Chapter 5 Chapter Summary

100 packets transmitted over a period of 100s. However, during the transmission of

these packets it must be ensured that the system is in an untampered state and that the

environment is quiet.

Using \gamma EER and \gamma FNR=0 requires training data which contains a tampered state. This

can be achieved by treating the initial placement location of a node as a tampered

reference state in which data is collected over a period of time. Thereafter the node is

placed in its operation location which is the untampered state. During the tampered and

untampered state training data are collected to calculate the thresholds as previously

described.

We believe that the described setup procedure is feasible for many application scenarios.

For example, when a security system is deployed in a restricted area it is possible to

ensure no movement in this area during installation.

Once a system is deployed it may happen that the communication environment

changes naturally and the initial selected thresholds are invalidated. For example, smaller

building alterations would change the observed CSI. These situations can be identified

by an increase in the FPR rate and a re-initialisation of the system is required.

5.3 Chapter Summary

We have shown that 802.11n CSI information measured at a receiver for each incoming

packet can be used to create a tamper-evidence value which indicates potential tampering

with the sender. In particular, our method is able to handle changing spatial stream

configurations of 802.11n transmission. We have shown that tampering in the form

of device movement or device replacement are clearly detectable. Detection of device

replacement can be used for node identification. Furthermore, we have shown that alarms

from tamper-unrelated environment changes, such as pedestrians, can be avoided by

using multiple receivers. We provided more reliable tamper detection mechanism that

can be used in practical deployments.

Although manyWSN devices make use of 802.11n for communication, other transceiver

types are also in use. The proposed methods can directly be applied to other commu-

110



Chapter 5 Chapter Summary

nication systems based on OFDM. Other systems will describe the wireless channel

differently. However, we believe that any information describing the communication

channel is useful input for a tamper detection mechanism.

111



Chapter 6

Conclusion and Future Work

As Wireless Sensor Networks (WSNs) are being deployed in critical applications, their

secure and reliable operation is of great importance. WSNs operate with scarce resources,

so traditional security solutions cannot be directly adapted to WSNs. Existing solutions

must be modified or new solutions must be proposed. This thesis has contributed to the

development of new security mechanisms for WSNs on areas lacking much attention from

the research community. It is important to optimise the usage of limited node resources.

To this end, this thesis introduced frameworks that will improve the performance of

security protocols on WSNs, and contributed methods for node identification without

using costly cryptographic mechanisms.

6.1 Contributions

Chapter 3 presented Codo, a framework for efficient secure data storage in WSNs. Codo

provides fast and energy-efficient data storage and retrieval, addressing the required

level of protection. A design specification and a detailed implementation of Codo for

the Contiki operating system running on a Tmote Sky node were included. Different

aspects of Codo were also evaluated. The confidential data storage framework was then

combined with secure communication, removing the duplication of security operations on

the sensor node. This combined secure-storage and communication framework increases

the performance and decreases the energy expenditure of the sensor node. The prototype

112



Chapter 6 Contributions

implementation showed that combined secure storage and communication can reduce

security-related processing on nodes by up to 71\% and energy consumption by up to

32.1\%. A detailed definition of the framework for IP/6LoWPAN networks was presented

in the chapter. An implementation of the framework for the Contiki operating system

and a detailed evaluation of the performance gains were also given.

In Chapter 4, sensor node identification based on clock skew was explained. Clock

skew calculation is done locally on the sensor node with the usage of local clocks. Local

clock skew calculation can overcome the constant network delay required for remote clock

skew calculation, which is problematic in duty-cycled WSNs. It has been shown that

a sample period of 7.8125ms and a sample size of 200 are sufficient to determine clock

skew locally with the same quality as a remote technique with a sample period of 4s and

a sample size of 2500. A description of the method for local clock skew calculation of a

node's crystal-based real-time clock using the high-precision clock available on modern

transceivers was provided. The implementation of this method for Zolertia Z1 nodes

using the Contiki operating system was also explained. Additionally, the dependency of

clock skew calculation quality and clock sampling effort was analysed.

In Chapter 5, the CSI of a wireless channel was used for node identification and tamper

detection. 802.11n networks use the OFDM modulation scheme. In OFDM, receivers

estimate the channel conditions and send them to the transmitters. The estimation

is called CSI, and provides rich information about the wireless channel. Any change

in the wireless channel affects the CSI, and it has been shown that these effects can

be used to identify nodes and to detect tampering with them. Any tampering on the

wireless device will cause changes on CSI values. However, tamper-unrelated events, like

movement of people in the communication environment, also lead to CSI fluctuations and

cause false alarms. Analysing CSI values of incoming packets simultaneously on multiple

receivers can help to distinguish tamper and movement events. It has been shown that the

proposed system deployed in a busy office environment achieved 53\% tamper detection

while raising zero false alarms. Necessary algorithms for tamper detection using single

and multiple receivers were described in the chapter. The tamper detection capability of

113



Chapter 6 Threat Models and Limitations

the proposed algorithm using realistic deployment environments were also analysed.

6.2 Threat Models and Limitations

In this section we discuss about the threat models and limitations of the proposed

methods in each chapter.

Confidential Data Storage for Wireless Sensor Network In Chapter 3, we combined

secure storage and communication for WSN. In this work, we used pre-deployed keys.

Key management and in particular the usage of keys are dependent on the application

scenario. The main aspect to consider is who will consume a data packet. In typical

scenarios, a host requests data from a node that then generates a data packet, for example

a temperature reading, protects it with a communication security protocol, and transmits.

This work also target applications where nodes generate data, store it in the file system,

and transmit data on request at a later stage. This stored data may be requested by a

single host or by multiple hosts.

Data readings are stored in a file and a specific key is used for encryption (and

potentially for authentication if used). In this case the key used to protect the file is

shared with the remote hosts who consume this data. If the same data file is consumed

by multiple hosts there is no need of confidentiality among these hosts for this data. In

rare cases, if it is considered problematical to use one shared key among a group of hosts

it is possible to store data readings of the same type in multiple files with individual

keys. This allows us to issue individual keys to accessing hosts while still retaining the

performance benefits in requesting pre-encrypted data. However, in this case data is

stored multiple times which leads to a significant increase in storage requirements. This

increase in storage requirements may not be problematical if nodes are equipped with

enough flash storage space. If a node is compromised [ZYN08] it can be added in a

blacklist maintained by an intrusion detection system [RWV13] and all keys held by this

node must be invalidated.

114



Chapter 6 Discussions

Node Identification Based on Clock Skew In Chapter 4, we are considering an attacker

who is trying to impersonate a sensor node. The attacker can do this by obtaining the key

that used for identification and authentication. Our aim is to introduce an additional layer

of protection, which we do by binding the identification process to the node hardware.

In this work we assume the attacker does not have physical access to the sensor node,

and he is unable to modify the software running on the device.

Initial experiments have shown that the measured clock skew depends on temperature.

A node would need to be profiled in terms of skew over the expected temperature range.

Skew values would have to be transmitted together with a temperature reading in order

to allow identification in deployments with varying temperature. An attacker can use this

temperature effect maliciously and prevent the proposed system from working properly

by changing the temperature of the environment that the sensor operates in.

Tamper Detection and Node Identification Based on CSI In Chapter 5, we are

considering an attacker who is capable of physically tampering with a device. We assume

that the attacker is able to move or rotate the device. Our aim is to detect such device

movements with a high detection reliability and a low false alarm rate.

In this work, we do not consider physical tampering with internal components of

the device. We do not aim to detect replacement of device components such as the

micro-controller. Additionally, we do not assume the attacker is able to change the

software running on the device. To protect against internal device tampering, other

protection methods than the one discussed in this work have to be used.

Depending on the selected threshold, this work might require a long training phase.

Moreover, initial thresholds might be invalidated due to the natural changes in the

communication environment. In this case, re-initialisation of the system is required.

6.3 Discussions

In this section we talk about the generalizability and the applicability of the works

presented in the thesis. We also discuss the cost and scope of the proposed techniques.

115



Chapter 6 Discussions

Avoiding duplication of cryptographic operations on a sensor node is crucial as it

has limited battery life and processing power. This thesis has shown in Chapter 3

that combining secure storage and communication solutions removes the redundant

cryptographic operations, and dramatically reduces the security-related processing and

energy usage. Considering security of a system as a whole rather than concentrating on

individual parts helps to optimise the usage of the resources. The framework presented

here uses only the IPsec protocol to secure the communication link, however, it would

still be applicable to other protocols such as DTLS.

IPsec protocol is widely adapted to existing operating systems, and there is no

extra cost on the host side to use the framework. Proposed method does not require

extra hardware or any hardware modifications on sensor nodes. The framework only

requires modification on sensor node operating system. We believe that the sensor node

platforms can use the framework for many years, because both secure storage and secure

communication are essential components of WSNs security.

The thesis has also shown that hardware and channel characteristics can be used for

node identification and tamper detection. The methods proposed here do not require

cryptographic operations and, therefore, require fewer resources.

Node identification method based on clock skew presented in Chapter 4 would work

on any sensor node that has two clock sources. At least one of these clocks must be

precise enough to get clock skew results. Fortunately, radio transceivers have precise

clock sources and can be used for clock skew calculation. The method only requires small

modification (a wiring) on the sensor node. Since the sensor nodes will have at least two

clock sources (including a stable radio transceiver clock), we believe that the proposed

method will work many years.

The tamper detection algorithm presented in Chapter 5 conforms with OFDM-based

systems. Although other systems may use different modulation techniques and describe

the channel differently, any information describing the communication channel can be used

for a tamper detection mechanism. The method uses off-the-shelf 802.11n Wi-Fi cards

without requiring any hardware modification. Additionally, existing beaconing packets

116



Chapter 6 Future Work

of Wi-Fi devices can be used to detect tamper events, which makes the deployment of

the method into the existing systems easier. The tamper detection algorithm does not

require extra hardware. The method can be used in Wi-Fi protocol as long as a version

of 802.11 that adapts Orthogonal Frequency Division Multiplexing (OFDM) is used.

6.4 Future Work

In this section we recommend and discuss possible future work for each of the key

contributions presented in the thesis.

Confidential Data Storage The combined secure storage and communication framework

presented in Chapter 3 uses the IPsec protocol to secure end-to-end communication.

DTLS is an alternative solution to IPsec. An instantiation of the combined framework

for DTLS is described in [BRRV15], but its evaluation is not presented. An evaluation

of the framework that quantifies performance enhancements and resource saving can be

examined. Additionally, the framework uses pre-shared keys. Automatic key management

support can be added, and its evaluation can be investigated.

The work in Chapter 3 has shown the importance of considering security of a system

as a whole. We focused at secure storage and communication steps here. However, similar

approaches can be investigated for different levels of security on WSNs.

Node Identification Based on Clock Skew Initial experiments in Chapter 4 have

shown that the measured clock skew is affected by temperature. An investigation of the

temperature effects can be carried out as future work. Additionally, more environmental

effects (such as humidity) that alter the clock behaviour can be investigated.

In this work we used crystal-based real-time clock of a node and high-precision clock

of a transceiver. Additional clock sources that have more precision than the one on the

transceiver can be investigated to achieve more stable clock skew numbers.

Tamper Detection and Node Identification Based on CSI The tamper detection

method proposed in Chapter 5 uses Wi-Fi networks. We showed its feasibility with a

117



Chapter 6 Future Work

prototype application. Its integration to existing Wi-Fi operation can be investigated.

Additionally, integration of the technique with other existing communication protocols,

especially ones that use OFDM, can be investigated.

We have shown in the thesis that hardware characteristics can be used for identification,

which provide an additional layer of protection. Our methods use clock skew or wireless

channel information, and they are implemented on sensor nodes. We believe that there are

many more hardware characteristics that can be used for an additional layer of protection.

These are not only limited to sensor nodes, they can be used on other platforms as well.

For example, in our another work, we use quantum confinement to uniquely identify

devices [RBZ+15]. This method is a lightweight solution for device identification and

can be used on any device. Similarly, different sources and methods for additional layer

of protection for different platforms can be investigated as future work.

118



Bibliography

[ABSK10] Chrisil Arackaparambil, Sergey Bratus, Anna Shubina, and David Kotz. On
the reliability of wireless fingerprinting using clock skews. In Proceedings of
the third ACM conference on Wireless network security, WiSec '10, pages
169--174, New York, NY, USA, 2010. ACM. [Cited on page 20]

[AQR07] Ortal Arazi, Hairong Qi, and Derek Rose. A Public Key Cryptographic
Method for Denial of Service Mitigation in Wireless Sensor Networks. In
Sensor, Mesh and Ad Hoc Communications and Networks, 2007. SECON
'07. 4th Annual IEEE Communications Society Conference on, pages 51--59,
June 2007. [Cited on page 17]

[Arc08] ArchRock Corporation. Phynet n4x series, 2008. [Cited on page 20]

[Atm12] Atmel. Atmel ATSHA204 datasheet, March 2012. http://www.atmel.

com/Images/Atmel-8740-CryptoAuth-ATSHA204-Datasheet.pdf. [Cited
on page 61]

[BBGO08] Vladimir Brik, Suman Banerjee, Marco Gruteser, and Sangho Oh. Wireless
Device Identification with Radiometric Signatures. In Proc. MobiCom'08,
2008. [Cited on page 23]

[BBT11] Kemal Bicakci, Ibrahim Eethem Bagci, and Bulent Tavli. Lifetime Bounds
of Wireless Sensor Networks Preserving Perfect Sink Unobservability. Com-
munications Letters, IEEE, 15(2):205--207, February 2011. [Cited on page
18]

[BGTB11] Kemal Bicakci, Hakan Gultekin, Bulent Tavli, and Ibrahim Ethem Bagci.
Maximizing lifetime of event-unobservable wireless sensor networks. Com-
puter Standards \& Interfaces, 33(4):401--410, 2011. [Cited on page 18]

[BJT12] Raghav Bhaskar, Ragesh Jaiswal, and Sidharth Telang. Congestion Lower
Bounds for Secure In-network Aggregation. In Proceedings of the Fifth
ACM Conference on Security and Privacy in Wireless and Mobile Networks,
WISEC '12, pages 197--204, New York, NY, USA, 2012. ACM. [Cited on
page 18]

[BKR11] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique
cryptanalysis of the full AES. In Proceedings of the 17th international

119

http://www.atmel.com/Images/Atmel-8740-CryptoAuth-ATSHA204-Datasheet.pdf
http://www.atmel.com/Images/Atmel-8740-CryptoAuth-ATSHA204-Datasheet.pdf


BIBLIOGRAPHY BIBLIOGRAPHY

conference on The Theory and Application of Cryptology and Information
Security, pages 344--371. Springer-Verlag, 2011. [Cited on pages 50 and 59]

[BKR15] Martin Bor, Alex King, and Utz Roedig. Lifetime bounds of Wi-Fi Enabled
Sensor Nodes. In Proc. IUPT'15, 2015. [Cited on page 76]

[BM07] Neerja Bhatnagar and Ethan L. Miller. Designing a secure reliable file
system for sensor networks. In Proceedings of the 2007 ACM workshop on
Storage security and survivability, StorageSS '07, pages 19--24, New York,
NY, USA, 2007. ACM. [Cited on pages 18, 25, 26, and 27]

[BRRV15] Ibrahim Ethem Bagci, Shahid Raza, Utz Roedig, and Thiemo Voigt. Fusion:
coalesced confidential storage and communication framework for the iot.
Security and Communication Networks, pages n/a--n/a, 2015. [Cited on
page 117]

[CAE+07] Nathan Cooprider, Will Archer, Eric Eide, David Gay, and John Regehr.
Efficient Memory Safety for TinyOS. In Proceedings of the 5th International
Conference on Embedded Networked Sensor Systems, SenSys '07, pages
205--218, New York, NY, USA, 2007. ACM. [Cited on page 18]

[Cer] CertiVox. MIRACL - Multiprecision Integer and Rational Arithmetic C/C++
Library. [Cited on pages 35 and 49]

[CFPS09] Claude Castelluccia, Aur\'elien Francillon, Daniele Perito, and Claudio Sori-
ente. On the Difficulty of Software-based Attestation of Embedded Devices.
In Proceedings of the 16th ACM Conference on Computer and Communica-
tions Security, CCS '09, pages 400--409, New York, NY, USA, 2009. ACM.
[Cited on page 18]

[CMYP09a] Xiangqian Chen, K. Makki, Kang Yen, and N. Pissinou. Sensor network
security: a survey. Communications Surveys Tutorials, IEEE, 11(2):52 --73,
quarter 2009. [Cited on page 18]

[CMYP09b] Xiangqian Chen, Kia Makki, Kang Yen, and N. Pissinou. Sensor network
security: a survey. Communications Surveys Tutorials, IEEE, 11(2):52--73,
Second 2009. [Cited on pages 17 and 18]

[CT09] Lander Casado and Philippas Tsigas. ContikiSec: A Secure Network Layer
for Wireless Sensor Networks Under the Contiki Operating System. In Pro-
ceedings of the 14th Nordic Conference on Secure IT Systems: Identity and
Privacy in the Internet Age, NordSec '09, pages 133--147, Berlin, Heidelberg,
2009. Springer-Verlag. [Cited on page 18]

[CY05] Seyit A Camtepe and B\"ulent Yener. Key distribution mechanisms for
wireless sensor networks: a survey. Rensselaer Polytechnic Institute, Troy,
New York, Technical Report, pages 05--07, 2005. [Cited on page 17]

[CYS+10] Bogdan Carbunar, Yang Yu, Weidong Shi, Michael Pearce, and Venu Va-
sudevan. Query Privacy in Wireless Sensor Networks. ACM Trans. Sen.
Netw., 6(2):14:1--14:34, March 2010. [Cited on page 18]

120



BIBLIOGRAPHY BIBLIOGRAPHY

[DC09] Boris Danev and Srdjan Capkun. Transient-based Identification of Wireless
Sensor Nodes. In Proc. IPSN'09, 2009. [Cited on page 23]

[DGV04] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. Contiki - A Lightweight
and Flexible Operating System for Tiny Networked Sensors. In Proceedings
of the 29th Annual IEEE International Conference on Local Computer
Networks, pages 455--462. IEEE Computer Society, 2004. [Cited on pages
25, 29, and 49]

[DHBC09] Boris Danev, Thomas S Heydt-Benjamin, and Srdjan Capkun. Physical-
layer Identification of RFID Devices. In Proc. USENIX'09, 2009. [Cited on
page 23]

[Dun11] Adam Dunkels. The ContikiMAC Radio Duty Cycling Protocol. Technical
Report T2011:13, Swedish Institute of Computer Science, December 2011.
[Cited on page 66]

[DZC12] Boris Danev, Davide Zanetti, and Srdjan Capkun. On Physical-layer Identi-
fication of Wireless Devices. ACM Comput. Surv., 45(1):6, 2012. [Cited on
page 23]

[FC06] Daniel B. Faria and David R. Cheriton. Detecting identity-based attacks
in wireless networks using signalprints. In Proc. WiSe'06, 2006. [Cited on
page 23]

[FC08] Aur\'elien Francillon and Claude Castelluccia. Code Injection Attacks on
Harvard-architecture Devices. In Proceedings of the 15th ACM Conference
on Computer and Communications Security, CCS '08, pages 15--26, New
York, NY, USA, 2008. ACM. [Cited on page 18]

[FGS09] Christopher Ferguson, Qijun Gu, and Hongchi Shi. Self-healing Control
Flow Protection in Sensor Applications. In Proceedings of the Second ACM
Conference on Wireless Network Security, WiSec '09, pages 213--224, New
York, NY, USA, 2009. ACM. [Cited on page 18]

[FMMA06] Sepideh Fouladgar, Bastien Mainaud, Khaled Masmoudi, and Hossam Afifi.
Tiny 3-TLS: a trust delegation protocol for wireless sensor networks. In
Proceedings of the Third European conference on Security and Privacy in
Ad-Hoc and Sensor Networks, pages 32--42. Springer-Verlag, 2006. [Cited
on page 20]

[GFN11] Qijun Gu, Christopher Ferguson, and Rizwan Noorani. A study of self-
propagating mal-packets in sensor networks: Attacks and defenses. Com-
puters \& Security, 30(1):13 -- 27, 2011. [Cited on page 18]

[GN08] Qijun Gu and Rizwan Noorani. Towards Self-propagate Mal-packets in
Sensor Networks. In Proceedings of the First ACM Conference on Wireless
Network Security, WiSec '08, pages 172--182, New York, NY, USA, 2008.
ACM. [Cited on page 18]

121



BIBLIOGRAPHY BIBLIOGRAPHY

[GSM09] Matthias Gauger, Olga Saukh, and Pedro Jos\'e Marr\'on. Enlighten me!
secure key assignment in wireless sensor networks. In Mobile Adhoc and
Sensor Systems, 2009. MASS'09. IEEE 6th International Conference on,
pages 246--255. IEEE, 2009. [Cited on page 17]

[GWMA07] Joao Girao, Dirk Westhoff, Einar Mykletun, and Toshinori Araki. TinyPEDS:
Tiny persistent encrypted data storage in asynchronous wireless sensor
networks. Ad Hoc Netw., 5:1073--1089, September 2007. [Cited on pages 19
and 27]

[Han09] Morten Tranberg Hansen. Asynchronous Group Key Distribution on Top of
the Cc2420 Security Mechanisms for Sensor Networks. In Proceedings of the
Second ACM Conference on Wireless Network Security, WiSec '09, pages
13--20, New York, NY, USA, 2009. ACM. [Cited on page 17]

[HCSO09] Wen Hu, Peter Corke, Wen Chan Shih, and Leslie Overs. secFleck: A Public
Key Technology Platform for Wireless Sensor Networks. In Proceedings
of the 6th European Conference on Wireless Sensor Networks, EWSN '09,
pages 296--311, 2009. [Cited on pages 17 and 26]

[HHSW11] Daniel Halperin, Wenjun Hu, Anmol Sheth, and David Wetherall. Tool
Release: Gathering 802.11n Traces with Channel State Information. ACM
SIGCOMM CCR, 41(1):53, 2011. [Cited on pages 78, 86, and 95]

[HKH+10] Sungmin Hong, Daeyoung Kim, Minkeun Ha, Sungho Bae, Sang Jun Park,
Wooyoung Jung, and Jae-Eon Kim. SNAIL: an IP-based wireless sensor
network approach to the internet of things. Wireless Communications,
IEEE, 17(6):34 --42, december 2010. [Cited on page 20]

[HTW+08] Ding-Jie Huang, Wei-Chung Teng, Chih-Yuan Wang, Hsuan-Yu Huang,
and J.M. Hellerstein. Clock Skew Based Node Identification in Wireless
Sensor Networks. In Global Telecommunications Conference, 2008. IEEE
GLOBECOM 2008. IEEE, pages 1--5, 2008. [Cited on pages 21 and 66]

[HUW11] Isabelle Hang, Markus Ullmann, and Christian Wieschebrink. Short Paper:
A New Identity-based DH Key-agreement Protocol for Wireless Sensor
Networks Based on the Arazi-Qi Scheme. In Proceedings of the Fourth ACM
Conference on Wireless Network Security, WiSec '11, pages 139--144, New
York, NY, USA, 2011. ACM. [Cited on page 17]

[IEE03] IEEE std. 802.15.4 - 2003. Wireless Medium Access Control (MAC) and
Physical Layer (PHY) specifications for Low Rate Wireless Personal Area
Networks (LR-WPANs). IEEE, 2003. [Cited on page 19]

[ILM\'e10] Marian Kamal Iskander, Adam J. Lee, and Daniel Moss \'e. Privacy and Ro-
bustness for Data Aggregation in Wireless Sensor Networks. In Proceedings
of the 17th ACM Conference on Computer and Communications Security,
CCS '10, pages 699--701, New York, NY, USA, 2010. ACM. [Cited on page
18]

[Iro] Ironkey. http://www.ironkey.com/. [Cited on page 19]

122



BIBLIOGRAPHY BIBLIOGRAPHY

[JBMC10] Marcos A. Simpl\'{\i}cio Jr., Paulo S.L.M. Barreto, Cintia B. Margi, and
Tereza C.M.B. Carvalho. A survey on key management mechanisms for
distributed Wireless Sensor Networks. Computer Networks, 54(15):2591 --
2612, 2010. [Cited on page 17]

[JK08] Suman Jana and Sneha Kumar Kasera. On fast and accurate detection of
unauthorized wireless access points using clock skews. In Proceedings of the
14th ACM international conference on Mobile computing and networking,
MobiCom '08, pages 104--115, New York, NY, USA, 2008. ACM. [Cited on
page 20]

[JZL+13] Zhiping Jiang, Jizhong Zhao, Xiang-Yang Li, Jinsong Han, and Wei Xi.
Rejecting the Attack: Source Authentication for Wi-Fi Management Frames
using CSI Information. In Proc. INFOCOM'13, 2013. [Cited on pages 22
and 77]

[KBC05] Tadayoshi Kohno, Andre Broido, and K.C. Claffy. Remote physical device
fingerprinting. Dependable and Secure Computing, IEEE Transactions on,
2(2):93--108, 2005. [Cited on pages 20 and 62]

[KBG+09] Ioannis Krontiris, Zinaida Benenson, Thanassis Giannetsos, Felix C. Freiling,
and Tassos Dimitriou. Cooperative Intrusion Detection in Wireless Sensor
Networks. In Proceedings of the 6th European Conference on Wireless Sensor
Networks, EWSN '09, pages 263--278, Berlin, Heidelberg, 2009. Springer-
Verlag. [Cited on page 18]

[Ken05] Stephen Kent. IP Encapsulating Security Payload (ESP). RFC 4303, 2005.
[Cited on page 44]

[KFLFS11] Silvija Kokalj-Filipovi\'c, Fabrice Le Fessant, and Predrag Spasojevi\'c. Trade-
offs of source location protection in globally attacked sensor networks: A
case analysis. In Sensor, Mesh and Ad Hoc Communications and Networks
(SECON), 2011 8th Annual IEEE Communications Society Conference on,
pages 323--331, June 2011. [Cited on page 18]

[KHNE10] Charlie Kaufman, Paul Hoffman, Yoav Nir, and Pasi Eronen. Internet Key
Exchange Protocol Version 2 (IKEv2). RFC 5996, 2010. [Cited on page 29]

[KHS+11] Thomas Kothmayr, Wen Hu, Corinna Schmitt, Michael Bruenig, and Georg
Carle. Poster: Securing the Internet of Things with DTLS. In Proceedings
of the 9th ACM Conference on Embedded Networked Sensor Systems, SenSys
'11, pages 345--346, New York, NY, USA, 2011. ACM. [Cited on page 17]

[KKS07] Ram Kumar, Eddie Kohler, and Mani Srivastava. Harbor: Software-based
Memory Protection for Sensor Nodes. In Proceedings of the 6th International
Conference on Information Processing in Sensor Networks, IPSN '07, pages
340--349, New York, NY, USA, 2007. ACM. [Cited on page 18]

[KSW04] Chris Karlof, Naveen Sastry, and David Wagner. TinySec: A Link Layer
Security Architecture for Wireless Sensor Networks. In Proceedings of the
2Nd International Conference on Embedded Networked Sensor Systems,

123



BIBLIOGRAPHY BIBLIOGRAPHY

SenSys '04, pages 162--175, New York, NY, USA, 2004. ACM. [Cited on
page 17]

[LMPG07] Mark Luk, Ghita Mezzour, Adrian Perrig, and Virgil Gligor. MiniSec: A
Secure Sensor Network Communication Architecture. In Proceedings of the
6th International Conference on Information Processing in Sensor Networks,
IPSN '07, pages 479--488, New York, NY, USA, 2007. ACM. [Cited on page
17]

[LN08] An Liu and Peng Ning. TinyECC: A Configurable Library for Elliptic Curve
Cryptography in Wireless Sensor Networks. In Information Processing
in Sensor Networks, 2008. IPSN '08. International Conference on, pages
245--256, April 2008. [Cited on page 17]

[LON08] An Liu, Young-Hyun Oh, and Peng Ning. Secure and DoS-Resistant Code
Dissemination in Wireless Sensor Networks Using Seluge. In Proceedings
of the 7th International Conference on Information Processing in Sensor
Networks, IPSN '08, pages 561--562, Washington, DC, USA, 2008. IEEE
Computer Society. [Cited on page 18]

[LXMT06] Zang Li, Wenyuan Xu, Rob Miller, and Wade Trappe. Securing wireless
systems via lower layer enforcements. In Proc. WiSe'06, 2006. [Cited on
page 22]

[Mah36] Prasanta Chandra Mahalanobis. On the generalized distance in statistics.
Proceedings of the National Institute of Sciences (Calcutta), 2:49--55, 1936.
[Cited on page 82]

[MKHC07] Gabriel Montenegro, Nandakishore Kushalnagar, Jonathan Hui, and David
Culler. Transmission of IPv6 Packets over IEEE 802.15.4 Networks. RFC
4944, 2007. [Cited on page 41]

[MKSL04] Mikl\'os Mar\'oti, Branislav Kusy, Gyula Simon, and \'Akos L\'edeczi. The flood-
ing time synchronization protocol. In Proceedings of the 2nd international
conference on Embedded networked sensor systems, SenSys '04, pages 39--49,
New York, NY, USA, 2004. ACM. [Cited on pages 21 and 64]

[MSS10] Qi Mi, John A. Stankovic, and Radu Stoleru. Secure Walking GPS: A Secure
Localization and Key Distribution Scheme for Wireless Sensor Networks.
In Proceedings of the Third ACM Conference on Wireless Network Security,
WiSec '10, pages 163--168, New York, NY, USA, 2010. ACM. [Cited on
page 18]

[MST99] Sue B. Moon, Paul Skelly, and Don Towsley. Estimation and removal of
clock skew from network delay measurements. In INFOCOM '99. Eighteenth
Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE, volume 1, pages 227--234 vol.1, 1999. [Cited
on page 64]

124



BIBLIOGRAPHY BIBLIOGRAPHY

[Mur06] Steven J. Murdoch. Hot or not: revealing hidden services by their clock
skew. In Proceedings of the 13th ACM conference on Computer and commu-
nications security, CCS '06, pages 27--36, New York, NY, USA, 2006. ACM.
[Cited on page 21]

[NRLV08] Dennis K. Nilsson, Tanya Roosta, Ulf Lindqvist, and Alfonso Valdes. Key
Management and Secure Software Updates in Wireless Process Control
Environments. In Proceedings of the First ACM Conference on Wireless
Network Security, WiSec '08, pages 100--108, New York, NY, USA, 2008.
ACM. [Cited on page 17]

[OM07] Melek \"Onen and Refik Molva. Secure Data Aggregation with Multiple En-
cryption. In Proceedings of the 4th European Conference on Wireless Sensor
Networks, EWSN'07, pages 117--132, Berlin, Heidelberg, 2007. Springer-
Verlag. [Cited on page 18]

[PK07] Neal Patwari and Sneha Kumar Kasera. Robust location distinction using
temporal link signatures. In Proc. MobiCom'07, 2007. [Cited on pages 22
and 80]

[PMST08] Roberto Di Pietro, Di Ma, Claudio Soriente, and Gene Tsudik. POSH:
Proactive co-Operative Self-Healing in Unattended Wireless Sensor Networks.
In Reliable Distributed Systems, 2008. SRDS '08. IEEE Symposium on, pages
185 --194, oct. 2008. [Cited on pages 19 and 27]

[PWEV12] Paolo Pettinato, Niklas Wirstr\"om, Joakim Eriksson, and Thiemo Voigt.
Multi-channel two-way time of flight sensor network ranging. In Proceedings
of the 9th European Conference on Wireless Sensor Networks, EWSN'12,
pages 163--178, Berlin, Heidelberg, 2012. Springer-Verlag. [Cited on page
69]

[RBZ+15] J. Roberts, I. E. Bagci, M. A. M. Zawawi, J. Sexton, N. Hulbert, Y. J. Noori,
M. P. Young, C. S. Woodhead, M. Missous, M. A. Migliorato, U. Roedig,
and R. J. Young. Using Quantum Confinement to Uniquely Identify Devices.
Scientific reports, 5, 2015. [Cited on page 118]

[RDH+12] Shahid Raza, Simon Duquennoy, Joel H\"oglund, Utz Roedig, and Thiemo
Voigt. Secure communication for the Internet of Things - a comparison of
link-layer security and IPsec for 6LoWPAN. Security and Communication
Networks, 2012. [Cited on pages 12, 20, 42, 45, and 49]

[RRZ08] Wei Ren, Yi Ren, and Hui Zhang. HybridS: A Scheme for Secure Distributed
Data Storage in WSNs. In Embedded and Ubiquitous Computing, 2008.
EUC '08. IEEE/IFIP International Conference on, volume 2, pages 318
--323, dec. 2008. [Cited on pages 19, 25, 26, and 27]

[RTG00] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The earth mover's
distance as a metric for image retrieval. International journal of computer
vision, 40(2):99--121, 2000. [Cited on page 82]

125



BIBLIOGRAPHY BIBLIOGRAPHY

[RWV13] Shahid Raza, Linus Wallgren, and Thiemo Voigt. SVELTE: Real-time
Intrusion Detection in the Internet of Things. Ad Hoc Networks, 11(8), nov
2013. [Cited on page 114]

[RYLZ09] Kui Ren, Shucheng Yu, Wenjing Lou, and Yanchao Zhang. Multi-User
Broadcast Authentication in Wireless Sensor Networks. Vehicular Tech-
nology, IEEE Transactions on, 58(8):4554--4564, Oct 2009. [Cited on page
18]

[SHCO08] Wen Chan Shih, Wen Hu, Peter Corke, and Leslie Overs. A Public Key
Technology Platform for Wireless Sensor Networks. In Proceedings of the
6th ACM Conference on Embedded Network Sensor Systems, SenSys '08,
pages 447--448, New York, NY, USA, 2008. ACM. [Cited on page 17]

[SHZ+09] Min Shao, Wenhui Hu, Sencun Zhu, Guohong Cao, S. Krishnamurth, and
T. La Porta. Cross-layer Enhanced Source Location Privacy in Sensor
Networks. In Sensor, Mesh and Ad Hoc Communications and Networks,
2009. SECON '09. 6th Annual IEEE Communications Society Conference
on, pages 1--9, June 2009. [Cited on page 18]

[SK05] Karen Seo and Stephen Kent. Security Architecture for the Internet Protocol.
RFC 4301, 2005. [Cited on pages 41 and 44]

[SKSC09] Piotr Szczechowiak, Anton Kargl, Michael Scott, and Martin Collier. On the
Application of Pairing Based Cryptography to Wireless Sensor Networks. In
Proceedings of the Second ACM Conference on Wireless Network Security,
WiSec '09, pages 1--12, New York, NY, USA, 2009. ACM. [Cited on page
17]

[Sky06] Tmote Sky. Datasheet, 2006. http://www.eecs.harvard.edu/\~konrad/

projects/shimmer/references/tmote-sky-datasheet.pdf. [Cited on
page 58]

[SOS+08] Piotr Szczechowiak, Leonardo B. Oliveira, Michael Scott, Martin Collier, and
Ricardo Dahab. NanoECC: testing the limits of elliptic curve cryptography
in sensor networks. In Proceedings of the 5th European conference on
Wireless sensor networks, EWSN'08, pages 305--320, 2008. [Cited on page
26]

[SSW+09] Cormac Sreenan, Jorge Sa Silva, Lars Wolf, Ruben Eiras, Thiemo Voigt,
Utz Roedig, Vasos Vassiliou, and Gregor Hackenbroich. Performance control
in wireless sensor networks: the ginseng project - [Global communications
news letter]. Communications Magazine, 47(8), August 2009. [Cited on
page 25]

[TD11] Nicolas Tsiftes and Adam Dunkels. A database in every sensor. In Proceed-
ings of the 9th ACM Conference on Embedded Networked Sensor Systems,
pages 316--332. ACM, 2011. [Cited on page 42]

[TDZV09] Nicolas Tsiftes, Adam Dunkels, He Zhitao, and Thiemo Voigt. Enabling large-
scale storage in sensor networks with the Coffee file system. In Proceedings

126

http://www.eecs.harvard.edu/~konrad/projects/shimmer/references/tmote-sky-datasheet.pdf
http://www.eecs.harvard.edu/~konrad/projects/shimmer/references/tmote-sky-datasheet.pdf


BIBLIOGRAPHY BIBLIOGRAPHY

of the 2009 International Conference on Information Processing in Sensor
Networks, IPSN '09, pages 349--360, Washington, DC, USA, 2009. IEEE
Computer Society. [Cited on pages 26, 29, and 49]

[Tex13] Texas Instruments. 2.4 GHz IEEE 802.15.4 / ZigBee-Ready RF Transceiver
(Rev. C), March 2013. http://www.ti.com/lit/ds/symlink/cc2420.pdf.
[Cited on page 69]

[TOZJ09] Hailun Tan, Diethelm Ostry, John Zic, and Sanjay Jha. A Confidential
and DoS-resistant Multi-hop Code Dissemination Protocol for Wireless
Sensor Networks. In Proceedings of the Second ACM Conference on Wireless
Network Security, WiSec '09, pages 245--252, New York, NY, USA, 2009.
ACM. [Cited on page 18]

[UC10] Md. Borhan Uddin and Claude Castelluccia. Toward clock skew based
wireless sensor node services. In Wireless Internet Conference (WICON),
2010 The 5th Annual ICST, pages 1--9, 2010. [Cited on pages 21, 62, and 66]

[US07] Oktay Ureten and Nur Serinken. Wireless security through RF fingerprinting.
Electrical and Computer Engineering, Canadian Journal of, 32(1):27--33,
2007. [Cited on page 23]

[WFA09] Yun Wang, Weihuang Fu, and D.P. Agrawal. Intrusion detection in Gaussian
distributed Wireless Sensor Networks. In Mobile Adhoc and Sensor Systems,
2009. MASS '09. IEEE 6th International Conference on, pages 313--321,
Oct 2009. [Cited on page 18]

[XJ13] Jie Xiong and Kyle Jamieson. SecureArray: Improving Wifi Security with
Fine-grained Physical-layer Information. In Proc. MobiCom'13, 2013. [Cited
on page 23]

[YSZ+08] Yi Yang, Min Shao, Sencun Zhu, Bhuvan Urgaonkar, and Guohong Cao.
Towards Event Source Unobservability with Minimum Network Traffic in
Sensor Networks. In Proceedings of the First ACM Conference on Wireless
Network Security, WiSec '08, pages 77--88, New York, NY, USA, 2008. ACM.
[Cited on page 18]

[Yu09] Haifeng Yu. Secure and Highly-available Aggregation Queries in Large-scale
Sensor Networks via Set Sampling. In Proceedings of the 2009 International
Conference on Information Processing in Sensor Networks, IPSN '09, pages
1--12, Washington, DC, USA, 2009. IEEE Computer Society. [Cited on page
18]

[ZB11] Shanshan Zheng and John S. Baras. Trust-assisted anomaly detection
and localization in wireless sensor networks. In Sensor, Mesh and Ad
Hoc Communications and Networks (SECON), 2011 8th Annual IEEE
Communications Society Conference on, pages 386--394, June 2011. [Cited
on page 18]

[ZCHX09] Yingpei Zeng, Jiannong Cao, Jue Hong, and Li Xie. Secure localization
and location verification inwireless sensor networks. In Mobile Adhoc and

127

http://www.ti.com/lit/ds/symlink/cc2420.pdf


BIBLIOGRAPHY BIBLIOGRAPHY

Sensor Systems, 2009. MASS '09. IEEE 6th International Conference on,
pages 864--869, Oct 2009. [Cited on page 18]

[ZDC11] Fan Zhang, Reiner Dojen, and Tom Coffey. Comparative performance
and energy consumption analysis of different AES implementations on a
wireless sensor network node. International Journal of Sensor Networks,
10(4):192--201, 2011. [Cited on page 58]

[ZFPK08] Junxing Zhang, Mohammad H. Firooz, Neal Patwari, and Sneha K. Kasera.
Advancing Wireless Link Signatures for Location Distinction. In Proc.
MobiCom'08, 2008. [Cited on pages 22, 77, and 80]

[ZM08] Sebastian Zander and Steven J. Murdoch. An improved clock-skew mea-
surement technique for revealing hidden services. In Proceedings of the 17th
conference on Security symposium, SS'08, pages 211--225, Berkeley, CA,
USA, 2008. USENIX Association. [Cited on page 20]

[Zol10] Zolertia. Zolertia Z1 datasheet, March 2010. http://zolertia.com/sites/
default/files/Zolertia-Z1-Datasheet.pdf. [Cited on page 67]

[ZYN08] Qing Zhang, Ting Yu, and Peng Ning. A framework for identifying compro-
mised nodes in wireless sensor networks. ACM Transactions on Information
and System Security (TISSEC), 11(3):12, 2008. [Cited on page 114]

128

http://zolertia.com/sites/default/files/Zolertia-Z1-Datasheet.pdf
http://zolertia.com/sites/default/files/Zolertia-Z1-Datasheet.pdf

	Abstract
	Declaration
	Acknowledgements
	Publications
	Table of Contents
	List of Acronyms
	1 Introduction
	1.1 Problem Statement and Thesis Aims
	1.1.1 Motivation
	1.1.2 Contributions
	1.1.2.1 Confidential Data Storage for Wireless Sensor Networks
	1.1.2.2 Node Identification Based on Clock Skew
	1.1.2.3 Tamper Detection and Node Identification Based on Channel State Information


	1.2 Thesis Outline

	2 Background and Related Work
	2.1 Background
	2.1.1 Information Security
	2.1.2 Wireless Sensor Networks
	2.1.3 IEEE 802.15.4
	2.1.4 6LoWPAN
	2.1.5 IPsec
	2.1.5.1 IPsec for 6LoWPAN

	2.1.6 IEEE 802.11n
	2.1.6.1 Beamforming and Spatial Expansion


	2.2 Related Work
	2.2.1 Confidential Data Storage in Wireless Sensor Networks
	2.2.2 Node Identification Based on Clock Skew
	2.2.3 Tamper Detection and Node Identification Based on Channel State Information


	3 Confidential Data Storage for Wireless Sensor Networks
	3.1 Confidential Data Storage for Wireless Sensor Networks
	3.1.1 Limitations of Existing Solutions
	3.1.2 Codo: Confidential Data Storage Framework
	3.1.3 Codo Implementation
	3.1.3.1 CFS Optimisation 
	3.1.3.2 Codo Extensions for CFS

	3.1.4 Codo Evaluation
	3.1.4.1 cfs_write() Performance
	3.1.4.2 cfs_read() Performance
	3.1.4.3 Cache Performance


	3.2 Combined Storage and Communication for Internet of Things
	3.2.1 The Secure Storage and Communication Framework
	3.2.1.1 Communication Component
	3.2.1.2 Storage Component
	3.2.1.3 Framework Usage
	3.2.1.4 Implementation
	3.2.1.5 Security Discussions

	3.2.2 Evaluation
	3.2.2.1 Storage Overheads
	3.2.2.2 Performance Gains
	3.2.2.3 Energy Consumption


	3.3 Chapter Summary

	4 Node Identification Based on Clock Skew
	4.1 Clock Skew
	4.1.1 Definition of Clock Skew
	4.1.2 Clock Skew Determination
	4.1.2.1 Linear Programming
	4.1.2.2 Linear Regression

	4.1.3 Clock Skew Quality

	4.2 Remote Clock Skew Determination
	4.2.1 The Impact of Network Jitter
	4.2.2 Experimental Evaluation

	4.3 Local Clock Skew Determination
	4.3.1 Local Clock Sources
	4.3.2 Experimental Evaluation
	4.3.3 Processing Optimisation
	4.3.4 Sampling Optimisation

	4.4 Chapter Summary

	5 Tamper Detection and Node Identification Based on Channel State Information
	5.1 Tamper Detection
	5.1.1 Single Receiver Tamper Detection
	5.1.2 Multi-Receiver Tamper Detection
	5.1.2.1 Threshold Selection
	5.1.2.2 Time-Wise Filtering


	5.2 Evaluation
	5.2.1 Single Receiver Tamper Detection
	5.2.1.1 Experiment 1: Device Movement
	5.2.1.2 Experiment 2: Device Replacement
	5.2.1.3 Experiment 3: Pedestrians
	5.2.1.4 Experiment 4: Baseline
	5.2.1.5 Discussion

	5.2.2 Multi-Receiver Tamper Detection
	5.2.2.1 Controlled Movement
	5.2.2.2 Uncontrolled Movement
	5.2.2.3 Discussion


	5.3 Chapter Summary

	6 Conclusion and Future Work
	6.1 Contributions
	6.2 Threat Models and Limitations
	6.3 Discussions
	6.4 Future Work

	Bibliography

