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Abstract—A joint optimization problem of link-layer energy
efficiency (EE) and effective capacity (EC) in a Nakagami-
m fading channel under a delay-outage probability constraint
and an average transmit power constraint is considered and
investigated in this paper. Firstly, a normalized multi-objective
optimization problem (MOP) is formulated and transformed
into a single-objective optimization problem (SOP), by applying
the weighted sum method. The formulated SOP is then proved
to be continuously differentiable and strictly quasiconvex in
the optimum average input power, which turns out to be a
cup shape curve. Further, the weighted quasiconvex tradeoff
problem is solved by first using Charnes-Cooper transformation
and then applying Karush-Kuhn-Tucker (KKT) conditions. Th e
proposed optimal power allocation, which includes the optimal
strategy for the link-layer EE-maximization problem and the EC-
maximization problem as extreme cases, is proved to be sufficient
for the Pareto optimal set of the original EE-EC MOP. Moreover,
we prove that the optimum average power level monotonically
decreases with the importance weight, but strictly increases
with the normalization factor, the circuit power and the power
amplifier efficiency. Simulation results confirm the analytical
derivations and further show the effects of fading severeness
and transmission power limit on the tradeoff performance.

Index Terms—Quality-of-service, delay-outage probability con-
straint, effective capacity, energy efficiency, multi-objective opti-
mization problem, weighted sum method.

I. I NTRODUCTION

Wireless communication sector is the fastest growing seg-
ment of the communications industry [1]. According to In-
ternational Telecommunication Union, the number of mobile
subscriptions worldwide is approaching the number of people
on the earth [2]. In addition, many new wireless applications,
such as autonomous driving, smart cities, smart homes and
appliances have emerged from research ideas to concrete
systems [3]. The explosive growth of wireless communication
applications coupled with the proliferation of mobile devices
has dramatically speeded up the progress of wireless net-
works, which results in a higher-quality human life and rapid
economic growth. Meanwhile, many technical challenges still
remain unsolved in wireless network designs, e.g., the need
for reducing energy consumption and end-to-end latency [3].

According to [4], for every 1 TeraWatt hour (TWh) energy
consumption, the information and communication technology
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(ICT) sector is responsible for approximately 0.75 milliontons
of CO2 gas emissions. If no action is taken, the overall costs
and risks of climate change, as a result of the increasing green
house gases (GHG) emissions, will be equivalent to losing
at least 5% of global gross domestic product (GDP) every
year [5]. Nevertheless, it is also well known that ICT industry
has the potential to reduce more than 23% of its current
GHG emissions [5]. Interestingly, if one-third of the GHG
emissions is reduced, the generated economical benefit will
be higher than the required investment [6]. As an important
part of ICT, wireless communication sector needs to take
the responsibility to save more energy. Green communication
technology, which emphasizes energy efficiency (EE) in addi-
tion to spectral efficiency (SE), has thereby been proposed as
an effective solution which not only benefits communication
technology sector, but also promotes economic and ecological
sustainability. However, considering the compromise between
network performance and energy savings, designing an effi-
cient resource allocation strategy to limit the network energy
consumption is a real challenge [7]–[9].

In this trend, an energy-efficient optimization problem to
maximize the worst-case link EE was formulated and stud-
ied in [10], under the rate, transmit power, and subcarrier
assignment constraints. Price-driven algorithms for joint power
and admission control are proposed to characterize the trade-
off between the total energy consumption and the system
capacity in [11]. EE and SE tradeoff, based on Shannon
limit, has also been extensively studied for different kinds of
wireless communication networks, such as energy-constrained
wireless multi-hop networks with a single source-destination
pair [12], multi-user downlink orthogonal frequency division
multiple access (OFDMA) networks [13], general narrowband
interference-limited systems [14] and OFDMA-based cooper-
ative cognitive radio networks [15]. The relationship between
EE and SE for downlink multiuser distributed antenna systems
with proportional fairness was investigated in [16]. Specifi-
cally, the EE-maximization problem was first converted intoa
multi-objective optimization problem (MOP), by maximizing
the numerator of EE while minimizing its denominator. Then,
the MOP was transformed into a single-objective optimization
problem (SOP) using weighted sum method, and the optimal
power value was provided by applying Lagrangian method
and sub-gradient iteration approach. Considering imperfect
channel estimation in an orthogonal frequency division multi-
plexing (OFDM) network, the inverse of EE and inverse of SE
were combined into a weighted optimization problem in [17].
The problem was then transformed into a convex problem,
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namely, to jointly minimize the total power consumption
and maximize the channel capacity, which was solved using
Lagrangian method.

In the aforementioned studies [12]–[17], Shannon limit was
utilized as the system throughput, which is mostly considered
as the suitable capacity metric for communication systems
with no link-layer delay quality-of-service (QoS) require-
ments. Nevertheless, for delay-sensitive mobile multimedia
applications, such as video conferencing, autonomous driving
and online gaming, provisioning QoS requirements is critical.
Actually, 5G, the next generation of mobile communication
technology, has been anticipated to not only offer >1 Gbps
downlink data rate, but also sub-1ms end-to-end latency and
90% reduction in network energy usage [3]. Henceforth, it is
important and imperative to investigate EE and SE based on
a link-layer wireless channel model, which explicitly charac-
terizes the channel in terms of link-layer QoS metrics [18].

Effective capacity (EC), as a generalized link-level capacity
notion which specifies the maximum arrival rate with a target
delay-outage probability requirement, has recently received
a lot of attention [18]. Specifically, EC, can be regarded as
the link-layer SE while the link-layer EE can be formulated
as the ratio of EC to the total power expenditure. However,
just like the inconsistent property of EE and SE in physical-
layer channel model, the link-layer EE and EC also can be
incompatible [19]. In more details, for a point-to-point com-
munication system operating in a flat-fading channel, the EE
versus EC curve is bell shape when non-zero circuit power is
considered [20]. Indeed, the link-layer EE and SE experience
a much more pronounced tradeoff, compared to the physical-
layer EE and SE [20]–[22]. Therefore, how to allocate system
resources to efficiently balance the two conflicting metrics
deserves elaborate study. Towards this direction, considering
frequency flat-fading channels, an optimal power allocation
strategy to maximize EC subject to an EE constraint, for delay-
limited mobile multimedia applications was introduced in [21].
[22] analyzed the tradeoff between EE and EC by providing
the mutually beneficial (MB) region and the contention-based
(CB) region. In more details, the MB region refers to the
case when EE and EC can mutually optimize, whereas in the
CB region, the trends of EE and EC conflict. However, the
adjustable tradeoff between EE and EC, as well as a close-
form power allocation strategy was not involved in [22]. On
the other hand, the EE-EC relationship was exploited and
plotted, by expressing signal-to-noise ratio (SNR) in terms
of SE using a curve fitting method in [23]. We note that,
according to users’ diverse preferences, various application
types and dynamic surrounding circumstances, a more flexible
and tractable tradeoff function is preferable, which is not
provided in [20]- [23].

In this paper, we consider and investigate a joint maximiza-
tion problem of link-layer EE and EC under an average input
power constraint. Especially, the link-layer EE-EC tradeoff
problem includes the physical-layer EE-SE tradeoff problem,
zero-outage capacity situation, link-layer EE-maximization
problem and link-layer EC-maximization problem, as special
cases. We analyze and discuss all these situations and pro-
vide simulation results to compare the physical-layer and the

link-layer tradeoff performance. For the formulated power-
unconstrained EE-EC tradeoff problem, a close-form expres-
sion for the power allocation strategy is first derived to pave
the way for the power-constrained problem. Then, we analyze
the link-layer EE-EC tradeoff problem under an input power
constraint and provide the Pseudocode of the optimal power
allocation algorithm in Table I. In order to obtain more insight,
we analyze the influence of different system parameters, such
as the importance weight, normalization factor, circuit power,
power amplifier efficiency and the fading parameter.

In more details, this paper has the following contributions:

• A generalized link-layer EE-EC MOP in a Nakagami-
m fading channel under a delay-outage probability con-
straint and an average transmit power constraint is trans-
formed into an SOP using weighted sum method. Espe-
cially, we introduce two normalization values to balance
the different measurements and orders of magnitude of
EE and EC.

• We prove that the unconstrained EE-EC tradeoff formu-
lation is continuously differentiable, strictly quasiconvex
in the average power and follows a cup shape curve.
Henceforth, the global optimum is unique and can be
achieved at a finite value.

• By using the Charnes-Cooper transformation and KKT
conditions, the optimum power allocation scheme for the
power-unconstrained link-layer EE-EC tradeoff problem
is derived, and is proved to be sufficient for the Pareto
optimal set of the original EE-EC MOP. For the power-
constrained tradeoff problem, an optimal power allocation
algorithm is provided in Table I.

• We prove that the average optimal power level monoton-
ically decreases with the importance weight, but strictly
increases with the normalization factor, circuit power and
power amplifier efficiency.

• We finally provide a proper guideline on how to choose
the normalization factor and importance weight to benefit
either link-layer EE or EC.

The remainder of this paper is organized as follows. In
Section II, the system model and a general tradeoff problem
formulation are provided. The theory of link-layer EC and
EE is introduced in Section III. In Section IV, the optimal
power allocation strategy is derived and analyzed. The effects
of importance weight, normalization factor, circuit power, and
power amplifier efficiency on the average power level are
further investigated in this section. Finally, numerical results
are given in Section V, followed by conclusions in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

A point-to-point wireless communication link over a
Nakagami-m flat-fading channel is considered in this paper.
Different from the physical-layer channel model which has
limitations in QoS support, the link-layer model depicted in
Fig.1(a) captures a generalized link-level capacity notion of
the fading channel, under a delay QoS requirement [18], [24].
Firstly, the upper-layer packets are divided into frames atthe
data-link layer. Then, the source traffic and the network service
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are matched using a first-in-first-out (FIFO) buffer, which
prevents loss of packets that could occur when the source rate
is higher than the service rate, at the expense of increasing
the delay [18]. At the physical layer, the frames stored at the
buffer are split into bit streams. Adaptive coding and power
allocation strategy are applied at the transmitter [25], using
the channel-state information (CSI) fed back from the receiver,
and the predetermined delay QoS requirement. The bit streams
are read out of the FIFO buffer and transmitted through the
wireless fading channel. Finally, the reverse operations are
performed at the receiver and the frames are recovered for
further processing.

We assume that the wireless channel is block fading, i.e.,
the channel gain is invariant during each fading-block, but
independently varies from one fading-block to another. The
length of each fading-block, denoted byTf , is assumed to be
an integer multiple of the symbol durationTs. Ideal Nyquist
transmission symbol rate is also assumed to be satisfied,

which means that the symbol durationTs =
1

B
, whereB

is the system bandwidth. In addition, the service rate process,
{R[t], t = 1, 2, . . . }, using adaptive transmission is considered
to be stationary and ergodic [24]. The instantaneous service
rate, in b/s/Hz, at thetth fading-block is given by

R [t] = log2

(

1 + Pt[t]
γ [t]

PLσ2
n

)

, (1)

where Pt[t] denotes the transmission power,PL shows the
distance-based path-loss,σ2

n indicates the noise power and
γ[t] represents the normalized channel power gain of the
considered unit-variance Nakagami-m block fading channel
with the probability density function (PDF)1 [26]

fγ(γ) =
mmγm−1

Γ(m)
e−mγ ,

whereΓ(z) =
∫ ∞

0

wz−1e−wdw is the Gamma function [27].

1The block indext is omitted for simplicity.

To be specific, the Nakagami-m fading distribution is param-
eterized by the fading parameterm [1]. For m = 1, the distri-

bution matches Rayleigh fading, whereas, form =
(K + 1)2

(2K + 1)
,

the distribution is approximately Rician fading with parameter
K [1]. The case ofm → ∞ describes the Additive White
Gaussian Noise (AWGN) channels [1].

B. Problem Formulation

Since EE and SE have to be simultaneously optimized over
a feasible set determined by constraint functions [28], how
to balance them falls into the scope of an MOP. To get rid
of the different measurements and orders of magnitude of EE
and SE, we normalize them with two normalization values,
ΨEE and ΨSE, respectively. The normalized MOP is, hence,
formulated as:

Q1 : max
EE
ΨEE

and max
SE
ΨSE

(2a)

subject to: P t ≤ Pmax, (2b)

whereP t = E[Pt[t]] indicates the expectation of the transmis-
sion power andPmax denotes the average input power limit.
ΨEE andΨSE are assumed to be the EE and SE values achieved
at the same normalization factor, defined byPnorm. In more
details,ΨEE = EE |Pt=Pnorm

andΨSE = SE |Pt=Pnorm
.

Since EE is generally defined as the ratio of SE to the total
power expenditure, the inverse of the two functions in problem
Q1 can be minimized to make SE as the common denominator,
yielding

Q2 : min
ΨEE

EE
and min

ΨSE

SE
(3a)

subject to: P t ≤ Pmax. (3b)

Lemma 1:The MOP,Q2, is equivalent to the MOPQ1.

Proof: The proof is provided in Appendix A.

For an MOP, instead of having a single global solution, a
set of points which all fit Pareto optimality is provided. To
be specific, Pareto optimal sets are solutions that cannot be
improved in one objective function without deteriorating the
performance in at least one of the rest of objective functions.
Lemma1 implies that if a point is Pareto optimal for problem
Q2, it also belongs to the Pareto optimal set for problemQ1,
and vice-versa.

In order to solve the MOP Q2 and to achieve the Pareto
optimal solutions, one general way is to convert the MOP into
an SOP, using weighted sum method [29], [30]. As such, the
optimization problem Q2 can be transformed into:

Q3 : min w1
ΨEE

EE
+ (1− w1)

ΨSE

SE
(4a)

subject to: P t ≤ Pmax, (4b)

where w1 ∈ [0, 1] is the importance weight. Specifically,
w1 and 1 − w1 represent the relative importance of the two
objective functions, EE and SE, respectively. Whenw1 = 0,
the tradeoff problem reduces to an SE-maximization problem,
while when w1 = 1, the MOP is simplified into an EE-
maximization problem. In other words, the importance of EE
gradually grows asw1 increases from 0 to 1.
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In order to guarantee the Pareto optimal solutions for
problemQ2, we demonstrate the following theorem which
describes the relationship between the weighted sum optimal
point and Pareto optimal solutions of the MOPQ2.

Theorem 1:The unique optimal solution̂P of the weighted

optimization problem,min
q
∑

i=1

wifi(P ), P ∈ [0, Pmax], for

a given w = {[wi]1×q|wi ∈ [0, 1],
q
∑

i=1

wi = 1}, is Pareto

optimal for the MOP,min fi(P ), i = 1, . . . , q, P ∈ [0, Pmax].

Proof: The proof is provided in Appendix B.

Implicitly, Lemma1 andTheorem1 illustrate that ifP̂ is a
unique optimal solution for the weighted optimization problem
Q3, it is Pareto optimal for the original MOPQ1.

III. L INK -LAYER EE-SETRADEOFF

In this section, the theory of EC and link-layer EE is in-
troduced to incorporate the link-level delay-QoS metrics.The
tradeoff performance is optimized by adaptively distributing
the transmit power over time based on the channel condition
and the system delay requirement. An optimal power allo-
cation strategy for the power-unconstrained EE-EC tradeoff
problem is first developed and investigated, to pave the way
for power-constrained tradeoff problem. Further, the influence
of system parameters on the tradeoff performance is analyzed.

A. Effective Capacity and Link-layer Energy Efficiency

In wired networks, QoS guarantees have been extensively
researched [18]. The theory of effective bandwidth was pro-
posed to asymptotically model the stochastic behavior of a
source traffic process [18]. To be specific, the effective band-
width is defined as the minimum constant service rate required
by a given arrival process for which the QoS requirement is
fulfilled [18]. Inspired by these studies, the link-layer channel
model can be thought of as the dual of the effective bandwidth
source model. Specifically, the link-layer SE, denoted as EC,
can be defined as the maximum constant arrival rate that a
given service process can support in order to guarantee a
certain QoS request [25].

Assuming that the Gartner-Ellis theorem [31, Pages 34-36]
is satisfied, EC of an independent and identically distributed
(i.i.d.) block fading channel can be expressed as [18]

EC= −
1

θTfB
ln
(

E

[

e−θBTfR[t]
])

(b/s/Hz) , (5)

where the parameterθ (θ > 0) denotes the exponential decay
rate of the QoS violation probability. A slower decay rate can
be represented by a smallerθ, which indicates that the system
can tolerate a looser QoS guarantee, while a more stringent
QoS requirement is expressed by a largerθ.

We note that, for a dynamic queueing system with stationary
ergodic arrival and service processes [32], the queue length
Q (t) could be non-zero. Using the large deviation theory,
the queue length processQ (t) converges in distribution to
a steady-state queue lengthQ (∞) such that

− lim
x→∞

ln (Pr{Q (∞) > x})

x
= θ, (6)

wherePr{a > b} shows the probability thata > b holds.
This definition implies that the probability of the queue
length exceeding a certain thresholdx decays exponentially
fast asx increases [33]. Taking the delay experienced by a
source packet arriving at fading-blockt, defined byD(t),
into consideration, the probability that the delay exceedsa
maximum delay boundDmax, can be estimated as [18]

P out
delay= Pr{D(t) > Dmax} ≈ Pr{Q(t) > 0}e−θµDmax, (7)

where P out
delay presents the delay-outage probability,Dmax is

in the unit of a symbol period,Pr{Q(t) > 0} denotes the
probability of a non-empty buffer at fading-blockt, and can
be approximated by the ratio of the constant arrival rate to the
average service rate [25], [32], i.e.,Pr{Q(t) > 0} ≈

µ

E[R[t]]
.

Therefore, in order to meet a target delay-bound violation
probability limit, P out

delay, a source needs to limit its data rate to
the maximum ofµ, whereµ is the solution to (7).

Finally, the link-layer EE for a delay-limited system can be
defined as the ratio of EC to the sum of the circuit power
Pc, and the average transmission power scaled by the power
amplifier efficiencyǫ, yielding

EE=
EC

Pc +
1

ǫ
P t

, 0 ≤ ǫ ≤ 1. (8)

B. Optimal Power Allocation

Using (4a)-(4b) and (8), the link-layer EE-EC tradeoff
problem can be expressed as

Q5 :min w1

ΨEE

(

Pc +
1

ǫ
P t

)

EC
+ (1− w1)

ΨEC

EC
(9a)

subject to: P t ≤ Pmax, (9b)

whereΨEC is the normalization value for EC, which is defined
as the EC value achieved at the normalization factor,Pnorm,
e.g.,ΨEC = EC |Pt=Pnorm

.

Replacing EC in (9a) with (1) and (5), the EE-EC tradeoff
problem can be transformed into

Q6 : min
Pr≥0

w1ΨEEKℓ

(

Pcr +
1

ǫ
Pr

)

+ (1− w1) ΨEC

−
1

θTfB
ln
(

Eγ

[

(1 + Prγ)
−α(θ)

])

(10a)

subject to: Pr ≤
Pmax

Kℓ
, (10b)

where Eγ [·] indicates the expectation over the PDF ofγ.

The scaled transmission power,Pr =
Pt

Kℓ
is the optimization

variable in (10a), which can be any nonnegative real value, i.e.,
Pr ≥ 0. In addition, since the fading coefficient is uncountable,
the optimization variable, which is adapted to the fading coef-
ficient, also forms an uncountable set. The optimal value ofPr

Pr =
P t

Kℓ
denotes the scaled average input power,Pcr =

Pc

Kℓ
represents the circuit-to-noise power ratio,Kℓ = PLσ

2
n, and

α(θ) =
θTfB

ln 2
. After deleting the negative constant,−

1

θTfB
,
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the minimization problem (10a) reduces to a maximization
problem. Then, by inverting the objective function, it can be
converted back into a minimization problem, yielding2

Q7 : min
Pr≥0

ln
(

Eγ

[

(1 + Prγ)
−α(θ)

])

w1ΨEEr

(

Pcr +
1

ǫ
Pr

)

+ (1− w1)ΨEC

(11a)

subject to: Pr ≤
Pmax

Kℓ
, (11b)

whereΨEEr
= ΨEEKℓ.

1) Optimum Power Allocation With No Input Power Con-
straint: In this section, the unconstrained SOP is tackled to
pave the way for the optimal power allocation strategy of the
power-constrained SOP. Hence, we start by investigating the
properties of the case with a predetermined importance weight
w1, which are summarized in the following theorem.

Theorem 2:For a predetermined importance weight, the
objective functionU7 in the tradeoff formulationQ7 has the
following properties:

1) U7 is continuously differentiable and strictly quasicon-
vex in Pr,

2) U7 first decreases and then increases withPr, which
turns out to be a cup shape curve,

3)

U7′



























> 0 if U7 <
ǫ

w1ΨEEr

f(Pr)
′

= 0 if U7 =
ǫ

w1ΨEEr

f(Pr)
′,

< 0 if U7 >
ǫ

w1ΨEEr

f(Pr)
′

wheref(Pr) = ln
(

Eγ

[

(1 + Prγ)
−α(θ)

])

, U7′ =
dU7

dPr

, and

f(Pr)
′ =

df(Pr)

dPr

.

Proof: The proof is provided in Appendix C.

In Theorem2, Property 1) reveals the differentiability of
(11a) and guarantees the existence and uniqueness of the
global minimum, for a predetermined weight value. Property
2) indicates that the global optimum is always achieved at
a finite power value. From Property 2) and Property 3), we
notice that whenPr → 0, U7′ < 0, which means now
U7 >

ǫ

w1ΨEEr

f(Pr)
′. With Pr increasing,U7 gradually

declines until it equals to
ǫ

w1ΨEEr

f(Pr)
′. After that point,

U7 starts to increase withPr. Basically, Property 3) connects
the sign of the first derivative with the relative size ofU7 and
the scaled first derivative off(Pr).

Further, we provide Lemma 2 to solve problemQ7.

Lemma 2:A ratio problem(P ) : min
x∈S

f(x)

g(x)
, wheref is

convex andg is affine and positive,f, g : S → R, S ⊆ Rn,
can be transformed into a convex program

(P ′) : min
y/φ∈S

φf(y/φ)

2The objective function in problemQ7 is similar to equation (4) developed
in [24]. The difference is the second addend and the introduced adjustable
parameters in the denominator of (11a).

subject to: φg(y/φ) = 1,

by using the Charnes-Cooper transformationy =
1

g(x)
x, φ =

1

g(x)
, whereφ > 0.

Proof: The proof is provided in Appendix D.

According to Lemma 2, the minimization problem (11a)-
(11b) reduces to the following equivalent problemQ8, by
applying the Charnes-Cooper transformation and one further
step of substitution3.

Q8 : min
Pr≥0

φ ln
(

Eγ

[

(1 + Prγ)
−α(θ)

])

(12a)

subject to: φ

(

w1ΨEEr

(

Pcr +
1

ǫ
Pr

)

+(1− w1)ΨEC) = 1. (12b)

We note that problemQ8 is not jointly convex inPr andφ.
But, by regardingφ as a parameter, problemQ8 becomes a
convex program inPr, since the objective function is convex
[24] and the constraint is an affine function inPr. The KKT
conditions are, hence, sufficient and necessary for the optimal
solution. Setλ ∈ R+,R+ ≡ [0,∞] as the Lagrange multiplier,
the Lagrangian function can be expressed as

L (Pr, λ) = φ ln
(

Eγ

[

(1 + Prγ)
−α(θ)

])

+ λ

(

φ

(

w1ΨEEr

(

Pcr +
1

ǫ
Pr

)

+ (1− w1)ΨEC

)

− 1

)

.

The KKT condition
∂L(Pr, λ)

∂Pr
= 0 can be expanded as

α(θ)

∫ ∞

0

(1 + Prγ)
−α(θ)−1 γf(γ)dγ

=
λw1ΨEEr

ǫ
Eγ

[

(1 + Prγ)
−α(θ)

]

∫ ∞

0

f(γ)dγ.

Finally, it can be expressed as

α(θ)γ (1 + P ∗
r γ)

−α(θ)−1
=

λw1ΨEEr

ǫ
Eγ

[

(1 + P ∗
r γ)

−α(θ)
]

,

(13a)

and the optimum power distribution scheme can be found as

P ∗
r =

[

α(θ)
1

1+α(θ)

(w1ν)
1

1+α(θ) γ
α(θ)

1+α(θ)

−
1

γ

]+

, (14)

whereν =
λΨEEr

ǫ
Eγ

[

(1 + P ∗
r γ)

−α(θ)
]

is referred to as the

scaled-Lagrangian-multiplier and[x]+ = max{0, x}.

Now the optimal value ofφ can be found. Since all
unknowns have been expressed as explicit functions ofν, this
reduces to findingν∗ from the following equation

∇φL = ln
(

Eγ

[

(1 + P ∗
r γ)

−α(θ)
])

+ λ

(

w1ΨEEr

(

Pcr +
1

ǫ
P ∗
r

)

+ (1− w1)ΨEC

)

= 0. (15)

3The Charnes-Cooper transformation is first utilized to achieve the convex
program(P ′), then problemQ8 is derived by substitutingx =

y

φ
in problem

(P ′).
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By substituting the power allocation (14) into (15), the optimal
value forν (referred to asν∗) can be easily found using the
following equation

ΨEEr
Eγ

[(

1 +

[

(γα(θ))
1

1+α(θ)

(w1ν∗)
1

1+α(θ)

− 1

]+)−α(θ)]

× ln

(

Eγ

[(

1 +

[

(γα(θ))
1

1+α(θ)

(w1ν∗)
1

1+α(θ)

− 1

]+)−α(θ)])

+ ǫν∗

×

(

w1ΨEEr

(

Pcr +
1

ǫ
Eγ

[

α(θ)
1

1+α(θ)

(w1ν∗)
1

1+α(θ) γ
α(θ)

1+α(θ)

−
1

γ

]+
)

+ (1− w1)ΨEC

)

= 0. (16)

For the Nakagami-m fading channel, the expectations
in (16) can be calculated by (18a) and (18b), wherein

Γ(a, x) =

∫ ∞

x

za−1e−z dz is the upper incomplete gamma

function and E1(x) =
∫ ∞

x

e−z

z
dz indicates the exponential

integral [27]4. After replacing expectations with the closed-
form expressions, the optimal value forν, i.e., ν∗, can be
solved from (16) using root-finding functions, e.g., fzero in
Matlab. The optimal operating input power levelP ∗

t can then
be found by insertingν∗ into (18a), namely

P ∗
t = Kℓ × P ∗

r |ν=ν∗ . (17)

Since the channel is assumed to be stationary and ergodic,
henceforth, its average will not be affected by the shift in the
time origin. Also, the pointwise mapping betweenPr and γ
is fixed for each fading realization and is determined by the
power allocation policy that depends onPr.

The above equations conclude the power-unconstrained EE-
EC tradeoff solution. Now we provide the following analysisto
pave the way for power-constrained EE-EC tradeoff problem,
that is presented in next Section. Let us assume the optimal
average powerP ∗

t which solves the power-unconstrained
tradeoff problem is found. Then, the power-unconstrained
EE-EC tradeoff problem simplifies into an EC-maximization
problem with an input power constraint, yielding

max
Pr≥0

−
1

θTfB
ln
(

Eγ

[

(1 + Prγ)
−α(θ)

])

(19a)

subject to: Pr ≤
P ∗
t

Kℓ
. (19b)

2) Optimal Power Allocation under Average Input Power
Constraint: In this section, we aim to solve the optimization
problem (11a)-(11b) using the results of Subsection III-B1.
After the unique optimum average power valueP ∗

t for the
power-unconstrained problem is calculated, we need to com-
pareP ∗

t and the input average power limitPmax. If P ∗
t ≤ Pmax,

it means that now the system has enough power to support the
optimal tradeoff performance in Subsection III-B1. Otherwise,
P ∗
t ≥ Pmax means thatPmax is too small to support the power

allocation strategy (14)-(18b) and the system has to operate at

4It is assumed that the path of integration excludes the origin and does not
cross the negative real axis [27].

Pmax to fulfill the tradeoff requirement. Therefore, the opera-
tional input average power value becomes min(P ∗

t , Pmax).

Hence, the power-constrained EE-EC tradeoff problem in
(11a)-(11b) simplifies to an EC-maximization problem with
two input power constraints, yielding

max
Pr≥0

−
1

θTfB
ln
(

Eγ

[

(1 + Prγ)
−α(θ)

])

(20a)

subject to: Pr ≤
P ∗
t

Kℓ
, (20b)

Pr ≤
Pmax

Kℓ
. (20c)

The optimal power allocation to solve (11a)-(11b) is ac-
cording to (14), wherein, optimalν∗ is found such that
KℓPr |ν=ν∗= min(P ∗

t , Pmax).

To summarize, the Pseudocode of the optimal power allo-
cation process to solve (11a)-(11b) is illustrated in TableI.

Furthermore, the optimal power allocation strategy (14)-
(18b) has the following properties:

Properties 1: 1) The proposed optimal solution (14)-
(18b) for every given weight value, is sufficient for the
Pareto optimal set of the original EE-EC MOPQ1.

2) The proposed optimal solution (14)-(18b) includes the
optimal power allocation strategy for the link-layer EE-
maximization problem (whenw1 = 1) and also the
one for EC-maximization problem (whenw1 = 0), as
extreme cases.

3) Whenθ → 0, EC is equivalent to the ergodic capacity.
For the weighted physical-layer EE-SE tradeoff problem,
the optimum power allocation strategy is the traditional
water-filling approach, with the water level to be cho-
sen so that the maximum tradeoff performance can be
achieved [24].

4) When θ → ∞, EC is equivalent to the zero-outage
capacity, and the optimum power allocation strategy is
to maintain a constant received-SNR, at a level that
maximizes the tradeoff performance [34].

In more details, we note that the unique optimal solution of
Q8 with a predetermined importance weight, is sufficient for
the optimal solution of the weighted tradeoff problemQ7 [35]
[36]. Then, by applyingLemma1, Theorem1 andTheorem2,
one can show that the optimal power allocation strategy (14)-
(18b) for every determined weight value, is sufficient for the
Pareto optimal set of the original EE-EC MOPQ1.

Furthermore, the optimal solution (14)-(18b) is similar to
the optimal power allocation strategy for the link-layer EE-
maximization problem in [24], with a different value of the
optimal scaled-Lagrangian-multiplierν∗. Whenw1 = 1, we
note that the proposed optimal solution (14) equals to the one
developed in [24]. It means that the optimal solution in [24]is
a special case of the optimal power allocation strategy for the
weighted EE-EC tradeoff problem in this paper. Especially,
in [24], the optimal operational average power equals to
min(P ∗

EE, Pmax). For a typical EE-EC tradeoff problem, the
optimal average power level will remain between[P ∗

EE, Pmax].

When θ → 0, by following similar steps, the optimal
power allocation strategy for weighted tradeoff problem can
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P ∗
r

=



































































(

α(θ)
w1ν∗

) 1
1+α(θ) m

α(θ)
1+α(θ)

Γ(m)(m−
α(θ)

1+α(θ) )

[

−
(

w1ν
∗m

α(θ)

)(m−
α(θ)

1+α(θ) )
e−

w1ν∗m

α(θ) + Γ
(

m+ 1
1+α(θ) ,

w1ν
∗m

α(θ)

)

]

− m
Γ(m)(m−1)

[

−
(

w1ν
∗m

α(θ)

)m−1

e−
w1ν∗m

α(θ) + Γ
(

m, w1ν
∗m

α(θ)

)

]

, whenm 6= 1,m 6=
α(θ)

α(θ) + 1
,

(

α(θ)
w1ν∗

)
1

1+α(θ)

Γ
(

1
1+α(θ) ,

w1ν
∗

α(θ)

)

− E1

(

w1ν
∗

α(θ)

)

, whenm = 1,
(

α(θ)
w1ν∗

) 1
α(θ)+1 ( α(θ)

α(θ)+1 )
α(θ)

α(θ)+1

Γ( α(θ)
α(θ)+1 )

E1

(

w1ν
∗

1+α(θ)

)

+ α(θ)

Γ( α(θ)
α(θ)+1 )

[

−e−
w1ν∗

α(θ)+1

(

w1ν
∗

α(θ)+1

)− 1
α(θ)+1

+ Γ
(

α(θ)
α(θ)+1 ,

w1ν
∗

α(θ)+1

)

]

, whenm =
α(θ)

α(θ) + 1
,

(18a)

Eγ

[

(1 + P ∗
r γ)

−α(θ)
]

=



























































(

w1ν
∗

α(θ)

)

α(θ)
1+α(θ) m

α(θ)
1+α(θ)

Γ(m)
(

m− α(θ)
1+α(θ)

)

[

−

(

w1ν
∗m

α(θ)

)m−
α(θ)

1+α(θ)

e−
w1ν∗m

α(θ)

+ Γ

(

m+
1

1 + α(θ)
,
w1ν

∗m

α(θ)

)

]

+ 1−
Γ
(

m, w1ν
∗m

α(θ)

)

Γ(m)
,

whenm 6=
α(θ)

α(θ) + 1
,

(

w1ν
∗

α(θ)+1

)

α(θ)
1+α(θ)

Γ
(

α(θ)
α(θ)+1

) E1

(

w1ν
∗

α(θ) + 1

)

+ 1−
Γ
(

α(θ)
α(θ)+1 ,

w1ν
∗

α(θ)+1

)

Γ
(

α(θ)
α(θ)+1

) , whenm =
α(θ)

α(θ) + 1
.

(18b)

be derived as

Pr =

(

1

ρ
−

1

γ

)+

, (21)

which is the well-known water-filling approach andρ can be
found from the KKT condition

Eγ

[

(

ln

(

γ

ρ

))+
]

− ρ

((

ǫPcr + Eγ

[

(

1

ρ
−

1

γ

)+
])

+
ǫ (1− w1)ΨEC

w1ΨEEr

)

= 0. (22)

When θ → ∞, a system with extremely stringent delay
requirement is considered, which means in this case, the
effective capacity is the same as the zero-outage capacity [24].

C. The effects ofw1, Pnorm, Pcr and ǫ on the EE-EC tradeoff

From (14)-(18b), we notice that the tradeoff optimal power
value can be influenced by four factors, which are the im-
portance weightw1, normalization factorPnorm, scaled circuit
power Pcr , and power amplifier efficiencyǫ. In order to
thoroughly understand the effects of these factors on the
tradeoff performance, we provide the following lemmas.

Lemma 3:The average optimal power valueP ∗
t monoton-

ically decreases withw1, but strictly increases withPnorm.

Proof: The proof is provided in Appendix E.

Intuitively, Lemma3 can be clarified as follows.ΨEE and
ΨEC, can not only function as the normalization values, but
also can be regarded as two weights. Then, the complete
weights of EE and EC would be viewed asw1ΨEE and
(1 − w1)ΨEC, respectively. In order to compare the relative

importance of the two objective functions, we need to compare
the relative weight, using

WEE

WEC
=

w1ΨEE

(1 − w1)ΨEC
=

1

Kℓ

(

1

w1
− 1

)(

Pcr +
1

ǫ
Pnorm

) ,

(23)

where WEE = w1ΨEE and WEC = (1 − w1)ΨEC denote the
complete weights of EE and EC, respectively. We notice that
WEE/WEC increases withw1, which means that with increas-
ing w1, the importance of EC drops, and hence, the system
prefers to sacrifice more EC to achieve better EE. Therefore,
the optimum average transmit powerP ∗

t will be shifted from
Pmax-side toP ∗

EE-side. On the other hand, whenPnorm grows,
the ratio of WEE/WEC decreases, which means that the system
prefers to improve EC, with certain deteriorations of EE.
Therefore, following the same trend with EC,P ∗

t will increase.

Lemma3 provides a proper guideline for users to design a
more flexible and favorable system, based on diverse prefer-
ences and different system requirements. For example, if the
system prefers a better EC, a largerPnorm as well as a smaller
w1 should be chosen to offer a larger optimal transmit power,
and in turn, a relatively larger EC. In contrast, if a user prefers
more EE, a smaller normalization factor as well as a largerw1

will be more beneficial.

To investigate the effects of the scaled circuit powerPcr and
the power amplifier efficiencyǫ, we introduce the following
lemma.

Lemma 4:The average optimal powerP ∗
t monotonically

increases with the scaled circuit powerPcr , as well asǫ.

Proof: Following the similar proof withLemma3, Lemma
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TABLE I: Power Allocation Algorithm

Input: Initialization Parameters
w1 importance weight of EE
Pnorm normalization factor
ΨEE normalization value of EE, e.g.,ΨEE = EE |Pt=Pnorm

ΨEC normalization value of EC, e.g.,ΨEC = EC |Pt=Pnorm

θ exponential decay rate of the QoS violation probability
Pmax input average power limit
Pc circuit power
m Nakagami fading parameter
ǫ power amplifier efficiency
Kℓ pathloss and noise factor, e.g.,Kℓ = PLσ

2
n

Tf fading block duration
B link bandwidth

Step 1:
Create (16), using close-form expressions given in (18a) and (18b).
Find ν∗ which solves (16) using root-finding functions, e.g., fzeroin Matlab.
CalculateP ∗

t in (14) andP ∗
t = Kℓ × P ∗

r |ν=ν∗ ,whereP ∗
r is given in (18a).

Step 2:
If Pmax ≤ P ∗

t :

CreateP ∗
t = Pmax andP ∗

r =
Pmax

Kℓ
, whereP ∗

r is given in (18a).

Updateν∗ which satisfies the above equation.
CalculateP ∗

t in (14).
Step 3:

Calculate EC given in (5) and EE given in (8) by using power allocation strategy (14)− (18b).
Output:

[

P ∗
t , P

∗
t ,EC,EE

]

4 is easy to prove and it is omitted here.

IV. N UMERICAL RESULTS

In this section, we numerically investigate the impact of
the normalization factorPnorm, fading severness parameter
m, scaled circuit powerPcr , importance weightw1, and
transmission power constraint on the link-layer EE-EC tradeoff
problem for a flat block-fading channel with delay-outage
probability constraints. In the following figures, we assume
the fading-block durationTf = 2ms, bandwidthB = 250kHz,
input average power limitPmax = 10dB, power amplifier
efficiency ǫ = 0.5, fading parameterm = 1, and the QoS
exponentθ = 10−2, unless otherwise indicated.

Fig. 2 includes the plots for EC (on the left-hand-side
(LHS) y-Axis, in solid lines with markers) and EE (on the
right-hand-side (RHS) y-Axis, markers only) versus impor-
tance weightw1, for various scaled circuit power values with
normalization factorPnorm = 0.5P ∗

EE
5. This figure reveals that,

when w1 ∈ [0.18, 1], the link-layer EE increases whereas
EC gradually decreases withw1. This happens because the
increase ofw1 raises the importance of EE and diminishes the
priority of EC, which confirms our design intention. Moreover,
when w1 ∈ [0, 0.18] and Pcr = 5dB, there is a flat region
wherein EE and EC remain constant. It happens because, in
this region, the optimum average input powerP ∗

t is larger than
Pmax. Since the power-constrained tradeoff system performs
at min(P ∗

t ,Pmax), the constant EE and EC versusw1 will be

5Here P ∗

EE is the optimum average power level for EE-maximization
problem.

observed. Furthermore, whenPcr = 5dB, the flat region is
larger than the case whenPcr = −5dB. In Section III-C, we
proved that whenPcr increases, the optimum average input
power P ∗

t will increase, which means thatP ∗
t will remain

larger thanPmax and EC will stabilize at its maximum value
for a longer period ofw1. In addition, Fig. 2 also demonstrates
that, with fixedw1, whenPcr rises from -5dB to 5dB, the value
of EE decreases. This is due to the fact that EE varies inversely
with P ∗

t , while the optimum average input powerP ∗
t increases

monotonically with the scaled circuit powerPcr , therefore EE
decreases with the circuit-to-noise power ratioPcr .

We plot the results of EC and EE versusPmax, for various
values ofw1 with Pcr = 0dB andPnorm = P ∗

EE in Fig. 3
and Fig. 4, respectively. From Fig. 3, we notice that when
w1 = 0.5 andw1 = 1, EC first continuously increases, and
then it remains stable, after a break-point. This is because, for
the weighted tradeoff problem withw1 = 0.5 or w1 = 1, the
operational average power limit is settled atmin(P ∗

t , Pmax).
Specifically, whenPmax ≤ P ∗

t , the system operates atPmax,
whereas whenPmax ≥ P ∗

t , the tradeoff system will not
consume all the available power, but rather operates atP ∗

t ,
which leads to a constant EC. These observations, however, do
not apply to the case whenw1 = 0 which represents the EC-
maximization problem. In this case, EC continuously increases

with
Pmax

Kℓ
while EE, shown in Fig. 4, decreases after reaching

its peak value. This is due to the fact that the allocation
strategy for EC-maximization problem consumes the whole
available input power, resulting in continuously growing EC,
and simultaneously losing EE.
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Fig. 2: EC and link-layer EE versus importance weightw1 for
various values ofPcr in Rayleigh fading channels.
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Fig. 3: EC versus scaled average input power limit
Pmax

Kℓ

for various

values of importance weightw1 in Rayleigh fading channels.

Similarly, from Fig. 4, we can see that whenw1 = 0.5,
EE first increases until it reaches its peak value, at which
Pmax = P ∗

EE, then EE gradually drops untilPt = P ∗
t , after

which it stabilizes. This demonstrates that the operational
optimal average power, min(P ∗

t , Pmax), is always achieved
between[P ∗

EE, Pmax]. And, for anyPmax ≥ P ∗
t , the tradeoff

system performs atP ∗
t , which leads to a constant EE. In

addition, for EE-maximization problem withw1 = 1, Fig. 4
shows that the link-layer EE gradually increases until its peak
value, achieved atP ∗

EE, after which it remains constant. This
is due to the fact that the average optimal power limit for EE-
maximization problem is always achieved atmin(P ∗

EE, Pmax)
[24], which means that whenPmax ≤ P ∗

EE, the system operates
at the most achievable power valuePmax, and then the tradeoff
problem performs at the global optimal power levelP ∗

EE for
anyPmax ≥ P ∗

EE. Although Fig. 3 and Fig. 4 are plotted using
link-layer capacity, the same trend can be observed in physical-
layer tradeoff problem.

The plot for P ∗
r versusw1 for various fading parameters

with Pnorm = 0.5P ∗
EE and Pcr = −5dB is given in Fig. 5.

Noting that increasingw1 increases the importance of EE in
the tradeoff problem,P ∗

r monotonically decreases fromPmax
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Fig. 4: Maximum achievable EE versus scaled average power limit
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for various values ofw1 in Rayleigh fading channels.
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Fig. 5: Normalized optimum average power valueP ∗

r versus
importance weightw1 for various values of fading parameterm.

to P ∗
EE. Fig. 5 further shows that, for a fixedw1, when m

increases,P ∗
r increases. This happens due to the fact that with

less channel fluctuations, the probability of the received data
remaining in the FIFO buffer will be dropped, and therefore,
EC andP ∗

r will increase. We note that, whenm = 1 and
m = 1.8, P ∗

r first stabilizes at its maximum valuePmax. This
is due to the fact that in this region, the optimal average power
levelP ∗

t is larger thanPmax, and therefore, the tradeoff system
has to operate atPmax.

The plots for EE versus EC, for various values ofm with
Pnorm = 0.5P ∗

EE andPcr = −5dB is plotted in Fig. 6 which
shows that whenm = 1.8, the MOP achieves the largest EE
and EC, while the curve with the smallestm provides the least
values of EE and EC.

Fig. 7 includes the plots for EE versus importance weight
w1, for various values ofPnorm with Pcr = −5dB. Whenw1 is
relatively large, e.g.,w1 ∈ [0.46, 1], EE shows a consistently
upward trend with the increase ofw1 for all considered values
of Pnorm. Whenw1 is small, e.g.,w1 ∈ [0, 0.46] andPnorm =
Pmax, EE initially remains constant until reaching a break-
point, then gradually increases toward its maximum value. On
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Fig. 6: Maximum achievable EE versus EC for various values of
Nakagami fading parameterm.
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Fig. 7: Maximum achievable EE versus importance weightw1 for
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the other hand, Fig. 8 shows that whenPnorm = Pmax, EC
levels off at its maximum value for a longer period ofw1,
in comparison with the other EC curves withPnorm = 0.5P ∗

EE
andPnorm = P ∗

EE. This provides a guideline for an EC-desired
system and indicates that with a larger normalization factor
Pnorm, there is a better chance to make EC remain around its
maximum value for a longer scope of varyingw1. Moreover,
Fig. 7 and Fig. 8 demonstrate that the ranges of EC and EE,
covered byw1 ∈ [0, 1], are always fixed, regardless of the
different definitions ofPnorm. For example, from Fig. 7, the
EE curve withPnorm = P ∗

EE, and the one withPnorm = Pmax,
achieve the same value of the scaled EE, 0.13 b/J/Hz, atw1 =
0.12 andw1 = 0.7745, respectively. Meanwhile, in Fig. 8, EC
obtained atw1 = 0.12, Pnorm = P ∗

EE, equals to the EC value
achieved atw1 = 0.7745, Pnorm = Pmax.

We plot the results of EC (on the left-hand-side (LHS)
y-Axis, in solid lines with markers) and EE (on the right-
hand-side (RHS) y-Axis, markers only) versusw1, for various
values ofθ with Pcr = −5dB, Pnorm = P ∗

EE in Fig. 9. As we
discussed in Section III-B2,θ → 0 refers to a system with no
delay requirement, and hence EC is equivalent to the ergodic
capacity. For the physical-layer EE-SE tradeoff problem, no
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normalization factorPnorm in Rayleigh fading channels.
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Fig. 9: EC and link-layer EE versus importance weightw1 for
various values ofθ in Rayleigh fading channels.

delay requirement means that the delay-outage probabilitycan
be very high. Although, from Fig. 9, EC and EE whenθ → 0
are larger than those whenθ = 10−2, we can also notice
that whenθ is very small, e.g.,θ < 10−5, the delay-outage
probability equals to 1, in Fig. 14. Further, we note that the
physical-layer EC and EE, whenθ → 0, follow the same trend
with the link-layer EC and EE, whenθ = 10−2.

The plot for EC versus delay QoS exponentθ, under dif-
ferent power allocation policies, withw1 = 0.5, Pnorm = P ∗

EE
and Pcr = −5dB is included in Fig. 10. Specifically, this
figure compares the EC values under the optimal link-layer
power allocation solution, which is derived in this paper,
and the traditional physical-layer water-filling approach. From
Section III-B2, we note that whenθ becomes very small, e.g.,
θ < 10−4, EC approaches to ergodic capacity. In this case,
the proposed optimal power allocation strategy (14)-(18b)
converges to the traditional water-filling strategy. Therefore,
in Fig. 10, whenθ < 10−4, the values of EC for the two
different power policies are equal. Whenθ becomes larger,
e.g., θ ≥ 10−3, which refers to a system with a stringent
delay requirement, Fig. 10 indicates that the proposed link-
layer optimal power allocation strategy guarantees a better per-
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Fig. 10: EC versus delay QoS exponentθ under different power
allocation policies in Rayleigh fading channels.
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Fig. 11: Normalized optimum average power valueP ∗

r versusϑ for
various values of fading parameterm and scaled circuit powerPcr .

formance than the traditional water-filling approach, withthe
water-filling performance approaching to zero whenθ ≃ 0.1.

Fig. 11 and Fig. 12 illustrate the optimal average power
value and EE versusϑ, whereϑ describes the ratio ofPnorm

to Pmax, i.e., Pnorm = ϑPmax, for various values of fading
parameterm and scaled circuit powerPcr . Especially, a typical
tradeoff system is considered andw1 = 0.5. Whenm = 1, P ∗

r

increases, while EE decreases withϑ. This happens because
whenϑ increases,Pnorm becomes larger, which indicates that
the priority of EE will be decreased and the importance of
EC will increase. Whenm = 1.8, P ∗

r firstly plunges to its
lowest value and then gradually increases withϑ, while EE
first increases to its maximum value and then gradually drops
with ϑ. Furthermore, Fig. 11 shows that whenm is fixed, a
system with biggerPcr always has a largerP ∗

r , which confirms
our conclusion inLemma2.

Fig. 13 includes the plots forP ∗
r versus delay QoS exponent

θ for various values ofw1 and Pnorm, with Pcr = −10dB.
Whenw1 = 0, P ∗

r levels out at the maximum transmit power
limit Pmax, which confirms that the EC-maximization system
always consumes all the available power [25]. Whenw1 =
0.5 andPnorm = Pmax, P ∗

r increases withθ, until it remains
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Fig. 13: Normalized optimum average power valueP ∗
r versusθ for

various values ofw1 andPnorm in Rayleigh fading channels.

stable at a certain value, which is just underPmax. In contrast,
For cases ofw1 = 0.5 and Pnorm = P ∗

EE, andw1 = 1 and
Pnorm = Pmax, the optimum average power levels are achieved
at minimal values. Furthermore, withw1 = 0.5, P ∗

r is higher
whenPnorm = Pmax, comparing to a case withPnorm = P ∗

EE.
This is due to the fact that, a largerPnorm, e.g.,Pnorm = Pmax,
reduces the priority of EE and raises the importance of EC,
which results in a largerP ∗

r and a smaller EE.

The delay-outage probability limitP out
delay versus delay QoS

exponent for various values ofw1 andPnorm with a maximum
tolerable delay thresholdDmax = 500, circuit-to-noise power
ratioPcr = -10dB is illustrated in Fig. 14. This figure indicates
that for loose delay-constrained systems, e.g.,θ = 10−5,
different values ofw1 will not affect the achievableP out

delay
significantly. Also, in this case, the delay-outage probability
becomes 1, which means that the probability of the delay
exceeding the maximum delay boundDmax is equivalent to
1. For largerθ, e.g., θ ≥ 10−3, delay-outage probability
increases withw1. This happens because smallerw1 represents
a system which prefers EC-maximization approach. Hence, a
higher EC will be achieved and the probability that the symbol
delay exceeds a maximum delay-boundDmax will decline.
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and normalization factorPnorm in Rayleigh fading channels.

Furthermore, for a fixedθ, whenw1 = 0.5 andPnorm = P ∗
EE,

the delay-outage probability limit is larger than that withthe
samew1 and Pnorm = Pmax. This is due to the fact that a
system with largerPnorm offers a larger EC, which means that
the probability of data remaining in the FIFO buffer will be
dropped, and therefore,P out

delay will be smaller.

V. CONCLUSIONS

The optimal power distribution scheme of the link-layer EE-
EC tradeoff problem for a Nakagami-m fading channel with
a delay violation probability constraint and an average input
power limit was developed and analyzed. We proved that the
proposed tradeoff formulation is continuously differentiable
and strictly quasiconvex in the optimum average power level.
After obtaining the optimal power allocation scheme, we
proved that the proposed scheme is also sufficient for the
Pareto optimal set of the original EE-EC MOP. In order to
thoroughly analyze the tradeoff performance, the effects of
the normalization factor, importance weight, circuit power and
power amplifier efficiency were analyzed and investigated.
We also provided a proper guideline on how to choose the
normalization factor and importance weight to build a more
favorable system toward either EE or EC.

APPENDIX A

Proof of Lemma 1

Suppose the pointP ∗
t ∈ [0, Pmax], is a Pareto optimal

solution for problemQ2 and it is not a Pareto optimal solution

for problemQ1. Hence, there must existP ′
t with

SE(P ′
t)

ΨSE
≥

SE(P ∗
t )

ΨSE
,

EE(P ′
t)

ΨEE
≥

EE(P ∗
t )

ΨEE
, and also at least one of the

two following conditions happens: 1)
SE(P ′

t)

ΨSE
>

SE(P ∗
t )

ΨSE
,

2)
EE(P ′

t)

ΨEE
>

EE(P ∗
t )

ΨEE

6. Note that SE(Pt), EE(Pt), for

Pt ∈ [0, Pmax], are always positive, therefore, there exists

6Here, SE(P ) and EE(P ) are defined as the SE and EE values achieved
at certain average powerP .

P ′
t which guarantees that

ΨSE

SE(P ′
t)

≤
ΨSE

SE(P ∗
t )

,
ΨEE

EE(P ′
t)

≤

ΨEE

EE(P ∗
t )

, and at least one of the two following conditions

happens: 1)
ΨSE

SE(P ′
t)

<
ΨSE

SE(P ∗
t )

, 2)
ΨEE

EE(P ′
t)

<
ΨEE

EE(P ∗
t )

. This

contradicts the assumption thatP ∗
t is a Pareto optimal solution

for problemQ2. This concludes the proof for Lemma 1.

APPENDIX B

Proof of Theorem 17

Since P̂ is unique optimal solution for the weighted SOP,

then
q
∑

i=1

wifi(P̂ ) <
q
∑

i=1

wifi(P ), wi ∈ [0, 1],
q
∑

i=1

wi = 1, for

all P ∈ [0, Pmax]. SupposeP̂ is not a Pareto optimal solution
for the MOP. Hence, there must existP ′ ∈ [0, Pmax] with
fi(P

′) ≤ fi(P̂ ) for all i = 1, . . . , q, and there is at least
one j, such thatfj(P ′) < fj(P̂ ), j = 1, . . . , q. Multiplying
by the weights, we havewifi(P

′) ≤ wifi(P̂ ) for all i =

1, . . . , q, and
q
∑

i=1

wif(P
′) ≤

q
∑

i=1

wif(P̂ ). This contradicts the

uniqueness assumption. Therefore, the theorem is proved.

APPENDIX C

Proof of Theorem 2

Denote the sublevel set of U7 bySβ =
{

Pr ∈

[

0,
Pmax

Kℓ

] ∣

∣

∣

∣

U7 ≤ β

}

. According to [38], U7 is

strictly quasiconvex inPr if Sβ is strictly convex for any
real numberβ. In more details, a set is strictly convex if any
line (without the endpoints) connecting two points in the set
is inside the interior of the set. In other words, the setC is
strictly convex if every pointc = λa + (1 − λ)b, λ ∈ (0, 1),
λ ∈ R, for any two pointsa, b ∈ C, a 6= b, is inside the
interior of C.

Firstly, whenβ < 0, no points exist forU7 = β. When
β ≥ 0, Sβ is equivalent to

Sβ =

{

Pr ∈

[

0,
Pmax

Kℓ

]
∣

∣

∣

∣

ln
(

Eγ

[

(1 + Prγ)
−α(θ)

])

−β

(

w1ΨEEr

(

Pcr +
1

ǫ
Pr

)

+ (1− w1)ΨEC

)

≤ 0

}

.

Since ln
(

Eγ

[

(1 + Prγ)
−α(θ)

])

is strictly convex [24], and

β

(

w1ΨEEr

(

Pcr +
1

ǫ
Pr

)

+ (1− w1)ΨEC

)

is affine in Pr,

therefore,Sβ is strictly convex for any real numberβ and
U7 is strictly quasiconvex inPr. This proves Property 1).

We now take the first derivative of (9a) with respect toPr,
yielding

U5′ =

w1ΨEEr

ǫ
EC− J(Pr)EC′

EC2 ,

where J(Pr) = w1ΨEEr

(

Pcr +
1

ǫ
Pr

)

+ (1 − w1)ΨEC and

7A similar theorem was mentioned in [37], but the proof was notprovided.
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EC′ =
dEC

dPr

. WhenPr → 0, EC→ 0, J(Pr) > 0 and EC′ > 0,

therefore,U5′
∣

∣

Pr→0
< 0. On the other hand, whenPr → ∞,

we have

lim
Pr→∞

w1ΨEEr

ǫ
EC

J(Pr)EC′
= lim

Pr→∞

w1ΨEEr

ǫ
EC′

w1ΨEEr

ǫ
EC′ + J(Pr)EC′′

, (24)

where EC′′ =
d2EC

dPr
2 . We note that EC′′ < 0, due to the

fact that EC is strictly concave inPr [24]. Now, by using the
fact thatJ(Pr) > 0, one can show that the RHS of (24) is
bigger than 1, which means thatU5′ |Pr→∞> 0. Hence, when
Pr → ∞, U5 is an increasing function inPr. We note that
U7 is derived by canceling the negative multiplied constant in
U5 and then inverting the objective function. Therefore, when
Pr → 0, U7 monotonically decreases and whenPr → ∞, U7
monotonically increases. This proves thatU7 has a cup shape
curve inPr, which completes the proof for Property 2).

Now, we setf(Pr) = ln
(

Eγ

[

(1 + Prγ)
−α(θ)

])

and take

the first derivative ofU7 with respect toPr to get

U7′ = lim
∆Pr→0

f
(

Pr +∆Pr

)

J
(

Pr +∆Pr

) −
f
(

Pr

)

J
(

Pr

)

∆Pr

= lim
∆Pr→0

f
(

Pr +∆Pr

)

− f
(

Pr

)

∆Pr

−
w1ΨEEr

ǫ
U7

J
(

Pr +∆Pr

)

= lim
∆Pr→0

f(Pr)
′ −

w1ΨEEr

ǫ
U7

J
(

Pr +∆Pr

) .

Therefore, sgn(U7′) = sgn

(

f(Pr)
′ −

w1ΨEEr

ǫ
U7

)

. This

completes the proof of Property 3).

APPENDIX D

Proof of Lemma 2

Here, we briefly prove that problem(P ′) is a convex
program in(y, φ), and if (y∗, φ∗) is an optimal solution of
(P ′), thenx∗ = y∗/φ∗ is an optimal solution of(P ).

Since f is a convex function, therefore, for the objective
function of problem(P ′), we have

(λφ1 + (1− λ)φ2) f

(

λy1 + (1 − λ)y2
λφ1 + (1 − λ)φ2

)

=(λφ1 + (1− λ)φ2)

× f

(

λφ1

λφ1 + (1 − λ)φ2

y1
φ1

+
(1 − λ)φ2

λφ1 + (1− λ)φ2

y2
φ2

)

≤λφ1f

(

y1
φ1

)

+ (1− λ)φ2f

(

y2
φ2

)

for any (y1, φ1), (y2, φ2) ∈ Rn ×R+, andλ ∈ [0, 1]. Hence,
the objective function of problem(P ′) is convex in(y, φ).

Now, sinceg is affine, which is also convex,φg(y/φ) can
be proved to be convex, by following similar steps. Therefore,
the feasible constraint set is a convex set and we conclude that

problem(P ′) is a convex program iff is convex andg is an
affine function onS.

Henceforth, from the Charnes-Cooper transformation, we
note that if the optimal solution(y∗, φ∗) of problem(P ′) is
found, thenx∗ = y∗/φ∗ is optimal for problem(P ).

APPENDIX E

Proof of Lemma 3

For a system with optimal average transmit powerP ∗
1 , and

normalization valuesΨEE,1 = EE |Pt=Pnorm,1
and ΨEC,1 =

EC |Pt=Pnorm,1
, take the first derivative of the functionU5,

which yields (25) and it simplifies to

w1EC
ǫ

−

(

w1

ǫ
P ∗
1 + Pc +

(1 − w1)

ǫ
Pnorm,1

)

EC′ = 0. (26)

Then, consider a system with a largerPnorm, i.e., Pnorm,2 =
Pnorm,1 + ∆Pnorm, ∆Pnorm > 0. In this system, the optimal
input power value at which the tradeoff formulation can be
maximized is denoted byP ∗

2 , and normalization values are
ΨEE,2 andΨEC,2. ReplacingPnorm,1 in (25) with Pnorm,2, we
have (27). By using (26), it reduces to

U5′
∣

∣

∣

∣Pt=P∗

1
Pnorm=Pnorm,1+∆Pnorm

= −
ΨEE,2

(1 − w1)

ǫ
∆PnormEC′

EC2 < 0.

(28)

From Theorem2, we know thatU5 strictly decreases with
the average transmit power until reaching the minimum, thenit
becomes a monotonically increasing function. Therefore, (28)
means thatU5 with a largerPnorm decreases atP ∗

1 and has
not reached its minimum yet, which meansP ∗

2 must be bigger
thanP ∗

1 . It is easy to prove that the average optimal power
monotonically decreases withw1, which is omitted here. This
completes the proof ofLemma3.
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