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Abstract This paper concerns Gibbs measures ν for some nonlinear PDE over the D-torus

TD . The Hamiltonian H =
∫
TD ‖∇u‖2 −

∫
TD |u|p has canonical equations with solutions in

ΩN = {u ∈ L2(TD) :
∫
|u|2 ≤ N}. For D = 1 and 2 ≤ p < 6, ΩN supports the Gibbs measure

ν(du) = Z−1e−H(u)
∏

x∈T
du(x) which is normalized and formally invariant under the flow

generated by the PDE. The paper proves that (ΩN , ‖ · ‖L2 , ν) is a metric probability space

of finite diameter that satisfies the logarithmic Sobolev inequalities for the periodic KdV ,

the focussing cubic nonlinear Schrödinger equation and the periodic Zakharov system. For

suitable subset of ΩN , a logarithmic Sobolev inequality also holds in the critical case p = 6.

For D = 2, the Gross–Piatevskii equation has H =
∫
T2 ‖∇u‖2−

∫
T2(V ∗|u|2)|u|2, for a suitable

bounded interaction potential V and the Gibbs measure ν lies on a metric probability space

(Ω, ‖·‖H−s , ν) which satisfies LSI . In the above cases, (Ω, d, ν) is the limit in L2 transportation

distance of finite-dimensional (Ωn, ‖ · ‖, νn) given by Fourier sums.

Keywords Gibbs measure, logarithmic Sobolev inequality transportation

Classification: 37L55; 35Q53

1. Introduction

The periodic Korteweg–de Vries and cubic nonlinear Schrödinger equations in space dimen-

sion D may be realised as Hamiltonian systems with an infinite-dimensional phase space

L2(TD,R)×2. For instance, the Hamiltonian

Hp(u) =
1

2

∫

TD

‖∇u(θ)‖2 dDθ

(2π)D
− λ

p

∫

TD

|u(θ)|p dDθ

(2π)D
, (1.1)

is focussing for λ > 0 and defocussing for λ < 0, and the canonical equations generate the

NLS. The critical exponent for existence of smooth solutions over all time is p = 2 + (4/D)

by [9, p. 6]. In particular H4 generates the cubic NLS equation for the field u. For N > 0,

traditionally called the number operator [15], let ΩN be the

ΩN =
{
u ∈ L2(TD;C) :

∫

TD

|u(θ)|2 dDθ

(2π)D
≤ N

}
. (1.2)

Observe that ΩN is formally invariant under the flow generated by (1.1).
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For D = 1, Lebowitz, Rose and Speer [15] introduced an associated Gibbs ν measure

and determined conditions under which ν can be normalized to define a probability measure

on ΩN ; thus they introduced the modified canonical ensemble as the metric probability space

X = (ΩN , ‖ · ‖L2 , ν). The purpose is to have a statistical mechanical model of typical solutions

of KdV and NLS, not just the smooth solutions. In this paper, we describe concentration

of Gibbs measures in terms of logarithmic Sobolev inequalities, and then use Sturm’s theory

of metric measure spaces [19] to obtain convergence of Gibbs measures on finite-dimensional

phase spaces to the true Gibbs measure.

Definition (LSI(α)) Let (X, d) be a complete and separable metric space, which is a length

space with no isolated points, and µ a probability measure on X . For f : X → R, introduce

the norm of the gradient |∇f(x)| = lim supy→x |f(y) − f(x)|/d(x, y). Then (X, d, µ) satisfies

the logarithmic Sobolev inequality with constant α > 0 (abbreviated LSI(α)) if

∫

X

f(x)2 log
(
f(x)2/

∫

X

f2dµ
)
µ(dx) ≤ 2

α

∫

X

∣∣∇f
∣∣2µ(dx) (1.3)

for all f ∈ L2(µ;X ;R) such that |∇f(x)| ∈ L2(µ;X ;R). See [21, chapter 21].

When (X, d) = (Rm, ‖ · ‖E) for some Banach space norm E and f : Rm → R is con-

tinuously differentiable, then we have |∇f(x)| = ‖∇f(x)‖E∗ , where ∇f is the usual gradient

and E∗ the dual normed space. In the analysis below, we generally apply LSI(α) to functions

which may be expressed in terms of the Fourier coordinates, and we require inequalities with

constants that do not depend directly upon the dimension of the phase space. Our results are

closely related to those of [14], since LSI implies a spectral gap inequality by [21, Theorem

22.28].

Bourgain [6] showed that the Gibbs measure on suitably normalized subspaces could

be constructed from random Fourier series, so that the Fourier coefficients give an explicit

system of canonical coordinates for the phase space. Let Hs(TD) = {∑k∈ZD ake
ik·θ : |a0|2 +∑

k∈Zd\{0} |k|2s|ak |2 < ∞}. Let (γk, γ
′
k)k∈ZD be mutually independent standard Gaussian

random variables. Then for ρ > 0, the periodic Brownian motion

b(θ) =
∑

k∈ZD

(γk + iγ′k)eik·θ

√
ρ+ |k|2

(θ = (θ1, . . . , θD)) (1.4)

lies in Hs(TD) almost surely for s < 1 − (D/2).

For D = 1, Lebowitz, Rose and Speer [15] showed that for all N < ∞ and 2 ≤ p < 6 one

can introduce Z = Z(N, p, λ) > 0 to normalize the Gibbs measure

νN (du) = Z−1IΩN
(u)e−Hp(u)

∏

θ∈T

du(θ) (1.5)

as a probability on ΩN . However, for p > 6, so such Z exists. See also [13, 16] for alternative

constructions of the Gibbs measure.
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In section 3 of this paper, we prove a logarithmic Sobolev inequality for νN when D = 1

and p = 4. The proof depends upon convexity of the Hamiltonian on ΩN , and uses a criterion

that originates with Bakry and Emery [2, 21]. In section 4, we deduce similar results for

the periodic Zakharov system. In section 5, we use a similar method to prove a LSI for

u ∈ L2(T;R) and p = 3, where the Hamiltonian generates the KdV equation. For D = 1

and p = 6, there exists N0 > 0 such that the Gibbs measure can be normalized on ΩN for

N < N0, but not for N > N0. In section 6, we obtain a logarithmic Sobolev inequality for

subsets ΩN,κ = {u ∈ ΩN : ‖u‖2
Hs ≤ κ} and 1/4 < s < 1/2 which support most of the Gibbs

measure. While these Gibbs measures are absolutely continuous with respect to Brownian

loop, the Radon–Nikodym derivatives are not logarithmically concave, so our results do not

follow directly from the curvature computations in [19]. Instead we use uniform convexity of

the Hamiltonians on suitable ΩN , and exploit the property that LSI are stable under suitable

perturbations; see [21, Remark 21.5].

The partial sums of the spatial Fourier series suggest classical Hamiltonians on finite-

dimensional phase spaces Xn given by the low wave numbers, which generate autonomous

systems of ordinary differential equations in the canonical coordinates. Such Xn support

Liouville measures νn, which are invariant under the flow generated by the canonical equations,

and which give metric probability spaces Xn = (Xn, ‖ ·‖R2n , νn). We show that for D = 1 and

p ≤ 6, the Xn converge as metric probability spaces to X in the L2 transportation distance;

this extends the notion of approximating the solution of a PDE by Fourier partial sums.

The lack of smoothness of b(θ) complicates the analysis of the NLS equation in two

dimensions, and more drastically in higher space dimensions. The integral (1.1) with p = 4 is

critical for existence of invariant measures in the 2D focussing case. So one introduces a real

interaction potential V and works with the Gross–Piatevskii equation

i
∂u

∂t
+
∂2u

∂θ21
+
∂2u

∂θ22
+ λ

(
V ∗ |u|2

)
u = 0, (1.6)

which is also credited to Hartree. In section 7, we impose additional hypotheses including

V ∈ L∞(T2;R) to obtain a finite-dimensional logarithmic Sobolev inequality and then V ∈
H1+2s(T2;R) to obtain a infinite-dimensional LSI. We regard this as realistic, since in their

model of a supersolid, Pomeau and Rica [17] consider a soft sphere interaction with V bounded.

The Gibbs measure is supported on distributions in H−s, so the solutions of (1.6) are typically

not in L2(T2;C). Nevertheless, in section 8 we achieve convergence in L2 transportation

distance for finite-dimensional metric probability spaces towards Gibbs measure on the phase

space for the PDE.

2 Metric Measure Spaces for Trigonometric Systems

Sturm [19] has developed a theory of metric measure spaces which refines the metric geometry

of Gromov and Hausdorff. We recall some definitions, which simplify slightly in our setting of

probability spaces, which Sturm calls normalized measure spaces.

3



Let (X, d) be a complete and separable metric space. Now let Prob0(X) be the space

of Radon probability measures on (X, d) with the weak topology; a metric probability space

X̂ consists of (X, d, µ) with µ ∈ Prob0(X). Suppose that µ, ν ∈ Prob0(X) and that ν is

absolutely continuous with respect to µ and that f = dν
dµ is the Radon–Nikodym derivative.

Then the relative entropy of ν with respect to µ is

Ent(ν | µ) =

∫

X

f(x) log f(x)µ(dx), (2.1)

so that 0 ≤ Ent(ν | µ) ≤ ∞. For 1 ≤ s < ∞, Probs(X) consists of the subspace of

µ ∈ Prob0(X) such that
∫

X
δ(x0, x)

sµ(dx) < ∞ for some or equivalently all x0 ∈ X . The

Wasserstein distance of order s between µ, ν ∈ Probs(X) is

Ws(µ, ν) = inf
π

{(∫∫

X×X

δ(x, y)sπ(dxdy)
)1/s

: π1 = µ, π2 = ν
}

(2.2)

where π ∈ Probs(X × X) with marginals π1 = µ and π2 = ν is called a transportation plan,

and δs is the cost function. Then (Probs(X),Ws) is a metric space.

Suppose further that there exists α > 0 such that

Ws(ν, µ) ≤
√

2

α
Ent(ν | µ) (2.3)

for all ν ∈ Probs(X) that are of finite relative entropy with respect to µ. Then µ is said to

satisfy the transportation inequality Ts(α). We repeatedly use the result of Otto and Villani

that LSI(α) implies T2(α) on Euclidean space; see [21, 22.17].

Definition (L2 transportation distance) A pseudo metric on a nonempty set Z is a function

δ : Z × Z → [0,∞] that is symmetric, vanishes on the diagonal, and satisfies the triangle

inequality. A coupling of pseudo metric spaces (X, δ1) and (Y, δ2) is a pseudo metric space

(Z, δ) such that Z = X t Y and δ|X×X = δ1 and δ|Y ×Y = δ2. Given metric probability

spaces X̂ = (X, δ1, µ1) and Ŷ = (Y, δ2, µ2), consider a coupling δ of these metric spaces and

π ∈ Prob0(X × Y ) with marginals µ1 and µ2. Then the L2 transportation distance is

DL2(X̂, Ŷ ) = inf
δ,π

{(∫∫

X×Y

δ(x, y)2π(dxdy)
)1/2}

, (2.4)

where the infimum is taken over all such couplings δ and all transportation plans π. One can

easily show that if µ1 ∈ Prob2(X) and µ2 ∈ Prob2(Y ), then DL2 (X̂, Ŷ ) <∞. The diameter of

X̂ is sup{d(x, y) : x, y ∈ support(µ)}. The family of isomorphism classes of metric probability

spaces that have finite diameter gives a metric space (X,DL2) by results of [19].

To obtain LSI(α) for measures on Hilbert space from their finite-dimensional marginals,

we use the following Lemma, which is related to Theorem 1.3 from [4].
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Lemma 2.1 Let dν = e−V (x)
∏∞

j=1 dxj be a Radon probability measure on `2(N;R), and

let Fn be σ-algebra that is generated by the first n coordinate functions, and let νn be the

marginal of ν for the first n coordinates. Suppose that

(i) V is continuously differentiable, and
∫
‖∇V (x)‖2

`2ν(dx) <∞;

(ii) there exists α > 0 such that LSI(α) holds for Xn = (Rn, ‖ · ‖`2 , νn) for all n.

Then LSI(α) holds for X∞ = (`2, ‖ · ‖`2 , ν), and Xn → X∞ in DL2 as n→ ∞.

Proof. For 0 ≤ f ∈ L2(`2; ν;R), let fn = E(f | Fn), so that 0 ≤ fn and fn → f almost surely

and in L2 as n → ∞ by the martingale convergence theorem. By Jensen’s inequality applied

to the convex function ϕ(x) = x2 log x2 for x > 0, we have

∫
f2

n log+ f
2
n dν −

∫
f2

n log− f
2
n dν ≤

∫
f2 log+ f

2 dν −
∫
f2 log− f

2 dν. (2.5)

Now ϕ(x) ≥ −1/e, so we can apply the dominated convergence theorem to the terms with

log− and Fatou’s lemma to the positive terms with log+ to deduce that the entropy term on

the left-hand side of LSI satisfy

∫
f2 log

(
f2/

∫
f2dν

)
dν = lim

n→∞

∫
f2

n log
(
f2

n/

∫
f2

ndν
)
dν

≤ lim sup
n→∞

2

α

∫

Rn

‖∇fn(x)‖2
`2νn(dx). (2.6)

Integrating by parts in the first n coordinates, we see that ∇fn = E(∇f | Fn)+E((fn−f)∇V |
Fn), so by the Cauchy–Schwarz inequality

2

α

∫
‖∇fn‖2dνn ≤ 2(1 + εn)

α

∫
‖∇f‖2dν +

2(1 + εn)

αεn

(∫
|fn − f |2dν

)1/2(∫
‖∇V ‖2dν

)1/2

(2.7)

where we can choose εn > 0 decreasing to 0 so that (2.6) and (2.7) give

∫
f2 log

(
f2/

∫
f2dν

)
dν ≤ 2

α

∫
‖∇f‖2dν. (2.8)

Hence X̂∞ satisfies LSI(α). Now LSI(α) implies T1(α) by [21, 22.17], so∫
exp(α‖x‖2/2)ν(dx) < ∞. Any continuous and bounded function fn : Rn → R may be

identified with a function on the first n coordinates of `2, so the equation
∫
fndνn =

∫
fndν

determines νn ∈ Prob2(R
n). We write x = (ξj)

∞
j=1 ∈ `2 as xn = (ξ1, . . . , ξn) and xn =

(ξn+1, ξn+2, . . .) and introduce pn(dxn | ξn) ∈ Prob2(`
2) by disintegrating ν(dx) = pn(dxn |

xn)νn(dxn) with respect to νn; then we couple Xn with X∞ by mapping Xn → X∞ via

xn 7→ (xn, 0). To transport νn to ν, we select xn according to the law νn, then select xn

according to the law pn(dxn | xn); hence

DL2(Xn, X∞)2 ≤
∫∫

Rn×`2
‖xn‖2

`2pn(dxn | xn)νn(dxn) =

∫

`2
‖x− E(x | Fn)‖2

`2ν(dx), (2.9)
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which converges to zero as n → ∞ by the dominated convergence theorem; so Xn → X∞ in

DL2 as n→ ∞.

In subsequent sections, we introduce metric probability spaces relating to the trigonomet-

ric system over TD ; their properties link curvature, dimension and the exponent in H . In

space dimension D, let

Xn = span{eik·θ : k ∈ ZD; k = (k1, . . . , kD); |kj | ≤ n; j = 1, . . . , D}, (2.10)

so that ιn : Xn → Xn+1 is the formal inclusion. When n is a dyadic power, the metric structure

is well described by Littlewood–Paley theory. For j ∈ N, we introduce the dyadic block ∆j =

{2j−1, 2j−1 + 1, . . . , 2j − 1}, and for J = (j1, . . . , jD) ∈ ND , let ∆(J) = ∆j1 × . . . × ∆jD
. Let

PJ be Dirichlet’s projection onto the span{eik·θ : k ∈ ∆(J)}, and introduce the Hamiltonian

H∆(J)(u) =
1

2

∫

TD

‖∇PJu(θ)‖2
`2

dDθ

(2π)D
− λ

p

∫

TD

∣∣PJu(θ)
∣∣p dDθ

(2π)D
. (2.11)

Proposition 2.2 For 2 ≤ p ≤ 2 + (4/D) and N > 0, there exists λ > 0 such that H∆(J)(u) is

uniformly convex on ΩN .

Proof. We observe that H∆(J) is twice continuously differentiable on L2, and

( d2

dt2

)
t=0

H∆(J)(u+ tv)

≥
∫

TD

‖∇PJv(θ)‖2
`2

dDθ

(2π)D
− λ(p− 1)

∫

TD

∣∣PJu(θ)
∣∣p−2∣∣PJv(θ)

∣∣2 dDθ

(2π)D
. (2.12)

We write |∆| for the cardinality of a finite set ∆, and observe that by the inequality of

the means,
D∑

`=1

|∆j`
|2 ≥ D|∆(J)|2/D. (2.13)

Hence the first term on the right-hand side of (2.12) satisfies

∫

TD

‖∇PJv(θ)‖2
`2

dDθ

(2π)D
≥ D

4
|∆(J)|2/D

∫

TD

|PJv(θ)|2
dDθ

(2π)D
. (2.14)

Now we introduce de la Vallée Poussin’s kernel KJ for ∆(J), so that K̂J(n1, . . . , nD) =

1 for all (n1, . . . , nD) ∈ ∆(J) and K̂J(n1, . . . , nD) = 0 whenever some n` lies outside of

∆j`−1 ∪ ∆j`
∪ ∆j`+1. Then PJu = KJ ∗ PJu, so by Young’s inequality we have constants cm,

independent of u,N and ∆J such that

∫

TD

|PJu(θ)|2p−4 dDθ

(2π)D
≤ c1

∥∥KJ

∥∥2p−4

L(2p−4)/(p−1)‖PJu‖2p−4
L2

≤ c2|∆J |p−3Np−2 (2.15)
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for all u ∈ ΩN . Likewise, we have

∫

TD

|PJv(θ)|4
dDθ

(2π)D
≤ c3

∥∥KJ

∥∥4

L4/3‖PJu‖4

≤ c4|∆J |‖PJv‖4
L2 . (2.16)

Hence by the Cauchy–Schwarz inequality, we have

( d2

dt2

)
t=0

H∆(J)(u+ tv)

≥
(D

4
|∆(J)|2/D − λ(p− 1)c5|∆(J)|(p−2)/2N (p−2)/2

)∫

TD

|PJv(θ)|2
dDθ

(2π)D
, (2.17)

where 2/D ≥ (p − 2)/2; so given N > 0, we can choose λ > 0 sufficiently small so that the

coefficient in parentheses from (2.17) exceeds D/8, for all J .

3. Application to the cubic periodic Schrödinger equation in 1D

Proposition 2.2 involves an exponent p = 2 + (4/D) which equals the optimal exponent for

the focussing NLS by [9, page 6]. Such inequalities on dyadic blocks do not of themselves lead

directly to LSI(α) on ΩN . So in sections 3, 4 and 5, we extend Proposition 2.2 to infinite

dimensions. The Hamiltonian

H(u) =
1

2

∫

T

∣∣∣∂u
∂θ

∣∣∣
2 dθ

2π
− λ

4

∫

T

∣∣u(θ)
∣∣4 dθ

2π
(3.1)

may be expressed in terms of the canonical variables (f, g) where f, g ∈ L2([0, 2π];R), and the

field is u = f + ig. Then the canonical equation of motion is the cubic Schrödinger equation

i
∂u

∂t
= −∂

2u

∂θ2
− λ|u|2u, (3.2)

periodic in θ. Lebowitz, Rose and Speer [15] considered the Gibbs measures for such par-

tial differential equations, exploiting the formal invariance of H(u) and the number operator

N(u) =
∫
T
|u(θ)|2dθ/(2π) with respect to time under the flow generated by the NLS. Bour-

gain [6, 9] introduced a Gibbs measure ν for spatially periodic solutions, and established the

existence of a flow for almost all initial data in the support of ν.

Let (γj , γ
′
j)

∞
j=−∞ be mutually independent standard Gaussian random variables, so that∑∞

j=−∞;j 6=0 e
ijθ(γj + iγ′j)/j defines Brownian loop. Let λ,N > 0 and introduce the ball ΩN

as in (1.2). Often it will be more convenient to use the real Fourier coefficients aj , bj of u as

canonical coordinates, where aj + ibj =
∫
u(θ)e−ijθdθ/(2π). There exists Z(N,λ) > 0 such

that

ν(du) = Z(N,λ)−1IΩN
(u) exp

(λ
4

∫

T

∣∣u(θ)
∣∣4 dθ

2π

) ∏

θ∈[0,2π]

du(θ), (3.3)
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defines a probability measure, where as in [15, 6] we define

∏

θ∈[0,2π]

du(θ) =

∞∏

j=−∞;j 6=0

exp
(
− j

2

2
(a2

j + b2j )
)j2dajdbj

2π
, (3.4)

namely the measure induced on L2 by Brownian loop. The indicator IΩN
(u) restricts the field

to the bounded subset ΩN of L2, and ensures convergence.

We approximate ΩN by finite-dimensional phase spaces. Let Pn : L2 → span{eijθ : j =

−n, . . . , n} be the usual Dirichlet projection. Then the Hamiltonian

Hn(u) =
1

2

∫

T

∣∣∣∂Pnu

∂θ

∣∣∣
2 dθ

2π
− λ

4

∫

T

∣∣Pnu(θ)
∣∣4 dθ

2π
(3.5)

generates the differential equation

i
∂Pnu

∂t
= −∂

2Pnu

∂θ2
− λPn

(
|Pnu|2Pnu

)
, (3.6)

which is associated with a finite-dimensional phase space PnL
2, and a corresponding Gibbs

measure. In terms of the Fourier coefficients, (3.6) is an autonomous ordinary differential

equation. Let X̂ = (ΩN , ‖ · ‖L2 , ν) be the metric measure space associated with (3.3), and

with Xn = ΩN ∩PnL
2, let X̂n = (Xn, ‖ · ‖L2 , νn) be the metric measure space associated with

(3.5).

Proposition 3.1 For 0 ≤ λN < 3/(14π2), the Gibbs measure for NLS on ΩN satisfies the

logarithmic Sobolev inequality

∫

ΩN

F (x)2 log
(
F (x)2/

∫
F 2dν

)
ν(dx) ≤ 2

α

∫ ∥∥∇F
∥∥2

H−1dν, (3.7)

for α = 1 − (14π2Nλ)/3.

Proof. For f = <u and g = =u, the Hamiltonian is

H(f + ig) =
1

2

∫

T

[(∂f
∂θ

)2

+
(∂g
∂θ

)2]dθ
2π

− λ

4

∫

T

[
f2 + g2

]2 dθ
2π
, (3.8)

and we aim to show that this is uniformly convex on ΩN with respect to the homogeneous

Sobolev norm (
∫
|f ′|2 dθ

2π
)1/2 of Ḣ

1
. We consider U(f+ ig) =

∫
T

(f2+g2)2 dθ
2π
, which contributes

a concave term to the Hamiltonian H . We observe that for 0 < t < 1 and f, g, p, q ∈ H1,

t
[
f2 + g2

]2
+ (1 − t)

[
p2 + q2

]2 −
[
(tf + (1 − t)p)2 + (tg + (1 − t)q)2

]2

= t(1 − t)(f − p)2
(
(1 + t+ t2)f2 + (2 + 2t− 2t2)fp+ (2 − t+ (1 − t)2)p2

)

+ t(1 − t)(g− q)2
(
(1 + t+ t2)g2 + (2 + 2t− 2t2)gq + (2 − t+ (1 − t)2)q2

)

+ 2t(1 − t)(f − p)(g− q)(f + p)((1 + t)g+ (1 − t)q)

+ 2t(1 − t)(g − q)2p2 + 2t(1 − t)(f − p)2(tg + (1 − t)q)2. (3.9)
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We have the basic estimates
∫

(f2 + g2) ≤ N , and likewise
∫

(p2 + q2) ≤ N , while the Cauchy–

Schwarz inequality gives the bounds

‖f − p‖2
L∞ ≤ π2

3

∫ (∂f
∂θ

− ∂p

∂θ

)2 dθ

2π
(3.10)

and likewise for ‖g−q‖L∞ . We integrate (3.9) over T, and use the L∞ on each of the differences

f −p and g− q and the squared L2 norm to bound each of the sums; hence we have the bound

0 ≤ tU(f + ig) + (1 − t)U(p+ iq) − U(tf + (1 − t)p+ i(tg + (1 − t)q))

≤ 28Nt(1 − t)

∫ [(∂f
∂θ

− ∂p

∂θ

)2

+
(∂g
∂θ

− ∂q

∂θ

)2]dθ
2π
. (3.11)

We deduce that H is uniformly convex with respect to the norm on Ḣ
1
, with

tH(f + ig) + (1 − t)H(p+ iq) −H(tf + (1 − t)p+ itg + i(1 − t)q)

≥ t(1 − t)
(1

2
− 28λNπ2

12

)∫ [(∂f
∂θ

− ∂p

∂θ

)2

+
(∂g
∂θ

− ∂q

∂θ

)2]dθ
2π
. (3.12)

The standard inner product on L2(TD ; dDθ/(2π)D;R) is unitarily equivalent to the standard

inner product on `2(ZD) under the Fourier transform, and under this pairing, the dual space

of Hs(TD ;C) is H−s(TD ;C). In particular, the dual space of Ḣ
1
(T;R) is Ḣ

−1
(T;R). So

by Bobkov and Ledoux’s Proposition 3.1 of [2], the inequality (3.7) holds for all continuously

differentiable F : Xn → R, which depend on only finitely many Fourier coefficients. Then by

Lemma 2.1, we can deduce (3.7) for all F .

Theorem 3.2 Let p = 4, D = 1 and 0 < Nλ < 3/(14π2). Then X̂∞ of the focussing cubic

NLS has finite diameter and satisfies LSI(1− (14π2Nλ/3)), and X̂n → X̂∞ in DL2 as n→ ∞.

Proof. This follows from Lemma 2.1 and Proposition 3.1. Note that ‖∇F‖H−1 ≤ ‖∇F‖L2 ,

so (3.7) implies (1.3).

Remark. One can extend the L2 convergence result in Theorem 3.2 to all λ,N > 0, although

the proof becomes more complicated.

4. Periodic Zakharov system in 1D

Let u(θ, t) and n(θ, t) be periodic in the space θ variable; here u is the complex electrostatic

envelope field and n is the real ion density fluctuation field. Then the periodic Zakharov model

is the pair of coupled differential equations

i
∂u

∂t
= −∂

2u

∂θ2
+ nu;

∂2n

∂t2
− ∂2n

∂θ2
=

∂2

∂θ2
(
|u|2

)
. (4.1)

The initial condition is

u(θ, 0) = ϕ(θ), n(θ, 0) = a(θ),
∂n

∂t
(θ, 0) = b(θ); (4.2)
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and Bourgain [7] established global existence of solutions of (4.1) for initial data ϕ ∈ H1,

a ∈ L2 and b ∈ H−1. We now introduce V as the solution of

∂V

∂θ
=
∂n

∂t
,

∂V

∂t
= −∂n

∂θ
− ∂

∂θ

(
|u|2

)
, (4.3)

such that
∫
T
V (θ, t) dθ

2π
= 0; existence may be verified from Fourier series. Then we introduce

the Hamiltonian

H(u, n) =
1

4

∫

T

(
2
∣∣∂u
∂θ

∣∣2 − |u|4 +
(
n+ |u|2

)2
+ V 2

) dθ

2π
, (4.4)

which suggests that we introduce further variables ñ = (n+ |u|2)/
√

2 and W = (d/dθ)−1V/
√

2.

The canonical variables which lead to the system (4.3) are (<u,=u) and (n,
√

2W ). Then H

and
∫
T
|u|2 dθ

2π
are invariant under the flow, so we can restrict attention to ΩB as in (1.2) with

D = 1. Then the Gibbs measure on ΩB × L2(T;R) × L2(T;R) is defined by

ν(dudñdW ) = Z−1
[
IΩB

(u) exp
(1

4

∫

T

|u|4 dθ
2π

− 1

2

∫

T

|∂u
∂θ

∣∣2 dθ
2π

) ∏

θ∈T

d2u(θ)
]

×
[
exp

(
−1

2

∫

T

ñ2
) ∏

θ∈T

dñ(θ)
][

exp
(
−1

2

∫

T

(∂W
∂θ

)2 dθ

2π

) ∏

θ∈T

dW (θ)
]
. (4.5)

We say that f : L2 → R is a cylindrical function, if there exists a compactly supported

smooth function F : Rn → R and ξ1, . . . , ξn ∈ L2 such that f(φ) = F (〈φ, ξ1〉, . . . 〈φ, ξn〉).
Proposition 4.1 There exists B > 0 such that the Gibbs measure for the periodic Zakharov

system satisfies a logarithmic Sobolev inequality for all cylindrical functions.

Proof. The Gibbs measure is the direct product of three measures which satisfy logarithmic

Sobolev inequalities, as follows. Let (γk)
∞
k=−∞ be mutually independent standard Gaussian

random variables, where γk has distribution µk on R. Then a typical field ñ has the form

ñ(θ, 0) =

∞∑

k=1

(
γk cos kθ+ γ−k sin kθ

)
, (4.6)

which converges in H−(1/2)−ε for all ε > 0 almost surely. By results of Gross and Federbush,

each µk satisfies LSI(1) on R, and likewise ⊗n
k=−nµk on Eucliean space. The canonical Gaus-

sian measure on L2 has the characteristic property that for any finite-dimensional subspaceXn,

the orthogonal projection Pn : L2 → Xn induces the standard Gaussian probability measure

on Xn with respect to the induced Euclidean structure; see [18, page 327]. In particular, this

applies to ⊗∞
k=−∞µk and the subspace Xn = span{ξj : j = 1, . . . , n} on which the cylindircal

function lives. By [21, page 574; 3] this shows that the middle factor in (4.5) satisfies LSI(1),

and there is no need to truncate the domain of the ñ variable.
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Likewise, a typical W field initially has the formW (θ, 0) =
∑∞

k=1(γk cos kθ+γ−k sinkθ)/k

and hence the final factor in (4.5) arises from the direct product of Gaussian measures that

satisfy LSI(1) on R; hence we have LSI(1) for this product.

Finally, the first factor in (4.5) is the Gibbs measure ν for NLS with p = 4, so by

Proposition 3.1, ν satisfies LSI(1/2) for B < 3/28π2. Combining these results, as in [21, page

574; 4], we obtain a logarithmic Sobolev inequality where the gradient is

∥∥∇F
∥∥2

=
∥∥∇uF

∥∥2

H−1 +
∥∥∇ñF

∥∥2

L2 +
∥∥∇WF

∥∥2

H−1 . (4.7)

5. Periodic KdV equation in 1D

Consider u : T × (0,∞) → R such that u( · , t) ∈ L2(T) for each t > 0, and introduce the

Hamiltonian

H(u) =
1

2

∫

T

(∂u
∂θ

(θ, t)
)2 dθ

2π
− λ

6

∫

T

u(θ, t)3
dθ

2π
,

where λ > 0 is the reciprocal temperature. Then the canonical equation of motion ∂u
∂t = ∂

∂θ
δH
δu

gives the KdV equation
∂u

∂t
= −∂

3u

∂θ3
− λu

∂u

∂θ
. (5.1)

For a suitably differentiable solution u of (5.1), both
∫
u(θ, t)2dθ/2π and H(u) are invariant

with respect to time. On the ball

BN =
{
φ ∈ L2(T;R) :

∫

T

φ(θ)2
dθ

2π
≤ N

}
(5.2)

with indicator IBN
one can define a Gibbs measure

ν(dφ) = ZN (λ)−1IBN
(φ)e−H(φ)

∏

θ∈[0,2π)

dφ(θ) (5.3)

where ZN (φ) is a normalizing constant, chosen to make ν(dφ) a probability measure.

The metric probability space (ΩN , ‖ · ‖L2 , ν) arises as the limit of finite-dimensional

metric probability spaces, which are defined in terms of random Fourier series. Let Xn =

{(aj , bj)
n
j=1 ∈ R2n : φ(θ) =

∑n
j=1 aj cos jθ + bj sin jθ ∈ BN} where we introduce the trigono-

metric polynomial φ(θ) =
∑n

j=1(aj cos jθ + bj sin jθ) and then the probability measure

νn(dadb) = Z−1
n IBN

(φ) exp
(λ

6

∫

T

φ(θ)3
dθ

2π

)
exp

(
−

n∑

j=1

j2(a2
j + b2j )/2

) n∏

j=1

dajdbj (5.4)

for a suitable Zn = Zn(N,λ) > 0. We then let X̂(n) = (Xn, ‖ · ‖`2 , νn), which is finite

dimensional.
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Lemma 5.1 Suppose that 0 ≤ λ
√
N < 3/π2. Then the Gibbs measure satisfies the logarithmic

Sobolev inequality

∫

ΩN

f(x)2 log
(
f(x)2/

∫
f2dν

)
ν(dx) ≤ 2

α

∫

ΩN

∥∥∇f
∥∥2

H−1ν(dx) (5.5)

where α = 1 − 3−1π2λ
√
N .

Proof. A related result was given in [3] with a larger norm on the right-hand side. Here

we give a proof that is based upon an observation of Schmuckensläger concerning uniformly

convex Hamiltonians [2, Proposition 3.1]. For 0 < t < 1, we have

tH(u) + (1 − t)H(v)−H(tu+ (1 − t)v) (5.6)

=
t(1 − t)

2

∫

T

(∂u
∂θ

− ∂v

∂θ

)2 dθ

2π
− λt(1 − t)

6

∫

T

(u− v)2
(
(1 + t)u+ (2 − t)v

) dθ
2π

where the final term is estimated by the Cauchy–Schwarz inequality by

∣∣∣
∫

T

(u− v)2
(
(1 + t)u+ (2 − t)v

)dθ
2π

∣∣∣ ≤
(∫

T

(u− v)4
dθ

2π

)1/2(∫

T

(
(1 + t)u+ (2 − t)v

)2 dθ

2π

)1/2

≤ π2
√
N

∫

T

(∂u
∂θ

− ∂v

∂θ

)2 dθ

2π
. (5.7)

Hence for α = 1 − 3−1λπ2
√
N > 0, we have a uniformly convex H such that

tH(u) + (1 − t)H(v)−H(tu+ (1 − t)v) ≥ t(1 − t)α

2

∫

T

(∂u
∂θ

− ∂v

∂θ

)2 dθ

2π
; (5.8)

so H is uniformly convex with respect to H1(T;R).

Theorem 5.2 Let 0 ≤ λ
√
N < 3/π2. Then (ΩN , ‖·‖L2 , ν) of KdV has finite diameter, satisfies

LSI(1 − π2λ
√
N/3), and is the limit in DL2 of X̂n as n→ ∞.

Proof. Theorem 5.2 follows from lemmas 2.1 and 5.1.

6. Logarithmic Sobolev inequality for critical power p = 6 in 1D

Now we consider the critical exponent p = 6, and the Hamiltonian

H(u) =
1

2

∫

T

(∂u
∂θ

)2 dθ

2π
− λ

6

∫

T

u(θ)6
dθ

2π
. (6.1)

Lebowitz, Rose and Speer show that for 0 < λ ≤ 1, there exists N0 > 0 such that the Gibbs

measure for H can be normalized on ΩN for N < N0, but not for N > N0. To obtain a

logarithmic Sobolev inequality, we specialize further and for 1/4 < s < 1/2 and κ > 0 let

ΩN,κ =
{
u ∈ Hs(T) :

∫

T

|u(θ)|2 dθ
2π

≤ N ;
∞∑

n=−∞

|n|2s|û(n)|2 ≤ κ
}
. (6.2)
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Proposition 6.1 Let N < N0 and 0 < λ ≤ 1, and 1/4 < s < 1/2, then let νN be the Gibbs

measure on ΩN associated with potential H .

(i) The sequence of convex and compact subsets (ΩN,κ)∞κ=1 of ΩN is increasing and there

exist ε, C(ε) > 0 such that νN (ΩN,κ) ≥ 1 − C(ε)e−εκ2

.

(ii) Let ν̂N be νN renormalized on ΩN,κ as a probability. Then for all κ > 0 there exists

α = α(κ,N) > 0 such that (ΩN,κ, ‖ · ‖L2 , ν̂N ) satisfies LSI(α).

Proof. (i) Compactness and convexity follow from simple facts about the Fourier multiplier

sequence (|n|−2s) on L2. Let µ be the Gaussian measure on L2 that is induced by Brownian

loop. Then by the Cauchy–Schwarz inequality, we have

∫

ΩN

exp(ε‖u‖2
Hs)νN (du) ≤

(∫
ΩN

exp(2ε‖u‖2
Hs)µ(du)

∫
ΩN

exp(3−1λ
∫
T
u6)µ(du)

)1/2

∫
ΩN

µ(du)
∫
ΩN

exp(6−1λ
∫
T
u6)µ(du)

, (6.3)

where for suitably small ε > 0 the right-hand side integrals are all finite and together define

C(ε). Then we conclude by applying Chebyshev’s inequality.

(ii) For integers k = 1, 2, . . ., let ∆k = {2k−1, 2k−1 + 1, . . . , 2k − 1} be the kth dyadic

interval of integers; for k < 0, let ∆k = {n : −n ∈ ∆−k}; also let ∆0 = {0}. Next let Kk be de

la Vallée Poussin’s kernel associated with ∆k so K̂k(n) = 1 for all n ∈ ∆k , and K̂k(n) = 0 for

n outside ∆k−1 ∪ ∆k ∪ ∆k+1. Also, let (εk)∞k=1 be the usual Rademacher functions. By the

Littlewood–Paley theorem, there exist constants C1, C2 > 0 etc. independent of u such that

‖u‖4
L4 ≤ C1E

∥∥
∞∑

k=−∞

εkKk ∗ u
∥∥4

L4 ≤ C2

( ∞∑

k=−∞

∥∥Kk ∗ u
∥∥2

L4

)2

, (6.4)

and we can use Young’s inequality to show
∥∥Kk ∗ u

∥∥
L4 ≤ C3‖Kk‖L4/3‖Kk ∗ u‖L2 ≤ C4|∆k |(1/4)−s‖u‖Hs . (6.5)

Hence Hs embeds continuously in L4.

We choose M > 2N2
0 (404s+1(2πκ)43−2)1/(4s−1) and introduce

U(u) =
M

2

∫

T

|u(θ)|2 dθ
2π
, (6.6)

so that U is bounded on Ω with 0 ≤ U(u) ≤ MN ≤ MN0. Then we consider the modified

Hamiltonian H(u) + U(u), and check that it is uniformly convex, with

( d2

dt2

)
t=0

(
H(u+ tv) + U(u+ tv)

)

=

∫

T

(∂v
∂θ

)2 dθ

2π
− 5λ

∫

T

|u(θ)|4|v(θ)|2 dθ
2π

+M

∫

T

|v(θ)|2 dθ
2π

≥
∫

T

(∂v
∂θ

)2 dθ

2π
− 40λ‖v‖2

L∞

∫

T

∣∣∣
−n∑

k=−∞

Kk ∗ u+

∞∑

k=n

Kk ∗ u
∣∣∣
4 dθ

2π

+M

∫

T

|v(θ)|2 dθ
2π

− 40λ
∥∥∥

n−1∑

k=−n+1

Kk ∗ u
∥∥∥

4

L∞

∫

T

|v(θ)|2 dθ
2π
. (6.7)
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By using the Littlewood–Paley decomposition as above, we obtain the lower bound on (6.7)

(
1 − 80λκ2|∆n|1−4sπ2/3

)∫

T

(∂v
∂θ

)2 dθ

2π
+

(
M − 40λ|∆n|2N2 − 80λκ2|∆n|1−4s)

∫

T

|v(θ)|2 dθ
2π
.

(6.8)

Now we choose n to be the smallest integer such that 2n = |∆n| > (160π2κ2/3)1/(4s−1), so

that the first coefficient in (6.8) exceeds 1/2, while M was chosen above so that

( d2

dt2

)
t=0

(
H(u+ tv) + U(u+ tv)

)
≥ 1

2

∫

T

(∂v
∂θ

)2 dθ

2π
+

1

2

∫

T

v(θ)2
dθ

2π
, (6.9)

and we have uniform convexity. Hence there exists Z(N) > 0 such that the measure

Z(N)−1e−H(u)−U(u)IΩN,κ
(u)

∏

θ∈[0,2π]

du(θ) (6.10)

can be normalized and satisfies a logarithmic Sobolev inequality with constant α0 > 0. The

original Gibbs measure appears when we perturb the potential by adding the bounded function

U , to remove −U ; hence by the Holley–Stroock perturbation theorem [11; 21, page 574] νN

also satisfies a logarithmic Sobolev inequality with constant

α ≥ α0 exp(−NM) ≥ α0 exp
(
−2(404s+1(2πκ)43−2)1/(4s−1)NN2

0

)
. (6.11)

7. The finite-dimensional Gross–Piatevskii equation in 2D

Let u ∈ L2(T2;C), and ak + ibk = û(k) be the decomposition of the Fourier coefficients into

real and imaginary parts. With the canonical variables (ak, bk)k∈Z2 , the Hamiltonian

H =
1

2

∫

T2

‖∇u‖2 dθ1
2π

dθ2
2π

− λ

4

∫

T2

(
V ∗ |u|2

)
|u|2 dθ1

2π

dθ2
2π

(7.1)

gives rise to the G-P equation (1.5). The L2(T2;C) norm is invariant under the flow for

smooth periodic solutions.

Following Bourgain [8], we introduce a Gibbs measure via random Fourier series as in (1.4)

with D = 2. Now b does not belong to L2(T2;C) almost surely, whereas b defines a distribution

in H−s(T2;C) almost surely for all s > 0. We cannot therefore construct the canonical

ensemble in precisely the same way as in sections 3,4 and 5; instead, we need to introduce

finite-dimensional approximations for which the L2 norms depend upon the dimension.

We define the number operator by

Nn =
∑

k=(k1,k2)∈Z2;|k1|,|k2 |≤n

2

|k|2 + ρ
, (7.2)

so that Nn ≈ 2 logn as n → ∞. Then for N > 0 let ΩN be as in (1.2) with D = 2.

Let Pn : L2(T2;C) → span{eik·θ; k ∈ Z2; k = (k1, k2); |k1|, |k2| ≤ n} be the usual Dirichlet
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projection onto the span of the characters indexed by lattice points in the square of side 2n

centred at the origin. For B > 0, we let Xn = PnL
2 ∩ ΩNn+B with the metric given by the

L2 norm, so that the diameter of Xn increases with dimension. Accordingly, we replace |u|2
in (7.1) by |un|2 − κ(Nn +B) where un = Pnu. This is an instance of Wick renormalization.

In the following computations, we have integrals over T2 with respect to dθ1dθ2/(2π)2,

and we suppress the variables of integration. Hence we take the Hamiltonian to be

Hn(u) =
1

2

∫

T2

∥∥∇u
∥∥2 − λ

4

∫

T2

(
V ∗ |u|2

)
|u|2 +

λ

2
κV̂ (0)(Nn + B)

∫

T2

|u|2. (7.3)

We can regard Xn as a compact and convex subset of Cm for some m ≤ 4(n+ 1)2, and define

the Gibbs measure via

νn(dadb) = Z−1
n IΩNn+B

(u)e−Hn(u)
∏

k=(k1 ,k2)∈Z2;|k1|,|k2 |≤n

dakdbk , (7.4)

for u =
∑

k=(k1 ,k2)∈Z2;|k1|,|k2 |≤n(ak + ibk)eik·θ.

Brydges and Slade [10] consider focussing periodic NLS in 2D and show that some standard

routes to renormalization are blocked. However, allow the possibility that there exist invariant

measures in the case in which Nn → ∞ and λn → 0+ as n → ∞; see page 489. This is the

situation we consider in Proposition 7.1.

Proposition 7.1 (i) Suppose that V ∈ L2(T2;R). Then for all B > 0, there exists λn > 0

such that the Gibbs measure νn on Xn corresponding to Hn satisfies LSI(1/2), so

∫

Xn

f(x)2 log
(
f(x)2/

∫
f2dνn

)
νn(dx) ≤ 4

∫

Xn

∥∥∇f
∥∥2

H−1
(T2)

νn(dx). (7.5)

(ii) Suppose further that V ∈ L∞(T2;R) and that κV̂ (0) > 3‖V ‖L∞ . Then for all

B, λ > 0 and all n, (Xn, ‖ · ‖L2 , νn) satisfies LSI(1/2).

Proof. We prove that the Hamiltonian is uniformly convex, by introducing

( d2

dt2

)
t=0

H(u+ tw) =

∫

T2

‖∇w‖2 + λκV̂ (0)(Nn + B)

∫

T2

|w|2

− λ

2

∫

T2

(
|w|2 ∗ V

)
|u|2 − λ

2

∫

T2

(
|u|2 ∗ V

)
|w|2

− λ

2

∫

T2

(
(uw̄ + ūw) ∗ V

)
(uw̄ + ūw). (7.6)

(i) By Young’s inequality, we have

∫

T2

(
|w|2 ∗ V

)
|u|2 ≤

∥∥u
∥∥2

L2

∥∥V
∥∥

L2

∥∥w
∥∥2

L4 , (7.7)
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and likewise ∫

T2

(
|w|2 ∗ V

)
|u|2 ≤

∥∥u
∥∥2

L2

∥∥V
∥∥

L2

∥∥w
∥∥2

L4 ; (7.8)

while each term in the final term in (7.6) is bounded by Young’s inequality and Hölder’s

inequality, so that

∫

T2

(
|uw| ∗ |V |

)
|uw| ≤

∥∥uw
∥∥

L4/3

∥∥|V | ∗ |uw|
∥∥

L4

≤
∥∥u

∥∥2

L2

∥∥V
∥∥

L2

∥∥w
∥∥2

L4 . (7.9)

By the Sobolev embedding theorem, we have ‖w −
∫
w‖L4 ≤ C4‖∇w‖L2 , for some C4 > 0.

Hence

( d2

dt2

)
t=0

H(u+ tw) ≥
(
1 − 3λC4(Nn + B)‖V ‖L2

) ∫

T2

‖∇w‖2

+ λ(Nn + B)
(
κV̂ (0) − 3C4‖V ‖L2

) ∫

T2

|w|2. (7.12)

By choosing λ > 0 such that 1/2 > 3λC4(Nn + B)‖V ‖L2 , we obtain uniform convexity with

constant α = 1/2. Then LSI(1/2) follows from [2, Proposition 3.1].

(ii) When V is bounded, we can use Young’s inequality to bound

∫ (
|u|2 ∗ V

)
|w|2 ≤

∥∥V
∥∥

L∞

∥∥u
∥∥2

L2

∥∥w
∥∥2

L2 , (7.11)

and likewise for the similar terms in (7.6). Hence we obtain the inequality

( d2

dt2

)
t=0

H(u+ tw)

≥
∫

T2

‖∇w‖2 + λ
(
κV̂ (0)(Nn + B) − 3‖V ‖L∞

∫

T2

|u|2
) ∫

T2

|w|2 . (7.12)

Again LSI(α) follows from [2, Proposition 3.1].

8. The Gross–Piatevskii equation on Sobolev space with negative index

To conclude the paper, we obtain a logarithmic Sobolev inequality for the G-P equation (1.5)

on a suitable subset of H−s(T2;C). The convolution

|u|2 ∗ V (θ) =
∑

m∈Z2

̂(|u|2)(m)V̂ (m)eim·θ (8.1)

in the potential is to be interpreted probabilistically, since u(θ) =
∑

k∈Z2\{0}(γk + iγ′k)eik·θ/|k|
does not define an L2(T) function almost surely.

For 0 < s < 1/4, 0 < ε < 1/8, K1 > 0 and K2 > 5, let

Ω̃ =
{

(aj)j∈Z2 ∈ C∞ :
∑

j∈Z2\{0}

|aj |2/|j|2+2s ≤ K1; |aj | ≤ K2|j|(1/4)−ε, ∀j ∈ Z2
}
, (8.2)
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so that Ω̃ is a convex set. Let (γj)j∈Z2 be mutually independent standard complex Gaussian

random variables, so that γj has distribution µj , and let µ̃ be the product measure ⊗j∈Z2µj

on C∞. Let J : `2(Z2;C) → H1(T2;C) be the linear map J(aj) =
∑

j∈Z2\{0} aje
ij·θ/|j|, and

let

Ω =
{
u ∈ H−s : ‖u‖H−s ≤ K1; |û(j)| ≤ K2|j|−(3/4)−ε, ∀j ∈ Z2

}
. (8.3)

Then J induces a measure µ on H−s, which is mainly supported on Ω.

Theorem 8.1 Suppose that V ∈ H1+2s(T2;R) for some s > 0.

(i) Then µ(Ω) → 1 as K1,K2 → ∞;

(ii) for all K1,K2 sufficiently large and 0 < ε < 1/8 there exist λ > 0 and α > 0 such that

the Gibbs measure ν, normalized to be a probability on Ω, satisfies LSI(α), so

∫

Ω

f(u)2 log
(
f(u)2/

∫
f2dν

)
ν(du) ≤ 2

α

∫

Ω

∥∥∇f
∥∥2

H−s ν(du) (8.4)

for all f ∈ L2(Ω; ν;R) that are differentiable with ‖∇f‖H−s ∈ L2(Ω; ν;R).

(iii) The transportation cost for cost function c(f, g) = ‖f − g‖2

H−s and all ω ∈ Prob2(Ω)

that are of finite relative entropy with respect to ν satisfies

W2(ω, ν)
2 ≤ 2

α
Ent(ω | ν). (8.5)

Remark. The hypotheses imply that V ∈ L∞. In summary, the Gibbs measure produces a

metric probability space (Ω, ‖ · ‖H−s , ν) of finite diameter that satisfies LSI .

Proof. (i) We introduce the event

Γ =
{
|γj | ≤ K2|j|(1/4)−ε, ∀j ∈ Z2 \ {0}

}
, (8.6)

which by mutual independence of the γj has measure

µ̃(Γ) =
∏

j∈Z2\{0}

(
1 − 2

∫ ∞

K2|j|1/4−ε

e−s2/2 ds√
2π

)

≥ exp
(
−4

∑

j∈Z2\{0}

∫ ∞

K2|j|1/4−ε

e−s2/2 ds√
2π

)
(8.7)

since K2e
K2

2/2 > 4. Also by Chebyshev’s inequality, we have

µ̃
{ ∑

j∈Z2\{0}

|γ|2
|j|2s+2

≥ K2
1

}
≤ e−K2

1/4
∏

j∈Z2\{0}

(
1 − 1

2|j|2+2s

)−1/2

≤ exp
(
−K

2
1

4
+

∑

j∈Z2\{0}

1

2|j|2s+2

)
; (8.8)
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so by estimating these sums by the Euler–Maclaurin sum formula, we obtain

µ̃(Ω̃) ≥ exp
(
−2(6 + π)e−K2

2/2

K2

√
2π

)
− exp

(−K2
1

4
+

π

2s
+ 5

)
, (8.9)

hence µ̃(Ω̃) → 1 as K1,K2 → ∞.

(ii) By results of Gross and Federbush, each µj satisfies LSI(1) for the standard gradient

and distance over C; hence their direct product µ̃ satisfies LSI(1) on Ω̃, where the norm of

the gradient is computed in the norm of `2. Lemma 2.1 enables us to pass from finite to

infinite dimensions. We prove below that there exist κ > 0 and Z > 0 such that ν̃(da) =

Z−1eU(J(a))µ̃(da) defines a probability measure on Ω̃ such that

∫

Ω̃

exp
(
κ
∥∥∇(U ◦ J)(a)

∥∥2

`2

)
ν̃(da) < ∞. (8.10)

Then ν̃ satisfies LSI(α) for some α > 0 by the condition of Aida and Shigekawa [1]; see also

[21, Remark 21.5]. Letting u = J(a) and v = J(b), we have

〈
∇(U ◦ J)(a), b

〉
`2

= (d/dt)t=0U ◦ J(a+ tb) =

∫

T2

δU

δu
(θ)v(θ)

d2θ

(2π)2
, (8.11)

while the norms satisfy

∥∥∇(U ◦ J)(a)
∥∥

`2
= sup

{∣∣〈∇(U ◦ J)(a), b〉
∣∣ : ‖b‖`2 ≤ 1

}

= sup
{
<

∫

T2

δU

δu
(θ)v(θ)

d2θ

(2π)2
: v = J(b); ‖b‖`2 ≤ 1

}

≤
∥∥∥δU
δu

∥∥∥
H−s

, (8.12)

since J : `2 → Hs defines a contractive linear operator for 0 < s < 1, and Hs is the dual of

H−s under the integral pairing.

Let ν be the measure on Ω that is induced from ν̃ on Ω̃ by J , then normalized to be a

probability. Then we obtain the logarithmic Sobolev inequality for the Gibbs measure

∫

Ω

f(φ)2 log
(
f(φ)2/

∫
f2dν

)
ν(dφ) =

∫

Ω̃

f(J(a))2 log
(
f(J(a))2/

∫
f ◦ Jdν̃

)
eU(J(a))µ̃(da)/Z

≤ 2

α

∫

Ω̃

∥∥∇(f ◦ J)(a)
∥∥2

`2
ν̃(da)

≤ 2

α

∫

Ω

∥∥∇f(φ)
∥∥2

H−sν(dφ), (8.13)

where the final step follows as in (8.12).

So this leaves us with the task of verifying (8.10). The Hamiltonian involves

U(u) =
λ

4

∫

T2

((
|u|2 −

∫
|u|2

)
∗ V

)
|u|2 d2θ

(2π)2
(8.14)
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with gradient

〈
∇U(u), v

〉
=

( d

dt

)
t=0

U(u+ tv) (8.15)

=
λ

4

∫

T2

[((
|u|2 −

∫
|u|2

)
∗ V

)
(uv̄ + vū) +

((
uv̄ + ūv

)
∗ V

)
|u|2

] d2θ

(2π)2
.

The integrand involves the Fourier series

(
|u|2 ∗ V

)
u =

∑

m∈Z2

̂(
|u|2

)
(m)V̂ (m)

∑

j∈Z2

û(j)ei(j+m)·θ, (8.16)

where (1 + |j +m|)(1 + |m|) ≥ (1 + |j|), so for all u ∈ Ω we have

∥∥∥
∑

j∈Z2\{0}

û(j)ei(j+m)·θ
∥∥∥
H−s

≤
( ∑

j∈Z2\{0}

|û(j)|2
|j|2s

)1/2

|m|s ≤ K1|m|s, (8.17)

hence ∥∥∥
(
|u|2 ∗ V

)
u
∥∥∥
H−s

≤ K1

∑

m∈Z2

|m|s|V̂ (m)|
∣∣ ̂(
|u|2

)
(m)

∣∣. (8.18)

To estimate the right-hand side of (8.18), we will later use the following lemma.

Lemma 8.2 (i) The ̂(|u|2)(m) are uniformly exponentially square integrable over Ω with

respect to µ, so there exist C1, κ > 0 such that

∫

Ω

exp
(
κ2

∣∣ ̂(|u|2)(m)
∣∣2

)
µ(du) < C1 (m ∈ Z2 \ {0}). (8.19)

(ii) A similar statement holds for ν on Ω, possibly with different constants.

Proof. (i) We have ̂(|u|2)(−m) =
∑

j(γj + iγ′j)(γj+m − iγ′j+m)/|j||j + m|, so we require to

bound
∑∞

r=1 d
(m)
r where each d

(m)
r is a sum over an annulus

d(m)
r =

∑

j∈Z2\{0,−m};r−1<|j|≤r

γjγj+m

|j||j +m| . (8.20)

Observe that on Ω̃ the random variables γj are symmetric and we can independently replace

each γj by ±γj , without affecting the distribution of µ̃ on Ω̃.

The sequence (d
(m)
r ) is multiplicative in the sense of [12] so that for all strictly increasing

subsequences r1 < r2 < . . . < rn of integers,

∫

Ω̃

d(m)
r1

d(m)
r2

. . . d(m)
rn

µ̃(dγ) = 0. (8.21)

To see this, consider a product of terms, with one taken from the sum (8.20) for each factor

d
(m)
rj and consider the lattice points ` that index the γ` from factors in this product. In
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particular, consider ` such that the distance from the origin is a maximum, and observe that

this is attained at some point of the form j + m, and that γj+m appears only once in the

product, hence integrates to give zero.

Observe also that |d(m)
r | ≤ δr where δr = C0K

2
2r

−(1/2)−ε for some universal constant C0,

so that δr ≤ 3C2
0K

4
2/8ε as follows: The most challenging case is when |m| = r, and we can

compare δr ≤ K2
2r

−(3/4)−ε
∑

j∈Z2\{0,−m};r−1≤|j|<r |j + m|−(3/4)−ε with the sum arising with

the lattice points j replaced by points equally spaced around the circle of centre the origin and

radius r, which produces the integral K2
2r

−(1/2)−2ε
∫ 2π

0
| sin(θ/2)|−(3/4)−εdθ.

Bounded multiplicative systems satisfy similar concentration inequalities to bounded mar-

tingale differences as in [20]. By Jakubowski and Kwapien’s [12] contraction principle, for any

convex function Φ : Rn → [0,∞), the inequality

µ̃(Ω̃)−1

∫

Ω̃

Φ(d
(m)
1 , . . . , d(m)

n ) dµ̃ ≤ EΦ(δ1ε1, . . . , δnεn) (8.22)

holds, where (εj)
∞
j=1 is the usual sequence of mutually independent Rademacher functions. In

particular, choosing κ > 0 so that κ23C2
0K

4
2/8ε < 1, we have

µ̃(Ω̃)−1

∫

Ω̃

exp
(κ2

2

( n∑

r=1

d(m)
r

)2
)
dµ̃ ≤

∫ ∞

−∞

E exp
(
t

n∑

r=1

κδrεr

)
exp(−t2/2)

dt√
2π

=

∫ ∞

−∞

n∏

r=1

cosh(κδrt) exp(−t2/2)
dt√
2π

≤
∫ ∞

−∞

exp
(1

2

n∑

r=1

κ2δ2rt
2 − t2

2

) dt√
2π

=
(
1 − κ2

n∑

r=1

δ2r

)−1/2

. (8.23)

Letting n→ ∞ and applying Fatou’s lemma, we obtain (8.19).

(ii) This follows from (i) by Hölder’s inequality.

Conclusion of the proof of Theorem 8.1. (ii) We need to deduce (8.10) from (8.19). We

introduce C3 > 0 such that 1/C3 ≤ K1(π/s+ 10) such that C3

∑
m∈Z2\{0} |m|−2−2s = 1, and

then use Hölder’s inequality to obtain

∫

Ω

eκU(u)µ(du) ≤
∏

m∈Z2\{0}

[(∫

Ω

exp
[
κ
∣∣ ̂(|u|2)(m)

∣∣2/C3

]
µ(du)

)C3|V̂ (m)|/2

×
(∫

Ω

exp
[
κ
∣∣ ̂(|u|2)(−m)

∣∣2/C3

]
µ(du)

)C3|V̂ (m)|/2]
(8.24)

By Lemma 7.3, all of these integrals converge for sufficiently small κ > 0, so the Gibbs

measure dν = eUdµ can be normalized on Ω to define a probability measure which is absolutely

continuous with respect to µ.
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We can introduce C(s) ≥ (π/s + 10)−1 such that
∑

j∈Z2\{0}C(s)/|j|2+2s = 1, and then

we separate V̂ from |̂u|2 by Cauchy–Schwarz inequality, before applying Hölder’s inequality to

obtain

∫

Ω

exp
[
κ2

0

( ∑

m∈Z2\{0}

|m|s|V̂ (m)|
∣∣ ̂(|u|2)(m)

∣∣
)2]

µ(du)

≤
∏

m∈Z2\{0}

(∫

Ω

exp
[ κ2

0

C(s)

∑

j∈Z2\{0}

|j|2+4s|V̂ (j)|2
∣∣ ̂(|u|2)(m)

∣∣2
]
µ(du)

)C(s)/|m|2+2s

. (8.25)

By taking κ0 > 0 sufficiently small, we can ensure that all the integrals and the product

converge. This confirms that (8.10) holds, and hence gives the logarithmic Sobolev inequality.

(iii) The transportation inequality follows from the logarithmic Sobolev inequality (8.4)

as in [21, Theorem 22.17].

Let Xn = span{eij·θ : j ∈ Z2; |j| ≤ n} be the subspace of L2(T2;C) that is spanned

by the characters that are indexed by the lattice points in the disc with radius n, and let

Pn : L2(T2;C) → Xn be the orthogonal projection. Let νn be the Gibbs measure

νn(du) = Z−1
n IΩ(u) exp

(
U(Pnu)

) ∏

m∈Z2\{0}

e−|m|2(a2
m+b2

m)/2damdbm/2π. (8.26)

Let ωn be the marginal distribution of νn on Xn.

Corollary 8.3 The (Xn ∩ Ω, ‖ · ‖H−s , ωn) converge in DL2 to (Ω, ‖ · ‖H−s , ν) as n→ ∞.

Proof. (i) First we prove that U(Pnu) → U(u) almost surely and in L2 with respect to µ on

Ω as n→ ∞. The difference in the potentials has a Fourier expansion

U(Pnu) − U(u) =

∫
(V ∗ |Pnu|2)|Pnu|2 −

∫
(V ∗ |u|2)|u|2

=
∑

m

V̂ (m)
( ̂(

|Pnu|2
)
(m) − ̂(

|u|2
)
(m)

)( ̂(
|u|2

)
(−m)

)

+
∑

m

V̂ (m)
( ̂(

|Pnu|2
)
(m)

)( ̂(
|Pnu|2

)
(−m) − ̂(

|u|2
)
(−m)

)
; (8.27)

hence

∣∣U(Ppu) − U(Pnu)
∣∣ (8.28)

≤ 2
∑

m∈Z2

|V̂ (m)|
∣∣ ̂(|Ppu|2)(m) − ̂(|Pnu|2)(m)

∣∣
(∣∣ ̂(|Ppu|2)(m) − ̂(|Pnu|2)(m)

∣∣ +
∣∣ ̂(|u|2)(m)

∣∣
)

where
∣∣ ̂(|Ppu|2)(m) − ̂(|Pnu|2)(m)

∣∣ ≤
∣∣∣

∑̀

r=n+1

d(m)
r

∣∣∣. (8.29)
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We observe that ̂(|Pnu|2)(m) has a similar expansion to (8.31), except that only those j with

|j| ≤ n contribute; so Lemma 8.2; hence ̂(|Pnu|2)(m) satisfies similar estimates to ̂(|u|2)(m),

with the same constants.

Let Φ : C`−n → [0,∞) be the convex function

Φ(z1, . . . , z`−n) = max
p

{∣∣∣
p∑

t=n

zt−n

∣∣∣
4

: n ≤ p ≤ `
}

(8.30)

associated with the fourth power of maximal partial sums. Then by the contraction principle

from [12], the martingale maximal theorem in L4 and Khinchine’s inequality we have

(∫

Ω

Φ(d(m)
n , . . . , d

(m)
` )µ(du)

)1/4

≤
(
EεΦ(δnεn, . . . , δ`ε`)

)1/4

≤ 4
√

2

3

(∑̀

p=n

δ2p

)1/2

≤ 4
√

2C0K
2
2

3
√
εnε

. (8.31)

The sequence (V̂ (m))m∈Z2 is summable, so we deduce from (8.28) via the triangle inequality

in L2(µ) and Hölder’s inequality that

(∫

Ω

max
p

{
|U(Ppu) − U(Pnu)|2 : n ≤ p ≤ `

}
µ(du)

)1/2

(8.32)

≤ 4
∑

m∈Z2

∣∣V̂ (m)|
(∫

Ω

Φ(d(m)
n , . . . , d

(m)
` )µ(du)

)1/4

×
(∫

Ω

∣∣ ̂(|u|2)(m)
∣∣4µ(du) +

∫

Ω

Φ(d(m)
n , . . . , d

(m)
` )µ(du)

)1/4

;

and hence by (8.31)

µ
{
max

p

{
|U(Ppu) − U(Pnu)|2 : n ≤ p ≤ `

}
≥ δ

}
→ 0 (δ > 0) (8.33)

as ` ≥ n→ ∞, so U(Pnu) → U(u) almost surely and in L2(µ) as n→ ∞.

(ii) We have

Ent(νn | ν) =

∫

Ω

(
U(Pnu) − U(u) + logZ − logZn

)
νn(du), (8.34)

where the normalizing constants satisfy lim infn→∞ Zn ≥ Z, and the preceding arguments

show that
∫
Ω
|U(Pnu) − U(u)|2µ(du) → 0 as n → ∞ and

∫
Ω
e2U(Pnu)µ(du) ≤ C. Hence

Ent(νn | ν) → 0 as n→ ∞. By the transportation inequality (8.5), this implies W2(νn, ν) → 0
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as n → ∞. Essentially, νn is the tensor product of ωn with a Gaussian measure on H−s with

variance that converges to zero as n→ ∞; indeed, the tail of the product (8.26) satisfies

∫ ∑

m∈Z2;|m|≥n

a2
m + b2m
|m|2s

∏

m∈Z2;|m|≥n

e−|m|2(a2
m+b2

m)/2 |m|2damdbm
2π

=
∑

m∈Z2;|m|≥n

2

|m|2+2s

≤ 4π

s(n− 1)2s
.

Hence DL2 ((Xn, ‖ · ‖H−s , ωn), (Ωn, ‖ · ‖H−s , νn)) → 0 as n→ ∞ as in [19, Example 3.8].

Let ∆ = ∂2/∂θ21 + ∂2/∂θ22 , and write

Φ(u)(θ, t) =

∫ t

0

ei(t−τ)∆
((

|u|2 ∗ V
)
u
)
(θ, τ) dτ. (8.35)

In Proposition 8.4, we verify that the solution of the G-P equation

−i∂u
∂t

= ∆u+
(
|u|2 ∗ V

)
u,

u(θ, 0) = φ(θ) (8.36)

with φ ∈ Ω ⊂ Hs(T2;C) is given by u = u0 + w, where u0(θ, t) = eit∆φ(θ) is the solution of

the free periodic Schrödinger equation with initial datum φ in the support of Brownian loop

on H−s and w ∈ Hs is a fixed point of w 7→ Φ(u0 + w).

We say that f : H−s → R is a cylindrical function, if there exists a compactly supported

smooth function F : Rn → R and ξ1, . . . , ξn ∈ Hs such that f(φ) = F (〈φ, ξ1〉, . . . 〈φ, ξn〉). The

following may be compared with Bourgain’s results from [9, p. 132].

Proposition 8.4 Let 0 < s < 1/68, and let V ∈ Hδ+2s+3/2(T2;R) for some δ > 0 have

V̂ (0) = 0. Then for all η > 0, there exists Ωη ⊆ Ω and Lη , tη > 0 such that µ(Ωη) > 1− η and

(i) for all φ ∈ Ωη and u0(θ, τ) = eiτ∆φ(θ), the function Φ(u0) ∈ C([0, T ]; Hs(T2;C)) for

T > 0 almost surely;

(ii) w 7→ Φ(u0 + w) is Lη-Lipschitz on bounded subsets of C([0, T ]; Hs(T2;C));

(iii) the Cauchy problem (8.36) has a solution u(θ, t) for t ∈ [0, tη ] for all φ ∈ Ωη ;

(iv) φ(θ) 7→ u(θ, t) for φ ∈ Ωη induces a measure on H−s which satisfies the T1 trans-

portation inequality, and is invariant in the sense that all cylindrical functions satisfy
∫

Ωη

f(u( · , t))ν(dφ) =

∫

Ωη

f(φ)ν(dφ) (0 ≤ t < tη). (8.37)

Proof. (i) We write ‖a‖∗ = 1 + ‖a‖. Note that (Ω, µ) is invariant under the operation

φ(θ) 7→ eiτ∆φ(θ). The integral (8.35) may be expressed in Fourier coefficients as

Φ(u0)(θ, t) (8.38)

=
∑

m∈Z2\{0}

[ ∑

j,k:j+k=m

φ̂(j)φ̂(−k) eit(‖`‖2−‖`+m‖2) − 1

i(‖`‖2 − ‖`+m‖2 + ‖j‖2 − ‖k‖2)

]
V̂ (m)

∑

`

ei(`+m)·θφ̂(`),
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and we split this sum into four cases, according to the values of j and k in the inner sum, and

then according to ` and m in the outer sums. First we note that in the inner sum in square

brackets ‖j‖2 − ‖k‖2 = (2j −m) ·m, so we split the index set as {(j, k) ∈ Z2 × Z2 : j + k =

m} = G(`,m) tB(`,m} where

G(`,m) =
{

(j, k) : j+k = m;
∣∣‖`‖2−‖m+ `‖2+(2j−m).m

∣∣ ≥ 2−2
∣∣‖`‖2−‖`+m‖2

∣∣
}
, (8.39)

and the complementary set

B(`,m) =
{

(j, k) : j+k = m;
∣∣‖`‖2−‖m+ `‖2+(2j−m).m

∣∣ < 2−2
∣∣‖`‖2−‖`+m‖2

∣∣
}
, (8.40)

so that B(`,m) is the set of integral lattice points in a strip in R2 which has axis perpendicular

to m and width
∣∣‖`‖2 − ‖`+m‖2

∣∣. Now the sum

∑

(j,k)∈G(`,m)

φ̂(j)φ̂(−k)(‖`‖2 − ‖`+m‖2)

‖`‖2 − ‖`+m‖2 + ‖j‖2 − ‖k‖2
(8.41)

is exponentially square integrable by Lemma 8.2. Then we take the complementary contribu-

tion to the inner sum of (8.38) to be

∣∣∣
∑

(j,k)∈B(`,m)

φ̂(j)φ̂(−k)
1 +

∣∣‖`‖2 − ‖`+m‖2 + ‖j‖2 − ‖k‖2
∣∣
∣∣∣

≤
∑

(j,k)∈B(`,m)

K2
2

‖j‖ε+3/4
∗ ‖k‖ε+3/4

∗

∣∣‖`‖2 − ‖`+m‖2 + ‖j‖2 − ‖k‖2
∣∣

≤ K2
2∣∣‖`‖2 − ‖`+m‖2

∣∣1/16

∑

(j,k)∈B(`,m)

{ 1

‖j‖ε+1/2
∗ ‖m− j‖ε+1/2

}

×
( 1

‖j‖1/8
∗ ‖m− j‖1/8

∗

∣∣‖`‖2 − ‖`+m‖2 + 2j ·m− ‖m‖2
∣∣15/16

)
. (8.42)

Then we split j = j⊥ + jm, where j⊥ is perpendicular to m, and jm parallel to m; the sum

in braces is dominated by the corresponding sum over j⊥ and is bounded; while the sum in

parentheses is dominated by the corresponding sum over jm and is also bounded; so the whole

expression (8.42) is

≤ C
K2

2∣∣‖`‖2 − ‖`+m‖2
∣∣1/16

. (8.43)

We deduce that for all η > 0, there exist a subset Ωη ⊂ Ω with µ(Ωη) > 1 − η and a

constant Cη such that

∥∥Φ(u0)
∥∥
Hs ≤ Cη

∑

m

|V̂ (m)|
∥∥∥
∑

`

ei(m+`)·θφ̂(`)
∣∣‖`‖2 − ‖`+m‖2

∣∣1/16

∥∥∥
Hs

≤ Cη

∑

m

‖V̂ (m)|‖m‖2s
∗

[∑

`

( ‖`+m‖2s‖`‖2s
∗

‖m‖2s
∗

∣∣‖`‖2 − ‖`+m‖2
∣∣1/8

) |φ̂(`)|2
‖`‖2s

∗

]1/2

. (8.44)
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We split this sum into a sum over the index set

A =
{

(`,m) ∈ Z2 × Z2 :
∣∣‖`‖2 − ‖`+m‖2

∣∣1/8 ≥ ‖`‖4s
∗

}

and a sum over the complementary set Ac. On A, the factor in parentheses from (8.44) is

bounded, so the upper bound
∑

m |V̂ (m)|‖m‖2s‖φ‖H−s is immediate. On Ac, we use the

bound |φ̂(j)| ≤ K2‖j‖−ε−3/4
∗ , and for each m, we compare the sum over (`,m) ∈ Ac with an

integral in polar coordinates (r, ψ) over the region

{
(r, ψ) ∈ (1,∞) × (−π, π) : 2‖m‖r| sinψ| ≤ ‖m‖2 + r32s

}
; (8.45)

so we have a bound on
∑

`∈Ac of

∑

`:|‖`‖2−‖`+m‖2|<‖`‖32s

K2
2

‖m‖2s
∗ |‖`‖2 − ‖m+ `‖2|1/8‖`‖2ε+3/2

∗

≤ 2K2
2

∫ ∞

1

r2s−3/2−2ε

∫ (r32s+‖m‖2)/2r‖m‖

0

dψ rdr

≤ 2CK2

(
‖m‖ +

1

‖m‖
)
. (8.46)

The series
∑

m |V̂ (m)|‖m‖2s+1/2 converges, so Φ(u0) belongs to C([0, T ]; Hs).

(ii) In this proof, we use concentration of measure to prove Lipschitz continuity of a

function; this reverses the usual flow of the theory as in [5, 21]. For v and w in the unit ball of

C([0, T ]; Hs(T2;C)), We have

Φ(v + u0)(θ, t) − Φ(w + u0)(θ, t) (8.47)

=

∫ t

0

ei(t−τ)∆
((

|u0|2 ∗ V
)
(v − w)

)
(θ, τ) dτ

+

∫ t

0

ei(t−τ)∆
((

(|v|2 + v̄u0 + vū0) ∗ V
)
(v −w)

)
(θ, τ) dτ

+

∫ t

0

ei(t−τ)∆
((

((v− w)v̄ + w(v̄ − w̄) + u0(v̄ − w̄) + ū0(v − w)) ∗ V
)
w

)
(θ, τ) dτ.

In the final integral, we can use the simple bound

∣∣ ̂u0(v̄ − w̄)(m)
∣∣ ≤

∥∥u0

∥∥
H−s

∥∥v − w
∥∥
Hs ≤ K1

∥∥v − w
∥∥
Hs , (8.48)

and similar bounds on the other terms; the terms in the middle integral are treated similarly.

The first integral, we use the probabilistic estimate of Lemma 8.2: for all η > 0 there exist

Lη > 0 and a subset Ωη ⊆ Ω such that µ(Ωη) > 1 − η and

∑

m

∣∣ ̂(|u0|2)(m)
∣∣|V̂ (m)|‖m‖2s ≤ Lη (u0(θ, 0) ∈ Ωη),
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so there exists C > 0 such that

sup
0<t<T

‖Φ(u0 + v)(θ, t)−Φ(u0 +w)(θ, t)‖Hs ≤ CT (1+Lη) sup
0<τ<T

‖v(θ, τ)−w(θ, τ)‖Hs . (8.49)

(iii) By (i), we have T > 0 such that K0 = sup0<t<T ‖Φ(u0)(θ, t)‖Hs is finite for all

φ ∈ Ωη . Now by (8.49) we can shrink the time interval to [0, tη ] where 0 < tη < T , and ensure

that

Bη =
{
w ∈ C([0, tη ]; Hs(T2;C)); sup

0<t<tη

‖w(θ, t)‖Hs ≤ 2K0

}
(8.50)

contains Φ(u0) and w 7→ Φ(u0 + w) is (1/2)-Lipschitz on Bη. Indeed, we have

sup
0<t<tη

‖Φ(u0 + w)(θ, t)‖Hs ≤ sup
0<t<tη

‖Φ(u0 + w)(θ, t) − Φ(u0)(θ, t)‖Hs + sup
0<t<tη

‖Φ(u0)(θ, t)‖Hs

≤ 2−1 sup
0<t<tη

‖w(θ, t)‖Hs +K0

≤ 2K0. (8.51)

By Banach’s fixed point theorem, there exists w ∈ Bη such that w = Φ(u0+w); thus we obtain

a solution u(θ, t) = u0(θ, t) + w(θ, t) of G-P (8.36) for 0 < t < tη .

(iv) We do not assert that φ 7→ Φ(u0 + v) is Lipschitz; hence we need an indirect proof

of (iv) instead of deducing it from Theorem 8.1. The fixed point w satisfies ‖w( · , t)‖Hs ≤
2‖Φ(u0)( · , t)‖Hs , hence

‖u( · , t)‖H−s ≤ ‖φ‖H−s + ‖Φ(u0)( · , t)‖Hs (8.52)

so there exists κ > 0 such that

∫

Ωη

exp
(
κ‖u( · , t)‖2

H−s

)
ν(dφ) (8.53)

is finite. Hence the measure induced on H−s from µ on Ωη by φ 7→ u( · , t) satisfies a T1

transportation inequality by Bobkov and Götze’s criterion, as in [21, Theorem 22.10].

Let un be the solution of the GP equation with finite-dimensional Hamiltonian Hn as

in (7.3) and initial data φn(θ) =
∑

k:0<|k|≤n e
ik·θ(γk + iγ̃k)/‖k‖, and we regard un( · , t) as a

random variable for φ ∈ Ωη . We have

‖u( · , t) − un( · , t)‖H−s

≤ 2‖φ− φn‖H−s + 2
∥∥∥
∫ t

0

ei(t−τ)∆
((

|wn + eiτ∆φn|2 ∗ V
)(
eiτ∆φn − eiτ∆φ

))
dτ

∥∥∥
H−s

+ 2
∥∥∥
∫ t

0

ei(t−τ)∆
((

|wn + eiτ∆φ|2 − |wn + eiτ∆φn|2
)
∗ V

)(
w + eiτ∆φ

))
dτ

∥∥∥
H−s

. (8.54)
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As in (iii), one can show that un converges to u in the sense that

∫

Ωη

‖un( · , t) − u( · , t)‖2

H−sµ(dφ) → 0 (8.55)

as n→ ∞. By Liouville’s theorem applied to Hn, the corresponding Gibbs measure on phase

space is invariant under the flow generated by the canonical equations of motion. Hence by

Corollary 8.3, we have weak convergence of the Gibbs measures, so

∫

Ωη

f(u( · , t))ν(dφ) = lim
n→∞

∫

Ωη

f(un( · , t))νn(dφ)

= lim
n→∞

∫

Ωη

f(φ)νn(dφ)

=

∫

Ωη

f(φ)ν(dφ). (8.56)
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