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Abstract 

The magnetospheric cusps are important sites of the coupling of a magnetosphere with 

the solar wind. The combination of both ground- and space-based observations at Earth 

have enabled considerable progress to be made in understanding the terrestrial cusp and 

its role in the coupling of the magnetosphere to the solar wind via the polar 

magnetosphere. Voyager 2 fully explored Neptune’s cusp in 1989 but highly inclined orbits 

of the Cassini spacecraft at Saturn present the most recent opportunity to repeatedly 

studying the polar magnetosphere of a rapidly rotating planet. In this paper we discuss 

observations made by Cassini during two passes through Saturn’s southern polar 

magnetosphere. Our main findings are that i) Cassini directly encounters the southern 

polar cusp with evidence for the entry of magnetosheath plasma into the cusp via 

magnetopause reconnection, ii) magnetopause reconnection and entry of plasma into the 

cusp can occur over a range of solar wind conditions, and iii) double cusp morphologies 

are consistent with the position of the cusp oscillating in phase with Saturn’s global 

magnetospheric periodicities. 

1 Introduction 

The magnetospheric cusps are an important site of plasma entry into the terrestrial 

magnetosphere and play a key role in the transfer of energy and momentum from the solar 

wind into the magnetosphere. Ground-based and in-situ observations at Earth have made 

much progress in the study of the cusp and the coupling of the solar wind-magnetosphere-
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ionosphere through the polar magnetosphere, see for example Smith and Lockwood 

(1996) and Cargill et al. (2005) and references therein for recent reviews. In-situ 

observations of the polar magnetospheres of the outer planets are restricted to some 

observations at Jupiter and Neptune. Voyager 2 fully explored Neptune’s cusp in 1989 and 

the particle and field observations have been discussed thoroughly by Szabo et al. (1991) 

and Lepping et al. (1992). During the encounter of Ulysses with Jupiter in 1992, auroral 

hiss was observed during the inbound leg at lower latitudes (Stone et al., 1992) and data 

showed that Ulysses passed through open field lines on its inbound leg (Phillips et al., 

1993), and polar cap field lines on its outbound leg (Bame et al., 1992; Cowley et al., 

1993). High-latitude observations in Saturn’s magnetosphere, made by the Cassini 

spacecraft in 2006-2009 present the most recent opportunity to study the polar 

magnetosphere of another rapidly rotating giant planet, and to examine the role of solar 

wind forcing in these magnetospheres. Most recently, Jasinski et al. (2015) presented a 

case of magnetosheath-like ion and electron distributions in Saturn’s northern cusp, 

indicating reconnection with the solar wind at the magnetopause. Furthermore, the ion 

time-energy spectrograms showed evidence of stepped ion dispersions that are 

suggestive of bursty reconnection at the magnetopause. 

Reconnection at the magnetopause is a fundamental process which opens the 

magnetosphere and allows solar wind plasma to enter the system; the plasma in the 

terrestrial magnetosphere is dominated by plasma of solar wind origin. The first 

observations of magnetosheath plasma in Earth’s polar magnetosphere showed that 

fluxes of electrons and protons with magnetosheath-like distributions were observed just 

poleward of the last closed field line, near 75-79° magnetic invariant latitude, identified by 

a sharp decrease in the flux of >10 keV electrons as one moved onto open magnetic field 

lines (Heikkila and Winningham, 1971; Frank, 1971; Russell et al., 1971). Subsequent 

work, especially utilizing the multi-spacecraft capabilities of Cluster has shown the 

terrestrial cusp to be a broad complex region with a variety of interesting boundary layers, 

some of which form by the complex non-steady nature of dayside and high-latitude (lobe) 

reconnection (e.g. Cargill et al., 2005). The effects of magnetopause reconnection and its 

time variability can identified via latitude-energy and pitch angle-energy dispersions (e.g., 

Reiff et al., 1977; Burch et al., 1982; Lockwood and Smith, 1994). The orientation of the 

IMF plays a significant role in determining the motion of newly opened flux tubes at the 

dayside magnetopause (e.g., Cowley and Owen, 1989; Cooling et al., 2001) which 
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contributes to the complex spatial morphology of the cusp, which can be separated into 

multiple entry regions (e.g., Wing et al., 2001; Zong et al., 2008; Pitout et al., 2009; Abe et 

al., 2011). 

Identifying the signatures of magnetopause reconnection at Saturn has been the focus of 

a number of studies using in situ Cassini data. Lai et al. (2012) searched for evidence of 

flux transfer events by surveying 71 magnetopause crossings over a four-hour local time 

interval centered on 1200 Saturn local time and up to ~30º latitude, but didn’t find evidence 

of local magnetopause reconnection. McAndrews et al. (2008) used two case studies to 

show evidence of reconnection on the dawn flank and also of lobe reconnection. Desroche 

et al. (2013) have shown that due to the combined effects of diamagnetic drift and flow 

shear, magnetopause reconnection is generally favored on the dusk flank and at higher 

latitudes away from the subsolar point. Evidence for reconnection at higher latitudes (>24º) 

was also presented by Badman et al. (2013) who also showed that bursty reconnection 

was present during compressions of Saturn’s magnetosphere. In related work, Fukazawa 

et al. (2007) used a global magnetohydrodynamic simulation of Saturn’s magnetosphere 

to show that the largest energy input into the polar cusp region was during northward 

(Bz>0) IMF and with a magnetopause reconnection site located northward of the sub solar 

point. These modeling studies therefore support the idea that magnetopause reconnection 

generally occurs away from the subsolar point and is more concentrated in the dusk sector. 

At Earth, the orientation of the IMF is known to strongly affect the location of cusp auroral 

emissions (e.g., Wing et al., 2004 and references therein). Under southward IMF (Bz<0) 

the cusp auroral emission is located on or close to the main oval, and shifts poleward 

under northward IMF (Bz>0) when lobe reconnection takes place. The sign of the east-

west component of the IMF (By) shifts the cusp emissions in magnetic local time. Bunce et 

al. (2005) studied the role of the IMF at Saturn and developed models of the flows and 

currents in the ionosphere produced by low latitude dayside and high latitude lobe 

reconnection. This modeling has shown that the sign of IMF Bz affects the position of the 

cusp aurora, as it does at the Earth. Bunce et al. (2005) have also shown that the direct 

entry of magnetosheath electrons into Saturn’s cusp would not be expected to produce 

measurable auroral emissions. However, pulsed reconnection at Saturn’s magnetopause 

may produce field-aligned current systems that are of sufficient intensity to produce spot-

like auroral emissions near the cusp. 
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Pallier and Prangé (2001) first identified high latitude auroral emissions at Jupiter that did 

not corotate and remained close to noon in magnetic local time and so were interpreted as 

the optical signature of the jovian cusp. Gérard et al. (2004) found similar features in 

Hubble Space Telescope (HST) images of Saturn’s southern far ultraviolet aurorae where 

they noted the appearance of a bright (10-20 kR) spot located at approximately 15° co-

latitude which was slightly poleward of the main auroral oval, somewhat distributed by ~1 

hour of local-time either side of noon. Gérard et al. (2005) studied HST images of Saturn’s 

southern auroral emissions in concert with upstream solar wind observations when Cassini 

was ~0.2 AU upstream of Saturn. Bright auroral spots were found at the onset of a period 

of minor compression in the solar wind. Gérard et al. (2005) interpreted auroral spots in 

the noon sector as the result of field-aligned currents produced by pulsed reconnection at 

the magnetopause (Bunce et al., 2005). Radioti et al. (2011) and Badman et al. (2013) 

have provided evidence for reconnection occurring at multiple locations on Saturn’s 

magnetopause. Bunce et al. (2008) presented evidence for a crossing of auroral field lines 

connecting Cassini to Saturn’s main auroral emission. During one period discussed in this 

study Cassini moved equatorward from the polar cap, through a population of 

magnetosheath-like plasma inside the magnetosphere and then into a region of hot 

electrons with evidence of field-aligned currents. Bunce et al. (2008) interpreted this region 

of magnetosheath-like plasma as particle entry in the cusp.  

In this report we present two detailed case studies which discuss observations from the 

polar cap, mid-altitude cusp, and dayside boundary layers on two separate passes of 

Cassini at high invariant latitudes. Ion energy-pitch angle dispersions are presented that 

are interpreted as evidence for magnetopause reconnection driving particle entry in the 

cusp from different reconnection sites on the magnetopause. The entry in the cusp is often 

unsteady providing evidence that magnetopause reconnection is unsteady as well as 

occurring at different locations on the magnetopause during a given pass at high latitudes. 

It is argued that the position of the southern polar cusp periodically oscillates in a manner 

that is decoupled from motions driven by the upstream solar wind and is, therefore, 

probably related to global periodicities in Saturn’s magnetosphere. Evidence is presented 

for boundary layers separating the cusp from the closed magnetosphere and for a hot 

electron population which is associated with Saturn’s main auroral emission that is on 

closed magnetic field lines. The paper is organized into the following sections: in section 

two we describe some of the physics of rapidly rotating magnetospheres and discuss how 
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this may modify the signature of the cusp compared to understanding based on the 

terrestrial magnetosphere. Instrumentation and data reduction is described in section three. 

The trajectory of Cassini during the two case studies is presented in section four. The case 

studies are presented in sections five and six. We conclude with a discussion in section 

seven. 

2 Physics of the cusp at giant planets 

The rapidly rotating magnetospheres that surround Jupiter and Saturn differ from the 

terrestrial magnetosphere in a number of important ways. These differences may affect 

interpretations of cusp behavior and properties that are based on understanding gained 

from the study of the terrestrial magnetosphere. 

Most of the plasma in the saturnian magnetosphere originates from within the 

magnetospheric cavity due to mass-loading in the vicinity of the icy satellites, such as 

Enceladus and Dione, and in the E-ring torus (see Arridge et al. (2012) for a recent review). 

Ion populations in the magnetosphere vary greatly with radial distance, but are typically a 

mix of cold (≲100 eV), warm (100 – 1000 eV) and hot (energetic) (>1 keV) populations. 

The electrons can similarly be divided into cold (≲20 eV), warm (~100 eV) and hot (>500 

eV) populations. The energetic populations are typically power law tails on the warm 

populations, such that the warm and hot populations can be described using Kappa 

distributions. Centrifugal forces are important and cold/warm heavy ions are centrifugally 

confined to the equator and form an equatorial plasma sheet in a similar manner to the 

equatorial confinement of iogenic plasma in the jovian magnetosphere (e.g., Hill and 

Michel, 1976). Lighter ions and electrons, and more energetic populations have much 

larger centrifugal scale heights than the cold/warm ions and are free to fill magnetospheric 

flux tubes to high latitudes (e.g., Sergis et al., 2011). However, because the heavy ions 

dominate the ion composition, polarization electric fields exist which pull the lighter species 

towards the equator in order to maintain charge quasi-neutrality (e.g., Maurice et al., 1997). 

As a consequence, the plasma at high latitudes should be dominated by hot electrons and 

energetic ions (light and heavy species) as these can overcome the field-aligned 

electrostatic potential, which is of the order of tens of volts at Saturn (Maurice et al., 1997). 

The structure of the upstream solar wind at Saturn has been the focus of a number of 

studies (e.g., Jackman et al., 2004; Jackman et al., 2008; Jackman and Arridge, 2011). 
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Typically the upstream medium is organized into a pattern of corotating interaction regions 

(CIRs) which arrive quasi-periodically at Saturn once or twice per solar rotation period. 

These CIRs are separated by rarefaction regions where the solar wind has a relatively low 

dynamic pressure and the IMF has a very low field strength ≲0.1 nT. Inside a CIR the 

dynamic pressure and field strength are much higher and the clock angle of the field 

undergoes rapid changes in orientation (Jackman et al., 2004). Due to the large 

heliocentric distance of Saturn, the IMF is significantly wound-up with an average spiral 

angle of 86.75º (Jackman et al., 2008; Jackman and Arridge, 2011). Thus the average IMF 

has a dominant BY component and newly opened field lines will tend to contract eastwards 

and westwards (in different hemispheres) due to the tension force on the newly open flux 

tubes (e.g., Cooling et al., 2001). 

The rate of production of open flux, the reconnection voltage, has been estimated at 

Saturn using a “half-wave rectifier” function that produces mean reconnection voltages of 

41.8 kV (Jackman and Arridge, 2011), but peak voltages of 100 – 400 kV in CIRs and 10 

kV or less in rarefaction regions (Jackman et al., 2004). However, these estimates assume 

that the efficiency of dayside reconnection is the same as that at the Earth and the validity 

of this assumption has been the subject of some debate (e.g., Scurry and Russell, 1991; 

Masters et al., 2012; Masters, 2015). Whilst the dynamic pressure and field strength 

increases in CIRs – thus providing more favorable conditions for reconnection – the rapid 

oscillations in clock angle will modulate the reconnection rate and location on the 

magnetopause where reconnection can occur. 

The scale of the jovian and saturnian magnetospheres also introduces further important 

differences. Saturn’s equatorial radius is almost 10 times larger than that of Earth, and the 

subsolar magnetopause is around twice as far from the planet (in units of planetary radii) 

at Saturn compared to Earth, therefore the linear size of the magnetosphere is around a 

factor of 20 larger than the terrestrial system. The Alfvén wave travel time from the 

magnetopause to the ionosphere is of the order of an hour. A 1 keV proton on a newly 

reconnected field-line with a reconnection site near the subsolar point at Earth will take 

around 5 minutes to traverse the ~20 RE distance (1 RE = 6378 km) from the X-line to a 

spacecraft in the mid-altitude cusp. For a distance of 25 RS (1 RS = 60268 km) in the 

saturnian magnetosphere a 1 keV proton will take around an hour to travel from the 

reconnection site to the cusp. 
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The morphology of particle signatures in the cusp are dependent on the spacecraft speed, 

vS, the convection speed of the plasma, vC, and the effective speed of the open/closed 

field line boundary at the spacecraft, vB, which is clearly related to the reconnection rate. In 

the Earth’s magnetosphere at low altitudes vS is much larger than vB or vC and so the cusp 

is essentially at rest compared to the spacecraft speed. In the high-altitude cusp, however, 

the spacecraft speed is essentially irrelevant since vS is much smaller than vB or vC. In the 

mid-altitude cusp vs can be similar to vb and vC thus providing a mixture of time-dependent 

signatures (Lockwood and Smith, 1994). 

At Saturn, the speed of the open/closed boundary due to dayside reconnection can be 

estimated using published estimates of the dayside reconnection voltage (assuming no tail 

reconnection) and the magnetic flux through the polar cap, using the flux function from 

Cowley and Bunce (2003) with zonal internal field coefficients 𝑔!! (to third order) from Cao 

et al. (2011). Since dayside reconnection increases the magnetic flux, Φ, through the polar 

cap thus increasing the size of the polar cap, θ. By taking derivatives of the flux function 

we can write the rate of change of θ as a function of the reconnection rate, dΦ 𝜃 dt, and 

hence calculate the co-latitudinal speed of the boundary. 
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Using a dayside reconnection voltage of 400 kV, the open/closed boundary will move 

equatorwards at ~0.006 º/hour, corresponding to a speed of 100 m s-1 at a distance of 10 

RS. This small boundary speed compared to Earth is due to the much larger amount of 

magnetic flux through Saturn’s polar cap compared to Earth. 

The open/closed boundary is also expected to move due to oscillations in the 

magnetosphere. Despite the near axisymmetry of the saturnian internal magnetic field, 

magnetospheric periodicities have been noted since the Pioneer and Voyager flybys (see 

Carbary and Mitchell (2013) for a recent review). Recent studies using Cassini data have 

argued for the presence of rotating sheets of field-aligned currents (e.g., Southwood and 

Kivelson, 2007; Provan et al., 2009a, Andrews et al., 2010) which modulates the field 

configuration at high invariant latitudes, causing the cusp to spatially oscillate at a period 

close to that of the planet’s rotation. Nichols et al. (2008) have used UV auroral images of 

Saturn’s southern main auroral oval to show that the main oval oscillates at a period close 

to that of other magnetospheric periodicities (e.g., Provan et al., 2009b) with an amplitude 
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of around 1º. Using the results of Nichols et al. (2008) we estimate a speed of ~120 km/s 

for the speed of the open/closed boundary at a distance of 10 RS (assuming it moves 

rigidly with the oscillation of the auroral oval). Hence, we expect the boundary motion to be 

mainly controlled by this oscillatory motion at high invariant latitudes. 

In the events presented in this study the spacecraft is geometrically in the mid-altitude 

cusp (see the trajectories in Figure 1). The spacecraft speed relative to the planet is 

typically ~6 km s-1. To estimate an upper limit for the solar wind-driven convection speed 

of the plasma we estimate the solar wind convection electric field, and assume that this 

maps into the magnetosphere with 100% efficiency to provide an upper limit to the 

convection speed. Using vSW=400 km s-1 and IMF BZ=0.5 nT we obtain ESW=0.2 mV m-1 

such that vC, given by ESW/B, is equal to 10 km s-1 for a magnetospheric field strength of 

20 nT. However, Saturn’s magnetosphere is also rapidly rotating and the corotational 

convection electric field also plays a role. This is not important at Earth when calculating vc. 

The ionosphere in the polar cap typically sub-corotates at a rate equal to one third of rigid 

corotation (Stallard et al., 2004) resulting in an azimuthal convection speed of 27 km s-1 at 

13 RS and 45º latitude. The spacecraft speed is therefore smaller than either solar wind-

driven or sub-corotational flow. Hence, in the rest frame of the open/closed boundary, the 

satellite speed is comparable to, or smaller than that of the plasma convection speed and 

hence in the geometrical mid-altitude cusp at Saturn the observed particle signatures 

should have more in common with the high-altitude cusp signatures at Earth. 

In comparing terrestrial observations of the cusp to the observations in this study at Saturn 

we must consider that a) plasma composition and energy spectra at high latitudes will not 

necessarily reflect that at low latitudes; b) dayside reconnection is more likely in CIRs but 

may well be bursty; c) the particle signatures have more in common with the high-altitude 

regime at Earth combined with low-altitude cusp effects due to the long transit times for a 

particle from the magnetopause to the spacecraft; d) the cusp might oscillate in position 

due to magnetospheric periodicities; e) the IMF spiral angle is large at Saturn providing a 

significant IMF BY component which will affect the motion of newly opened field lines and 

possibly also the location of the reconnection site. 

3 Instrumentation and data reduction 
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This study uses data from the Cassini magnetometer (Dougherty et al., 2004), Cassini 

Plasma Spectrometer (CAPS) (Young et al., 2004), Magnetospheric Imaging Instrument 

(MIMI) (Krimigis et al., 2004), and Radio and Plasma Wave Science (RPWS) (Gurnett et 

al., 2004). 

Data from the magnetometer is taken from the fluxgate magnetometer at a cadence of 1s 

and is presented in spherical polar coordinates (Kronographic Radial-Theta-Phi – KRTP), 

based on the kronographic position of the spacecraft, where er is along a vector from the 

planet to the spacecraft, eθ points in the direction of increasing co-latitude, and eφ points 

azimuthally around Saturn in a prograde direction. 

Plasma data come from the CAPS suite of instruments, specifically the Electron 

Spectrometer (ELS) and Ion Mass Spectrometer (IMS). ELS is a hemispherical top-hat 

electrostatic analyzer measuring electrons between 0.6 and 28750 eV/e with an energy 

resolution of 16.7%. Each of the eight anodes has an angular resolution of 20º×5.2º 

providing a 160º×5.2º instantaneous field-of-view, which is extended by rotating the 

instrument, which sweeps out ~200º of azimuth in ~4 minutes providing ~2𝜋 sr total field-

of-view. ELS captures data at a cadence of 2s which is sometimes down-

sampled/averaged internally in the CAPS data processing unit before transmission to the 

ground. Pitch angle distributions are accumulated over a 4-minute azimuthal sweep of the 

instrument. Electron moments are calculated by integrating these pitch angle distributions 

to produce density and temperatures parallel and perpendicular to the field (Arridge et al., 

in preparation). Previous techniques (Lewis et al., 2008; Arridge et al., 2009) used 

numerical-integration of one-dimensional electron energy distributions with the assumption 

of isotropy in the spacecraft frame. Such moments are susceptible to anisotropies in the 

electron distribution and can produce unrealistic time-variations in density and temperature 

as the instrument samples different regions of velocity space. This new technique 

combines samples from azimuthal sweeps to generate 2D distributions in pitch-angle and 

energy thus removing such effects. 

IMS is a hemispherical top-hat electrostatic analyzer measuring positive ions between 1 

and 50 280 eV/q with an energy resolution of 16.7%. Each of the eight anodes has an 

angular resolution of 20º×8.3º providing a 160º×5.3º instantaneous field-of-view, which as 

for ELS, is also extended to almost ~2𝜋 sr total field-of-view with azimuthal scanning. The 

highest time resolution data available from IMS is 4s. IMS also has a time-of-flight section 
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to obtain energy-resolved mass per charge spectra with a mass resolution of 12.5%. 

Counts were scaled with energy-dependent efficiencies (H.T. Smith, private 

communication) for H+ and W+ (taken to be O+) and with an average of H2
+ and He++ since 

they cannot be separated in IMS. Uncertainties in compositional ratios are based on 

counting statistics. 

The MIMI Charge Energy Mass Spectrometer (CHEMS) instrument is used to provide 

energetic ion composition with an energy range of 3 – 220 keV/e, a mass per charge 

resolution of ~8% and a mass resolution of ~15%. The Low Energy Magnetospheric 

Measurements (LEMMS) sensor provides energetic ion and electron fluxes from 0.03 – 

160 MeV for ions and 0.015 – 5 MeV for electrons. Plasma wave data are provided by the 

RPWS instrument which includes three nearly orthogonal electric field antennae, in order 

to detect AC electric fields between 1 Hz and 16 MHz. Calibrated high frequency 

(kilometric) emissions were produced using the method of Lamy et al. (2008). 

4 Trajectory and data overview 

Figure 1 shows the trajectory (figures 1a and 1c) of Cassini projected onto the noon-

midnight meridional plane and its mapped ionospheric footprint (figures 1b and 1d) for 

Cassini revolutions (revs) 37 (figures 1a and 1b, 08 – 24 January 2007) and 38 (figures 1c 

and 1d, 24 January – 9 February 2007). 

During rev 37, on 13 January 2007, Cassini crossed the tail plasma sheet and passed into 

the southern magnetotail lobe moving towards the dayside via the dawn flank. Cassini 

remained in the southern magnetic hemisphere until late on 17 January 2007. During the 

16 January 2007 principal case study interval (indicated by the bold interval on the 

trajectory) Cassini was at high magnetic latitudes, magnetically-mapping to near the 

statistical UV auroral oval, and located between 1000 and 1200 SLT in the magnetic field 

region where we might expect to see the cusp. During rev 38, Cassini followed a trajectory 

through the magnetosphere that is very similar to rev 37, although at a somewhat larger 

radial distance in the cusp region. The field lines are more stretched corresponding to the 

lower upstream dynamic pressure during this event (see sections 5 and 6 for more details 

of the upstream conditions). 

Figure 2 presents an overview of the data from rev 37 and 38. In both cases Cassini starts 

in a region where the plasma electron data is at the instrument noise level, the field 
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strength is high and smoothly varying, and the energetic ion and electron fluxes are at the 

instrument noise level. We identify this region as the polar cap (indicated by the symbol 

PC). Following this interval Cassini enters a region with high field strength (although not as 

high as the polar cap and there are notable occasional depressions in the field strength) 

and large fluxes of low energy plasma electrons, consistent with magnetosheath plasma 

which is interpreted as magnetosheath particle in the cusp/boundary layers. These layers 

are alternately mixed with higher energy plasma consistent with closed field lines, before 

entering a region that we identify as the magnetosphere proper with higher fluxes of 

electrons and energetic particles on closed field lines. 

In the rev 38 case (figure 1d-1e) we can see that a significant compression of the 

magnetosphere occurred around the middle of 02 February 2007 where Cassini enters the 

magnetosheath and also briefly the solar wind, thus providing an opportunity to compare 

and contrast the particle entry into the cusp and the particles in the adjacent 

magnetosheath. Even though the spacecraft is at a slightly larger radial distance during 

this orbit, entry into the magnetosheath and solar wind at such distances reflects an 

unusually high solar wind dynamic pressure. More details on the solar wind conditions are 

in sections 5.1 and 6.1. Towards the end of the interval Cassini has moved into the 

northern hemisphere in the afternoon local time sector and once again sees lower energy 

plasma, consistent with the cusp, before returning to the polar cap. We tentatively identify 

this lower energy plasma region as a mantle. In the rest of this paper we focus on the 

southern hemisphere observations at the beginning of these intervals. 

5 Case study: 16 January 2007 (Rev 37) 

5.1 Upstream conditions 

Figure 3 presents the upstream conditions during the event as obtained from the MSWiM 

solar wind propagation model (Zieger and Hansen, 2008) which propagates solar wind 

observations from 1 AU to Saturn using a 1.5-D MHD model. These data are provided at a 

one-hour time resolution. Zieger and Hansen (2008) have comprehensively investigated 

the accuracy of these propagations and have shown, using the arrival times of solar wind 

shocks, that the temporal uncertainty is ±15 hours when Earth and Saturn are near 

apparent opposition (as they are during the events covered in this study). Hence, Figure 3 

shows the solar wind propagations along with lagged time series to account for this 
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uncertainty. A large solar wind disturbance arrived at Saturn on 06 January 2007 and the 

solar wind returned to a quiescent state on 14 January 2007 before another smaller 

enhancement occurred on 16 January 2007. 

Figure 3 also shows the power of left-hand circularly polarized extraordinary-mode (X) 

emissions known as Saturn Kilometric Radiation (SKR), as measured by the RPWS 

instrument on Cassini, and integrated between 3 – 1000 kHz. The left-handed emissions 

originate from the southern hemisphere. Desch (1982) and Desch and Rucker (1983) have 

shown that SKR power is mainly controlled by the dynamic pressure of the solar wind. We 

have therefore used the SKR power to attempt to correctly lag the solar wind propagations. 

An increase in SKR power is found at 0600 UT on 16 January 2007 and an increase in 

solar wind dynamic pressure is found in the solar wind time series 14 hours before. Hence, 

we lag the solar wind propagations by +14 hours to align the increase in dynamic pressure 

with the increase in SKR power. 

During the interval of the 16 January 2007 event the predicted dynamic pressure is 

0.042±0.005 nPa and the IMF field strength 0.31±0.03 nT, which is mainly contained in the 

tangential component of the IMF (in radial-tangential-normal (RTN) coordinates). During 

this period the tangential direction in KSM coordinates is (0,-0.92,-0.38) hence a negative 

tangential component is oriented approximately duskward. The normal component in the 

propagations is essentially uncorrelated with observations, and the radial component 

cannot be propagated due to the 1.5-D nature of the MHD code. Using the model of 

Kanani et al. (2010), the average dynamic pressure during the event corresponds to a 

magnetopause subsolar distance of 19±3 RS which is a typical value (e.g., Achilleos et al., 

2008). The quiet interval on 14 January 2007 corresponds to a subsolar magnetopause 

distance of 28±5 RS. Hence, the arrival of the compression at 0600 UT on 16 January 

2007 corresponds to a significant compression of Saturn’s magnetosphere. 

5.2 Overview and interpretation 

Figure 4 presents an overview of the magnetic field, plasma/particle, and plasma wave 

observations during the 16 January 2007 event. The composition data were derived by 

summing counts in CHEMS, and in the IMS time-of-flight system, from the straight-through 

(ST) detector. To improve the counting statistics of the compositional data the counts were 

summed within the intervals identified in the CAPS/ELS data. Electron pitch angle 
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distributions were analyzed during the course of this study but provide an ambiguous 

result due to the lack of full pitch angle coverage (the accessible pitch angle range is 

typically ~45º - 170º) in the downward (precipitating) direction, and to significant temporal 

variability in the data which aliases computed pitch angle distributions. Hence, electron 

pitch angle distributions are not presented for this event and will be the subject of future 

study. 

At 0900 UT energetic particle (Figure 4b), plasma electron (Figure 4c) and plasma ion 

fluxes (Figure 4d) are at or near the noise level consistent with very low plasma densities. 

The electric field wave power shows considerable enhancement at low frequencies with a 

cut-off at ~110 Hz. Auroral hiss is commonly observed at high latitudes in Saturn’s 

magnetosphere and generally consists of a whistler-mode emission below the electron 

cyclotron frequency, with a sharp cut-off at the electron plasma frequency (Gurnett et al., 

2009). In this region the ELS data is at the instrumental noise level and so the electron 

density can be considered to have an upper limit of ~500 m-3 (Arridge et al., 2009). The 

electron plasma frequency corresponding to this upper limit is ~200 Hz and the electron 

cyclotron frequency is higher, hence we attribute these emissions to auroral hiss. The 

CHEMS energetic ion composition indicates measurable fluxes of water group ions (W+), 

H2
+, and He++. The latter is characteristic of solar wind plasma, but W+ and H2+ are 

characteristic of closed magnetic field lines, where W+ originates from neutral-plasma 

chemistry in the inner magnetosphere as a result of internal mass loading, and H2
+ 

originates from Titan. 

After 0955 UT, and until 1127 UT, fluxes of low energy ions and electrons are observed 

where the electron temperature (figure 4h) of 20 eV is consistent with a magnetosheath 

population. The electron fluxes are quite unsteady producing factor of ~four variations in 

the electron density. Figures 4e and 4f show the fraction of counts in CAPS/IMS and 

MIMI/CHEMS produced by various species. Each panel sums to 100% but the scales 

have been reduced to focus on the relative counts of species other than H+. The plasma 

ion composition (figure 4e) appears to be devoid of heavy ions but the ratio of ions with 

mass per charge (m/q) of 2 amu/q (m/q=2) to H+ counts is 3.7±0.3 %. He++ and H2
+ have 

an m/q of 2 amu/q and in the solar wind we would expect He++ to dominate with around 

4% He++ whereas in the magnetosphere H2
+ originates from Titan. Thomsen et al. (2010) 

have shown that the abundance of ions with m/q=2 relative to H+ in the magnetosphere is 

around 20% inside 20 RS (in the equator) and around 5% beyond this distance. Hence, a 
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ratio of ions with an m/q of 2 to H+ of 20% is indicative of magnetospheric plasma whereas 

a value smaller than that indicates either solar wind plasma composition, or 

magnetospheric plasma at high latitudes where the H2
+ is more concentrated towards the 

equatorial regions. The energetic ion composition (figure 4f) is W+/H+: 7±2 %, H2
+/H+: 

5±2 %, He++ 10±3 %. The relatively high He++ fraction is suggestive of the presence of 

magnetosheath/solar wind plasma. In plasma ion data, a dispersion can be seen in the low 

energy edge of the ion distribution, which increases with time from 0955 to 1127 UT. The 

field strength (figure 4g) is ~20 nT, however its direction and stability is not consistent with 

an excursion into the magnetosheath which is usually characterized by very strong 

magnetic fluctuations. 

The line at 1127 UT marks a compositional boundary based on the observations 

presented in Figure 4f. Between 1127 UT and 1151 UT there is no net field-aligned current 

(FAC) (no significant gradient in the azimuthal magnetic field component), the W+ fraction 

increases in energetic ions and also the thermal plasma (0 to 0.10±0.08 % - not visible on 

the scale of this plot), and the plasma electrons exhibit some energization with a drop in 

density by a factor of ~5. 

From 1151 to 1521 UT the plasma electrons have temperatures of 100 – 1000 eV and 

high fluxes of energetic electrons are observed. The energetic ion composition shows a 

significant population of W+ and H2
+, and in the warm plasma ions we see significant W+ 

(W+/H+ of 0.2±0.1 %) and m/q=2 species (m/q=2 to H+ of 8.8±0.7 %). In this region a 

decrease in the azimuthal component of the magnetic field can be seen, consistent with a 

layer of field-aligned current (e.g., Bunce et al., 2008). The intense plasma wave 

emissions observed under 50 Hz are consistent with shot noise from energetic electron 

impact on the electric field antenna (e.g., Zouganelis, 2008). 

From 1521 to 1803 UT the electron temperature drops to values consistent with that 

observed from 1127 and 1151 UT and the energetic electrons drop to close to near-

background levels (a similar region is also observed from 1901 to 2050 UT with a short 

excursion back into the region with hot electrons). The plasma composition maintains a 

large water group ion component but the He++/H+ ratio increases by a factor of two at the 

beginning of the interval, moving to a factor of 20 after 1728 UT. The intense interval from 

1728 to 1803 UT has a significant diamagnetic depression and contains a mixture of 

thermal ion populations. 
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To determine the flow direction of the ions Figure 5 shows ion counts plotted as a function 

of look direction around the spacecraft. This also enables us to identify what directions 

around the spacecraft are not visible to IMS. These data are presented as a polar 

projection of OAS coordinates which is a spacecraft-centered frame where S is a vector 

from the spacecraft to Saturn, O is a vector which is obtained from S×(Ω×S) and A is a 

vector along S×O and completes the right-handed set. In this projection the polar angle 

θOAS is the angle between a vector and S such that θOAS=0º represents a direction towards 

Saturn from Cassini (the center of each plot), and 90º is perpendicular to the Cassini-

Saturn line (the inner circle on each plot). The outer circle on each plot is from the direction 

diametrically opposite to Saturn. Ion counts in the inner circle are coming from “in front” of 

Cassini, and between the outer and inner circles come from “behind” Cassini. The angle 

around S is identified as an azimuthal angle where counts from the left (right) half have a 

component in the corotational (anti-corotational) direction, from the upper (lower) half are 

coming from “above” (“below”). 

In Figures 5a, 5c and 5e ions with an energy/charge of 724.1 eV/q are found near 

θOAS≈84º-100º and φOAS≈340º-348º which indicates ions flowing anti-sunward, duskward 

and in downward, with a vector approximately (-0.48, 0.42, -0.77) in KSM coordinates, 

thus these ions are flowing poleward with a significant component in the direction of 

azimuthal convection. The energy of these ions indicates a speed of 370 km/s but this is 

an upper limit to the speed since it assumes the ions are cold. In reality some of this 

energy is due to thermal motions of the ions. This calculation assumes H+ which is 

consistent with the measured composition. In Figures 5b and 5d we find hot ions flowing 

approximately anti-parallel to the magnetic field but where some of the ions (at angles 

between the 180º pitch angle direction and θOAS≈90º) are obscured by parts of the 

spacecraft bus (e.g., Young et al., 2004). In Figure 5f we find higher energy ions also 

moving in the poleward and duskward direction. 

Returning to figure 4, from 1803 to 1901 UT and 2050 UT onwards the spacecraft once 

again encounters a region of hot electrons and magnetospheric plasma composition.  

The region between 0955 and 1127 UT is interpreted as magnetosheath particle entry into 

the cusp due to the plasma composition, magnetosheath-like electron distributions and low 

energetic electron fluxes. The ion dispersion is such that the more energetic ions are 

found at the equatorward edge of this region similar to a normal-sense ion dispersion 
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found in the terrestrial cusp (e.g., Reiff et al., 1977). This sense of dispersion is 

characteristic of magnetopause reconnection equatorward of the spacecraft. Thus we 

argue that Cassini is in the cusp on open field lines and observing magnetosheath plasma 

that has entered previously entered the magnetosphere via dayside reconnection. The 

bursty electron fluxes observed in the cusp may be the signature of unsteady 

magnetopause reconnection. Because of the incomplete pitch angle coverage of CAPS 

we only have observations of ions and electrons to a pitch angle of ~45º and so we do not 

directly see precipitating (planetward-moving ions) and only directly see ions that have 

mirrored at low altitudes and are moving anti-planetward. It is not clear if there is ongoing 

injection of plasma from the magnetosheath, hence part of this region might be properly 

referred to as the start of the ”mantle” (e.g., Rosenbauer et al., 1975). However, the ion 

energy-pitch angle dispersions show significant planetward fluxes at pitch angles of ~45º 

hence we retain the identification of this region as the cusp but recognize that we are also 

probably observing the start of the mantle. 

The extended region from 1155 to 1521 UT contains hot electrons and a magnetospheric 

ion composition and so could conceivably be located on closed field lines equatorward of 

the cusp. This is also the region where we infer the presence of upward FAC connecting to 

Saturn’s main auroral emission (Bunce et al., 2008). The boundary region from 1127 to 

1155 UT separates the cusp from the auroral field lines, appears to correspond with zero 

FAC, and contains plasma with a composition intermediate between the cusp and the 

closed region. The increasing fraction of water group ions suggests this layer is on closed 

field lines but the solar wind composition of thermal ions (with a mass per charge of two) 

and presence of He++ seen in the energetic particle composition suggests some mixing of 

solar wind and magnetospheric plasma, potentially via chaotic energetic ion trajectories. 

However, from the modified thermal electron populations and magnetic field rotations we 

interpret this region as a boundary layer, possibly representing the high latitude extension, 

or low-altitude projection of the low-latitude boundary layer. This layer may be on closed 

field lines although the lack of pitch angle coverage does not allow us to search for 

bidirectional electron beams that are characteristic of closed field lines. 

The region before 0955 UT is interpreted as the polar cap on open magnetic field lines due 

to the i) very low plasma and energetic particle fluxes ii) the observation of auroral hiss, 

and iii) it’s location poleward of the cusp. Although the energetic ion composition indicates 

the presence of magnetospheric ion populations, the gyroradius for a 40 keV W+ ion is 
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around 0.1 RS and so finite gyroradius effects might allow W+ ions to access to the open 

field region. Alternatively these ions could have a pitch angle near 90º and thus are slowly 

moving along the field line. 

Another boundary layer is identified from 1521 to 1803 UT. The presence of 

magnetosheath-like electron distributions might suggest a re-entry into the cusp, 

supported by the increased amount of He++. However, the large W+ component and the 

fact that the electrons are accelerated compared to the magnetosheath suggests that this 

is a re-entry into the boundary layer that was observed from 1127 – 1155 UT. Interestingly, 

the W+ fraction is typically larger in the boundary layer than in the adjacent auroral region, 

which might be produced by centrifugal confinement of heavy ion plasma in the closed-

field region, but viscous mixing of magnetospheric and solar wind plasma in the boundary 

layer at lower latitudes combined with lower azimuthal velocities (due to viscous mixing) 

resulting in less centrifugal confinement. The two-population ion distribution found 

between 1728 and 1803 UT can be interpreted in two ways: i) poleward convection due to 

newly open field lines and azimuthal convection associated with IMF BY and partial 

corotation, or ii) azimuthal motion due to partial corotation of a boundary layer. From the 

width of the distribution in energy and angle the ion population appears to be warm 

suggesting magnetospheric ions rather than magnetosheath ions. Also taking into 

consideration the high number of W+ counts we interpret this as a boundary layer where 

the plasma has become mixed with water group ions from the magnetosphere that are 

sub-corotating. 

In summary, the spacecraft starts in the polar cap and moves through a region with 

magnetosheath-like plasma that we identify as particle entry into the cusp due to dayside 

reconnection. At the equatorward boundary of the cusp we see a boundary layer that is 

conceivably on closed field lines, before entering a region with hot electrons probably 

mapping to the location of Saturn’s main auroral emission, but which do not have sufficient 

thermal energy flux to directly produce auroral emission (Bunce et al., 2008). Cassini then 

alternates between this region and the boundary layer region before remaining on 

magnetospheric field lines at the end of the event. 

5.3 Ion dispersions and dayside reconnection: estimating the distance 
to the reconnection site 
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At Earth the energy-latitude dispersions are produced by the differing time-of-flight of ions, 

injected at the magnetopause during magnetic reconnection. These ions have a field-

aligned component of motion but are also on flux tubes that are moving in a global sense 

under the influence of solar-wind driven poleward convection (e.g., Reiff et al. 1977). Due 

to rapid planetary rotation at Saturn some azimuthal dispersion might also be present due 

to partial corotation on open field lines combined with azimuthal convection associated 

with IMF BY. The observation of an energy-time dispersion in figure 4 suggests that 

reconnection at Saturn’s magnetopause is the cause of the particle injection. To estimate 

the field-aligned distance to the reconnection site we use the observed energy-pitch angle 

dispersions. 

Burch et al. (1982) demonstrated that due to magnetic mirroring and ions of various 

energies having differing times-of-flight along the field line from a reconnection site, the 

ions should exhibit an energy-pitch angle dispersion in the cusp. Electrons are not 

expected to exhibit such a dispersion due to pitch angle scattering of the electrons during 

their transit from the magnetopause to the cusp. Equation 2 shows the ion energy cut-off 

as a function of pitch angle and time since reconnection 
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where mi is the ion mass, t is the time since reconnection, s is position along a field line 

and ds is an element along that field line, B0 and α0 are the field strength and ion pitch 

angle at the observation point and B(s) is the field strength along the field line. 

Figure 6 shows measured ion energy-pitch angle dispersions in the cusp. We also analyze 

the ion observations in the boundary layer between 1521 and 1803 UT. The solid points 

show the measured low energy ion cut-offs, extracted by searching for where the ion flux 

drops below a signal-to-noise ratio of 4. The solid curves are a model fit of these cut-offs to 

equation 2 where both the distance to the reconnection site D=so-si and the transit time t 

are free parameters (the observation point, so, is known from the spacecraft position). The 

model was fitted using non-linear least squares using the Levenberg-Marquardt algorithm 

(Markwardt, 2009, and references therein) to minimize the difference between the model 

and the observed low-energy ion cut-offs. 
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The results of this analysis are presented in table 1. During the first particle injection in the 

cusp the mean distance is 50±20 RS and is inconsistent with reconnection near the sub-

solar point but perhaps consistent with reconnection towards the flanks of the 

magnetosphere. In the boundary layer, ion energy-pitch angle dispersions are still 

observed suggesting mixing in the boundary layer due to reconnection. Hence, this 

boundary layer is possibly on open field lines. The mean distance to the reconnection site 

in this boundary layer is significantly smaller at 24±2 RS, more consistent with a subsolar 

reconnection site, although the magnitude of the azimuthal field component indicates that 

the reconnection site is probably displaced in azimuth. These results demonstrate that the 

magnetosheath particles can access high latitudes due to magnetopause reconnection, 

possibly at more equatorial regions. 

5.4 Periodic encounters with the cusp/boundary layer 

From Figure 4 it can be seen that the cusp and boundary layer are encountered quasi-

periodically. Such a morphology is also seen in the terrestrial cusp and has been 

interpreted as a spatial structure and as the consequence of a strong By component of the 

IMF (Wing et al., 2001; Pitout et al., 2009; Abe et al., 2011) or as a temporal effect when 

the magnetosphere oscillates causing the location of the cusp to also oscillate (Zong et al., 

2008). In support of the former interpretation for these data at Saturn, the nominal spiral 

angle of the IMF at Saturn’s location is 87º (Jackman and Arridge, 2011) producing a 

nominally large By component. 

However, Cassini observations of the Saturn system have shown the magnetosphere to 

oscillate with a period of ~10.7 hours, close to that of Saturn’s planetary rotation period, 

producing oscillations in magnetic fields, plasma, energetic particles, energetic neutral 

atoms, and associated radio emissions (e.g., Carbary and Mitchell, 2013). Nichols et al. 

(2008) reported observations and modeling showing that Saturn’s southern auroral oval 

oscillates in position, with an amplitude of several degrees, in phase with these 

magnetospheric oscillations. With the open/closed field line boundary located at the 

poleward edge of the auroral oval the cusp position should therefore also oscillate at this 

period. Nichols et al. (2008) presented fits to the auroral data thus providing a time-

dependent model for the location of the auroral oval that can be used to infer the location 

of the open/closed field line boundary relative to the spacecraft. 
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Using the fits from Nichols et al. (2008) we transform the ionospheric footprint of Cassini 

into the frame of the moving auroral oval, effectively providing a re-mapped invariant 

latitude and magnetic local time which takes into account the current systems associated 

with the periodic phenomena. Figure 7 shows this re-mapped invariant colatitude as a 

function of time along with electron data from CAPS/ELS for the January 2007 event. The 

blue curves in the bottom panel show the poleward and equatorward edges of the auroral 

oval from Carbary (2012) at the local time of the spacecraft. During this period Hubble 

Space Telescope images of the aurora are available for 0531-0541 UT on 16 January and 

0321-0330 UT on 17 January (Bunce et al., 2008). The observations show that the 

colatitude of the auroral oval fell from ~15º to ~10º between the two images. Using an 

average of these two colatitudes we adjust the Carbary (2012) oval to better match the 

observed oval position – although we recognize that the oval position is contracting during 

this period we do not attempt to model this time-dependence. At the start of the interval 

the spacecraft is poleward of the auroral oval (the re-mapped invariant co-latitude is below 

the model auroral oval co-latitude) but approaches the oval as the spacecraft enters the 

cusp. The spacecraft moves through auroral oval field lines (see also Bunce et al., 2008) 

and equatorward of the oval before undergoing a poleward motion approaching, but not 

crossing the oval field lines again when the boundary layer is encountered. At the end of 

the interval the spacecraft is equatorward of the oval and oscillations of the oval are not of 

sufficient amplitude to allow the spacecraft to re-encounter the open field lines. The 

multiple encounters with the boundary layers between 1600 and 2000 UT on 16 January 

might be due to time-dependence of the auroral oval position, possibly produced via solar 

wind pressure variations. 

5.5 Summary 

During the interval studied Cassini starts in the polar cap before passing through 

magnetosheath particle entry into the cusp that is associated with magnetopause 

reconnection occurring at a reconnection site 50±20 RS from the spacecraft, thus 

somewhere on the flanks of the magnetopause. Cassini then passes through auroral field-

lines before the oscillation of Saturn’s high latitude magnetosphere moves Cassini closer 

to the open/closed field line boundary and thus onto boundary layer plasma that sits 

between the cusp and the auroral field lines. Eventually the high latitude magnetosphere 

rocks back moving Cassini back onto auroral field lines before passing through onto 
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closed magnetospheric field lines. The final boundary layer encounter is interpreted as a 

dynamical event. From auroral imaging we know the oval is contracting at this time and 

hence this would tend to move Cassini in the opposite direction to that which is observed. 

Hence, we argue that dynamic pressure variations are most likely responsible for this 

behavior. 

6 Case study: 01/02 February 2007 (Rev 38) 

6.1 Upstream conditions 

Figure 8 presents the propagated upstream conditions during the event in the same format 

as figure 2. Before the cusp passage Saturn was in a solar wind rarefaction region with a 

very low solar wind dynamic pressure of 0.0014±0.0003 nPa corresponding to a subsolar 

magnetopause distance of 38±6 RS. Rather than using increases in SKR power to identify 

the correct lag for the solar wind time series we use the magnetopause crossing observed 

at 1126 UT on 02 February 2007 (see Figure 11 and section 6.2) in the in situ fields and 

particles data. The solar wind time series was lagged by -16 hours to match the increase 

in dynamic pressure with this magnetopause crossing. From this lagged time series we 

can see that a solar wind forward shock arrived at Saturn on 31 January, and a large 

increase in solar wind dynamic pressure occurred around 1200 UT on 02 February 2007. 

During the first part of the February 2007 event, as shown by the grey bars, the solar wind 

was at a lower dynamic pressure state of 0.0108±0.0006 nPa, field strength 0.113±0.007 

nT, and tangential IMF component of -0.04±0.03 nT. Towards the end of the interval the 

dynamic pressure increased to 0.0395±0.0003 nPa, but the field strength decreased to 

0.0647±0.0002 nT and the tangential component dropped to zero. The tangential direction 

in KSM coordinates is (0,-0.92,-0.38) hence, the field was very weakly duskward at the 

beginning of the event, and rotated to an orientation almost entirely in the X-Z plane of 

KSM towards the end of the interval. At the beginning of the event the subsolar 

magnetopause distance, calculated from the dynamic pressure using the model of Kanani 

et al. (2010), was 25±4 RS, dropping to 19±3 RS at the end of the interval when the 

magnetopause was crossed. We note that the SKR power, particularly the low frequency 

power, increases at the arrival of the forward shock on 31 January, and also during the 

event. 

6.2 Overview and interpretation 
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The February 2007 event follows a similar but somewhat more straightforward morphology 

to the January 2007 event. Figure 9 presents the observations in the same format as 

Figure 4. Cassini starts the interval in a region with plasma ion and electron and energetic 

electrons fluxes near or at the noise level, auroral hiss is observed in the electric field data. 

From 1533 to 1819 UT on 01 February, magnetosheath-like electron distributions are 

observed but with energetic electrons at the noise level. The energetic ion composition in 

this region has a large W+ and H2
+ component but no He++ within error. The plasma 

composition shows no evidence of W+ but a small fraction (~2%) of m/q=2 amu/q ions 

(m/q=2 to H+ is 2.1±0.3%). A narrow layer is observed from 1819 to 1851 UT with an 

increased energetic W+ fraction and increased plasma m/q=2 amu/q fraction. Energized 

electrons are observed in ELS and an increase in flux of energetic electrons is recorded by 

LEMMS. The magnetometer data shows no evidence of field-aligned currents. 

From 1851 – 2341 UT hot electrons and substantial fluxes of energetic electrons are found. 

The magnetometer data shows some evidence for FAC in a brief interval immediately after 

1851 UT where rotations in Bφ show evidence for an upward current layer is found, and a 

more distributed apparent downward layer towards the end of this region, but in light of the 

cusp motion identified in Figure 4 this downward layer is more likely to originate from the 

spacecraft moving back through the upward current layer in the opposite direction. The 

plasma composition is dominated by H+ with m/q=2 to H+ ratio of 5.7±0.9%, although the 

energetic ion composition is consistent with magnetospheric plasma with W+/H+ of 29±1%, 

H2
+/H+ of 14.4±0.8% and He++/H+ of 2.4±0.3%. 

From 2341 UT on 01 February – 0005 UT on 02 February we see a narrow layer with 

energized sheath-like electron distributions, a drastically reduced W+ fraction, and an 

increase in He++. The magnetometer data shows little evidence for FACs. 

The region between 0005 and 0246 UT contains substantial fluxes of magnetosheath-like 

electron distributions and a large fraction of He++ consistent with solar wind plasma, 

although substantial fluxes of magnetospheric ions (W+ and H2
+) are also found in this 

region. The plasma ions show evidence for an energy dispersion with the most energetic 

ions and no low energy ions found on entry into this region. A diamagnetic depression is 

found in this region. 
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From 0246 to 1126 UT the ion composition is magnetospheric, with 0.4±0.1% W+/H+ and 

15.4±0.7% m/q=2 to H+ from IMS and W+/H+ of 23.7±0.5%, H2
+/H+ of 17.7±0.4% and 

He++/H+ of 1.6±0.1% from CHEMS. Hot electrons and large fluxes of energetic electrons 

are observed and some evidence for upward FAC, equatorward of the cusp, are found in 

the magnetometer data. 

Finally, from 1126 UT to the end of the interval the magnetic field strength is low and its 

orientation is highly variable. Large fluxes of magnetosheath-like electron distributions are 

observed and the plasma composition is largely solar wind, but with some added energetic 

ions. From IMS the composition was found to be W+/H+ 0.020±0.01% and m/q=2 to H+ of 

3.4±0.2%, and from CHEMS W+/H+ 10±2%, H2
+/H+ 11±2%, He++/H+ 7±1%. 

Similar to the January 2007 interval we interpret the region before 1533 UT as the polar 

cap, after which Cassini crosses into a region with magnetosheath-like electron 

distributions and a mix of magnetospheric and solar wind plasma which we interpret as the 

cusp. The magnetospheric plasma that we find in the cusp may originate from energetic 

particles still on newly opened field lines and which are draining out of the magnetosphere, 

or may be the result of finite gyroradius effects, or ions with a quasi-perpendicular pitch 

angle and which are trapped in the cusp (e.g., Zhou et al., 2006). The narrow region from 

1819 to 1851 UT with energized magnetosheath electrons and an increased population of 

magnetospheric ions is interpreted as another boundary layer, following the entry of 

Cassini onto closed field lines with a magnetospheric ion composition and hot electrons 

from 1851 to 2341 UT. We interpret the narrow layer from 2341 to 0005 UT as another 

boundary layer before entering the cusp again from 0005 to 0246 UT where we find 

significant fluxes of He++ and magnetosheath-like electron distributions. In contrast to the 

16 January 2007 event the energetic electron fluxes remain almost constant across this 

entry into the cusp suggesting a slightly different configuration to the February 2007 event. 

No boundary layer is found after exiting the cusp onto closed field lines. To support the 

identification of a closed field-line region, we note the magnetospheric ion composition, hot 

electrons, and very small fraction of He++. The region after 1126 UT is the magnetosheath 

with a significant rotation in the magnetic field at 1126 UT. The magnetic field in the 

magnetosheath is highly variable in direction and strength, the magnetosheath-like 

electron distributions and He++ is once again observed with a solar wind-like (~4%) fraction. 

This interval provides an opportunity to directly compare the magnetosheath with the cusp 
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signature: for example the similarity in electron distributions near 0100 UT and 1200 UT on 

02 February 2007. 

In summary, Cassini starts in the polar cap, passes through the cusp on open field lines 

and then onto closed magnetospheric field lines with a boundary layer separating the cusp 

from the closed field lines. After approximately five hours Cassini then passes back 

through a boundary layer and into the cusp, then back onto closed field lines with no 

boundary layer visible in the data at this transition. Approximately 10.5 hours later Cassini 

crosses the magnetopause and enters the magnetosheath as a result of the solar wind 

compression which arrives at Saturn around 1200 UT on 2 February. 

6.3 Estimating the distance to the reconnection site 

Similar to the 16 January 2007 event, the distance to the reconnection site was estimated 

using the observed energy-pitch angle dispersions. Figure 12 and Table 2 shows the 

results of this analysis. Apart from the dispersions analyzed in the boundary layer in the 16 

January 2007 interval, the reconnection site distances are comparable. For the two 

periods in the cusp in the February 2007 event the calculated distance to the reconnection 

site is the same, within the uncertainties, between the two cusp passages. 

6.4 Periodic encounters with the cusp/boundary layer 

Similar to the January 2007 event the various layers presented in section 6.2 are observed 

twice. However in this case the oscillations move Cassini properly into the cusp rather than 

merely entering a boundary layer. From Figure 8 we can see the remapped ionospheric 

footprint of Cassini with respect to a statistical auroral oval. The more expanded state of 

the magnetosphere during the February 2007 changes the mapping, resulting in 

oscillations whose latitudinal amplitude is smaller than the 16 January 2007 event but also 

allowing for more oscillations during the interval. 

Figure 13 shows the cusp crossing data compared with the remapped invariant latitude in 

the same format as Figure 9. No images of the aurora are available for this interval and so 

we have adjusted the position of the statistical oval to match the first cusp entry by simply 

shifting the statistical poleward by 4º. The second cusp passage is not accurately 

reproduced by this remapping, however the upstream conditions are more variable during 

this interval with a forward shock reaching Saturn on 31 January and the increase in solar 
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wind dynamic pressure on 02 February. Hence, the auroral oval and position of the 

open/closed boundary may be shifted due to the influence of the solar wind, possibly via 

on-going magnetopause reconnection causing equatorward expansion of the auroral oval. 

We also note the gradual increase in solar wind dynamic pressure around the time of the 

second cusp encounter. However, in general the oscillatory nature of the cusp/boundary 

layer encounters on both the January and February 2007 events are adequately explained 

by oscillations of the cusp position produced by global magnetospheric oscillations. 

7 Discussion 

7.1 Conclusions 

In this paper we have discussed observations made by the Cassini orbiter during two 

passes through Saturn’s polar magnetosphere. We have shown that i) Cassini directly 

encounters Saturn’s southern polar cusp with evidence for the injection of magnetosheath 

plasma into the cusp via magnetopause reconnection, ii) the injection of magnetosheath-

like plasma is variable suggesting that magnetopause reconnection is bursty, iii) the 

precipitating plasma can originate from a variety of locations on the magnetopause, iv) 

magnetopause reconnection and injection of plasma into the cusp can occur under a 

range of solar wind dynamic pressures, v) boundary layers separate the cusp from field 

lines with auroral electrons which map to Saturn’s main auroral emission, vi) the position of 

the cusp oscillates in phase with Saturn’s global magnetospheric periodicities. 

In both case studies presented in this paper Cassini moves from the polar cap, passing 

through the cusp, and onto field lines with hot electrons (~1-10 keV) that map to Saturn’s 

main auroral emission, although these electrons do not have the required energy flux to 

produce the main emission without further acceleration (Bunce et al., 2008). With only one 

exception, a boundary layer separates the cusp from the region mapping to the main 

auroral emission. This is consistent with Jinks et al. (2014) who found that the polar cap 

boundary (where one might expect to find particle injections in the cusp) is displaced from 

the upward FACs. In the cusp, significant fluxes of magnetosheath-like electron 

distributions (~20 eV) and ions (~100 – 1000 eV/q) with a solar wind-like fraction of He++ 

were observed showing that the cusp is can be filled with plasma of solar wind origin. 

Ion energy-pitch angle dispersions were used as evidence for magnetopause reconnection 

allowing entry of solar wind plasma into the magnetosphere, rather than the plasma simply 
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gaining access to the magnetosphere through diffusive processes or directly entering via a 

weak field region in the cusp. Some evidence for energy-latitude dispersions in the ion 

data also supports this reconnection picture but these were not analyzed in order to 

attempt to estimate the distance to the reconnection site. This was not attempted due to 

large uncertainties in estimating the speed of the spacecraft relative to the open/closed 

boundary, the speed of poleward convection of open field lines, and the speed of 

azimuthal magnetospheric convection due to sub-corotation of the polar cap ionosphere. 

However, the observations are qualitatively consistent with expectations for the low energy 

ion cut-off energy falling with distance from the closed field region. The solar wind 

conditions were different between the two events showing that the cusp at Saturn is active 

under a range of upstream conditions and not purely during periods of strong 

magnetospheric compression and hence strong solar wind driving. 

The composition in the boundary layers consisted of a mixture of magnetospheric and 

solar wind plasma showing the presence of mixing of the two populations. In one case a 

two-component ion population was found. The limited pitch angle coverage does not allow 

us to identify whether these boundary layers are on open or closed field lines but in one 

case where the two-component population was found one population exhibited an energy-

pitch angle dispersion and so it was argued that at least this region of the boundary layer 

could be on open field lines. 

In the 16 January 2007 event evidence for reconnection at two different locations on the 

magnetopause was presented, showing that the position of the magnetopause 

reconnection site can vary on relatively short timescales of several hours. Variability in the 

precipitating electron fluxes was used to infer the presence of bursty/unsteady 

reconnection at a given reconnection site. However, both examples of the southern cusp 

presented here are more quiescent that the stepped ion dispersions discussed by Jasinski 

et al. (2015). 

During each pass the southern cusp and associated boundary layers were encountered 

twice, similar to double/triple cusp morphology observed in the terrestrial magnetosphere. 

Oscillations in the position of Saturn’s auroral oval were used to provide evidence that this 

double cusp morphology is the result of global magnetospheric periodicities, under the 

assumption that the cusp was located at the poleward edge of the auroral oval. Figure 12 

presents a summary of this argument showing the oscillation of the ionospheric footprint 
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with respect to a statistical auroral oval (Carbary, 2012). In both cases the footprint 

generally moves equatorward but undergoes reversals where the footprint moves briefly 

poleward, thus providing an opportunity to re-encounter the cusp/boundary layer. 

7.2 Implications and further work 

Gurnett et al. (2010) reported the presence of a “plasmapause-like” boundary at high 

latitudes in Saturn’s magnetosphere similar to the density gradient found between the 

auroral field lines and the polar cap in this study. Such a density gradient might be found 

on closed field lines where the centrifugal confinement of heavy ions to the equatorial 

regions reduces the plasma density to very low values at high latitudes. Also field lines at 

large L are very long and as a result the transit times of particles along the field becomes 

very long, comparable to the azimuthal convection time around the planet for the 

equatorial plasma. The region identified as the polar cap in this study was argued to be on 

open field lines based on its location poleward of the cusp and the very low fluxes of 

plasma and energetic particles. Hence, we argue that Cassini has sampled magnetically 

open field lines and not merely field lines that are still closed but where the plasma is 

centrifugally confined to the equator. Naturally this does not imply that other local times, or 

periods where the cusp region is not magnetically open, that such a boundary might not 

exist on closed field lines. 

The cusp was found to be active during the two passes through Saturn’s polar 

magnetosphere under a range of upstream conditions. A number of studies have argued 

that magnetopause reconnection should be a low efficiency process at Saturn (e.g., Scurry 

and Russell, 1991; Masters et al., 2012; Masters, 2015). The results in this study show 

that Saturn’s cusp is active under a range of upstream conditions. Since the cusp maps to 

a very large area on the magnetopause these results show that reconnection can readily 

occur somewhere on the magnetopause under a range of upstream conditions, supporting 

the findings of Desroche et al. (2013) and Fuselier et al. (2014). 

Bunce et al. (2008) used the January 2007 observations reported here to argue that 

Saturn’s main auroral emission maps to the open/closed field line boundary at the location 

of a velocity shear between open and closed magnetic field lines. In this study we have 

identified the presence of a boundary layer lying between the open polar cusp and the 

auroral field lines. It is conceivable that this boundary layer is located on closed field lines 
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and hence is an internal boundary layer. Hence, the location of the velocity shear 

responsible for the FAC that drive Saturn’s main auroral emission might lie at the boundary 

between the magnetosphere at the boundary layer, thus placing the auroral field lines on 

closed flux. This is not incompatible with the findings of Bunce et al. (2008) since we might 

expect a velocity shear to exist between the boundary layer and the magnetosphere 

proper. Further study of the location of these FAC in relation to boundary layers is required 

to clarify this aspect of the generation of Saturn’s main auroral emission. 

The identification of periodicities in the location of the southern cusp show that studies 

inferring the presence and direction of FAC at high latitudes, and studies inferring the 

presence of lobe/near-subsolar reconnection from the sense of ion energy-latitude 

dispersions must account for the oscillations of the polar magnetosphere. We have 

established oscillations of the southern polar magnetosphere but further study is required 

to establish this for the northern polar magnetosphere (e.g., Bunce et al., 2014; Jinks et al., 

2014). 

General statements on the physics of the cusp in rapidly rotating giant planet 

magnetospheres were made in section two. The findings in this report have implications 

for the study of the jovian high latitude magnetosphere with Juno. Further study and 

modeling of the cusp in the jovian magnetosphere will be required in order to analyze Juno 

observations. 

A detailed survey of this dataset including cusp encounters in the northern and southern 

hemispheres will be reported in a future paper (Jasinski et al., in preparation). 
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Tables 

Table 1: Field-aligned distance to the reconnection site during the 16 January 2007 event 

as estimated from observed ion energy-pitch angle dispersions and a fit to Equation 1. 

Date D [RS] T [hours] 

2007-01-16 10:24:19 70±60 10±7 

2007-01-16 10:57:55 50±30 5±2 

2007-01-16 11:04:51 50±40 5±3 

2007-01-16 11:25:07 40±20 3±1 

2007-01-16 11:32:03 80±60 5±4 

2007-01-16 11:38:59 40±20 3±1 

Average 50±20 5±2 

   

2007-01-16 17:24:35 16±3 1.1±0.2 

2007-01-16 17:38:27 40±10 3.0±0.8 

2007-01-16 17:44:51 24±6 2.1±0.5 

2007-01-16 17:51:47 21±5 1.8±0.3 

2007-01-16 17:58:43 30±8 2.2±0.5 

2007-01-16 18:05:07 18±5 0.6±0.1 

Average 24±2 1.8±0.1 
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Table 2: Field-aligned distance to the reconnection site during the February 2007 event as 

estimated from observed ion energy-pitch angle dispersions and a fit to Equation 1. 

Date D [RS] T [hours] 

2007-02-01 18:02:18 60±60 7±6 

2007-02-01 18:16:10 50±30 5±3 

2007-02-01 18:23:06 30±20 3±1 

Average 50±20 5±2 

   

2007-02-02 00:04:26 30±20 1.3±0.6 

2007-02-02 01:08:26 33±9 2.2±0.5 

2007-02-02 03:00:26 40±40 2±1 

Average 37±9 1.7±0.3 

 

 

Figures 

Figure 1: Cassini trajectory and mapped ionospheric footprint for the two case studies in 

this paper. Because the upstream conditions and hence the magnetospheric magnetic 

field are different in each case, two pairs of panels are shown, one for rev 37 (panels a 

and b) and one for rev 38 (panels c and d). Panel a) shows the trajectory of Cassini on rev 

37 (red), with rev 38 (gray) for comparison, projected onto the X-Z plane in KSM 

coordinates. The field lines are traced using the Khurana et al. (2006) magnetospheric 

magnetic field model with the pressure set to match the estimated upstream conditions. 

Panel b) presents the mapped ionospheric footprint of Cassini on rev 37 (red) compared 

with rev 38 (gray) and a statistical UV auroral oval (Carbary et al., 2012). The footprint is 

mapped from Cassini’s location by tracing the field lines in a simple field model consisting 
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of a ring current model (scaled to match the magnetopause subsolar distance) (Bunce et 

al., 2007) and third order internal field model (Cao et al., 2011). Panels c) and d) present 

the same information but for rev 38 (blue) with rev 37 (gray) for comparison and where the 

field models have been adjusted for the different upstream conditions. In all panels 

squares indicate the beginning of each day, and the bold segment indicate the intervals 

covered by figures 4 (panels a and b) and 11 (panels c and d). 

 

Figure 2: Overview of data for rev 37 (panels a-c) and rev 38 (panels d-f). Panel a shows 

energetic ion and electron differential number fluxes (DNF) [cm-2 s-1 sr-1 keV-1] measured 

by MIMI/LEMMS, panel b shows an omnidirectional electron spectrogram in units of 

differential energy flux (DEF) [eV cm-2 s-1 sr-1 eV-1] and where the distributions have been 

filtered to remove low signal-to-noise bins and shifted to account for the spacecraft 

potential, panel c shows the field magnitude. Panels (d-f) show the same measurements 

for the rev 38 interval. Ephemeris data are shown below each set of panels and the 

bars/labels above each set of panels indicate the identified magnetospheric regions where 
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PC indicates the polar cap, M indicates the magnetosphere, C/BL indicates the 

cusp/boundary layer, S indicates the sheath, and S/W indicates the sheath/solar wind. 
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Figure 3: Upstream conditions during the January 2007 event. Panel (a) measured left-

hand (therefore from the southern hemisphere) circularly polarized SKR power integrated 

between 3 – 1000 kHz (black) and 3 – 30 kHz (red). Panels (b) – (f) contain solar wind 

conditions propagated from 1 AU using the MSWiM model (Zieger and Hansen, 2008), 

showing b) the solar wind speed, c) the solar wind number density, d) the solar wind 

dynamic pressure, e) the tangential component of the IMF in the RTN (radial-tangential-

normal) coordinate system, f) the IMF field strength. The tangential direction is 

approximately in the –y KSM direction, therefore negative BT is approximately duskward. 

The propagations have an arrival time uncertainty of ±15 hours therefore three time series 

are plotted, no lag (green solid curve), -15 hour lag (blue dash-dot curve), +15 hour lag 

(red dash-dot-dot-dot curve). The time series has also been lagged by +14 hours (black 

solid curve) to match the sharp increase in SKR power observed at 0600 UT on 16 

January 2007 indicated by the vertical dotted line. The interval covered by figure 4 is 

indicated by the grey bars on each panel. 
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Figure 4: Overview of the January 2007 cusp crossing. The labels at the top of the figure 

show the identified regions: polar cap (PC), cusp, boundary layer (BL), and 

magnetosphere. Panel (a) shows a frequency-time spectrogram of the electric field from 

RPWS with the electron cyclotron frequency overlaid in white (calculated from the 

measured magnetic field strength); (b) an energy-time spectrogram of energetic electrons 

from LEMMS; (c) an energy-time spectrogram of plasma electrons from CAPS/ELS that 

has been filtered to remove bins with poor signal-to-noise and corrected for spacecraft 

potential; (d) an energy-time spectrogram of plasma ions from CAPS/IMS that has been 
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filtered to remove bins with poor signal-to-noise; (e) relative abundances of plasma ions 

measured by the straight-through (ST) time-of-flight sensor in CAPS/IMS; (f) relative 

abundances of energetic ions measured by CHEMS; (g) magnetic field data in spherical 

polar coordinates (KRTP coordinates); (h) electron moments derived from CAPS/ELS 

where black lines are the number density, and blue is the temperature. Ephemeris 

information is provided at the bottom of the plot where invariant latitudes were estimated 

using a simple dipole plus current sheet model (Bunce et al., 2007; Cao et al., 2011). 
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Figure 5: Ion counts measured by CAPS/IMS as a function of look direction around the 

spacecraft in a polar projection of the OAS coordinate system. The solid arcs show the 

boundaries between IMS anodes and the dashed lines show the center of the anodes. The 

orange circle shows the direction to the Sun, the green square shows the direction of ideal 
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corotation, red and blue triangles show 0º and 180º pitch angles. Ion counts are shown on 

a logarithmic scale from two IMS energy bins 724.1 eV/q (left) and 2.433 keV/q (right). 

Panels (a) and (b) show data from 17:34:42 to 17:38:25 UT, panels (c) and (d) from 

17:51:46 to 17:54:57 UT, and (e) and (f) from 17:54:58 to 17:58:41 UT. 

 

Figure 6: Measured energy-pitch angle ion dispersions during the 16 January 2007 event. 

In each panel we show a measured dispersion in differential energy flux (DEF), where the 

gray regions indicate no pitch angle coverage. The low energy ion cut-offs are 

automatically extracted by searching for when the ion flux drops below a signal-to-noise 
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ratio of 4. The uncertainty on this energy is taken as twice the energy resolution of IMS. 

The solid curve shows a fit of equation 1 to these ion cut-offs. Panels (a-d) show 

dispersions during the first interval in the cusp, and (e-h) show those during the boundary 

layer. 
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Figure 7: Cusp crossing data with Cassini’s mapped invariant colatitude remapped into the 

rest frame of the auroral oval using the results of Nichols et al. (2008). Panel a) shows an 

energy-time electron spectrogram from CAPS/ELS, b) shows electron moments from 

CAPS/ELS where the black trace is the density and the blue trace the temperature, and c) 

shows the remapped invariant colatitude (black line) and the extent of the statistical 

auroral oval. 

 

Figure 8: Upstream conditions during the February 2007 event in the same format as 

Figure 2. The solar wind time series has also been lagged by -16 hours (black solid curve) 

so that the increase in dynamic pressure corresponds to the magnetopause crossing 

observed at 1126 UT on 02 February 2007. The interval covered by Figure 9 is indicated 

by the grey bars in each panel. 
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Figure 9: Overview of the February 2007 cusp crossing in the same format as Figure 4. 

The period in the magnetosheath is denoted by “MS” in the bars at the top of the figure. 
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Figure 10: Measured energy-pitch angle ion dispersions during the February 2007 event in 

the same format as Figure 6. Panels a-c show dispersions during the first interval in the 

cusp, and d-e show those during the second interval in the cusp. 
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Figure 11: Cusp crossing data with Cassini’s mapped invariant colatitude remapped into 

the rest frame of the auroral oval in the same format as Figure 7. 
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Figure 12: Projection of Cassini’s trajectory onto the ionosphere (mapped using a simple 

field model (Bunce et al., 2007; Cao et al., 2011) which has been transformed into the rest 

frame of the auroral oval using the results of Nichols et al. (2008) and a magnetic field. 

This is done for both the 16 January 2007 (red) and February 2007 (blue) events 

considered in this paper. The statistical auroral oval from Carbary (2012) is included for 

reference. 
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