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Abstract

IR spectroscopy is an excellent method for biological analyses. It enables the nonperturbative, 

label-free extraction of biochemical information and images toward diagnosis and the assessment 

of cell functionality. Although not strictly microscopy in the conventional sense, it allows the 

construction of images of tissue or cell architecture by the passing of spectral data through a 

variety of computational algorithms. Because such images are constructed from fingerprint 

spectra, the notion is that they can be an objective reflection of the underlying health status of the 

analyzed sample. One of the major difficulties in the field has been determining a consensus on 

spectral pre-processing and data analysis. This manuscript brings together as coauthors some of 

the leaders in this field to allow the standardization of methods and procedures for adapting a 

multistage approach to a methodology that can be applied to a variety of cell biological questions 

or used within a clinical setting for disease screening or diagnosis. We describe a protocol for 

collecting IR spectra and images from biological samples (e.g., fixed cytology and tissue sections, 

live cells or biofluids) that assesses the instrumental options available, appropriate sample 

preparation, different sampling modes as well as important advances in spectral data acquisition. 

After acquisition, data processing consists of a sequence of steps including quality control, 

spectral pre-processing, feature extraction and classification of the supervised or unsupervised 

type. A typical experiment can be completed and analyzed within hours. Example results are 

presented on the use of IR spectra combined with multivariate data processing.

INTRODUCTION

The use of Fourier transform IR (FTIR) spectroscopic techniques for the nondestructive 

analysis of biological specimens is a rapidly expanding research area, with much focus on its 

utility in cytological and histological diagnosis through the generation of spectral images1,2. 

Molecular bonds with an electric dipole moment that can change by atomic displacement 

owing to natural vibrations are IR active. These vibrational modes are quantitatively 

measurable by IR spectroscopy3, providing a unique, label-free tool for studying molecular 

composition and dynamics without perturbing the sample. For interrogating biological 

materials, the most important spectral regions measured are typically the fingerprint region 

(600–1,450 cm−1) and the amide I and amide II (amide I/II) region (1,500–1,700 cm−1). The 

higher-wavenumber region (2,550–3,500 cm−1) is associated with stretching vibrations such 

as S-H, C-H, N-H and O-H, whereas the lower-wavenumber regions typically correspond to 

bending and carbon skeleton fingerprint vibrations4. Together, these regions comprise a 

biochemical fingerprint of the structure and function of interrogated cellular specimens. A 

typical biological IR spectrum with molecular assignments is shown in Figure 1.
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IR microspectroscopy

Although the spectral domain allows chemical identification, the combination with 

microscopy (microspectroscopy) permits the examination of complex tissues and 

heterogeneous samples5. Detection by microscopy (see schematic of instrumentation in Fig. 

2) may be accomplished by raster-scanning a point illuminated on the sample or by using 

wide-field illumination and focal plane array (FPA) or linear array detectors6. At present, 

wide-field scanning of a sample is possible in seconds, providing tens of thousands of 

spectra. A variety of choices are available for the IR source, including globar7, 

synchrotron8-12 and quantum-cascade lasers (QCLs)13, as well as for the detector (2D FPA, 

linear array or single element)14. The three major IR-spectroscopic sampling modes (Fig. 

2b) are transmission, transflection and attenuated total reflection (ATR). Each mode offers 

convenience for some samples and challenges for others. In transflection mode, for 

illustration, the sample is placed on an inexpensive IR-reflecting surface (such as that found 

on low-emissivity (Low-E) slides) and measurements are generated by a beam passing 

through the sample and reflecting back from the substrate (i.e., the reflective surface) 

through the sample. As is clear from both theoretical and experimental studies15,16, the 

recorded spectral intensities depend on both sample morphology and chemistry. Hence, care 

should be taken on substrate choice17,18. Recently, topographical features of the sample and 

its effects have been shown to be minimized by inputting second derivative spectra in the 

classification model; better segregation of normal versus various disease categories 

facilitates potential spectral histopathological diagnosis19. Research by Cao et al.20 has 

demonstrated that if this pre-processing data analysis approach is performed (e.g., after both 

transflection and transmission measurements on dried cellular monolayers), the resulting 

classification is the same. This example suggests that irrespective of sampling geometry, 

mathematical tools can be applied to minimize confounding effects and to interpret their 

influence. As such, spectral processing may determine the diagnostic efficacy of spectral 

processing, not only from a biological perspective but also from the ability to control optical 

or distorting influences.

FTIR imaging provides spatially resolved information based on chemically specific IR 

spectra in the form of an information-rich image of the tissue or cell type being 

interrogated21-23. Further multivariate data analysis allows potential diagnostic markers to 

be elucidated, thus providing a fast and label-free technology to be used alongside 

conventional techniques such as histology2,22. At present24, rapid imaging permits imaging 

in hours for a whole-organ cross-section, such as that from the prostate; this not only allows 

one to objectively visualize pathology in situ but the aforementioned classification models 

could also allow one to grade disease on the basis of the cateogries into which spectra might 

be aligned. One excellent interpretation application of IR imaging data is to consider it as a 

metabolomic tool that allows the in situ, nondestructive analysis of biological specimens, 

(e.g., determining the glycogen levels in cervical cytology)25.

Data can be recorded from a variety of samples, ranging from live cells to formalin-fixed, 

paraffin-embedded (FFPE) archival tissue typical of a pathology specimen. IR spectra 

representing distinguishing fingerprints of specific cell types (e.g., stem cells versus transit-

amplifying cells versus terminally differentiated cells) within a defined tissue architecture 
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(e.g., crypts of the gastrointestinal tract and cornea)9,26 are now easily recorded. 

Consequently, spectral analyses delineate cellular hierarchy on the basis of protein, lipid and 

carbohydrate composition and/or DNA conformational changes27. For biomedical analyses, 

the major goal today is to derive an image of tissue architecture expressing the underlying 

biochemistry in a label-free fashion28, a development that can considerably extend our 

diagnostic potential beyond present capabilities. For example, to distinguish cells committed 

toward a pathological process (e.g., transformation) that conventional methods (e.g., visual 

scoring) might identify as normal. The screening of cervical cytology specimens to 

distinguish normal versus low-grade versus high-grade cells4,29, to grade primary 

neoplasia30, or to determine whether tissue margins and potential metastatic sites are tumor 

free31,32 are examples of this concept across many types of tissues. It is this bridge from the 

technology and potential of IR spectroscopy and imaging to biological, mainly clinical, 

applications that is the subject of this protocol (Fig. 3).

IR spectroscopy in cancer classification and imaging

By using IR spectroscopy either as an imaging tool or by classifying spectral categories, it 

has been possible to distinguish between benign and malignant tumors in tissue samples of 

breast32-35, colon22,23,36, lung37 and prostate8,30,38,39 along with cervical cytology or 

biopsies4,28,40. IR spectroscopic analysis is also an ideal tool for the study of biofluids such 

as urine, saliva, serum or whole blood; the use of biofluids is desirable in a clinical setting as 

samples are obtained rapidly and relatively noninvasively, and minimal sample preparation 

is required. By using such methods, a spectral fingerprint of the biofluid can be obtained, 

which allows the subsequent classification of spectra from different categories with 

computational methods and possibly the identification of biomarkers41-44.

FTIR imaging of tissue and cells

Imaging of live cells is possible using both globar and synchrotron-based light sources, with 

the latter permitting greater lateral spatial resolution and data quality owing to higher 

flux21,45-47. Diffraction-limited resolution with ATR-FTIR imaging can also be 

advantageous as it allows analysis of live cells in aqueous systems21,48. In addition, the 

spatial resolution of the image can be increased by incorporating optics with a high 

refractive index21,34.

We describe a protocol that has three components: (i) specimen preparation and removal of 

possible sample contaminants; (ii) acquisition of spectra with a sufficiently high signal-to-

noise ratio (SNR); and (iii) data processing for classification and imaging. As the precise 

steps in acquisition of spectra and data processing are, respectively, dependent on the 

instrument and software available, this protocol covers (ii) and (iii) to deliver a general 

understanding of the steps involved. Supplementary Methods 1–4 correspond to four 

different examples of standard operating procedures (with troubleshooting) specific to 

common instruments and acquisition/analysis software. Together, this protocol and the 

material contained in Supplementary Methods 1–4 are designed to build researchers’ 

confidence in conducting their studies using their own instrumentation and computational 

settings.

Baker et al. Page 4

Nat Protoc. Author manuscript; available in PMC 2015 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Application of this protocol to other research areas

The application of this protocol is not limited to the biomedical field. IR spectroscopy has 

previously been used in the fields of environmental toxicology49-52, consumer safety53,54, 

taxonomy55-57, and in the food industry58; a non-instrument– and non-software–specific 

protocol for imaging and classification could be of considerable use to these areas of 

research.

Experimental design: instrumental options

The main steps required to analyze a sample of interest are sample preparation, instrumental 

setting, acquisition of spectra and data processing (Fig. 4). Before instrumental options are 

chosen, it is important for the user to understand the expectations from the intended 

experiment. These include the desired spectral and spatial resolution and type of study (e.g., 

diagnostic versus exploratory). In addition, proper consideration must be given to potential 

sample restrictions such as acquiring appropriate sample thickness for respective modes.

Sampling modes—Figure 2b shows a schematic representation of each sampling mode 

and details of each can be seen in Table 1; however, it is important to note that different 

manufacturer systems may vary slightly in some parameters, such as sampling apertures. 

Transmission and transflection sampling modes have been applied to a variety of biological 

specimens that can be sectioned into a thin layer allowing for accurate spectral data 

acquisition59. ATR-FTIR mode differs in that the IR beam is directed through an internal 

reflection element (IRE) with a high refractive index (e.g., diamond, zinc selenide, 

germanium or silicon)60. The evanescent wave extends beyond the IRE surface penetrating 

the sample, which must be in direct contact with the IRE. The penetration depth of this wave 

typically ranges from 1 to 2 μm within the 1,800–900 cm−1 region, but it should be 

remembered that there is still ~5% intensity at a depth of 3 μm (refs. 18,61,62). It has been 

shown that samples with thicknesses of <2 μm may give rise to spectral artifacts with IR-

reflective substrates such as MirrIR Low-E slides (Kevley Technologies); therefore, when 

these substrates are used with ATR-FTIR spectroscopy, a thicker sample is recommended18.

A magnification-limited digital camera may be used for visualization in order to guide 

manual navigation across a given sample so as to locate a region of interest and help identify 

basic microscopic features such as separation between cancer cells and stromal elements. An 

alternative setup for ATR involves placing the sample directly onto the IRE aperture of the 

ATR accessory. This is particularly useful for biofluid analysis as it bypasses any potential 

contributions from any slide substrate that the sample could be placed on (Supplementary 

Method 1). This methodology may also help to reduce experimentation time owing to 

reduced sample preparation.

Light sources—In IR microspectroscopy, the user has the option of several light sources: 

a conventional thermal (globar) or synchrotron radiation source for FTIR interferometric 

measurements or alternative sources such as QCLs63 and filters64, which obviate the use of 

interferometers. The majority of benchtop instruments use conventional thermal light 

sources often in conjunction with single-element detectors. A globar source is composed of 

a silicon carbide rod that generates IR radiation, and can typically generate a collimated 
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mean of ~1,000 μm in diameter, providing a uniformly illuminated aperture of 20–100 μm 

of the diameter at the sample65. It has been shown that single-cell investigations can be 

conducted using standard globar IR sources to derive subcellular information66.

A synchrotron radiation light source is ~100–1,000-fold brighter than current benchtop 

thermal ones, but it illuminates a much smaller area. Thus, a synchrotron source has a 

natural sampling aperture of 10–20 μm in diameter with a high SNR67. It is therefore 

possible to achieve single-cell and large organelle (e.g., nucleus) lateral spatial resolution 

with these modern sources, allowing subcellular molecular distribution analysis68,69. There 

are ~50 synchrotron facilities worldwide, all easily accessible for routine use as they operate 

on a call-for-projects basis70. Alternatively, other available sources that may be 

advantageous to individual studies include optic parametric oscillator (OPO) lasers, QCLs 

and free-electron lasers (FELs); traditionally they have been primarily used for gas sensing 

because of intrinsically narrow linewidths71,72; however, modern QCLs can cover much 

broader wavelength regions (hundreds of cm−1).

Mapping versus imaging—Broadly speaking, detectors can be separated into single-

element, linear array and FPA detectors; the detector choice will be influenced by the 

requirement being imaging (i.e., FPA) or point spectra with high SNR (i.e., single element). 

The use of a single-element detector allows for individual point spectra to be obtained across 

a whole sample (for instance, useful when analyzing biofluids); a particular application has 

been to derive single-cell–specific fingerprint spectra across a heterogeneous tissue section. 

Acquiring large data sets containing point spectra is a method regularly used in biomedical 

and environmental studies coupled with multivariate data analysis40,73. Although time 

consuming, point spectra often have a high SNR, resulting in high-quality spectra, as spatial 

resolution is limited by IR apertures74. Maps can be generated when point spectra are 

collected in a stepwise manner in a grid from a target area, which is useful for comparing the 

different cell types from that particular area, e.g., gastrointestinal crypt23. Spectral maps take 

a much longer time than individual point spectra and, thus, in order to make large maps 

feasible to run, the acquisition time for each point can be reduced leading to a lower SNR. 

The absorbance intensity at each spectral point within the map becomes an individual pixel 

in the resultant pseudocolor images, which can give details of how different biomolecules 

vary across the target area.

In contrast to aperture-based systems, non-aperture-based instruments such as FPA and 

linear array detectors provide imaging using spatially arranged detectors. Multielement 

detectors allow for simultaneous spectral acquisition, which, combined with suitable optics, 

produce spectral images with good SNR and lateral spatial resolution close to the diffraction 

limit75. Measurements using an FPA detector (typically 32 × 32, 64 × 64 or 128 × 128) are 

rapid as such detectors allow for the acquisition of thousands of spectra simultaneously76; 

for a typical methodology see Supplementary Method 2. The acquired spectral data can be 

used to generate pseudocolor images of the target area such as shown in the characterization 

of prostate tissue77 and cervical biopsy samples28. The benefits of using a synchrotron 

radiation light source with FPAs also mean that much smaller pixel sizes can be used (e.g., 

0.54 μm × 0.54 μm at some synchrotron facilities) resulting in higher spatial-resolution 

images of the target area76.
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ATR-FTIR spectroscopy coupled to an array detector can allow for sample imaging down to 

diffraction-limited resolution for the spectral range of interest78. The spatial resolution of 

non-aperture-based techniques is determined by the optics chosen, and it has been shown 

that a germanium optic is preferential, although ZnSe and diamond crystals can also be 

used34. Although transmission and transflection imaging have been widely implemented in 

biological tissues, imaging in ATR mode is a versatile option, because little sample 

preparation is required owing to minimal sample-thickness restrictions, which thus means 

that it has been implemented in biological fields such as pharmacology and subcellular 

interrogation59,78,79.

Experimental design: sample preparation

Sample formats—The main sample formats for clinical IR spectroscopy are fixed cell and 

tissue samples, biofluids and live cells. Spectroscopic approaches can be used to examine 

tissues of human extraction (all require the appropriate ethical approval before their use). 

The type of sample used greatly determines which type of IR spectroscopy is appropriate 

and how it should be prepared for analysis. Table 2 shows the main types of samples and 

how they should be prepared for analysis.

Sample thickness—Sufficient thickness of material needs to be placed onto the support 

matrix to allow a sufficiently large absorbance intensity to be recorded. In transmission and 

transflection modes, the specimen thickness needs to be adjusted appropriately: if it is too 

thick, the detector response function will be nonlinear so that Beer-Lambert’s law cannot be 

applied anymore. This has serious consequences for subsequent quantitative and 

classification analyses. In contrast, to achieve an adequate SNR and to avoid interactions of 

the evanescent wave with the underlying substrate, samples must also not be too thin. For 

example, when using ATR-FTIR spectroscopy, it is ideal if the specimen is three- or 

fourfold thicker than the penetration depth (that said, there is no maximum thickness for 

ATR-FTIR, and samples that are even a millimeter thick can be analyzed). This is pertinent 

for internal reflection measurements, which are commonly used for the disease diagnosis of 

biofluids; such samples can be naturally thinner in composition (especially with regard to 

cerebrospinal fluid (CSF), although this is not so much the case with blood or serum/plasma; 

serum, for example, is a solution containing a high protein concentration, ~80 mg ml−1). The 

effect of substrate interference on spectra, especially in reference to transflection 

measurements, has now been shown independently in the last year by several groups17,18,80. 

Given this, we would urge extreme caution regarding the use of Low-E slides with 

transflection measurements; with ATR-FTIR, it is unlikely that there will be optical effects 

associated with substrate.

Substrate choice—Proper consideration of the substrate (the slide or matrix) upon which 

the sample will be placed and any preparation steps associated with this are essential in 

order to acquire the best and most-reproducible spectra. For transmission measurements, this 

needs to be an IR-transparent material such as BaF2 or CaF2 (the latter, in particular, for 

live-cell IR spectroscopy), whereas for reflection or transflection measurements an IR-

reflective substrate (e.g., Low-E slides) is required because glass alone absorbs the radiation 

and has a spectral signature in the mid-IR region81,82. Previously, it had been recommended 
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that biological materials be placed on IR-reflective substrates. However, there now appears 

to be a shift in the general consensus that suggests that transmission or ATR spectroscopy 

measurements are more applicable to interrogation of biological material.

Microfluidic devices—Traditionally, aqueous sampling environments were unsuitable for 

IR spectroscopy because of the contribution of water. Development of microfluidic devices 

and processing to remove the water contribution has made it possible to achieve real-time, 

live-cell monitoring with IR spectroscopy. Nondestructive to cells, it better replicates 

physiological conditions; no labeling is required and the resolution is such that single cells 

can be studied83. The nondestructive nature of these methods has allowed studies to look at 

samples over time (e.g., stem cells in situ as they differentiate and chemical reactions in 

flow systems have been monitored84,85.

The key challenge of IR spectroscopy using microfluidics is associated with the materials’ 

transparency over the spectral range to be studied, and especially when live-cell monitoring 

is desirable. Many potential window materials are unsuitable on the basis of their water 

solubility (e.g., KBr and NaCl), toxicity toward the cells under observation (e.g., CdTe) or 

spectral dispersion (e.g., ZnS and BaF2)86. A flow chamber is used that combines IR 

transparency and robustness of diamond as window material. Although manufacture is 

complicated, the windows must be sufficiently thin (0.4–0.8 μm) to avoid multiple internal 

reflections86. CaF2 is extensively used as a window material, and a simple flow cell with 

inlet and outlet flow is constructed by clamping two CaF2 plates together. One of the plates 

is etched to form a 10-μm well, designed for the IR observation of live cells in aqueous 

media85. A similar device has been used for synchrotron IR spectroscopy of living cells 

using a surface micro-etched silicon substrate87. Further advances in the field have led to the 

development of sandwich devices and entirely polymeric devices.

Experimental design: spectral acquisition

Instrumental and operational settings to maximize spectral quality—When 

acquiring spectra, it is important to maximize as best as possible the SNR in order to 

produce high-quality spectral data (Table 3). There are a number of noise-related and signal-

related parameters, with an effect on SNR, which can be altered depending on the 

instrument mode being used (e.g., point mode versus imaging)88-91. The instrumental and 

operational settings will be specific to the user experimental setup; Table 1 compares 

properties of different sampling modes for optimized spectral acquisition. An initial noise-

related parameter that can be altered is the sampling aperture in point or mapping mode; this 

will reduce the SNR when the aperture size is reduced92. However, in imaging mode there is 

no aperture. The interferometer mirror velocity may also have an effect on SNR3. Weighting 

the interferogram with an apodization function will also contribute to a reduction in SNR, as 

this smoothing effect can incorporate spectral artifacts while one is attempting to optimize 

the information contained93. In general, the square root of the number of co-additions is 

proportional to the SNR, and therefore an increased number will enhance the SNR94.

IR spectroscopy has a spatial resolution that is limited by the diffraction limit; hence, as the 

resolution approaches this value, the SNR is reduced to a point where there is no further gain 
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in image quality95 A synchrotron radiation source (e.g., at the IR Environmental Imaging 

Facility (IRENI) at the Synchrotron Radiation Centre (SRC)) in the mid-IR region is 1,000 

times brighter than a thermal globar source and thus may generate enhanced SNR spectra 

when using apertures approaching the diffraction limit; however, when using an FPA 

detector, this cannot be exploited as the brightness is applied over a larger area. By using 

multiple beams, such as at IRENI, the single-beam disadvantage when using an FPA may be 

overcome.

It is important to consider that an optimized and well-aligned benchtop instrument is not 

considered to be inferior with regard to SNR or image quality to a general synchrotron-

based machine63. A number of options regarding the detector can also have an effect on the 

SNR, such as the choice between a thermal detector versus a quantum detector. A mercury 

cadmium telluride (MCT) quantum detector usually provides a superior SNR than, for 

example, a thermal detector such as a deuterated triglycine sulfate detector96. An optimized 

cooling system in the detector, such as thermoelectrical cooling, will also reduce the dark 

current produced by the detector, which has been shown to have a detrimental effect on 

SNR97,98. In addition, signal-related parameters can affect the SNR; for instance, an 

increase in the optical path length can reduce spectral quality, which has been particularly 

important in the analysis of aqueous samples such as biofluids33. When producing spectral 

images with the help of multielement detectors, such as an FPA, one must consider 

optimizing the SNR. The authors point readers to the authoritative reference on FTIR 

spectroscopy by Griffiths and De Haseth3 for theoretical and instrumental discussions; this 

book has supported the authors since their undergraduate studies and continues to support 

them today3.

Water vapor and instrument purging—The presence of water vapor in the 

instrumentation and sample area can result in reduced transmission of IR light, potentially 

obscuring important spectral details even at low spectral resolutions often used in 

biomedical IR spectroscopy. Water vapor interference can be minimized by computational 

subtraction of a pure water vapor spectrum from the sample spectrum99. The efficacy of this 

compensation is limited and it is therefore considered crucial before spectral acquisition to 

purge the instrumentation with dry air or nitrogen and/or desiccants to remove any water 

vapor that may contaminate spectra between 1,350 and 1,950 cm−1, and between 3,600 and 

3,900 cm−1 (ref. 100). By doing so, ambient CO2 is also purged, thereby reducing its 

contribution to the spectra.

Acquisition of sample and background—Measurements of an FTIR absorption 

spectrum involve collecting a ‘single-beam’ spectrum. A background single-beam spectrum 

provides the source intensity, as modified by the instrument; placing a sample in the beam 

path and measuring the single beam again, theoretically, provides just the additional effect 

of the sample absorbance. A logarithm (to the base 10) of the ratio of these quantities 

provides the absorbance, which is directly related to concentration by Beer’s law. With point 

spectra, a background spectrum is typically retained for recording 5–10 sample spectra and 

with each different sample to reduce the effects of constantly changing atmospheric 

conditions. As spectral maps are composed of a large number of point spectra acquired in a 
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stepwise manner, it is necessary to set up background scans to be taken at set intervals (e.g., 

at the end of every row) to account for the atmospheric variation over the extended 

acquisition time66. When acquiring spectral images, background spectra should be acquired 

over a defined time period, depending on the sample acquisition time.

Experimental design: data processing

Data processing is carried out in a sequence of steps (Fig. 3) and the most important factor 

determining its workflow is the analysis goal; typical spectroscopy software programs used 

are shown in Table 4. Here we describe two analysis goals: imaging and diagnosis. Other 

goals not covered here include pattern finding and biomarker identification101,102.

Imaging is defined as data analysis that uses an unsupervised data processing method to 

reveal tissue structure on a ‘spectral cube’ acquired by a mapping or imaging technique. 

Imaging allows for the study of shape and penetration of important histopathological 

features on the basis of the underlying chemistry28.

In contrast, a diagnosis using IR spectroscopy requires a more complex framework that uses 

supervised classification methods. A supervised data processing method is one that uses 

classes assigned a priori to each IR spectrum as teaching information to build models that 

are used later to predict the classes of a data set that does not have classes associated with its 

spectra103,104. The modeling process for diagnosis requires separate training and testing 

stages and respective training and test data sets. The optimal size of a training data set (i.e., 

one that will maximize classification accuracy at a reasonable cost of data set generation) 

has been underinvestigated to date, but it has been suggested that it may be problem 

dependent105. For example, in a study, one could start with ten samples (acquiring 5–10 

spectra from each sample), creating a trained model with eight samples and testing the 

model using the remaining two samples; one could then repeat this procedure four more 

times, each time using two different samples for testing and the remaining eight samples for 

training (this is called five-fold cross-validation). The number of times that the classifier 

correctly guessed the class of the testing sample would be counted to calculate a 

classification rate (i.e., the number of correct guesses divided by the total number of 

guesses). Next, one could acquire spectra from an additional five samples and repeat the 

cross-validation process, comparing the new classification rate with the old one (it is 

expected to improve). The process of adding samples and repeating cross-validation could 

continue until the classification rate stops improving.

It is important to note that a diagnostic framework may be set to use either point spectra or 

image maps; in the latter case, the trained classification system can be used to predict tissue 

structure.

We describe the following data analysis steps: pre-processing, feature extraction (FE), 

clustering (unsupervised classification) and supervised classification, and we exemplify 

some visualization options in the ANTICIPATED RESULTS section. Quality control is 

another step that is not covered in this protocol, but there are guidelines on this available in 

the literature105,106.
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Pre-processing—Pre-processing essentially aims to improve the robustness and accuracy 

of subsequent multivariate analyses and to increase the interpretability of the data by 

correcting issues associated with spectral data acquisition107. Pre-processing methods may 

be divided into de-noising, spectral correction, normalization and other manipulations; two 

or three methods are often combined (e.g., de-noising followed by spectral correction and 

normalization). The choices of pre-processing methods may depend on the analysis goal, the 

physical state of the sample, and the time and computing power available.

De-noising of IR spectra may be carried out with Savitzki-Golay (SG) smoothing, minimum 

noise fraction108 or wavelet de-noising (WDN)101. The latter is known to be the best method 

for eliminating high-frequency noise while still keeping intact high sharp peaks (this is 

essential in Raman spectra processing, but WDN works well on IR spectra too). Another 

option is to decompose the spectra by principal component analysis (PCA), and then 

reconstruct them from only a few of their principal components (PCs), thus discarding those 

PCs that represent mostly noise85,109.

Measurement characteristics that may require spectral correction include:

• Sloped or oscillatory baselines that result from scattering, with resonant Mie 

scattering in biological materials being the most pronounced effect. The effects of 

sample (scattering centers, edges and substrates) have often been lumped together 

and the effects of the same on spectra are termed ‘artifacts’. Although this 

terminology was initially acceptable, it is now clear that there is a rational 

explanation for these effects and they arise merely from the coupling of 

morphology and optics. Hence, we will refer to these as morphological effects on 

spectra. There are two major efforts in understanding and resolving these effects to 

recover absorption spectra free from the effects of morphology. The first group of 

methods is termed ‘physics based’. In this approach, explicit optical image–

formation modeling from first principles is used to predict and correct data. Here 

each sample effect (boundary scattering, scattering centers in the sample and 

substrate) needs to be explicitly accounted for. The theory has been shown to be 

generally valid and there are methods now for correcting the same for films, 

spheres and fibers16,110,111. Extension to more complex samples is still the subject 

of ongoing research. A second group of methods may be termed ‘model based’. In 

these methods, a model is assumed to explain all sample effects, typically, Mie 

scattering. Subsequently, rigorous theory is used to recover spectra, e.g., including 

extended multiplicative scattering correction (EMSC)112, resonant Mie scattering 

correction (RMi-eSC)113-115 and rubber band baseline correction116. An indirect 

way to deal with baseline slope is to apply first or second derivative to spectra 

using the SG algorithm. This alters the shape of the spectra, but may also resolve 

overlapped bands. Model-based methods will generally be faster than explicit 

modeling methods and may prove to be broadly useful but need to be validated in 

each case. A third approach, which was traditionally used but is now recognized to 

be of limited value, is to simply correct baselines with a piecewise linear approach. 

Obviously, this method is the fastest, as it requires the least effort to apply and no 

modeling. It is as yet unclear which of these methods works best.
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• Spectral contributions may arise from atmospheric water vapor, carbon dioxide, 

paraffin or other interfering compounds. Although these artifacts may be 

compensated mathematically through EMSC117 or other least-squares–based 

technique118, the most common actions are to remove contaminated spectral bands 

from the data set, improve the control of atmospheric conditions or take 

background spectra more often. In this aspect, before pre-processing, it is often 

useful to implement quality tests to verify SNR and minimize water vapor 

contribution. By following this approach, ‘bad quality’ spectra are discarded as 

they can influence subsequent analysis. The threshold values for defining ‘bad’ and 

‘good’ spectra can be adjusted according to the biological application.

• It is vital to normalize IR spectra to account for confounding factors such as 

varying thickness of sample. Common normalization methods are amide I/II peak 

normalization and vector normalization. Amide I/II normalization is often used 

after baseline correction, whereas vector normalization is often used after 

differentiation of spectra (after correction by differentiation, there is no longer a 

consistent amide I/II peak in the spectra to allow for amide I/II peak 

normalization). For imaging, leaving spectra non-normalized for chemical imaging 

or unsupervised clustering will reveal tissue structures primarily based on 

absorbance intensity, whereas normalization will highlight differences in 

biochemical structure. For diagnosis, some form of spectral normalization is 

conducted.

The optimal pre-processing method or sequence to apply is a subject of discussion and no 

universal best approach exists for all samples. Often the choices are based on the problems 

visually spotted in the spectra; a more objective criterion is to optimize the pre-processing 

method (e.g., through a genetic algorithm)119. In this protocol, we offer several alternatives 

based on cues identified by visual expression of raw (non-pre-processed) spectra, although 

objective validation will probably become more common in the future.

FE—FE methods process the IR spectra to form new variables based on the original 

variables (which are absorbance intensities). FE has an important or even essential role in 

both imaging and diagnosis. For imaging, FE is responsible for generating a single value 

based on the whole of an input IR spectrum. This value can subsequently be used to set the 

color of a pixel in the image; FE is repeated for all spectra, thus forming the pseudocolor 

image. Popular FE methods for imaging include calculating the ratios between wavenumber 

absorbance intensities, area under a subregion of the spectrum, selecting a single 

wavenumber or an ensemble of wavenumbers, or performing PCA. PCA may be applied to 

the spectral data set, followed by selection of a single PCA factor for the color gradient.

For diagnosis, FE constitutes an important data reduction step in order to match the 

complexity of the subsequent supervised classifier with the amount of data available so as to 

avoid over-fitting or undertraining. PCA is one particular popular form of unsupervised FE 

that is used for this purpose103. The number of PCA factors to retain may be subject to 

optimization. One way out is to order the PCA factors from the most to the least 

discriminant on the basis of their P values as determined by a statistical test. The percentage 
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of explained variance can also be taken into account. Within FE, the subgroup of feature 

selection (FS) methods is particularly interesting because it can confer biological 

interpretability (i.e., identify the wavenumbers most important for classification) to the 

classification system. Popular FS methods include forward FS120 and COVAR121. Variance 

analyses may also be used to select spectral variables for elimination122. Another approach 

to FS is to use spectral features that are obtained from a biochemical understanding of the 

problem123. These cases in which direct spectral interpretation is possible are termed metrics 

for measures of biochemical activity in the samples. It is important to note that not all 

metrics may be useful biomarkers. Thus, even FE may be a multistep process, (i.e., one in 

which metrics are converted to statistically relevant biomarkers).

Clustering (unsupervised classification)—Clustering aims at sorting different objects 

(i.e., spectra) into categories or clusters on the basis of a so-called distance measure124. 

Clustering methods such as hierarchical cluster analysis (HCA) and k-means clustering 

(KMC) are frequently used in IR-imaging studies to identify tissue morphology23,125. HCA 

groups spectra into mutually exclusive clusters; in IR-imaging studies, HCA-based 

segmentation is achieved by assigning a distinct color to the spectra in one cluster. Because 

each spectrum of an IR-imaging experiment has a unique spatial (x,y) position, pseudocolor 

segmentation maps can be easily generated by plotting specifically colored pixels as a 

function of the spatial coordinates.

Supervised classification—Supervised or concept-driven classification techniques are 

machine-learning techniques for creating a classification function from training data. These 

methods involve a supervised learning procedure in which models are created that map input 

objects (spectra) to desired outputs (class assignments). Popular supervised techniques are 

artificial neural networks, support vector machines (Supplementary Method 3), linear 

discriminant classifier11,103,126 and Bayesian inference-base methods77. Among the many 

criteria guiding the choice of classifier, the most important is probably the accuracy (related 

to sensitivity and specificity) when tested on an independent test data set. Other criteria 

include ease to train, computational time, spatial resolution considerations127 and software 

availability. Classifiers such as artificial neural networks and support vector machines may 

require a two-stage training, where the first stage is dedicated to finding optimal tuning 

parameters or architecture and the second stage fits the classifier model to the training data. 

Linear discriminant classifier (LDC) is a parameterless classifier that requires only the 

fitting stage. A general rule of thumb is that if two different classifiers are equally well 

performing on an independent test data set, the simplest one should be preferred over the 

more complex one, as simpler classifiers are more likely to be better generalizers103.

MATERIALS

REAGENTS

▲ CRITICAL For sample preparation and analysis, please refer to Tables 1 and 2 and the 

INTRODUCTION for further information.

• FFPE blocks: see Reagent Setup for further information
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• Sample preparation: advice regarding collection of biofluids, cryosectioned tissue 

samples, fixed cells and live cells can be found in the Reagent Setup section! 
CAUTION Human tissues (including biofluids, cytology or FFPE blocks) should 

be obtained with appropriate local institutional review board (e.g., in the UK, this is 

a Local Research Ethics Committee (LREC)) approval; generally, ethical 

permission will be granted for a carefully designed study in which patient 

participants sign a consent form. Worldwide, studies using human tissues should 

adhere to the principles of the Declaration of Helsinki. Similarly, for research using 

animals, appropriate approvals are required; The Animals (Scientific Procedures) 

Act of 1986 is the legislation that regulates the use of animals in scientific 

procedures in the United Kingdom and this is enforced by the Home Office, which 

issues the licenses required.

Other reagents

• ThinPrep (PreservCyt Solution, Cytyc)

• SurePath (TriPath Care Technologies)

• Formalin, 10% (vol/vol), neutral buffered (Sigma-Aldrich, cat. no. HT501128)

! CAUTION It is a potential carcinogen, an irritant and an allergenic. Always work 

in a fume hood while handling it.

• Acetone (Fisher Scientific, cat. no. A/0600/17) ! CAUTION Its vapors may cause 

dizziness. Always work in a fume hood while handling it.

• Ethanol, 2.5 liters (Fisher Scientific, cat. no. E/0600DF/17)

• Virkon (Antec, DuPont, cat. no. A00960632)! CAUTION It is an irritant.

• Paraplast Plus paraffin wax (Thermo Fisher Scientific, cat. no. SKU502004)

• Xylene (Sigma-Aldrich, cat. no. 534056)! CAUTION It is a potential carcinogen, 

an irritant and an allergenic. Always work in fume hood while handling it.

• Histoclear (Fisher Scientific, cat. no. HIS-010-010S)! CAUTION It is an irritant.

• Isopentane (Fisher Scientific, cat. no. P/1030/08)! CAUTION It is an extremely 

flammable, irritant, aspiration hazard and toxic reagent. Always work in fume hood 

while handling it.

• Optimal cutting temperature (OCT) compound (Agar Scientific, cat. no. AGR1180)

• Liquid nitrogen (BOC, CAS no. 7727-37-9)! CAUTION May cause asphyxiation 

and contact with skin will cause burns. Wear cryoprotective clothing and use it in a 

fume hood.

EQUIPMENT

Electronic equipment—For a list of commercial instruments available, please refer to 

Table 5
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Substrate

• Low-E slides (Kevley Technologies, CFR)

• BaF2 slides (Photox Optical Systems)

• Silicon multi-well plate (Bruker Optics)

• Superfrost slides: these can be obtained from various manufacturers, e.g., Menzel 

Glazer Superfrost slides (Menzel-Glaser, cat. no. AA00008132E); Thermo 

Scientific SuperFrost slides (Thermo Fisher Scientific); or Fisherbrand Superfrost 

slides (Fisher Scientific)

Accessories

• Coverslips (Thermo Fisher Scientific, cat. no. 102440)

• Specac Golden Gate single-reflection diamond ATR accessory (Specac)

• Microtomes: these can be obtained from various manufacturers, e.g., Microtome 

(Surgipath Medical Industries); Leica rotary microtomes (Leica Microsystems, 

Davy Avenue Knowlhill); or Bright Cryostat (Bright Instruments)

• Microtome blades: these can be obtained from various manufacturers, e.g., Feather 

disposable microtome blades S35 (VWR, cat. no. SURG08315E), Edge-Rite 

disposable microtome blades (Thermo Fisher Scientific); or Leica Surgipath DB80 

blade (Leica Microsystems)! CAUTION Blades are extremely sharp; handle and 

dispose of them with care.

• Paraffin section mounting bath (40–75 °C; Electrothermal, cat. no. MH8515)

• Desiccator: these can be obtained from various manufacturers, e.g., desiccator 

(Duran Group) or WHEATON Dry-Seal vacuum desiccators (Wheaton Industries)

• Labofuge 400e (Heraeus Instruments)

REAGENT SETUP

FFPE blocks—These are prepared according to the standard methods used routinely in all 

pathology laboratories; the overall steps are: immerse fresh tissue in formalin solution that 

acts as a chemical fixative; dehydrate the tissue in sequential washes of xylene and ethanol; 

and embed the tissue in paraffin wax, which creates an airtight barrier. Tissue blocks can 

then be stored indefinitely at room temperature (20–22 °C).

Biofluids—These are primarily blood plasma or serum, but can also potentially include 

cerebrospinal fluid, saliva or urine. Typically, after acquisition, such samples should be 

stored in appropriate tubes at −85 °C until they are thawed before analysis.

Cryosectioned tissue samples—Tissue samples can be snap-frozen and stored at −80 

°C before use. Tissue should be coated with optimal cutting temperature (OCT) compound 

before freezing, and it should be frozen with isopentane cooled with liquid nitrogen.
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Fixed cells—Typically, these would originate from cytology specimens placed in a 

fixative buffer; an ideal example of this is cervical cytology. However, it could be extended 

to any cell type isolated in the form of a suspension in a preservative buffer solution.

Live cells—This is an emerging area within the field whereby viable cells can be 

spectrochemically analyzed, primarily in a constructed microfluidic platform (for a typical 

method, see Supplementary Method 4).

EQUIPMENT SETUP

Software—Two types of software are required: spectral acquisition and data analysis. 

Spectral acquisition software is normally provided by the instrument manufacturer. Most 

instrumentation software also provides a number of preprocessing and sometimes more 

advanced data analysis options. Various data analysis software programs and packages exist, 

ranging from those for general-purpose use to those targeting specific data analysis tasks 

(e.g., multiplicative curve resolution–alternating least squares (MCR-ALS)). A popular 

development environment and programming language is MATLAB (http://

www.mathworks.com) in which customized software can be written for specific tasks. 

Python (http://www.python.org) is another programming language that is becoming 

increasingly popular in the FTIR spectroscopy field, and it has the advantage of being open 

source. For a list of commonly used software and packages, please refer to Table 4.

PROCEDURE

Sample preparation

1| Prepare the samples by following the steps listed in one of the options given below. 

Perform the steps in option A for FFPE tissue samples; option B for cryosectioned tissue 

samples; option C for cytological specimens; and option D for biofluids.

Live cells may be prepared in three main ways for IR-transmission studies: grown directly 

onto IR substrates; grown in a 3D culture matrix (and then processed as described in options 

A and B); or fixed in suspension, e.g., as cervical cytological specimens in fixative obtained 

from hospital pathology laboratories. Cells that are fixed in suspension should be processed 

by following the steps in option C.

To grow cells on IR substrates, sterilize the IR substrate for 1 h in 70% (vol/vol) ethanol 

before growing cells directly onto the chosen IR substrate.

Cells grown onto 
IR substrates

Sterilize the IR substrate for 1 h in 70% (vol/vol) ethanol before growing cells directly onto the
chosen IR substrate. Generally, cellular materials are then fixed in order to preserve their 
architectural
integrity, and the samples are stored in a desiccator prior to spectral acquisition (Step 2).

Cells grown in 3D 
culture matrix

Cells may be grown on 3D culture matrices (a tissue culture environment or device in which live
cells can grow or interact with their surroundings in three dimensions), and subsequently fixed or
snap-frozen and sectioned as described for tissue samples in Step 1A and Step 1B
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(A) FFPE tissue • TIMING 50 min

(i) Obtain FFPE tissue blocks of interest from a pathology laboratory.

(ii) Place a FFPE block onto an ice block for 10 min. Use a microtome to trim into 

the block to expose the entire tissue sample to the face of the block. This will 

ensure that a full tissue section is cut for analysis. Place trimmed blocks back on 

ice for 10 min.

▲ CRITICAL STEP Make sure that the blocks are cold before cutting sections. 

This hardens the wax, reducing the friction between the block surface and blade 

allowing a much smoother cut.

(iii) Cut a ribbon of 10-μm sections and float it onto a heated water bath (40–44 °C). 

Separate the individual sections with forceps.

▲ CRITICAL STEP Optimal tissue thickness for the maximum SNR should be 

determined in-house by applying variable thicknesses of sections (depending on 

the tissue type) to slides for IR interrogation, e.g., ~3 μm (e.g., for bone), 5 or 10 

μm (e.g., for prostate tissue), and 15-μm serial sections to BaF2, CaF2 or Low-E 

slides. SNR is judged on the quality of the raw spectra; in particular, the 

presence of many narrow, sharp peaks indicates high noise. If using tissue for 

imaging and extraction of tissue cell type, sample thickness is not just an SNR 

issue. The thicker the tissue, the greater the chance of probing heterogeneous 

layers and perhaps multiple cell types, rendering the cell type signal less pure.

▲ CRITICAL STEP Depending on the melting point of the paraffin wax used 

for embedding tissue samples, the temperature of the water bath will need to be 

adjusted to prevent melting of the wax.

(iv) Prepare tissue slides by re-floating a single 10-μm-thick tissue section onto a 

BaF2, CaF2 or Low-E slide for FTIR microspectroscopy or ATR-FTIR 

spectroscopy. In our experience, a 5–10-μm section is the optimal thickness for 

maximum SNR.

▲ CRITICAL STEP As BaF2 slides can be 1 cm × 1 cm in size to fit common 

slide holders, a H&E-stained parallel section may be required to identify an area 

of interest for analysis. Once a section is floated onto the water bath, sections 

can be picked up on normal microscope slides, dissected using a scalpel for the 

area of interest and floated back onto water for application to BaF2 slide.

(v) Place the tissue slide in a 60 °C oven for 10 min.

(vi) De-wax the tissue slide by immersing it in xylene for 5 min at room 

temperature. Repeat this step twice with fresh xylene. For small, round slides 

that are difficult to handle during solvent immersion, slides can be encased into 

plastic histology cassettes that can be threaded round a large metal clip. The 

same procedure can be conducted using hexane.

▲ CRITICAL STEP For IR analysis, it is necessary to de-wax the tissue in 

order to probe unhindered the full wavenumber range. This is paramount as 
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paraffin is known to have significant peaks at ~2,954, 2,920, 2,846, 1,462 and 

1,373 cm−1. If there is uncertainty about paraffin removal, these regions of the 

spectrum can be removed from subsequent analysis. However, this comes at the 

cost of probing many solvent-resistant methylene components of the native 

tissue128,129.

(vii) Sequentially, wash and clear the tissue slide by immersing it in acetone or 100% 

ethanol for 5 min at room temperature.

(viii) Allow the tissue slide to air-dry before placing it into an adequate-sized Petri 

dish for storage in a desiccator.

■ PAUSE POINT Slides can be stored in a desiccator before IR interrogation; 

in our experience, storage should be <1 year.

(B) Snap-frozen and cryosectioned tissue samples • TIMING 120 min + drying 
time (3 h)—! CAUTION Snap-freezing should be carried out in a fume hood while you 

are wearing cryoprotective gloves, clothing and a facemask.

(i) The fresh tissue should be no more than 2 cm in any one dimension; gently blot 

away any fluids from the surface, place a cryomold and fill the mold with OCT 

compound.

(ii) Fill a plastic cryobucket with 3–4 cm of liquid nitrogen. Pour isopentane into the 

stainless steel beaker until it is about 1–2 cm deep. Place the stainless steel 

beaker into the liquid nitrogen and allow temperatures to equilibrate (3–5 min).

(iii) Take the cryomold containing the tissue sample in OCT compound and use long 

forceps to lower it into the isopentane; hold until the OCT compound freezes 

(60–90 s).

(iv) Remove the cryomold and transfer it to the bucket of dry ice. Wrap snap-frozen 

tissue in aluminum foil and label it before storing it in −80 °C freezer.

■ PAUSE POINT Snap-frozen tissue can be stored in a −80 °C freezer for 

several months.

(v) Retrieve previously prepared snap-frozen tissue blocks from the −80 °C freezer 

and transfer them to the cryostat in dry ice to prevent thawing.

(vi) Unwrap the frozen block from its protective foil covering and mount it into the 

cryostat. Allow the block to equilibrate to the cryostat temperature for 30 min. 

The optimum cryostat cutting temperature will depend on the sample, but −20 

°C will be suitable for most tissues.

(vii) Cut sections with a cryostat until the region of interest is reached. Next, take 

serial sections of the tissue sample at the desired thickness for your study.

(viii) Carefully mount the sections onto the substrate window. Immediately upon 

acquiring the cryosection, transfer the slides to a slide box on dry ice, wrap them 

in foil and store them at −80 °C to preserve the biochemical content.
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(ix) Before imaging, bring slides to room temperature in a dark slide box with 

desiccant for several hours (minimum 3 h) until they are dry.

▲ CRITICAL STEP The tissue needs to be adequately thawed before IR 

analysis (freezing and thawing may also damage the structural integrity of the 

tissue). During the thawing process, store the sample under dark, dry conditions 

at room temperature. Light exposure is only advised during the short time 

required for the instrumental setup; this maintains the stability of spectral 

acquisition. Room lights and bright-field microscope illumination should be 

switched off during measurement collection130.

(C) Cytological specimens • TIMING 30 min + desiccation time (24 h)

(i) For formalin fixation, cellular pellets should be washed twice in PBS to remove 

culture medium before resuspension in formalin solution (in which they should 

remain for at least 30 min). Before IR analysis, cells should be washed with 

HBSS to wash out the residual phosphate ions.

▲ CRITICAL STEP SurePath and ThinPrep fixative solutions, used in hospital 

pathology laboratories, have IR signatures in the biochemical cell–fingerprint 

region and should therefore be removed from the sample by sequential washes 

before analysis. Alcohol-based fixatives may remove some lipids from the 

sample.

(ii) Resuspend the remaining cell pellet in 0.5 ml of distilled water, transfer the cells 

to the appropriate IR slide and allow them to air-dry before storing in a 

desiccator. Cells may be transferred to a slide as microdroplets, or they can be 

cytospun.

(iii) For cytospinning, take a maximum volume of 200 μl of cells in suspension 

(spin-fixed cells at 800g (g force = 0.0000118 × radius of rotation (mm) × 

r.p.m.2) for 5 min). After spinning, leave the slide to air-dry for 24 h; the 

centrifugal force will have squashed the cells onto the slide, but if you try to 

wash the slides with water straight away you might lose them. After this time, 

wash the slide with 1-ml aliquots of deionized water three times (at around 5–10 

s per wash, more water can be used if found necessary and cells stick 

adequately). The cells will remain on the slide and can always be washed further 

if traces of salts remain.

▲ CRITICAL STEP When transferring the cellular material to the slide, ensure 

that an even deposit of cells is placed on the slide. Cytospinning allows the cells 

to be proportionally dispersed over the substrate. If the cells are particularly 

small, they may ‘bounce’ off the slide during the spinning instead of getting 

stuck down. In this case, do a 5-min spin at 400g, then another 5-min spin at 

800g to ensure firm plating.
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(D) Biofluids • TIMING 10 min

(i) Biofluids (i.e., urine, serum, plasma and saliva) should be immediately stored at 

−80 °C in cryovials after collection from pathology laboratories and thawed at 

room temperature before use.

(ii) Samples of biofluids are painted directly onto the aperture (e.g., for ATR 

analysis) or a standard amount is pipetted onto suitable IR substrates (50–250 μl 

would be typical, but depending on the biofluid, preliminary analysis would be 

needed).

(iii) Samples are allowed to dry before analysis.

▲ CRITICAL STEP Contact of the sample with the crystal is a very important 

parameter for ATR-FTIR analysis. If you are using an aperture ATR-FTIR 

accessory, 1 μl of sample has been shown to be dry within 8 min44.

Acquisition of spectra

2| Acquire spectra by ATR-FTIR spectroscopy (option A) or transmission FTIR 

microspectroscopy (option B) or FPA. A standard operating procedure for direct-drop ATR-

FTIR for biofluid analysis is included in Supplementary Method 1; this would primarily be 

used when very small aliquots of the sample are available. A standard operating procedure 

for FTIR-FPA imaging with an Agilent 670-IR spectrometer coupled with an Agilent 620-

IR microscope and FPA detector is included in Supplementary Method 2 (this file also 

contains a troubleshooting section).

(A) ATR-FTIR spectroscopy • TIMING 20 min (10 spectra)

(i) Open the instrument-operating software.

(ii) Apply instrumental settings (guidelines are described in ‘Experimental design: 

spectral acquisition’).

(iii) Check the path where files are to be saved; set the file name according to a 

previously devised file-naming convention.

(iv) Visualize the sample through the instrument digital camera to locate the region 

of interest from which you wish to acquire the spectrum.

▲ CRITICAL STEP If the instrument has been switched off, make sure you 

check the interferogram signal for the correct location and amplitude. The 

system may need to be re-aligned if it has been moved or if components have 

been changed.

(v) Clean the ATR IRE with distilled water and dry it with tissue.

▲ CRITICAL STEP Make sure that the crystal is thoroughly cleaned and dried 

before a background acquisition.

(vi) To acquire a background spectrum, the IRE should not be in contact with the 

sample or slide, and it should be open to the surrounding environment. Record a 

background spectrum.
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▲ CRITICAL STEP It is very important that a background spectrum is taken 

before every sample. Also, a background spectrum should be taken if 

atmospheric changes occur (e.g., if a door has been suddenly opened).

(vii) Place the slide in contact with the IRE.

▲ CRITICAL STEP Ensure that the ATR IRE is completely covered by the 

sample and that the minimum sample thickness is 3–4 times the depth of 

penetration to ensure that there is no interference from the substrate.

(viii) Acquire a spectrum.

(B) FTIR microspectroscopy • TIMING 1 h per sample (~12 spectra) or 6 h per 
sample (image map, ~72 spectra)

(i) Switch on the microscope and instrument.

(ii) Fill the detector with liquid N2.

▲ CRITICAL STEP If you are using a MCT detector, filling it with liquid N2 

is essential; allow the detector (and therefore the signal) to stabilize (~10 min) to 

an optimal peak-to-peak value. Top up with N2 every 9 h (depending on the 

instrument).

(iii) Open the instrument-operating software.

(iv) Apply settings.

(v) Use the software to get a view of the slide as seen through the microscope.

(vi) Load the sample onto the stage and focus the microscope.

(vii) To check the signal quality, move to a sample-free area of the slide and adjust 

the position to bring the surface of the blank area of the substrate into focus.

(viii) In our experience, the optimal sample aperture for a benchtop FTIR 

spectrometer with a globar source is 20 μm × 20–100 μm × 100 μm (dependent 

on sample quality and instrumental limitations). Apply the aperture size.

▲ CRITICAL STEP Optimization of the aperture size should be performed to 

confirm the smallest possible aperture that can be used to acquire spectra with a 

high SNR.

? TROUBLESHOOTING

(ix) Use the joystick to move the sample around the microscope stage to identify 

points or areas to interrogate.

(x) Select a clean, sample-free point on the slide and acquire a background spectrum 

according to your device.

▲ CRITICAL STEP Acquire a background spectrum each time the detector is 

filled with liquid N2 and at regular intervals (or before each sample) to account 

for atmospheric changes.
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(xi) Acquire a sample measurement either as a point map or as an image map.

A point map Select a number and location of points of interest

Image map Use automatic allocation of adjacent points in a grid

▲ CRITICAL STEP Be sure to define a number of points (or map size) that 

does not exceed the scheduled time frame of the liquid N2 top-up.

▲ CRITICAL STEP The integration time is essentially a measure of the time 

for which the shutter is open to collect the incoming photons. The aim is to 

optimize the SNR without saturating the detector. If the integration time is too 

high, the user will observe saturation effects in the FTIR images; if it is too low, 

the data quality and SNR will be reduced as the FPA has not been fully 

illuminated. This calibration is a nonuniformity correction, and results are 

shown with measures of high and low flux (in counts) and the number of out-of-

range pixels.

(xii) Acquire spectra.

■ PAUSE POINT Once the spectra are saved they can be stored in a database 

until data processing.

Data pre-processing • TIMING 15 min–4 h (depending on the size of the data set)

▲ CRITICAL Steps 3–7 below all contain different options at each step; however, there are 

combinations of these steps that may be more or less appropriate than others, depending on 

the sample type, instrumentation setup, noise level, need for visualization of spectra, 

personal preference and classification performance among other factors (Table 4). Although 

they are usually carried out in the sequence presented, none of the steps from 3 to 7 are 

mandatory. For guidelines on choosing specific preprocessing steps and options, please refer 

to the ‘Experimental design data processing’ section. The reader may also refer to the 

Supplementary Method 3 for an illustrated example of a pre-processing sequence applied to 

a real-world data set using specific software.

3| De-noise the spectra (optional, depending on the SNR of the spectra). Consider using one 

of the following de-noising algorithms: Savitzky-Golay de-noising, WDN (not commonly 

used, but is a nonlinear method with its own advantages), PCA noise reduction or minimum 

noise fraction.

4| Perform spectral correction, which can be carried out using physical theory–based 

methods such as RMieSC or rubber band baseline correction49,53,113-115.

5| Perform SG differentiation (first differentiation is most used; second differentiation is also 

common).

6| Perform data normalization. This can be done using min-max normalization (e.g., 

normalization to the amide I/II peak) or vector normalization.
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7| Scale the variables: this could be done by standardization (normalization of variables to 

zero mean and unit s.d.) or by normalization to a 0–1 range.

Data analysis • TIMING 1 h–2 d (depending on file size)

8| Choose a data analysis procedure appropriate to your analysis goal; here we cover 

diagnosis (supervised classification; option A below) and imaging (options B–D). For option 

A, data sets obtained with a single-element IR detector are normally used and the physical 

location of one spectrum within its sample is used in the data analysis. The procedures for 

creating an image use a data set acquired by point or array mapping, or an FPA detector. 

Each spectrum has its Cartesian (x, y) location. There are three different options for 

achieving this step (options B–D). Options B and C are suitable for chemical imaging using 

the FE method and unsupervised classification, respectively. Option D (supervised 

classification) is suitable for spatial diagnosis of tissues. It uses a training set of images to 

build a model to subsequently apply this model to unknown images. After performing 

options B, C or D, follow the instructions in option E.

(A) Diagnosis (supervised classification)—▲ CRITICAL Training and test data sets 

are required. In rare cases, one single training and test data set pair could be enough to 

obtain a meaningful estimation of real-world classification; however, most of the time such 

estimation is obtained through cross-validation, in which the procedure below (training and 

testing) is repeated multiple times to get an average performance (or error) estimation.

(i) FE training. Input pre-processed training data set into the FE algorithm of your 

choice (see ‘Experimental design: data processing’) in training mode. Generate a 

model that will be able to subsequently extract features from a test data set.

(ii) Classifier training. Apply the FE model obtained in a previous step to the 

training data set. Next, input the FE-processed data set to the classification 

algorithm of your choice (see ‘Experimental design: data processing’) in training 

mode. Generate a model to be subsequently applied to test data set.

(iii) Testing. Apply the trained FE model to the test data set to obtain an FE-

processed output data set; input the FE-processed data set into classification 

model to obtain one-class estimation per spectrum. If there are several spectra 

per sample, conduct a ‘majority vote’ procedure to obtain one class estimation 

per sample.

▲ CRITICAL STEP Training and testing should be repeated through a cross-

validation procedure, depending on the sample size.

(B) Chemical imaging using an FE method

(i) Map each spectrum into a single scalar value. Choose an FE technique to obtain 

a scalar value for each spectrum (this value will be subsequently used to address 

a particular color within a gradient color map). Refer to ‘Experimental design: 

data processing’ for guidelines on choosing the FE method.

(ii) Continue to Step 8E.
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(C) Clustering (unsupervised classification)

(i) Apply a clustering algorithm (e.g., HCA or k-means) to organize the spectra into 

clusters.

(ii) Assign a different integer number to each cluster and continue to Step 8E.

(D) Supervised classification for imaging

(i) Conduct histological assessment of the training set to identify different regions 

within the training set images; this will be used as teaching information for the 

supervised learning algorithms.

(ii) Apply Step 8A(i,ii), using the training data set obtained in the previous step to 

obtain a classification model.

(iii) Apply the model to the test data to obtain one class estimation per spectrum in 

the image.

(iv) Assign a different integer number to each class and continue to Step 8E.

(E) Mapping different scalar values to different color tones

(i) Map different scalar values obtained in previous steps into different color tones. 

For chemical imaging (Step 8B), a gradient color map is used (e.g., red to 

yellow, rainbow and so on), whereas for Step 8C and Step 8D, an indexed color 

map in which each cluster or class is represented by a color of choice is suitable. 

Although the idea is presented here for understanding, this step is normally 

carried out by imaging software.

? TROUBLESHOOTING

Optimizing the sample aperture

To overcome the problem of over- and undersampling for fine imaging, the spatial sampling 

area should be at least two times larger than the (spatial) frequency of the feature under 

study. The step size should be equal or smaller than the aperture size divided by 2.

For Troubleshooting for FTIR imaging with an Agilent 620 IR microscope coupled with an 

Agilent 670/680 IR spectrometer, see Supplementary Method 2.

• TIMING

Step 1A, FFPE tissue: 50 min

Step 1B, snap-frozen and cryosectioned tissue samples: 120 min + drying time (3 h)

Step 1C, cytological specimens: 30 min + desiccation time (24 h)

Step 1D, biofluids: 10 min

Step 2A, ATR-FTIR spectroscopy: 20 min (10 spectra)
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Step 2B, FTIR microspectroscopy: 1 h per sample (~12 spectra) or 6 h per sample (Image 

map, ~72 spectra)

Steps 3–7, data pre-processing: 15 min–4 h (depending on the size of the data set)

Step 8, data analysis: 1 h–2 d (depending on the file size)

ANTICIPATED RESULTS

Preprocessing options

Figure 4 is a basic example that shows a set of ATR-FTIR raw spectra (cut to the 1,800–900 

cm−1 region) and their appearance after being pre-processed by different methods. Rubber 

band baseline correction is one of the options to remove sloped baselines. Normalization to 

the amide I/II peak shifts and scales all the spectra so that their vertical minimum is at zero 

and the amide I/II peak of all spectra match at the same height. To resolve overlapping 

bands, mathematical derivatives are used to narrow their full width at half height value 

(FWHH). Narrower bandwidths (i.e., higher resolution of differential spectra) potentially 

allow for subtle differences between spectra to be more easily resolved. However, each 

differentiation amplifies noise and therefore the SG differentiation algorithm (with implicit 

de-noising) is often used. Vector normalization is applied after differentiation to normalize 

the Euclidean norm of each spectrum to unity.

Classification of blood plasma

This example shows a comparison of supervised classification performance between 

different combinations of pre-processing, FE and supervised classification methodologies 

(Fig. 5). This data set consisted of blood serum and plasma samples of patients with ovarian 

cancer or endometrial cancer (n = 30 for both) and control patients without ovarian cancer (n 

= 30) analyzed with ATR-FTIR spectroscopy (7 spectra per sample)41,131. The classification 

rate, defined as the average between sensitivity and specificity, was used as a classification 

performance measure to class patients on the basis of their disease status (i.e., ‘normal’ 

versus ‘cancer’). The example illustrates that no single pre-processing, FE or supervised 

classification methodology is the absolute best, but a combination of these may be the best 

solution to the problem posed. The counterpoint to this is that different data sets may require 

different pre-processing, FE and/or supervised classifier methodologies, as pointed to in the 

machine-learning literature103. This is evidence that different combinations of 

methodologies should be attempted and compared in any diagnostic study.

Imaging of human colon mucosa in Cytospec using agglomerative HC and KMC

An example of imaging of human colon mucosa sections by using agglomerative 

hierarchical clustering and KMC is shown in Figure 6. The image was produced using the 

Cytospec software. Figure 6c shows the original histological image from which FTIR 

spectra were recorded at a spatial resolution of 232 × 233 pixels. Some images (Fig. 6b,d) 

have been reconstructed using the multivariate methods of agglomerative hierarchical 

clustering (AHC) and KMC, respectively, with both demonstrating clear differentiation of 

the histological structures of the sample analyzed.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Typical biological spectrum showing biomolecular peak assignments from 3,000–800 cm−1, 

where ν = stretching vibrations, δ = bending vibrations, s = symmetric vibrations and as = 

asymmetric vibrations. The spectrum is a transmission-type micro-spectrum from a human 

breast carcinoma (ductal carcinoma in situ). The sample was cryosectioned (8 μm thick) and 

mounted on BaF2 slides (1 mm thick) before IR microspectroscopy. Equipment: Bruker IR 

scope II, circular diameter of aperture ~60 μm; a.u., arbitrary units.
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Figure 2. 
The instrumentation underlying the main forms of IR spectroscopic sampling. (a) Schematic 

of modern FTIR-imaging spectrometer. Reproduced with permission from ref. 6. (b) 

Schematic representation of the three main sampling modes for FTIR spectroscopy. 

Reprinted from Trends Biotechnol, 31, Dorling, K.M. and M.J. Baker, Highlighting 

attenuated total reflection Fourier transform infrared spectroscopy for rapid serum analysis, 

327–328, Copyright 2013 with permission from Elsevier (ref. 132).
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Figure 3. 
FTIR spectroscopy work flow for imaging and diagnosis. The three major steps are sample 

preparation, FTIR spectral acquisition and data analysis. Sample preparation may differ 

depending on the sample format, requiring different materials and procedures. At FTIR 

spectral acquisition, several options have to be considered for light source and sampling 

mode. Data analysis presents different paths depending on the analysis goal (i.e., imaging or 

diagnosis). The framework for diagnosis is somewhat more complex, involving training of 

classification systems and validation of these systems using test data sets. Although not 

illustrated, the data sets used for testing are also obtained through sample preparation 

followed by FTIR spectral acquisition.
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Figure 4. 
Visual effect of different pre-processing steps on a set of FTIR spectra. Two common pre-

processing sequences are rubber band baseline correction followed by normalization to the 

amide I/II peak and first or second differentiation followed by vector normalization. Rubber 

band baseline correction subtracts a rubber band, which is stretched ‘bottom-up’ at each 

spectrum, eliminating slopes. Amide I/II normalization forces all spectra to have the same 

absorbance intensity at the amide I/II peak. Differentiation (Savitzki-Golay (SG) method) 

has the advantage of eliminating slopes while also resolving overlapped bands, but has the 

drawback of altering the shape of the spectra (the y axis unit is no longer a.u. (arbitrary 

units), but ‘a.u. per wavenumber’ (first differentiation) or ‘a.u. per wavenumber squared’ 

(second differentiation)) and enhancing noise (note how second-differentiated spectra are 

visibly more noisy). Vector normalization is typically applied after differentiation. This 

normalization technique does not require a reference peak as amide I/II normalization does.
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Figure 5. 
Classification rates (% classification ± s.d.) of all possible combinations between three 

different pre-processing, three different feature extraction and two different supervised 

classifier options. Pre-processing options: rubber band baseline correction followed by 

normalization to the amide I peak; first Savitzky-Golay (SG) differentiation (7 points; 

second order) followed by vector normalization; and second SG differentiation followed by 

vector normalization. FE options: PCA (optimization of number of PCs); forward feature 

selection (FFS) using multivariate analysis of variance (MANOVA) P values as a criterion 

to including the next variable (this is similar to the COVAR method for optimization of 

number of selected features); and ‘Identity’ (FE skipped). Supervised classifier options: 

linear discriminant classifier (LDC); and support vector machine (SVM; using Gaussian 

kernel; optimization of the C and γ parameters133,134). The figure’s cells are gradient-

colored according to their respective classification rate inside (yellow to red). RBBC, rubber 

band baseline correction.
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Figure 6. 
IR image reconstruction of a section of human colon mucosa. (a) Chemical map based on 

the integrated absorbance of the amide I band (1,620–1,680 cm−1). (b) IR imaging using 

agglomerative HCA (six clusters). (c) Standard histological preparation of the colonic 

mucosa. (d) IR map generated on the basis of k-means clustering (15 clusters). Adapted with 

permission from ref. 135.
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Table 1

FTIR spectroscopy modes used for the interrogation of cellular materials.

Mode
Suitable
samples Substrate

Typical
interrogation
area (μm) Pros Cons

ATR Tissues,
cells and
biofluids

Calcium
or barium
fluoride, zinc
selenide,
MirrIR
Low-E-coated
glass

250 × 250 High SNR
Reduced scattering
Analysis of large target area
Better for aqueous samples with
appropriate substrate
Highest spatial resolution (because
of the refractive index n, which is 3.5
or even 4 in case of Si or Ge)

Can be destructive because of
pressure
Air between sample and IRE will
affect spectra
Minimum sample thickness is
required (~2.3 μm)
Interactions of samples with
the IRE leading to structural
alterations (e.g., secondary
protein structure)

Transmission Tissues,
individual
cells, cellular
components
and biofluids

Calcium
or barium
fluoride and
zinc selenide

5 × 5 to
150 × 150

High spatial resolution
Nondestructive of prepared sample
Automated stage allows for spec-
tral acquisition at several different
locations of choice with little user
interaction

Lower SNR than ATR
Maximum sample thickness is
required
Sample thickness should be
twice as large as for transflection
to achieve the same absorbance
Longer sample and machine
preparation is required

Transflection Tissues,
individual
cells, cellular
components
and biofluids

Calcium
or barium
fluoride and
zinc selenide

5 × 5 to
150 × 150

High spatial resolution
Nondestructive of prepared sample
Automated stage allows for spec-
tral acquisition at several different
locations of choice with little user
interaction
Approximate sample thickness can be
1–4 mm, whereas for transmission it
needs to be 2–8 μm

May give rise to standing wave
artifacts
Lower SNR than ATR
Maximum sample thickness is
required
Longer sample and machine
preparation is required
Scattering effects such as
RMieSc will be much more
intense in transflection type
measurements
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Table 2

Sample types and preparation.

Sample type Preparation Removal of contaminants Sample mount Considerations

Biofluids Biofluids such as blood, urine,
saliva and synovial fluid should be
collected as per hospital SOPs
Samples that are not immediately
used should be frozen and stored
at −80 °C
Samples should be thawed fully
before use

When using blood-based
biofluids such as serum
and plasma, spectra from
erythrocytes may mask
that of other biomolecules,
so they should be removed
if not being directly
investigated41

Biofluids may be placed
onto slides and dried, or
dried directly onto the,
IRE44

Dry film analysis (where
the fluid is dried onto
the slide) often results in
large signals compared
with the wet biofluid,
but measurements may
be impeded by uneven
distribution
Only small sample
volumes are needed,
normally in the region of
a few nanoliters136

FFPE tissue
samples

FFPE tissue should be de-waxed for
a minimum of 5 min in xylene and
three washes should be performed
Sample thickness should not exceed
8–12 μm (transmission, less for
transflection; see Table 1) in
order to avoid a nonlinear detector
response (at absorbance values > 1.2
(for MCT) or > 1.5 (for deuterated
triglycine sulfate)), to even total
absorption

Samples must be de-waxed
in order to probe the
full wavenumber range,
as paraffin is known to
have significant peaks at
~2,954 cm−1, 2,920 cm−1,
2,846 cm−1, 1,462 cm−1

and 1,373 cm−1, which
may mask solvent-resistant
methylene components of
native tissue128,129

Samples are then cleared
with acetone to remove
any final xylene
contamination
Another recent and
emerging alternative is
to model the paraffin
contribution and
numerically de-paraffinize
the sample36. In this way,
the sample is not
affected by chemical
de-paraffinization, and
intact tissue biochemical
information is used for
spectral histology

De-waxed tissue should
be floated onto slides

If using tissue for
imaging and extraction of
tissue cell type, sample
thickness is not just an
SNR issue. The thicker
the tissue, the greater
the chance of probing
heterogeneous layers and
possibly multiple cell
types, rendering cell type
signal less pure

Cryosectioned
tissue
samples

Tissue must be thoroughly thawed
before IR analysis
Once a sample is thawed, compo-
nents may start to degrade, so we
suggest imaging sections as soon as
possible after thawing and drying, in
a dark environment130

However, under dry conditions,
cryosections can be stored for
months without major problems
other than lipid oxidation, as seen
by the decrease of the ester carbonyl
bands (degrades within 2 weeks; this
can be avoided when samples are
stored in a N2 atmosphere)

Serial sections should be
carefully isolated from the
cryoblock to prevent OCT
compound contamination
of the final tissue slice

Snap-frozen tissue
should be cut and
placed onto slides

Although snap-freezing
negates the use of
fixatives such as formalin
or the use of paraffin,
it may damage the
structural integrity
of the tissue

Fixed cells Medium contaminants must be
removed before cells are placed in
fixative such as ethanol or formalin
For formalin fixation, cells should be
washed twice in PBS before 
suspension
in formalin for at least 30 min
Slides should be dipped three times
in double-distilled water (this should
not be extended beyond quick dips)
as formalin fixation can be reversed

After formalin fixation,
cells should be washed in
HBSS before IR analysis to
remove residual phosphate
ions
After ethanol fixation,
slides should be left to dry
for 24 h on the benchtop
and 24 h in a desiccator
so that all residual ethanol
evaporates

Cells can be grown onto
IR substrates that have
been first sterilized in
70% (vol/vol) ethanol,
as growing directly onto
the slides can preserve
cell morphology
They can also be grown
in a 3D culture matrix,
which can then be fixed
or frozen and sectioned;

If grown on slides, cells
will typically be thin,
as they grow and stretch
over a 2D surface
Cells fixed and then
placed onto slides may
be uneven in thickness,
which may be resolved
using cytospinning,
which allows cells to be
proportionally dispersed
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Sample type Preparation Removal of contaminants Sample mount Considerations

in the presence of water92

For ethanol fixation, cells should be
washed three times in ethanol
(min. 70% (vol/vol)) before being
left to stand in ethanol for at
least 1 h

this may provide the
most realistic environ-
ment in which cells can
be studied

over the substrate

Live cells Cells that are to be analyzed in
suspension should be detached from
the growth substrate using trypsin
and then stored at 4 °C to prevent
autolysis137

For ATR-FTIR measurements, cells
can be seeded and grown directly
onto the ATR IRE using a cell
chamber59

Cells in suspension must
be washed with PBS to
remove residual medium or
trypsin

Spectra recorded
in an aqueous
environment show
minimal dispersion
because the refractive
index of aqueous
medium for the
background single-
beam spectrum closely
matches that of the
cell for the sample
spectrum47

Therefore, cell
suspension can be
placed onto the IR
slides as microdroplets
Cells can be grown
directly onto a
detachable IRE such
as diamond for
ATR-FTIR analysis
Live cells can also be
analyzed in situ by
the use of microfluidic
devices21

The critical β-DNA
conformational marker
bands are enhanced in
the hydrated state2,
and thus can be used
to determine the
concentration of DNA
in simple cells138,139

Single-cell micro-
spectroscopy is
inherently difficult
because of the strong
absorptivity of the water
molecule, which can
swamp the spectrum
especially when the
sample path length
is > 10 μm (ref. 140)
A bright source of IR
photons is required to
achieve a good SNR
because the IR beam
must usually pass through
two IR transparent
windows, cell medium
and the hydrated cell,
causing attenuation of
the IR signal
Thus, most measurements
performed on single
living cells with an FTIR
microscope configuration
use a synchrotron
light source
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Table 3

Typical conditions of the main variables affecting SNR in spectroscopy instruments.

Instrument options

FTIR ATR-FTIR

Variable
Single-element

detector FPA
Single-element

detector FPA

Light source Globar
a

Synchrotron
b

Globar
c

Synchrotron
d

Globar 
e

Globar
f

Sampling aperture 15 × 15 to
150 × 150 μm

5 × 5 to
20 × 20 μm

700 × 700 μm
FOV

50 × 50 to
175 × 175 μm

250–250 μm 60 × 60 to 700 ×
700 μm

No. of co-additions 512 256 64 or 128 128 32 32

Spectral resolution 4 or 8 cm−1 4 or 8 cm−1 4 or 8 cm−1 4 or 8 cm−1 8 cm−1 4 or 8 cm−1

a
Ref. 141.

b
Refs. 119,142.

c
Refs. 142,143.

d
Refs. 76,144.

e
Refs. 145,146.

f
Patented by Agilent Technologies59.
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Table 4

Some existing FTIR spectroscopy data analysis software.

Software Website Description License

Cytospec http://www.cytospec.com Software for hyperspectral 
imaging
(IR and Raman)

Commercial;
free demo available

IRootLab https://code.google.com/p/irootlab/ MATLAB toolbox for 
biospectroscopy
data analysis

Open source

OPUS http://www.bruker.com Spectral acquisition software 
with data
processing capabilities

Commercial

Pirouette http://www.infometrix.com Chemometrics modeling software Commercial

Unscrambler X http://www.camo.com Multivariate data analysis and 
design of
experiments

Commercial

PLS, MIA, EMSC 
toolboxes

http://www.eigenvector.com MATLAB toolboxes for 
spectroscopy
data analysis

Commercial

OMNIC http://www.thermoscientific.com Spectral acquisition software 
with data
processing capabilities

Commercial

PyChem http://pychem.sourceforge.net/ Package for univariate and 
multivariate
data analysis

Open source

ENVI, IDL http://www.exelisvis.com Integrated development, data 
analysis
and image processing suite

Commercial

MCR-ALS toolbox http://www.cid.csic.es/homes/rtaqam/tmp/WEB_MCR/welcome.htm MATLAB Toolbox 
implementing the
MCR-ALS algorithm

Open source
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Table 5

Instruments and corresponding data acquisition software.

Manufacturer Instruments Software

Agilent
Technologies

Agilent 670-IR
spectrometer

Resolutions Pro

Cary 600 series FTIR
spectrometers

Agilent 600 series FTIR
microscope

Bruker Optics Bruker Tensor 27 spectrometer OPUS

ALPHA FT-IR spectrometer

HYPERION series FT-IR
microscope

LUMOS FT-IR microscope

JASCO UK JASCO FTIR-4100 series Spectra Manager

JASCO FTIR-6000 series

IRT-5000 FTIR microscope

PerkinElmer PerkinElmer Frontier Spectrum 10

Spectrum Two

Spotlight FTIR microscope
system

Thermo Fisher
Scientific

Thermo Nicolet iS50
spectrometer system

OMNIC 8

Thermo Nicolet Scientific
FTIR 5700 spectrometer with
continuum microscope

Shimadzu IRTracer-100 spectrometer
IRAffinity-1S spectrometer

Lab Solutions IR
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