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Abstract

This thesis, entitled Spectral Theory Using Linear Systems and Sampling from the Spectrum of

Hill’s Equation is submitted by Caroline Brett, Master of Science for the degree of Doctor of

Philosophy, September 2015. It uses linear systems to solve various problems connected with

Hill’s equation, −f ′′ + qf = λf for q ∈ C2, real-valued and π-periodic. Introducing a new

operator, Rx constructed from a linear system, (−A,B,C) allows us to solve Hill’s equation

and the inverse spectral problem. We use Rx to construct a function, T (x, y) that satisfies a

Gelfand–Levitan integral equation and then derive a PDE for T (x, y). Solving this PDE recovers

q. Extending Hill’s work in [28], we show that there exist Hilbert–Schmidt operators, Rp and Rc

analogous to Rx, such that the roots of their Carleman determinants are elements of the periodic

spectrum of Hill’s equation.

The latter half concerns sampling from entire functions in Paley–Wiener space. From the

periodic spectrum of Hill’s equation we derive a sampling sequence, (tn)n∈Z. Whittaker, Ko-

tel’nikov and Shannon give a sampling result for (n)n∈Z where samples occur at a constant rate.

Samples taken from the periodic spectrum do not occur at a constant rate, nevertheless we pro-

vide analogous results for this case. From (tn)n∈Z we also construct Riesz bases for L2[0, π] and

L2[−π, π], the Fourier transform space of PW (π). In L2[0, π] we construct the dual Riesz basis

using linear systems. Furthermore, we show that the determinant of the Gram matrix associated

with the Riesz basis is a Lipschitz continuous function of (tn)n∈Z.

Finally, we look at an integral, Ia associated with Ramanujan and use it to create a basis for

PW
(
π
2

)
. We conclude with an evaluation of various determinants associated with Ia.
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Chapter 1

Introduction

One of the themes of this thesis is to calculate determinants. We therefore include a chapter

detailing the necessary general theory to allow us to calculate the various determinants. Of

particular interest will be the Carleman and Fredholm determinants defined for the Hilbert–

Schmidt and trace class operators acting on some Hilbert space, H. It is with these operators

that we pick up the story, stating various well-known results that will be required in subsequent

proofs throughout the thesis. After providing some light background material on the Hilbert–

Schmidt and trace class operators we then take a deeper look at their corresponding Carleman

and Fredholm determinants. Carleman determinants are defined for I +T where T is a Hilbert–

Schmidt operator, while Fredholm determinants are defined for I + S where S is a trace class

operator. When giving results involving determinants in this thesis, we will often switch between

the Carleman and Fredholm determinants. This is because, although Fredholm determinants

appear to be a more natural choice, it is often easier to show that an operator is Hilbert–Schmidt

than trace class, hence we use Carleman determinants when this is the case.

Much of the work we do will be carried out in Hilbert spaces. Of particular relevance are

the Paley–Wiener spaces. Paley–Wiener spaces consist of band-limited functions and find uses

in areas such as sampling. Naturally, our work on sampling in Chapter 5 will be conducted in

Paley–Wiener spaces. In his papers McKean adopts the approach of constructing a space to

meet his requirements. For example, McKean introduces special spaces of entire functions that

depend upon the solutions of Hill’s equation, and thus on the potential of Hill’s equation. This

method of constructing spaces is not ideal for problems such as the inverse spectral problem.

We therefore choose to give results that work in standard spaces and the Paley–Wiener spaces

provide a suitable setting for this.

We conclude our chapter on general theory with a discussion about linear systems, another

theme of this thesis. One of our main ideas is to use linear systems to solve various problems via

the introduction of a new operator, Rx. For example, we use linear systems to solve Gelfand–

Levitan integral equations and differential equations such as Hill’s equation. We also use linear

systems on Carleman and Fredholm determinants to give conditions which, when satisfied, pro-

duce the periodic spectrum of Hill’s equation. Generally, the linear systems used will be of the

form (−A,B,C) where −A is the generator of a strongly continuous semigroup.

Given a differential equation, there are two problems that we can consider with respect to its
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spectrum. The spectral problem is to find the spectra of the differential equation given that the

potential is known. The inverse spectral problem involves recovering a suitable potential from

the spectral data. In this thesis we use Hill’s equation as an example of a differential equation

and consider aspects of the two spectral problems. Hill’s equation takes the form

−f ′′ + qf = λf

where q is real-valued, π-periodic and twice continuously differentiable. The function q is referred

to as the potential and λ an eigenvalue. We take a particular interest in the periodic spectrum of

Hill’s equation, that is, the eigenvalues whose corresponding eigenfunctions are π or 2π-periodic.

Indeed, in Section 4.5 we see that the roots of the Carleman determinants of the Hilbert–Schmidt

operators, Rp and Rc are elements of the periodic spectrum of Hill’s equation. In order to consider

the inverse spectral problem we introduce a Gelfand–Levitan integral equation which is defined

using a scattering function, φ. In this thesis we construct the scattering function from a known

linear system, (−A,B,C) and see that it arises as the inverse Laplace transform of the transfer

function associated with (−A,B,C). The construction of the scattering function from (−A,B,C)

allows us to solve problems such as the inverse spectral problem using linear systems.

As already mentioned, Hill’s equation, a linear, second order differential equation will be

central to this thesis. We seek to find the solutions of Hill’s equation, the periodic spectrum

and recover a potential of Hill’s equation using linear systems. The use of linear systems in this

context is a novel approach. Indeed we show that the linear system, (−A,B,C) that was used

to construct the function T (x, y) where T satisfied the Gelfand–Levitan integral equation, can

also be used to construct a solution to Hill’s equation. Further, we seek to use linear systems

to characterise the periodic spectrum of Hill’s equation. The periodic spectrum consists of

eigenvalues relating to periodic solutions of period π or 2π. Since the periodic spectrum is used

to create a sampling sequence in Chapter 5, it will be necessary to have a way of deriving the

periodic spectrum. This can be done using a modified system, (−A,B,C,M). We show that

the periodic spectrum of Hill’s equation consists of the roots of various Carleman and Fredholm

determinants of operators constructed from systems such as (−A,B,C,M).

In order to recover the potential of Hill’s equation we use a Gelfand–Levitan integral equation

and we suppose that the scattering function, φ is even and twice continuously differentiable on

the real line. If there exists a function T (x, y) satisfying the Gelfand–Levitan integral equa-

tion then it can be shown that T (x, y) satisfies a partial differential equation. Interestingly, the

resulting partial differential equation is dependent upon the potential of Hill’s equation. This

provides a way in which we can solve the inverse spectral problem. For, if the scattering function

is constructed from a linear system, (−A,B,C) then that same linear system can be used to

construct T (x, y) providing T satisfies the Gelfand–Levitan integral equation. Since T satisfies

the Gelfand–Levitan integral equation it therefore satisfies a partial differential equation depen-

dent upon the potential of Hill’s equation, hence the potential can be recovered using the linear

system, (−A,B,C). The new approach in this thesis to use (−A,B,C) to construct an operator

Rx of the form

Rx =

∫ x

−x

(
e−zA + ezA

)
BC

(
e−zA + ezA

)
dz,
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and use Rx to define the function T (x, y).

We have touched upon Paley–Wiener spaces being the traditional setting for sampling theory.

Also, we noted that the periodic spectrum of Hill’s equation can be used to construct a sampling

sequence. If λn is an element of the periodic spectrum of Hill’s equation then it can be shown by

Borg’s estimates that λn is of order n2 in size. By setting tn =
√
λn we create a sequence, (tn)n∈Z

that we can compare with the sequence (n)n∈Z, showing that (tn)n∈Z is a sampling sequence.

The importance of sampling sequences is that for a Hilbert space, H of entire functions and

sampling sequence, (tn)n∈Z, we can reconstruct a function, f ∈ H from the values (f(tn))n∈Z.

This idea is expressed in a theorem by Whittaker, Kotel’nikov and Shannon. However, the

Whittaker–Kotel’nikov–Shannon Sampling Theorem is valid for sampling sequences where the

samples occur at a constant rate. Initially, the elements of the periodic spectrum of Hill’s equation

do not occur at regular intervals of some constant, set length, hence sampling from the periodic

spectrum cannot occur at a constant rate. We therefore seek to find a result analogous to the

Whittaker–Kotel’nikov–Shannon Sampling Theorem that holds for a sampling sequence derived

from the periodic spectrum of Hill’s equation and such that the rate of sampling is not constant.

The problem of reconstructing functions naturally leads us to consider bases. It is well

known that the set
{
einx

}
n∈Z

gives an orthonormal basis for L2[−π, π]. Given (tn)n∈Z is a

sampling sequence derived from the periodic spectrum and that (tn)n∈Z behaves like (n)n∈Z, it

is natural to ask whether
{
eitnx

}
n∈Z

also forms an orthonormal basis for L2[−π, π]. It turns

out that this is not the case, however, we can show that
{
eitnx

}
n∈Z

forms a Riesz basis for

L2[−π, π]. Furthermore, we also find that the space L2[0, π] has Riesz basis {cos tnx}n∈N where,

under certain circumstances, the dual Riesz basis can be constructed using the linear system,

(−A,B,C).

Furthering our discussion on sampling sequences, we also look for ways to calculate the

Gram matrix of a sequence. Since the Gram matrix of an orthonormal sequence is equal to the

identity matrix, this observation allows us to compare sequences with orthonormal sequences.

We construct the Gram matrix of the Riesz basis
{
eitnx

}
n∈Z

and show that the resulting Gram

matrix is a Lipschitz function of the sequence (tn)n∈Z. This is another main result of this

thesis. Furthermore, we show that the sampling sequence, (tn)n∈Z is associated with a Carleman

determinant which depends in a Lipschitz continuous way on (tn)n∈Z. This is a crucial technical

point that Blower, Brett and Doust present in their paper [7].

The final aim of this thesis is to evaluate some determinants associated with an integral

appearing in the work of Ramanujan. The integral, which we refer to as Ia(t) takes the form

Ia(t) =

∫ π
2

−π
2

(cosx)a−2eitx dx

and arises in sampling theory. The integral, Ia is a Paley–Wiener function and we show that

{I2b}b∈N gives a basis for the even functions in the space PW
(
π
2

)
. Following this we analyse

determinants with entries Ia(tj − k) for j, k ∈ Z. Although we prove that the results hold for

a general sequence, (tn)n∈Z, they do in fact hold for the sampling sequence obtained from the

periodic spectrum of Hill’s equation. Of particular interest is the case in which a ∈ N and

tj = j. By Ramanujan’s formula, Ia(tj − k) can be expressed in terms of Gamma functions.

Furthermore, for a ∈ N and tj = j, the Gamma functions become factorial expressions and so
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we can provide a formula for Ia(tj − k) involving factorials. The resulting matrix with entries

Ia(j − k) for a ∈ N has a Toeplitz shape. As far as we are aware, there has not been a previous

attempt to construct such matrices and determinants.
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Chapter 2

General Theory

This chapter is, as the title suggests, devoted to the general theory and background material that

will be necessary to create the foundations of this thesis. We start with a gentle introduction

to operators, focusing in particular on Hilbert–Schmidt and trace class operators. Dunford

and Schwartz provide a detailed analysis of Hilbert–Schmidt operators in [15]. A gentler and

somewhat basic approach is given by Young in [55]. Results that supplement the work of Young

can be found in [49]. Readers wanting an alternative construction of the Hilbert–Schmidt and

trace class operators should consult Nikolski [39] (Section 2.1, page 211).

This is followed by a brief introduction to some properties of entire integral functions as given

by Titchmarsh in [54].

We then turn our attention to matrices and define the Vandermonde and Toeplitz matrices

since these will be used in Chapter 6. Further, we define various determinants that will be used

throughout the thesis. In particular, we define the Carleman determinant that is associated with

the Hilbert–Schmidt operators and the Fredholm determinant that is associated with the trace

class operators.

Next we show the reader how to construct the Paley–Wiener spaces. We recall the definition

of the L2 Fourier transform and use this to define the band-limited functions, which in turn make

up the Paley–Wiener spaces. Most of our work on sampling in Chapter 5 will be conducted in

Paley–Wiener spaces.

Following this we introduce two Hilbert–Schmidt operators U and U∗ that are Fourier trans-

forms defined on a restricted range of integration. We use these operators to construct another

operator, S that has links with the Paley–Wiener spaces. Indeed we see that S is an integral

operator whose kernel gives a reproducing kernel for the Paley–Wiener spaces.

The chapter concludes with an introduction to linear systems. Following the style of Chen in

[8], we define a linear system, (−A,B,C,D) and show the form of a solution of the differential

equation associated with such a system. The solution requires a strongly continuous semigroup

generated by −A. The final task being to give a specific example of a linear system.
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2.1 Operators

Throughout this thesis we will work in a specific type of space known as a Hilbert space. We

therefore begin by introducing Hilbert spaces and provide some basic definitions concerning

operators that act on these spaces. For completeness we provide definitions that the reader

should be familiar with such as linearity and boundedness, and we define what is meant by the

adjoint of an operator. This short section culminates with a proposition that demonstrates some

useful properties of the adjoint operation. These properties will be called upon in later proofs.

We first define an inner product space and use this to define a Hilbert space.

Definition 2.1.0.1 Let V be a complex vector space and let the map, 〈·, ·〉 : V × V → C be such

that:

(i) 〈x, y〉 = 〈y, x〉;
(ii) 〈cx, y〉 = c〈x, y〉;
(iii) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉;
(iv) 〈x, x〉 > 0 for x �= 0,

for all x, y, z ∈ V and c ∈ C. We say that 〈·, ·〉 is an inner product and the pair (V, 〈·, ·〉) is an

inner product space.

Definition 2.1.0.2 Let H be a complex vector space with inner product, 〈·, ·〉. If H is a complete

metric space with respect to the metric induced by 〈·, ·〉 then we say that (H, 〈·, ·〉) is a Hilbert

space.

Remark 2.1.0.3 It should be noted that the reader is to assume that, unless otherwise stated,

all Hilbert spaces, (H, 〈·, ·〉) are complex and separable.

Next we turn our attention to operators. We briefly define linear and bounded operators

before restricting our attention to integral operators.

Definition 2.1.0.4 Let V and W be vector spaces over the same field, F. If a map, T : V → W

satisfies

T (λv1 + μv2) = λT (v1) + μT (v2)

for all v1, v2 ∈ V and λ, μ ∈ F, then we say that T is a linear operator.

Definition 2.1.0.5 Let T : V → W be a linear operator with V,W normed spaces. If

‖Tv‖ ≤ C ‖v‖

for some C ≥ 0 and for all v ∈ V , then T is a bounded operator. We define the norm of the

operator T , ‖T ‖ op to be the smallest such C for which T is bounded.

We now define a particular type of operator known as the integral operator.

Definition 2.1.0.6 Let a, b, c, d ∈ R. An integral operator, T : L2[a, b] → L2[c, d] is an operator

satisfying,

(Tf)(t) =

∫ b

a

k(t, x)f(x) dx (2.1)
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for c ≤ t ≤ d. We call k : [c, d]× [a, b] → C the kernel and take k(t, x) to be continuous for all t

and x.

Knowing that an operator is an integral operator can often simplify calculations. For example,

in Section 2.1.1 if we have an integral operator then we can easily show that it is Hilbert–Schmidt

by verifying that the kernel satisfies a given condition.

We conclude this section by defining the adjoint of an operator and stating some of its

properties.

Definition 2.1.0.7 Let H1 and H2 be complex Hilbert spaces and suppose that T : H1 → H2 is

a bounded linear operator. We define the adjoint of T to be the operator T ∗ : H2 → H1 satisfying

the equation

〈Tf, g〉H2 = 〈f, T ∗g〉H1 . (2.2)

If T is an integral operator with kernel k(x, y) then the adjoint of k(x, y) is k(y, x). An operator,

T is said to be self-adjoint if T = T ∗ or equivalently, k(x, y) = k(y, x).

Having an operator that is self-adjoint can simplify proofs greatly. In later sections we also

see that it provides information about the eigenvalues of an operator. The following proposition

provides a helpful list of properties that the adjoint satisfies. For a proof of the statement along

with more detailed information regarding adjoint operators, we refer the reader to [49] (Section

56, page 262 and Theorem A, page 265).

Proposition 2.1.0.8 Let T, T1 and T2 be operators with adjoint’s T ∗, T ∗
1 and T ∗

2 respectively.

Then the following properties hold:

(i) (T1 + T2)
∗
= T ∗

1 + T ∗
2 ;

(ii) (λT )
∗
= λT ∗;

(iii) (T1T2)
∗
= T ∗

2 T
∗
1 ;

(iv) T ∗∗ = T ;

(v) ‖T ∗‖ = ‖T ‖.

2.1.1 Hilbert–Schmidt Operators

In this section we focus on a particular class of operators known as the Hilbert–Schmidt operators.

We define what is meant by a Hilbert–Schmidt operator and state some of the basic properties.

In Section 2.3 we will return to define the corresponding Carleman determinants. Knowing

whether an operator is Hilbert–Schmidt will be crucial for our work on determinants in Section

4.5. There, we introduce for suitable systems of the form (−A,B,C,M), operators Rp and Rc

whose Carleman determinants have roots that are elements of the periodic spectrum of Hill’s

equation. This is one of the main new ideas of the thesis. More information regarding Hilbert–

Schmidt operators and the details of the proofs that have been omitted here can be found in [15]

(Section XI.6, page 1009).

First we introduce the Hilbert–Schmidt operators via the Hilbert–Schmidt norm.
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Definition 2.1.1.1 Let H1 and H2 be Hilbert spaces and T : H1 → H2 a linear operator. Let

(en) ∈ H1 be an orthonormal basis then the Hilbert–Schmidt norm, ‖T ‖HS of the operator T is

defined by

‖T ‖2HS = tr (T ∗T )

=
∑
n

‖Ten‖2.

Remark 2.1.1.2 Note that the Hilbert–Schmidt norm is independent of the choice of basis. See

[15] (Lemma 2, page 1010).

Definition 2.1.1.3 If T : H1 → H2 is a bounded linear operator with finite Hilbert–Schmidt

norm then we say that T is a Hilbert–Schmidt operator.

Remark 2.1.1.4 We observe that Definition 2.1.1.3 can be used to show that an operator is

bounded. For if we can show that an operator is Hilbert–Schmidt then it follows from the definition

that it must also be bounded.

The following proposition shows that the set of Hilbert–Schmidt operators itself forms a

Hilbert space. It also justifies the definition of Hilbert–Schmidt norm given in Definition 2.1.1.1.

Proposition 2.1.1.5 Let HS be the set of Hilbert–Schmidt operators on a Hilbert space, (H, 〈·, ·〉)
with orthonormal basis, (en). Then HS is itself a Hilbert space for the inner product given by

〈T, S〉HS =
∑
n

〈Ten, Sen〉.

Proof. By Definition 2.1.0.2, (HS , 〈·, ·〉HS ) is a Hilbert space if it is a complete metric space.

We use the definition of a metric space as provided by Simmons in [49] (Section 9, page 51) to

verify that (HS , 〈·, ·〉HS ) is indeed a metric space. Suppose that HS has metric d given by,

d(T, S) = ‖T − S‖HS

where T, S ∈ HS . First we check the positivity of d, this follows from the positivity of the norm,

hence

d(T, S) =

√∑
n

‖(T − S)en‖2

≥ 0.

Further, d(T, S) = 0 if and only if
∑

n ‖(T − S)en‖2 = 0. Clearly,
∑

n ‖(T − S)en‖2 = 0 if and

only if ‖(T − S)en‖ = 0 for all n. It follows that d(T, S) = 0 if and only if T −S = 0 as required.

Next we check that d is symmetric. Now,

d(T, S) =

√∑
n

‖(T − S)en‖2

=

√∑
n

|−1|2 ‖(S − T )en‖2

= d(S, T )

proving the symmetry of d.
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Finally we show that d satisfies the triangle inequality. Let R ∈ HS then

d(T, S)2 = ‖T − S‖2HS

= ‖(T −R) + (R− S)‖2HS

= 〈(T −R) + (R− S), (T −R) + (R− S)〉HS .

Since inner products are distributive with respect to addition we have

d(T, S)2 = 〈T −R, T −R〉HS + 〈T −R,R− S〉HS + 〈R− S, T −R〉HS + 〈R− S,R− S〉HS

= ‖T −R‖2HS + 〈T −R,R− S〉HS + 〈R− S, T −R〉HS + ‖R− S‖2HS .

Now, by the Cauchy–Schwarz inequality we have

d(T, S)2 ≤ ‖T −R‖2HS + ‖T −R‖HS ‖R− S‖HS + ‖R− S‖HS ‖T −R‖HS + ‖R− S‖2HS

= (‖T −R‖HS + ‖R− S‖HS )
2

= (d(T,R) + d(R,S))
2
.

Upon taking the square root of both sides we see that d satisfies the triangle inequality. We have

thus shown that (HS , 〈·, ·〉HS ) is a metric space.

We finish the proof by showing that (HS , 〈·, ·〉HS ) is complete. Let T be a Hilbert–Schmidt

operator with matrix given by A = [〈Tej , ei〉]i,j (see Definition 2.3.0.20). Then

‖T ‖2HS = tr (A∗A)

=
∑
i,j

|〈Tej , ei〉|2,

where the map ‖·‖2HS : HS → �2(N × N) is an isometry. The space �2(N × N) is complete by

[55] (Theorem 3.2, page 21), therefore (HS , 〈·, ·〉HS ) is also complete.

Definition 2.1.1.3 can sometimes be problematic to use in practice to show that a given

operator is Hilbert–Schmidt. In the case of an integral operator there exists an easier method to

determine whether an operator is Hilbert–Schmidt or not. The following result shows how this

can be done. For a proof we refer the reader to [55] (Theorem 8.8, page 93).

Proposition 2.1.1.6 Let T : L2[a, b] → L2[c, d] be an integral operator with kernel k as in (2.1).

Then T is a Hilbert–Schmidt operator if and only if,∫ d

c

∫ b

a

|k(t, x)|2 dx dt < ∞.

Staying with integral operators, the following proposition shows that the adjoint of a Hilbert–

Schmidt operator is also a Hilbert–Schmidt operator. The proposition also gives the form that

the adjoint takes.

Proposition 2.1.1.7 Let T : L2[a, b] → L2[c, d] be a Hilbert–Schmidt operator defined by

Tf(x) =

∫ b

a

k(x, y)f(y) dy.

Then the adjoint, T ∗ : L2[c, d] → L2[a, b] is given by

T ∗g(y) =
∫ d

c

k(x, y)g(x) dx.

Furthermore, T ∗ is also a Hilbert–Schmidt operator.

12



Proof. Let T : L2[a, b] → L2[c, d] be an integral Hilbert–Schmidt operator. Write Tf(x) =∫ b

a
k(x, y)f(y) dy then, by Definition 2.1.0.7 we have

〈f, T ∗g〉L2[a,b] = 〈Tf, g〉L2[c,d]

=

∫ d

c

Tf(x)g(x) dx.

Substituting in Tf(x) and reversing the order of integration gives

〈f, T ∗g〉L2[a,b] =

∫ d

c

(∫ b

a

k(x, y)f(y) dy

)
g(x) dx

=

∫ b

a

(∫ d

c

k(x, y)g(x) dx

)
f(y) dy

=

∫ b

a

(∫ d

c

k(x, y)g(x) dx

)
f(y) dy.

Hence,

T ∗g(y) =
∫ d

c

k(x, y)g(x) dx

as required.

We finish by showing that T ∗ is also a Hilbert–Schmidt operator. By Proposition 2.1.1.6,

since T is a Hilbert–Schmidt operator,
∫ b

a

∫ d

c
|k(x, y)|2 dx dy < ∞. Now,

∣∣∣k(x, y)∣∣∣2 = |k(x, y)|2

and so it follows that
∫ b

a

∫ d

c

∣∣∣k(x, y)∣∣∣2 dx dy < ∞. Thus T ∗ is also Hilbert–Schmidt.

It turns out that the above proposition holds for all Hilbert–Schmidt operators. That is to

say that given any Hilbert–Schmidt operator the adjoint is also a Hilbert–Schmidt operator.

This result is contained within the next proposition. It can be found, with proof in [15] (Lemma

2, page 1010).

Proposition 2.1.1.8 Suppose that T : H1 → H2 is a Hilbert–Schmidt operator and let T ∗ :

H2 → H1 denote the adjoint of T . Then ‖T ‖HS = ‖T ∗‖HS . Furthermore, T ∗ is a Hilbert–

Schmidt operator.

Proof. Note that by Proposition 2.1.0.8, ‖T ‖HS = ‖T ∗‖HS . Definition 2.1.1.3 then immediately

tells us that T ∗ is a Hilbert–Schmidt operator.

We return to the case of a general Hilbert–Schmidt operator and provide some results that

will be called upon in later sections. First we see that the product of a bounded operator and a

Hilbert–Schmidt operator is a Hilbert–Schmidt operator.

Proposition 2.1.1.9 Suppose that we have operators R and S such that R is bounded and S is

Hilbert–Schmidt. Then RS and SR are Hilbert–Schmidt operators.

Proof. We show that the operators RS and SR are Hilbert–Schmidt by calculating their Hilbert–

Schmidt norms and showing that they are finite. First we calculate the norm of RS,

‖RS‖2HS =
∑
n

‖RSen‖2.

13



Since R is bounded it follows that ‖RSen‖ ≤ ‖R‖ op ‖Sen‖, thus,

‖RS‖2HS ≤ ‖R‖2op
∑
n

‖Sen‖2

= ‖R‖2op ‖S‖2HS .

Since S is Hilbert–Schmidt it follows that ‖RS‖HS is finite and therefore RS is Hilbert–Schmidt.

Next we show that SR is Hilbert–Schmidt by showing that its adjoint, R∗S∗ is Hilbert–

Schmidt. That is, we show that

‖R∗S∗‖2HS =
∑
n

‖R∗S∗en‖2

is finite. Now, by Proposition 2.1.0.8 we have ‖R∗‖ = ‖R‖, therefore, given that R is bounded,

it follows that R∗ is also bounded. Thus, ‖R∗S∗en‖ ≤ ‖R∗‖ op ‖S∗en‖. Furthermore, by

Proposition 2.1.1.7, since S is Hilbert–Schmidt, its adjoint, S∗ is also Hilbert–Schmidt. Hence,

‖R∗S∗‖2HS ≤ ‖R∗‖2op
∑
n

‖S∗en‖2

= ‖R∗‖2op ‖S∗‖2HS

from which it follows that ‖R∗S∗‖HS is finite. This shows that the operator R∗S∗ is Hilbert–

Schmidt. Another application of Proposition 2.1.1.7 shows that the adjoint of R∗S∗, which is

(R∗S∗)∗ = SR, is also Hilbert–Schmidt. This completes the proof.

Finally, we conclude this section with a result about the eigenvalues of a Hilbert–Schmidt

operator. The proof can be found in [15] (see proof of Theorem 25, page 1034).

Proposition 2.1.1.10 Let T be a Hilbert–Schmidt operator with eigenvalues {λn}∞n=1 listed ac-

cording to multiplicity. Then

∞∑
n=1

|λn |2 < ∞.

2.1.2 Trace Class Operators

As in the previous section we focus on a particular type of operator and provide some basic

results that will be called upon in later sections. Here we introduce trace class operators which

we define using the Hilbert–Schmidt operators. We return to trace class operators in Section 2.3

to define the corresponding Fredholm determinants.

Definition 2.1.2.1 Let T = RS where R and S are Hilbert–Schmidt operators. Then we say

that T is a trace class operator.

In the following proposition we note that the sum of two trace class operators is again trace

class.

Proposition 2.1.2.2 Let T and W be trace class operators. Then T +W is also a trace class

operator.

14



Proof. Let T and W be trace class operators and suppose that T = RS and W = UV where

R,S, U, V are Hilbert–Schmidt. Then

T +W = RS + UV

=
[
R U

]⎡⎣S
V

⎤
⎦

where
[
R U

]
and

[
S V

]T
are Hilbert–Schmidt since R,S, U and V are Hilbert–Schmidt.

Therefore, T + W is the product of two Hilbert–Schmidt operators and hence by Definition

2.1.2.1 is trace class.

We continue by defining the norm of a trace class operator.

Definition 2.1.2.3 Let R and S be Hilbert–Schmidt operators so that T = RS is a trace class

operator. Then the trace class norm, ‖T ‖TC is given by

‖T ‖TC = inf {‖R‖HS ‖S‖HS : T = RS} .

The following lemma gives a condition under which a matrix is trace class.

Lemma 2.1.2.4 Let [aij ]i,j be a complex matrix such that∑
i,j

|aij | < ∞.

Then [aij ]i,j is trace class.

Proof. Let [aij ]i,j be a complex matrix and let Eij be the matrix with 1 in the (i, j)th position

and zeros everywhere else. We can write any complex matrix as a sum of matrices of the form

Eij , where the coefficient of Eij is given by the (i, j)th element of the original complex matrix.

We therefore have

[aij ]i,j =
∑
i,j

aijEij .

We want to calculate the trace class norm of [aij ]i,j and show that it is finite. First note that

since Eij = EiiEij where Eii and Eij are Hilbert–Schmidt, it follows from Definition 2.1.2.3 that

‖Eij‖TC ≤ ‖Eii‖HS ‖Eij‖HS . (2.3)

By Definition 2.1.1.1 we have

‖Eij‖2HS = tr
(
E∗

ijEij

)
,

and since Eij is real it follows that

E∗
ij = ET

ij

= Eji.

Thus for any i, j ∈ Z we have

‖Eij‖2HS = tr (EjiEij)

= tr (Ejj)

= 1.
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It now follows from (2.3) that ‖Eij‖TC ≤ 1, hence,∥∥∥∥∥∥
∑
i,j

aijEij

∥∥∥∥∥∥
TC

≤
∑
i,j

|aij | ‖Eij‖TC

≤
∑
i,j

|aij |.

Since
∑

i,j |aij | < ∞ by hypothesis, we conclude that [aij ]i,j is trace class.

As with Hilbert–Schmidt operators, it can be shown that the adjoint of a trace class operator

is also trace class. We address this in the following proposition.

Proposition 2.1.2.5 Suppose that T is a trace class operator then the adjoint, T ∗ is also trace

class.

Proof. Let T be a trace class operator then by Definition 2.1.2.1, T = RS for some Hilbert–

Schmidt operators, R and S. Now, using Proposition 2.1.0.8 we see that T ∗ = S∗R∗ where

S∗ and R∗ are Hilbert–Schmidt by Proposition 2.1.1.8. Therefore, T ∗ is the product of two

Hilbert–Schmidt operators and so T ∗ is trace class.

We finish this section by noting that every trace class operator is a Hilbert–Schmidt operator.

Proposition 2.1.2.6 If T is a trace class operator then T is also a Hilbert–Schmidt operator.

Proof. Suppose that T is a trace class operator. By Definition 2.1.2.1 we have T = RS where

R and S are Hilbert–Schmidt operators. It then follows from Definition 2.1.1.3 that R and S are

both bounded. Therefore, by Proposition 2.1.1.9, T is also Hilbert–Schmidt.

2.2 Entire Functions

The purpose of this section is to show that any entire function of order 1
2 has infinitely many

zeros and to show that the function can be written as a convergent infinite product. This result

will enable us to discover various properties of functions relating to Hill’s equation in Chapter 4.

Definitions and results contained within this section can be found in [54] (Chapter 8, page 246).

Definition 2.2.0.7 An entire function, f is said to be of order p ≥ 0 if, for all ε > 0, there

exists some constant C such that

|f(z)| < Ce|z |
p+ε

for all z ∈ C.

A function of finite order has associated with it a convergent infinite product known as the

canonical product. Before defining the canonical product we give two preliminary definitions.

Definition 2.2.0.8 Define the functions E(·, q) by

E(x, 0) = 1− x;

E(x, q) = (1− x)ex+
x2

2 +···+ xq

q

for q ∈ N. We call the functions E(·, q) the primary factors.
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Definition 2.2.0.9 Let f be an entire function of finite order with zeros (zn)
∞
n=1. The smallest

non-negative integer, r for which

∞∑
n=1

(∣∣∣∣ zzn
∣∣∣∣
)r+1

is convergent for all z ∈ C is known as the genus.

Remark 2.2.0.10 Note that since r ≥ 0, the sum in Definition 2.2.0.9 is concerned only with

positive powers. Indeed we have r + 1 ≥ 1.

The following lemma can be found, with proof, in [54] (Section 8.22, page 249). It shows the

relationship between the order of a function and its genus.

Lemma 2.2.0.11 Let f be an entire function of order p and with zeros (zn). Then the series

∑
n

1

|zn |a

is convergent when a > p.

Combining Lemma 2.2.0.11 with Definition 2.2.0.9, we see that for a function with order p

and genus r we must have r + 1 > p. We now continue to define the canonical product.

Definition 2.2.0.12 Let f be an entire function of finite order with zeros (zn)
∞
n=1 and suppose

that f has genus r. The canonical product is given by the convergent product

∞∏
n=1

E

[
z

zn
, r

]
.

The next proposition is known as Hadamard’s Factorisation Theorem. It appears with proof

in [54] (Section 8.24, page 250).

Proposition 2.2.0.13 Let f be an entire function of order p such that f(0) �= 0. Let f have

zeros (zn)
∞
n=1 then

f(z) = eP (z)
∞∏

n=1

E

[
z

zn
, r

]

where P (z) is a polynomial of degree m such that m ≤ p.

We now come to the main result of this section. It states that for a function of order 1
2 , the

function has infinitely many zeros and can be expressed as a convergent infinite product.

Proposition 2.2.0.14 Let f be an entire function of order 1
2 . Then f has infinitely many zeros,

(zn)
∞
n=1. Further, if f(0) �= 0 then

f(z) = C

∞∏
n=1

[
1− z

zn

]
.

for some constant, C.
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Proof. Suppose that f is an entire function of order 1
2 and let f have zeros (zn)

∞
n=1. By Lemma

2.2.0.11, the series

∞∑
n=1

1

|zn |a

is convergent for a > 1
2 . Furthermore, by [54] (Section 8.26, page 252) the series is divergent for

a < 1
2 . Since divergence occurs for a < 1

2 we must have an infinite series. Thus f has infinitely

many zeros.

Now suppose that f(0) �= 0 and apply Hadamard’s Factorisation Theorem 2.2.0.13. Since

f has order 1
2 it follows from Definition 2.2.0.9 and Lemma 2.2.0.11 that the genus, r is the

smallest non-negative integer such that r > − 1
2 , hence r = 0. Given that f has zeros (zn)

∞
n=1, it

now follows from Proposition 2.2.0.13 that

f(z) = eQ(z)
∞∏

n=1

E

[
z

zn
, 0

]

where Q(z) is a polynomial of degree less than 1
2 . Clearly we take Q(z) to be a constant

polynomial and so eQ(z) = C for some constant, C. Finally, by Definition 2.2.0.8 we see that

E
[

z
zn
, 0
]
= 1− z

zn
and so

f(z) = C

∞∏
n=1

[
1− z

zn

]

as required.

2.3 Matrices and Determinants

Here we introduce special types of matrices that will be used in later chapters. Specifically, we de-

fine the Vandermonde matrix and its determinant since this will be used explicitly in calculations

throughout Chapter 6. We also describe a Toeplitz matrix so that the reader can become familiar

with the shape. In Section 6.5 we show that matrices associated with Ramanujan’s integral are

Toeplitz. We also return to the subject of Hilbert–Schmidt and trace class operators, defining

the Carleman and Fredholm determinants and their traces. Carleman determinants are defined

for I + T where T is a Hilbert–Schmidt operator, while Fredholm determinants are defined for

I + S where S is a trace class operator. The Carleman determinant is useful since it is easier

to test whether an operator is Hilbert–Schmidt than to test if it is trace class. Carleman and

Fredholm determinants will be used in Section 4.5 to give results regarding the periodic spectrum

of Hill’s equation. A detailed theory regarding the determinants and traces of Hilbert–Schmidt

and trace class operators can be found in [51].

We begin by looking at two types of matrices; the Toeplitz matrices and the Vandermonde

matrices.

Definition 2.3.0.15 A matrix, A = [aij ]
n
i,j=1 is said to be a Toeplitz matrix if it has the form
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A = [ai−j ]
n
i,j=1. That is,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a−1 a−2 a−(n−1)

a1 a0 a−1
. . .

a2 a1 a0
. . .

. . .

. . .
. . .

. . .
. . . a−2

. . .
. . .

. . . a−1

an−1 a2 a1 a0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The elements of a Toeplitz matrix satisfy the relation

aij = ai+1,j+1.

Remark 2.3.0.16 Note that the elements of a Toeplitz matrix are constant along the leading

diagonals.

Definition 2.3.0.17 Let V be an n× n matrix of the form

V =

⎡
⎢⎢⎢⎢⎢⎣

1 z1 z21 · · · zn−1
1

1 z2 z22 · · · zn−1
2

...
...

...
...

1 zn z2n · · · zn−1
n

⎤
⎥⎥⎥⎥⎥⎦

where zj ∈ C for j = 1, . . . , n. Then V is known as a Vandermonde matrix. Furthermore, V

has Vandermonde determinant given by

detV =
∏

1≤j<k≤n

(zk − zj).

The Toeplitz and Vandermonde matrices will be used in Chapter 6. Next we introduce

another form of matrix known as Hill’s type. As we shall see, a Hill’s type matrix is related to

a trace class operator.

Definition 2.3.0.18 Let

δij =

⎧⎨
⎩1 if i = j,

0 if i �= j.

The matrix, [aij ]i,j is said to be of Hill’s type if

∑
i,j

|aij − δij | < ∞.

Remark 2.3.0.19 Note that if A is of Hill’s type then by Lemma 2.1.2.4, A− I is trace class.

Having defined some of the matrices that will appear in later chapters we now move on to

define the determinants that will be used. We have previously described Hilbert–Schmidt and

trace class operators and we now return to define their Carleman and Fredholm determinants

respectively. First, for completeness, we define the matrix of an operator and the standard

determinant.
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Definition 2.3.0.20 Let (H, 〈·, ·〉) be a Hilbert space with basis (ei) and let T : H → H be an

operator. For Tej ∈ H we may write

Tej =
∑
i

〈Tej , ei〉ei. (2.4)

We define the matrix of T with respect to the basis (ei) to be

[〈Tej , ei〉]i,j ,

where i denotes the row and j denotes the column. The coefficients of the basis elements in (2.4)

form the jth column of the matrix of T .

Definition 2.3.0.21 Let Sn denote the symmetric group on {1, . . . , n} and let A = [aij ]
n
i,j=1 be

an n×n complex matrix. We denote by detA the standard determinant as given by the formula,

detA =
∑
σ∈Sn

sgn (σ)
n∏

j=1

aσ(j),j .

Remark 2.3.0.22 If A has eigenvalues {λ1, . . . , λn} listed according to multiplicity then A has

determinant

detA =
n∏

j=1

λj .

Having defined a basic determinant we now turn our attention to Fredholm determinants

which arise in the presence of trace class operators. Note the similarity between the determinant

given in Remark 2.3.0.22 and the Fredholm determinant as defined by Definition 2.3.0.24. It

should be noted that the formula for a Fredholm determinant, which here we take as a definition,

has been proved as a result in [51] (Theorem 3.7, page 35). In order for our Fredholm determinant

to be well defined we shall first define the trace of a trace class matrix.

Definition 2.3.0.23 Let T be a trace class operator with eigenvalues {λn} counted with multi-

plicity. We define the trace of T to be the absolutely convergent series

tr (T ) =
∑
n

λn.

The formula for the trace of a trace class operator that appears in Definition 2.3.0.23 is a

result credited to Lidskii. It can be found in [51] (equation (3.2), page 32 and Theorem 3.7, page

35). We also note that since tr (T ) is a convergent sum, the product appearing in Definition

2.3.0.24 is also convergent, hence the Fredholm determinant is well defined.

Definition 2.3.0.24 Let T be a trace class operator on Hilbert space, H. Suppose that T has

eigenvalues {λn} counted with multiplicity. We define the Fredholm determinant of T to be

det(I + T ) =
∏
n

[1 + λn].

Our next task will be to define the Carleman determinant for Hilbert–Schmidt operators.

We first take some time to define the trace of T 2 where T is a Hilbert–Schmidt operator before

addressing the issue of Carleman determinants. Note that as well as defining the trace, Definition

2.3.0.25 shows that the eigenvalues of a Hilbert–Schmidt operator are square summable. Again,

the formula provided in Definition 2.3.0.25 can be found in [51] (equation (3.3), page 32).
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Definition 2.3.0.25 Let T be a Hilbert–Schmidt operator with eigenvalues {λn} counted with

multiplicity. Then the trace of T 2 is given by the absolutely convergent sum

tr
(
T 2
)
=
∑
n

λ2
n.

Remark 2.3.0.26 Note that the formula for tr
(
T 2
)
follows directly from Definition 2.3.0.23,

for if T is Hilbert–Schmidt then T 2 is trace class by Definition 2.1.2.1.

We now state the definition of a Carleman determinant. First note that it follows from [15]

(Theorem 26, page 1036) that the product given in Definition 2.3.0.27 is convergent, hence well

defined.

Definition 2.3.0.27 Let T be a Hilbert–Schmidt operator on a Hilbert space, H and suppose

that T has eigenvalues {λn} counted with multiplicity. We define the Carleman determinant to

be

det2 (I + T ) =
∏
n

[1 + λn] e
−λn .

The following proposition shows the relationship between the Carleman and Fredholm deter-

minants, it will be used in Section 4.5 to switch between the two. That is to say, if we find a

condition for one determinant then, assuming we have a trace class operator, the same condition

holds for the other determinant.

Proposition 2.3.0.28 Let T be a trace class operator then the following relation holds,

det2 (I + T ) = det(I + T )e− trT .

Proof. We first note that since T is a trace class operator, det(I + T ) is defined. Also, by

Proposition 2.1.2.6, T is Hilbert–Schmidt and therefore det2 (I + T ) is defined. By Definition

2.3.0.27 we have the convergent product

det2 (I + T ) =
∏
n

[1 + λn] e
−λn .

Rearranging the terms so that we collect all of the exponential terms together, we thus obtain

det2 (I + T ) =

(∏
n

[1 + λn]

)
e−

∑
n λn .

It now follows from Definition 2.3.0.23 and Definition 2.3.0.24 that

det2 (I + T ) = det(I + T )e− trT

as required.

The following result is a consequence of Proposition 2.3.0.28. Corollary 2.3.0.29 will be used in

Section 4.5 to show that the Carleman and Fredholm determinants can be used interchangeably,

in the sense that the determinants have the same zeros.

Corollary 2.3.0.29 Let T be a trace class operator. Then

det2 (I + T ) = 0 ⇐⇒ det(I + T ) = 0.
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Proof. Let T be a trace class operator then by Proposition 2.1.2.6, T is also Hilbert–Schmidt.

Therefore, det2 (I + T ) is defined. Now suppose that det2 (I + T ) = 0. By Proposition 2.3.0.28,

this happens if and only if det(I + T )e− trT = 0. Since the exponential term is never zero, we

conclude that det2 (I + T ) = 0 if and only if det(I + T ) = 0.

Next we state and prove Sylvester’s Determinant Theorem. The result is commonly used

with determinants of the form det(I+AB), that is, it is defined for Fredholm determinants with

A,B Hilbert–Schmidt. Here we present the usual case and also show that the result holds for

Carleman determinants.

Proposition 2.3.0.30 Suppose that A and B are Hilbert–Schmidt operators then

det(I +AB) = det(I +BA).

Further,

det2 (I +AB) = det2 (I +BA).

Proof. We approximate the Hilbert–Schmidt operators by a sequence of finite rank operators.

Let An be a finite rank operator corresponding to a matrix of size jn × kn. Similarly, let Bn be

a finite rank operator corresponding to a matrix of size kn × jn. Let A,B be Hilbert–Schmidt

operators and suppose that An → A and Bn → B as n → ∞. Then⎡
⎣Ijn +AnBn −An

0 Ikn

⎤
⎦
⎡
⎣Ijn 0

Bn Ikn

⎤
⎦ =

⎡
⎣Ijn −An

Bn Ikn

⎤
⎦

=

⎡
⎣Ijn 0

Bn Ikn

⎤
⎦
⎡
⎣Ijn −An

0 Ikn
+BnAn

⎤
⎦ . (2.5)

Taking the determinant of both sides of (2.5) then gives

det

⎡
⎣Ijn +AnBn −An

0 Ikn

⎤
⎦ det

⎡
⎣Ijn 0

Bn Ikn

⎤
⎦ = det

⎡
⎣Ijn 0

Bn Ikn

⎤
⎦ det

⎡
⎣Ijn −An

0 Ikn +BnAn

⎤
⎦ . (2.6)

Notice that each matrix in (2.6) is triangular and so it follows that

det(Ijn +AnBn) det(Ikn
) det(Ijn) det(Ikn

) = det(Ijn) det(Ikn
) det(Ijn) det(Ikn

+BnAn).

Hence,

det(Ijn +AnBn) = det(Ikn
+BnAn). (2.7)

Taking the limits of both sides of (2.7) as n → ∞ now gives

det(I +AB) = det(I +BA)

completing the first part of the proof.

Now consider the Carleman determinant. By Proposition 2.3.0.28 we have

det2 (I +AB) = det(I +AB)e− trAB .
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Now, since A,B are Hilbert–Schmidt, it follows from [15] (Lemma 14(b), page 1098) that trAB =

trBA. Using this together with the first part of the proposition we see that

det2 (I +AB) = det(I +BA)e− trBA

= det2 (I +BA)

as required.

Finally we present Andréief ’s Identity. This identity, appearing in Lemma 2.3.0.31 will be

used in the evaluation of Ramanujan’s integral in Chapter 6. It also makes an appearance

in Section 5.4 to help with the evaluation of determinants of Gram matrices. For a proof of

Andréief’s Identity see [3] (Lemma 2.2.2(i), page 51).

Lemma 2.3.0.31 Let B be a bounded interval. For j ∈ {1, . . . , n}, let fj and gj be continuous

complex functions defined on B. Then,

det

[∫
B

fj(x)gk(x) dx

]n
j,k=1

=
1

n!

∫
· · ·
∫
Bn

det [fj(xk)]
n
j,k=1 det [gl(xk)]

n
l,k=1 dx1 . . . dxn.

2.4 The Construction of the Paley–Wiener Spaces

This section is devoted to the construction of the Paley–Wiener spaces. Paley–Wiener spaces

consist of functions whose Fourier transforms have compact support. If the support of the Fourier

transform is a fixed interval then the corresponding Paley–Wiener space consists of the band-

limited functions. We therefore construct the Paley–Wiener spaces by first defining Fourier

transforms and band-limited functions. Once we have defined a Paley–Wiener space we then

introduce the Paley–Wiener Theorem which states that any function, f ∈ L2(R) that is entire

and of exponential type belongs to a Paley–Wiener space.

2.4.1 Fourier Transforms

We introduce the L2 Fourier transform which is a type of integral operator. It can be shown

that the L2 Fourier transform can be derived from the L1 Fourier transform by taking the limit

in L2. Both the L1 and L2 Fourier transforms are in fact equivalent. Details of how to construct

the L2 Fourier transform from the L1 Fourier transform can be found in [46] (Chapter 9, page

178).

Definition 2.4.1.1 For f ∈ L2(R), we define the Fourier transform of f to be,

f̂(t) = lim
R→∞

1√
2π

∫ R

−R

f(x)e−itx dx

where the limit exists in the L2 sense.

Fourier transforms are invertible and we define the inverse Fourier transform as follows.

Definition 2.4.1.2 Given f ∈ L2(R) we define the inverse Fourier transform to be,

f̌(x) = lim
R→∞

1√
2π

∫ R

−R

f(t)eitx dt

where again the limit exists in the L2 sense.
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We complete this short section by giving two results that will be used in later proofs. First

an intuitive result that shows that the inverse Fourier transform is indeed the inverse of the

Fourier transform. The result, often referred to as the L2 Inversion Theorem, allows us to write

a function, f as the inverse Fourier transform of its Fourier transform. See [46] (Theorem 9.13

(d), page 186) for details.

Proposition 2.4.1.3 Let f ∈ L2(R) and suppose that f has Fourier transform f̂ . Then

f(x) = lim
R→∞

1√
2π

∫ R

−R

f̂(t)eitx dt

where the limit exists in the L2 sense.

Finally we give another result from [46] (Theorem 9.13 (b), page 186) that states that if

f ∈ L2 then f has Fourier transform also in L2 and such that their norms are equal. The

latter part of this result, that the norms of f and its Fourier transform are equal, is known as

Plancherel’s formula. We use Plancherel’s formula to prove the converse of the Paley–Wiener

Theorem in Section 2.4.3.

Proposition 2.4.1.4 Suppose that f ∈ L2(R) and let f̂ be the Fourier transform of f as defined

in Definition 2.4.1.1. Then f̂ ∈ L2(R) and

‖f ‖L2(R) =
∥∥∥f̂∥∥∥

L2(R)
.

2.4.2 Band-limited Functions

The set of band-limited functions are defined by properties of their Fourier transforms. Specifi-

cally a band-limited function is one in which the density of its Fourier transform lies in a given

interval. Further information on band-limited functions can be found in [18] (Section 2.9, page

121).

Definition 2.4.2.1 Suppose that f ∈ L2(R) and let f̂ denote its Fourier transform. We say

that f is a band-limited function if for some fixed b,

f̂(t) = 0 for t ∈ R\[−b, b].

It is easily seen from Definition 2.4.2.1 that a function is band-limited if its Fourier transform

is supported on the interval [−b, b]. Note that by Proposition 2.4.1.4, since f ∈ L2(R) we also

have f̂ ∈ L2(R), hence f is band-limited if f̂ ∈ L2[−b, b] for some fixed b.

The following proposition gives an alternative formulation for a band-limited function. It

makes clear the idea that band-limited functions are the functions of Paley–Wiener spaces as

will become apparent in Section 2.4.3. The proof is simple and relies on the inverse Fourier

transform.

Proposition 2.4.2.2 Let f ∈ L2(R). Then f is a band-limited function if and only if

f(x) =
1√
2π

∫ b

−b

g(t)eixt dt (2.8)

for some g ∈ L2[−b, b] where b > 0.
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Proof. Suppose that f ∈ L2(R) is band-limited so that f̂ has support on [−b, b] for some fixed

b. By Proposition 2.4.1.3 we have

f(x) = lim
R→∞

1√
2π

∫ R

−R

f̂(t)eixt dt.

Choose R > b then, since f̂(t) = 0 for t /∈ [−b, b],∫ R

−R

f̂(t)eixt dt =

∫ −b

−R

f̂(t)eixt dt+

∫ b

−b

f̂(t)eixt dt+

∫ R

b

f̂(t)eixt dt

=

∫ b

−b

f̂(t)eixt dt.

Thus f(x) = 1√
2π

∫ b

−b
f̂(t)eixt dt.

Now suppose that f ∈ L2(R) takes the form given by (2.8) for some g ∈ L2[−b, b]. We extend

the function g to the whole real line by setting g(t) = 0 for t ∈ R\[−b, b]. By the uniqueness of

Fourier transforms, g(t) = f̂(t), thus f is band-limited.

In practical applications, when determining whether a function is band-limited or not, it is

often useful to see if it can be written in the form of (2.8).

2.4.3 Paley–Wiener Spaces and the Paley–Wiener Theorem

Having laid the foundations we can now define a Paley–Wiener space. Sampling theory is tradi-

tionally carried out on Paley–Wiener space. McKean and Trubowitz have used special function

spaces to do sampling related to Hill’s equation, so in this thesis we want to work in a more

standard context. We focus on defining a Paley–Wiener space using the concepts of Sections

2.4.1 and 2.4.2 and also find a reproducing kernel for a Paley–Wiener space over an interval

[−b, b]. We will return to the concept of reproducing kernels in Section 5.4 where we create a

sequence of reproducing kernels based on sampling points and then construct their Gram matrix.

Continuing with the current section, we introduce the Paley–Wiener Theorem which gives a set

of conditions which, once satisfied, will ensure that a given function lies in a specified Paley–

Wiener space. Should the reader wish to find more information regarding Paley–Wiener spaces

and the properties of Paley–Wiener functions, they should consult [41] (Section 7.1, page 204).

Definition 2.4.3.1 Let C ⊆ R be a compact set. The Paley–Wiener space, PW (C) is defined

to be

PW (C) =

{
f ∈ L2(R) : f(t) =

1√
2π

∫
C

f̂(x)eitx dx, ∀t ∈ R, f̂ ∈ L2(C)

}
.

Remark 2.4.3.2 If b > 0 is real then we use the notation PW (b) to denote PW [−b, b].

The space PW (C) is therefore the space of functions whose Fourier transforms are supported

on C, that is, for f ∈ PW (C), f̂(x) = 0 for x /∈ C. Paley–Wiener spaces thus consist of

band-limited functions.

In the following definition we define a reproducing kernel. A reproducing kernel for a Hilbert

space, H is a function which, when taken as an inner product with any f ∈ H will evaluate

the function f at a desired point. More detailed information regarding reproducing kernels and

examples of reproducing kernels for various spaces can be found in [41] (Section 5.1, page 144).
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Definition 2.4.3.3 Let S be a non-empty set. Further, let H be a Hilbert space such that for

all f ∈ H, f : S → C. A function, ks ∈ H is a reproducing kernel for H, if for all f ∈ H

f(s) = 〈f, ks〉H .

An example of a reproducing kernel can be found in the following proposition.

Proposition 2.4.3.4 Let t ∈ R. The function

kt(x) =
sin b(t− x)

π(t− x)

is a reproducing kernel for PW (b).

Proof. Let f ∈ PW (b) then by Definition 2.4.3.1 we have

f(t) =
1√
2π

∫ b

−b

f̂(x)eitx dx (2.9)

for all t ∈ R. Also, by Definition 2.4.1.1, the Fourier transform of f is given by

f̂(x) = lim
R→∞

1√
2π

∫ R

−R

f(y)e−ixy dy. (2.10)

Substituting equation (2.10) into (2.9) and reversing the order of integration we obtain

f(t) = lim
R→∞

1

2π

∫ b

−b

∫ R

−R

f(y)ei(t−y)x dy dx

= lim
R→∞

1

2π

∫ R

−R

f(y)

∫ b

−b

ei(t−y)x dx dy.

Note that

∫ b

−b

ei(t−y)x dx =

[
ei(t−y)x

i(t− y)

]b
x=−b

=
ei(t−y)b − e−i(t−y)b

i(t− y)

= 2
sin b(t− y)

t− y
.

Thus,

f(t) = lim
R→∞

∫ R

−R

f(y)
sin b(t− y)

π(t− y)
dy

= 〈f, kt〉L2(R)

where kt(x) =
sin b(t−x)
π(t−x) . Hence kt is indeed a reproducing kernel for PW (b).

We end this section by looking at the Paley–Wiener Theorem. The theorem, which we label

here as a proposition, provides a way in which we can identify functions that belong to Paley–

Wiener spaces. It states that if a function is entire and of exponential type then it must be

band-limited, hence belongs to a Paley–Wiener space. The compact set over which the Paley–

Wiener space is defined is dependent upon the bound in the definition of exponential type.
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Definition 2.4.3.5 An entire function, f is said to be of exponential type M if there exist

constants C,M such that,

|f(z)| ≤ CeM |z |

for all z ∈ C.

The following proposition is known as the Paley–Wiener Theorem. It can be found with proof

in [46] (Theorem 19.3, page 375) and [41] (Theorem 7.1.3, page 205).

Proposition 2.4.3.6 Suppose that f is an entire function of exponential type M . Further,

suppose that f |R ∈ L2(R) where f |R denotes the restriction of f to the real axis. Then there

exists a function g ∈ L2(−M,M) such that

f(z) =

∫ M

−M

g(t)eitz dt (2.11)

for all z ∈ C.

As previously stated, the Paley–Wiener Theorem is typically used to characterise band-limited

functions. It shows us that for an entire function, f of exponential type M , we can find a function

g such that g is the Fourier transform of f . Notice the similarity between (2.11) and Proposition

2.4.1.3. Moreover, g ∈ L2(−M,M) so by Proposition 2.4.2.2, f is a band-limited function.

Alternatively, one can think of the Paley–Wiener Theorem as showing us that for a given entire

function f , of exponential type M , f is, up to a constant, the Fourier transform of the function

I[−M,M ]g. This is easily seen as follows,

f(z) =

∫ M

−M

g(t)eitz dt

= lim
R→∞

∫ R

−R

I[−M,M ](t)g(t)e
itz dt

= lim
R→∞

∫ R

−R

[
I[−M,M ](−t)g(−t)

]
e−itz dt. (2.12)

Comparison of (2.12) with Definition 2.4.1.1 now shows that f(z) is the Fourier transform of

√
2πI[−M,M ](−t)g(−t).

It should be noted that the converse of the Paley–Wiener Theorem is also true. It tells us

that a band-limited function is square integrable, entire and of exponential type. Alternatively,

it states that a function, f ∈ PW (M) is entire and of exponential type M . We state the converse

of the Paley–Wiener theorem with proof in the following result.

Proposition 2.4.3.7 Suppose that a function f has the form,

f(z) =

∫ M

−M

g(t)eitz dt (2.13)

for some g ∈ L2(−M,M). Then f is entire, of exponential type M and f |R ∈ L2(R) where f |R
denotes the restriction of f to the real axis.
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Proof. Let f be defined as in equation (2.13). We first show that f is entire. Clearly f is

differentiable at all points z ∈ C with derivative

f ′(z) = i

∫ M

−M

tg(t)eitz dt.

It now follows that f is entire since eitz is entire.

To see that f |R ∈ L2(R) it suffices to show that f |R has finite L2 norm over the real line. Let

x be real and write f as follows,

f(−x) = lim
R→∞

∫ R

−R

I(−M,M)(t)g(t)e
−itx dt.

Clearly, f(−x) is the Fourier transform of
√
2πI(−M,M)(t)g(t), hence by Plancherel’s Formula,

2.4.1.4 we have,

‖f ‖2L2(R) =
∥∥I(−M,M)(t)g(t)

∥∥2
L2(R)

=

∫ ∞

−∞

∣∣I(−M,M)(t)g(t)
∣∣2 dt

=

∫ M

−M

|g(t)|2 dt.

As g ∈ L2(−M,M) it follows that ∫ M

−M

|g(t)|2 dt < ∞,

hence ‖f ‖L2(R) is finite.

To prove that f is of exponential type, first set z = u+ iv for u, v ∈ R then

|f(z)| = |f(u+ iv)|

=

∣∣∣∣∣
∫ M

−M

g(t)eitue−tv dt

∣∣∣∣∣
≤

∫ M

−M

|g(t)| ∣∣e−tv
∣∣ dt (2.14)

We now split into 3 cases. Case (i) in which v > 0; case (ii) in which v < 0; and case (iii) where

v = 0.

Case (i) (v > 0): For −M ≤ t ≤ M we have −M ≤ −t ≤ M and so

e−Mv ≤ e−tv ≤ eMv.

It now follows from (2.14) that

|f(z)| ≤
∫ M

−M

eMv |g(t)| dt.

Using the Cauchy–Schwarz inequality and evaluating the first integral we see that

|f(z)| ≤
(∫ M

−M

e2Mv dt

) 1
2
(∫ M

−M

|g(t)|2 dt

) 1
2

=
√
2MeMv

(∫ M

−M

|g(t)|2 dt

) 1
2

≤ CeM |z |
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where C =
(
2M

∫M

−M
|g(t)|2 dt

) 1
2

.

Case (ii) (v < 0): For −M ≤ t ≤ M and v < 0 we now have Mv ≤ −tv ≤ −Mv, hence

eMv ≤ e−tv ≤ e−Mv.

Therefore, by (2.14) we now have

|f(z)| ≤
∫ M

−M

e−Mv |g(t)| dt.

Again, applying the Cauchy–Schwarz inequality and evaluating the first integral gives,

|f(z)| ≤
(∫ M

−M

e−2Mv dt

) 1
2
(∫ M

−M

|g(t)|2 dt

) 1
2

=
√
2Me−Mv

(∫ M

−M

|g(t)|2 dt

) 1
2

≤ CeM |z |

where C =
(
2M

∫M

−M
|g(t)|2 dt

) 1
2

.

Case (iii) (v = 0): Finally, let v = 0 then by (2.14),

|f(z)| ≤
∫ M

−M

|g(t)| dt.

In keeping with the previous calculations we apply the Cauchy–Schwarz inequality, thus

|f(z)| ≤
(∫ M

−M

12 dt

) 1
2
(∫ M

−M

|g(t)|2 dt

) 1
2

=
√
2M

(∫ M

−M

|g(t)|2 dt

) 1
2

.

Clearly, taking C =
(
2M

∫M

−M
|g(t)|2 dt

) 1
2

we have |f(z)| ≤ CeM |z |. Therefore |f(z)| ≤ CeM |z |

for all z.

2.5 The Operators U and U ∗

In this section we introduce two operators, U and U∗ that are related to the Fourier transform

and the inverse Fourier transform respectively. We show that the functions Uf and U∗f are

band-limited while the operators U and U∗ are Hilbert–Schmidt. The operators will then be

used to construct a further operator, S. We see that S is a self-adjoint trace class operator and

an integral operator with kernel given by the reproducing kernel for PW (b).

Definition 2.5.0.8 Let t ∈ R. Define the operator U : L2[−a, a] → L2[−b, b] to be such that

Uf(t) =
1√
2π

∫ a

−a

f(x)e−itx dx. (2.15)

Likewise, define the operator U∗ : L2[−b, b] → L2[−a, a] to be such that

U∗f(t) =
1√
2π

∫ b

−b

f(x)eitx dx. (2.16)
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Remark 2.5.0.9 Note that equations (2.15) and (2.16) define Uf and U∗f for t real. We can

easily extend this definition to the complex plane by taking

Uf(z) =
1√
2π

∫ a

−a

f(x)e−izx dx;

U∗f(z) =
1√
2π

∫ b

−b

f(x)eizx dx

for z ∈ C.

We see that Uf is actually the Fourier transform of f defined on a restricted range of integra-

tion. Also, the operator U acts on the band-limited functions. It is easy to see that f ∈ L2[−a, a]

is band-limited since f̂ = Uf has support on [−b, b]. Similarly, we see that U∗f is the inverse

Fourier transform of f on a restricted range of integration. Notice also that U∗f = f̌ takes the

form of (2.8) and so f̌ ∈ L2[−a, a] is band-limited. Finally, the notation U∗ is appropriate since

U∗ is the adjoint of U as the following proposition shows.

Proposition 2.5.0.10 The operator U as defined by equation (2.15) has adjoint U∗ as defined

by equation (2.16).

Proof. We use Definition 2.1.0.7 to find the adjoint of the operator U . Thus,

〈f, U∗g〉L2[−a,a] = 〈Uf, g〉L2[−b,b]

=

∫ b

−b

Uf(t)g(t) dt.

Using Definition 2.5.0.8 and then reversing the order of integration we see that

〈f, U∗g〉L2[−a,a] =
1√
2π

∫ b

−b

(∫ a

−a

f(x)e−itx dx

)
g(t) dt

=
1√
2π

∫ a

−a

f(x)

∫ b

−b

g(t)e−itx dt dx

=
1√
2π

∫ a

−a

f(x)

∫ b

−b

g(t)eitx dt dx,

hence U∗g(x) = 1√
2π

∫ b

−b
g(t)eitx dt as required.

If we extend the definition of Uf and U∗f to the complex plane then we can apply Proposition

2.4.3.7 to show that Uf and U∗f are entire and exponentially bounded. This is summarised in

the following proposition.

Proposition 2.5.0.11 Let Uf and U∗f as given in Definition 2.5.0.8 be defined over the com-

plex plane as in Remark 2.5.0.9. Then the function Uf is entire, of exponential type a and

satisfies ∫ ∞

−∞
|Uf(t)|2 dt < ∞.

Similarly, the function U∗f is entire, of exponential type b and satisfies∫ ∞

−∞
|U∗f(t)|2 dt < ∞.
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Proof. First note that by Definition 2.5.0.8 and Remark 2.5.0.9, for x ∈ R and z ∈ C we have

Uf(−z) =
1√
2π

∫ a

−a

f(x)eizx dx

for f ∈ L2[−a, a]. Hence Uf satisfies the conditions of Proposition 2.4.3.7 and so we deduce that

Uf ∈ L2(R) is entire and of exponential type a.

Similarly,

U∗f(z) =
1√
2π

∫ b

−b

f(x)eizx dx

also satisfies the conditions of Proposition 2.4.3.7 and so U∗f ∈ L2(R) is entire and of exponential

type b.

Remark 2.5.0.12 Proposition 2.5.0.11 shows that the functions Uf and U∗f are band-limited.

Further, it shows that Uf ∈ PW (a) and U∗f ∈ PW (b).

Next we turn our attention to proving some properties of U and U∗. An important feature

of the operators U and U∗ is that they are both Hilbert–Schmidt operators. We prove this in

the following lemma.

Lemma 2.5.0.13 The operators U and U∗ as stated in Definition 2.5.0.8 are Hilbert–Schmidt

for finite a and b.

Proof. The operator U has kernel e−itx for x ∈ [−a, a] and t ∈ [−b, b]. Now,

∫ b

−b

∫ a

−a

∣∣e−itx
∣∣2 dx dt =

∫ b

−b

∫ a

−a

1 dx dt

= 4ab.

Clearly,
∫ b

−b

∫ a

−a

∣∣e−itx
∣∣2 dx dt is finite when a and b are both finite. Therefore, for a, b < ∞, it

follows from Proposition 2.1.1.6 that U is a Hilbert–Schmidt operator.

Similarly U∗ has kernel eitx such that for a and b finite,∫ a

−a

∫ b

−b

∣∣eitx ∣∣2 dx dt = 4ab

< ∞.

So for a, b < ∞, U∗ is also a Hilbert–Schmidt operator by Proposition 2.1.1.6.

We close this section by using U and U∗ to define a new operator, S which is self-adjoint

and trace class. Recall from Proposition 2.1.2.6 that any trace class operator is also a Hilbert–

Schmidt operator and so S will also be Hilbert–Schmidt. Notice that in Definition 2.5.0.14, S

is defined as an integral operator with kernel, k(t, x) = sin b(t−x)
π(t−x) . Recalling Proposition 2.4.3.4,

the reproducing kernel for PW (b) is kt(x) = sin b(t−x)
π(t−x) . Therefore, S has kernel given by the

reproducing kernel for the space PW (b).

Definition 2.5.0.14 Let S : L2[−a, a] → L2[−a, a] be the operator defined by

Sf(t) =
1

π

∫ a

−a

f(x)
sin b(t− x)

t− x
dx.
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Remark 2.5.0.15 Given kt(x) =
sin b(t−x)
π(t−x) we know that kt ∈ L2(R) since kt is a reproducing

kernel for PW (b). Thus,

Sf(t) =

∫ a

−a

f(x)kt(x) dx

= 〈f, kt〉L2[−a,a]

and so Sf is well defined.

In the following proposition we see that S = U∗U where U and U∗ are given by Definition

2.5.0.8. This fact justifies the domain and codomain of S being as stated in Definition 2.5.0.14,

for U∗U : L2[−a, a] → L2[−b, b] → L2[−a, a].

Proposition 2.5.0.16 Let U and U∗ be the operators given in Definition 2.5.0.8 and let S be

the operator defined in Definition 2.5.0.14. Then,

S = U∗U.

Furthermore, S is self-adjoint and trace class.

Proof. Using Definition 2.5.0.8 we have

U∗Uf(t) =
1√
2π

∫ b

−b

Uf(y)eity dy

=
1

2π

∫ b

−b

(∫ a

−a

f(x)e−iyx dx

)
eity dy

=
1

2π

∫ b

−b

∫ a

−a

f(x)ei(t−x)y dx dy.

Changing the order of integration gives

U∗Uf(t) =
1

2π

∫ a

−a

f(x)

∫ b

−b

ei(t−x)y dy dx. (2.17)

Evaluating the inner integral in (2.17) we obtain,

∫ b

−b

ei(t−x)y dy =

[
ei(t−x)y

i(t− x)

]b
y=−b

=
ei(t−x)b − e−i(t−x)b

i(t− x)

= 2
sin b(t− x)

t− x
.

Therefore,

U∗Uf(t) =
1

π

∫ a

−a

f(x)
sin b(t− x)

t− x
dx

= Sf(t)

as required.

Next we prove that S is self-adjoint. Note that S is an integral operator with kernel S(t, x) =
sin b(t−x)
π(t−x) . We check that the condition on the kernel given in Definition 2.1.0.7 holds. First note
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that for x, t and b real, the sine function is real and so S(t, x) is real. Furthermore, S(t, x) is an

even function, thus

S(x, t) =
sin b(x− t)

π(x− t)

=
sin b(x− t)

π(x− t)

=
sin b(t− x)

π(t− x)

= S(t, x).

It follows from Definition 2.1.0.7 that S is self-adjoint.

Finally we show that S is a trace class operator. By Lemma 2.5.0.13, the operators U and

U∗ are Hilbert–Schmidt. By the first part of the result S = U∗U , so S is the product of two

Hilbert–Schmidt operators. It follows from Definition 2.1.2.1 that S is trace class.

2.6 Linear Systems

This final section provides some background material relating to linear systems. Detailed con-

structions of linear systems can be found in [8] and [42]. Here we define a linear system,

(−A,B,C,D) by way of a generator, −A relating to a semigroup and we then proceed to demon-

strate the solution of such a linear system. Linear systems will appear in Chapter 3 where they

are used to solve the Gelfand–Levitan integral equation through the construction of the operator

Rx. Finally we give an example of a linear system that will be used to prove numerous results

in Chapter 4.

We begin by constructing a strongly continuous semigroup. In order to create a strongly

continuous semigroup we first need to define a generator which we do via a translation operator.

Definition 2.6.0.17 Let E be an open or closed, finite or infinite interval of the real line. Let

f ∈ L2(E) then for t ∈ R we define the translation operator by

Ttf(x) =

⎧⎨
⎩f(x+ t) for x+ t ∈ E,

0 for x+ t /∈ E.

Definition 2.6.0.18 Suppose that t ∈ R and let Tt be the translation operator as defined in

Definition 2.6.0.17. Let E be a finite or infinite interval on the real line. We introduce the

generator, A defined by

−Af = lim
t→0

Ttf − f

t
, (2.18)

where A has domain, DE(A) = {f : f, f ′ ∈ L2(E), f absolutely continuous}.

Remark 2.6.0.19 For the definition of an absolutely continuous function see [54] (Section 11.7,

page 364).

In the above definition we introduced DE(A) and so we take this opportunity to define a

norm on DE(A).
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Definition 2.6.0.20 Let DE(A) = {f : f, f ′ ∈ L2(E), f absolutely continuous} where E is some

interval of the real line. We define the norm on DE(A) to be

‖f ‖2DE(A) = ‖f ‖2L2(E) + ‖f ′‖2L2(E) .

The terminology generator in Definition 2.6.0.18 may at first seem peculiar, however it is

fully justified as the reader will understand upon reaching Proposition 2.6.0.24. We also note

the similarity between (2.18) and the formal definition of a derivative. Indeed, the following

proposition shows that the action of the generator is equivalent to the operation of differentiation.

Proposition 2.6.0.21 Let A be a generator as in equation (2.18). Then −Af = f ′ for f ∈
DE(A).

Proof. Let f ∈ DE(A) then by (2.18) we have

−Af(x) = lim
t→0

Ttf(x)− f(x)

t
.

The function f is defined on the interval E which may be some proper subset of the real line.

We therefore extend the definition of f to the real line as follows,

f(x) =

⎧⎨
⎩f(x) for x ∈ E,

0 for x /∈ E.

Now suppose that x+ t ∈ E then by Definition 2.6.0.17 we have Ttf(x) = f(x+ t). Therefore

−Af(x) = lim
t→0

f(x+ t)− f(x)

t

= f ′(x)

where the final line follows from the definition of differentiation. Now suppose that x+ t /∈ E so

that Ttf(x) = 0. Then

−Af(x) = lim
t→0

−f(x)

t
.

By extension to the real line, f(x+ t) = 0, and so

−Af(x) = lim
t→0

f(x+ t)− f(x)

t

= f ′(x)

as required. In both cases, −Af = f ′.

The following proposition provides an alternative notation for the translation map. When

calculating various operators in Chapters 3 and 4 it will be more convenient to use the notation

of Proposition 2.6.0.22 which we credit to Lagrange.

Proposition 2.6.0.22 Let Tt : DE(A) → DE(A) be the translation operator defined by Defini-

tion 2.6.0.17. Then Tt = e−tA where A is the generator given by (2.18).

Proof. Let x + t ∈ E then, using Definition 2.6.0.17 and differentiating both sides of the

translation map with respect to t gives

T ′
tf(x) = f ′(x+ t).
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From Proposition 2.6.0.21 we know that −A is the differentiation operator, thus −Af(x+ t) =

f ′(x+ t). Therefore

T ′
tf(x) = −Af(x+ t)

= −ATtf(x)

where the last line follows from Definition 2.6.0.17. Thus Tt satisfies the first order differential

equation

T ′
t +ATt = 0. (2.19)

Now suppose that x+ t /∈ E then Ttf(x) = 0. Further, T ′
tf(x) = 0 and so again Tt satisfies the

first order differential equation, (2.19). It is clear that we can solve (2.19) by taking Tt = e−tA,

hence the result.

Next we define a strongly continuous semigroup and show that the set of operators {Tt}t≥0

does indeed form one. Should the reader require further information regarding semigroups they

should consult [12].

Definition 2.6.0.23 A strongly continuous semigroup is a set {T (t) : t ∈ R
+} of bounded linear

operators on a Hilbert space, H satisfying:

(i) T (0) = I where I is the identity operator on H;

(ii) T (s+ t) = T (s)T (t) for all s, t ≥ 0;

(iii) For all h ∈ H, ‖T (t)h− h‖ → 0 as t → 0+.

The following theorem shows that {Tt}t≥0 = {e−tA}t≥0 forms a strongly continuous semi-

group. We also note that the use of the terminology generator in Definition 2.6.0.18 is now

justified since A generates the semigroup {e−tA}t≥0.

Theorem 2.6.0.24 Let A be the generator defined by (2.18) and let t ≥ 0. For Tt operating on

L2(R), Tt is bounded and satisfies ‖Tt‖ op ≤ 1. Furthermore, the set {Tt}t≥0 = {e−tA}t≥0 forms

a strongly continuous semigroup of operators on L2(E), where E is some interval of the real line.

Proof. Firstly we show that the Tt are bounded. Given Tt operates on L2(R) we have

‖Ttf ‖2L2(R) =

∫ ∞

−∞
|Ttf(x)|2 dx

=

∫ ∞

−∞
|f(x+ t)|2 dx

=

∫ ∞

−∞
|f(x)|2 dx

= ‖f ‖2L2(R) .

This shows that Tt is bounded with ‖Tt‖ op ≤ 1.

Now suppose that E is some interval of the real line. We show that {Tt}t≥0 forms a strongly

continuous semigroup on L2(E) by checking that the conditions of Definition 2.6.0.23 are satisfied.

We know that the {Tt} are bounded so we start by showing that they are linear operators. Let

t ≥ 0 then as Tt denotes translation we can write

Tt[λf + μg](x) = [λf + μg](x+ t)
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for x+ t ∈ E. Note that L2(E) is a vector space and so is distributive with respect to addition

and associative with respect to multiplication. Since Tt operates on L2(E) we thus have

Tt[λf + μg](x) = (λf)(x+ t) + (μg)(x+ t)

= λf(x+ t) + μg(x+ t).

The elements in the final line above are translations and so it follows that,

Tt[λf + μg](x) = λTtf(x) + μTtg(x).

The case in which x+ t /∈ E is trivial thus proving that Tt is linear.

We now check that conditions (i)-(iii) of Definition 2.6.0.23 are satisfied by Tt. Firstly,

T0 = e0 = I and so condition (i) is satisfied.

Next we note that for s, t ≥ 0 and x+ s+ t ∈ E we must have x+ t ∈ E and so

Ts+tf(x) = f(x+ s+ t)

= Tsf(x+ t)

= TsTtf(x).

Now suppose that x + s + t /∈ E so that Ts+tf(x) = 0. We split into two cases: x + r ∈ E

and x + r /∈ E where r = s, t. Without loss of generality, suppose that x + t ∈ E, then

Ttf(x) = f(x+ t). Thus,

Ts+tf(x) = 0

= Tsf(x+ t)

= TsTtf(x).

For the second case, again without loss of generality, suppose that x + t /∈ E then Ttf(x) = 0.

Hence,

Ts+tf(x) = 0

= TsTtf(x).

This shows that condition (ii) is satisfied.

Finally we check condition (iii). For any f ∈ L2(E) we can approximate f by a simple

function, fs. Let E =
⋃n

j=1 Ej where the Ej are disjoint intervals, then we can approximate f

by

fs(x) =
n∑

j=1

cjIEj
(x),

as in the construction of the Lebesgue integral of f . Therefore, given ε > 0 we can choose fs

such that

‖f − fs‖L2(E) < ε.

Observe that we may use the triangle inequality to show that

‖Ttf − f ‖L2(E) = ‖[Ttf − Ttfs] + [Ttfs − fs] + [fs − f ]‖L2(E)

≤ ‖Tt(f − fs)‖L2(E) + ‖Ttfs − fs‖L2(E) + ‖f − fs‖L2(E)

≤ 2 ‖f − fs‖L2(E) + ‖Ttfs − fs‖L2(E) .
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The last line follows from the fact that Tt is bounded and ‖Tt‖ op ≤ 1. Now consider the term

‖Ttfs − fs‖L2(E). Suppose that x+ t ∈ E for all x ∈ E, then

‖Ttfs − fs‖2L2(E) =

∫
E

|[Ttfs − fs](x)|2 dx

=

∫
E

|fs(x+ t)− fs(x)|2 dx

=

∫
E

∣∣∣∣∣∣
n∑

j=1

cj
[
IEj (x+ t)− IEj (x)

]∣∣∣∣∣∣
2

dx. (2.20)

Applying the Cauchy–Schwarz inequality to the sum in (2.20) gives∣∣∣∣∣∣
n∑

j=1

cj
[
IEj

(x+ t)− IEj
(x)
]∣∣∣∣∣∣

2

≤
⎛
⎝ n∑

j=1

|cj |2
⎞
⎠( n∑

k=1

|IEk
(x+ t)− IEk

(x)|2
)
.

Therefore,

‖Ttfs − fs‖2L2(E) ≤
∫
E

⎛
⎝ n∑

j=1

|cj |2
⎞
⎠( n∑

k=1

|IEk
(x+ t)− IEk

(x)|2
)

dx

=

⎛
⎝ n∑

j=1

|cj |2
⎞
⎠ n∑

k=1

∫
E

|IEk
(x+ t)− IEk

(x)|2 dx.

Suppose that Ek = (ak, bk) then∫
E

|IEk
(x+ t)− IEk

(x)|2 dx =

∫
E

∣∣I(ak−t,bk−t)(x)− I(ak,bk)(x)
∣∣2 dx

=

∫ ak

ak−t

|1|2 dx+

∫ bk−t

ak

|1− 1|2 dx+

∫ bk

bk−t

|0− 1|2 dx

= [x]
ak

ak−t + [x]
bk
bk−t

= 2t.

Note that the same argument holds if Ek is a half-open or closed interval. It therefore follows

that

‖Ttfs − fs‖2L2(E) ≤
⎛
⎝ n∑

j=1

|cj |2
⎞
⎠ n∑

k=1

2t

= 2tn
n∑

j=1

|cj |2

→ 0

as t → 0+. Now suppose that some of the x+ t fall outside of the set E. Suppose also without

loss of generality that E = (a, b). In this case we may write

‖Ttfs − fs‖2L2(E) =

∫ b

a

|[Ttfs − fs](x)|2 dx

=

∫ b−t

a

|fs(x+ t)− fs(x)|2 dx+

∫ b

b−t

|fs(x)|2 dx.

The same argument that was used to show ‖Ttfs − fs‖2L2(E) → 0 as t → 0+ for all x + t ∈ E,

can be used to show that ∫ b−t

a

|fs(x+ t)− fs(x)|2 dx → 0
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as t → 0+. It is also clear that ∫ b

b−t

|fs(x)|2 dx → 0

as t → 0+. Hence, in all cases

‖Ttf − f ‖L2(E) → 0

as t → 0+.

Notice that when we defined the translation map, it was defined for all real t. However, we

have only shown that {e−tA} is a semigroup for t ≥ 0. We can in fact also find a semigroup for

t ≤ 0. Suppose that t ≤ 0 then we can write t = − |t| where |t| ≥ 0. By Definition 2.6.0.17 we

have

Tt = f(x+ t)

= f(x− |t|)

where Tt = e|t|A. This prompts the following theorem.

Theorem 2.6.0.25 Let A be the generator as in (2.18) and let t ≥ 0. For T−t operating on

L2(R), T−t is bounded and satisfies ‖T−t‖ op ≤ 1. Furthermore, the set {T−t}t≥0 = {etA}t≥0

forms a strongly continuous semigroup of operators on L2(E), where E is some interval of the

real line.

Proof. The proof follows exactly the same method as that of Theorem 2.6.0.24. First we show

that T−t is bounded. Let T−t operate on L2(R) then

‖T−tf ‖2L2(R) =

∫ ∞

−∞
|T−tf(x)|2 dx

=

∫ ∞

−∞
|f(x− t)|2 dx

=

∫ ∞

−∞
|f(x)|2 dx

= ‖f ‖2L2(R) .

This shows that T−t is bounded with ‖T−t‖ op ≤ 1.

To show that {T−t}t≥0 forms a strongly continuous semigroup on L2(E), we again check that

the set {T−t}t≥0 satisfies Definition 2.6.0.23. We have already shown that T−t is bounded so it

remains to check linearity and that conditions (i)-(iii) hold. In order to ascertain linearity, we

first note that L2(E) is a vector space and hence is distributive with respect to addition and

associative with respect to multiplication. Thus for x− t ∈ E,

T−t[λf + μg](x) = [λf + μg](x− t)

= (λf)(x− t) + (μg)(x− t)

= λf(x− t) + μg(x− t).

As T−t represents translation it follows that

T−t[λf + μg](x) = λT−tf(x) + μT−tg(x).
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Again, the case in which x− t /∈ E is trivial. This proves that T−t is linear.

Next we show that T−t satisfies conditions (i)-(iii) as stated in Definition 2.6.0.23. Clearly

we have T0 = e0 = I and so condition (i) is satisfied.

Now let s, t ≥ 0 and suppose that x− s− t ∈ E we must have x− t ∈ E and so

T−s−tf(x) = f(x− s− t)

= T−sf(x− t)

= T−sT−tf(x).

Now suppose that x − s − t /∈ E so that T−s−tf(x) = 0 and split into two cases: x − r ∈ E

and x − r /∈ E where r = s, t. Without loss of generality, suppose that x − t ∈ E, then

T−tf(x) = f(x− t). Thus,

T−s−tf(x) = 0

= T−sf(x− t)

= T−sT−tf(x).

For the second case, again without loss of generality, suppose that x− t /∈ E then T−tf(x) = 0.

Hence,

T−s−tf(x) = 0

= T−sT−tf(x).

This shows that condition (ii) is satisfied.

Lastly, for any f ∈ L2(E) we can approximate f by a simple function, fs. Let E =
⋃n

j=1 Ej

where the Ej are disjoint intervals. Then, given ε > 0 we can choose

fs(x) =

n∑
j=1

cjIEj (x)

such that

‖f − fs‖ < ε.

Again, using the triangle inequality,

‖T−tf − f ‖L2(E) = ‖[T−tf − S(t)fs] + [T−tfs − fs] + [fs − f ]‖L2(E)

≤ ‖T−t(f − fs)‖L2(E) + ‖T−tfs − fs‖L2(E) + ‖f − fs‖L2(E)

≤ 2 ‖f − fs‖L2(E) + ‖T−tfs − fs‖L2(E) .

The last line being true since T−t is bounded with ‖T−t‖ op ≤ 1. Note that if x − t ∈ E for all

x ∈ E we have

‖T−tfs − fs‖2L2(E) =

∫
E

|(T−tfs − fs)(x)|2 dx

=

∫
E

|fs(x− t)− fs(x)|2 dx

=

∫
E

∣∣∣∣∣∣
n∑

j=1

cj
[
IEj (x− t)− IEj (x)

]∣∣∣∣∣∣
2

dx.
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By the Cauchy–Schwarz inequality∣∣∣∣∣∣
n∑

j=1

cj
[
IEj

(x− t)− IEj
(x)
]∣∣∣∣∣∣

2

≤
⎛
⎝ n∑

j=1

|cj |2
⎞
⎠( n∑

k=1

|IEk
(x− t)− IEk

(x)|2
)
,

therefore

‖T−tfs − fs‖2L2(E) ≤
∫
E

⎛
⎝ n∑

j=1

|cj |2
⎞
⎠( n∑

k=1

|IEk
(x− t)− IEk

(x)|2
)

dx

=

⎛
⎝ n∑

j=1

|cj |2
⎞
⎠ n∑

k=1

∫
E

|IEk
(x− t)− IEk

(x)|2.

Now suppose, without loss of generality, that Ek = (ak, bk). Then∫
E

|IEk
(x− t)− IEk

(x)|2 dx =

∫ ak+t

ak

|−1|2 dx+

∫ bk

ak+t

|1− 1|2 dx+

∫ bk+t

bk

|1|2 dx

= 2t.

It follows that

‖T−tfs − fs‖2L2(E) ≤
⎛
⎝ n∑

j=1

|cj |2
⎞
⎠ n∑

k=1

2t

= 2tn
n∑

j=1

|cj |2

→ 0

as t → 0+. Now suppose that some of the x− t fall outside of the set E. Suppose also without

loss of generality that E = (a, b). In this case we may write

‖T−tfs − fs‖2L2(E) =

∫ b

a

|[T−tfs − fs](x)|2 dx

=

∫ a+t

a

|fs(x)|2 dx+

∫ b

a+t

|fs(x− t)− fs(x)|2 dx.

Again, the same argument that was used to show ‖T−tfs − fs‖2L2(E) → 0 as t → 0+ for all

x− t ∈ E, can be used to show that∫ b

a+t

|fs(x− t)− fs(x)|2 dx → 0

as t → 0+. Also, we clearly have ∫ a+t

a

|fs(x)|2 dx → 0

as t → 0+. Hence in all cases,

‖T−tf − f ‖L2(E) → 0

as t → 0+ and we have satisfied condition (iii).

Having constructed a strongly continuous semigroup we are now able to define a linear system.

First we give a broad definition of a linear system and state a theorem that shows the solutions

of such a system. We then close the section with an example of a linear system that will be used

in Section 4.5.
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Definition 2.6.0.26 Let E be an open or closed interval of the real line. Let the state space be

L2(E) and let the input and output spaces be C. For time t ∈ (0,∞), let U : (0,∞) → C denote

the input, X : (0,∞) → L2(E) the state and Y : (0,∞) → C the output. Also let U,X, Y be

continuous. Take A to be the generator of the strongly continuous semigroup {Tt}t≥0 on L2(E),

where Tt = e−tA. Then define the following operators:

Tt : L
2(E) → L2(E),

B : C → L2(E),

C : DE(A) → C,

D : C → C

where B,C and D are bounded linear operators. Then (−A,B,C,D) determines the linear,

time-invariant system

d

dt
X(t) = −AX(t) +BU(t) (2.21)

Y (t) = CX(t) +DU(t). (2.22)

Remark 2.6.0.27 It will sometimes be necessary to restrict the codomain of the operator B. In

this case we will take Br : C → DE(A) and speak of the linear system (−A,Br, C,D).

The reader should think of the linear system defined by Definition 2.6.0.26 as proposing

a problem. That is, given the equations (2.21) and (2.22), can we find a suitable system

(−A,B,C,D) such that (2.21) and (2.22) hold? In the case that X : (0,∞) → DE(A), we

are able to construct a solution to the linear system. The following theorem presents such a

solution.

Theorem 2.6.0.28 Suppose that X : (0,∞) → DE(A) and Br : C → DE(A). Then the linear

system as stated by Definition 2.6.0.26 and determined by (−A,Br, C,D) has solution

X(t) = TtX(0) +

∫ t

0

Tt−sBrU(s) ds, (2.23)

Y (t) = CTtX(0) +

∫ t

0

CTt−sBrU(s) ds+DU(t). (2.24)

Remark 2.6.0.29 The integrals in (2.23) and (2.24) are defined as Lebesgue integrals. This

follows from [32] (Theorem 3.7.4, page 80).

Proof. First note that since 0 ≤ s ≤ t in equations (2.23) and (2.24), we have t − s ≥ 0 so

Tt−s = e−(t−s)A does indeed belong to the semigroup
{
e−tA

}
t≥0

. Now let X(t) = TtX(0) +∫ t

0
Tt−sBrU(s) ds and note that since Tt = e−tA,

d

dt
Tt =

d

dt
e−tA

= −Ae−tA

= −ATt.

A rigorous proof of this fact can be found in [14] (Lemma 7(b), page 619). It therefore follows

that

d

dt
X(t) = −ATtX(0) +

∫ t

0

−ATt−sBrU(s) ds+ T0BrU(t)

= −AX(t) + T0BrU(t).
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Since {Tt}t≥0 forms a strongly continuous semigroup, T0 = I and so

d

dt
X(t) = −AX(t) +BrU(t).

Now let Y (t) = CTtX(0) +
∫ t

0
CTt−sBrU(s) ds+DU(t). By [32] (Theorem 3.7.12, page 83)

we can write ∫ t

0

CTt−sBrU(s) ds = C

∫ t

0

Tt−sBrU(s) ds

and so it follows that Y (t) = CX(t) +DU(t). This completes the proof.

We now proceed to create an example of a linear system. The following system will reappear

in Section 4.5 to enable us to calculate various operators.

Example 2.6.0.30

Let C be the input and output space and let L2[a, b] be the state space. Take the domain

of A to be D[a,b](A) where A is the generator of the semigroups {e−tA}t≥0 and {etA}t≥0.

Define the operators

A : D[a,b](A) → L2[a, b],

B : C → L2[a, b],

C : D[a,b](A) → C

by

A : f(x) �→ −f ′(x),

B : β �→ βψ(x),

C : f �→ f(0)

where ψ ∈ L2[a, b] is absolutely continuous. Then (−A,B,C) defines a linear system.

Remark 2.6.0.31 It will sometimes be necessary to restrict the codomain of the operator B.

In the case of Example 2.6 we take Br : C → D[a,b](A) where Br is given by β �→ βψ(x) for

ψ ∈ D[a,b](A). We then refer to the linear system (−A,Br, C).

By Definition 2.6.0.26, when defining a linear system (−A,B,C), we require that B and C

are bounded linear maps. The following lemma shows that the operators B and C as defined by

Example 2.6 are bounded (we note that they are clearly linear).

Lemma 2.6.0.32 Suppose that a ≤ 0 < b where a and b are finite. Let (−A,B,C) be the linear

system defined in Example 2.6. Then the operators B and C are bounded.

Proof. We begin by showing that B is bounded. Note that

‖Bβ‖L2[a,b] = ‖βψ‖L2[a,b]

= |β | ‖ψ‖L2[a,b] .

Since ψ ∈ L2[a, b] it follows that ‖ψ‖L2[a,b] exists and is finite. Therefore, B is bounded with

bound ‖ψ‖L2[a,b].
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Next we show that C is bounded. This requires a little more work. Let f ∈ D[a,b](A) where

a ≤ 0 < b. By the Fundamental Theorem of Calculus we have∫ t

0

f ′(x) dx = f(t)− f(0) (2.25)

for t ≤ b. Integrating both sides of (2.25) with respect to t over the interval [a, b] gives∫ b

a

∫ t

0

f ′(x) dx dt =

∫ b

a

f(t) dt−
∫ b

a

f(0) dt

=

∫ b

a

f(t) dt− (b− a)f(0). (2.26)

Now, rearranging equation (2.26) we obtain the following formula,

f(0) =
1

b− a

[∫ b

a

f(t) dt−
∫ b

a

∫ t

0

f ′(x) dx dt

]
. (2.27)

We show that Cf = f(0) is bounded by showing that
∫ b

a
f(t) dt − ∫ b

a

∫ t

0
f ′(x) dx dt is bounded.

For f ∈ D[a,b](A) the map f �→ ∫ b

a
f(t) dt is bounded since, by the Cauchy–Schwarz inequality,∣∣∣∣∣

∫ b

a

f(t) dt

∣∣∣∣∣
2

≤
(∫ b

a

|f(t)|2 dt

)(∫ b

a

1 dt

)

= (b− a) ‖f ‖2L2[a,b]

which is finite. Also, the map f �→ ∫ t

0
f ′(x) dx is bounded for t ∈ [a, b]. Again, by the Cauchy–

Schwarz inequality, ∣∣∣∣
∫ t

0

f ′(x) dx
∣∣∣∣
2

≤
(∫ t

0

|f ′(x)|2 dx

)(∫ t

0

1 dx

)

≤
(∫ b

a

|f ′(x)|2 dx

)(∫ b

a

1 dx

)

= (b− a) ‖f ′‖2L2[a,b] .

By the definition of D[a,b](A), f
′ ∈ L2[a, b] and so it follows that ‖f ′‖2L2[a,b] is finite. Hence

f �→ ∫ t

0
f ′(x) dx is bounded. Further, the map f �→ ∫ b

a

∫ t

0
f ′(x) dx dt is also bounded because,

again by the Cauchy–Schwarz inequality∣∣∣∣∣
∫ b

a

∫ t

0

f ′(x) dx dt

∣∣∣∣∣
2

≤
(∫ b

a

∣∣∣∣
∫ t

0

f ′(x) dx
∣∣∣∣
2

dt

)(∫ b

a

1 dt

)

≤ (b− a)

∫ b

a

(b− a) ‖f ′‖2L2[a,b] dt

= (b− a)3 ‖f ′‖2L2[a,b]

< ∞.

Therefore, by (2.27) we have

‖Cf ‖
C

=

∣∣∣∣∣ 1

b− a

[∫ b

a

f(t) dt−
∫ b

a

∫ t

0

f ′(x) dx dt

]∣∣∣∣∣
≤ 1

b− a

(∣∣∣∣∣
∫ b

a

f(t) dt

∣∣∣∣∣+
∣∣∣∣∣
∫ b

a

∫ t

0

f ′(x) dx dt

∣∣∣∣∣
)

≤ 1

b− a

[
(b− a)

1
2 ‖f ‖L2[a,b] + (b− a)

3
2 ‖f ′‖L2[a,b]

]
=

1√
b− a

‖f ‖L2[a,b] +
√
b− a ‖f ′‖L2[a,b] .
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As b− a > 0 it follows that

‖Cf ‖
C

≤
(

1√
b− a

+
√
b− a

)(
‖f ‖L2[a,b] + ‖f ′‖L2[a,b]

)

≤ 2(1 + b− a)√
b− a

(
‖f ‖2L2[a,b] + ‖f ′‖2L2[a,b]

) 1
2

=
2(1 + b− a)√

b− a
‖f ‖D[a,b](A) ,

hence C is bounded.
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Chapter 3

The Gelfand–Levitan Integral

Equation

Hill’s equation is the differential equation

−f ′′ + qf = λf

where q is real, twice continuously differentiable and π-periodic. The spectral problem is to

find the spectra of this differential equation given q. In this thesis we deal with the periodic

spectrum and the Bloch spectrum, as discussed in Chapter 4. It is also interesting to find the

possible sequences that can occur as the periodic spectrum of such a Hill’s equation. This involves

recovering a suitable q from the spectral data, and is known as the inverse spectral problem. An

important tool in the inverse spectral problem is the Gelfand–Levitan integral equation.

This chapter provides the necessary preliminary material for problems that we explore in

Chapter 4. In Chapter 4 we shall consider the problems of finding solutions to Hill’s equation

and reconstructing a potential of Hill’s equation given that a linear system, (−A,B,C) is known.

The key to both of these problems is to know the scattering function, φ which we introduce in

Section 3.1. We see that the scattering function can be constructed from a known linear system,

(−A,B,C), indeed its Laplace transform is the transfer function of (−A,B,C). Much of the

work throughout this thesis is concerned with even functions and so we modify the scattering

function so that it is even.

For the remainder of the chapter we follow the method of Blower in [2], however, we make

substantial changes to cover the periodic context. Once we have a known scattering function, φ

we then introduce a twice continuously differentiable function, T (x, y) such that φ and T satisfy

a type of Gelfand–Levitan integral equation. In Section 3.3 we then see how the linear sys-

tem, (−A,B,C) is used to construct T (x, y), thus solving the Gelfand–Levitan integral equation

through the use of linear systems. From the Gelfand–Levitan integral equation, a partial differ-

ential equation for T (x, y) arises that produces a potential of Hill’s equation, q from d
dxT (x, x).

Thus in this chapter we construct T (x, y) from the linear system, (−A,B,C) such that T satisfies

the Gelfand–Levitan integral equation and hence a partial differential equation dependent on q.

We then solve the partial differential equation to ultimately recover q. Indeed this is the subject
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of Section 4.6. Further to this, in Section 4.2 we will see that once T (x, y) has been derived

from (−A,B,C), it can be used to construct a solution of Hill’s equation. The novel idea of this

chapter is an operator Rx which is used to produce T from the linear system, (−A,B,C).

The following maps should make the route taken through this chapter clear,

(−A,B,C) �→ φ �→ Rx �→ T �→ q

where φ �→ T via the Gelfand–Levitan integral equation and T �→ q via a partial differential

equation.

3.1 The Scattering Function

The purpose of this section is to introduce the scattering function which will be necessary for

our work throughout the current chapter. We do not concern ourselves with the intricacies of

the scattering function here for these can be found in [2]. We simply note that the purpose of

the scattering function is to recover the potential, q of Hill’s equation. If the reader keeps this

in mind then he will see that the partial differential equation arising in Section 3.2 is linked to

the potential of Hill’s equation, q appearing in Section 4.1.

This section therefore demonstrates that a scattering function can be obtained from a linear

system, (−A,Br, C). In fact we shall see that the transfer function of a linear system, (−A,Br, C)

is the Laplace transform of a scattering function.

Definition 3.1.0.33 The Laplace transform, L of a function, f is given by

L[f(t); s] =
∫ ∞

0

f(t)e−st dt.

Remark 3.1.0.34 The Laplace transform is linear.

Theorem 3.1.0.35 Let (−A,Br, C,D) be a linear system as in Definition 2.6.0.26 with so-

lutions given by Theorem 2.6.0.28. Suppose that X(0) = 0 and define the function, φ to be

φ(t) = Ce−tABr. Then

Y (t) =

∫ t

0

φ(t− s)U(s) ds+DU(t).

Further, ∫ ∞

0

e−tAe−λt dt

converges to (A+ λI)−1 for Re (λ) > 0. Hence, Y has Laplace transform

L[Y (t);λ] = (L[φ(t);λ] +D)L[U(t);λ]

where

L[φ(t);λ] = C(A+ λI)−1Br.
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Proof. Recall that Tt−s = e−(t−s)A and suppose that X(0) = 0. By Theorem 2.6.0.28 we have

Y (t) = CTtX(0) +

∫ t

0

CTt−sBrU(s) ds+DU(t)

=

∫ t

0

Ce−(t−s)ABrU(s) ds+DU(t).

Now let φ(t) = Ce−tABr, then

Y (t) =

∫ t

0

φ(t− s)U(s) ds+DU(t),

proving the first part of the result.

Next we calculate the Laplace transform of Y . Since the Laplace transform is linear it follows

that Y has Laplace transform given by

L[Y (t);λ] = L
[∫ t

0

φ(t− s)U(s) ds;λ

]
+DL[U(t);λ].

Now, by Definition 3.1.0.33

L
[∫ t

0

φ(t− s)U(s) ds;λ

]
=

∫ ∞

0

[∫ t

0

φ(t− s)U(s) ds

]
e−λt dt. (3.1)

Reversing the order of integration in (3.1) we see that

L
[∫ t

0

φ(t− s)U(s) ds;λ

]
=

∫ ∞

0

U(s)

[∫ ∞

s

φ(t− s)e−λt dt

]
ds

=

∫ ∞

0

U(s)e−λs

[∫ ∞

s

φ(t− s)e−λ(t−s) dt

]
ds

= L[φ(t);λ]L[U(t);λ].

Therefore,

L[Y (t);λ] = L[φ(t);λ]L[U(t);λ] +DL[U(t);λ]

as required.

Finally let Re (λ) > 0 and note that∥∥∥∥
∫ ∞

0

e−tAe−λt dt

∥∥∥∥ ≤
∫ ∞

0

∥∥e−tAe−λt
∥∥ dt.

By Theorem 2.6.0.24,
∥∥e−tA

∥∥ ≤ 1 and so

∥∥e−tAe−λt
∥∥ ≤ ∥∥e−λt

∥∥
= e−Re(λ)t.

Thus ∥∥∥∥
∫ ∞

0

e−tAe−λt dt

∥∥∥∥ ≤
∫ ∞

0

e−Re(λ)t dt.

Given Re (λ) > 0

∫ ∞

0

e−Re(λ)t dt = lim
R→∞

[
e−Re(λ)t

−Re (λ)

]R
t=0

=
1

Re (λ)
.
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Hence ∥∥∥∥
∫ ∞

0

e−tAe−λt dt

∥∥∥∥ ≤ 1

Re (λ)
,

and so
∫∞
0

e−tAe−λt dt is convergent for Re (λ) > 0. Given φ(t) = Ce−tABr we observe that for

Re (λ) > 0,

L[φ(t);λ] =

∫ ∞

0

Ce−tABre
−λt dt

=

∫ ∞

0

Ce−t(A+λI)Br dt

= lim
R→∞

[
−Ce−t(A+λI)(A+ λI)−1Br

]R
t=0

= C(A+ λI)−1Br.

It now follows from [32] (Theorem 3.7.12, page 83) that∫ ∞

0

e−tAe−λt dt = (A+ λI)−1.

Remark 3.1.0.36 In Theorem 3.1.0.35, the operator (A+λI)−1 is called the resolvent and the

function,

C(A+ λI)−1Br +D

is known as the transfer function.

The theorem above shows that the Laplace transform of a function, φ is the transfer function of

the linear system (−A,Br, C), hence φ can indeed be obtained from (−A,Br, C). The function φ

is known as the scattering function, however, for the purposes of this thesis we require a modified

version.

Definition 3.1.0.37 Let (−A,Br, C) be a linear system as in Definition 2.6.0.26. Define the

scattering function to be

φ(x) = C
(
e−xA + exA

)
Br. (3.2)

Proposition 3.1.0.38 Given a linear system, (−A,Br, C), let φ be the scattering function de-

fined in Definition 3.1.0.37. Then φ is continuously differentiable and bounded. Also, φ is an

even function which is periodic if e−xA is periodic.

Proof. Let (−A,Br, C) be a linear system as given by Definition 2.6.0.26 and suppose that

φ(x) = C
(
e−xA + exA

)
Br. By Definition 2.6.0.26, Br and C are bounded. Also, by Theorems

2.6.0.24 and 2.6.0.25, e−tA is bounded with
∥∥e−tA

∥∥
op

≤ 1 for t ∈ R. Therefore,

∥∥C (e−xA + exA
)
Br

∥∥ ≤ ‖C‖ op

(∥∥e−xA
∥∥
op

+
∥∥exA∥∥

op

)
‖Br‖ op

≤ 2 ‖C‖ op ‖Br‖ op

showing that φ is bounded.
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We now consider the derivative of φ. Thus,

φ′(x) = C
(−e−xA + exA

)
ABr

and the continuity of φ′ now follows from the continuity of the exponential terms. Hence φ is

continuously differentiable.

Next we note that φ is an even function since

φ(−x) = C
(
exA + e−xA

)
Br

= φ(x).

Finally, suppose that e−xA is periodic with period p, then e−(x+p)A = e−xA. So,

φ(x+ p) = C
(
e−(x+p)A + e(x+p)A

)
Br

= C
(
e−xA + exA

)
Br

= φ(x).

Thus for e−xA periodic, φ is also periodic.

Proposition 3.1.0.39 Let (−A,Br, C) be the linear system given in Example 2.6. Then the

scattering function, φ satisfies

φ(x) = ψ(x) + ψ(−x)

where ψ ∈ D[a,b](A) is absolutely continuous.

Proof. Let t be the variable and let β ∈ C. Using the linear system given in Example 2.6 we

have,

φ(x)β = C
(
e−xA + exA

)
Brβ

= C
(
e−xA + exA

)
ψ(t)β

= C [ψ(t+ x) + ψ(t− x)]β

= [ψ(x) + ψ(−x)]β.

Hence, φ(x) = ψ(x) + ψ(−x) as required.

3.2 The Gelfand–Levitan Integral Equation and Derived

Partial Differential Equation

In this section we suppose that the scattering function, φ is known. Further, we suppose that φ

is even and twice continuously differentiable on the real line. We also assume the existence of a

twice continuously differentiable function, T (x, y). The scattering function, φ and the function,

T are then used to construct an equation known as a Gelfand–Levitan integral equation. From

the Gelfand–Levitan integral equation we will derive a partial differential equation for T . It will

be seen in Chapter 4 that the partial differential equation resulting from the Gelfand–Levitan

integral equation can be used to reconstruct a potential of Hill’s equation.
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We begin by introducing the Gelfand–Levitan integral equation. Note that the form of the

Gelfand–Levitan integral equation proposed here differs from the standard form as presented by

Gelfand and Levitan in [24].

Definition 3.2.0.40 Suppose that the scattering function, φ is known. We define the function

G(x, y) to be,

G(x, y) = φ(x+ y) + φ(x− y) + T (x, y) + μ

∫ x

−x

T (x, z)[φ(z + y) + φ(z − y)] dz

for some unknown function, T (x, y) satisfying −x ≤ y ≤ x and μ ∈ C. We call the equation

G(x, y) = 0, (3.3)

the Gelfand–Levitan integral equation.

In the Gelfand–Levitan integral equation the function, T (x, y) is unknown. We can find

T (x, y) by constructing a partial differential equation which we then solve for T . The following

theorem shows how we can derive a partial differential equation for T from the Gelfand–Levitan

integral equation.

Remark 3.2.0.41 We note that the notation, ∂
∂zT (x,±x) means differentiate with respect to

the second variable.

Theorem 3.2.0.42 Suppose that φ is even and twice continuously differentiable on the real

line. Suppose further that T (x, y) is twice continuously differentiable with bounded first and

second partial derivatives for x ≥ 0 and −x ≤ y ≤ x. If T satisfies the Gelfand–Levitan integral

equation, (3.3), then T also satisfies the partial differential equation(
∂2

∂x2
− ∂2

∂y2

)
T (x, y) = q(x)T (x, y), (3.4)

where q(x) = 2μ d
dx [T (x, x) + T (x,−x)].

Proof. The proof is completed in the following stages:

(1) Calculate the second derivative of (3.3) with respect to x;

(2) Calculate the second derivative of (3.3) with respect to y;

(3) Subtract the second derivative with respect to y from the second derivative with respect to

x;

(4) Multiply (3.3) by the function, q(x);

(5) Equate the equations formed in stages (3) and (4) to obtain a partial differential equation.

In the first stage we calculate the second derivative of (3.3) with respect to x. Taking the

first derivative with respect to x of (3.3) we obtain,

0 =
∂

∂x
G(x, y)

=
∂

∂x

{
φ(x+ y) + φ(x− y) + T (x, y) + μ

∫ x

−x

T (x, z)[φ(z + y) + φ(z − y)] dz

}

= φ′(x+ y) + φ′(x− y) +
∂

∂x
T (x, y) + μ

∫ x

−x

∂

∂x
T (x, z)[φ(z + y) + φ(z − y)] dz

+μT (x, x)[φ(x+ y) + φ(x− y)] + μT (x,−x)[φ(−x+ y) + φ(−x− y)].
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Calculating the second derivative of (3.3) with respect to x yields,

0 =
∂2

∂x2
G(x, y)

=
∂2

∂x2

{
φ(x+ y) + φ(x− y) + T (x, y) + μ

∫ x

−x

T (x, z)[φ(z + y) + φ(z − y)] dz

}

= φ′′(x+ y) + φ′′(x− y) +
∂2

∂x2
T (x, y) + μ

∫ x

−x

∂2

∂x2
T (x, z)[φ(z + y) + φ(z − y)] dz

+μ
∂

∂x
T (x, x)[φ(x+ y) + φ(x− y)] + μ

∂

∂x
T (x,−x)[φ(−x+ y) + φ(−x− y)]

+μ

[
d

dx
T (x, x)

]
[φ(x+ y) + φ(x− y)] + μT (x, x)[φ′(x+ y) + φ′(x− y)]

+μ

[
d

dx
T (x,−x)

]
[φ(−x+ y) + φ(−x− y)]− μT (x,−x)[φ′(−x+ y) + φ′(−x− y)].

As φ is even we can simplify the above, thus

0 =
∂2

∂x2
G(x, y)

= φ′′(x+ y) + φ′′(x− y) +
∂2

∂x2
T (x, y) + μ

∫ x

−x

∂2

∂x2
T (x, z)[φ(z + y) + φ(z − y)] dz

+μ
∂

∂x
T (x, x)[φ(x+ y) + φ(x− y)] + μ

∂

∂x
T (x,−x)[φ(x− y) + φ(x+ y)]

+μ

[
d

dx
T (x, x)

]
[φ(x+ y) + φ(x− y)] + μT (x, x)[φ′(x+ y) + φ′(x− y)]

+μ

[
d

dx
T (x,−x)

]
[φ(x− y) + φ(x+ y)] + μT (x,−x)[φ′(x− y) + φ′(x+ y)]

= φ′′(x+ y) + φ′′(x− y) +
∂2

∂x2
T (x, y) + μ

∫ x

−x

∂2

∂x2
T (x, z)[φ(z + y) + φ(z − y)] dz

+μ

(
∂

∂x
+

d

dx

)
[T (x, x) + T (x,−x)] [φ(x+ y) + φ(x− y)]

+μ [T (x, x) + T (x,−x)] [φ′(x+ y) + φ′(x− y)]. (3.5)

Next, we calculate the first derivative of (3.3) with respect to y. This gives,

0 =
∂

∂y
G(x, y)

=
∂

∂y

{
φ(x+ y) + φ(x− y) + T (x, y) + μ

∫ x

−x

T (x, z)[φ(z + y) + φ(z − y)] dz

}

= φ′(x+ y)− φ′(x− y) +
∂

∂y
T (x, y) + μ

∫ x

−x

T (x, z)[φ′(z + y)− φ′(z − y)] dz.

The second derivative of (3.3) with respect to y produces,

0 =
∂2

∂y2
G(x, y)

=
∂2

∂y2

{
φ(x+ y) + φ(x− y) + T (x, y) + μ

∫ x

−x

T (x, z)[φ(z + y) + φ(z − y)] dz

}

= φ′′(x+ y) + φ′′(x− y) +
∂2

∂y2
T (x, y) + μ

∫ x

−x

T (x, z)[φ′′(z + y) + φ′′(z − y)] dz.

We want the above equation to resemble what we found for the second derivative with respect to

x. Notice that in the equation for x we have
∫ x

−x
∂2

∂x2T (x, z)[φ(z + y) + φ(z − y)] dz, whereas in

the equation for y we have
∫ x

−x
T (x, z)[φ′′(z + y) + φ′′(z − y)] dz. We perform two integrations by
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parts on
∫ x

−x
T (x, z)[φ′′(z + y) + φ′′(z − y)] dz so that the integrand contains a partial derivative

of T . Thus,∫ x

−x

T (x, z)[φ′′(z + y) + φ′′(z − y)] dz

= [T (x, z)(φ′(z + y) + φ′(z − y))]
x
z=−x −

∫ x

−x

∂

∂z
T (x, z)[φ′(z + y) + φ′(z − y)] dz

= [T (x, z)(φ′(z + y) + φ′(z − y))]
x
z=−x −

[
∂

∂z
T (x, z)(φ(z + y) + φ(z − y))

]x
z=−x

+

∫ x

−x

∂2

∂z2
T (x, z)[φ(z + y) + φ(z − y)] dz

= T (x, x)[φ′(x+ y) + φ′(x− y)]− T (x,−x)[φ′(−x+ y) + φ′(−x− y)]

− ∂

∂z
T (x, x)[φ(x+ y) + φ(x− y)] +

∂

∂z
T (x,−x)[φ(−x+ y) + φ(−x− y)]

+

∫ x

−x

∂2

∂z2
T (x, z)[φ(z + y) + φ(z − y)] dz.

Again, using the fact that φ is even, we simplify the above to obtain∫ x

−x

T (x, z)[φ′′(z + y) + φ′′(z − y)] dz

= T (x, x)[φ′(x+ y) + φ′(x− y)] + T (x,−x)[φ′(x− y) + φ′(x+ y)]

− ∂

∂z
T (x, x)[φ(x+ y) + φ(x− y)] +

∂

∂z
T (x,−x)[φ(x− y) + φ(x+ y)]

+

∫ x

−x

∂2

∂z2
T (x, z)[φ(z + y) + φ(z − y)] dz

= [T (x, x) + T (x,−x)] [φ′(x+ y) + φ′(x− y)]− ∂

∂z
[T (x, x)− T (x,−x)] [φ(x+ y) + φ(x− y)]

+

∫ x

−x

∂2

∂z2
T (x, z)[φ(z + y) + φ(z − y)] dz.

Therefore, the second derivative of (3.3) with respect to y is

0 =
∂2

∂y2
G(x, y)

= φ′′(x+ y) + φ′′(x− y) +
∂2

∂y2
T (x, y) + μ [T (x, x) + T (x,−x)] [φ′(x+ y) + φ′(x− y)]

−μ
∂

∂z
[T (x, x)− T (x,−x)] [φ(x+ y) + φ(x− y)]

+μ

∫ x

−x

∂2

∂z2
T (x, z)[φ(z + y) + φ(z − y)] dz. (3.6)

Now we subtract equation (3.6) from equation (3.5). This gives,

0 =

(
∂2

∂x2
− ∂2

∂y2

)
G(x, y)

=

(
∂2

∂x2
− ∂2

∂y2

)
T (x, y) + μ

∫ x

−x

(
∂2

∂x2
− ∂2

∂z2

)
T (x, z)[φ(z + y) + φ(z − y)] dz

+μ

(
∂

∂x
+

d

dx

)
[T (x, x) + T (x,−x)] [φ(x+ y) + φ(x− y)]

+μ
∂

∂z
[T (x, x)− T (x,−x)] [φ(x+ y) + φ(x− y)]

=

(
∂2

∂x2
− ∂2

∂y2

)
T (x, y) + μ

∫ x

−x

(
∂2

∂x2
− ∂2

∂z2

)
T (x, z)[φ(z + y) + φ(z − y)] dz

+2μ
d

dx
[T (x, x) + T (x,−x)] [φ(x+ y) + φ(x− y)]. (3.7)
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In the above, the last line follows since

d

dx
[T (x, x) + T (x,−x)] =

∂

∂x
[T (x, x) + T (x,−x)] +

∂

∂z
[T (x, x)− T (x,−x)] .

The penultimate step in this process involves multiplying (3.3) by the function q, thus

0 = q(x)[φ(x+ y) + φ(x− y)] + q(x)T (x, y) + μ

∫ x

−x

q(x)T (x, z)[φ(z + y) + φ(z − y)] dz. (3.8)

Finally, we compare equations (3.7) and (3.8) and note that if we take

q(x) = 2μ
d

dx
[T (x, x) + T (x,−x)] ,

then the functions
(

∂2

∂x2 − ∂2

∂y2

)
T (x, y) and q(x)T (x, y) satisfy the same integral equation. There-

fore, by uniqueness the two functions are equal and so we obtain the partial differential equation,(
∂2

∂x2
− ∂2

∂y2

)
T (x, y) = q(x)T (x, y)

where q(x) = 2μ d
dx [T (x, x) + T (x,−x)].

The following theorem shows the equivalence of the functions G(x, y) and T (x, y) in that they

both satisfy the same partial differential equation. The method of the proof is similar to that of

Theorem 3.2.0.42.

Theorem 3.2.0.43 Suppose that φ is even and twice continuously differentiable on the real line.

Suppose further that T has bounded first and second partial derivatives for x ≥ 0 and −x ≤ y ≤ x.

If T satisfies the partial differential equation(
∂2

∂x2
− ∂2

∂y2

)
T (x, y) = q(x)T (x, y) (3.9)

where q(x) = 2μ d
dx [T (x, x) + T (x,−x)], then G also satisfies (3.9).

Proof. The proof is completed in the following stages:

(1) Calculate the second derivative of G(x, y) with respect to x;

(2) Calculate the second derivative of G(x, y) with respect to y;

(3) Subtract the second derivative of G(x, y) with respect to y from the second derivative of

G(x, y) with respect to x to produce the desired partial differential equation.

Since the proof follows the same method as detailed in Theorem 3.2.0.42, we omit some of the

details in the following calculations.

In the first stage we calculate the second derivative of G(x, y) with respect to x. First,

∂

∂x
G(x, y)

=
∂

∂x

{
φ(x+ y) + φ(x− y) + T (x, y) + μ

∫ x

−x

T (x, z)[φ(z + y) + φ(z − y)] dz

}

= φ′(x+ y) + φ′(x− y) +
∂

∂x
T (x, y) + μ

∫ x

−x

∂

∂x
T (x, z)[φ(z + y) + φ(z − y)] dz

+ μT (x, x)[φ(x+ y) + φ(x− y)] + μT (x,−x)[φ(−x+ y) + φ(−x− y)].
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The second derivative of G(x, y) with respect to x is therefore,

∂2

∂x2
G(x, y)

= φ′′(x+ y) + φ′′(x− y) +
∂2

∂x2
T (x, y) + μ

∫ x

−x

∂2

∂x2
T (x, z)[φ(z + y) + φ(z − y)] dz

+ μ

(
∂

∂x
+

d

dx

)
[T (x, x) + T (x,−x)] [φ(x+ y) + φ(x− y)]

+ μ [T (x, x) + T (x,−x)] [φ′(x+ y) + φ′(x− y)]. (3.10)

Next, we calculate the second derivative of G(x, y) with respect to y. First,

∂

∂y
G(x, y)

= φ′(x+ y)− φ′(x− y) +
∂

∂y
T (x, y) + μ

∫ x

−x

T (x, z)[φ′(z + y)− φ′(z − y)] dz.

The second derivative of G(x, y) with respect to y is therefore,

∂2

∂y2
G(x, y)

= φ′′(x+ y) + φ′′(x− y) +
∂2

∂y2
T (x, y) + μ

∫ x

−x

T (x, z)[φ′′(z + y) + φ′′(z − y)] dz.

Performing two integrations by parts on the latter integral we thus obtain

∂2

∂y2
G(x, y)

= φ′′(x+ y) + φ′′(x− y) +
∂2

∂y2
T (x, y) + μ [T (x, x) + T (x,−x)] [φ′(x+ y) + φ′(x− y)]

− μ
∂

∂z
[T (x, x)− T (x,−x)] [φ(x+ y) + φ(x− y)]

+ μ

∫ x

−x

∂2

∂z2
T (x, z)[φ(z + y) + φ(z − y)] dz. (3.11)

Now we subtract equation (3.11) from equation (3.10). This gives,(
∂2

∂x2
− ∂2

∂y2

)
G(x, y)

=

(
∂2

∂x2
− ∂2

∂y2

)
T (x, y) + μ

∫ x

−x

(
∂2

∂x2
− ∂2

∂z2

)
T (x, z)[φ(z + y) + φ(z − y)] dz

+ 2μ
d

dx
[T (x, x) + T (x,−x)] [φ(x+ y) + φ(x− y)].

Since T satisfies the partial differential equation as specified by (3.9), it follows that(
∂2

∂x2
− ∂2

∂y2

)
G(x, y)

= q(x)T (x, y) + μ

∫ x

−x

q(x)T (x, z)[φ(z + y) + φ(z − y)] dz + q(x)[φ(x+ y) + φ(x− y)]

= q(x)G(x, y),

hence G also satisfies the partial differential equation, (3.9).
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3.3 The Use of Linear Systems in Solving Gelfand–Levitan

Integral Equations

This section shows how we can solve a Gelfand–Levitan integral equation using linear systems.

The first step is to assume that a scattering function, φ is known and that it arises from a linear

system, (−A,B,C). We then introduce a new operator which we call Rx and use it to construct

a solution, T to the Gelfand–Levitan integral equation (3.3). Since the operator, Rx is defined

in terms of the linear system, (−A,B,C), this in turn allows us to construct T from the same

linear system. We conclude this section by producing a simplified partial differential equation for

T . This simpler partial differential equation will reappear in Chapter 4 to allow us to calculate

the potential, q of Hill’s equation. We also note here that q can be expressed in terms of the

logarithm of a determinant.

Definition 3.3.0.44 Let (−A,B,C) be a linear system as in Definition 2.6.0.26. Define the

operator Rx : DE(A) → L2(E) to be

Rx =

∫ x

−x

(
e−zA + ezA

)
BC

(
e−zA + ezA

)
dz. (3.12)

Remark 3.3.0.45 Note that we can also define Rx for the linear system (−A,Br, C). In this

case Rx : DE(A) → DE(A).

Proposition 3.3.0.46 Let Rx : DE(A) → L2(E) be as defined by definition 3.3.0.44. If the

operators

P =

∫ x

−x

(
e−zA + ezA

)
B dz,

Q = C
(
e−zA + ezA

)
are Hilbert–Schmidt then Rx is trace class.

Proof. Clearly we have Rx = PQ. If P and Q are Hilbert–Schmidt then Rx is trace class by

Definition 2.1.2.1.

Recall Remark 3.1.0.36, we noted that for a linear system, (−A,Br, C,D) the function C(A+

λI)−1Br +D was a transfer function and (A+ λI)−1 a resolvent. Now, if we are using a linear

system (−A,Br, C) then the transfer function becomes C(A+λI)−1Br. The reader should note

the similarity between this notation and the form of the function T (x, y) in the following theorem.

In Definition 3.3.0.44 we have used the notation Rx to suggest that (I + μRx)
−1 is a type of

resolvent. We note however that (I + μRx)
−1 is different from (A+ λI)−1 =

∫∞
0

e−z(A+λI) dz.

Theorem 3.3.0.47 Given the linear system, (−A,Br, C), let Rx be the operator given by (3.12)

and assume [I + μRx]
−1

exists. Further, let

T (x, y) = −C
(
e−xA + exA

)
[I + μRx]

−1 (
e−yA + eyA

)
Br. (3.13)

If φ is as given by Definition 3.1.0.37 then T satisfies the Gelfand–Levitan integral equation,

(3.3).
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Proof. Let T be given by

T (x, y) = −C
(
e−xA + exA

)
[I + μRx]

−1 (
e−yA + eyA

)
Br

where Rx is as given by (3.12). Also, let φ(x) = C
(
e−xA + exA

)
Br as in Definition 3.1.0.37. We

check that the Gelfand–Levitan integral equation, (3.3) holds. First note that

φ(x+ y) + φ(x− y) = C
(
e−(x+y)A + e(x+y)A

)
Br + C

(
e−(x−y)A + e(x−y)A

)
Br

= C
(
e−xAe−yA + exAeyA

)
Br + C

(
e−xAeyA + exAe−yA

)
Br

= C
(
e−xA + exA

) (
e−yA + eyA

)
Br.

A simple substitution then gives

G(x, y)

= C
(
e−xA + exA

) (
e−yA + eyA

)
Br − C

(
e−xA + exA

)
[I + μRx]

−1 (
e−yA + eyA

)
Br

− μ

∫ x

−x

C
(
e−xA + exA

)
[I + μRx]

−1 (
e−zA + ezA

)
BrC

(
e−zA + ezA

) (
e−yA + eyA

)
Br dz

= C
(
e−xA + exA

){
I − [I + μRx]

−1

−μ [I + μRx]
−1
∫ x

−x

(
e−zA + ezA

)
BrC

(
e−zA + ezA

)
dz

}(
e−yA + eyA

)
Br.

For the linear system, (−A,Br, C) we have Rx =
∫ x

−x

(
e−zA + ezA

)
BrC

(
e−zA + ezA

)
dz and so

G(x, y) = C
(
e−xA + exA

){
I − [I + μRx]

−1 − μ [I + μRx]
−1

Rx

}(
e−yA + eyA

)
Br.

Clearly,

I − [I + μRx]
−1 − μ [I + μRx]

−1
Rx = I − [I + μRx]

−1
[I + μRx]

= 0,

hence G(x, y) = 0 and so T satisfies the Gelfand–Levitan integral equation.

The following corollary is a consequence of Theorems 3.2.0.42 and 3.3.0.47. It shows that if

T takes the form given in Theorem 3.3.0.47 then we can produce a simplified partial differential

equation for which T is a solution. In Chapter 4 we will see how the partial differential equation

stated in Corollary 3.3.0.48 can be used to reconstruct the potential of Hill’s equation.

Corollary 3.3.0.48 Given the linear system, (−A,Br, C), let φ be as stated in Definition 3.1.0.37

and let Rx be as in Definition 3.3.0.44. Let

T (x, y) = −C
(
e−xA + exA

)
[I + μRx]

−1 (
e−yA + eyA

)
Br,

then T (x,−y) = T (x, y). Furthermore, T satisfies the partial differential equation(
∂2

∂x2
− ∂2

∂y2

)
T (x, y) = q(x)T (x, y),

where q(x) = 4μ d
dxT (x, x).
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Proof. Let T (x, y) = −C
(
e−xA + exA

)
[I + μRx]

−1 (
e−yA + eyA

)
Br then clearly,

T (x,−y) = −C
(
e−xA + exA

)
[I + μRx]

−1 (
eyA + e−yA

)
Br

= T (x, y).

Now, by Theorem 3.3.0.47, T satisfies the Gelfand–Levitan integral equation, (3.3). Therefore,

by Theorem 3.2.0.42, T satisfies the partial differential equation(
∂2

∂x2
− ∂2

∂y2

)
T (x, y) = q(x)T (x, y)

where q(x) = 2μ d
dx [T (x, x) + T (x,−x)]. However, we have just shown that T (x,−y) = T (x, y),

so in fact we have

q(x) = 4μ
d

dx
T (x, x)

as required.

The final task in this section is to provide an alternative formula for q in terms of the operator

Rx. The formula will allow us to write the function q in terms of the logarithm of a determinant.

First we state a lemma that will be called upon in the proof.

Lemma 3.3.0.49 Let S be a trace class operator depending on x so that x �→ S(x) is a con-

tinuously differentiable function. Let S have eigenvalues {λj(x)} and assume that μ �= − 1
λj
.

Then

d

dx
log det(I + μS) = tr

[
(I + μS)−1μ

d

dx
S

]
.

Proof. Suppose that S is a trace class operator with eigenvalues {λj}. By Definition 2.3.0.24,

S has Fredholm determinant

det(I + μS) =
∏
j

(1 + μλj). (3.14)

Taking the logarithm of each side of (3.14) gives

log det(I + μS) = log

⎡
⎣∏

j

(1 + μλj)

⎤
⎦

=
∑
j

log(1 + μλj).

By Definition 2.3.0.23, the trace of a trace class operator is equal to the sum of its eigenvalues,

thus

tr [log(I + μS)] =
∑
j

log(1 + μλj),

hence

log det(I + μS) = tr [log(I + μS)] .
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We now note that, in the style of Napier, we can define the logarithm of an operator in terms of

an integral. Observe that∫ ∞

0

{
(tI + I)−1 − (tI + I + μS)−1

}
dt

= lim
R→∞

{
[log(tI + I)]

R
0 − [log(tI + I + μS)]

R
0

}
= lim

R→∞
{log(RI + I)− log(I)− log(RI + I + μS) + log(I + μS)}

= log(I + μS).

Thus

d

dx
log det(I + μS) =

d

dx
tr

[∫ ∞

0

{
(tI + I)−1 − (tI + I + μS)−1

}
dt

]

= tr

[
d

dx

∫ ∞

0

{
(tI + I)−1 − (tI + I + μS)−1

}
dt

]

where the last line follows since S is trace class. An application of [32] (Theorem 3.7.12, page

83) now gives

d

dx
log det(I + μS) = tr

[∫ ∞

0

{
d

dx

[
(tI + I)−1 − (tI + I + μS)−1

]}
dt

]

= tr

[
−
∫ ∞

0

{
d

dx
(tI + I + μS)−1

}
dt

]
.

In order to differentiate (tI + I + μS)−1, first note that

I = (tI + I + μS)−1(tI + I + μS). (3.15)

Now differentiate both sides of (3.15) with respect to x, thus obtaining

0 =
d

dx

[
(tI + I + μS)−1(tI + I + μS)

]
=

[
d

dx
(tI + I + μS)−1

]
(tI + I + μS) + (tI + I + μS)−1 d

dx
(tI + I + μS). (3.16)

Upon rearranging (3.16) and completing the differentiation we see that[
d

dx
(tI + I + μS)−1

]
= −(tI + I + μS)−1

[
d

dx
(tI + I + μS)

]
(tI + I + μS)−1

= −(tI + I + μS)−1

[
μ
dS

dx

]
(tI + I + μS)−1

Therefore,

d

dx
log det(I + μS) = tr

[∫ ∞

0

{
(tI + I + μS)−1μ

dS

dx
(tI + I + μS)−1

}
dt

]

= tr

[∫ ∞

0

(tI + I + μS)−2μ
dS

dx
dt

]
. (3.17)

Here, the last line follows from [15] (Lemma 14(b), page 1098). Evaluating the integral in (3.17)

we see that ∫ ∞

0

(tI + I + μS)−2μ
dS

dx
dt = lim

R→∞

{[−(tI + I + μS)−1
]R
0
μ
dS

dx

}

= (I + μS)−1μ
dS

dx
.
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Hence,

d

dx
log det(I + μS) = tr

[
(I + μS)−1μ

dS

dx

]

as required.

The following theorem shows that if T satisfies the partial differential equation(
∂2

∂x2
− ∂2

∂y2

)
T (x, y) = q(x)T (x, y)

then q can be expressed as the logarithm of a determinant involving the operator Rx. In Chapter

4 we will see that this means we can calculate the potential of Hill’s equation given that the linear

system, (−A,B,C) and the operator, Rx are known.

Theorem 3.3.0.50 Given the linear system, (−A,Br, C), let

P =

∫ x

−x

(
e−zA + ezA

)
Br dz,

Q = C
(
e−zA + ezA

)
be Hilbert–Schmidt operators. Suppose that T takes the form given by equation (3.13). Then T

satisfies the partial differential equation (3.4) and

q(x) = −2
d2

dx2
log det (I + μRx) .

Proof. Since T satisfies Theorem 3.3.0.47, it follows from Corollary 3.3.0.48 that

q(x) = 4μ
d

dx
T (x, x).

Suppose that e−xA + exA and [I + μRx]
−1

are n × n matrices. Further, let C be a 1 × n row

vector and let Br be a n×1 column vector. Then T (x, x) can be considered as a 1×1 matrix and

so we may take the trace of it. Since the trace operation is invariant under cyclic permutations,

it follows from (3.13) that

T (x, x) = tr
[
−C

(
e−xA + exA

)
[I + μRx]

−1 (
e−xA + exA

)
Br

]
= − tr

[(
e−xA + exA

)
[I + μRx]

−1 (
e−xA + exA

)
BrC

]
= − tr

[
[I + μRx]

−1 (
e−xA + exA

)
BrC

(
e−xA + exA

)]
.

Now note that

d

dx
Rx = 2

(
e−xA + exA

)
BrC

(
e−xA + exA

)
,

therefore

T (x, x) = −1

2
tr

[
[I + μRx]

−1 d

dx
Rx

]
.

By hypothesis, the operators P and Q are Hilbert–Schmidt, thus Rx = PQ is trace class by

Proposition 3.3.0.46. It now follows from Lemma 3.3.0.49 that

T (x, x) = − 1

2μ

d

dx
log det(I + μRx),
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and hence,

q(x) = 4μ
d

dx

[
− 1

2μ

d

dx
log det(I + μRx)

]

= −2
d2

dx2
log det (I + μRx) .
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Chapter 4

Hill’s Equation

Hill’s equation, a linear, second order differential equation with π-periodic potential will be

central to this thesis in that it will provide the foundations for the remainder of our work.

Specifically, Chapters 5 and 6 suppose the existence of a sampling sequence that is derived from

the periodic spectrum of Hill’s equation. The novel approach in this thesis is to use linear

systems to deal with Hill’s equation. We show that some of the classical techniques such as Hill’s

discriminant fit naturally into the theory of linear systems. For a concise source of background

information relating to Hill’s equation see Magnus and Winkler [35].

In this chapter we introduce Hill’s equation with a particular focus on the solutions of Hill’s

equation and the periodic spectrum. In Section 4.2 we see that we can construct a solution to

Hill’s equation using the function T (x, y) found in Chapter 3. As found in Chapter 3, the func-

tion T (x, y) satisfies the partial differential equation
(

∂2

∂x2 − ∂2

∂y2

)
T (x, y) = q(x)T (x, y), where

q(x) = 4μ d
dxT (x, x) is the potential of Hill’s equation. We used the linear system, (−A,B,C) to

construct an operator Rx that allowed us to write T (x, y) in terms of (−A,B,C). In the current

chapter we see that the same function, T (x, y) can be used to create one of the fundamental solu-

tions to Hill’s equation. Therefore, we show that solutions of Hill’s equation can be constructed

via linear systems.

Given a modified version of Hill’s equation, whose potential has period πi
a , we are also able

to show that when λ = 0 is an eigenvalue, the corresponding eigenfunctions are the spheroidal

wave functions. Furthermore, we show that the spheroidal wave functions are also eigenfunctions

of the operator S given in Definition 2.5.0.14.

The remainder of this chapter focuses on the spectrum, in particular, the periodic spectrum

and how we can characterise it through determinants. We define the periodic spectrum by way

of the monodromy operator, Mπ, showing that Hill’s discriminant, Δ arises as the trace of Mπ.

Hence, we define the periodic spectrum by stating that an eigenvalue, λ of Hill’s equation belongs

to the periodic spectrum if and only if Δ2(λ)−4 = 0. This condition on Hill’s discriminant allows

us to interpret Floquet’s Theorem and shows that eigenvalues in the periodic spectrum correspond

to solutions of Hill’s equation that are periodic with period π or 2π. Using this information we

follow the approach of Hill in [28] in search of a condition based upon determinants that will

yield elements of the periodic spectrum. Roughly, we find that if an eigenvalue is a root of a

particular Carleman or Fredholm determinant then it belongs to the periodic spectrum. Further,
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we extend Hill’s method to include extra conditions based on the Carleman determinants of the

operators, Rp and Rc that we express in terms of a linear system. That is to say, we use linear

systems to create determinants whose roots belong to the periodic spectrum.

We conclude the chapter with a method for reconstructing a potential of Hill’s equation given

that the linear system, (−A,B,C) is known. We use the results of Chapter 3 which show that

given a known linear system and scattering function, there exists a function T (x, y) satisfying

the partial differential equation
(

∂2

∂x2 − ∂2

∂y2

)
T (x, y) = q(x)T (x, y) where q(x) = 4μ d

dxT (x, x) is

the potential of Hill’s equation. Our method is then to construct T (x, y) from the linear system

(−A,B,C) and thus recover q.

4.1 Introduction to Hill’s Equation

Here we define Hill’s equation and its fundamental solutions. Also, we show that under certain

conditions Hill’s equation forms a Sturm–Liouville system. For more information on Sturm–

Liouville systems see [55] (Chapter 9, page 105).

Definition 4.1.0.51 Let q be a real-valued, π-periodic and twice continuously differentiable func-

tion. The linear second order differential equation

−f ′′(x) + q(x)f(x) = λf(x) (4.1)

is known as Hill’s equation. We call q the potential and refer to λ as an eigenvalue.

Remark 4.1.0.52 We can also write Hill’s equation in the homogeneous form

f ′′(x) + [λ− q(x)]f(x) = 0. (4.2)

As equation (4.1) is a second order differential equation it has two linearly independent

solutions. We call these solutions the fundamental solutions. It is often helpful to write the

fundamental solutions in matrix form. The following definition gives conditions under which a

pair of solutions are fundamental and introduces their matrix notation.

Definition 4.1.0.53 Let f1 and f2 be two continuously differentiable and linearly independent

solutions of Hill’s equation, (4.1) satisfying⎡
⎣f1 f2

f ′
1 f ′

2

⎤
⎦ (0) =

⎡
⎣1 0

0 1

⎤
⎦ . (4.3)

Then f1 and f2 are known as the first and second fundamental solutions respectively. Further-

more, the matrix ⎡
⎣f1 f2

f ′
1 f ′

2

⎤
⎦ (x)

is known as the fundamental solution matrix.

Remark 4.1.0.54 The fundamental solution matrix is an entire function of λ. See [30].
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Hill’s equation with some additional boundary conditions forms a Sturm–Liouville system. In

the following definition we sate what is meant by a Sturm–Liouville system. Proposition 4.1.0.57

then imposes some boundary conditions on Hill’s equation in order that it may form such a

system.

Definition 4.1.0.55 Let u, v, w be continuous real-valued functions on the finite interval [a, b] ⊂
R, with u,w > 0. Suppose that u′ exists and is continuous on [a, b]. Then the differential equation

d

dx

[
u(x)

d

dx
f(x)

]
+ [λw(x) + v(x)] f(x) = 0

defined on [a, b], together with one or both boundary conditions

0 = αf(a) + βf ′(a)

0 = γf(b) + δf ′(b),

is known as a Sturm–Liouville system. We exclude the trivial boundary conditions from this

definition.

Remark 4.1.0.56 If the differential equation has both boundary conditions then the system is

called a regular Sturm–Liouville system.

Proposition 4.1.0.57 Suppose that Hill’s equation is defined on the interval, [0, π]. Then (4.2)

together with the boundary conditions, f ′(0) = 0 = f ′(π) forms a regular Sturm–Liouville system.

Proof. Take Hill’s equation to be in the form of (4.2) for x ∈ [0,∞]. In the notation of Definition

4.1.0.55, take u(x) = 1, w(x) = 1 and v(x) = −q(x). Now, u and w are obviously continuous,

real-valued and positive. Further, u′ exists and is continuous. Also, v = −q is continuous and

real-valued by Definition 4.1.0.51. Equation (4.2) is therefore in the form required by Definition

4.1.0.55. Hence, given the boundary conditions f ′(0) = 0 = f ′(π), Hill’s equation gives a Sturm–

Liouville system.

Sturm–Liouville systems are interesting since it can be shown that their eigenvalues are real,

see [55] (Theorem 9.8, page 114). Further, in the case of Hill’s equation, the eigenfunctions form

an orthogonal sequence. This latter statement is known as the Sturm–Liouville Theorem and it

can be found with proof in [55] (Theorem 11.1, page 131). We return to the subject of eigenvalues

in Section 4.4.

4.2 The Solutions of Hill’s Equation

When considering differential equations, the most obvious question to ask is, can we find a

solution? Further, can we find all solutions? This section is concerned with answering those

questions. It is known that if we are able to find two linearly independent solutions to a second

order, homogeneous differential equation, then the general solution (hence all solutions) will be

a linear combination of the two linearly independent solutions. Therefore, if we can find two

linearly independent solutions of Hill’s equation, (4.2), i.e. if we find the fundamental solutions,

then indeed we will have the general solution to Hill’s equation. It turns out that finding
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two fundamental solutions is not such an easy task. We can however find a candidate for the

first fundamental solution using linear systems. In Chapter 3 we saw that the linear system

(−A,B,C) can be used to construct a function T (x, y) satisfying the partial differential equation(
∂2

∂x2 − ∂2

∂y2

)
T (x, y) = q(x)T (x, y), where q is the potential of Hill’s equation. In this section we

see that the same function, T (x, y) can be used to create a solution to Hill’s equation.

First, we state a simple lemma that will be used in several proofs.

Lemma 4.2.0.58 Suppose that f(x) is a solution of Hill’s equation, (4.1). Then f(x + π) is

also a solution.

Proof. This is obvious since q is π-periodic.

The following theorem provides a solution to Hill’s equation. Further, we propose that for a

linear system, (−A,B,C) such that T (0, 0) = 0 then the solution provided is in fact one of the

fundamental solutions. The form of the solution given in Theorem 4.2.0.59 appears in [35] (page

47). A simplified version, appearing in Proposition 4.2.0.60 can also be found in [24] (equation

(4), page 254).

Theorem 4.2.0.59 Suppose that φ is even and twice continuously differentiable on the real

line. Also suppose that T (x,−y) = T (x, y) where T (x, y) is twice continuously differentiable with

bounded first and second partial derivatives for x ≥ 0 and −x ≤ y ≤ x. Further, suppose that

the Gelfand–Levitan integral equation, (3.3) holds with μ = 1. Then

f1(x) = cosx
√
λ+

∫ x

−x

T (x, y)eiy
√
λ dy

is a solution of Hill’s equation, (4.1). Moreover, if there exists a linear system such that T (0, 0) =

0 then f1 is one of the fundamental solutions.

Proof. The proof simply involves verifying that f1 satisfies the differential equation (4.2) and

then checking that the conditions from (4.3) hold given T (0, 0) = 0. Let f1(x) = cosx
√
λ +∫ x

−x
T (x, y)eiy

√
λ dy. Differentiating f1 with respect to x and noting that T (x,−y) = T (x, y), we

obtain

f ′
1(x) = −

√
λ sinx

√
λ+

∫ x

−x

∂

∂x
T (x, y)eiy

√
λ dy + T (x, x)eix

√
λ + T (x,−x)e−ix

√
λ

= −
√
λ sinx

√
λ+

∫ x

−x

∂

∂x
T (x, y)eiy

√
λ dy + T (x, x)

(
eix

√
λ + e−ix

√
λ
)
.

We differentiate again to find the second derivative of f1 with respect to x. Thus,

f ′′
1 (x) = −λ cosx

√
λ+

∫ x

−x

∂2

∂x2
T (x, y)eiy

√
λ dy +

∂

∂x
T (x, x)eix

√
λ +

∂

∂x
T (x,−x)e−ix

√
λ

+

[
d

dx
T (x, x)

](
eix

√
λ + e−ix

√
λ
)
+ i

√
λT (x, x)

(
eix

√
λ − e−ix

√
λ
)
.

Now note that T meets the conditions of Theorem 3.2.0.42, therefore T satisfies the partial

differential equation, (3.4). Substituting this into the above and using the fact that T (x,−y) =

T (x, y), we obtain

f ′′
1 (x) = −λ cosx

√
λ+

∫ x

−x

[
∂2

∂y2
+ q(x)

]
T (x, y)eiy

√
λ dy +

∂

∂x
T (x, x)

(
eix

√
λ + e−ix

√
λ
)

+

[
d

dx
T (x, x)

](
eix

√
λ + e−ix

√
λ
)
+ i

√
λT (x, x)

(
eix

√
λ − e−ix

√
λ
)
. (4.4)
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Next we perform integration by parts twice on
∫ x

−x

[
∂2

∂y2T (x, y)
]
eiy

√
λ dy, thus

∫ x

−x

[
∂2

∂y2
T (x, y)

]
eiy

√
λ dy

=

[
eiy

√
λ ∂

∂y
T (x, y)

]x
y=−x

− i
√
λ

∫ x

−x

[
∂

∂y
T (x, y)

]
eiy

√
λ

=

[
eiy

√
λ ∂

∂y
T (x, y)

]x
y=−x

− i
√
λ
[
eiy

√
λT (x, y)

]x
y=−x

− λ

∫ x

−x

T (x, y)eiy
√
λ dy

= eix
√
λ ∂

∂y
T (x, x)− e−ix

√
λ ∂

∂y
T (x,−x)− i

√
λeix

√
λT (x, x) + i

√
λe−ix

√
λT (x,−x)

− λ

∫ x

−x

T (x, y)eiy
√
λ dy.

Again, using the fact that T (x,−y) = T (x, y) we see that∫ x

−x

[
∂2

∂y2
T (x, y)

]
eiy

√
λ dy

=
∂

∂y
T (x, x)

(
eix

√
λ + e−ix

√
λ
)
− i

√
λT (x, x)

(
eix

√
λ − e−ix

√
λ
)
− λ

∫ x

−x

T (x, y)eiy
√
λ dy.

Putting this into our equation for f ′′
1 , (4.4) and noting that d

dxT (x, x) =
(

∂
∂x + ∂

∂y

)
T (x, x), we

obtain

f ′′
1 (x) = −λ cosx

√
λ+

∂

∂y
T (x, x)

(
eix

√
λ + e−ix

√
λ
)
− i

√
λT (x, x)

(
eix

√
λ − e−ix

√
λ
)

−λ

∫ x

−x

T (x, y)eiy
√
λ dy + q(x)

∫ x

−x

T (x, y)eiy
√
λ dy +

∂

∂x
T (x, x)

(
eix

√
λ + e−ix

√
λ
)

+

[
d

dx
T (x, x)

](
eix

√
λ + e−ix

√
λ
)
+ i

√
λT (x, x)

(
eix

√
λ − e−ix

√
λ
)

= −λ cosx
√
λ− λ

∫ x

−x

T (x, y)eiy
√
λ dy + q(x)

∫ x

−x

T (x, y)eiy
√
λ dy

+2

[
d

dx
T (x, x)

](
eix

√
λ + e−ix

√
λ
)
.

Now, as cosx = 1
2

(
eix + e−ix

)
it follows that

f ′′
1 (x)

= −λ cosx
√
λ− λ

∫ x

−x

T (x, y)eiy
√
λ dy + q(x)

∫ x

−x

T (x, y)eiy
√
λ dy + 4

[
d

dx
T (x, x)

]
cosx

√
λ.

Finally, by Corollary 3.3.0.48 we note that for μ = 1 we have q(x) = 4 d
dxT (x, x), hence

f ′′
1 (x) = −λ cosx

√
λ− λ

∫ x

−x

T (x, y)eiy
√
λ dy + q(x)

∫ x

−x

T (x, y)eiy
√
λ dy + q(x) cosx

√
λ

= [q(x)− λ] f1(x).

Therefore, f1 is a solution of Hill’s equation.

Now suppose that there exists some linear system, (−A,B,C) such that T (0, 0) = 0. If f1

satisfies one of the conditions given by (4.3) then f1 is one of the fundamental solutions. Clearly,

f1(0) = cos 0

= 1.
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Also, given T (0, 0) = 0,

f ′
1(0) = −

√
λ sin 0 + T (0, 0)

(
e0 + e0

)
= 2T (0, 0)

= 0

and so f1 is indeed one of the fundamental solutions.

We have therefore managed to show that f1 as given by Theorem 4.2.0.59 is the first funda-

mental solution. As T (x,−y) = T (x, y) we can use this fact to simplify the solution found in

Theorem 4.2.0.59. This simplification is presented in the following proposition.

Proposition 4.2.0.60 Suppose that φ is even and twice continuously differentiable on the real

line. Also suppose that T (x,−y) = T (x, y) where T (x, y) is twice continuously differentiable with

bounded first and second partial derivatives for x ≥ 0 and −x ≤ y ≤ x. Further, suppose that

the Gelfand–Levitan integral equation, (3.3) holds with μ = 1. Let f1 be the solution to Hill’s

equation found in Theorem 4.2.0.59, then

f1(x) = cosx
√
λ+ 2

∫ x

0

T (x, y) cos y
√
λ dy.

Further, suppose that for a linear system, (−A,B,C) we have

T (x, y) = −C
(
e−xA + exA

)
[I +Rx]

−1
(
e−yA + eyA

)
B.

Then

f1(x) = cosx
√
λ− 2

∫ x

0

C
(
e−xA + exA

)
[I +Rx]

−1
(
e−yA + eyA

)
B cos y

√
λ dy.

Proof. By Theorem 4.2.0.59 we know that f1 is a solution of Hill’s equation where

f1(x) = cosx
√
λ+

∫ x

−x

T (x, y)eiy
√
λ dy.

Given eix = cosx+ i sinx we may write

f1(x)

= cosx
√
λ+

∫ x

−x

T (x, y)
[
cos y

√
λ+ i sin y

√
λ
]
dy

= cosx
√
λ+

∫ 0

−x

T (x, y)
[
cos y

√
λ+ i sin y

√
λ
]
dy +

∫ x

0

T (x, y)
[
cos y

√
λ+ i sin y

√
λ
]
dy

= cosx
√
λ+

∫ x

0

T (x,−y)
[
cos y

√
λ− i sin y

√
λ
]
dy +

∫ x

0

T (x, y)
[
cos y

√
λ+ i sin y

√
λ
]
dy

= cosx
√
λ+

∫ x

0

[T (x, y) + T (x,−y)] cos y
√
λ dy + i

∫ x

0

[T (x, y)− T (x,−y)] sin y
√
λ dy.

Since T (x,−y) = T (x, y) it follows that

f1(x) = cosx
√
λ+ 2

∫ x

0

T (x, y) cos y
√
λ dy

as required.

Now let T (x, y) = −C
(
e−xA + exA

)
[I +Rx]

−1
(
e−yA + eyA

)
B. Then clearly,

f1(x) = cosx
√
λ− 2

∫ x

0

C
(
e−xA + exA

)
[I +Rx]

−1
(
e−yA + eyA

)
B cos y

√
λ dy.
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Having found the first fundamental solution to Hill’s equation, we would like to find the

second fundamental solution. Knowing both the first and second fundamental solutions would

enable us to find the general solution. Unfortunately, finding the second fundamental solution,

or indeed a second solution is not an easy task. The difficulty of this task in the case that the

potential is a cosine function has already been proved by Ince. Let a, λ be complex constants.

The second order differential equation,

d2

dz2
f + [λ− 2a cos 2z] f = 0

is known as Mathieu’s equation. For a �= 0, Ince proved that the general solution of Mathieu’s

equation is never periodic. This implies that if one periodic solution to Mathieu’s equation exists

then the second solution will not be periodic. More details of this fact can be found in [21] (page

119). Given that the potential for Hill’s equation can be a great deal more complicated than a

cosine function, the chances of finding a second solution to Hill’s equation are slim.

4.3 Spheroidal Wave Functions Arising as Solutions of Hill’s

Equation

Spheroidal wave functions arise as solutions of the differential equation

d

dz

[(
1− z2

) d

dz
f

]
+

[
λ− c2z2 − μ2

1− z2

]
f = 0, (4.5)

where c �= 0. In particular, since (4.5) is a second order differential equation it will have two

linearly independent solutions from which we can construct the general solution. Solutions

of (4.5) are classified as either spheroidal wave functions of the first kind or spheroidal wave

functions of the second kind. Spheroidal wave functions of the first kind are those that are finite at

the points z = ±1. Spheroidal wave functions of the second kind have logarithmic singularities at

z = ±1. Detailed information about the history, construction and applications of the spheroidal

wave functions can be found in [22]. For more information regarding the difference between the

functions see [22] (Section 2.3, page 12). In this section we are concerned with solving a particular

case of Hill’s equation, (4.1). We do this by taking a particular differential equation, of the form

(4.5), whose solutions are known (they will be spheroidal wave functions) and transforming it

into an equation that resembles Hill’s equation. The resulting Hill’s equation will, under certain

conditions, have solutions that are spheroidal wave functions.

Definition 4.3.0.61 Define the differential operator Kz to be

Kzf =
d

dz

[(
a2 − z2

) d

dz
f

]
− b2z2f.

We are going to consider the equation −Kzf = λf . Comparing this with (4.5), the similarities

are apparent for we have set z = 1
aw, μ = 0 and c = ab. It then follows that −Kzf = λf

has eigenfunctions that are spheroidal wave functions. In the following theorem we transform

−Kzf = λf into an equation of Hill’s type. This then provides a way in which we can find

solutions to certain types of Hill’s equations.
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Theorem 4.3.0.62 Suppose that −Kzf = λf where f is a spheroidal wave function. Then f is

also a solution of the equation,

− d2

du2
f +

[
a4b2 tanh2 ua sech 2ua− λa2 sech 2ua

]
f = 0. (4.6)

Remark 4.3.0.63 Note that equation (4.6) has the general form of Hill’s equation. The poten-

tial,

q(u) = a4b2 tanh2 ua sech 2ua− λa2 sech 2ua

has period πi
a and the spheroidal wave functions are eigenfunctions associated with the eigenvalue

zero.

Proof. Let f be a spheroidal wave function and suppose that f satisfies, −Kzf = λf . Consider

the change of variables given by z = a tanhua. Note that

dz

du
= a2 sech 2ua (4.7)

= a2
(
1− tanh2 ua

)
= a2 − z2.

Thus,

(
a2 − z2

) d

dz
f =

dz

du

d

dz
f

=
d

du
f

by the chain rule. Also by the chain rule we have

d

dz

d

du
f =

du

dz

d2

du2
f.

The equation, −Kzf = λf therefore becomes

λf = − d

dz

[(
a2 − z2

) d

dz
f

]
+ b2z2f

= − d

dz

d

du
f + b2z2f

= −du

dz

d2

du2
f + b2z2f

= −cosh2 ua

a2
d2

du2
f + a2b2 tanh2 ua f, (4.8)

where the last line follows from (4.7). Multiplying equation (4.8) through by a2 sech 2ua then

produces

λa2 sech 2ua f = − d2

du2
f + a4b2 tanh2 ua sech 2ua f.

Thus the spheroidal wave function, f is also a solution of the equation

− d2

du2
f +

[
a4b2 tanh2 ua sech 2ua− λa2 sech 2ua

]
f = 0,

as required.
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4.3.1 Spheroidal Wave Functions as Eigenfunctions of the Operator S

In this section we show that the operator S as defined in Definition 2.5.0.14 has eigenfunctions

that are spheroidal wave functions. We achieve this by showing that the eigenfunctions of S are

the same as those of Kz defined in the previous section. In order to do this we will need to show

that the operators S and Kz commute.

Proposition 4.3.1.1 Let x, t ∈ R and let S and Kz for z = x, t be operators as defined in

Definition 2.5.0.14 and (4.6) respectively. Then SKx = KtS.

Proof. First note that

Ktf =
(
a2 − t2

) d2

dt2
f − 2t

d

dt
f − b2t2f.

Then

S(Ktf)(t) =
1

π

∫ a

−a

[Kxf(x)]
sin b(t− x)

t− x
dx

=
1

π

∫ a

−a

[(
a2 − x2

) d2

dx2
f(x)

]
sin b(t− x)

t− x
dx− 2

π

∫ a

−a

[
x
d

dx
f(x)

]
sin b(t− x)

t− x
dx

−b2
1

π

∫ a

−a

x2f(x)
sin b(t− x)

t− x
dx.

We want to perform integration by parts on the expression for SKtf . In order to simplify the

calculation, we first note that

sin b(t− x)

t− x
=

1

2

∫ b

−b

eis(t−x) ds. (4.9)

Substituting equation (4.9) into the expression for SKtf we see that

S(Ktf)(t)

=
1

2π

∫ a

−a

[(
a2 − x2

) ∫ b

−b

eis(t−x) ds

]
d2

dx2
f(x) dx− 1

π

∫ a

−a

[
x

∫ b

−b

eis(t−x) ds

]
d

dx
f(x) dx

− b2

2π

∫ a

−a

x2f(x)

∫ b

−b

eis(t−x) ds dx. (4.10)
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We now perform integration by parts twice on the first integral of (4.10). So,

∫ a

−a

[(
a2 − x2

) ∫ b

−b

eis(t−x) ds

]
d2

dx2
f(x) dx

=

[((
a2 − x2

) ∫ b

−b

eis(t−x) ds

)
d

dx
f(x)

]a
x=−a

−
∫ a

−a

[
−2x

∫ b

−b

eis(t−x) ds− i
(
a2 − x2

) ∫ b

−b

seis(t−x) ds

]
d

dx
f(x) dx

= −
[(

−2x

∫ b

−b

eis(t−x) ds− i
(
a2 − x2

) ∫ b

−b

seis(t−x) ds

)
f(x)

]a
x=−a

+

∫ a

−a

[
−2

∫ b

−b

eis(t−x) ds+ 4ix

∫ b

−b

seis(t−x) ds− (a2 − x2
) ∫ b

−b

s2eis(t−x) ds

]
f(x) dx

= 2a

(∫ b

−b

eis(t−a) ds

)
f(a) + 2a

(∫ b

−b

eis(t+a) ds

)
f(−a)

+

∫ a

−a

[
−2

∫ b

−b

eis(t−x) ds+ 4ix

∫ b

−b

seis(t−x) ds− (a2 − x2
) ∫ b

−b

s2eis(t−x) ds

]
f(x) dx.

Similarly, we perform one integration by parts on the second integral of (4.10), giving

∫ a

−a

[
x

∫ b

−b

eis(t−x) ds

]
d

dx
f(x) dx

=

[(
x

∫ b

−b

eis(t−x) ds

)
f(x)

]a
x=−a

−
∫ a

−a

[∫ b

−b

eis(t−x) ds− ix

∫ b

−b

seis(t−x) ds

]
f(x) dx

= a

(∫ b

−b

eis(t−a) ds

)
f(a) + a

(∫ b

−b

eis(t+a) ds

)
f(−a)

−
∫ a

−a

[∫ b

−b

eis(t−x) ds− ix

∫ b

−b

seis(t−x) ds

]
f(x) dx.

Hence,

S(Ktf)(t) =
1

π

∫ a

−a

[
ix

∫ b

−b

seis(t−x) ds− 1

2

(
a2 − x2

) ∫ b

−b

s2eis(t−x) ds

−b2

2
x2

∫ b

−b

eis(t−x) ds

]
f(x) dx. (4.11)

After relabelling by switching the roles of x and t, equation (4.11) then becomes

S(Kxf)(x) =
1

π

∫ a

−a

[
it

∫ b

−b

seis(x−t) ds− 1

2

(
a2 − t2

) ∫ b

−b

s2eis(x−t) ds

−b2

2
t2
∫ b

−b

eis(x−t) ds

]
f(t) dt. (4.12)

Now observe that by (4.9) we have

d

dt

(
sin b(x− t)

x− t

)
= − i

2

∫ b

−b

seis(x−t) ds;

d2

dt2

(
sin b(x− t)

x− t

)
= −1

2

∫ b

−b

s2eis(x−t) ds.
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Thus,

S(Kxf)(x) =
1

π

∫ a

−a

[
−2t

d

dt

(
sin b(x− t)

x− t

)
+
(
a2 − t2

) d2

dt2

(
sin b(x− t)

x− t

)

−b2t2
sin b(x− t)

x− t

]
f(t) dt

=
1

π

∫ a

−a

[
Kt

sin b(x− t)

x− t

]
f(x) dx.

Since sin b(x−t)
x−t is even it follows that Kt

sin b(x−t)
x−t = Kt

sin b(t−x)
t−x . Hence

S(Kxf)(x)

=
1

π

∫ a

−a

[
Kt

sin b(t− x)

t− x

]
f(x) dx

=
1

π

∫ a

−a

[(
a2 − t2

) d2

dt2
sin b(t− x)

t− x
− 2t

d

dt

sin b(t− x)

t− x
− b2t2

sin b(t− x)

t− x

]
f(x) dx

=
(
a2 − t2

) d2

dt2
(Sf)(t)− 2t

d

dt
(Sf)(t)− b2t2(Sf)(t)

= Kt(Sf)(t)

as required.

An immediate consequence of Proposition 4.3.1.1 is that the eigenfunctions of S and Kt are

the same. In Section 4.3 we saw that the eigenfunctions of the operator Kt are the spheroidal

wave functions. Theorem 4.3.1.3 shows that S also admits spheroidal wave functions as its

eigenfunctions. First we give a preliminary lemma that shows that zero is not an eigenvalue of

the operator S.

Lemma 4.3.1.2 Let S be the operator defined in Definition 2.5.0.14. Then zero is not an

eigenvalue of S.

Proof. Suppose that zero is an eigenvalue of S. Since S = U∗U by Proposition 2.5.0.16 we have

U∗Uf = 0 for some eigenfunction, f �= 0. Now, U∗Uf = 0 implies 〈U∗Uf, f〉 = 0, hence by

Definition 2.1.0.7, ‖Uf ‖2 = 0 and so Uf = 0. Recall Definition 2.5.0.8, since U : L2[−a, a] →
L2[−b, b] it shows that Uf = 0 implies Uf(t) = 0 for −b ≤ t ≤ b. By Proposition 2.5.0.11, Uf is

entire over the real line, hence has isolated zeros. We conclude that Uf(t) = 0 for all t ∈ R and

Uf(t) = f̂(t). Now, using Proposition 2.4.1.3 we see that

f(x) = lim
R→∞

1√
2π

∫ R

−R

f̂(t)eitx dt

= lim
R→∞

1√
2π

∫ R

−R

Uf(t)eitx dt

= 0.

Therefore, Sf = 0 implies that f = 0 everywhere, a contradiction. Hence zero cannot be an

eigenvalue of S.

Theorem 4.3.1.3 Let S and K be as defined in Definition 2.5.0.14 and (4.6) respectively. Sup-

pose that f is an eigenfunction of K associated with the eigenvalue λ. Furthermore, suppose that

f is a spheroidal wave function of the first kind. Then f is also an eigenfunction of S.
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Proof. Let f be an eigenfunction of K corresponding to the eigenvalue λ, then Kf = λf . Note

that

SKf = λSf,

and since S and K commute by Proposition 4.3.1.1, we have

KSf = λSf

where Sf is twice continuously differentiable. By Lemma 4.3.1.2, zero is not an eigenvalue of

S, hence Sf �= 0. It follows that Sf is an eigenfunction of K corresponding to the eigenvalue

λ. Therefore, we must have Sf = g where g is some linear combination of spheroidal wave

functions of the first and second kind. Now note that Sf is continuous by an application of the

Dominated Convergence Theorem, hence Sf is finite at the points z = ±1. Therefore Sf must

be a spheroidal wave function of the first kind. Since Kf = λf where f is the spheroidal wave

function of the first kind corresponding to the eigenvalue λ, and Sf is also an eigenfunction of

K corresponding to the eigenvalue λ, it follows that

Sf = μf

for some scalar, μ. Thus f is also an eigenfunction of S.

4.4 The Spectrum of Hill’s Equation

A spectrum, defined for an operator, contains the eigenvalues of the operator together with any

limit points. In this section we seek to define the spectrum of Hill’s equation by first writing (4.1)

in operator form. We then introduce the monodromy operator, Mπ and show how the spectrum

of Hill’s equation can be obtained from it. We finish by calculating the characteristic equation

of the monodromy operator in preparation for Floquet’s Theorem which we introduce in Section

4.4.2.

As previously stated, the definition of a spectrum is given in terms of operators. Therefore we

first write (4.1) in operator form. The reader should also note that, unless otherwise specified,

we take the space HL to be as given in Definition 4.4.0.4.

Definition 4.4.0.4 Let HL = {f ∈ L2(R) : f ′′ ∈ L2(R)}. Define Hill’s operator, L : HL →
L2(R) to be such that

Lf(x) = − d2

dx2
f(x) + q(x)f(x).

Remark 4.4.0.5 With Hill’s operator, L given by the above definition, Hill’s equation, (4.1)

becomes

Lf(x) = λf(x). (4.13)

Having an operator form of Hill’s equation, as in (4.13) allows us to define the spectrum of

the operator, L. That is, we are able to define the spectrum of Hill’s equation. We start this

process by defining the spectrum of a general operator.
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Definition 4.4.0.6 Let H be a Hilbert space and T : H → H be an operator. The spectrum of

T , denoted σ(T ) is defined to be

σ(T ) = {λ ∈ C : λI − T is not invertible}.

It is clear from the definition of a spectrum that σ(T ) must contain all of the eigenvalues

of T . If λ is an eigenvalue of T then λI − T fails to be one-to-one, hence is not bijective and

therefore is not invertible. If an operator acts on a finite dimensional space then its spectrum

consists precisely of its eigenvalues. If however, an operator acts on an infinite dimensional space

then its spectrum may contain elements other than the eigenvalues. We summarise this in the

following proposition.

Proposition 4.4.0.7 Suppose that T : H → H. If H is finite dimensional then

σ(T ) = {λ ∈ C : λ is an eigenvalue of T}.

If H is infinite dimensional then

{λ ∈ C : λ is an eigenvalue of T} ⊂ σ(T ).

In a finite dimensional Hilbert space, in order to find the spectrum of an operator, T we can

consider its characteristic equation. The roots of the characteristic equation of T are precisely

the eigenvalues of T .

Definition 4.4.0.8 Let H be a finite dimensional Hilbert space and let T : H → H be an

operator. We define the characteristic equation of T to be

det(λI − T ) = 0.

Remark 4.4.0.9 When T is a trace class operator we can consider the equation

det(I − λT ) = 0.

The roots of this equation are the reciprocals of the eigenvalues of T .

In Theorem 4.4.0.19 we calculate the characteristic equation of the monodromy operator. It

is this characteristic equation that is associated with Hill’s equation. The proof of the theorem

depends upon having Hill’s equation in matrix form. We give a definition that introduces this

matrix notation and then present some preliminary results.

Definition 4.4.0.10 Let HL = {f ∈ L2(R) : f ′′ ∈ L2(R)} and suppose that f1, f2 ∈ HL are the

two fundamental solutions of Hill’s equation. Set gi = f ′
i for i = 1, 2 and let Ψ = [Ψ1,Ψ2] where

Ψi = [fi, gi]
T
for i = 1, 2. Also let

D(x) =

⎡
⎣ 0 1

q(x)− λ 0

⎤
⎦ . (4.14)

In matrix form, Hill’s equation, (4.1) becomes

Ψ′ = DΨ. (4.15)

Also, since f1 and f2 are fundamental solutions, the condition given by (4.3) is equivalent to

Ψ(0) = I.
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The following lemma shows that we can post multiply solutions to Hill’s equation by scalar

matrices to produce another solution.

Lemma 4.4.0.11 Let Φ be a solution of Hill’s equation so that Φ′ = DΦ where D is as given by

(4.14). Suppose that W is a scalar valued matrix, then ΦW is also a solution of Hill’s equation.

Proof. The proof simply involves checking that ΦW satisfies (4.15). Let Φ be a solution of

(4.15) and W a scalar valued matrix then

(ΦW )
′
= Φ′W +ΦW ′.

As W is a constant matrix its derivative with respect to x is zero. Also, since Φ is a solution of

Hill’s equation it satisfies Φ′ = DΦ. Thus

(ΦW )
′
= DΦW,

and so ΦW is also a solution of Hill’s equation.

We now begin to introduce the monodromy operator, Mπ. In Definition 4.4.0.16 we take Mπ

to be a matrix similar to Ψ(π) where Ψ denotes the fundamental solution matrix. The following

Lemma is presented solely as a precursor to the proof of Proposition 4.4.0.14.

Lemma 4.4.0.12 Let Ψ denote the 2×2 fundamental solution matrix. Also let Φ be any solution

of Φ′ = DΦ where D is given by (4.14). Then Φ satisfies

Φ(π) = Ψ(π)Φ(0).

Proof. Let Ψ be the 2 × 2 fundamental solution matrix, then Ψ satisfies Hill’s equation, so

Ψ′ = DΨ. Consider then Ψ(x)Φ(0). By Lemma 4.4.0.11, Ψ(x)Φ(0) is also a solution of Hill’s

equation, hence

[Ψ(x)Φ(0)]
′
= D(x)Ψ(x)Φ(0).

Also, since Ψ is a fundamental solution matrix it satisfies Ψ(0) = I and so

Ψ(0)Φ(0) = Φ(0).

Therefore, at x = 0, Ψ(x)Φ(0) has derivative given by D(0)Ψ(0)Φ(0) = D(0)Φ(0). That is, the

derivatives of Ψ(x)Φ(0) and Φ(x), and the functions themselves are equal at the point x = 0.

Hence, by uniqueness,

Φ(x) = Ψ(x)Φ(0).

So,

Φ(π) = Ψ(π)Φ(0)

as required.

Recall that in Lemma 4.2.0.58 we saw that if f(x) is a solution of Hill’s equation then f(x+π)

is also a solution. The following lemma shows that we can write f(x+π) as a linear combination

of the fundamental solutions.
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Lemma 4.4.0.13 Let Ψ denote the 2× 2 fundamental solution matrix then

Ψ(x+ π) = Ψ(x)Ψ(π).

Proof. Since Ψ is the 2× 2 fundamental solution matrix we have

Ψ(x+ π) =

⎡
⎣f1 f2

f ′
1 f ′

2

⎤
⎦ (x+ π).

Now, as f1(x) and f2(x) are solutions of Hill’s equation, it follows from Lemma 4.2.0.58 that

f1(x+ π) and f2(x+ π) are also solutions of Hill’s equation. Therefore, we may write f1(x+ π)

and f2(x+ π) as linear combinations of f1(x) and f2(x). Let

f1(x+ π) = af1(x) + bf2(x),

f2(x+ π) = cf1(x) + df2(x)

for some constants a, b, c, d. Then

Ψ(x+ π) =

⎡
⎣af1 + bf2 cf1 + df2

af ′
1 + bf ′

2 cf ′
1 + df ′

2

⎤
⎦ (x)

=

⎡
⎣f1 f2

f ′
1 f ′

2

⎤
⎦ (x)

⎡
⎣a c

b d

⎤
⎦

= Ψ(x)

⎡
⎣a c

b d

⎤
⎦ . (4.16)

Given that Ψ is a fundamental solution matrix and satisfies Ψ(0) = I, we use this to find a, b, c, d.

So, taking x = 0 in (4.16) we have

Ψ(π) =

⎡
⎣a c

b d

⎤
⎦ .

Therefore,

Ψ(x+ π) = Ψ(x)Ψ(π)

as required.

The following proposition is presented as motivation for the definition of the monodromy

operator as appears in Definition 4.4.0.16.

Proposition 4.4.0.14 Let Φ be any solution of Φ′ = DΦ such that Φ(0) is invertible. Then

Φ(x+ π) = Φ(x)
[
Φ(0)−1Ψ(π)Φ(0)

]
Proof. Let Ψ be the fundamental solution matrix and suppose that Φ is any solution of Φ′ = DΦ

such that Φ(0) is invertible. Then by the proof of Lemma 4.4.0.12 we have Φ(x) = Ψ(x)Φ(0) for

all x. In particular,

Φ(x+ π) = Ψ(x+ π)Φ(0).
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By Lemma 4.4.0.13 we have Ψ(x+ π) = Ψ(x)Ψ(π) and therefore

Φ(x+ π) = Ψ(x)Ψ(π)Φ(0).

Finally, if Φ(x) = Ψ(x)Φ(0) and Φ(0) is invertible then Ψ(x) = Φ(x)Φ(0)−1. Hence,

Φ(x+ π) = Φ(x)Φ(0)−1Ψ(π)Φ(0).

Remark 4.4.0.15 Note that the matrix Φ(0)−1Ψ(π)Φ(0) is similar to Ψ(π).

In the above proposition we saw that the matrix Ψ(π) plays a special role. We saw that

shifting any solution of Hill’s equation by π results in post multiplication of the solution by

Φ(0)−1Ψ(π)Φ(0). This observation prompts the following definition.

Definition 4.4.0.16 Let HM = {Φ : Φ′ = DΦ} where D is as given by (4.14) and let Ψ denote

the fundamental solution matrix. We define the monodromy operator, Mπ : HM → HM to be

such that

Φ(x) �→ Φ(x+ π)

where Mπ is given by post multiplying by Φ(0)−1Ψ(π)Φ(0).

The monodromy operator, Mπ is important since it is used to define Hill’s discriminant. It

is Hill’s discriminant that gives the spectrum of Hill’s equation. In Section 4.4.1 we will see how

placing certain conditions upon Hill’s discriminant allows us to calculate the periodic spectrum

of Hill’s equation. The relationship between Hill’s discriminant and the monodromy operator is

shown in the following definition.

Definition 4.4.0.17 Let HM be as given in Definition 4.4.0.16 and let Mπ : HM → HM be the

monodromy operator. Then Hill’s discriminant, Δ is given by

Δ(λ) = trMπ.

Remark 4.4.0.18 The above definition implies that Hill’s discriminant takes the form

Δ(λ) = f1(π) + f ′
2(π),

where f1 and f2 are the fundamental solutions of Hill’s equation.

As previously mentioned, Hill’s discriminant gives the spectrum of Hill’s equation. Therefore,

by Remark 4.4.0.18, if we can find both fundamental solutions of Hill’s equation we can calculate

the spectrum.

The final task in this section is to calculate the characteristic equation of the monodromy

operator. The roots of such a characteristic equation can be used to determine the type of

solutions to Hill’s equation that we can expect to find. This idea will be demonstrated in

Proposition 4.4.2.2.
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Theorem 4.4.0.19 Let HM = {Ψ : Ψ′ = DΨ} where D is as given by (4.14) and let Mπ :

HM → HM be the monodromy operator. Then the characteristic equation of Mπ is

μ2 − ( trMπ)μ+ detMπ = 0

where detMπ = 1.

Proof. The monodromy operator is represented by a 2× 2 matrix, say

Mπ =

⎡
⎣a11 a12

a21 a22

⎤
⎦ ,

where trMπ = a11 + a22 and detMπ = a11a22 − a12a21. The characteristic equation of Mπ is

given by

0 = det [μI −Mπ]

= det

⎡
⎣μ− a11 −a12

−a21 μ− a22

⎤
⎦

= (μ− a11)(μ− a22)− a12a21

= μ2 − (a11 + a22)μ+ a11a22 − a12a21

= μ2 − ( trMπ)μ+ detMπ.

It remains to show that detMπ = 1. Let Ψ denote the fundamental solution matrix then by

Definition 4.4.0.16, Mπ = Φ(0)−1Ψ(π)Φ(0) where Φ is a solution of Hill’s equation. So,

detMπ = det
[
Φ(0)−1Ψ(π)Φ(0)

]
= detΨ(π).

It therefore suffices to consider Ψ(π) and show that detΨ(π) = 1. Let W denote the Wronskian

of the fundamental solutions, f1 and f2. Then W (x) = detΨ(x). Differentiating the Wronskian

with respect to x we see that

d

dx
W (x) = det

⎡
⎣f ′

1 f ′
2

f ′
1 f ′

2

⎤
⎦ (x) + det

⎡
⎣f1 f2

f ′′
1 f ′′

2

⎤
⎦ (x).

Clearly we have

det

⎡
⎣f ′

1 f ′
2

f ′
1 f ′

2

⎤
⎦ (x) = 0.

Also, as f1 and f2 are solutions of Hill’s equation we have, by (4.1)

f ′′
i (x) = [q(x)− λ]fi(x)

for i = 1, 2. Thus,

d

dx
W (x) = det

⎡
⎣ f1 f2

(q − λ)f1 (q − λ)f2

⎤
⎦ (x)

= 0.
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This implies that the Wronskian, W (x) is constant for all x. In particular, W (0) = W (π). Thus,

detΨ(π) = W (π)

= W (0)

= detΨ(0).

Since Ψ is a fundamental solution matrix, it follows from Definition 4.4.0.10 that Ψ(0) = I, hence

detΨ(π) = 1.

In the case that the monodromy operator has distinct eigenvalues μ1 and μ2, Mπ is diagonable

and hence is similar to the matrix diag (μ1, μ2). Theorem 4.4.0.19 then shows that 1 = detMπ =

μ1μ2. This observation provides motivation for the following definition.

Definition 4.4.0.20 Let μ1 and μ2 be the roots of the characteristic equation of the monodromy

operator, Mπ. Then there exists some ξ = a+ bi ∈ C such that a, b ∈ [0, 2) and

μ1 = eiξπ

μ2 = e−iξπ.

We call ξ a characteristic exponent.

Remark 4.4.0.21 It will sometimes be convenient to use the notation μi(π) for i = 1, 2.

4.4.1 The Periodic Spectrum

In the case that Hill’s equation has periodic solutions of period π or 2π, the associated eigenvalues

lie in the periodic spectrum. This section defines the periodic spectrum of Hill’s equation and

shows how it can be calculated from Hill’s discriminant. The remaining chapters of this thesis

are dependent upon knowing the periodic spectrum of Hill’s equation since we will sample from

it. We show how the periodic spectrum can be split into two sets; the principal series relating

to π-periodic solutions and the complementary series relating to 2π-periodic solutions. Further,

we state a result known as the Oscillation Theorem that demonstrates the connection between

the principal series and the complementary series.

Definition 4.4.1.1 We define the periodic spectrum of Hill’s equation to be,

σp(L) = {λ ∈ C : Δ2(λ)− 4 = 0}

where Δ is Hill’s discriminant.

The periodic spectrum of Hill’s equation is an infinite set as the following proposition shows.

Proposition 4.4.1.2 Let Δ(λ) denote Hill’s discriminant then the function

Δ2(λ)− 4

has infinitely many zeros, (λn)
∞
n=0. Further, if Δ2(0) �= 4 then

Δ2(λ)− 4 = C
∞∏

n=0

[
1− λ

λn

]
.
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Proof. Hill’s discriminant, Δ has order 1
2 by [35] (Theorem 2.2, page 20). The remainder of the

statement now follows from Proposition 2.2.0.14.

Proposition 4.4.1.2 also shows us that if 0 /∈ σp(L) then we can write the function Δ2(λ)− 4

as a convergent product.

Let σp(L) = {λn}n∈N0
where the λn denote elements of the periodic spectrum. We can divide

the set σp(L) into two further sets that form sequences known as the principal and complementary

series. The use of the term series is traditional in this context and does not imply summation.

Definition 4.4.1.3 Suppose that λ belongs to the periodic spectrum. We say that λ lies in the

principal series if it satisfies the equation

Δ(λ)− 2 = 0.

Similarly we say that λ lies in the complementary series if it satisfies the equation,

Δ(λ) + 2 = 0.

The following theorem is due to Liapounoff and Haupt and is known as the Oscillation

Theorem. The theorem shows the relationship between the roots of Δ(λ) − 2 = 0 and those of

Δ(λ) + 2 = 0. That is, it shows the relationship between eigenvalues in the principal series and

those in the complementary series. Further, it shows what type of solutions to Hill’s equation we

can expect if a given eigenvalue is in either the principal or complementary series. The Oscillation

Theorem, stated next, is presented in [35] (Theorem 2.1, page 11) along with a proof.

Proposition 4.4.1.4 Hill’s equation, (4.1) has a monotonically increasing infinite sequence of

real numbers, (λn)
∞
n=0 such that λn → ∞ as n → ∞ and the following inequalities hold,

−∞ < λ0 < λ1 ≤ λ2 < λ3 ≤ λ4 < λ5 ≤ λ6 < λ7 ≤ λ8 < . . . . (4.17)

Furthermore, Hill’s equation has a π-periodic solution if and only if λn belongs to the principal

series, and a 2π-periodic solution if and only if λn belongs to the complementary series.

The sequence (λn)
∞
n=0 is derived from the solutions to the equation Δ2(λ) − 4 = 0 and

is monotonically increasing. By Definition 4.4.1.3 we see that each λn belongs to either the

principal series or the complementary series. In [35] (Lemma 2.6, page 19) it was shown that λ0

is a simple root of Δ2(λ)− 4 = 0 with Δ′(λ0) < 0. Further, λ0 always lies in the principal series.

The inequality λ0 < λ1 together with the fact that Δ′(λ0) < 0 then tells us that λ1 lies in the

complementary series. The next element in the sequence, λ2 will again lie in the complementary

series. If Δ′(λ1) < 0 then λ2 �= λ1 and we say that both λ1 and λ2 are simple roots. Also, λ1 and

λ2 will be separated by what we shall later refer to as an interval of instability. If Δ′(λ1) = 0 then

λ2 = λ1 and we have a double root. This accounts for the inequality λ1 ≤ λ2. The next inequality

given in the Oscillation Theorem is λ2 < λ3 and this occurs since λ3 lies in the principal series.

Following this we have λ3 ≤ λ4 denoting the fact that λ3 and λ4 can be either simple or double

roots with λ4 also in the principal series. This pattern of alternating between the principal

series and complementary series repeats. The inequalities given in the Oscillation Theorem are
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structured such that for n ∈ N, if λ2n−1 belongs to the principal series then λ2n also belongs to

the principal series. Similarly, if λ2n−1 belongs to the complementary series then λ2n also belongs

to the complementary series. As we have already briefly mentioned, the inequalities stated in

(4.17) also define the intervals of stability and instability. These intervals are used to tell us

whether or not our solutions to Hill’s equation are bounded. Intervals of stability correspond

to bounded solutions, whereas intervals of instability correspond to unbounded solutions. We

will give more explanation of this concept in Section 4.4.2 but for now it suffices to note that

an interval of stability is given by Δ2(λ) − 4 < 0 (if λ is a double root we also include the case

Δ2(λ)− 4 = 0) and an interval of instability is anything outside of this. The following diagram

plotting the function Δ makes the ideas just outlined more precise. Note that the scale on the

y-axis refers only to the function Δ; the eigenvalues can take any real value.
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Remark 4.4.1.5 From the diagram it is now easy to see that the principal series is given by

{λ4m, λ4m+3 : m ∈ N0}.

Similarly, the complementary series is given by

{λ4m+1, λ4m+2 : m ∈ N0}.

The final proposition in this section explains the oscillatory nature of the function Δ(λ) that

is evident in the diagram. It shows that we can express Δ(λ) in terms of the cosine function.

Proposition 4.4.1.6 Let Δ denote Hill’s discriminant. Then

Δ(λ) = 2 cos ξπ

where ξ is the characteristic exponent.

Proof. By Theorem 4.4.0.19, the monodromy operator has characteristic equation

0 = μ2 −Δ(λ)μ+ 1. (4.18)

Let μ1 and μ2 be the roots of the characteristic equation then

0 = (μ− μ1)(μ− μ2)

= μ2 − (μ1 + μ2)μ+ μ1μ2. (4.19)

By comparing (4.18) with (4.19) we see that

Δ(λ) = μ1 + μ2.

Finally, by Definition 4.4.0.20 we see that

Δ(λ) = eiξπ + e−iξπ

= 2 cos ξπ

as required.

4.4.2 Floquet’s Theorem

The aim of this section is to state, without proof, Floquet’s Theorem. Floquet’s Theorem uses

the roots of the characteristic equation of the monodromy operator to determine the nature of

the solutions of Hill’s equation. In particular, we see that when these roots are equal there exist

periodic solutions to Hill’s equation, of period π or 2π. As a consequence of Floquet’s Theorem

we are also able to determine when the solutions to Hill’s equation are bounded.

Let the monodromy operator have eigenvalues μ1 and μ2. The following theorem gives a

condition that Hill’s discriminant must satisfy in order for μ1 and μ2 to be equal. It also shows

that if μ1 = μ2 then λ belongs to the periodic spectrum.

Theorem 4.4.2.1 Let Mπ denote the monodromy operator with eigenvalues μ1 and μ2. Then

μ1 = μ2 if and only if Hill’s discriminant satisfies

Δ2(λ)− 4 = 0.
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Proof. By Theorem 4.4.0.19 and Definition 4.4.0.17, the characteristic equation of Mπ is

μ2 −Δ(λ)μ+ 1 = 0.

The roots of the characteristic equation of Mπ are the eigenvalues of Mπ by definition. We use

the quadratic formula to find the roots μ1 and μ2. This gives

μ =
Δ(λ)±√

Δ2(λ)− 4

2
,

from which it is clear that μ1 = μ2 if and only if Δ2(λ)− 4 = 0.

The following theorem is called Floquet’s Theorem and it can be found with proof in [35]

(page 4). Briefly, it tells us what type of solutions to Hill’s equation we can expect to find.

Proposition 4.4.2.2 Let μ1(x) = eiξx and μ2(x) = e−iξx where ξ is a characteristic exponent.

Suppose that the characteristic equation of the monodromy operator, Mπ has roots μ1(π) and

μ2(π). If μ1(π) �= μ2(π) then Hill’s equation has two linearly independent solutions, y1 and y2

such that

y1(x) = μ1(x)p1(x),

y2(x) = μ2(x)p2(x)

for π-periodic functions p1, p2. If μ1(π) = μ2(π) = 1 then Hill’s equation has a non-trivial

π-periodic solution, pπ. Suppose y is also a solution of Hill’s equation and that y and pπ are

linearly independent. Then

y(x+ π) = y(x) + cpπ(x)

for some constant, c. If μ1(π) = μ2(π) = −1 then Hill’s equation has a non-trivial 2π-periodic

solution, p2π. Suppose y is also a solution of Hill’s equation and that y and p2π are linearly

independent. Then

y(x+ π) = −y(x) + cp2π(x)

for some constant, c. If c = 0 then we have

y1(π) + y′2(π) = ±2

y′1(π) = 0

y2(π) = 0.

Remark 4.4.2.3 We refer to the case in which μ1(π) = μ2(π) = 1 as the periodic case. The

case in which μ1(π) = μ2(π) = −1 is referred to as the antiperiodic case.

Floquet’s Theorem tells us the nature of the solutions of Hill’s equation based on the roots

of the characteristic polynomial of the monodromy operator. It tells us that when those roots

are equal and take the value 1, there exists a π-periodic solution to Hill’s equation; when they

take the value −1 there exists a 2π-periodic solution to Hill’s equation. Notice also that when

the roots are equal and c = 0 there exist two linearly independent periodic solutions. This
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corresponds to having a double root. Furthermore, when the roots are distinct there exist two

linearly independent solutions that are products of a π-periodic function and some other function

that is dependent upon the root.

The following corollary is a consequence of Floquet’s theorem. It describes the conditions

under which the solutions of Hill’s equation are bounded.

Corollary 4.4.2.4 Let ξ denote the characteristic exponent. If Δ2(λ)− 4 < 0 then ξ is real and

all solutions of Hill’s equation, (4.1) are bounded. If Δ2(λ) − 4 > 0 then all solutions of Hill’s

equation are unbounded. Finally, if Δ2(λ) = 4 then Hill’s equation has a periodic solution of

period π or 2π.

Proof. We consider each case in turn. First suppose that Δ2(λ)− 4 < 0. By Definition 4.4.1.1

we are not in the periodic spectrum and so we must have μ1 �= μ2, where μ1 and μ2 are the roots

of the characteristic equation of the monodromy operator. Hence, by Floquet’s Theorem 4.4.2.2

there exist two linearly independent solutions of Hill’s equation,

y1(x) = μ1(x)p1(x),

y2(x) = μ2(x)p2(x).

It follows that any solution of Hill’s equation has the form

y(x) = αy1(x) + βy2(x).

We show that y is bounded. Given Δ2(λ) − 4 < 0, or more simply, −2 < Δ(λ) < 2, this is

equivalent to −1 < cos ξπ < 1 where ξ is a characteristic exponent by 4.4.1.6. Since ξ = a + bi

for a, b ∈ [0, 2) it follows that we must have a �= 0 and b = 0 so that ξ �= 0 and real. Therefore,

|μi(x)| =
∣∣e±iax

∣∣
= 1

for x ∈ R and i = 1, 2. Hence,

|y(x)| = |αμ1(x)p1(x) + βμ2(x)p2(x)|
≤ |α| |p1(x)|+ |β | |p2(x)| .

By Definition 4.1.0.53, y1 and y2 are continuous. Since μ1(x) and μ2(x) are continuous it follows

that the functions p1 and p2 must also be continuous. Further, by Floquet’s Theorem 4.4.2.2

p1 and p2 are π-periodic and so are bounded on an interval of length π. It follows from the

periodicity of p1 and p2 that they are both bounded on R. Hence y is bounded.

Now suppose that Δ2(λ) − 4 > 0. Again, we are not in the periodic spectrum and so by

Floquet’s Theorem 4.4.2.2, any solution of Hill’s equation has the form

y(x) = αy1(x) + βy2(x)

where y1(x) = μ1(x)p1(x) and y2(x) = μ2(x)p2(x). Now, Δ2(λ) − 4 > 0 is equivalent to

|cos ξπ | > 1. Clearly this only happens when ξ = a+ bi for b �= 0. Now,

|y(x)| = |αμ1(x)p1(x) + βμ2(x)p2(x)|
≥ |α| |μ1(x)| |p1(x)| − |−β | |μ2(x)| |p2(x)|
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where

|μi(x)| =
∣∣∣e±i(a+bi)x

∣∣∣
= e±(−b)x

for x ∈ R and i = 1, 2. Consider now the cases in which x → ±∞. Suppose x → ∞ then

|μ2(x)| = ebx → ∞. If x → −∞ then |μ1(x)| = e−bx → ∞. In both cases the result is that y

unbounded.

Finally, the existence of periodic solutions of period π or 2π when Δ2(λ) = 4 follows directly

from Floquet’s Theorem, 4.4.2.2.

The following definition provides some standard terminology.

Definition 4.4.2.5 If λ ∈ R is such that Δ2(λ) − 4 < 0, or Δ2(λ) − 4 = 0 and λ is a double

root, then we say that λ belongs to an interval of stability. If Δ2(λ)− 4 > 0, or Δ2(λ)− 4 = 0

and λ is a simple root then we say that λ belongs to an interval of instability.

We see from Corollary 4.4.2.4 and Definition 4.4.2.5 that the intervals of stability relate to

bounded solutions of Hill’s equation, whereas the intervals of instability relate to unbounded

solutions.

4.4.3 The Bloch Spectrum

Traditionally, the Bloch spectrum is used by physicists and is defined to be the set of eigenvalues

for which all solutions of an equation are bounded on the real line. This is an analytic approach.

Here we define the Bloch spectrum in terms of Hill’s discriminant, Δ which is derived from the

monodromy operator, a geometrical quantity.

Definition 4.4.3.1 Let L denote Hill’s operator. We define the Bloch spectrum of Hill’s equa-

tion to be

σB(L) = {λ ∈ R : Δ2(λ)− 4 < 0} ∪ {λ ∈ R : Δ2(λ)− 4 = 0 and λ is a double root}.

The Bloch spectrum is therefore the set of eigenvalues that belong to intervals of stability.

That is, λ ∈ σB(L) if every solution of

−f ′′(x) + q(x)f(x) = λf(x)

is bounded. We show this in the following lemma.

Lemma 4.4.3.2 Suppose that λ belongs to the Bloch spectrum, σB(L). Let fλ denote a solution

to Hill’s equation corresponding to the eigenvalue, λ. Then fλ is bounded.

Proof. Let λ ∈ σB(L) then either Δ2(λ) − 4 < 0 or Δ2(λ) − 4 = 0 and λ is a double root.

We denote by fλ the eigenfunction associated with the eigenvalue, λ. If Δ2(λ)− 4 < 0 then by

Corollary 4.4.2.4, fλ is a bounded solution of Hill’s equation. If Δ2(λ) − 4 = 0 then again by

Corollary 4.4.2.4, Hill’s equation has a continuous, periodic solution, fλ. Since fλ is continuous

and periodic it is therefore bounded, completing the result.
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The following proposition shows that the Bloch spectrum of Hill’s equation is indeed a subset

of the spectrum of Hill’s equation, for if λI − L is not invertible then λ ∈ σ(L) by Definition

4.4.0.6.

Proposition 4.4.3.3 Let L denote Hill’s operator. Suppose that λ lies in the Bloch spectrum,

σB(L). Then λI − L is not invertible.

Proof. Let λ ∈ σB(L) then by Lemma 4.4.3.2, there exists a bounded function, fλ associated

with λ and such that

−f ′′
λ (x) + q(x)fλ = λfλ.

Suppose that fλ ∈ L2(R) then by Definition 4.4.0.4,

Lfλ = λfλ

where L denotes Hill’s operator. Therefore, λ is an eigenvalue with eigenfunction fλ. By Proposi-

tion 4.4.0.7, λ belongs to the spectrum of L, hence, by Definition 4.4.0.6, λI−L is not invertible.

Now suppose that λ ∈ σB(L) and fλ /∈ L2(R). We construct an approximate eigenfunction

so that λI − L is not invertible. Take T > 0 large and let ϕT : R → [0, 1] be even, infinitely

differentiable and such that

ϕT (x) =

⎧⎪⎪⎨
⎪⎪⎩
0 for x < −T − 1,

1 for −T < x < T,

0 for x > T + 1.

We take ϕT to be decreasing on (0,∞) and note that the families {ϕ′′
T }T>0 and {ϕ′

T }T>0 are

uniformly bounded on R. Also,

ϕT fλ(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 for x < −T − 1,

fλ(x) for −T < x < T,

0 for x > T + 1.

Since fλ satisfies Hill’s equation it follows that ϕT fλ satisfies Hill’s equation on the set

S = (−∞,−T − 1) ∪ (−T, T ) ∪ (T + 1,∞).

Note that for x ∈ (−∞,−T − 1) ∪ (T + 1,∞) we have the trivial solution. Therefore, writing

Hill’s equation in terms of Hill’s operator we see that the equation

(λI − L) (ϕT fλ) = 0 (4.20)

holds on the set S. Now, since fλ is differentiable on R it follows that it is continuous on R.

Thus ϕT fλ ∈ L2(R) since it is continuous and has support on (−T, T ). It then follows from

(4.20) that

‖(λI − L) (ϕT fλ)‖L2(R) = ‖(λI − L) (ϕT fλ)‖L2(R\S) .

On the set R\S we have

(λI − L) (ϕT fλ) (x) = λ (ϕT fλ) (x) + (ϕT fλ)
′′
(x)− q(x) (ϕT fλ) (x)

= (ϕ′′
T fλ) (x) + 2 (ϕ′

T f
′
λ) (x) + (ϕT f

′′
λ ) (x) + [λ− q(x)] (ϕT fλ) (x).
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It therefore follows from the triangle inequality that

‖(λI − L) (ϕT fλ)‖L2(R)

≤ ‖ϕ′′
T fλ‖L2(R\S) + 2 ‖ϕ′

T f
′
λ‖L2(R\S) + ‖ϕT f

′′
λ ‖L2(R\S) + ‖λ− q‖L∞(R\S) ‖ϕT fλ‖L2(R\S) .

We show that each term in the above inequality is bounded. First note that for any x ∈ R we

have |ϕT | ≤ 1, hence

‖ϕT ‖2L2(R\S) =

∫ −T

−T−1

|ϕT (x)|2 dx+

∫ T+1

T

|ϕT (x)|2 dx

≤
∫ −T

−T−1

1 dx+

∫ T+1

T

1 dx

= 2.

Also, since ϕ′
T and ϕ′′

T are uniformly bounded, we can choose constants C ′, C ′′ > 0 such that

|ϕ′
T | ≤ C ′ and |ϕ′′

T | ≤ C ′′. By the same reasoning used to calculate ‖ϕT ‖2L2(R\S), we see that

‖ϕ′
T ‖2L2(R\S) ≤ 2(C ′)2,

‖ϕ′′
T ‖2L2(R\S) ≤ 2(C ′′)2.

We also note that since q is continuous and periodic it is bounded and so we may take

|λ− q(x)| ≤ Q (4.21)

for all x ∈ R and some constant Q > 0. Furthermore, since λ ∈ σB(L), fλ is bounded, say

|fλ(x)| ≤ M (4.22)

for x ∈ R and some constant M > 0. Thus

‖fλ‖2L2(R\S) =

∫ −T

−T−1

|fλ(x)|2 dx+

∫ T+1

T

|fλ(x)|2 dx

≤
∫ −T

−T−1

M2 dx+

∫ T+1

T

M2 dx

= 2M2.

Also, since fλ satisfies Hill’s equation we may write,

f ′′
λ = [q(x)− λ] fλ

and so by (4.21) and (4.22) we have

|f ′′
λ (x)| ≤ QM

for all x ∈ R. Thus, as above

‖f ′′
λ ‖2L2(R\S) =

∫ −T

−T−1

|f ′′
λ (x)|2 dx+

∫ T+1

T

|f ′′
λ (x)|2 dx

≤
∫ −T

−T−1

(QM)2 dx+

∫ T+1

T

(QM)2 dx

= 2(QM)2.
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In order to show that f ′
λ is bounded we split into two cases. First suppose that Δ2(λ) − 4 < 0

then by Proposition 4.4.2.2,

fλ(x) = e±iξxp(x)

where p is a π-periodic function. Now,

|f ′
λ(x)| =

∣∣±iξe±iξxp(x) + e±iξxp′(x)
∣∣

≤ ξ
∣∣e±iξx

∣∣ |p(x)|+ ∣∣e±iξx
∣∣ |p′(x)| .

Since fλ and the exponential function are continuous, it follows that p must also be continuous.

Since p is a continuous, periodic function, it follows that p is bounded on R. Also, since fλ is

a solution of Hill’s equation, it must be continuously differentiable, hence p′ is continuous and

periodic and therefore bounded on R. We thus take |p(x)| ≤ P and |p′(x)| ≤ P ′ for all x ∈ R

and constants P, P ′ > 0. Furthermore, since Δ2(λ) − 4 < 0 we have ξ ∈ R by Corollary 4.4.2.4

and so
∣∣e±iξx

∣∣ ≤ 1. Thus,

|f ′
λ(x)| ≤ ξP + P ′.

Now suppose that Δ2(λ) − 4 = 0 and λ is a double root. Then fλ is a bounded, periodic,

continuously differentiable solution of Hill’s equation. It therefore follows that f ′
λ is continuous

and periodic, hence bounded and so

|f ′
λ(x)| ≤ D

for all x ∈ R and some constant D > 0. Let M ′ = max{ξP + P ′, D} then in both cases we have

‖f ′
λ‖2L2(R\S) =

∫ −T

−T−1

|f ′
λ(x)|2 dx+

∫ T+1

T

|f ′
λ(x)|2 dx

≤
∫ −T

−T−1

(M ′)2 dx+

∫ T+1

T

(M ′)2 dx

= 2(M ′)2.

It now follows that

‖(λI − L) (ϕT fλ)‖L2(R) ≤ 2C ′′M + 4C ′M ′ + 2QM + 2QM

= 2 [C ′′M + 2C ′M ′ + 2QM ] .

Let C = 2 [C ′′M + 2C ′M ′ + 2QM ] then we have

‖(λI − L) (ϕT fλ)‖L2(R) ≤ C

where C > 0 is some constant, independent of T . Finally we calculate ‖ϕT fλ‖L2(R). First note

that

‖ϕT fλ‖2L2(R) = ‖ϕT fλ‖2L2(S) + ‖ϕT fλ‖2L2(R\S)

= ‖fλ‖2L2(−T,T ) + ‖ϕT fλ‖2L2(R\S) .

We have assumed that fλ /∈ L2(R) and so we may take

‖fλ‖L2(−T,T ) → ∞
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as T → ∞. Hence, ‖ϕT fλ‖L2(R) → ∞ as T → ∞. It follows that

lim
T→∞

‖(λI − L)(ϕT fλ)‖L2(R)

‖ϕT fλ‖L2(R)

= 0,

so we can choose CT such that

‖(λI − L) (ϕT fλ)‖L2(R) ≤ CT ‖ϕT fλ‖L2(R)

where CT → 0 as T → ∞. Hence as T → ∞, ‖λI − L‖L2(R) → 0 and so we cannot invert

λI − L.

4.5 Characterisation of the Periodic Spectrum in Terms of

Hill’s Determinants

The purpose of this section is to find criteria, not dependent upon solving Hill’s equation, for

an eigenvalue to be in the periodic spectrum. By following the approach of Hill in [28], we

write the solutions and the potential of Hill’s equation in terms of Fourier series from which we

can construct another matrix representation of Hill’s equation. Hill then continued to calculate

various determinants associated with the resulting matrix. In a similar fashion we also construct

determinants whose roots are elements of the periodic spectrum. We do this by constructing

separate determinants for the principal series and the complementary series. Our method of

construction has the advantage of using holomorphic functions instead of meromorphic functions

as seen in [35] (page 32). We then proceed to extend Hill’s method by writing the resulting

determinants in terms of linear systems. This is done via a convolution operation.

Let q be the potential of Hill’s equation, (4.1). Throughout this section we take q to be as in

the following definition.

Definition 4.5.0.4 Let q ∈ L2[0, π] be π-periodic and twice continuously differentiable. Suppose

that q has Fourier series given by

q(t) =

∞∑
j=−∞

θje
2ijt

for Fourier coefficients, θj ∈ C.

Lemma 4.5.0.5 Let q be as in Definition 4.5.0.4, then q satisfies

‖q‖2L2[0,π] =
∞∑

j=−∞
|θj |2

< ∞.

Furthermore,

‖q′‖2L2[0,π] = 4
∑

j2 |θj |2.
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Proof. First note that since q ∈ L2[0, π], it has finite norm. Given θj ∈ C we have,

‖q‖2L2[0,π] =
1

π

∫ π

0

|q(t)|2 dt

=
1

π

∫ π

0

∣∣∣∣∣∣
∞∑

j=−∞
θje

2ijt

∣∣∣∣∣∣
2

dt

=
1

π

∫ π

0

⎛
⎝ ∞∑

j=−∞
θje

2ijt

⎞
⎠( ∞∑

k=−∞
θke

−2ikt

)
dt

=
1

π

∞∑
j=−∞

∞∑
k=−∞

θjθk

∫ π

0

e2i(j−k)t dt.

Note that

∫ π

0

e2i(j−k)t dt =

⎧⎨
⎩π for k = j,

0 for k �= j,

therefore,

‖q‖2L2[0,π] =
∞∑

j=−∞
|θj |2

as required.

Next we calculate ‖q′‖2L2[0,π]. First we differentiate q term-by-term giving

q′(t) =
∞∑

j=−∞
2ijθje

2ijt.

Now, as before with θj ∈ C we have

‖q′‖2L2[0,π] =
1

π

∫ π

0

|q′(t)|2 dt

=
1

π

∫ π

0

∣∣∣∣∣∣
∞∑

j=−∞
2ijθje

2ijt

∣∣∣∣∣∣
2

dt

=
1

π

∫ π

0

⎛
⎝ ∞∑

j=−∞
2ijθje

2ijt

⎞
⎠( ∞∑

k=−∞
−2ikθke

−2ikt

)
dt

=
1

π

∞∑
j=−∞

∞∑
k=−∞

4jkθjθk

∫ π

0

e2i(j−k)t dt

=

∞∑
j=−∞

4j2 |θj |2

as required.

The following proposition is the starting point that Hill used in his paper [28]. It provides

equations which, once solved, give solutions of Hill’s equation whose corresponding eigenvalues

lie in the periodic spectrum.

Proposition 4.5.0.6 Let λ be an eigenvalue of Hill’s equation. Then λ belongs to the principal

series if and only if there exists a sequence (bj)j∈Z ∈ 
2 satisfying

bj +

∑∞
k=−∞ θj−kbk

4j2 − 1
=

(λ− 1)bj
4j2 − 1
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for all j ∈ Z. Similarly, λ belongs to the complementary series if and only if there exists a

sequence (bj)j∈Z ∈ 
2 satisfying

bj +

∑∞
k=−∞ θj−kbk

(1 + 2j)2
=

λbj
(1 + 2j)2

for all j ∈ Z.

Proof. By the Oscillation Theorem 4.4.1.4, λ belongs to the principal series if and only if there

exists a periodic solution, f , to Hill’s equation of period π. Since f is periodic it therefore has a

Fourier series,

f(t) =

∞∑
j=−∞

bje
2ijt.

Hill’s equation, (4.1) then becomes

λ

∞∑
j=−∞

bje
2ijt = −

∞∑
j=−∞

4i2j2bje
2ijt +

( ∞∑
k=−∞

θke
2ikt

)⎛⎝ ∞∑
j=−∞

bje
2ijt

⎞
⎠

= 4

∞∑
j=−∞

j2bje
2ijt +

∞∑
j=−∞

( ∞∑
k=−∞

θj−kbk

)
e2ijt. (4.23)

If we compare the coefficients of e2ijt in (4.23) we see that

λbj = 4j2bj +

∞∑
k=−∞

θj−kbk. (4.24)

We would like to divide (4.24) by 4j2, however this leads to division by zero in the case that

j = 0. In order to avoid dividing by zero we first subtract a bj from either side of (4.24) and

then divide by 4j2 − 1. We obtain,

bj +

∑∞
k=−∞ θj−kbk

4j2 − 1
=

(λ− 1)bj
4j2 − 1

as required.

The case in which λ belongs to the complementary series is shown similarly. First note that

by the Oscillation Theorem 4.4.1.4, λ lies in the complementary series if and only if there exists

a 2π-periodic solution to Hill’s equation. Let f denote such a solution, then f has Fourier series

f(t) =
∞∑

j=−∞
bje

i(1+2j)t.

Substituting this into Hill’s equation then gives

λ
∞∑

j=−∞
bje

i(1+2j)t =
∞∑

j=−∞
(1 + 2j)2bje

i(1+2j)t +
∞∑

j=−∞

( ∞∑
k=−∞

θj−kbk

)
ei(1+2j)t. (4.25)

Comparing the coefficients of ei(1+2j)t in (4.25) and dividing by (1 + 2j)2 we obtain

bj +

∑∞
k=−∞ θj−kbk

(1 + 2j)2
=

λbj
(1 + 2j)2

completing the proof.

91



The following lemma is used to show that the matrices[
θj−k

4j2 − 1

]
− diag

[
λ− 1

4j2 − 1

]
and

[
θj−k

(1 + 2j)2

]
− diag

[
λ

(1 + 2j)2

]

appearing in Proposition 4.5.0.8, are trace class. Once we know that these matrices are trace

class we are then able to use the Fredholm and Carleman determinants interchangeably (see

Corollary 2.3.0.29).

Lemma 4.5.0.7 The matrices

diag

[
λ− 1

4j2 − 1

]∞
j=−∞

,

[
θj−k

4j2 − 1

]∞
j,k=−∞

, diag

[
λ

(1 + 2j)2

]∞
j=−∞

and

[
θj−k

(1 + 2j)2

]∞
j,k=−∞

are trace class. Hence, [
θj−k

4j2 − 1

]∞
j,k=−∞

− diag

[
λ− 1

4j2 − 1

]∞
j=−∞

,

[
θj−k

(1 + 2j)2

]∞
j,k=−∞

− diag

[
λ

(1 + 2j)2

]∞
j=−∞

are trace class.

Proof. Let A = diag
[

λ−1
4j2−1

]∞
j=−∞

and let B =
[

θj−k

4j2−1

]∞
j,k=−∞

. We use Lemma 2.1.2.4 to show

that both A and B are trace class. To see that the matrix A is trace class we note that

|λ− 1|
∞∑

j=−∞

1

|4j2 − 1| < ∞

by comparison with
∑∞

j=−∞
1
j2 . Now consider the matrix B. We have

∞∑
j=−∞

∞∑
k=−∞

|θj−k |
|4j2 − 1| =

∞∑
j=−∞

1

|4j2 − 1|
∞∑

k=−∞
|θj−k |.

Now,
∑∞

k=−∞ |θj−k | is convergent by Lemma 4.5.0.5 and
∑∞

j=−∞
1

|4j2−1| is convergent by com-

parison with
∑∞

j=−∞
1
j2 . Hence

∑∞
j=−∞

∑∞
k=−∞

|θj−k |
|4j2−1| and so B is indeed trace class.

A similar argument can be used to show that the matrices diag
[

λ
(1+2j)2

]∞
j=−∞

and
[

θj−k

(1+2j)2

]∞
j,k=−∞

are trace class. It now follows from Proposition 2.1.2.2 that the sum of trace class matrices is

also trace class, thus [
θj−k

4j2 − 1

]∞
j,k=−∞

− diag

[
λ− 1

4j2 − 1

]∞
j=−∞

,

[
θj−k

(1 + 2j)2

]∞
j,k=−∞

− diag

[
λ

(1 + 2j)2

]∞
j=−∞

are also trace class.

The following proposition gives several criteria for an eigenvalue of Hill’s equation to lie in

the periodic spectrum. Note that the conditions do not require that we solve Hill’s equation,

they only require that we know the Fourier coefficients of the potential.

Proposition 4.5.0.8 Let λ be an eigenvalue of Hill’s equation. Then λ lies in the principal

series if and only if the Fredholm determinant

det

(
I − diag

[
λ− 1

4j2 − 1

]
+

[
θj−k

4j2 − 1

])
= 0.
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Equivalently, λ lies in the principal series if and only if the Carleman determinant

det2

(
I − diag

[
λ− 1

4j2 − 1

]
+

[
θj−k

4j2 − 1

])
= 0.

Also, λ lies in the complementary series if and only if the Fredholm determinant

det

(
I − diag

[
λ

(1 + 2j)2

]
+

[
θj−k

(1 + 2j)2

])
= 0.

Equivalently, λ lies in the complementary series if and only if the Carleman determinant

det2

(
I − diag

[
λ

(1 + 2j)2

]
+

[
θj−k

(1 + 2j)2

])
= 0.

Proof. Let λ be an eigenvalue of Hill’s equation then, by Proposition 4.5.0.6, λ belongs to the

principal series if and only if there exists (bj)j∈Z ∈ 
2 such that the equation

bj +

∑∞
k=−∞ θj−kbk

4j2 − 1
=

(λ− 1)bj
4j2 − 1

(4.26)

holds for all j ∈ Z. Let B = [. . . , b−1, b0, b1, . . . ]
T �= 0 then, in matrix form, (4.26) becomes(

I − diag

[
λ− 1

4j2 − 1

]
+

[
θj−k

4j2 − 1

])
B = 0.

Now, since B �= 0 we must have
(
I − diag

[
λ−1
4j2−1

]
+
[

θj−k

4j2−1

])
not invertible, hence

det

(
I − diag

[
λ− 1

4j2 − 1

]
+

[
θj−k

4j2 − 1

])
= 0.

Finally, by Lemma 4.5.0.7, the matrix
[

θj−k

4j2−1

]
− diag

[
λ−1
4j2−1

]
is trace class and so it then follows

from Corollary 2.3.0.29 that

det2

(
I − diag

[
λ− 1

4j2 − 1

]
+

[
θj−k

4j2 − 1

])
= 0.

Similarly, using Proposition 4.5.0.6, λ belongs to the complementary series if and only if there

exists (bj)j∈Z ∈ 
2 such that the equation

bj +

∑∞
k=−∞ θj−kbk

(1 + 2j)2
=

λbj
(1 + 2j)2

holds for all j ∈ Z. In matrix form this becomes(
I − diag

[
λ

(1 + 2j)2
+

[
θj−k

(1 + 2j)2

]])
B = 0

where B = [. . . , b−1, b0, b1, . . . ]
T �= 0. Again, since B �= 0 it follows that

det

(
I − diag

[
λ

(1 + 2j)2
+

[
θj−k

(1 + 2j)2

]])
= 0.

By Lemma 4.5.0.7, the matrix
[

θj−k

(1+2j)2

]
− diag

[
λ

(1+2j)2

]
is trace class, hence by Corollary

2.3.0.29,

det2

(
I − diag

[
λ

(1 + 2j)2
+

[
θj−k

(1 + 2j)2

]])
= 0.
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Remark 4.5.0.9 In [35], Magnus and Winkler consider

det

(
I +

[
θj−k

λ− (ξ + 2j)2

])

where ξ is a characteristic exponent. This determinant is meromorphic with respect to λ and has

poles when λ = (ξ + 2j)2.

The following proposition shows how the determinant conditions found in Proposition 4.5.0.8

can be simplified in the case of zero potential. We see that when q = 0, the periodic spectrum is

given by {n2 : n ∈ N0}.

Proposition 4.5.0.10 Let q be the potential of Hill’s equation. Given q = 0, λ belongs to the

principal series if and only if

λ

∞∏
j=1

(
1− λ− 1

4j2 − 1

)2

= 0.

Similarly, λ belongs to the complementary series if and only if

∞∏
j=0

[
1− λ

(1 + 2j)2

]2
= 0.

Further, the periodic spectrum is given by {n2 : n ∈ Z}.

Proof. Suppose that Hill’s equation has zero potential, then θj = 0 for all j ∈ Z. Therefore, by

Proposition 4.5.0.8, λ lies in the principal series if and only if λ is a root of

0 = det

(
I − diag

[
λ− 1

4j2 − 1

])

=

∞∏
j=−∞

(
1− λ− 1

4j2 − 1

)

= λ

∞∏
j=1

(
1− λ− 1

4j2 − 1

)2

. (4.27)

Clearly (4.27) has roots when λ = 4j2, thus the principal series is given by

{4j2 : j ∈ Z}. (4.28)

Similarly, if q = 0, it follows from Proposition 4.5.0.8 that λ lies in the complementary series if

and only if λ is a root of

0 = det

(
I − diag

[
λ

(1 + 2j)2

])

=
∞∏

j=−∞

[
1− λ

(1 + 2j)2

]

=
∞∏
j=0

[
1− λ

(1 + 2j)2

]2
. (4.29)

Clearly (4.29) has roots when λ = (1 + 2j)2 thus giving the complementary series

{(1 + 2j)2 : j ∈ Z}. (4.30)
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We note that the products
∏∞

j=1

(
1− λ−1

4j2−1

)2
and

∏∞
j=0

[
1− λ

(1+2j)2

]2
are convergent and there-

fore not always zero. First,
∏∞

j=1

(
1− λ−1

4j2−1

)2
is convergent if

∑∞
j=1

∣∣∣ 1−λ
4j2−1

∣∣∣ is convergent.

Clearly this holds by comparison with
∑∞

j=1
1
j2 . Hence

∏∞
j=1

(
1− λ−1

4j2−1

)2
is convergent. Since∏∞

j=1

(
1− λ−1

4j2−1

)2
is convergent, it follows that the zeros of λ

∏∞
j=1

(
1− λ−1

4j2−1

)2
are exactly

those as given by λ = 4j2. A similar argument shows that
∏∞

j=0

[
1− λ

(1+2j)2

]2
is convergent and

thus has zeros that are exactly those as given by λ = (1 + 2j)2.

Finally we recall that the periodic spectrum is given by the union of the principal series and

the complementary series, thus by (4.28) and (4.30), the periodic spectrum is given by

{4j2 : j ∈ Z} ∪ {(1 + 2j)2 : j ∈ Z} = {n2 : n ∈ Z}.

The following example shows the reader why functions of order 1
2 have zeros that grow like

j2.

Example 4.5.0.11

The function sin
√
z√

z
has zeros when z = π2j2.

In order to show that this statement is true we use the following formula that was proved

by Euler:

sin(πz) = πz

∞∏
j=1

(
1− z2

j2

)
.

Write
√
z = π

√
z

π , then by the above formula we have

sin
√
z = sin

[
π

(√
z

π

)]

= π

(√
z

π

) ∞∏
j=1

⎛
⎜⎝1−

(√
z

π

)2
j2

⎞
⎟⎠

=
√
z

∞∏
j=1

(
1− z

π2j2

)
.

The result follows immediately.

The remainder of this section shows how we can extend Hill’s method to include determinant

conditions that involve the use of linear systems. We shall introduce linear systems via the

convolution operation. The idea is to write Hill’s equation in terms of convolutions and then,

using a known linear system, we can rewrite the equation of convolutions in terms of operators

that are specified by the linear system. The result is a condition for λ being in the periodic

spectrum based on linear systems.

Definition 4.5.0.12 Let ρp be the continuous, π-periodic function defined by

ρp(t) =

∞∑
j=−∞

e2ijt

4j2 − 1
.
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Similarly, let ρc be the continuous, 2π-periodic function defined by

ρc(t) =
∞∑

j=−∞

ei(1+2j)t

(1 + 2j)2
.

Remark 4.5.0.13 Note that the functions ρp and ρc are even since

ρp(t) = −1 +
∞∑
j=1

e2ijt + e−2ijt

4j2 − 1
,

ρc(t) =
∞∑
j=0

ei(1+2j)t + e−i(1+2j)t

(1 + 2j)2
.

Definition 4.5.0.14 For α continuous, we define the convolution operation for the function ρp

to be

[ρp ∗ α](t) = 1

π

∫ π

0

ρp(t− s)α(s) ds.

Likewise, for α continuous, we define the convolution operation for the function ρc to be

[ρc ∗ α](t) = 1

2π

∫ 2π

0

ρc(t− s)α(s) ds.

The following proposition gives conditions based on the convolution operation, for an eigen-

value to belong to the periodic spectrum.

Proposition 4.5.0.15 Let λ be an eigenvalue of Hill’s equation. Then λ lies in the principal

series if and only if λ satisfies

f + ρp ∗ (qf) = (λ− 1)(ρp ∗ f), (4.31)

for some f ∈ L2[0, π]. Similarly, λ lies in the complementary series if and only if λ satisfies

f + ρc ∗ (qf) = λ(ρc ∗ f) (4.32)

for some f ∈ L2[0, 2π].

Proof. By Proposition 4.5.0.6, λ belongs to the principal series if and only if

bj +

∑∞
k=−∞ θj−kbk

4j2 − 1
=

(λ− 1)bj
4j2 − 1

(4.33)

for all j ∈ Z. The proof therefore reduces to showing the equivalence of (4.31) and (4.33).

We begin by evaluating the convolutions separately. Recall that ρp(t) =
∑∞

j=−∞
e2ijt

4j2−1 and

f(t) =
∑∞

j=−∞ bje
2ijt, thus

[ρp ∗ f ](t) =
1

π

∫ π

0

ρp(t− s)f(s) ds

=
1

π

∫ π

0

⎛
⎝ ∞∑

j=−∞

e2ij(t−s)

4j2 − 1

⎞
⎠( ∞∑

k=−∞
bke

2iks

)
ds

=
1

π

∫ π

0

∞∑
j=−∞

∞∑
k=−∞

bk
4j2 − 1

e2ij(t−s)+2iks ds.
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Note that e2ij(t−s)+2iks = e2ijte2i(k−j)s, therefore

[ρp ∗ f ](t) =
1

π

∫ π

0

∞∑
j=−∞

∞∑
k=−∞

bke
2ijt

4j2 − 1
e2i(k−j)s ds

=

∞∑
j=−∞

∞∑
k=−∞

bke
2ijt

4j2 − 1

∫ π

0

e2i(k−j)s

π
ds.

Consider the sum

∞∑
k=−∞

bke
2ijt

4j2 − 1

∫ π

0

e2i(k−j)s

π
ds,

we have

∫ π

0

e2i(k−j)s

π
ds =

⎧⎨
⎩0 when k �= j,

1 when k = j,

and so

∞∑
k=−∞

bke
2ijt

4j2 − 1

∫ π

0

e2i(k−j)s

π
ds =

bje
2ijt

4j2 − 1
.

Hence,

[ρp ∗ f ](t) =
∞∑

j=−∞

bj
4j2 − 1

e2ijt.

Similarly,

[ρp ∗ (qf)](t) =
1

π

∫ π

0

ρp(t− s)(qf)(s) ds

=
1

π

∫ π

0

⎛
⎝ ∞∑

j=−∞

e2ij(t−s)

4j2 − 1

⎞
⎠( ∞∑

k=−∞

∞∑
l=−∞

θk−lble
2iks

)
ds

=
1

π

∫ π

0

∞∑
j=−∞

∞∑
k=−∞

∑∞
l=−∞ θk−lble

2ijt

4j2 − 1
e2i(k−j)s ds

=
∞∑

j=−∞

∞∑
k=−∞

∑∞
l=−∞ θk−lble

2ijt

4j2 − 1

∫ π

0

e2i(k−j)s

π
ds

=
∞∑

j=−∞

∑∞
l=−∞ θj−lbl

4j2 − 1
e2ijt.

Therefore,

f(t) + [ρp ∗ (qf)](t)− (λ− 1)(ρp ∗ f)(t)

=
∞∑

j=−∞
bje

2ijt +
∞∑

j=−∞

∑∞
l=−∞ θj−lbl

4j2 − 1
e2ijt − (λ− 1)

∞∑
j=−∞

bj
4j2 − 1

e2ijt

and the equivalence now follows from Proposition 4.5.0.6.

Now suppose that λ lies in the complementary series. By Proposition 4.5.0.6, λ belongs to

the complementary series if and only if

bj +

∑∞
k=−∞ θj−kbk

(1 + 2j)2
=

λbj
(1 + 2j)2

(4.34)
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for all j ∈ Z. Again the proof entails showing the equivalence of (4.32) and (4.34). As before,

we evaluate the convolutions separately. Recall that since λ lies in the complementary series,

f(t) =
∑∞

j=−∞ bje
i(1+2j)t. Now,

[ρc ∗ f ](t) =
1

2π

∫ 2π

0

ρc(t− s)f(s) ds

=
1

2π

∫ 2π

0

⎛
⎝ ∞∑

j=−∞

ei(1+2j)(t−s)

(1 + 2j)2

⎞
⎠( ∞∑

k=−∞
bke

i(1+2k)s

)
ds

=
1

2π

∫ 2π

0

∞∑
j=−∞

∞∑
k=−∞

bke
i(1+2j)t

(1 + 2j)2
e2i(k−j)s ds

=

∞∑
j=−∞

∞∑
k=−∞

bke
i(1+2j)t

(1 + 2j)2

∫ 2π

0

e2i(k−j)s

2π
ds.

Since

∫ 2π

0

e2i(k−j)s

2π
ds =

⎧⎨
⎩0 when k �= j,

1 when k = j,

it follows that

[ρc ∗ f ](t) =
∞∑

j=−∞

bj
(1 + 2j)2

ei(1+2j)t.

Similarly,

[ρc ∗ (qf)](t) =
1

2π

∫ 2π

0

ρc(t− s)(qf)(s) ds

=
1

2π

∫ 2π

0

⎛
⎝ ∞∑

j=−∞

ei(1+2j)(t−s)

(1 + 2j)2

⎞
⎠( ∞∑

k=−∞

∞∑
l=−∞

θk−lble
i(1+2k)s

)
ds

=

∞∑
j=−∞

∞∑
k=−∞

∑∞
l=−∞ θk−lble

i(1+2j)t

(1 + 2j)2

∫ 2π

0

e2i(k−j)s

2π
ds

=

∞∑
j=−∞

∑∞
l=−∞ θj−lbl

(1 + 2j)2
ei(1+2j)t.

Hence,

f(t) + [ρc ∗ (qf)](t)− λ(ρc ∗ f)(t)

=

∞∑
j=−∞

bje
i(1+2j)t +

∞∑
j=−∞

∑∞
l=−∞ θj−lbl

(1 + 2j)2
ei(1+2j)t − λ

∞∑
j=−∞

bj
(1 + 2j)2

ei(1+2j)t

and the equivalence now follows from Proposition 4.5.0.6.

We now have two forms of Hill’s equation in terms of convolutions that will determine whether

or not an eigenvalue lies in the periodic spectrum. We use these equations to give conditions

involving linear systems. First, we write the convolutions as integrals as in the next lemma.

Lemma 4.5.0.16 Let λ be an eigenvalue of Hill’s equation. Then λ lies in the principal series

if and only if λ satisfies the equation

f(s) +
1

π

∫ π

0

ρp(s− t)[q(t) + 1− λ]f(t) dt = 0 (4.35)
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for some f ∈ L2[0, π]. Likewise, λ lies in the complementary series if and only if λ satisfies the

equation

f(s) +
1

2π

∫ 2π

0

ρc(s− t)[q(t)− λ]f(t) dt = 0 (4.36)

for some f ∈ L2[0, 2π].

Proof. By Proposition 4.5.0.15, λ lies in the principal series if and only if the equation

f(s) + [ρp ∗ (qf)](s)− (λ− 1)[ρp ∗ f ](s) = 0 (4.37)

holds for some f ∈ L2[0, π]. We use Definition 4.5.0.14 to show the equivalence of (4.35) and

(4.37). Thus we have,

[ρp ∗ (qf)](s) = 1

π

∫ π

0

ρp(s− t)(qf)(t) dt,

[ρp ∗ f ](s) = 1

π

∫ π

0

ρp(s− t)f(t) dt.

Therefore,

0 = f(s) + [ρp ∗ (qf)](s)− (λ− 1)[ρp ∗ f ](s)
= f(s) +

1

π

∫ π

0

ρp(s− t)(qf)(t) dt− (λ− 1)
1

π

∫ π

0

ρp(s− t)f(t) dt

= f(s) +
1

π

∫ π

0

ρp(s− t)[q(t) + 1− λ]f(t) dt

as required.

Now let λ lie in the complementary series. By Proposition 4.5.0.15

f(s) + [ρc ∗ (qf)](s)− λ[ρc ∗ f ](s) = 0 (4.38)

for some f ∈ L2[0, 2π]. Again we must show the equivalence of (4.36) and (4.38). Note that

[ρc ∗ (qf)](s) = 1

2π

∫ 2π

0

ρc(s− t)(qf)(t) dt,

[ρc ∗ f ](s) = 1

2π

∫ 2π

0

ρc(s− t)f(t) dt,

and so

0 = f(s) + [ρc ∗ (qf)](s)− λ[ρc ∗ f ](s)

= f(s) +
1

2π

∫ 2π

0

ρc(s− t)(qf)(t) dt− λ
1

2π

∫ 2π

0

ρc(s− t)f(t) dt

= f(s) +
1

2π

∫ 2π

0

ρc(s− t)[q(t)− λ]f(t) dt

completing the proof.

The convolution equations give several different operations which we can separately express

in terms of a linear system. We therefore define two linear systems, one for the principal series

and one for the complementary series, and write equations (4.31) and (4.32) in terms of these

linear systems. First we define the system that we shall use when working with the principal

series.
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Definition 4.5.0.17 Let C be the input space and output space and let L2[0, π] be the state space.

Take −A be the generator of the strongly continuous semigroup {Tt}t≥0 where Tt = e−tA. We

introduce a new system, (−A,Bp, C,Mp) given by the linear system (−A,Bp, C) together with

an additional operator, Mp. Thus we define the operators

Tt : L2[0, π] → L2[0, π]

Bp : C → L2[0, π]

C : D[0,π](A) → C

Mp : L2[0, π] → L2[0, π]

to be such that

Ttf(x) = f(x+ t)

Bpb = ρp(x)b

Cf(x) = f(0)

Mpf(x) = [q(x) + 1− λ]f(x).

Likewise, we define a system for use with the complementary series.

Definition 4.5.0.18 Let C be the input space and output space and let L2[0, 2π] be the state

space. Take −A be the generator of the strongly continuous semigroup {Tt}t≥0 where Tt = e−tA.

We introduce a new system, (−A,Bc, C,Mc) given by the linear system (−A,Bc, C) together with

an additional operator, Mc. Thus we define the operators

Tt : L2[0, 2π] → L2[0, 2π]

Bc : C → L2[0, 2π]

C : D[0,2π](A) → C

Mc : L2[0, 2π] → L2[0, 2π]

to be such that

Ttf(x) = f(x+ t)

Bcb = ρc(x)b

Cf(x) = f(0)

Mcf(x) = [q(x)− λ]f(x).

In the following definition we define the operators whose Carleman determinants have zeros

belonging to either the principal series or the complementary series.

Definition 4.5.0.19 Given the system, (−A,Bp, C,Mp), define the operator Rp : D[0,π](A) →
L2[0, π] to be

Rp =
1

π

∫ π

0

e−tABpCetAMp dt.

Similarly, given the system, (−A,Bc, C,Mc), define the operator Rc : D[0,2π](A) → L2[0, 2π] to

be

Rc =
1

2π

∫ 2π

0

e−tABcCetAMc dt.
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Note the similarity between the operators Rp and Rc defined above and the operator Rx that

appeared in Chapter 3.

Defining the systems (−A,Bp, C,Mp) and (−A,Bc, C,Mc) enables us to write Rpf and Rcf

as integrals. Since Rp and Rc are operators defined by linear systems, having Rpf and Rcf in

the form of an integral provides the link between linear systems and the convolution equations

(4.31) and (4.32). The following theorem shows that the operators Rp and Rc can be used to

give suitable conditions which, when satisfied, tells us that an eigenvalue of Hill’s equation lies

in the periodic spectrum.

Theorem 4.5.0.20 Let the operators Rp and Rc be as defined by Definition 4.5.0.19 and let λ

be an eigenvalue of Hill’s equation. Then λ belongs to the principal series if and only if there

exists a non-zero f ∈ L2[0, π] such that

[I +Rp]f(x) = 0,

where

Rpf(x) =
1

π

∫ π

0

ρp(x− t)[q(t) + 1− λ]f(t) dt.

Also, λ belongs to the complementary series if and only if there exists a non-zero f ∈ L2[0, 2π]

such that

[I +Rc]f(x) = 0,

where

Rcf(x) =
1

2π

∫ 2π

0

ρc(x− t)[q(t)− λ]f(t) dt.

Proof. Our first task is to write Rpf as an integral. Let x be the active variable and let

Rp = 1
π

∫ π

0
e−tABpCetAMp dt. We evaluate Rpf(x) by applying each operator in turn. Thus

Rpf(x) =
1

π

∫ π

0

e−tABpCetAMpf(x) dt

=
1

π

∫ π

0

e−tABpCetA[q(x) + 1− λ]f(x) dt

=
1

π

∫ π

0

e−tABpC[q(x− t) + 1− λ]f(x− t) dt

=
1

π

∫ π

0

e−tABp[q(−t) + 1− λ]f(−t) dt

=
1

π

∫ π

0

e−tAρp(x)[q(−t) + 1− λ]f(−t) dt

=
1

π

∫ π

0

ρp(x+ t)[q(−t) + 1− λ]f(−t) dt.

We can further simplify Rpf by noting that ρp, q and f are π-periodic. Hence,

Rpf(x) =
1

π

∫ π

0

ρp(x− t)[q(t) + 1− λ]f(t) dt.

Now, by Lemma 4.5.0.16, λ lies in the principal series if and only if

0 = f(x) +
1

π

∫ π

0

ρp(x− t)[q(t) + 1− λ]f(t) dt

= f(x) +Rpf(x)
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completing the first part of the proof.

Following the same method we write Rcf as an integral. Let x be the active variable and let

Rc =
1
2π

∫ 2π

0
e−tABcCetAMc dt. We evaluate Rcf(x) by applying each operator in turn. Thus

Rcf(x) =
1

2π

∫ 2π

0

e−tABcCetAMcf(x) dt

=
1

2π

∫ 2π

0

e−tABcCetA[q(x)− λ]f(x) dt

=
1

2π

∫ 2π

0

e−tABcC[q(x− t)− λ]f(x− t) dt

=
1

2π

∫ 2π

0

e−tABc[q(−t)− λ]f(−t) dt

=
1

2π

∫ 2π

0

e−tAρc(x)[q(−t)− λ]f(−t) dt

=
1

2π

∫ 2π

0

ρc(x+ t)[q(−t)− λ]f(−t) dt.

As before, we can further simplify Rcf . Note that ρc and f are 2π-periodic and q is π-periodic

we have

Rcf(x) =
1

2π

∫ 2π

0

ρc(x− t)[q(t)− λ]f(t) dt.

Now, by Lemma 4.5.0.16, λ lies in the complementary series if and only if

0 = f(x) +
1

2π

∫ 2π

0

ρc(x− t)[q(t)− λ]f(t) dt

= f(x) +Rcf(x)

as required.

Remark 4.5.0.21 Theorem 4.5.0.20 shows the dependence of Rp and Rc upon λ.

We have therefore found conditions that tell us whether or not an eigenvalue lies in the

periodic spectrum without having to solve Hill’s equation. However, depending on the potential,

q, the conditions given in Theorem 4.5.0.20 may not be so easy to calculate since the integrals

Rpf(x) and Rcf(x) may be rather complicated. We therefore seek to simplify these conditions

by first writing Rp and Rc as the product of two operators.

Definition 4.5.0.22 Let ∗ denote the adjoint. Define the operators Pp : L2[0, π] → D[0,π](A)

and Pc : L
2[0, 2π] → D[0,2π](A) by

Ppf =
1

π

∫ π

0

M∗
p e

tA∗C∗f(t) dt,

Pcf =
1

2π

∫ 2π

0

M∗
c e

tA∗C∗f(t) dt.

Also, define the operators Qp : L2[0, π] → L2[0, π] and Qc : L
2[0, 2π] → L2[0, 2π] by

Qpf =
1

π

∫ π

0

e−tABpf(t) dt,

Qcf =
1

2π

∫ 2π

0

e−tABcf(t) dt.
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Proposition 4.5.0.23 Let Pp, Pc, Qp and Qc be as in Definition 4.5.0.22. Then

Rp = QpP
∗
p ,

P ∗
pQp =

1

π
CesAMp

∫ π

0

e−tABp dt,

where P ∗
p : D[0,π](A) → L2[0, π] is given by

P ∗
p f = CetAMpf.

Also,

Rc = QcP
∗
c ,

P ∗
c Qc =

1

2π
CesAMc

∫ 2π

0

e−tABc dt,

where P ∗
c : D[0,2π](A) → L2[0, 2π] is given by

P ∗
c f = CetAMcf.

Proof. We first calculate P ∗
p . By Definition 2.1.0.7 we know that if T : H1 → H2 is an operator

then T and its adjoint, T ∗ must satisfy the equation

〈Tf, g〉H1
= 〈f, T ∗g〉H2

. (4.39)

Now, given Ppf = 1
π

∫ π

0
M∗

p e
tA∗C∗f(t) dt we have

〈f, P ∗
p g〉 = 〈Ppf, g〉

=

〈
1

π

∫ π

0

M∗
p e

tA∗C∗f(t) dt, g
〉

=
1

π

∫ π

0

〈M∗
p e

tA∗C∗f(t), g〉 dt.

By (4.39) we can write

〈M∗
p e

tA∗C∗f(t), g〉 = 〈f(t), CetAMpg〉,

where CetAMp : D[0,π](A) → C. Since both f(t) and CetAMpg are scalar-valued, it follows that

〈f, P ∗
p g〉 =

1

π

∫ π

0

f(t)CetAMpg dt.

Hence, P ∗
p g = CetAMpg. Now observe that

QpP
∗
p =

1

π

∫ π

0

e−tABpCetAMp dt

which agrees with Definition 4.5.0.19, thus QpP
∗
p = Rp. Similarly,

P ∗
pQp = CesAMp

1

π

∫ π

0

e−tABp dt

as required.
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In a similar fashion, we calculate P ∗
c . Given Pcf = 1

2π

∫ 2π

0
M∗

c e
tA∗C∗f(t) dt we again have

〈f, P ∗
c g〉 = 〈Pcf, g〉

=

〈
1

2π

∫ 2π

0

M∗
c e

tA∗C∗f(t) dt, g
〉

=
1

2π

∫ 2π

0

〈M∗
c e

tA∗C∗f(t), g〉 dt

=
1

2π

∫ 2π

0

f(t)CetAMcg dt.

Hence, P ∗
c g = CetAMcg. Finally we observe that

QcP
∗
c =

1

2π

∫ 2π

0

e−tABcCetAMc dt

which agrees with Definition 4.5.0.19, thus QcP
∗
c = Rc. Similarly,

P ∗
c Qc = CesAMc

1

2π

∫ 2π

0

e−tABc dt

completing the proof.

We would like to find determinant expressions for Rp and Rc which we will then simplify

by relating them to P ∗
pQp and P ∗

c Qc respectively. However, we first need to be sure that such

determinants exist. This is the purpose of the following two lemmas.

Lemma 4.5.0.24 The operators Rp = QpP
∗
p , Rc = QcP

∗
c , P ∗

pQp and P ∗
c Qc are Hilbert–

Schmidt.

Proof. We use Proposition 2.1.1.9 to show first that the operators QpP
∗
p and P ∗

pQp are Hilbert–

Schmidt. In order to do this we use the system (−A,Bp, C,Mp) to write the operator Qp in

integral form. Let x be the active variable then,

Qpf =
1

π

∫ π

0

e−tABpf(t) dt

=
1

π

∫ π

0

e−tAρp(x)f(t) dt

=
1

π

∫ π

0

ρp(x+ t)f(t) dt.

As Qp is now in the form of an integral operator with kernel ρp(x+ t), we can apply Proposition

2.1.1.6 to show that Qp is Hilbert–Schmidt. Thus,

∫ π

0

∫ π

0

|ρp(x+ t)|2 dt dx =

∫ π

0

∫ π

0

∣∣∣∣∣∣
∞∑

j=−∞

e2ij(x+t)

4j2 − 1

∣∣∣∣∣∣
2

dt dx

≤
∫ π

0

∫ π

0

⎡
⎣ ∞∑
j=−∞

1

|4j2 − 1|

⎤
⎦
2

dt dx.

By comparison with
∑∞

j=−∞
1
j2 we find that

∑∞
j=−∞

1
|4j2−1| is convergent and so it follows

that
∫ π

0

∫ π

0
|ρp(x+ t)|2 dt dx is finite. Hence Qp is Hilbert–Schmidt. Next we show that P ∗

p is

bounded. In Lemma 2.6.0.32 we saw that C is bounded and in Theorem 2.6.0.25 we saw that

etA is bounded. Therefore, both operators have an upper bound given by their operator norm.
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Also, the operator Mp is bounded. To see this first note that by Definition 4.5.0.4, q is twice

continuously differentiable and π-periodic, therefore q is bounded on [0, π]. Let |q | ≤ C ′ for some

constant C ′. Then, using the triangle inequality

‖Mpf ‖2L2[0,π] =

∫ π

0

|[q(x) + 1− λ]f(x)|2 dx

≤
∫ π

0

(|q(x)|+ |1− λ|)2 |f(x)|2 dx

≤ (C ′ + |1− λ|)2
∫ π

0

|f(x)|2 dx

= (C ′ + |1− λ|)2 ‖f ‖2L2[0,π] .

Hence Mp is bounded. It now follows that

∥∥P ∗
p f
∥∥
L2[0,π]

=
∥∥CetAMpf

∥∥
L2[0,π]

≤ ‖C‖ op

∥∥etA∥∥
op

‖Mp‖ op ‖f ‖L2[0,π]

and so P ∗
p is bounded. Hence, by Proposition 2.1.1.9, both QpP

∗
p and P ∗

pQp are Hilbert–Schmidt.

In the same manner we show that QcP
∗
c and P ∗

c Qc are Hilbert–Schmidt. Given the linear

system (−A,Bc, C,Mc) we write Qc as an integral operator. Let x be the active variable, then

Qcf =
1

2π

∫ 2π

0

e−tABcf(t) dt

=
1

2π

∫ 2π

0

ρc(x+ t)f(t) dt

and Qc has kernel ρc(x+ t). Now,

∫ 2π

0

∫ 2π

0

|ρc(x+ t)|2 dt dx =

∫ 2π

0

∫ 2π

0

∣∣∣∣∣∣
∞∑

j=−∞

ei(1+2j)(x+t)

(1 + 2j)2

∣∣∣∣∣∣
2

dt dx

≤
∫ 2π

0

∫ 2π

0

⎡
⎣ ∞∑
j=−∞

1

(1 + 2j)2

⎤
⎦
2

dt dx

< ∞

since
∑∞

j=−∞
1

(1+2j)2 is convergent by comparison with
∑∞

j=−∞
1
j2 . Thus Qc is Hilbert–Schmidt.

It remains to show that P ∗
c is bounded. First note that since q is twice continuously differentiable

and π-periodic, it is bounded on [0, π] and hence on [0, 2π]. Let |q | ≤ C ′ for some constant C ′.

Again, by the triangle inequality

‖Mcf ‖2L2[0,2π] =

∫ 2π

0

|[q(x)− λ]f(x)|2 dx

≤ (C ′ + |λ|)2 ‖f ‖2L2[0,2π] ,

thus Mc is bounded. So it follows that

‖P ∗
c f ‖L2[0,2π] =

∥∥CetAMcf
∥∥
L2[0,2π]

≤ ‖C‖ op

∥∥etA∥∥
op

‖Mc‖ op ‖f ‖L2[0,2π]

hence P ∗
c is bounded. Finally, by Proposition 2.1.1.9, QcP

∗
c and P ∗

c Qc are Hilbert–Schmidt.
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Since the operators Rp and Rc are Hilbert–Schmidt, we now know that the Carleman de-

terminants, det2 (I + Rp) and det2 (I + Rc) exist. The following theorem provides alternative

formulae for det2 (I+Rp) and det2 (I+Rc) that are somewhat easier to evaluate. It also provides

further conditions that determine if an eigenvalue belongs to the periodic spectrum.

Theorem 4.5.0.25 Let Pp, Pc, Qp and Qc be as given in Definition 4.5.0.22 and Rp and Rc as

in Definition 4.5.0.19. Then

det2 (I +Rp) = det2 (I + P ∗
pQp),

det2 (I +Rc) = det2 (I + P ∗
c Qc).

Furthermore, if λ is an eigenvalue of Hill’s equation then λ belongs to the principal series if

and only if det2 (I + Rp) = 0. Likewise, λ belongs to the complementary series if and only if

det2 (I +Rc) = 0.

Proof. By Proposition 4.5.0.23 we have Rp = QpP
∗
p and since Rp is Hilbert–Schmidt,

det2 (I +Rp) = det2 (I +QpP
∗
p ).

It follows from Sylvester’s Determinant Theorem 2.3.0.30 that

det2 (I +QpP
∗
p ) = det2 (I + P ∗

pQp),

proving the first part of the result for the principal series. Similarly for the complementary series,

we find that since Rc = QcP
∗
c is Hilbert–Schmidt,

det2 (I +Rc) = det2 (I +QcP
∗
c ).

Sylvester’s Determinant Theorem 2.3.0.30 now gives

det2 (I +QcP
∗
c ) = det2 (I + P ∗

c Qc).

The second part of the theorem follows immediately from Theorem 4.5.0.20.

In the following corollary we use the systems (−A,Bp, C,Mp) and (−A,Bc, C,Mc) to write

P ∗
pQpf and P ∗

c Qcf , respectively, as integrals. This should make it clear that the conditions

found in Theorem 4.5.0.25 are much easier to evaluate than the conditions found in Theorem

4.5.0.20.

Proposition 4.5.0.26 Let Pp, Pc, Qp and Qc be as defined in Definition 4.5.0.22 and let Rp and

Rc be as defined in Definition 4.5.0.19. Then

P ∗
pQpf =

1

π
[q(−s) + 1− λ]

∫ π

0

ρp(s− t)f(t) dt,

P ∗
c Qcf =

1

2π
[q(−s)− λ]

∫ 2π

0

ρc(s− t)f(t) dt.

Proof. Let x be the active variable. In the proof of Lemma 4.5.0.24 we saw that

Qpf =
1

π

∫ π

0

ρp(x+ t)f(t) dt.
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We continue from this point, thus

P ∗
pQpf = P ∗

p

1

π

∫ π

0

ρp(x+ t)f(t) dt

=
1

π
CesAMp

∫ π

0

ρp(x+ t)f(t) dt

=
1

π
CesA[q(x) + 1− λ]

∫ π

0

ρp(x+ t)f(t) dt

=
1

π
C[q(x− s) + 1− λ]

∫ π

0

ρp(x− s+ t)f(t) dt

=
1

π
[q(−s) + 1− λ]

∫ π

0

ρp(t− s)f(t) dt.

By Remark 4.5.0.13, ρp is even and so ρp(t − s) = ρp(s − t). The first part of the result now

follows.

Similarly, given x is the active variable we have

Qcf =
1

2π

∫ 2π

0

ρc(x+ t)f(t) dt

by the proof of Lemma 4.5.0.24. Thus,

P ∗
c Qcf = P ∗

c

1

2π

∫ 2π

0

ρc(x+ t)f(t) dt

=
1

2π
CesAMc

∫ 2π

0

ρc(x+ t)f(t) dt

=
1

2π
CesA[q(x)− λ]

∫ 2π

0

ρc(x+ t)f(t) dt

=
1

2π
C[q(x− s)− λ]

∫ 2π

0

ρc(x− s+ t)f(t) dt

=
1

2π
[q(−s)− λ]

∫ 2π

0

ρc(t− s)f(t) dt.

The result now follows from Remark 4.5.0.13 since ρc is even.

From the previous proposition it can be seen that it is easier to evaluate P ∗
pQpf and P ∗

c Qcf

since in both cases, the potential lies outside the integral and the integrand contains only two

functions. This is in contrast to Rpf and Rcf whose integrands contain three functions, one of

which is the potential.

Definition 4.5.0.27 Let M0 and M1 be multiplication operators such that

M0 = q(x)

M1 = q(x) + 1.

In the case of the principal series we constructed the multiplication operator, Mp = q(x) +

1 − λ. Using Definition 4.5.0.27 we can write Mp = M1 − λI. Similarly, in the case of the

complementary series we have the multiplication operator, Mc = q(x) − λ which we may write

as Mc = M0 − λI. These observations allow us to create some further identities based on

det2 (I +Rp) and det2 (I +Rc).
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Definition 4.5.0.28 Let ∗ denote the adjoint. Define the operators P1 : L2[0, π] → D[0,π](A)

and Sp : L2[0, π] → D[0,π](A) by

P1 =
1

π

∫ π

0

M∗
1 e

tA∗C∗ dt;

Sp =
1

π

∫ π

0

etA
∗
C∗ dt.

Similarly, define the operators P0 : L2[0, 2π] → D[0,2π](A) and Sc : L
2[0, 2π] → D[0,2π](A) by

P0 =
1

2π

∫ 2π

0

M∗
0 e

tA∗C∗ dt;

Sc =
1

2π

∫ 2π

0

etA
∗
C∗ dt.

Lemma 4.5.0.29 Let P1, P0, Sp and Sc be as given in Definition 4.5.0.28. Then

Pp = P1 − λ̄Sp;

P ∗
p = P ∗

1 − λS∗
p

where P ∗
1 = CetAM1 and S∗

p = CetA. Similarly,

Pc = P0 − λ̄Sc;

P ∗
c = P ∗

0 − λS∗
c

where P ∗
0 = CetAM0 and S∗

c = CetA.

Proof. By Definition 4.5.0.22 we have

Pp =
1

π

∫ π

0

M∗
p e

tA∗C∗ dt,

where Mp = M1 − λI. We calculate the adjoint of Mp using Proposition 2.1.0.8, thus

M∗
p = [M1 − λI]∗

= M∗
1 − λ̄I.

It follows that

Pp =
1

π

∫ π

0

M∗
1 e

tA∗C∗ dt− λ̄
1

π

∫ π

0

etA
∗
C∗ dt

= P1 − λ̄Sp

as required. Applying Proposition 2.1.0.8 again to Pp now gives

P ∗
p = [P1 − λ̄Sp]

∗

= P ∗
1 − λS∗

p .

We calculate the adjoint’s of P1 and Sp using Definition 2.1.0.7. Thus,

〈f, P ∗
1 g〉 = 〈P1f, g〉

=

〈
1

π

∫ π

0

M∗
1 e

tA∗C∗f(t) dt, g
〉

=
1

π

∫ π

0

〈M∗
1 e

tA∗C∗f(t), g〉 dt.
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Using Definition 2.1.0.7 again we can write

〈M∗
1 e

tA∗C∗f(t), g〉 = 〈f(t), CetAM1g〉,

where CetAM1 : D[0,π](A) → C. Since both f(t) and CetAM1g are scalar-valued, it follows that

〈f, P ∗
1 g〉 =

1

π

∫ π

0

f(t)CetAM1g dt.

Hence P ∗
1 g = CetAM1g as required. Similarly, given Spf = 1

π

∫ π

0
etA

∗
C∗f(t) dt we have

〈f, S∗
pg〉 = 〈Spf, g〉

=

〈
1

π

∫ π

0

etA
∗
C∗f(t) dt, g

〉

=
1

π

∫ π

0

〈etA∗C∗f(t), g〉 dt

=
1

π

∫ π

0

〈f(t), CetAg〉 dt

=
1

π

∫ π

0

f(t)CetAg dt.

Hence S∗
pg = CetAg as required.

Likewise, by Definition 4.5.0.22

Pc =
1

2π

∫ 2π

0

M∗
c e

tA∗C∗ dt,

where Mc = M0 − λI. We therefore have

M∗
c = M∗

0 − λ̄I

and so

Pc =
1

2π

∫ 2π

0

M∗
0 e

tA∗C∗ dt− λ̄
1

2π

∫ 2π

0

etA
∗
C∗ dt

= P0 − λ̄Sc.

Furthermore,

P ∗
c = P ∗

0 − λS∗
c

where the adjoint’s of P0 and Sc are calculated using Definition 2.1.0.7. First we have

〈f, P ∗
0 g〉 = 〈P0f, g〉

=
1

2π

∫ 2π

0

〈M∗
0 e

tA∗C∗f(t), g〉 dt

=
1

2π

∫ 2π

0

f(t)CetAM0g dt,

giving P ∗
0 g = CetAM0g as required. Lastly, as before, given Scf = 1

2π

∫ 2π

0
etA

∗
C∗f(t) dt we have

〈f, S∗
c g〉 = 〈Scf, g〉

=
1

2π

∫ 2π

0

f(t)CetAg dt.

Hence, S∗
c g = CetAg as required.
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Remark 4.5.0.30 Note that if λ = 0 then Mp = M1. Further, if q = 0 then M1 denotes

multiplication by 1, hence, Pp = Sp.

The final theorem of this section provides yet more conditions involving determinants for

which an eigenvalue of Hill’s equation will belong to the periodic spectrum.

Theorem 4.5.0.31 Let Rp and Rc be as given in Definition 4.5.0.19 and let Qp and Qc be as

defined in Definition 4.5.0.22. Also let P ∗
1 , P

∗
0 , S

∗
p and S∗

c be as defined in Lemma 4.5.0.29. Then

Rp = Qp

(
P ∗
1 − λS∗

p

)
;

Rc = Qc (P
∗
0 − λS∗

c ) .

Furthermore, an eigenvalue, λ of Hill’s equation belongs to the principal series if and only if

det2
(
I + P ∗

1Qp − λS∗
pQp

)
= 0.

Similarly, λ belongs to the complementary series if and only if

det2 (I + P ∗
0Qc − λS∗

cQc) = 0.

Proof. By Proposition 4.5.0.23 we have Rp = QpP
∗
p and Rc = QcP

∗
c . Also, by Lemma 4.5.0.29,

P ∗
p = P ∗

1 − λS∗
p and P ∗

c = P ∗
0 − λS∗

c . Therefore,

Rp = Qp

(
P ∗
1 − λS∗

p

)
;

Rc = Qc (P
∗
0 − λS∗

c )

giving the first part of the result.

To see the second part, note that by Theorem 4.5.0.25, λ belongs to the principal series if

and only if det2 (I +Rp) = 0. So, by the first part of this theorem and Sylvester’s Determinant

Theorem 2.3.0.30, λ lies in the principal series if and only if

0 = det2
[
I +Qp

(
P ∗
1 − λS∗

p

)]
= det2

(
I + P ∗

1Qp − λS∗
pQp

)
.

The same argument shows that λ belongs to the complementary series if and only if

0 = det2 (I +Rc)

= det2 [I +Qc (P
∗
0 − λS∗

c )]

= det2 (I + P ∗
0Qc − λS∗

cQc) .

4.6 The Construction of the Potential

The inverse spectral problem is concerned with reconstructing the potential given that the spec-

trum is known. In this section we consider a problem similar to that of the inverse spectral

problem in that we ultimately want to reconstruct the potential. We shall look at how to con-

struct the potential given that a linear system, (−A,B,C) and the scattering function, φ are
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known. By Corollary 3.3.0.48, we know that given a linear system, (−A,Br, C) and scattering

function, φ(x) = C
(
e−xA + exA

)
Br, if

T (x, y) = −C
(
e−xA + exA

)
[I + μRx]

−1 (
e−yA + eyA

)
Br

then T satisfies the partial differential equation(
∂2

∂x2
− ∂2

∂y2

)
T (x, y) = q(x)T (x, y)

where q(x) = 4μ d
dxT (x, x). This information provides a way in which we can calculate the

potential. If the linear system, (−A,Br, C) and the scattering function, φ are known then we

can calculate T (x, y) and hence q(x).

The calculation of the potential, q depends on calculating the operator T , given a specific

linear system, (−A,Br, C). However, the calculation of T (x, y) depends on Rx, therefore we first

evaluate Rx.

For the calculations that follow, we ask the reader to recall that when using the linear system

(−A,Br, C) as defined by Example 2.6, the scattering function, φ satisfies the relation

φ(x) = ψ(x) + ψ(−x)

where ψ ∈ D[a,b](A) is absolutely continuous. This formula was given in Proposition 3.1.0.39.

It should now be clear where the function ψ, that appears in the following calculations, comes

from.

Proposition 4.6.0.32 Let (−A,Br, C) be the linear system defined in Example 2.6 and let φ

be the scattering function in Definition 3.1.0.37. Then, the operator Rx defined by Definition

3.3.0.44 has the form

Rxf(t) = 2

∫ x

−x

[ψ(t+ z) + ψ(t− z)] f(z) dz.

Proof. Let φ be the scattering function defined by Definition 3.1.0.37 and let

Rx =

∫ x

−x

(
e−zA + ezA

)
BrC

(
e−zA + ezA

)
dz.

We apply the linear system, (−A,Br, C) to a function, f . Let t be the variable then

Rxf(t) =

∫ x

−x

(
e−zA + ezA

)
BrC

(
e−zA + ezA

)
f(t) dz

=

∫ x

−x

(
e−zA + ezA

)
BrC[f(t+ z) + f(t− z)] dz

=

∫ x

−x

(
e−zA + ezA

)
Br[f(z) + f(−z)] dz

=

∫ x

−x

(
e−zA + ezA

)
ψ(t)[f(z) + f(−z)] dz

=

∫ x

−x

[ψ(t+ z) + ψ(t− z)][f(z) + f(−z)] dz.

Finally we note that the above simplifies to give

Rxf(t) = 2

∫ x

−x

[ψ(t+ z) + ψ(t− z)] f(z) dz

as required.
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Proposition 4.6.0.33 Suppose that x ∈ [−2π, 2π]. The operator Rx : L2[−2π, 2π] → L2[−2π, 2π]

is Hilbert–Schmidt and therefore has a Carleman determinant.

Proof. We use Definition 2.1.0.6 to rewrite Rx as an integral operator with a kernel. It is then

straightforward to apply Proposition 2.1.1.6 to show that Rx is Hilbert–Schmidt. Now,

Rxf(t) = 2

∫ x

−x

[ψ(t+ z) + ψ(t− z)] f(z) dz

= 2

∫ 2π

−2π

I(−x,x)(z) [ψ(t+ z) + ψ(t− z)] f(z) dz,

so by Definition 2.1.0.6, Rx has kernel k(t, z) = 2I(−x,x)(z)[ψ(t + z) + ψ(t − z)]. Thus, by

Proposition 2.1.1.6,∫ 2π

−2π

∫ 2π

−2π

|k(t, z)|2 dz dt =

∫ 2π

−2π

∫ 2π

−2π

∣∣2I(−x,x)(z)[ψ(t+ z) + ψ(t− z)]
∣∣2 dz dt

= 4

∫ 2π

−2π

∫ x

−x

|ψ(t+ z) + ψ(t− z)|2 dz dt.

Observe that

|ψ(t+ z) + ψ(t− z)|2 = |ψ(t+ z)|2 + 2Re
(
ψ(t+ z)ψ(t− z)

)
+ |ψ(t− z)|2

≤ |ψ(t+ z)|2 + 2 |ψ(t+ z)| |ψ(t− z)|+ |ψ(t− z)|2

= (|ψ(t+ z)|+ |ψ(t− z)|)2

≤ 4
(
|ψ(t+ z)|2 + |ψ(t− z)|2

)
.

Therefore,∫ 2π

−2π

∫ 2π

−2π

|k(t, z)|2 dz dt ≤ 16

∫ 2π

−2π

∫ x

−x

(
|ψ(t+ z)|2 + |ψ(t− z)|2

)
dz dt

≤ 32 ‖ψ‖2L2(−4π,4π)

∫ 2π

−2π

1 dt

= 128π ‖ψ‖2L2(−4π,4π)

< ∞,

hence Rx is Hilbert–Schmidt. By Definition 2.3.0.27 Rx has a Carleman determinant.

So far we have calculated Rxf but the operator T involves the term [I+μRx]
−1. We therefore

proceed to find [I + μRx]
−1f . Note that if we expand [I + μRx]

−1 we have

[I + μRx]
−1 = I − μRx + μ2R2

x − μ3R3
x + . . . . (4.40)

This suggests that we should calculate Rn
x for n = 1, 2, . . . .

Theorem 4.6.0.34 Let (−A,Br, C) be the linear system given in Example 2.6 and let φ be the

scattering function defined in Definition 3.1.0.37. Let Rx be as in Definition 3.3.0.44 then,

Rn
xf(t) = 2n

∫ x

−x

· · ·
∫ x

−x

[ψ(t+ x1) + ψ(t− x1)]

⎛
⎝n−1∏

j=1

[ψ(xj + xj+1) + ψ(xj − xj+1)]

⎞
⎠

f(xn) dx1 . . . dxn.
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Furthermore,

[I + μRx]
−1f(t) = f(t)

+

∞∑
n=1

(−2μ)n
∫ x

−x

· · ·
∫ x

−x

[ψ(t+ x1) + ψ(t− x1)]

⎛
⎝n−1∏

j=1

[ψ(xj + xj+1) + ψ(xj − xj+1)]

⎞
⎠ f(xn) dx1 . . . dxn

defines a convergent series for |μ| ‖Rx‖ < 1.

Proof. Given, the linear system (−A,Br, C) and scattering function, φ, it follows from Propo-

sition 4.6.0.32 that

Rxf(t) = 2

∫ x

−x

[ψ(t+ z) + ψ(t− z)] f(z) dz.

Therefore,

R2
xf(t) = 2

∫ x

−x

[ψ(t+ z) + ψ(t− z)]Rxf(z) dz

= 22
∫ x

−x

[ψ(t+ z) + ψ(t− z)]

∫ x

−x

[ψ(z + w) + ψ(z − w)]f(w) dw dz

= 22
∫ x

−x

∫ x

−x

[ψ(t+ z) + ψ(t− z)][ψ(z + w) + ψ(z − w)]f(w) dw dz.

It is then easily seen that

Rn
xf(t) = 2n

∫ x

−x

· · ·
∫ x

−x

[ψ(t+ x1) + ψ(t− x1)]

⎛
⎝n−1∏

j=1

[ψ(xj + xj+1) + ψ(xj − xj+1)]

⎞
⎠

f(xn) dx1 . . . dxn.

Substituting this information into (4.40) we obtain

[I + μRx]
−1f(t) = f(t) +

∞∑
n=1

(−μ)nRn
xf(t)

= f(t)

+
∞∑

n=1

(−2μ)n
∫ x

−x

· · ·
∫ x

−x

[ψ(t+ x1) + ψ(t− x1)]

⎛
⎝n−1∏

j=1

[ψ(xj + xj+1) + ψ(xj − xj+1)]

⎞
⎠ f(xn) dx1 . . . dxn

as required.

We can now provide a formula for the function T (x, y) in terms of a linear system.

Lemma 4.6.0.35 Let (−A,Br, C) be the linear system as stated in Example 2.6 and let φ be

the scattering function defined in Definition 3.1.0.37. If

T (x, y) = −C
(
e−xA + exA

)
[I + μRx]

−1 (
e−yA + eyA

)
Br
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then

T (x, y) = −[ψ(x+ y) + ψ(x− y) + ψ(−x+ y) + ψ(−x− y)]

−
∞∑

n=1

(−2μ)n
∫ x

−x

· · ·
∫ x

−x

[ψ(x+ x1) + ψ(x− x1) + ψ(−x+ x1) + ψ(−x− x1)]

⎛
⎝n−1∏

j=1

[ψ(xj + xj+1) + ψ(xj − xj+1)]

⎞
⎠ [ψ(xn + y) + ψ(xn − y)] dx1 . . . dxn.

Proof. Let (−A,Br, C) be the linear system as stated in Example 2.6 and let φ be the scattering

function defined in Definition 3.1.0.37. Given T (x, y), we apply the linear system (−A,Br, C)

directly to obtain a formula for T (x, y). Let t be the variable and b a scalar, then

T (x, y)b = −C
(
e−xA + exA

)
[I + μRx]

−1 (
e−yA + eyA

)
Brb

= −C
(
e−xA + exA

)
[I + μRx]

−1 (
e−yA + eyA

)
ψ(t)b

= −C
(
e−xA + exA

)
[I + μRx]

−1
[ψ(t+ y) + ψ(t− y)]b.

We use Lemma 4.6.0.34 to evaluate [I + μRx]
−1

[ψ(t+ y) + ψ(t− y)]b, thus,

T (x, y)b

= −C
(
e−xA + exA

) {[ψ(t+ y) + ψ(t− y)]b

+
∞∑

n=1

(−2μ)n
∫ x

−x

· · ·
∫ x

−x

[ψ(t+ x1) + ψ(t− x1)]

⎛
⎝n−1∏

j=1

[ψ(xj + xj+1) + ψ(xj − xj+1)]

⎞
⎠

[ψ(xn + y) + ψ(xn − y)]b dx1 . . . dxn}
= −C {[ψ(t+ x+ y) + ψ(t+ x− y)]b

+

∞∑
n=1

(−2μ)n
∫ x

−x

· · ·
∫ x

−x

[ψ(t+ x+ x1) + ψ(t+ x− x1)]

⎛
⎝n−1∏

j=1

[ψ(xj + xj+1) + ψ(xj − xj+1)]

⎞
⎠ [ψ(xn + y) + ψ(xn − y)]b dx1 . . . dxn

+[ψ(t− x+ y) + ψ(t− x− y)]b+

∞∑
n=1

(−2μ)n
∫ x

−x

· · ·
∫ x

−x

[ψ(t− x+ x1) + ψ(t− x− x1)]

⎛
⎝n−1∏

j=1

[ψ(xj + xj+1) + ψ(xj − xj+1)]

⎞
⎠ [ψ(xn + y) + ψ(xn − y)]b dx1 . . . dxn

⎫⎬
⎭ .

Before continuing with our calculation, we simplify the above line. This gives

T (x, y)b

= −C {[ψ(t+ x+ y) + ψ(t+ x− y) + ψ(t− x+ y) + ψ(t− x− y)]b

+

∞∑
n=1

(−2μ)n
∫ x

−x

· · ·
∫ x

−x

[ψ(t+ x+ x1) + ψ(t+ x− x1) + ψ(t− x+ x1) + ψ(t− x− x1)]

⎛
⎝n−1∏

j=1

[ψ(xj + xj+1) + ψ(xj − xj+1)]

⎞
⎠ [ψ(xn + y) + ψ(xn − y)]b dx1 . . . dxn

⎫⎬
⎭ .
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Finally, applying the operator C completes the calculation. We thus have,

T (x, y)b = −[ψ(x+ y) + ψ(x− y) + ψ(−x+ y) + ψ(−x− y)]b

−
∞∑

n=1

(−2μ)n
∫ x

−x

· · ·
∫ x

−x

[ψ(x+ x1) + ψ(x− x1) + ψ(−x+ x1) + ψ(−x− x1)]

⎛
⎝n−1∏

j=1

[ψ(xj + xj+1) + ψ(xj − xj+1)]

⎞
⎠ [ψ(xn + y) + ψ(xn − y)]b dx1 . . . dxn.

The result now follows.

We now have all the ingredients necessary to calculate the potential, q. The following theorem

shows how to calculate the potential if the linear system, (−A,Br, C) is known.

Theorem 4.6.0.36 Let (−A,Br, C) be the linear system specified by Example 2.6 and let φ be

the scattering function given in Definition 3.1.0.37. Also let

T (x, y) = −C
(
e−xA + exA

)
[I + μRx]

−1 (
e−yA + eyA

)
Br

where Rx is as defined by Definition 3.3.0.44. Then the potential, q has the form,

q(x) = −8[ψ′(2x)− ψ′(−2x)]

−4

∞∑
n=1

(−2μ)n
∫ x

−x

· · ·
∫ x

−x

[ψ′(x+ x1) + ψ′(x− x1)− ψ′(−x+ x1)− ψ′(−x− x1)]

⎛
⎝n−1∏

j=1

[ψ(xj + xj+1) + ψ(xj − xj+1)]

⎞
⎠ [ψ(xn + x) + ψ(xn − x)] dx1 . . . dxn

−4

∞∑
n=1

(−2μ)n
∫ x

−x

· · ·
∫ x

−x

[ψ(x+ x1) + ψ(x− x1) + ψ(−x+ x1) + ψ(−x− x1)]

⎛
⎝n−1∏

j=1

[ψ(xj + xj+1) + ψ(xj − xj+1)]

⎞
⎠ [ψ′(xn + x)− ψ′(xn − x)] dx1 . . . dxn

−4
∞∑

n=1

(−2μ)n
n∑

k=1

∫ x

−x

· · ·
∫ x

−x

[ψ(x+ x1) + ψ(x− x1) + ψ(−x+ x1) + ψ(−x− x1)]

⎛
⎝n−1∏

j=1

[ψ(xj + xj+1) + ψ(xj − xj+1)]

⎞
⎠ [ψ(xn + x) + ψ(xn − x)]

dx1 . . . dxk−1 dxk+1 . . . dxn|xk=x

−4
∞∑

n=1

(−2μ)n
n∑

k=1

∫ x

−x

· · ·
∫ x

−x

[ψ(x+ x1) + ψ(x− x1) + ψ(−x+ x1) + ψ(−x− x1)]

⎛
⎝n−1∏

j=1

[ψ(xj + xj+1) + ψ(xj − xj+1)]

⎞
⎠ [ψ(xn + x) + ψ(xn − x)]

dx1 . . . dxk−1 dxk+1 . . . dxn|xk=−x.

Proof. Given scattering function φ(x) = C
(
e−xA + exA

)
Br and operator

Rx =

∫ x

−x

(
e−zA + ezA

)
BrC

(
e−zA + ezA

)
dz,

the function T (x, y) satisfies the Gelfand–Levitan integral equation (3.3) by Theorem 3.3.0.47.

Therefore, by Corollary 3.3.0.48 we know that q(x) = 4 d
dxT (x, x) and so we begin by calculating
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T (x, x). By Proposition 4.6.0.35,

T (x, x) = −[ψ(2x) + 2ψ(0) + ψ(−2x)]

−
∞∑

n=1

(−2μ)n
∫ x

−x

· · ·
∫ x

−x

[ψ(x+ x1) + ψ(x− x1) + ψ(−x+ x1) + ψ(−x− x1)]

⎛
⎝n−1∏

j=1

[ψ(xj + xj+1) + ψ(xj − xj+1)]

⎞
⎠ [ψ(xn + x) + ψ(xn − x)] dx1 . . . dxn.

The next step is to differentiate T (x, x) which we do term-by-term. The fact that T (x, x) is

sufficiently well behaved to allow term-by-term differentiation follows from [1] (Theorem 13-

14, page 403). Since the expression for T (x, x) is somewhat complicated, we first describe the

process of differentiation. Differentiating the first term of T (x, x) is obvious. The remaining

part of T (x, x) involves a sum of integrals where each integral contains a product of terms. We

proceed to differentiate the sum term-by-term, differentiating each integrand using the product

rule; first differentiating the term ψ(x + x1) + ψ(x − x1) + ψ(−x + x1) + ψ(−x − x1) and then

differentiating the term ψ(xn + x) + ψ(xn − x), finally addressing the limits. Therefore,

q(x) = 4
d

dx
T (x, x)

= −8[ψ′(2x)− ψ′(−2x)]

−4
∞∑

n=1

(−2μ)n
∫ x

−x

· · ·
∫ x

−x

[ψ′(x+ x1) + ψ′(x− x1)− ψ′(−x+ x1)− ψ′(−x− x1)]

⎛
⎝n−1∏

j=1

[ψ(xj + xj+1) + ψ(xj − xj+1)]

⎞
⎠ [ψ(xn + x) + ψ(xn − x)] dx1 . . . dxn

−4

∞∑
n=1

(−2μ)n
∫ x

−x

· · ·
∫ x

−x

[ψ(x+ x1) + ψ(x− x1) + ψ(−x+ x1) + ψ(−x− x1)]

⎛
⎝n−1∏

j=1

[ψ(xj + xj+1) + ψ(xj − xj+1)]

⎞
⎠ [ψ′(xn + x)− ψ′(xn − x)] dx1 . . . dxn

−4
∞∑

n=1

(−2μ)n
n∑

k=1

∫ x

−x

· · ·
∫ x

−x

[ψ(x+ x1) + ψ(x− x1) + ψ(−x+ x1) + ψ(−x− x1)]

⎛
⎝n−1∏

j=1

[ψ(xj + xj+1) + ψ(xj − xj+1)]

⎞
⎠ [ψ(xn + x) + ψ(xn − x)]

dx1 . . . dxk−1 dxk+1 . . . dxn|xk=x

−4
∞∑

n=1

(−2μ)n
n∑

k=1

∫ x

−x

· · ·
∫ x

−x

[ψ(x+ x1) + ψ(x− x1) + ψ(−x+ x1) + ψ(−x− x1)]

⎛
⎝n−1∏

j=1

[ψ(xj + xj+1) + ψ(xj − xj+1)]

⎞
⎠ [ψ(xn + x) + ψ(xn − x)]

dx1 . . . dxk−1 dxk+1 . . . dxn|xk=−x.
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4.6.1 Finding (I +Rx)
−1

In this section we propose an alternative method to find (I + μRx)
−1. By Proposition 4.6.0.32

we know that

(I + μRx)f(t) = f(t) + 2μ

∫ x

−x

[ψ(t+ z) + ψ(t− z)]f(z) dz.

Let

h(t) = f(t) + 2μ

∫ x

−x

[ψ(t+ z) + ψ(t− z)]f(z) dz, (4.41)

then (I + μRx)f(t) = h(t) and so f(t) = (I + μRx)
−1h(t). This shows another way in which we

can calculate (I + μRx)
−1.

The inspiration for the following proposition comes from the work done with the operator,

T . Note that the Gelfand–Levitan integral equation that appears in the following proposition

has the same form as that in Definition 3.2.0.40. Also, in Proposition 4.2.0.60 we saw that if T

satisfies a Gelfand–Levitan integral equation then cosx
√
λ+2

∫ x

0
T (x, y) cos y

√
λ dy is a solution

of Hill’s equation. This observation provides the motivation for defining the function f in the

following proposition.

Proposition 4.6.1.1 Let Ψ satisfy the Gelfand–Levitan integral equation

Ψ(z, t) + ψ(t+ z) + ψ(t− z) + 2μ

∫ x

−x

Ψ(z, w)[ψ(t+ w) + ψ(t− w)] dw = 0, (4.42)

and let

f(t) = h(t) + 2μ

∫ x

−x

Ψ(z, t)h(z) dz.

Then f satisfies equation (4.41).

Proof. Suppose that Ψ satisfies (4.42). Multiply both sides of (4.42) by 2μh(z) and then

integrate with respect to z over the interval [−x, x]. We obtain

0 = 2μ

∫ x

−x

Ψ(z, t)h(z) dz + 2μ

∫ x

−x

[ψ(t+ z) + ψ(t− z)]h(z) dz

+4μ2

∫ x

−x

∫ x

−x

Ψ(z, w)[ψ(t+ w) + ψ(t− w)]h(z) dw dz.

Note that we can rewite
∫ x

−x

∫ x

−x
Ψ(z, w)[ψ(t+ w) + ψ(t− w)]h(z) dw dz by first changing the

order of integration and then relabelling (using the same variables), thus∫ x

−x

∫ x

−x

Ψ(z, w)[ψ(t+ w) + ψ(t− w)]h(z) dw dz

=

∫ x

−x

∫ x

−x

Ψ(z, w)[ψ(t+ w) + ψ(t− w)]h(z) dz dw

=

∫ x

−x

∫ x

−x

Ψ(w, z)[ψ(t+ z) + ψ(t− z)]h(w) dw dz.
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So,

0 = 2μ

∫ x

−x

Ψ(z, t)h(z) dz + 2μ

∫ x

−x

[ψ(t+ z) + ψ(t− z)]h(z) dz

+4μ2

∫ x

−x

∫ x

−x

Ψ(w, z)[ψ(t+ z) + ψ(t− z)]h(w) dw dz

= 2μ

∫ x

−x

Ψ(z, t)h(z) dz

+2μ

∫ x

−x

{
[ψ(t+ z) + ψ(t− z)]h(z) + 2μ

∫ x

−x

Ψ(w, z)[ψ(t+ z) + ψ(t− z)]h(w) dw

}
dz

= 2μ

∫ x

−x

Ψ(z, t)h(z) dz

+2μ

∫ x

−x

[ψ(t+ z) + ψ(t− z)]

{
h(z) + 2μ

∫ x

−x

Ψ(w, z)h(w) dw

}
dz. (4.43)

Given f(t) = h(t) + 2μ
∫ x

−x
Ψ(z, t)h(z) dz we see that (4.43) becomes

0 = f(t)− h(t) + 2μ

∫ x

−x

[ψ(t+ z) + ψ(t− z)]f(z) dz,

that is, f satisfies equation 4.41 as required.
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Chapter 5

Sampling Sequences and their

Applications

In this chapter we look at sampling sequences related to Paley–Wiener spaces and some of their

applications. The periodic spectrum of Hill’s equation is a sequence, (λn)
∞
n=0 where λn is of

order n2 in size. To analyse the behaviour in detail, we first take square roots and introduce

tn where tn is of order n. Then we compare the sequence (tn)n∈Z in detail with (n)n∈Z and

show that (tn)n∈Z is a sampling sequence. First we see how the sequence (tn)n∈Z can be used

to reconstruct a function given that the function is known at the sampling points, tn. This then

leads us to consider the question of bases. The sequence
{
einx

}
n∈Z

gives an orthonormal basis

for L2[−π, π], so it is therefore natural to consider if the sequence
{
eitnx

}
n∈Z

also gives a basis.

Usually this will not be an orthonormal basis, but we can formulate conditions under which it

is a frame or a Riesz basis. Since the space L2[−π, π] and the Paley–Wiener space, PW (π) are

naturally isomorphic via the Fourier transform, we often express the results of this chapter in

terms of Paley–Wiener space.

One of the main new results of this thesis is that the sampling sequence, (tn)n∈Z is associated

with a Carleman determinant which depends in a Lipschitz continuous way on (tn)n∈Z. This is

a crucial technical point that Blower, Brett and Doust present in their paper [7].

5.1 A Sampling Sequence Derived from the Spectrum of

Hill’s Equation

The aim of this section is to construct a sampling sequence from the periodic spectrum of Hill’s

equation. We define the notion of a sampling sequence and pick points from the periodic spectrum

of Hill’s equation that will be used to form a sequence, (tn)n∈Z. Using Borg’s estimates we are

able to show that (tn)n∈Z is indeed a sampling sequence.

Definition 5.1.0.2 Let (tn)n∈Z be a sequence satisfying the following conditions,

i) tn < tn+1 for all n;

ii) tn → ±∞ as n → ±∞;
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iii) there exists some constant δ > 0 such that tn+1 − tn ≤ δ for all n.

Then we say that (tn)n∈Z is a sampling sequence.

Remark 5.1.0.3 Conditions (i)-(iii) in Definition 5.1.0.2 are known as the sampling condi-

tions.

We now use the periodic spectrum of Hill’s equation to construct a sequence of sampling

points, (tn)n∈Z. Let (λn)
∞
n=0 denote the periodic spectrum of Hill’s equation. We begin the

construction of our sampling sequence by removing the points λ2m for m ∈ N0. We therefore

consider only the sequence (λ2n+1)n∈N0 . This is equivalent to choosing the left-hand endpoint of

each interval of instability that occurs after λ0. Where the interval of instability disappears we

take the left-hand endpoint of the double root. Note that λ1 is in the complementary series, while

λ3 is in the principal series. The λ2n+1’s then continue to alternate between the complementary

series and the principal series. We summarise this in the following remark.

Remark 5.1.0.4 If n ∈ N0 is odd then λ2n+1 belongs to the principal series. If n ∈ N0 is even

then λ2n+1 belongs to the complementary series.

We are now ready to define our sampling sequence.

Definition 5.1.0.5 Let (λn)
∞
n=0 denote the periodic spectrum of Hill’s equation. Define the

sequence, (tn)n∈Z as follows,

tn =

⎧⎪⎪⎨
⎪⎪⎩
−√λ−(2n+1) for n ≤ −1

0 for n = 0√
λ2n−1 for n ≥ 1.

(5.1)

Remark 5.1.0.6 Note that t−n = −tn.

Having constructed a sequence, we check that it is indeed a sampling sequence. In order to

do this we first need to introduce some estimates that will enable us to check that the sampling

conditions from Definition 5.1.0.2 hold. Proposition 5.1.0.7 presents Borg’s estimates and can

be found in [35] (Theorem 2.11, page 39). First we ask the reader to recall Remark 4.4.1.5 as

this should help with the understanding of the following estimates.

Proposition 5.1.0.7 Let q be the potential in Hill’s equation and suppose that q is π-periodic

and satisfies ∫ π

0

q(x) dx = 0.

Also let

1

π

∫ π

0

|q(x)| dx = C

for some constant, C. Given λ4n−1 and λ4n belong to the principal series then, for any n ∈ N0

such that n > C
2 we have ∣∣∣√λ4n−1 − 2n

∣∣∣ ≤ C

4n
,∣∣∣√λ4n − 2n

∣∣∣ ≤ C

4n
.
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Given λ4n−3 and λ4n−2 belong to the complementary series then, for any n ∈ N0 such that n > C
2

we have,

∣∣∣√λ4n−3 − (2n− 1)
∣∣∣ ≤ C

4n− 2
,∣∣∣√λ4n−2 − (2n− 1)

∣∣∣ ≤ C

4n− 2
.

Borg’s estimates are used to show how close the square root of an element in the periodic

spectrum is to its nearest integer. Estimates are given for all elements in the periodic spectrum.

However, for our work it is not necessary to have a complete set of estimates since we are

only working with the set {λ2n+1}n∈N0
. We therefore reformulate Proposition 5.1.0.7 to provide

suitable estimates for use with our sampling sequence, (tn)n∈Z.

Corollary 5.1.0.8 Let q be the potential in Hill’s equation and suppose that q is π-periodic and

satisfies ∫ π

0

q(x) dx = 0.

Further, suppose that

1

π

∫ π

0

|q(x)| dx <
1

2
.

Then for all n ∈ N,

∣∣∣√λ4n−1 − 2n
∣∣∣ <

1

8n
,∣∣∣√λ4n−3 − (2n− 1)

∣∣∣ <
1

8n− 4
.

Remark 5.1.0.9 Note that in both cases, the estimates in Corollary 5.1.0.8 have the form,

∣∣∣√λ2m−1 −m
∣∣∣ <

1

4m

for all m ∈ N.

Proof. Both estimates follow directly from Proposition 5.1.0.7.

We can now show that the sequence, (tn)n∈Z is indeed a sampling sequence.

Theorem 5.1.0.10 Suppose that Hill’s equation has π-periodic potential, q such that∫ π

0

q(x) dx = 0,

and

1

π

∫ π

0

|q(x)| dx <
1

2
.

Then the sequence (tn)n∈Z as defined in Definition 5.1.0.5 is real and satisfies

|tn − n| < 1

4
.

Furthermore, (tn)n∈Z is a sampling sequence such that tn+1 − tn < 3
2 .
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Proof. We first show that |tn − n| < 1
4 . Note that since t−n = −tn by Remark 5.1.0.6, it follows

that

|t−n − (−n)| = |−tn + n|
= |tn − n| .

It therefore suffices to consider the case n ≥ 1 since the case n = 0 is trivial. Now, by Definition

5.1.0.5, tn =
√

λ2n−1 for n ≥ 1, hence, by Remark 5.1.0.9,

|tn − n| =
∣∣∣√λ2n−1 − n

∣∣∣
<

1

4n
.

The result now follows since n ≥ 1.

Next we show that tn ∈ R for all n ∈ Z. The sequence (tn)n∈Z will be real if the λ2n−1 are

real and positive for all n ∈ N. By the Oscillation Theorem 4.4.1.4 the λ2n−1 are all real. Also,

since the λn satisfy the inequalities, (4.17) and are therefore monotonically increasing, it suffices

to show that λ1 ≥ 0 in order to prove that the λ2n−1 are positive. We prove the positivity of λ1

by contradiction. Suppose that λ1 < 0 then λ1 = − |λ1 | where |λ1 | > 0. Taking the square root

of both sides gives √
λ1 = ±i

√
|λ1 |.

Next we subtract 1 from both sides of the above equation and then take the modulus, finishing

by squaring both sides. This gives,∣∣∣√λ1 − 1
∣∣∣2 =

∣∣∣±i
√

|λ1 | − 1
∣∣∣2

= |λ1 |+ 1

> 1,

which implies that
∣∣√λ1 − 1

∣∣ > 1. However, since |tn − n| < 1
4 for all n ∈ Z,∣∣∣√λ1 − 1

∣∣∣ = |t1 − 1|

<
1

4
.

This is a contradiction and so we conclude that λ1 ≥ 0. Therefore, λn ≥ 0 for all n ∈ N and so

we have proved that the sequence (tn)n∈Z is indeed real.

It remains to prove that (tn)n∈Z is a sampling sequence. First we note that since the λ2n−1

satisfy the inequalities (4.17), then tn < tn+1 for all n. Also, by the Oscillation Theorem 4.4.1.4,

the λ2n−1 form a monotonically increasing sequence tending to infinity. Thus, tn → ∞ as n → ∞
and t−n → −∞ as n → −∞. The final sampling condition requires that the distance between

any two adjacent sampling points is strictly less than 3
2 . Given |tn − n| < 1

4 for all n ∈ Z, it is

easily seen that

|tn+1 − tn | = |[tn+1 − (n+ 1)]− [tn − n] + 1|
≤ |tn+1 − (n+ 1)|+ |tn − n|+ 1

<
3

2

as required. This completes the proof.
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5.2 Sampling Theorems

This section aims to reconstruct a function given that the value of the function is known at a

set of sampling points. Whittaker, Kotel’nikov and Shannon have shown that a function can be

reconstructed if its value is known at points that are equally spaced along the real line. The

crucial point here is that the samples are equally spaced and so sampling occurs at a constant

rate. In what follows we discover what happens when the samples do not occur at a constant

rate, but instead are shifted within a small region around an integer.

Before stating the Whittaker–Kotel’nikov–Shannon Sampling Theorem we introduce a new

function known as the sinc function that will appear in an application of the theorem.

Definition 5.2.0.11 Define the sinc function to be

sincx =

⎧⎨
⎩

sinπx
πx if x �= 0,

1 if x = 0.

The following lemma provides some obvious but useful facts concerning the sinc function.

Lemma 5.2.0.12 Let m,n ∈ Z. Then

sinc (m− n) =

⎧⎨
⎩0 if n �= m,

1 if n = m.

Proof. Let m,n ∈ Z and suppose that n �= m. Then,

sinc (m− n) =
sinπ(m− n)

π(m− n)

= 0

since sin kπ = 0 for k ∈ Z. The case n = m follows directly from Definition 5.2.0.11.

The following theorem is known as the Whittaker–Kotel’nikov–Shannon Sampling Theorem

and appears in [41] (Theorem 7.2.2, page 209).

Proposition 5.2.0.13 For f ∈ PW (b) we can recover f from the samples
{
f
(
nπ
b

)}
n∈Z

using

the convergent (in the L2(R) norm) formula

f(t) =
∑
n∈Z

f
(nπ

b

) sin b
(
t− nπ

b

)
b
(
t− nπ

b

) .

Example 5.2.0.14

Let f ∈ PW (π) then by Proposition 5.2.0.13,

f(t) =
∑
n∈Z

f(n)
sinπ(t− n)

π(t− n)

=
∑
n∈Z

f(n) sinc (t− n).

This shows that { sinc (t− n)}n∈Z is a spanning sequence for PW (π).

In the case that we are working in the space PW (π), the Whittaker–Kotel’nikov–Shannon

Sampling Theorem 5.2.0.13 tells us that every f ∈ PW (π) can be written as a linear combination

of the elements { sinc (t− n)}n∈Z. In fact, { sinc (t− n)}n∈Z is actually an orthonormal basis as

justified by the following proposition.
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Proposition 5.2.0.15 The set { sinc (t− n)}n∈Z forms an orthonormal basis for PW (π).

Proof. Recall Proposition 2.4.3.4, we saw that kt(x) = sin b(t−x)
π(t−x) is a reproducing kernel for

PW (b). Therefore, kx(t) = sinc (t−x) is a reproducing kernel for PW (π). Let f ∈ PW (π) then

in particular,

f(n) = 〈f, sinc (· − n)〉.

Thus, by the Whittaker–Kotel’nikov–Shannon Sampling Theorem 5.2.0.13, if f ∈ PW (π) then

f(t) =
∑
n∈Z

f(n) sinc (t− n)

=
∑
n∈Z

〈f, sinc (· − n)〉 sinc (t− n).

Furthermore, 〈 sinc (· − n), sinc (· −m)〉 = sinc (m− n), again since sinc (t− x) is a reproducing

kernel for PW (π). It now follows from Lemma 5.2.0.12 that for m,n ∈ Z,

〈 sinc (· − n), sinc (· −m)〉 =
⎧⎨
⎩0 if m �= n,

1 if m = n.

This completes the proof that { sinc (t− n)}n∈Z is an orthonormal basis for PW (π).

We now ask if we can reconstruct a function given that the sampling does not occur at a

constant rate. It turns out that we can gain some insight into this if we use a sampling sequence

whose rate of sampling is bounded. The following result can be found, with proof, in [41]

(Corollary 7.3.7, page 222).

Lemma 5.2.0.16 Let (tn) be a sampling sequence such that tn+1− tn < π
b for all n. Then there

exist constants C1, C2 > 0 such that

C1 ‖f ‖2 ≤
∑
n∈Z

|f(tn)|2 (tn+1 − tn−1) ≤ C2 ‖f ‖2

for all f ∈ PW (b).

Theorem 5.2.0.17 Suppose that Hill’s equation has π-periodic potential, q such that∫ π

0

q(x) dx = 0,

and

1

π

∫ π

0

|q(x)| dx <
1

2
.

Let (tn)n∈Z be the sampling sequence defined by Definition 5.1.0.5. Then there exist constants

C1, C2 > 0 such that

C1 ‖f ‖2 ≤
∑
n∈Z

|f(tn)|2 ≤ C2 ‖f ‖2

for all f ∈ PW (2).
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Proof. By Theorem 5.1.0.10, (tn)n∈Z is a sampling sequence such that tn+1 − tn < 3
2 < π

2 . By

Lemma 5.2.0.16, it follows that for all f ∈ PW (2),

A ‖f ‖2 ≤
∑
n∈Z

|f(tn)|2 (tn+1 − tn−1) ≤ B ‖f ‖2 (5.2)

for some constants A,B > 0. By Theorem 5.1.0.10 we have |tn − n| < 1
4 for all n. From this

estimate it follows that

tn+1 − tn−1 ≥
(
n+ 1− 1

4

)
−
(
n− 1 +

1

4

)

=
3

2
.

Similarly,

tn+1 − tn−1 ≤
(
n+ 1 +

1

4

)
−
(
n− 1− 1

4

)

=
5

2
.

Since 3
2 ≤ tn+1 − tn−1 ≤ 5

2 we can simplify (5.2), thus

C1 ‖f ‖2 ≤
∑
n∈Z

|f(tn)|2 ≤ C2 ‖f ‖2

for some constants C1, C2 > 0, proving the result.

5.3 Frames and Riesz Bases

In this section we introduce the concepts of frames and Riesz bases with the aim being to use our

sampling sequence, (tn)n∈Z to construct a Riesz basis. Analogous to the example of {einx}n∈Z

being an orthonormal basis for L2[−π, π], we see that {eitnx}n∈Z is a Riesz basis for L2[−π, π].

We prove this using Borg’s estimates from Section 5.1 and Kadec’s Quarter Theorem. Further

information on the topics contained within this section can be found in [9], [27] and [40] (Section

4.1, page 300).

Definition 5.3.0.18 Let H be a Hilbert space. A set {fn}n∈Z ∈ H is a frame if there exist

constants C1, C2 > 0 such that,

C1 ‖f ‖2 ≤
∑
n∈Z

|〈f, fn〉|2 ≤ C2 ‖f ‖2

for all f ∈ H.

The following proposition gives an example of a frame for a specific Paley–Wiener space.

Note that the frame is constructed using the sampling sequence, (tn)n∈Z found in Section 5.1.

Proposition 5.3.0.19 Let

kt(x) =
sin 2(t− x)

π(t− x)

be the reproducing kernel for the space, PW (2). Further, let (tn)n∈Z be the sampling sequence

defined in Definition 5.1.0.5. Then,

ktn(x) =
sin 2(tn − x)

π(tn − x)

is a frame for PW (2).
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Proof. Let (tn)n∈Z be the sampling sequence as given in Definition 5.1.0.5. Then, by Theorem

5.2.0.17, there exist constants C1, C2 > 0 such that for all f ∈ PW (2),

C1 ‖f ‖2 ≤
∑
n∈Z

|f(tn)|2 ≤ C2 ‖f ‖2 . (5.3)

By Proposition 2.4.3.4 we know that

kt(x) =
sin 2(t− x)

π(t− x)

is a reproducing kernel for the space PW (2). Therefore, for all f ∈ PW (2), kt satisfies 〈f, kt〉 =
f(t). In particular, f(tn) = 〈f, ktn〉. It now follows from (5.3) that

C1 ‖f ‖2 ≤
∑
n∈Z

|〈f, ktn〉|2 ≤ C2 ‖f ‖2 .

Hence, by Definition 5.3.0.18, {ktn}n∈Z is a frame for PW (2).

In linear algebra we have the notion of a spanning sequence which we can refine to a basis.

If we liken a frame to a spanning sequence then we can ask, is it possible to refine a frame to

a basis? It turns out that in some, but not all cases we can refine a frame to a particular type

of basis known as a Riesz basis. Again, as in linear algebra, just as a basis is still a spanning

sequence, every Riesz basis is a frame. We use the definition of a Riesz basis as given in [9].

Definition 5.3.0.20 Let {en}n∈Z be an orthonormal basis for a Hilbert space, H. Suppose that

F : H → H is a bounded bijective operator and let rn = Fen. Then {rn}n∈Z is a Riesz basis for

H.

In the following proposition we present a criterion for a set, {rn}n∈Z to be a Riesz basis. Note

how the condition is similar to that given for a frame. The result with its proof can be found in

[41] (Proposition 2.5.7, page 73).

Proposition 5.3.0.21 The set {rn}n∈Z is a Riesz basis if and only if there exist constants

C1, C2 > 0 such that

C1

∑
n∈Z

|an |2 ≤
∥∥∥∥∥
∑
n∈Z

anrn

∥∥∥∥∥
2

≤ C2

∑
n∈Z

|an |2,

for all square summable sequences, (an).

In practise, Riesz bases are often hard to find. An easier route to finding a Riesz basis

of the form {eisnx}n∈Z is by applying Kadec’s Quarter Theorem. We state Kadec’s theorem

in Proposition 5.3.0.22, without proof and note that the value of 1
4 is best possible. More

information regarding conditions for {eisnx}n∈Z to be a Riesz basis can be found in [27] (page

78).

Proposition 5.3.0.22 Let (sn)n∈Z be a real sequence and suppose that

|sn − n| < 1

4
.

Then the set {eisnx}n∈Z forms a Riesz basis for L2[−π, π].
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We can apply Kadec’s Quarter Theorem to construct a Riesz basis from our sampling se-

quence, (tn)n∈Z.

Theorem 5.3.0.23 Suppose that Hill’s equation has π-periodic potential, q such that∫ π

0

q(x) dx = 0,

and

1

π

∫ π

0

|q(x)| dx <
1

2
.

Let (tn)n∈Z be the sampling sequence defined by Definition 5.1.0.5. Then {eitnx}n∈Z forms a

Riesz basis for L2[−π, π].

Proof. Let (tn)n∈Z be the sampling sequence as in Definition 5.1.0.5. By Theorem 5.1.0.10,

(tn)n∈Z is a real sequence and

|tn − n| < 1

4

for all n ∈ Z. It now follows from Kadec’s Quarter Theorem 5.3.0.22 that the set {eitnx}n∈Z

forms a Riesz basis for L2[−π, π].

5.3.1 Dual Riesz Bases

To each Riesz basis, {rn} there corresponds a sequence, {r∗n} such that {r∗n} is also a Riesz basis.

Further, {rn} and {r∗n} are biorthogonal. Here we define the sequence {r∗n}, known as the dual

Riesz basis and then, using a specific example, we look at how we may construct a dual Riesz

basis. The idea behind this section is to construct a Riesz basis for L2[0, π] from the sampling

sequence, (tn)n∈Z and then use the linear system, (−A,B,C) to calculate the dual Riesz basis.

We begin by defining biorthogonal sequences and then we introduce the notion of a dual Riesz

basis.

Definition 5.3.1.1 Let {en}n∈Z and {fn}n∈Z be sequences in H. We say that {en}n∈Z and

{fn}n∈Z are biorthogonal if,

〈en, fm〉H =

⎧⎨
⎩1 for m = n,

0 for m �= n.

Definition 5.3.1.2 Let {rn}n∈Z be a Riesz basis such that

Fen = rn

for some orthonormal basis, {en}n∈Z and some bounded, bijective operator, F . We define the

dual Riesz basis of {rn}n∈Z to be {r∗n}n∈Z where

r∗n =
(
F−1

)∗
en,

and
(
F−1

)∗
is the adjoint of the operator F−1.

Remark 5.3.1.3 The dual Riesz basis is also referred to as the biorthogonal basis.
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Lemma 5.3.1.4 Let {rn}n∈Z be a Riesz basis in H and let {r∗n}n∈Z be its dual Riesz basis. Then

{rn}n∈Z and {r∗n}n∈Z are biorthogonal.

Proof. Let {rn}n∈Z be a Riesz basis in H and suppose that rn = Fen for some bounded,

bijective operator, F and an orthonormal basis, {en}n∈Z. Also suppose that {r∗n}n∈Z is the dual

Riesz basis corresponding to {rn}n∈Z and that r∗n =
(
F−1

)∗
en. Using Definition 2.1.0.7 we see

that

〈rn, r∗m〉 = 〈Fen,
(
F−1

)∗
em〉

= 〈F−1Fen, em〉
= 〈en, em〉

=

⎧⎨
⎩1 for m = n,

0 for m �= n.

This shows that a Riesz basis and its dual are indeed biorthogonal.

It is natural to ask whether the dual Riesz basis is in fact a Riesz basis. It turns out that this

is the case. Further, we can use a Riesz basis for a space, H together with its dual Riesz basis

to write an element of H as a linear combination of the Riesz basis. The following proposition

summarises these ideas. It can be found, with proof, in [9] (Theorem 3.6.3, page 64).

Proposition 5.3.1.5 Let {rn}n∈Z be a Riesz basis for a Hilbert space, H and let {r∗n}n∈Z be its

dual Riesz basis. Then {r∗n}n∈Z is the unique sequence such that

f =
∑
n∈Z

〈f, r∗n〉rn

for all f ∈ H. Further, {r∗n}n∈Z is a Riesz basis.

Remark 5.3.1.6 It can be seen from the Banach Isomorphism Theorem that F−1 is bounded

since F is a bounded, bijective operator. This shows that {r∗n}n∈Z is a Riesz basis.

We are aiming to calculate the dual Riesz basis for a particular Riesz basis. In the next

proposition we give the form of the Riesz basis that we will work with. Again, it is derived from

the sampling sequence, (tn)n∈Z. Since we are changing the Riesz basis we also need to change

the space in which we are working. First we state a lemma that will make clear the new space

in which we will work, as well as providing some insight into how to prove that a given sequence

is a Riesz basis for our space.

Lemma 5.3.1.7 The space of functions,

{
f ∈ L2[−π, π] : f(−x) = f(x)

}
is canonically, unitarily equivalent to the space L2[0, π].

Proof. First we note that f ∈ L2[−π, π] if and only if∫ π

−π

|f(x)|2 dx < ∞.
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This condition is equivalent to∫ π

0

|f(−x)|2 dx+

∫ π

0

|f(x)|2 dx < ∞.

Now, given f(−x) = f(x), we see that f ∈ {f ∈ L2[−π, π] : f(−x) = f(x)
}
if and only if∫ π

0

|f(x)|2 dx < ∞,

that is, f ∈ L2[0, π].

The previous lemma shows that we can prove a Riesz basis exists for L2[0, π] by proving that

it exists for the even functions in L2[−π, π].

Theorem 5.3.1.8 Suppose that Hill’s equation has π-periodic potential, q such that∫ π

0

q(x) dx = 0,

and

1

π

∫ π

0

|q(x)| dx <
1

2
.

Let (tn)n∈Z be the sampling sequence defined by Definition 5.1.0.5. Then {cos tnx}n∈N forms a

Riesz basis for L2[0, π].

Proof. We use Lemma 5.3.1.7 and begin by considering the space, L2[−π, π]. By Theorem

5.3.0.23, the set {eitnx}n∈Z is a Riesz basis for L2[−π, π], where (tn)n∈Z is the sampling sequence

of Definition 5.1.0.5. Further, by Proposition 5.3.1.5, for f ∈ L2[−π, π] we have

f(x) =
∑
n∈Z

ane
itnx.

Now suppose that f is an even function so that 0 = f(x)− f(−x) for all x. Then

0 =
∑
n∈Z

an
(
eitnx − e−itnx

)
= 2i

∑
n∈Z

an sin tnx

= 2i

[ −1∑
n=−∞

an sin tnx+ a0 sin t0x+

∞∑
n=1

an sin tnx

]

= 2i

[ ∞∑
n=1

a−n sin t−nx+ a0 sin t0x+
∞∑

n=1

an sin tnx

]
.

By Remark 5.1.0.6 we have t−n = −tn and so

0 = 2i

[
a0 sin t0x+

∞∑
n=1

(an − a−n) sin tnx

]
.

Since the above must hold for all x, we conclude that f ∈ L2[−π, π] is even if and only if a0 = 0

and a−n = an. Therefore, an even function, f ∈ L2[−π, π] has the form

f(x) =
∞∑

n=1

an
(
e−itnx + eitnx

)

= 2

∞∑
n=1

an cos tnx. (5.4)
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This shows that {cos tnx}n∈N is a basis for the even functions in L2[−π, π]. By Lemma 5.3.1.7,

{cos tnx}n∈N is therefore a basis for L2[0, π]. To see that {cos tnx}n∈N is a Riesz basis we observe

the following: given {eitnx}n∈Z is a Riesz basis for L2[−π, π] we have, for f(x) =
∑

n∈Z
ane

itnx ∈
L2[−π, π],

C1

∑
n∈Z

|an |2 ≤ ‖f ‖2 ≤ C2

∑
n∈Z

|an |2

by Proposition 5.3.0.21. The above inequality holds for all f so in particular it holds for even f .

Thus, for f ∈ L2[−π, π] even such that f takes the form of equation (5.4), we have

C1

∑
n∈Z

|an |2 ≤
∥∥∥∥∥

∞∑
n=1

an cos tnx

∥∥∥∥∥
2

≤ C2

∑
n∈Z

|an |2

for some constants, C1, C2 > 0. Therefore {cos tnx}n∈N is a Riesz basis by Proposition 5.3.0.21.

For the remainder of this section we use Hill’s equation in the form

−f ′′
n + qfn = t2nfn

where q is a constant potential and the tn are as described in Definition 5.1.0.5. Let (λn)
∞
n=0

denote the elements of the periodic spectrum then, since q is constant, it follows from [35]

(Theorem 7.12, page 112) that each λn for n ≥ 1 is a double root. That is, when q is a constant,

with the exception of (−∞, λ0), there are no intervals of instability. Thus every solution of

Hill’s equation corresponding to an eigenvalue in the interval (λ0,∞) is bounded. Recall that by

Proposition 4.2.0.60, a solution of Hill’s equation, fn has the form,

fn(x) = cos tnx+ 2

∫ x

0

T (x, y) cos tny dy.

Lemma 5.3.1.9 Suppose that Hill’s equation has potential q(x) = 0 for all x. Furthermore,

suppose that T (0, 0) = 0. The set {fn}n∈Z where

fn(x) = cos tnx+ 2

∫ x

0

T (x, y) cos tny dy.

forms an orthonormal basis in L2[0, π].

Proof. Suppose that T (0, 0) = 0 then by Theorem 4.2.0.59, fn is a fundamental solution

satisfying the boundary conditions

fn(0) = 1 and f ′
n(0) = 0.

Also, since q(x) = 0 for all x, it follows from [35] (Theorem 7.12, page 112) that the sequence,

(λn)n∈N is a sequence of double roots. Thus, by Floquet’s Theorem 4.4.2.2, we also have the

boundary condition

f ′
n(π) = 0.

It follows from Proposition 4.1.0.57 that Hill’s equation together with the solutions, {fn}n∈Z

forms a regular Sturm–Liouville system. Therefore, {fn}n∈Z forms an orthonormal basis in

L2[0, π] by the Sturm–Liouville Theorem, see [55] (Theorem 11.1, page 131).
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We now show how the linear system, (−A,B,C) can be used to find the dual Riesz basis of

{cos tnx}n∈N.

Theorem 5.3.1.10 Suppose that Hill’s equation has potential q(x) = 0 for all x and that

T (0, 0) = 0. Let (tn)n∈Z be the sampling sequence defined in Definition 5.1.0.5 and let

V g(x) = 2

∫ x

0

T (x, y)g(y) dy.

Then the Riesz basis {rn}n∈N where rn(x) = cos tnx has dual Riesz basis {r∗n}n∈N where

r∗n = (I + V ∗)(I + V )rn.

Proof. Let tn belong to the sampling sequence described in Definition 5.1.0.5 and suppose that

fn is the solution of Hill’s equation corresponding to the eigenvalue t2n, where

fn(x) = cos tnx+ 2

∫ x

0

T (x, y) cos tny dy.

By Lemma 5.3.1.9, {fn}n∈Z forms an orthonormal basis for L2[0, π] and by Theorem 5.3.1.8,

{cos tnx}n∈Z forms a Riesz basis for L2[0, π]. Let rn(x) = cos tnx, then by Definition 5.3.0.20

there exists some bounded, bijective operator, F such that

Ffn = rn.

This implies that

fn = F−1rn, (5.5)

that is

F−1 cos tnx = cos tnx+ 2

∫ x

0

T (x, y) cos tny dy. (5.6)

Now let V be the operator

V g(x) = 2

∫ x

0

T (x, y)g(y) dy.

It follows from (5.6) that F−1 = I + V . In order to calculate the dual Riesz basis, Definition

5.3.1.2 requires that we calculate
(
F−1

)∗
. Thus,(

F−1
)∗

= (I + V )∗

= I + V ∗.

Hence, by Definition 5.3.1.2, the dual Riesz basis is given by

r∗n =
(
F−1

)∗
fn

= (I + V ∗)fn.

Now, using the fact that F−1 = I + V it follows from (5.5) that

fn = F−1rn

= (I + V )rn.

Hence,

r∗n = (I + V ∗)(I + V )rn

as required.
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Remark 5.3.1.11 In [38] (Section 2, page 220), McKean and van Moerbeke consider the aux-

iliary spectrum and show that the corresponding solutions of Hill’s equation satisfy boundary

conditions at both 0 and π. The auxiliary spectrum is obtained by taking points that lie in in-

tervals of instability and in the case that this interval disappears, we take the double root. A

sampling sequence (sn)n∈Z can then be constructed from the auxiliary spectrum in exactly the

same way as we created (tn)n∈Z from the periodic spectrum. It then follows that {cos snx}n∈N

will also be a Riesz basis. Furthermore, the solutions, gn of Hill’s equation corresponding to the

sampling points sn will satisfy the boundary conditions gn(0) = 0 = gn(π), and hence will form

a Sturm–Liouville system. It follows then that the set {gn}n∈Z is an orthonormal basis. We

can then follow exactly the same method as demonstrated in Theorem 5.3.1.10 to derive the dual

Riesz basis for {cos snx}n∈N. This shows that we can calculate the dual Riesz basis using linear

systems, without the assumption of having zero potential.

Suppose that the function, T (x, y) can be written in terms of the linear system, (−A,B,C).

Theorem 5.3.1.10 therefore shows that we can write the operator V in terms of (−A,B,C) and

hence calculate the dual Riesz basis corresponding to {cos tnx}n∈N. The following corollary

makes precise the form of the dual Riesz basis.

Corollary 5.3.1.12 Suppose that Hill’s equation has potential q(x) = 0 for all x and that

T (0, 0) = 0. Let {r∗n}n∈N be the dual Riesz basis found in Theorem 5.3.1.10. Then

r∗n(x) = cos tnx+ 2

∫ x

0

T (x, y) cos tny dy + 2

∫ π

x

T (y, x) cos tny dy

+4

∫ π

0

cos tny

∫ π

max{x,y}
T (z, x)T (z, y) dz dy.

Proof. From Theorem 5.3.1.10 we know that

r∗n(x) = (I + V ∗)(I + V ) cos tnx

= (I + V + V ∗ + V ∗V ) cos tnx (5.7)

where V g(x) = 2
∫ x

0
T (x, y)g(y) dy. We proceed by calculating V ∗. By Definition 2.1.0.7 we have

〈g, V ∗h〉L2[−π,π] = 〈V g, h〉L2[−π,π]

=

∫ π

−π

V g h dx

=

∫ π

−π

2

∫ x

0

T (x, y)g(y) dy h(x) dx

= 2

∫ π

−π

∫ x

0

T (x, y)g(y)h(x) dy dx.

Now, reversing the order of integration we obtain

〈g, V ∗h〉L2[−π,π] = 2

∫ π

−π

∫ π

y

T (x, y)g(y)h(x) dx dy

= 2

∫ π

−π

g(y)

∫ π

y

T (x, y)h(x) dx dy.

Therefore,

V ∗h(y) = 2

∫ π

y

T (x, y)h(x) dx.
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It follows from (5.7) that the dual Riesz basis, {r∗n}n∈Z is given by

r∗n(x) = cos tnx+ 2

∫ x

0

T (x, y) cos tny dy + 2

∫ π

x

T (z, x) cos tnz dz

+2

∫ π

x

T (z, x)2

∫ z

0

T (z, y) cos tny dy dz

= cos tnx+ 2

∫ x

0

T (x, y) cos tny dy + 2

∫ π

x

T (y, x) cos tny dy

+4

∫ π

x

∫ z

0

T (z, x)T (z, y) cos tny dy dz

= cos tnx+ 2

∫ x

0

T (x, y) cos tny dy + 2

∫ π

x

T (y, x) cos tny dy

+4

∫ π

0

∫ π

max{x,y}
T (z, x)T (z, y) cos tny dz dy

= cos tnx+ 2

∫ x

0

T (x, y) cos tny dy + 2

∫ π

x

T (y, x) cos tny dy

+4

∫ π

0

cos tny

∫ π

max{x,y}
T (z, x)T (z, y) dz dy.

5.4 Gram Matrices

Here we define the notion of a Gram matrix for a given sequence and look at a way to calculate

the determinant of such a matrix. We see that by definition, the Gram matrix of an orthonormal

sequence is the identity matrix. Therefore, by calculating Gram matrices we are able to compare

sequences with orthonormal sequences. We use the sampling sequence, (tn)n∈Z obtained from

the periodic spectrum of Hill’s equation to create a sequence of reproducing kernels for the space

PW (π). It is this sequence of reproducing kernels that we calculate the Gram matrix and its

determinant for. It will be seen that the Gram matrix for the sequence of reproducing kernels

in PW (π) is equivalent to the Gram matrix of the Riesz basis
{
eitnx

}
n∈Z

in L2[−π, π].

Definition 5.4.0.13 Let {xn} be a sequence in an inner product space. The Gram matrix for

the sequence {xn} is given by

G = [〈xn, xm〉]n,m .

Remark 5.4.0.14 If the sequence {xn} is orthonormal then the Gram matrix is the identity

matrix.

Recall from Proposition 2.4.3.4 that the function

kt(x) =
sin b(t− x)

π(t− x)

is a reproducing kernel for PW (b). Therefore, by Definition 5.2.0.11, kt(x) = sinc (t − x) is a

reproducing kernel for PW (π).

Proposition 5.4.0.15 Let (tn)n∈Z be the sampling sequence given in Definition 5.1.0.5. Then

the sequence of reproducing kernels, { sinc (tn − x)}n∈Z has Gram matrix

G = [ sinc (tn − tm)]n,m∈Z
.
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Proof. By Definition 5.4.0.13, the Gram matrix of the sequence, { sinc (tn − x)}n∈Z has entries

given by

〈 sinc (tn − x), sinc (tm − x)〉.

Since ktn = sinc (tn − x) is a reproducing kernel for PW (π), it follows from Definition 2.4.3.3

that

〈 sinc (tn − x), sinc (tm − x)〉 = sinc (tn − tm).

Hence the result.

The following lemma provides an alternative way of expressing the Gram matrix of { sinc (tn−
x)}n∈Z. It allows us to calculate the determinant of the Gram matrix via Andréief’s Identity

2.3.0.31. Furthermore, it also shows that the Gram matrix of { sinc (tn − x)}n∈Z is equal to the

Gram matrix of {eitnx}n∈Z since

〈
eitnx, eitmx

〉
L2[−π,π]

=
1

2π

∫ π

−π

ei(tn−tm)x dx.

Lemma 5.4.0.16 Let (tn)n∈Z be the sampling sequence given in Definition 5.1.0.5. Also, let

{ sinc (tn − x)}n∈Z be a sequence of reproducing kernels in PW (π) with Gram matrix, G. Then,

G =

[
1

2π

∫ π

−π

ei(tn−tm)x dx

]
n,m∈Z

.

Proof. By Proposition 5.4.0.15, the sequence, { sinc (tn − x)}n∈Z has Gram matrix

G = [ sinc (tn − tm)]n,m∈Z
.

Now,

1

2π

∫ π

−π

ei(tn−tm)x dx =
1

2π

[
ei(tn−tm)x

i(tn − tm)

]π
x=−π

=
eiπ(tn−tm) − e−iπ(tn−tm)

2πi(tn − tm)

=
sinπ(tn − tm)

π(tn − tm)

= sinc (tn − tm),

giving the result.

Given a sampling sequence, (tn)n∈Z obtained from the periodic spectrum of Hill’s equation,

we can create a sequence of reproducing kernels, { sinc (tn−x)}n∈Z for the space PW (π). In the

event that the sequence of reproducing kernels is finite, the following theorem shows how we can

calculate the determinant of the corresponding Gram matrix.

Theorem 5.4.0.17 Suppose that j, k ∈ {1, . . . , n} where n < ∞ and let { sinc (tk − x)}nk=1 be

a sequence of reproducing kernels in PW (π). Let Gn denote the Gram matrix of the sequence

{ sinc (tk − x)}nk=1, then Gn has determinant given by

detGn =
1

n!

∫ π

−π

· · ·
∫ π

−π

det
[
eitjxk

]n
j,k=1

det
[
e−itlxk

]n
l,k=1

dx1

2π
. . .

dxn

2π
.
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Proof. It follows from Lemma 5.4.0.16 that the determinant of the Gram matrix corresponding

to the sequence { sinc (tk − x)}nk=1 is

detGn = det

[
1

2π

∫ π

−π

ei(tj−tk)x dx

]n
j,k=1

.

Hence, by Andréief’s Identity 2.3.0.31,

detGn =
1

n!

∫ π

−π

· · ·
∫ π

−π

det
[
eitjxk

]n
j,k=1

det
[
e−itlxk

]n
l,k=1

dx1

2π
. . .

dxn

2π
,

as required.

Since the Gram matrix for the Riesz basis
{
eitnx

}
n∈Z

is equal to the Gram matrix for the

reproducing kernels { sinc (tn − x)}n∈Z, Theorem 5.4.0.17 also holds for
{
eitnx

}
n∈Z

.

5.4.1 The Operator I + Φn

Let n ∈ N and recall that
{
einx

}
n∈Z

is an orthonormal basis and
{
eitnx

}
n∈Z

is a Riesz basis for

the space L2[−π, π]. We introduce the operator I +Φn to allow us to compare
{
eitnx

}
n∈Z

with

an orthonormal sequence. In this section we define an operator I+Φn acting on the orthonormal

basis
{
einx

}
n∈Z

such that eijx �→ eitjx for |j | ≤ n and eijx �→ eijx otherwise. We then seek to

calculate the matrix associated with the operator I +Φn so that we may ultimately calculate its

determinant. If
{
eitnx

}
n∈Z

is orthonormal then the matrix associated with I + Φn will be the

identity matrix and it will have determinant equal to 1.

Definition 5.4.1.1 Define the operator I +Φn : L2[−π, π] → L2[−π, π] to be such that

(I +Φn)e
ijx =

⎧⎨
⎩eitjx for |j | ≤ n,

eijx for |j | > n.

Remark 5.4.1.2 We note that when tj = j for all j then Φn = 0.

We wish to construct the matrix of the operator I +Φn with respect to the basis
{
einx

}
n∈Z

.

Note that by Definition 2.3.0.20, the matrix of I + Φn with respect to the basis
{
einx

}
n∈Z

is

given by [〈
(I +Φn)e

ikx, eijx
〉
L2[−π,π]

]
j,k

.

Proposition 5.4.1.3 The operator I +Φn acting on L2[−π, π] has block matrix

[〈
(I +Φn)e

ikx, eijx
〉
L2[−π,π]

]
j,k

=

⎡
⎢⎢⎣
I [ sinc (tk − j)]j<−n,|k|≤n 0

0 [ sinc (tk − j)]|j |,|k|≤n 0

0 [ sinc (tk − j)]j>n,|k|≤n I

⎤
⎥⎥⎦

with respect to the basis
{
eijx

}
j∈Z

.

Proof. We must calculate the inner products,
〈
(I +Φn)e

ikx, eijx
〉
L2[−π,π]

for all j and k. From

Definition 5.4.1.1 we have,

〈
(I +Φn)e

ikx, eijx
〉
L2[−π,π]

=

⎧⎨
⎩
〈
eitkx, eijx

〉
L2[−π,π]

for |k| ≤ n,〈
eikx, eijx

〉
L2[−π,π]

for |k| > n.
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Since
{
eijx

}
j∈Z

is an orthonormal basis for L2[−π, π], we know that

〈
eikx, eijx

〉
L2[−π,π]

= δkj =

⎧⎨
⎩0 for j �= k,

1 for j = k.

Also,

〈
eitkx, eijx

〉
L2[−π,π]

=
1

2π

∫ π

−π

ei(tk−j)x dx

=
eiπ(tk−j) − e−iπ(tk−j)

2πi(tk − j)

= sinc (tk − j).

Therefore,

〈
(I +Φn)e

ikx, eijx
〉
L2[−π,π]

=

⎧⎨
⎩ sinc (tk − j) for |k| ≤ n,

δkj for |k| > n.

It follows that I +Φn has matrix

[〈
(I +Φn)e

ikx, eijx
〉
L2[−π,π]

]
j,k

=

⎡
⎢⎢⎣
I [ sinc (tk − j)]j<−n,|k|≤n 0

0 [ sinc (tk − j)]|j |,|k|≤n 0

0 [ sinc (tk − j)]j>n,|k|≤n I

⎤
⎥⎥⎦ ,

where j denotes the row and k the column.

Note the shape of the block matrix in Proposition 5.4.1.3. The central element is a finite,

square (2n + 1) × (2n + 1) matrix. Above and below the central element are infinite matrices

with 2n+ 1 columns and an infinite number of rows. We progress to calculate the determinant

of the operator I +Φn.

Proposition 5.4.1.4 The operator Φn is trace class. Furthermore, I + Φn has determinant

given by

det(I +Φn) =
1

(2n+ 1)!

∫ π

−π

· · ·
∫ π

−π

det[eitkxl ]nk,l=−n det[e
−ijxl ]nj,l=−n

dx−n

2π
. . .

dxn

2π
.

Proof. From Proposition 5.4.1.3 we know that I +Φn has matrix

[〈
(I +Φn)e

ikx, eijx
〉
L2[−π,π]

]
j,k

=

⎡
⎢⎢⎣
I [ sinc (tk − j)]j<−n,|k|≤n 0

0 [ sinc (tk − j)]|j |,|k|≤n 0

0 [ sinc (tk − j)]j>n,|k|≤n I

⎤
⎥⎥⎦

= I +

⎡
⎢⎢⎣
0 [ sinc (tk − j)]j<−n,|k|≤n 0

0 [ sinc (tk − j)− δjk]|j |,|k|≤n 0

0 [ sinc (tk − j)]j>n,|k|≤n 0

⎤
⎥⎥⎦ .

Therefore the matrix associated with Φn is⎡
⎢⎢⎣
0 [ sinc (tk − j)]j<−n,|k|≤n 0

0 [ sinc (tk − j)− δjk]|j |,|k|≤n 0

0 [ sinc (tk − j)]j>n,|k|≤n 0

⎤
⎥⎥⎦ . (5.8)
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Now, the rank of Φn is equal to the column rank of the matrix given by (5.8). Hence, rankΦn ≤
2n+ 1 which means that Φn has finite rank. By [51] (Corollary 2.3, page 17), every finite rank

operator is a trace class operator. So it follows that Φn is trace class and thus det(I + Φn) is

defined. We proceed to calculate this determinant. Let

A = [ sinc (tk − j)]j<−n,|k|≤n,

B = [ sinc (tk − j)]|j |,|k|≤n,

C = [ sinc (tk − j)]j>n,|k|≤n.

Then ⎡
⎢⎢⎣
I [ sinc (tk − j)]j<−n,|k|≤n 0

0 [ sinc (tk − j)]|j |,|k|≤n 0

0 [ sinc (tk − j)]j>n,|k|≤n I

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
I A 0

0 B 0

0 C I

⎤
⎥⎥⎦ (5.9)

=

⎡
⎢⎢⎣
I 0 0

0 B 0

0 C I

⎤
⎥⎥⎦
⎡
⎢⎢⎣
I A 0

0 I 0

0 0 I

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣
I 0 0

0 B 0

0 0 I

⎤
⎥⎥⎦
⎡
⎢⎢⎣
I 0 0

0 I 0

0 C I

⎤
⎥⎥⎦
⎡
⎢⎢⎣
I A 0

0 I 0

0 0 I

⎤
⎥⎥⎦ . (5.10)

Taking the determinant of both sides of (5.10) and noting that each matrix is triangular, we

obtain

det(I +Φn) = det

⎡
⎢⎢⎣
I 0 0

0 B 0

0 0 I

⎤
⎥⎥⎦ det

⎡
⎢⎢⎣
I 0 0

0 I 0

0 C I

⎤
⎥⎥⎦ det

⎡
⎢⎢⎣
I A 0

0 I 0

0 0 I

⎤
⎥⎥⎦

= detB

= det[ sinc (tk − j)]nj,k=−n.

Given that

sinc (tk − j) =
1

2π

∫ π

−π

ei(tk−j)x dx

it follows that

det(I +Φn) = det

[
1

2π

∫ π

−π

ei(tk−j)x dx

]n
j,k=−n

.

Finally, applying Andréief’s Identity 2.3.0.31 produces the desired result,

det(I +Φn) =
1

(2n+ 1)!

∫ π

−π

· · ·
∫ π

−π

det[eitkxl ]nk,l=−n det[e
−ijxl ]nj,l=−n

dx−n

2π
. . .

dxn

2π
.

Note the similarity between the determinant given in Proposition 5.4.1.4 and the determinant

of the Gram matrix appearing in Theorem 5.4.0.17. We return to look at determinants of the

type given in Proposition 5.4.1.4, in Chapter 6.
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5.5 Lipschitz Dependence of the Sampling Sequence on the

Potential

This section covers one of the main new results of this thesis, it can also be found in [7]. Let

Φt : L2[−π, π] → L2[−π, π] be the linear operator defined by Φt

∑
ane

inx =
∑

ane
itnx where

{eitnx}n∈Z is a Riesz basis for L2[−π, π]. Note that by Proposition 5.3.0.22, {eitnx}n∈Z is a Riesz

basis if |tn − n| < 1
4 . Also, since {eitnx}n∈Z is a Riesz basis it follows that Φt is well defined

and bounded. Now, Φt : e
inx �→ eitnx, therefore the Gram matrix associated with the operator

Φ is equal to the Gram matrix given by the sequence
(
eitnx

)
n∈Z

. In this section we see that

the Gram matrix of
(
eitnx

)
n∈Z

is a Lipschitz function of the sequence (tn)n∈Z. The results of

this section have been shown to hold for any sequence (tn)n∈Z such that {eitnx}n∈Z is a Riesz

basis. Hence all results found here will certainly hold for the sampling sequence derived from the

periodic spectrum of Hill’s equation as defined in Definition 5.1.0.5. The structure of the periodic

spectrum of Hill’s equation as a set of points is therefore linked to the sequence
(
eitnx

)
n∈Z

in

Hilbert space.

Definition 5.5.0.5 Let H1 and H2 be Hilbert spaces. We say that Φ : H1 → H2 is Lipschitz

with constant L if there exists L > 0 such that

‖Φ(x)− Φ(y)‖H2
≤ L ‖x− y‖H1

for all x, y ∈ H1.

Theorem 5.5.0.6 Suppose that tn ∈ R for all n and that {eitnx}n∈Z forms a Riesz basis for

L2[−π, π]. Set t = (tn) and suppose that (tn − n) ∈ 
2. Let Φt : L
2[−π, π] → L2[−π, π] be the

linear operator

Φt

∑
ane

inx =
∑

ane
itnx.

Then,

1) Φt − I is Hilbert–Schmidt;

2) the map (tn − n) �→ Φt − I is Lipschitz 
2 → HS .

Proof. Given
{
einx

}
n∈Z

is an orthonormal basis for L2[−π, π], let Φt

(
einx

)
= eitnx. Then

‖Φt − I‖2HS =
∑
n

∥∥(Φt − I)(einx)
∥∥2
L2[−π,π]

=
∑
n

∥∥eitnx − einx
∥∥2
L2[−π,π]

=
∑
n

1

2π

∫ π

−π

∣∣eitnx − einx
∣∣2 dx

=
∑
n

1

2π

∫ π

−π

∣∣∣ei(tn−n)x − 1
∣∣∣2 dx.

Using the fact that |z |2 = zz̄ for complex z we have∣∣∣ei(tn−n)x − 1
∣∣∣2 =

[
ei(tn−n)x − 1

] [
e−i(tn−n)x − 1

]
= 2− ei(tn−n)x − e−i(tn−n)x

= 2− 2 cos(tn − n)x.
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The double angle formulae then gives

2− 2 cos(tn − n)x = 4 sin2
1

2
(tn − n)x,

thus,

‖Φt − I‖2HS =
∑
n

1

2π

∫ π

−π

4 sin2
1

2
(tn − n)x dx.

Given |sinx| ≤ x for all x > 0 we have the following inequality,

sin2
1

2
(tn − n)x ≤ 1

4
|tn − n|2 x2.

Hence,

1

2π

∫ π

−π

4 sin2
1

2
(tn − n)x dx ≤ 1

2π

∫ π

−π

|tn − n|2 x2 dx

=
1

2π
|tn − n|2

[
x3

3

]π
−π

=
1

2π
|tn − n|2

[
2π3

3

]

=
π2

3
|tn − n|2 .

Therefore

‖Φt − I‖2HS ≤ π2

3

∑
n

|tn − n|2.

Since (tn − n) ∈ 
2 it follows that

‖(tn)− (n)‖2�2 =
∑
n

|tn − n|2

is convergent, hence

‖Φt − I‖2HS ≤ π2

3
‖(tn)− (n)‖2�2

proving that Φt − I is Hilbert–Schmidt.

We now prove, using the same method, that the map (tn − n) �→ Φt − I is Lipschitz. First

note that (Φt− I)− (Φs− I) = Φt−Φs and so the proof reduces to showing that Φt satisfies the

Lipschitz condition. By the first part of the theorem, Φt − I is Hilbert–Schmidt thus the map

(tn − n) �→ Φt − I takes the space 
2 to HS . Now,

‖Φt − Φs‖2HS =
∑
n

∥∥(Φt − Φs)(e
inx)

∥∥2
L2[−π,π]

=
∑
n

∥∥eitnx − eisnx
∥∥2
L2[−π,π]

=
∑
n

1

2π

∫ π

−π

∣∣eitnx − eisnx
∣∣2 dx

=
∑
n

1

2π

∫ π

−π

∣∣∣ei(tn−sn)x − 1
∣∣∣2 dx.

Again we use |z |2 = zz̄ followed by the double angle formulae to simplify the above giving,

‖Φt − Φs‖2HS =
∑
n

1

2π

∫ π

−π

2− 2 cos(tn − sn)x dx

=
∑
n

1

2π

∫ π

−π

4 sin2
1

2
(tn − sn)x dx.
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Since |sinx| ≤ x for all x > 0 it follows that

sin2
1

2
(tn − sn)x ≤ 1

4
|tn − sn |2 x2,

hence

1

2π

∫ π

−π

4 sin2
1

2
tn − sn)x dx ≤ 1

2π

∫ π

−π

|tn − sn |2 x2 dx

=
1

2π
|tn − sn |2

[
x3

3

]π
−π

=
1

2π
|tn − sn |2

[
2π3

3

]

=
π2

3
|tn − sn |2 .

Therefore

‖Φt − Φs‖2HS ≤
∑
n

π2

3
|tn − sn |2

=
π2

3
‖(tn)− (sn)‖2�2 ,

and so the map (tn − n) �→ Φt − I is Lipschitz 
2 → HS .

The following corollary shows that the determinant of the Gram matrix associated with the

sequence
{
eitnx

}
n∈Z

is a Lipschitz continuous function of (tn)n∈Z.

Corollary 5.5.0.7 The map t �→ det2 Φt is continuous 
2 → C. Further, when t = (n),

det2 Φn = 1.

Proof. Let T be a Hilbert–Schmidt operator then the map T �→ det2 (I + T ) is continuous by

[15] (Lemma 22(b), page 1106). By Theorem 5.5.0.6, Φt − I is Hilbert–Schmidt and so

Φt − I �→ det2 Φt

is continuous. Finally, we note that when t = (n) we have Φn = I and so det2 Φn = 1.
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Chapter 6

Determinants Associated with an

Integral of Ramanujan

The integral Ia(t) arises in several contexts, examples being sampling theory and orthogonal

polynomials. The main aim of this chapter is to systematically analyse determinants with entries

Ia(tj − k) where

Ia(t) =

∫ π
2

−π
2

(cosx)a−2eitx dx,

is an integral associated with Ramanujan. Ramanujan is credited with proving an identity for

Ia(t) in terms of the Gamma function. Of particular interest is the case in which a ∈ N and

tj = j since then Ia(tj − k) can be given a factorial expression, via the Gamma function, which

leads to a Toeplitz type matrix.

We also show that {Ia} gives a basis for the even functions in the Paley–Wiener space,

PW
(
π
2

)
. Further, this basis is related to the reproducing kernel for the same Paley–Wiener

space.

We finish this chapter with a short section on Chebyshev polynomials and show how the

function Ia can be used to evaluate some integrals involving Chebyshev polynomials.

6.1 Unitary Groups and the Weyl Denominator Formula

This brief section is intended to introduce the Weyl Denominator Formula as defined for the

unitary group. We note the formula in order to make comparisons with calculations carried out

within this chapter.

We begin by defining the unitary group.

Definition 6.1.0.8 Given n ∈ N, we denote by GL(n,C) the set of all invertible n× n complex

matrices. We call GL(n,C) the general linear group. The group operation of GL(n,C) is matrix

multiplication. The unitary group, U(n,C) is defined to be

U(n,C) = {A ∈ GL(n,C) : A∗A = I} .
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Also, we define the special unitary group, SU(n,C) to be

SU(n,C) = {A ∈ GL(n,C) : A∗A = I, detA = 1} .

The following proposition shows that a unitary matrix has complex eigenvalues that lie on

the unit circle. Further, the sum of the arguments of the eigenvalues of a special unitary matrix

is a multiple of 2π.

Proposition 6.1.0.9 Suppose that A ∈ U(n,C). Then A has eigenvalues,
{
eiθ1 , . . . , eiθn

}
.

Further, if A ∈ SU(n,C) with eigenvalues
{
eiθ1 , . . . , eiθn

}
, then

n∑
j=1

θj = 2πk

for k ∈ Z.

Proof. Let A ∈ U(n,C) and suppose that λ is an eigenvalue of A. Then Ax = λx where x is

the eigenvector corresponding to λ. Now,

|λ|2 〈x, x〉 = 〈λx, λx〉
= 〈Ax,Ax〉
= 〈A∗Ax, x〉

where the last line follows from Definition 2.1.0.7. Since A ∈ U(n,C), A∗A = I and so

|λ|2 〈x, x〉 = 〈x, x〉.

Therefore we must have |λ| = 1. That is, the eigenvalues lie on the unit circle.

Now let A ∈ SU(n,C) and suppose that A has eigenvalues
{
eiθ1 , . . . , eiθn

}
. Then A is

similar to the matrix, D = diag
(
eiθ1 , . . . , eiθn

)
. Also, since A ∈ SU(n,C), detD = detA = 1.

Therefore,

1 = det diag
(
eiθ1 , . . . , eiθn

)
=

n∏
j=1

eiθj

= ei
∑n

j=1 θj . (6.1)

It is now easily seen that in order for (6.1) to hold we must have
∑n

j=1 θj = 2πk for some k ∈ Z.

Proposition 6.1.0.9 provides some insight into the motivation behind the Weyl Denominator

Formula 6.1.0.10. Indeed the formula is defined for the unitary group which, as we have just

seen has complex eigenvalues that lie on the unit circle. In the definition that follows we view{
eiθj

}
as eigenvalues of a unitary matrix.

Definition 6.1.0.10 The Weyl denominator for the group SU(n,C) is given by the product

∏
j<k

[
e2πi(θj−θk) − 1

]
.
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6.2 The Integral Ia

We introduce the function, Ia, an integral associated with Ramanujan. In Section 6.4 we will see

that Ramanujan evaluated the integral Ia using Gamma functions. Ramanujan’s formula will be

used in Section 6.5 where we evaluate determinants of Ia at points, tn. Also in this section we

show that, under certain conditions, the function Ia lies in a Paley–Wiener space.

Definition 6.2.0.11 Let a ∈ R. For t ∈ R define the function Ia to be

Ia(t) =

∫ π
2

−π
2

(cosx)a−2eitx dx.

In the following lemma we show that Ia is an even function. This fact will be used in various

proofs throughout the remaining sections.

Lemma 6.2.0.12 Let Ia be as defined in Definition 6.2.0.11. Then Ia is an even function.

Proof. We follow the standard method of proving that a function is even by showing Ia(t) =

Ia(−t). Thus,

Ia(−t) =

∫ π
2

−π
2

(cosx)a−2e−itx dx

=

∫ π
2

−π
2

[cos(−x)]a−2eit(−x) dx

=

∫ π
2

−π
2

(cosx)a−2e−itx dx

= Ia(t)

as required.

Under certain conditions, the function Ia is a Paley–Wiener function. The following propo-

sition shows that for a > 3
2 , Ia belongs to a Paley–Wiener space.

Proposition 6.2.0.13 Let Ia be as given in Definition 6.2.0.11. If a > 3
2 then Ia ∈ PW

(
π
2

)
.

Proof. First note that Ia(t) takes the form specified by the converse of the Paley–Wiener

Theorem 2.4.3.7. We show that (cosx)a−2 ∈ L2
[−π

2 ,
π
2

]
for a > 3

2 by showing that the inequality,

∫ π
2

−π
2

∣∣(cosx)a−2
∣∣2 dx < ∞

is satisfied. We note that, on the interval
[−π

2 ,
π
2

]
we have |cosx| = cosx since 0 ≤ cosx ≤ 1.

Therefore, we need to show that

∫ π
2

−π
2

(cosx)2a−4 dx < ∞. (6.2)

For a ≥ 2, (6.2) is easily satisfied since

∫ π
2

−π
2

(cosx)2a−4 dx ≤
∫ π

2

−π
2

1 dx

= π
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which is clearly finite. Now take 3
2 < a < 2. This means that 2a − 4 is negative. Write

2a− 4 = −(4− 2a) where 4− 2a is positive, then

∫ π
2

−π
2

(cosx)2a−4 dx =

∫ π
2

−π
2

1

(cosx)4−2a
dx.

Next we make the substitution x = t− π
2 . This yields∫ π

2

−π
2

(cosx)2a−4 dx =

∫ π

0

1(
cos

(
t− π

2

))4−2a dt

=

∫ π

0

1

(sin t)4−2a
dt

where, in the last line we have used the fact that cosx = sin
(
x+ π

2

)
. From the symmetry of the

graph 1
sin t we have

∫ π

0

1

(sin t)4−2a
dt = 2

∫ π
2

0

1

(sin t)4−2a
dt.

To finish the calculation we find a bound on 1
(sin t)4−2a . We achieve this by showing that the

function sin t
t is decreasing on the interval

[
0, π

2

]
and then use this fact to find a lower bound for

sin t
t , thus giving an upper bound for 1

sin t . Now,
sin t
t is decreasing for 0 ≤ t ≤ π

2 since

d

dt

(
sin t

t

)
=

t cos t− sin t

t2

=
cos t(t− tan t)

t2

≤ 0.

In the above the last line follows as on the interval
[
0, π

2

]
, we have t2 non-negative, 0 ≤ cos t ≤ 1

and t − tan t ≤ 0. To see that t − tan t is negative we note that it is decreasing on the interval[
0, π

2

]
since

d

dt
(t− tan t) = 1− 1

cos2 t

≤ 0

because 0 ≤ cos t ≤ 1. Therefore, t− tan t attains its highest bound on the interval
[
0, π

2

]
at the

point 0 and so t− tan t ≤ 0. This shows that the function sin t
t is decreasing on

[
0, π

2

]
, meaning

that sin t
t has a lower bound at the point π

2 . Thus,

sin t

t
≥ sin π

2
π
2

=
2

π
.

The desired bound for the function 1
(sin t)4−2a is therefore

1

(sin t)4−2a
≤
( π

2t

)4−2a

.
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Continuing now to show that (cosx)a−2 ∈ L2
[−π

2 ,
π
2

]
, we see that we have∫ π

2

−π
2

(cosx)2a−4 dx = 2

∫ π
2

0

1

(sin t)4−2a
dt

≤ 2

∫ π
2

0

( π

2t

)4−2a

dt

=
π4−2a

23−2a

[
1

(2a− 3)t3−2a

]π
2

0

=
π4−2a

23−2a

[
23−2a

(2a− 3)π3−2a

]

=
π

2a− 3

< ∞

as required. Hence, for a > 3
2 , (cosx)

a−2 ∈ L2
[−π

2 ,
π
2

]
. It then follows from the converse of the

Paley–Wiener Theorem that Ia(t) ∈ L2(R) and is entire.

It remains to show that Îa ∈ L2
[−π

2 ,
π
2

]
. Note that we can write

Ia(t) =

∫ π
2

−π
2

(cosx)a−2eitx dx

= lim
R→∞

1√
2π

∫ R

−R

√
2πI(−π

2 ,π2 )
(x)(cosx)a−2eitx dx.

This shows that Ia is the inverse Fourier transform of
√
2πI(−π

2 ,π2 )
(x)(cosx)a−2. It follows then

that

Îa(x) =
√
2πI(−π

2 ,π2 )
(x)(cosx)a−2

from which it is easily seen (by the first calculation of this proof) that Îa ∈ L2
[−π

2 ,
π
2

]
.

6.3 Using Ia to Find a Basis for PW
(
π
2

)
In the case that a ∈ N, the formula for Ia can be greatly simplified. In fact, when a ∈ N, Ia can

be written as a sum of sinc functions. We use this observation to ultimately show that the set

{I2b}b∈N gives a basis for the even functions in the space PW
(
π
2

)
. On the way to proving this

we note that the sinc functions arising as reproducing kernels of the space PW
(
π
2

)
can be used

to construct an orthonormal basis for PW
(
π
2

)
.

The first task is to write Ia in terms of sinc functions. The following proposition shows that

when a ∈ N, the function Ia can be expressed as a sum of sinc functions.

Proposition 6.3.0.14 Suppose that a ∈ N. Then,

Ia(t) =
π

2a−2

a−2∑
j=0

(
a− 2

j

)
sinc

1

2
[t+ a− 2(j + 1)].

Proof. Let a ∈ N, then

Ia(t) =

∫ π
2

−π
2

(cosx)a−2eitx dx

=

∫ π
2

−π
2

[
eix + e−ix

2

]a−2

eitx dx.
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We use the binomial theorem to expand (cosx)a−2 as follows

[
eix + e−ix

2

]a−2

=
1

2a−2

a−2∑
j=0

(
a− 2

j

)
ei(a−j−2)xe−ijx

=
1

2a−2

a−2∑
j=0

(
a− 2

j

)
ei(a−2j−2)x.

Therefore,

Ia(t) =
1

2a−2

∫ π
2

−π
2

⎡
⎣a−2∑

j=0

(
a− 2

j

)
ei(a−2j−2)x

⎤
⎦ eitx dx

=
1

2a−2

∫ π
2

−π
2

a−2∑
j=0

(
a− 2

j

)
ei(t+a−2j−2)x dx

=
1

2a−2

a−2∑
j=0

(
a− 2

j

)∫ π
2

−π
2

ei(t+a−2j−2)x dx.

Now,

∫ π
2

−π
2

ei(t+a−2j−2)x dx =

[
ei(t+a−2j−2)x

i(t+ a− 2j − 2)

]π
2

x=−π
2

=
ei

π
2 (t+a−2j−2) − e−iπ

2 (t+a−2j−2)

i(t+ a− 2j − 2)

=
2 sin π

2 (t+ a− 2j − 2)

t+ a− 2j − 2

= π sinc
1

2
(t+ a− 2j − 2).

Hence,

Ia(t) =
π

2a−2

a−2∑
j=0

(
a− 2

j

)
sinc

1

2
[t+ a− 2(j + 1)]

as required.

Remark 6.3.0.15 Notice that if a is even so that a = 2b for some b ∈ N then

I2b(t) =
π

22b−2

2b−2∑
j=0

(
2b− 2

j

)
sinc

1

2
[t+ 2(b− j − 1)].

Similarly if a = 2b+ 1 for some b ∈ N so that a is odd then

I2b+1(t) =
π

22b−1

2b−1∑
j=0

(
2b− 1

j

)
sinc

1

2
[t+ 2(b− j)− 1].

The remainder of this section is devoted to finding a basis based on the functions Ia, for

the even functions in the space PW
(
π
2

)
. We first seek to show that the reproducing kernels for

PW
(
π
2

)
form an orthonormal basis for the space.

Proposition 6.3.0.16 Let k2n(t) =
1
2 sinc

1
2 (t− 2n) be a reproducing kernel for PW (π2 ). Then

the set
{√

2k2n
}
n∈Z

forms an orthonormal basis for PW (π2 ).
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Proof. Let f ∈ PW (π2 ) then by the Whittaker–Kotel’nikov–Shannon Sampling Theorem

5.2.0.13,

f(t) =

∞∑
n=−∞

f(2n)
sin π

2 (t− 2n)
π
2 (t− 2n)

=
∞∑

n=−∞
f(2n) sinc

1

2
(t− 2n).

By Proposition 2.4.3.4, the space PW (π2 ) has reproducing kernel

ks(t) =
1

2
sinc

1

2
(t− s),

thus

sinc
1

2
(t− 2n) = 2k2n(t).

Further, as k2n is a reproducing kernel we have

f(2n) = 〈f, k2n〉.

Therefore,

f(t) = 2
∞∑

n=−∞
〈f, k2n〉k2n(t)

=
∞∑

n=−∞
〈f,

√
2k2n〉

√
2k2n(t).

Finally we note that

〈
√
2k2m,

√
2k2n〉 = 2k2m(2n)

= sinc (n−m).

Thus, by Lemma 5.2.0.12

〈
√
2k2m,

√
2k2n〉 =

⎧⎨
⎩0 if n �= m,

1 if n = m.

It now follows that
{√

2k2n
}
n∈Z

forms an orthonormal basis for PW
(
π
2

)
.

Remark 6.3.0.17 Notice that the sinc term in Ia for a = 2b takes the form

sinc
1

2
[t+ 2(b− j − 1)] = 2k2n(t)

where n = −(b− j − 1) is an integer. Similarly, when a = 2b+ 1 we have

sinc
1

2
[t+ 2(b− j)− 1] = 2k1−2(b−j)(t).

In Proposition 6.3.0.14 we saw that the function Ia could be expressed in terms of sinc

functions. Remark 6.3.0.17 shows that we can express these sinc functions in terms of the repro-

ducing kernel for PW
(
π
2

)
. That is, we can use the orthonormal basis,

{√
2
2 sinc 1

2 (t− 2n)
}
n∈Z

to construct Ia. It is therefore natural to ask whether {Ia}a∈Z, or at least {I2b}b∈Z, forms a basis

for PW
(
π
2

)
. We proceed to answer this question.
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Lemma 6.3.0.18 Let a be even so that a = 2b for some b ∈ N. Then I2b is an even function

and

I2b(t) =
π

22b−1

2b−2∑
j=0

(
2b− 2

j

){
sinc

1

2
[t+ 2(b− j − 1)] + sinc

1

2
[t− 2(b− j − 1)]

}
.

Proof. Let b ∈ N and set a = 2b. By Proposition 6.3.0.14 we have

I2b(t) =
π

22b−2

2b−2∑
j=0

(
2b− 2

j

)
sinc

1

2
[t+ 2(b− j − 1)]. (6.3)

If we run the summation ’backwards’, that is, sum from the (2b− 2)nd term to the zeroth term

then I2b becomes

I2b(t) =
π

22b−2

2b−2∑
j=0

(
2b− 2

2b− j − 2

)
sinc

1

2
{t+ 2[b− (2b− j − 2)− 1]}

=
π

22b−2

2b−2∑
j=0

(
2b− 2

j

)
sinc

1

2
[t− 2(b− j − 1)]. (6.4)

Adding (6.3) and (6.4) produces

2I2b(t) =
π

22b−2

2b−2∑
j=0

(
2b− 2

j

){
sinc

1

2
[t+ 2(b− j − 1)] + sinc

1

2
[t− 2(b− j − 1)]

}

as required.

Finally we note that I2b is even by Lemma 6.2.0.12.

The following proposition gives a basis for the even functions in PW
(
π
2

)
. Again, the basis

is constructed using reproducing kernels for PW
(
π
2

)
.

Proposition 6.3.0.19 The set

BE =

{√
2

2
sinc

1

2
t

}
∪
{
1

2

[
sinc

1

2
(t+ 2n) + sinc

1

2
(t− 2n)

]}∞

n=1

forms an orthonormal basis for the even functions in the space PW
(
π
2

)
.

Proof. By Proposition 6.3.0.16, we know that
{√

2
2 sinc 1

2 (t− 2n)
}
n∈Z

forms an orthonormal

basis for PW
(
π
2

)
and so, for f ∈ PW

(
π
2

)
, we may write

f(t) =

√
2

2

∞∑
n=−∞

an sinc
1

2
(t− 2n) (6.5)

where an =
〈
f,

√
2
2 sinc 1

2 (s− 2n)
〉

for n ∈ Z. Note that we can reformulate (6.5) so that the

summation runs over N0 as follows,

f(t) =

√
2

2
a0 sinc

1

2
t+

√
2

2

∞∑
n=1

[
an sinc

1

2
(t− 2n) + a−n sinc

1

2
(t+ 2n)

]
.

Further, if f is even then f must satisfy f(t) = f(−t). So, f ∈ PW
(
π
2

)
is even if and only if

0 = f(t)− f(−t)

=

√
2

2
a0 sinc

1

2
t+

√
2

2

∞∑
n=1

[
an sinc

1

2
(t− 2n) + a−n sinc

1

2
(t+ 2n)

]
−

√
2

2
a0 sinc

1

2
(−t)

−
√
2

2

∞∑
n=1

[
an sinc

1

2
(−t− 2n) + a−n sinc

1

2
(−t+ 2n)

]
.
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Since the sinc function is even, we may simplify the above to obtain

0 =

√
2

2

∞∑
n=1

[
an sinc

1

2
(t− 2n) + a−n sinc

1

2
(t+ 2n)

]

−
√
2

2

∞∑
n=1

[
an sinc

1

2
(t+ 2n) + a−n sinc

1

2
(t− 2n)

]

=

√
2

2

∞∑
n=1

(an − a−n)

[
sinc

1

2
(t− 2n)− sinc

1

2
(t+ 2n)

]
. (6.6)

Now, if (6.6) is true for all t then we must have an − a−n = 0. It follows that f ∈ PW
(
π
2

)
is

even if and only if an = a−n. Hence for even f ∈ PW
(
π
2

)
we have

f(t) =

√
2

2
a0 sinc

1

2
t+

√
2

2

∞∑
n=1

[
an sinc

1

2
(t− 2n) + a−n sinc

1

2
(t+ 2n)

]

=

√
2

2
a0 sinc

1

2
t+

√
2

2

∞∑
n=1

an

[
sinc

1

2
(t− 2n) + sinc

1

2
(t+ 2n)

]
.

It is now clear that the set BE =
{√

2
2 sinc 1

2 t
}
∪ { 1

2

[
sinc 1

2 (t+ 2n) + sinc 1
2 (t− 2n)

]}∞
n=1

does

indeed form a basis for the even functions in the space PW
(
π
2

)
. It remains to show that the

basis BE is orthonormal. Observe that since an = a−n, we have

2an = an + a−n

=

〈
f,

√
2

2
sinc

1

2
(s− 2n)

〉
+

〈
f,

√
2

2
sinc

1

2
(s+ 2n)

〉

=

〈
f,

√
2

2

[
sinc

1

2
(s− 2n) + sinc

1

2
(s+ 2n)

]〉
.

Hence,

f(t) =

√
2

2

〈
f,

√
2

2
sinc

1

2
s

〉
sinc

1

2
t

+

√
2

4

∞∑
n=1

〈
f,

√
2

2

[
sinc

1

2
(s− 2n) + sinc

1

2
(s+ 2n)

]〉[
sinc

1

2
(t− 2n)

+ sinc
1

2
(t+ 2n)

]

=
1

2

〈
f, sinc

1

2
s

〉
sinc

1

2
t

+
1

4

∞∑
n=1

〈
f, sinc

1

2
(s− 2n) + sinc

1

2
(s+ 2n)

〉[
sinc

1

2
(t− 2n) + sinc

1

2
(t+ 2n)

]
,

showing that for f ∈ PW
(
π
2

)
even, f can be wriiten as a linear combination of the elements

of BE . We conclude by showing that the elements of BE are orthonormal. First recall that

k2n(t) =
1
2 sinc

1
2 (t−2n) is a reproducing kernel for PW

(
π
2

)
. In order to simplify the notation and

exploit the properties of a reproducing kernel, we rewrite the set BE in terms of the reproducing

kernel. Thus

BE =
{√

2k0

}
∪ {k−2n + k2n}∞n=1
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where

k0(t) =
1

2
sinc

1

2
t,

k−2n(t) + k2n(t) =
1

2

[
sinc

1

2
(t+ 2n) + sinc

1

2
(t− 2n)

]
.

We now check that the elements of BE are orthogonal. Let n ∈ N then, given k2n is a reproducing

kernel,

〈k−2n + k2n,
√
2k0〉 =

√
2〈k−2n, k0〉+

√
2〈k2n,

√
2k0〉

=
√
2k−2n(0) +

√
2k2n(0).

By Lemma 5.2.0.12 we have k−2n(0) = 0 = k2n(0), hence 〈k−2n+k2n,
√
2k0〉 = 0. Now let m ∈ N

and suppose that m �= n. Again, since k is a reproducing kernel we have

〈k−2m + k2m, k−2n + k2n〉 = 〈k−2m, k−2n〉+ 〈k−2m, k2n〉+ 〈k2m, k−2n〉+ 〈k2m, k2n〉
= k−2m(−2n) + k−2m(2n) + k2m(−2n) + k2m(2n).

Lemma 5.2.0.12 now gives 〈k−2m(t) + k2m(t), k−2n(t) + k2n(t)〉 = 0 for m �= n. We have thus

shown that the set BE is orthogonal and it remains to show that the elements are normalised.

Now, again using the fact that k is a reproducing kernel we see that

〈
√
2k0,

√
2k0〉 = 2〈k0, k0〉

= 2k0(0)

= sinc 0.

It then follows from Lemma 5.2.0.12 that 〈√2k0,
√
2k0〉 = 1. Similarly, using Lemma 5.2.0.12,

〈k−2n + k2n, k−2n + k2n〉 = 〈k−2n, k−2n〉+ 〈k−2n, k2n〉+ 〈k2n, k−2n〉+ 〈k2n, k2n〉
= k−2n(−2n) + k−2n(2n) + k2n(−2n) + k2n(2n)

= 1.

Thus BE is indeed an orthonormal basis for the even functions in the space PW
(
π
2

)
.

As a point of interest we show that we can also find a basis for the odd functions in PW
(
π
2

)
.

Proposition 6.3.0.20 The set

BO =

{
1

2

[
sinc

1

2
(t− 2n)− sinc

1

2
(t+ 2n)

]}∞

n=1

forms an orthonormal basis for the odd functions in the space PW
(
π
2

)
.

Proof. Again, by Proposition 6.3.0.16,
{√

2
2 sinc 1

2 (t− 2n)
}
n∈Z

forms an orthonormal basis for

PW
(
π
2

)
. For f ∈ PW

(
π
2

)
we have

f(t) =

√
2

2

∞∑
n=−∞

an sinc
1

2
(t− 2n)

=

√
2

2
a0 sinc

1

2
t+

√
2

2

∞∑
n=1

[
an sinc

1

2
(t− 2n) + a−n sinc

1

2
(t+ 2n)

]
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where an =
〈
f,

√
2
2 sinc 1

2 (s− 2n)
〉
for n ∈ N0. Further, if f is odd then f must satisfy f(t) =

−f(−t). Therefore, f ∈ PW
(
π
2

)
is odd if and only if

0 = f(t) + f(−t)

=

√
2

2
a0 sinc

1

2
t+

√
2

2

∞∑
n=1

[
an sinc

1

2
(t− 2n) + a−n sinc

1

2
(t+ 2n)

]
+

√
2

2
a0 sinc

1

2
(−t)

+

√
2

2

∞∑
n=1

[
an sinc

1

2
(−t− 2n) + a−n sinc

1

2
(−t+ 2n)

]
.

Since the sinc function is even, we may simplify the above to obtain

0 =
√
2a0 sinc

1

2
t+

√
2

2

∞∑
n=1

[
an sinc

1

2
(t− 2n) + a−n sinc

1

2
(t+ 2n)

]

+

√
2

2

∞∑
n=1

[
an sinc

1

2
(t+ 2n) + a−n sinc

1

2
(t− 2n)

]

=
√
2a0 sinc

1

2
t+

√
2

2

∞∑
n=1

(a−n + an)

[
sinc

1

2
(t− 2n) + sinc

1

2
(t+ 2n)

]
. (6.7)

Notice that if (6.7) is true for all t then we must have a0 = 0 and a−n + an = 0. It follows that

f ∈ PW
(
π
2

)
is odd if and only if a0 = 0 and a−n = −an. Hence for odd f ∈ PW

(
π
2

)
we have

f(t) =

√
2

2
a0 sinc

1

2
t+

√
2

2

∞∑
n=1

[
an sinc

1

2
(t− 2n) + a−n sinc

1

2
(t+ 2n)

]

=

√
2

2

∞∑
n=1

an

[
sinc

1

2
(t− 2n)− sinc

1

2
(t+ 2n)

]
.

Again we have shown that the set BO =
{

1
2

[
sinc 1

2 (t− 2n)− sinc 1
2 (t+ 2n)

]}∞
n=1

forms a basis

for the odd functions in PW
(
π
2

)
. We finish by showing that BO is an orthonormal basis. Note

that since a−n = −an, we have

2an = an − a−n

=

〈
f,

√
2

2
sinc

1

2
(s− 2n)

〉
−
〈
f,

√
2

2
sinc

1

2
(s+ 2n)

〉

=

〈
f,

√
2

2

[
sinc

1

2
(s− 2n)− sinc

1

2
(s+ 2n)

]〉
.

Hence,

f(t) =

√
2

4

∞∑
n=1

〈
f,

√
2

2

[
sinc

1

2
(s− 2n)− sinc

1

2
(s+ 2n)

]〉[
sinc

1

2
(t− 2n)− sinc

1

2
(t+ 2n)

]

=
1

4

∞∑
n=1

〈
f, sinc

1

2
(s− 2n)− sinc

1

2
(s+ 2n)

〉[
sinc

1

2
(t− 2n)− sinc

1

2
(t+ 2n)

]

showing that the set BO is a spanning sequence for the odd functions in the space PW
(
π
2

)
. We

conclude by showing that the elements of BO are orthonormal. Recall that k2n(t) =
1
2 sinc

1
2 (t−

2n) is a reproducing kernel for PW
(
π
2

)
and rewrite the set BO in terms of this reproducing

kernel. Thus

BO = {k2n − k−2n}∞n=1 .
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We now check that the elements of BO are orthonormal. Let n,m ∈ N and suppose that m �= n

then, given k is a reproducing kernel,

〈k2m − k−2m, k2n − k−2n〉 = 〈k2m, k2n〉 − 〈k2m, k−2n〉 − 〈k−2m, k2n〉+ 〈k−2m, k−2n〉
= k2m(2n)− k2m(−2n)− k−2m(2n) + k−2m(−2n).

It now follows from Lemma 5.2.0.12 that 〈k2m − k−2m, k2n − k−2n〉 = 0 for m �= n. Finally, and

again using Lemma 5.2.0.12,

〈k2n − k−2n, k2n − k−2n〉 = 〈k2n, k2n〉 − 〈k2n, k−2n〉 − 〈k−2n, k2n〉+ 〈k−2n, k−2n〉
= k2n(2n)− k2n(−2n)− k−2n(2n) + k−2n(−2n)

= 1.

Thus BO is indeed an orthonormal basis for the odd functions in the space PW
(
π
2

)
.

When considering operators we are able to construct the matrix of an operator with respect

to a given basis. In the following theorem we construct the matrix of I2b with respect to the

basis BE . That is, we construct a matrix, T whose nth column is given by the coefficients of

I2n when expressed as a linear combination of the basis, BE . Furthermore, we show that the

functions {I2b}b∈N form a basis for the even Paley–Wiener functions over the interval
(−π

2 ,
π
2

)
.

Theorem 6.3.0.21 Let X denote the matrix of I2b with respect to the basis BE. Then the bth

column of X is given by

π

22b−3

[√
2
2

(
2b−2
b−1

) (
2b−2
b−2

)
. . .

(
2b−2
1

) (
2b−2
0

)
0 0 . . .

]T
.

The matrix X is an upper triangular matrix with strictly positive entries on and above the leading

diagonal and takes the form

X = π

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
2 1

2

(
2
1

) (√
2
2

)
1
2

(
4
2

) (√
2

23

)
1
2

(
6
3

) (√
2

25

)
· · ·

0
(
2
0

) (
1
2

) (
4
1

) (
1
23

) (
6
2

) (
1
25

) · · ·
0 0

(
4
0

) (
1
23

) (
6
1

) (
1
25

) · · ·
0 0 0

(
6
0

) (
1
25

)
0 0 0 0

. . .

. . .
. . .

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Furthermore, the set {I2b}b∈N gives a basis for the even functions in the space PW
(
π
2

)
.

Proof. We first express I2b as a linear combination of the basis, BE . The coefficients of I2b with
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respect to BE then form the bth column of the required matrix. By Lemma 6.3.0.18,

I2b(t) =
π

22b−1

2b−2∑
j=0

(
2b− 2

j

){
sinc

1

2
[t+ 2(b− j − 1)] + sinc

1

2
[t− 2(b− j − 1)]

}

=
π

22b−1

[(
2b− 2

0

){
sinc

1

2
[t+ 2(b− 1)] + sinc

1

2
[t− 2(b− 1)]

}

+

(
2b− 2

1

){
sinc

1

2
[t+ 2(b− 2)] + sinc

1

2
[t− 2(b− 2)]

}
+ . . .

+

(
2b− 2

b− 2

){
sinc

1

2
(t+ 2) + sinc

1

2
(t− 2)

}

+

(
2b− 2

b− 1

){
sinc

1

2
t+ sinc

1

2
t

}
+

(
2b− 2

b

){
sinc

1

2
(t− 2) + sinc

1

2
(t+ 2)

}

+ · · ·+
(
2b− 2

2b− 3

){
sinc

1

2
[t− 2(b− 2)] + sinc

1

2
[t+ 2(b− 2)]

}

+

(
2b− 2

2b− 2

){
sinc

1

2
[t− 2(b− 1)] + sinc

1

2
[t+ 2(b− 1)]

}]
.

Upon expanding the above summation we note that we can pair off the terms, thus

I2b(t) =
π

22b−1

[
2

(
2b− 2

b− 1

)
sinc

1

2
t+

{(
2b− 2

b− 2

)
+

(
2b− 2

b

)}{
sinc

1

2
(t− 2) + sinc

1

2
(t+ 2)

}

+ · · ·+
{(

2b− 2

1

)
+

(
2b− 2

2b− 3

)}{
sinc

1

2
[t− 2(b− 2)] + sinc

1

2
[t+ 2(b− 2)]

}

+

{(
2b− 2

0

)
+

(
2b− 2

2b− 2

)}{
sinc

1

2
[t− 2(b− 1)] + sinc

1

2
[t+ 2(b− 1)]

}]
.

Since (
n

r

)
+

(
n

n− r

)
= 2

(
n

r

)
,

it follows that

I2b(t) =
π

22b−1

[
2

(
2b− 2

b− 1

)
sinc

1

2
t+ 2

(
2b− 2

b− 2

){
sinc

1

2
(t− 2) + sinc

1

2
(t+ 2)

}
+ . . .

+2

(
2b− 2

1

){
sinc

1

2
[t− 2(b− 2)] + sinc

1

2
[t+ 2(b− 2)]

}

+2

(
2b− 2

0

){
sinc

1

2
[t− 2(b− 1)] + sinc

1

2
[t+ 2(b− 1)]

}]
.

Finally we adjust each term so that it corresponds to an element of BE . We therefore have

I2b(t) =
π

22b−1

[
2
√
2

(
2b− 2

b− 1

)[√
2

2
sinc

1

2
t

]
+ 4

(
2b− 2

b− 2

){
1

2

[
sinc

1

2
(t− 2) + sinc

1

2
(t+ 2)

]}

+ · · ·+ 4

(
2b− 2

1

){
1

2

[
sinc

1

2
[t− 2(b− 2)] + sinc

1

2
[t+ 2(b− 2)]

]}

+4

(
2b− 2

0

){
1

2

[
sinc

1

2
[t− 2(b− 1)] + sinc

1

2
[t+ 2(b− 1)]

]}]
.

Hence the bth column of the matrix of I2b with respect to the basis BE is

π

22b−3

[√
2
2

(
2b−2
b−1

) (
2b−2
b−2

)
. . .

(
2b−2
1

) (
2b−2
0

)
0 0 . . .

]T
.
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Substituting in values for b then produces the matrix

X = π

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
2 1

2

(
2
1

) (√
2
2

)
1
2

(
4
2

) (√
2

23

)
1
2

(
6
3

) (√
2

25

)
· · ·

0
(
2
0

) (
1
2

) (
4
1

) (
1
23

) (
6
2

) (
1
25

) · · ·
0 0

(
4
0

) (
1
23

) (
6
1

) (
1
25

) · · ·
0 0 0

(
6
0

) (
1
25

)
0 0 0 0

. . .

. . .
. . .

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In order to see that the set {I2b}b∈N forms a basis for the even functions in PW
(
π
2

)
, we

simply need to show that each element of BE can be expressed as a linear combination of the

elements {I2b}b∈N. Let XT denote the transpose of the matrix X. Notice that X is upper

triangular with non-zero, positive entries on the leading diagonal. Each upper left n × n block

has non-zero determinant and is therefore invertible. It follows that X and consequently XT are

invertible. Let Z denote the column vector

Z =
[
I2 I4 I6 . . .

]T
and let Y denote the column vector

Y =
[√

2
2 sinc 1

2 t
1
2

[
sinc 1

2 (t+ 2) + sinc 1
2 (t− 2)

]
1
2

[
sinc 1

2 (t+ 4) + sinc 1
2 (t− 4)

]
. . .
]
.

By the first part of the theorem we have

Z = XTY.

The invertibility of XT then allows us to write

Y =
(
XT

)−1
Z,

thus expressing the basis elements, BE in terms of the functions, {I2b}b∈N. This completes the

proof.

6.4 A Formula by Ramanujan: The Integral Ia in Terms of

the Gamma Function

In this section we introduce the Gamma function, Γ along with some relations satisfied by

Γ. We then state and prove a result known to Ramanujan that expresses the integral Ia as

defined in Definition 6.2.0.11 in terms of the Gamma function. Further, we see that Ia arises

as the characteristic function of a probability density function. Also, in Section 6.3 we found

expressions for Ia given that a ∈ Z, we continue with this here. Noting that when n ∈ N we can

express the Gamma function in terms of factorials, we use this idea to further simplify Ia.

We begin with a brief introduction to the Gamma function. A detailed construction of the

definition of the Gamma function can be found in [31] (Section 8.8, page 229).
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Definition 6.4.0.22 For t ∈ C such that Re(t) > 0 we define the Gamma function to be,

Γ(t) =

∫ ∞

0

xt−1e−x dx.

Remark 6.4.0.23 The Gamma function as defined in Definition 6.4.0.22 is holomorphic on the

half-plane Re(t) > 0. See [31] (page 230).

In the next set of definitions we introduce some well-known identities that will be used

throughout subsequent calculations.

Definition 6.4.0.24 For Re(t) > 0, the Gamma function satisfies the identity,

Γ(t) = (t− 1)Γ(t− 1). (6.8)

Further, if t = n ∈ N then

Γ(n) = (n− 1)!. (6.9)

Remark 6.4.0.25 In [31] (page 230), it can be seen that the identity, (6.8) can be used to extend

the definition of the Gamma function to include those values of t for which Re(t) ≤ 0. In fact,

the identity

Γ(t) =
Γ(t+ n)

t(t+ 1) . . . (t+ n− 1)
(6.10)

holds for Re(t) > −n. Furthermore, by Remark 6.4.0.23, Γ(t+ n) is holomorphic when Re(t) >

−n. It now follows from (6.10) that Γ(t) is a meromorphic function with poles at the points

t = 0,−1, . . . ,−n+ 1. This shows that 1
Γ(t) is an entire function.

Definition 6.4.0.26 The Gamma function satisfies the relation

1

Γ(t)Γ(1− t)
=

sinπt

π
= t sinc t. (6.11)

The final identity that we will make use of in this section is the Legendre duplication formula.

This is stated in the following proposition. A proof of the Legendre duplication formula can be

found in [54] (Section 1.86, page 55).

Proposition 6.4.0.27 For any z ∈ C we have

Γ(2z) =
22z−1

√
π

Γ(z)Γ

(
z +

1

2

)
.

The next proposition that we will give is due to Ramanujan. The proof depends upon

integration around a suitable contour in the complex plane and the use of Beta functions to

evaluate the integrals. We fist define a Beta function and give a useful relation between the Beta

function and the Gamma function.

Definition 6.4.0.28 The Beta function is defined by

B(a, b) =

∫ 1

0

xa−1(1− x)b−1 dx

and it satisfies the relation

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
.
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We now present Ramanujan’s formula for the integral, Ia. Here we state the result and give

a full proof for completeness. The idea behind the method for the proof has been taken from

[53] (Section 7.6, page 186).

Proposition 6.4.0.29 Let Ia be as defined in Definition 6.2.0.11. Then for a > 1,

Ia(t) =
πΓ(a− 1)

2a−2Γ
(
a+t
2

)
Γ
(
a−t
2

) .
Proof. We prove that the identity holds for 1 < a < 2 and t + a − 2 > 0, then use an analytic

continuation argument to show that the identity holds for a > 1 and t ∈ R. Let 0 < δ < 1.

Define a contour, γ as follows:

γ = γ1 ⊕ [i, δi]⊕ γ2 ⊕ [−δi,−i]

where γ1 is the unit semicircle in the right half plane and γ2 denotes the semicircle centre 0,

radius δ, traced clockwise in the right half plane. Consider the function

f(z) =
1

i

(
z + z−1

2

)a−2

zt−1.

Now, f is holomorphic on and inside the contour γ, therefore, by Cauchy’s theorem,

0 =

∫
γ

1

i

(
z + z−1

2

)a−2

zt−1 dz

=

∫
γ1

+

∫
[i,δi]

+

∫
γ2

+

∫
[−δi,−i]

{(
z + z−1

2

)a−2

zt
1

iz

}
dz. (6.12)

We want to write the integral in polar form so we make the substitution z = reix, where r > 0

denotes the radius and −π ≤ x ≤ π denotes the angle between z and the real axis. Now, γ1 is

the unit semicircle in the right half plane, therefore we take r = 1 and −π
2 ≤ x ≤ π

2 . The first

integral then becomes∫
γ1

(
z + z−1

2

)a−2

zt
dz

iz
=

∫ π
2

−π
2

(
eix + e−ix

2

)a−2 (
eix
)t ieix

ieix
dx

=

∫ π
2

−π
2

(cosx)a−2eitx dx.

Similarly, for the third integral we have r = δ and −π
2 ≤ x ≤ π

2 for γ2 which is traced in a

clockwise direction. Thus,∫
γ2

(
z + z−1

2

)a−2

zt
dz

iz
= −

∫ π
2

−π
2

(
δeix + 1

δeix

2

)a−2 (
δeix

)t iδeix

i (δeix)
dx

= − 1

2a−2

∫ π
2

−π
2

(
δeix +

1

δeix

)a−2 (
δeix

)t
dx.

We treat the second and fourth integrals a little differently. Considering the second integral

we see that∫
[i,δi]

(
z + z−1

2

)a−2

zt
dz

iz
=

∫ δ

1

(
iy + 1

iy

2

)a−2

(iy)t
i

i2y
dy

=
1

2a−2

∫ 1

δ

(
iy +

1

iy

)a−2

(iy)t
i

y
dy

=
1

2a−2

∫ 1

δ

(
yei

π
2 +

1

yei
π
2

)a−2 (
yei

π
2

)t eiπ
2

y
dy.
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We can remove a factor of ei
π
2 from yei

π
2 + 1

yei
π
2
, giving

(
yei

π
2 +

1

yei
π
2

)a−2

=

[
ei

π
2

(
y +

1

yeiπ

)]a−2

= ei
(a−2)π

2

(
y +

1

yeiπ

)a−2

.

Noting that eiπ = −1 we therefore have

∫
[i,δi]

(
z + z−1

2

)a−2

zt
dz

iz
=

1

2a−2

∫ 1

δ

ei
(a−2)π

2

(
y +

1

yeiπ

)a−2

yt−1ei
(t+1)π

2 dy

= −ei
(t+a+1)π

2

2a−2

∫ 1

δ

(
y +

e−iπ

y

)a−2

yt−1 dy.

Our aim is to write
∫
[i,δi]

(
z+z−1

2

)a−2

zt dz
iz as a Beta integral as this will allow us to evaluate

the integral in terms of Gamma functions; we come to this later. For now we note that

(
y +

e−iπ

y

)a−2

yt−1 =
(
y2 + e−iπ

)a−2
yt−a+1

=
[
e−iπ

(
1− y2

)]a−2
yt−a+1

= ei(2−a)π
(
1− y2

)a−2
yt−a+1

= e−iaπ
(
1− y2

)a−2
yt−a+1

where the last line follows since e2πi = 1. Hence∫
[i,δi]

(
z + z−1

2

)a−2

zt
dz

iz
= −ei

(t+a+1)π
2

2a−2

∫ 1

δ

e−iaπ
(
1− y2

)a−2
yt−a+1 dy

= −ei
(t−a+1)π

2

2a−2

∫ 1

δ

(
1− y2

)a−2
yt−a+1 dy.

We use the same approach to evaluate the fourth integral. First,

∫
[−δi,−i]

(
z + z−1

2

)a−2

zt
dz

iz
=

∫ 1

δ

(−iy + 1
−iy

2

)a−2

(−iy)t
(−i)

(−i2)y
dy

=
1

2a−2

∫ 1

δ

(
−iy +

1

−iy

)a−2

(−iy)t
(−i)

y
dy

=
1

2a−2

∫ 1

δ

(
ye−iπ

2 +
1

ye−iπ
2

)a−2 (
ye−iπ

2

)t e−iπ
2

y
dy.

Next remove a factor of e−iπ
2 from ye−iπ

2 + 1

ye−i π
2
, giving

(
ye−iπ

2 +
1

ye−iπ
2

)a−2

=

[
e−iπ

2

(
y +

1

ye−iπ

)]a−2

= e−i
(a−2)π

2

(
y +

eiπ

y

)a−2

.

Using this together with the fact that eiπ = −1 we have

∫
[−δi,−i]

(
z + z−1

2

)a−2

zt
dz

iz
=

1

2a−2

∫ 1

δ

e−i
(a−2)π

2

(
y +

eiπ

y

)a−2

yt−1e−i
(t+1)π

2 dy

= −e−i
(t+a+1)π

2

2a−2

∫ 1

δ

(
y +

eiπ

y

)a−2

yt−1 dy.
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Eventually we will write
∫
[−δi,−i]

(
z+z−1

2

)a−2

zt dz
iz as a Beta integral so for now we note that

(
y +

eiπ

y

)a−2

yt−1 =

(
y2 + eiπ

y

)a−2

yt−1

=

[
eiπ

(
1− y2

y

)]a−2

yt−1

= ei(a−2)π
(
1− y2

)a−2
yt−a+1

= eiaπ
(
1− y2

)a−2
yt−a+1.

Thus, ∫
[−δi,−i]

(
z + z−1

2

)a−2

zt
dz

iz
= −e−i

(t+a+1)π
2

2a−2

∫ 1

δ

eiaπ
(
1− y2

)a−2
yt−a+1 dy

= −e−i
(t−a+1)π

2

2a−2

∫ 1

δ

(
1− y2

)a−2
yt−a+1 dy.

Putting this information together we see that equation (6.12) now becomes

0 =

∫ π
2

−π
2

(cosx)a−2eitx dx− ei
(t−a+1)π

2

2a−2

∫ 1

δ

(
1− y2

)a−2
yt−a+1 dy

− 1

2a−2

∫ π
2

−π
2

(
δeix +

1

δeix

)a−2 (
δeix

)t
dx− e−i

(t−a+1)π
2

2a−2

∫ 1

δ

(
1− y2

)a−2
yt−a+1 dy.

Rearranging and simplifying the above gives

Ia(t) =

∫ π
2

−π
2

(cosx)a−2eitx dx

=

(
ei

(t−a+1)π
2 + e−i

(t−a+1)π
2

2a−2

)∫ 1

δ

(
1− y2

)a−2
yt−a+1 dy

+
1

2a−2

∫ π
2

−π
2

(
δeix +

1

δeix

)a−2 (
δeix

)t
dx

=
2 cos π

2 (t− a+ 1)

2a−2

∫ 1

δ

(
1− y2

)a−2
yt−a+1 dy +

1

2a−2

∫ π
2

−π
2

(
δeix +

1

δeix

)a−2 (
δeix

)t
dx.

Note that

cos
π

2
(t− a+ 1) = sin

[π
2
(t− a) + π

]
= sin

π

2
(t− a) cosπ

= − sin
π

2
(t− a)

using the double angle formulae. Also, as sin is an odd function we have − sin π
2 (t − a) =

sin π
2 (a− t). Definition 6.4.0.26 then allows us to write sin π

2 (a− t) in terms of Gamma functions,

thus

cos
π

2
(t− a+ 1) =

π sin π
2 (a− t)

π

=
π

Γ
(
a−t
2

)
Γ
(
1− a−t

2

) .
It follows that

Ia(t) =
2π

2a−2Γ
(
a−t
2

)
Γ
(
1− a−t

2

) ∫ 1

δ

(
1− y2

)a−2
yt−a+1 dy

+
1

2a−2

∫ π
2

−π
2

(
δeix +

1

δeix

)a−2 (
δeix

)t
dx. (6.13)
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We finish the calculation by taking the limit as δ → 0+ of (6.13). First, recall that we wanted

to write
∫ 1

δ

(
1− y2

)a−2
yt−a+1 dy as a Beta integral; we proceed to do this via a substitution.

Let u = y2 then∫ 1

δ

(
1− y2

)a−2
yt−a+1 dy =

∫ 1

δ2
(1− u)

a−2 (√
u
)t−a+1 du

2
√
u

=
1

2

∫ 1

δ2
(1− u)a−2

(√
u
)t−a

du

→ 1

2
B

(
t− a

2
+ 1, a− 1

)

as δ → 0+. By the relation stated in Definition 6.4.0.28 it follows that

lim
δ→0+

∫ 1

δ

(
1− y2

)a−2
yt−a+1 dy =

Γ
(
t−a+2

2

)
Γ(a− 1)

2Γ
(
a+t
2

) .

Finally we consider
∫ π

2

−π
2

(
δeix + 1

δeix

)a−2 (
δeix

)t
dx. Let 1 < a < 2, then

∣∣∣∣∣
∫ π

2

−π
2

(
δeix +

1

δeix

)a−2 (
δeix

)t
dx

∣∣∣∣∣ ≤ δt
∫ π

2

−π
2

∣∣∣∣δeix +
1

δeix

∣∣∣∣
a−2

dx.

We note that ∣∣∣∣δeix +
1

δeix

∣∣∣∣
2

=

(
δeix +

1

δeix

)(
δe−ix +

1

δe−ix

)

= δ2 + e2ix + e−2ix +
1

δ2

= δ2 + 2 cos 2x+
1

δ2

≤ δ2 + 2 +
1

δ2
.

Since δ > 0 and real, it follows that∣∣∣∣δeix +
1

δeix

∣∣∣∣
2

≤
(
δ +

1

δ

)2

.

Thus, ∣∣∣∣∣
∫ π

2

−π
2

(
δeix +

1

δeix

)a−2 (
δeix

)t
dx

∣∣∣∣∣ ≤ δt
∫ π

2

−π
2

(
δ +

1

δ

)a−2

dx.

Now observe that

δt
(
δ +

1

δ

)a−2

= δt−a+2
(
δ2 + 1

)a−2

→ 0

as δ → 0+ whenever t− a+ 2 > 0. Since 1 < a < 2 we have t− a+ 2 > 0 whenever t > 0. Thus

for t > 0 ∣∣∣∣∣
∫ π

2

−π
2

(
δeix +

1

δeix

)a−2 (
δeix

)t
dx

∣∣∣∣∣→ 0
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as δ → 0+. We conclude that for 1 < a < 2 and t > 0,

Ia(t) = lim
δ→0+

{
2π

2a−2Γ
(
a−t
2

)
Γ
(
1− a−t

2

) ∫ 1

δ

(
1− y2

)a−2
yt−a+1 dy

+
1

2a−2

∫ π
2

−π
2

(
δeix +

1

δeix

)a−2 (
δeix

)t
dx

}

=
πΓ

(
t−a+2

2

)
Γ(a− 1)

2a−2Γ
(
a−t
2

)
Γ
(
t−a+2

2

)
Γ
(
a+t
2

) + 0

=
πΓ(a− 1)

2a−2Γ
(
a−t
2

)
Γ
(
a+t
2

) .
Since Ia is an even function it is clear that the above identity also holds for t < 0. It remains to

show that the identity holds when t = 0. Let t = 0 then by [26] (3.621(5) and 8.384(1)),

Ia(0) =

∫ π
2

−π
2

(cosx)a−2 dx

= 2

∫ π
2

0

(sinx)0(cosx)a−2 dx

=
Γ
(
1
2

)
Γ
(
a−1
2

)
Γ
(
a
2

) .

Note that Γ
(
1
2

)
=

√
π then by the Legendre duplication formula 6.4.0.27 we have

Γ(a− 1) =
2a−2

√
π

Γ

(
a− 1

2

)
Γ
(a
2

)
.

Therefore

Ia(0) =
πΓ(a− 1)

2a−2Γ
(
a
2

)2
as expected.

To complete the proof and show that the identity holds for a > 1 we first note that the map

a �→ Ia(t) is holomorphic on Re (a) > 1. Also, the map

a �→ πΓ(a− 1)

2a−2Γ
(
a+t
2

)
Γ
(
a−t
2

)
is holomorphic on Re (a) > 1 since 1

Γ( a+t
2 )Γ( a−t

2 )
is entire and Γ(a−1) is holomorphic on Re (a) >

1. Since

Ia(t) =
πΓ(a− 1)

2a−2Γ
(
a−t
2

)
Γ
(
a+t
2

) (6.14)

for 1 < a < 2 and t ∈ R, it follows from the Identity Theorem [43] (Section 15.8, page 180) that

(6.14) holds for a > 1 and t ∈ R.

In the proof of the following proposition we see that the integral, Ia arises as the characteristic

function of a probability density function. Further, we can evaluate the characteristic function

using Proposition 6.4.0.29.

Proposition 6.4.0.30 Let a > 1. For −π
2 < x < π

2 , the function

pa(x) =

√
πΓ

(
a
2

)
πΓ

(
a−1
2

) (cosx)a−2
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is a probability density function with characteristic function

ρ(t) =
Γ
(
a
2

)2
Γ
(
a+t
2

)
Γ
(
a−t
2

) .
Proof. Let a > 1. The fact that pa is a probability density function is easily seen for if

Ia(0) =

∫ π
2

−π
2

(cosx)a−2 dx,

then ∫ π
2

−π
2

pa(x) dx =
Γ
(
a
2

)
√
πΓ

(
a−1
2

)Ia(0).
By Proposition 6.4.0.29,

Ia(0) =
πΓ(a− 1)

2a−2Γ
(
a
2

)2 .
We use the Legendre duplication formula 6.4.0.27 to write

Γ(a− 1) =
2a−2

√
π

Γ

(
a− 1

2

)
Γ
(a
2

)
.

So,

Ia(0) =

√
πΓ

(
a−1
2

)
Γ
(
a
2

)
and it is now easily seen that pa is a probability density function.

To calculate the characteristic function, ρ of pa, first note that by definition we have

ρ(t) =

∫ ∞

−∞
pa(x)e

itx dx

=

√
πΓ

(
a
2

)
πΓ

(
a−1
2

) ∫ π
2

−π
2

(cosx)a−2eitx dx.

Note that Ia(t) =
∫ π

2

−π
2
(cosx)a−2eitx dx, thus, by Proposition 6.4.0.29 we have

ρ(t) =

√
πΓ

(
a
2

)
Γ(a− 1)

2a−2Γ
(
a−1
2

)
Γ
(
a+t
2

)
Γ
(
a−t
2

) .
Finally, we apply the Legendre duplication formula 6.4.0.27 to obtain

Γ(a− 1) =
2a−2

√
π

Γ

(
a− 1

2

)
Γ
(a
2

)
,

giving

ρ(t) =
2a−2

√
πΓ

(
a
2

)
Γ
(
a−1
2

)
Γ
(
a
2

)
2a−2

√
πΓ

(
a−1
2

)
Γ
(
a+t
2

)
Γ
(
a−t
2

)
=

Γ
(
a
2

)2
Γ
(
a+t
2

)
Γ
(
a−t
2

) .

In the case that a ∈ N we can use Proposition 6.4.0.29 to evaluate Ia(t) and produce some

useful relations. To do this, we must consider the cases of a odd and even separately. Following

this we see that we can use our relations to evaluate Ia(t) when a is any integer. Before considering

a to be a general integer we first look at the case that a = 2 as in that case, the function Ia is

simplified greatly.
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Lemma 6.4.0.31 Suppose that a = 2 then

I2(tj − k) = π sinc
1

2
(tj − k).

Furthermore,

I2(tj − k) =
π

Γ
(
1 +

tj−k
2

)
Γ
(
1− tj−k

2

) .
Proof. Let a = 2 then by Definition 6.2.0.11 it is clear that

I2(tj − k) =

∫ π
2

−π
2

ei(tj−k)x dx.

Calculating this integral directly we obtain

I2(tj − k) =

∫ π
2

−π
2

ei(tj−k)x dx

=

[
ei(tj−k)x

i(tj − k)

]π
2

x=−π
2

=

[
ei

π
2 (tj−k) − e−iπ

2 (tj−k)

i(tj − k)

]

=
2 sin π

2 (tj − k)

(tj − k)

= π sinc
1

2
(tj − k).

This completes the first part of the lemma.

To find I2(tj − k) in terms of Gamma functions, we use Proposition 6.4.0.29. Thus,

I2(tj − k) =
πΓ(1)

Γ
(
1 +

tj−k
2

)
Γ
(
1− tj−k

2

) .

By Definition 6.4.0.24, Γ(1) = 1 and Γ
(
1 +

tj−k
2

)
=
(

tj−k
2

)
Γ
(

tj−k
2

)
and so

I2(tj − k) =
π(

tj−k
2

)
Γ
(

tj−k
2

)
Γ
(
1− tj−k

2

) .
Note that this value does agree with that found in the first part of the lemma, for by Definition

6.4.0.26,

1

Γ
(

tj−k
2

)
Γ
(
1− tj−k

2

) =

(
tj − k

2

)
sinc

1

2
(tj − k),

hence

I2(tj − k) =
π
(

tj−k
2

)
sinc 1

2 (tj − k)

tj−k
2

= π sinc
1

2
(tj − k).

162



Next we turn our attention to the case that a ∈ Z. As in Lemma 6.4.0.31, we use Definition

6.4.0.24 and 6.4.0.26 to simplify the function Ia. The proofs of the following two lemmas contain

calculations that are elementary and standard. However, we give them in detail so as to make

clear the precise features of the formulae. We begin by considering the case that a = 2n for some

n ∈ N, showing how to evaluate I2n(t).

Lemma 6.4.0.32 Let C(t) be the field of rational functions in the variable t. Adjoin the tran-

scendental function sin π
2 t to form the algebra C(t)

[
sin π

2 t
]
. Then for n ∈ Z,

I2n(t) =
π(2n− 2)! sinc 1

2 t

22n−2
∏n−1

j=1

[
(n− j)2 +

(
t
2

)2]
so I2n(t) ∈ C(t)

[
sin π

2 t
]
.

Proof. Let a = 2n for some n ∈ N then

I2n(t) =
πΓ(2n− 1)

22n−2Γ
(
2n+t

2

)
Γ
(
2n−t

2

)
=

πΓ(2n− 1)

22n−2Γ
(
n+ t

2

)
Γ
(
n− t

2

) .
By equation (6.9) we have Γ(2n− 1) = (2n− 2)!. Furthermore, we can repeatedly apply (6.8) to

obtain

Γ

(
n+

t

2

)
=

(
n− 1 +

t

2

)
Γ

(
n− 1 +

t

2

)

=

(
n− 1 +

t

2

)(
n− 2 +

t

2

)
Γ

(
n− 2 +

t

2

)
= . . .

=

(
n− 1 +

t

2

)(
n− 2 +

t

2

)
. . .

(
t

2

)
Γ

(
t

2

)

=

⎡
⎣ n∏
j=1

(
n− j +

t

2

)⎤⎦Γ

(
t

2

)
.

Similarly we find that

Γ

(
n− t

2

)
=

(
n− 1− t

2

)
Γ

(
n− 1− t

2

)

=

(
n− 1− t

2

)(
n− 2− t

2

)
Γ

(
n− 2− t

2

)
= . . .

=

(
n− 1− t

2

)(
n− 2− t

2

)
. . .

(
1− t

2

)
Γ

(
1− t

2

)

=

⎡
⎣n−1∏

j=1

(
n− j − t

2

)⎤⎦Γ

(
1− t

2

)
.

Therefore,

I2n(t) =
π(2n− 2)!

22n−2
[∏n

j=1

(
n− j + t

2

)] [∏n−1
k=1

(
n− k − t

2

)]
Γ
(
t
2

)
Γ
(
1− t

2

)
=

π(2n− 2)!

22n−2 t
2

∏n−1
j=1

[
(n− j)2 +

(
t
2

)2]
Γ
(
t
2

)
Γ
(
1− t

2

) .

163



Finally, equation (6.11) allows us to write

1

Γ
(
t
2

)
Γ
(
1− t

2

) =
t

2
sinc

1

2
t.

Hence,

I2n(t) =
π(2n− 2)! t2 sinc

1
2 t

22n−2 t
2

∏n−1
j=1

[
(n− j)2 +

(
t
2

)2]
=

π(2n− 2)! sinc 1
2 t

22n−2
∏n−1

j=1

[
(n− j)2 +

(
t
2

)2] .
To finish, we note that I2n(t) is a rational function of t multiplied by sin π

2 t. Therefore

I2n(t) ∈ C(t)
[
sin π

2 t
]
.

In the next lemma we consider the case that a = 2n+ 1 for n ∈ Z. Our calculations provide

a relation between I2n+1(t) and I2n(t). We also include a relation for I2n+2(t) and I2n(t).

Lemma 6.4.0.33 Let C(t) be the field of rational functions in the variable t. Adjoin the tran-

scendental function cos π
2 t to form the algebra C(t)

[
cos π

2 t
]
. Then, for n ∈ N the following

relations hold:

I2n+1(t) =
2π(2n− 1)!(2n− 2)! sinc t∏2n−1

j=1 [(2n− j)2 − t2]

1

I2n(t)
;

I2n+2(t) =
2n(2n− 1)

(2n+ t)(2n− t)
I2n(t),

where I2n(t) has a rational coefficient in the formula for I2n+2(t). Furthermore, I2n+1(t) ∈
C(t)

[
cos π

2 t
]
.

Proof. Let a = 2n+ 1 then

I2n+1(t) =
πΓ(2n)

22n−1Γ
(
2n+1+t

2

)
Γ
(
2n+1−t

2

)
=

πΓ(2n)

22n−1Γ
(
2n+t

2 + 1
2

)
Γ
(
2n−t

2 + 1
2

) .
We use the Legendre duplication formula 6.4.0.27 to write

Γ

(
2n+ t

2
+

1

2

)
=

√
πΓ(2n+ t)

22n+t−1Γ
(
2n+t

2

) ;
Γ

(
2n− t

2
+

1

2

)
=

√
πΓ(2n− t)

22n−t−1Γ
(
2n−t

2

) .
Thus

I2n+1(t) =
24n−2πΓ(2n)Γ

(
2n+t

2

)
Γ
(
2n−t

2

)
22n−1πΓ(2n+ t)Γ(2n− t)

=
22n−1Γ(2n)Γ

(
2n+t

2

)
Γ
(
2n−t

2

)
Γ(2n+ t)Γ(2n− t)

=
22n−1Γ(2n)Γ

(
n+ t

2

)
Γ
(
n− t

2

)
Γ(2n+ t)Γ(2n− t)

.

We recognise Γ
(
n+ t

2

)
Γ
(
n− t

2

)
since this appeared in Lemma 6.4.0.32. The lemma therefore

allows us to write

Γ

(
n+

t

2

)
Γ

(
n− t

2

)
=

πΓ(2n− 1)

22n−2I2n(t)
,
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hence,

I2n+1(t) =
22n−1πΓ(2n)Γ(2n− 1)

22n−2Γ(2n+ t)Γ(2n− t)I2n(t)

=
2πΓ(2n)Γ(2n− 1)

Γ(2n+ t)Γ(2n− t)I2n(t)
.

We use the same technique as in the proof of Lemma 6.4.0.32 to deduce that

Γ(2n+ t) =

⎡
⎣ 2n∏
j=1

(2n− j + t)

⎤
⎦Γ(t);

Γ(2n− t) =

⎡
⎣2n−1∏

j=1

(2n− j − t)

⎤
⎦Γ(1− t).

Thus,

1

Γ(2n+ t)Γ(2n− t)
=

1[∏2n
j=1 (2n− j + t)

] [∏2n−1
j=1 (2n− j − t)

]
Γ(t)Γ(1− t)

=
1

t
{∏2n−1

j=1 [(2n− j)2 − t2]
}
Γ(t)Γ(1− t)

=
sinc t∏2n−1

j=1 [(2n− j)2 − t2]

where the last line follows from (6.11). So we have

I2n+1(t) =
2πΓ(2n)Γ(2n− 1) sinc t{∏2n−1
j=1 [(2n− j)2 − t2]

}
I2n(t)

=
2π(2n− 1)!(2n− 2)! sinc t{∏2n−1
j=1 [(2n− j)2 − t2]

}
I2n(t)

.

Notice that I2n+1(t)I2n(t) ∈ C(t)[sinπt] and I2n(t) ∈ C(t)
[
sin π

2 t
]
, therefore, I2n+1(t) is a

rational function multiplied by sinπt
sin π

2 t . From the double angle formulae we note that

sinπt = 2 sin
π

2
t cos

π

2
t

and so it follows that I2n+1(t) ∈ C(t)
[
cos π

2 t
]
.

Now let a = 2n+ 2 then, using (6.8) we have

I2n+2(t) =
πΓ(2n+ 1)

22nΓ
(
2n+2+t

2

)
Γ
(
2n+2−t

2

)
=

πΓ(2n+ 1)

22nΓ
(
n+ 1 + t

2

)
Γ
(
n+ 1− t

2

)
=

πΓ(2n+ 1)

22n
(
n+ t

2

) (
n− t

2

)
Γ
(
n+ t

2

)
Γ
(
n− t

2

) .
Again, we recognise Γ

(
n+ t

2

)
Γ
(
n− t

2

)
and so following Lemma 6.4.0.32 we obtain

Γ

(
n+

t

2

)
Γ

(
n− t

2

)
=

πΓ(2n− 1)

22n−2I2n(t)
.
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Hence,

I2n+2(t) =
22n−2πΓ(2n+ 1)I2n(t)

22nπ
(
n+ t

2

) (
n− t

2

)
Γ(2n− 1)

=
Γ(2n+ 1)I2n(t)

22
(
n+ t

2

) (
n− t

2

)
Γ(2n− 1)

=
(2n)!I2n(t)

22
(
n+ t

2

) (
n− t

2

)
(2n− 2)!

=
2n(2n− 1)

(2n+ t)(2n− t)
I2n(t).

Remark 6.4.0.34 The relations stated in the previous lemmas allow us to work out Ia(t) for

a ∈ {2, 3, . . . }. However, we can also run these relations backwards to obtain Ia(t) for a ∈
{. . . ,−1, 0, 1}. These relations can therefore be used to extend Ramanujan’s formula to cover the

cases when a is an integer.

6.5 Determinants Associated with Ramanujan’s Integral,

Ia

We have thus arrived at the main section of this chapter. The previous sections have been

designed so that they lead up to the calculation of determinants associated with the function

Ia. Given a sequence, (tj)
n
j=−n we calculate the determinant of the matrix [Ia(tj − k)]

n
j,k=−n

using Andréief’s Identity 2.3.0.31. In the case that tj = j we can use Ramanujan’s formula

6.4.0.29 to write the Ia(tj − k) in terms of factorials. This allows us to give the matrix form of

[Ia(tj − k)]
n
j,k=−n. In fact we see that [Ia(j − k)]

n
j,k=−n is a Toeplitz matrix. In previous sections

we found different formulae for Ia depending on whether a was odd or even. It should come as

no surprise then that the matrix [Ia(j − k)]
n
j,k=−n differs with a odd or even, although in both

cases it takes the Toeplitz form.

Throughout this section we give results for a sequence, (tn)n∈Z. Although the results stated

hold for a general sequence, the reader should note that in particular they hold for the sampling

sequence found in Chapter 5. Therefore, we can evaluate determinants with entries based on

Ramanujan’s integral, Ia at sampling points corresponding to the periodic spectrum of Hill’s

equation.

The following lemma shows the relationship between two points on the unit circle. We use it

to explain the terms appearing in the formulae stated in Theorem 6.5.0.36.

Lemma 6.5.0.35 Let z1 and z2 be points on the unit circle, with angles x1 and x2 respectively,

in relation to the real axis. The distance between the points z1 and z2 is given by,

|z1 − z2 | = 2

∣∣∣∣sin 1

2
(x1 − x2)

∣∣∣∣ .
Proof. Let z1 and z2 be points on the unit circle. Then, in polar form z1 = eix1 and z2 = eix2 .
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Let |z1 − z2 | denote the distance between the points z1 and z2 then,

|z1 − z2 |2 = (z1 − z2) (z1 − z2)

=
(
eix1 − eix2

) (
e−ix1 − e−ix2

)
= 2− ei(x1−x2) − e−i(x1−x2)

= 2 [1− cos(x1 − x2)] .

Using the double angle formulae to evaluate 1− cos(x1 − x2) we therefore obtain

|z1 − z2 |2 = 4 sin2
1

2
(x1 − x2).

Taking the square root of both sides now produces the desired result.

In the following theorem we regard xj as points distributed on the interval
[−π

2 ,
π
2

]
according

to the probability density function pa described in Proposition 6.4.0.30. The reader should also

note the interaction term ∏
−n≤j<k≤n

4 sin2
1

2
(xk − xj) (6.15)

arising from the (Vandermonde) product,
∏

−n≤j<k≤n

∣∣eixj − eixk
∣∣2. Lemma 6.5.0.35 shows

that (6.15) is the product of squared distances between points on the unit circle. Note also that

the product (6.15) is analogous to the Weyl denominator formula. By Definition 6.1.0.10, for

−n ≤ j, k ≤ n, the modulus of the Weyl denominator is given by∏
−n≤j<k≤n

∣∣∣e2πi(xj−xk) − 1
∣∣∣ =

∏
−n≤j<k≤n

∣∣e2πixj − e2πixk
∣∣

=
∏

−n≤j<k≤n

2 |sinπ(xj − xk)|

where the last line follows from Lemma 6.5.0.35.

Theorem 6.5.0.36 Let n ∈ N then

det

[
1

π
Ia(tj − k)

]n
j,k=−n

=
1

(2n+ 1)!

∫ π
2

−π
2

· · ·
∫ π

2

−π
2

det
[
eitjxl

]n
j,l=−n

det
[
e−ikxl

]n
l,k=−n

⎡
⎣ n∏
j=−n

(cosxj)
a−2

⎤
⎦ dx−n

π
. . .

dxn

π
.

(6.16)

Suppose further that tj = j for j ∈ Z then

det

[
1

π
Ia(j − k)

]n
j,k=−n

=
1

(2n+ 1)!

∫ π
2

−π
2

· · ·
∫ π

2

−π
2

⎡
⎣ ∏
−n≤j<k≤n

4 sin2
1

2
(xk − xj)

⎤
⎦
⎡
⎣ n∏
j=−n

(cosxj)
a−2

⎤
⎦ dx−n

π
. . .

dxn

π
.

Proof. From Definition 6.2.0.11 we have

det

[
1

π
Ia(tj − k)

]n
j,k=−n

= det

[
1

π

∫ π
2

−π
2

(cosx)a−2ei(tj−k)x dx

]n
j,k=−n

= det

[
1

π

∫ π
2

−π
2

eitjx(cosx)a−2e−ikx dx

]n
j,k=−n

.
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Applying Andréief’s Identity, 2.3.0.31 to the above then yields

det

[
1

π
Ia(tj − k)

]n
j,k=−n

=
1

(2n+ 1)!

∫ π
2

−π
2

· · ·
∫ π

2

−π
2

det
[
eitjxl

]n
j,l=−n

det
[
(cosxl)

a−2e−ikxl
]n
l,k=−n

dx−n

π
. . .

dxn

π
.

We use elementary row operations to simplify
[
(cosxl)

a−2e−ikxl
]n
l,k=−n

. First note that every

element in row l of the matrix
[
(cosxl)

a−2e−ikxl
]n
l,k=−n

contains a factor of (cosxl)
a−2. We can

remove each of these factors and place it into an elementary matrix that premultiplies the matrix[
e−ikxl

]n
l,k=−n

. The resulting elementary matrix will be diagonal with the (j, j)th entry being

(cosxj)
a−2. Thus, we have

[
(cosxl)

a−2e−ikxl
]n
l,k=−n

= diag
[
(cosxl)

a−2
]n
l=−n

[
e−ikxl

]n
l,k=−n

,

from which we obtain

det
[
(cosxl)

a−2e−ikxl
]n
l,k=−n

=

[
n∏

l=−n

(cosxl)
a−2

]
det

[
e−ikxl

]n
l,k=−n

.

Hence,

det

[
1

π
Ia(tj − k)

]n
j,k=−n

=
1

(2n+ 1)!

∫ π
2

−π
2

· · ·
∫ π

2

−π
2

det
[
eitjxl

]n
j,l=−n

det
[
e−ikxl

]n
l,k=−n

⎡
⎣ n∏
j=−n

(cosxj)
a−2

⎤
⎦ dx−n

π
. . .

dxn

π
.

This completes the proof of the first part of the result.

For the second part of the theorem, suppose that tj = j for j ∈ Z. Then, from (6.16) we have

det

[
1

π
Ia(tj − k)

]n
j,k=−n

=
1

(2n+ 1)!

∫ π
2

−π
2

· · ·
∫ π

2

−π
2

det
[
eijxl

]n
j,l=−n

det
[
e−ikxl

]n
l,k=−n

⎡
⎣ n∏
j=−n

(cosxj)
a−2

⎤
⎦ dx−n

π
. . .

dxn

π
.

In order to evaluate the determinants of
[
eijxl

]n
j,l=−n

and
[
e−ikxl

]n
l,k=−n

we first write them as

Vandermonde matrices. Notice that

[
eijxl

]n
j,l=−n

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
eix−n

)−n · · · (
eix0

)−n · · · (
eixn

)−n

...
...

...

1 · · · 1 · · · 1
...

...
...(

eix−n
)n · · · (

eix0
)n · · · (

eixn
)n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

so, if we remove a factor of
(
eixl

)−n
from the lth column for each l ∈ {−n, . . . , n}, then the

resulting matrix will be a Vandermonde matrix. The matrix
[
eijxl

]n
j,l=−n

is therefore equivalent

to post multiplying a Vandermonde matrix by a diagonal elementary matrix. Thus,

[
eijxl

]n
j,l=−n

=
[
ei(j−1)xl

]
1≤j≤2n+1,−n≤l≤n

diag
[
e−inxl

]n
l=−n
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Now,
[
ei(j−1)xl

]
1≤j≤2n+1,−n≤l≤n

is a Vandermonde matrix but before we can evaluate its deter-

minant we need to relabel the xl so that 1 ≤ l ≤ 2n + 1, that is, k and l run over the same

indices. It is easy to see that the map l �→ l + n+ 1 produces the desired index. It follows that[
eijxl

]n
j,l=−n

=
[
ei(j−1)xl−n−1

]2n+1

j,l=1
diag

[
e−inxl

]n
l=−n

.

Taking the determinant and using Definition 2.3.0.17 produces

det
[
eijxl

]n
j,l=−n

= det

([
ei(j−1)xl−n−1

]2n+1

j,l=1
diag

[
e−inxl

]n
l=−n

)

= det
[
ei(j−1)xl−n−1

]2n+1

j,l=1
det

(
diag

[
e−inxl

]n
l=−n

)

=

⎡
⎣ ∏
1≤j<l≤2n+1

(
eixl−n−1 − eixj−n−1

)⎤⎦[ n∏
l=−n

e−inxl

]

=

⎡
⎣ ∏
−n≤j<l≤n

(
eixl − eixj

)⎤⎦[ n∏
l=−n

e−inxl

]
.

Similarly we find that

det
[
e−ikxl

]n
l,k=−n

=

[
n∏

l=−n

einxl

]⎡⎣ ∏
−n≤l<k≤n

(
e−ixk − e−ixl

)⎤⎦ .

Therefore,

det

[
1

π
Ia(tj − k)

]n
j,k=−n

=
1

(2n+ 1)!

∫ π
2

−π
2

· · ·
∫ π

2

−π
2

⎡
⎣ ∏
−n≤j<l≤n

(
eixl − eixj

)⎤⎦
⎡
⎣ ∏
−n≤l<k≤n

(
e−ixk − e−ixl

)⎤⎦
⎡
⎣ n∏
j=−n

(cosxj)
a−2

⎤
⎦ dx−n

π
. . .

dxn

π

=
1

(2n+ 1)!

∫ π
2

−π
2

· · ·
∫ π

2

−π
2

⎡
⎣ ∏
−n≤j<k≤n

∣∣eixk − eixj
∣∣2
⎤
⎦
⎡
⎣ n∏
j=−n

(cosxj)
a−2

⎤
⎦ dx−n

π
. . .

dxn

π
.

Note that
∣∣eixk − eixj

∣∣ is the distance between two points on the unit circle. It follows that∏
−n≤j<k≤n

∣∣eixk − eixj
∣∣2 is a product of squared distances thus, by Lemma 6.5.0.35 we have,∏

−n≤j<k≤n

∣∣eixk − eixj
∣∣2 =

∏
−n≤j<k≤n

4 sin2
1

2
(xk − xj).

Hence,

det

[
1

π
Ia(j − k)

]n
j,k=−n

=
1

(2n+ 1)!

∫ π
2

−π
2

· · ·
∫ π

2

−π
2

⎡
⎣ ∏
−n≤j<k≤n

4 sin2
1

2
(xk − xj)

⎤
⎦
⎡
⎣ n∏
j=−n

(cosxj)
a−2

⎤
⎦ dx−n

π
. . .

dxn

π

as required.

We want to make the determinants given in Theorem 6.5.0.36 more explicit. Under certain

circumstances this can be done. We look closely at cases when a ∈ N and tj ∈ Z and evaluate the

resulting determinants. Before doing this we look at the case a = 2 and tj ∈ R as this produces

a simple result.
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Proposition 6.5.0.37 Let a = 2 then the determinant of the matrix
[
1
π I2(tj − k)

]n
j,k=−n

reduces

to

det

[
1

π
I2(tj − k)

]n
j,k=−n

= det

[
sinc

1

2
(tj − k)

]n
j,k=−n

.

Proof. Let a = 2 then by Lemma 6.4.0.31

1

π
I2(tj − k) = sinc

1

2
(tj − k).

Hence,

det

[
1

π
I2(tj − k)

]n
j,k=−n

= det

[
sinc

1

2
(tj − k)

]n
j,k=−n

as required.

The following corollary is placed here merely to check the constants of Theorem 6.5.0.36. Its

proof makes use of the preceding proposition.

Corollary 6.5.0.38 Suppose that n = 1 and a = 2. Let tj = j then the determinant of the

matrix [
1

π
I2(j − k)

]1
j,k=−1

satisfies Theorem 6.5.0.36.

Proof. Set n = 1 and a = 2 and let tj = j. By Proposition 6.5.0.37 we have,

det

[
1

π
I2(j − k)

]1
j,k=−1

= det

[
sinc

1

2
(j − k)

]1
j,k=−1

= det

⎡
⎢⎢⎣

sinc (0) sinc
(− 1

2

)
sinc (−1)

sinc
(
1
2

)
sinc (0) sinc

(− 1
2

)
sinc (1) sinc

(
1
2

)
sinc (0)

⎤
⎥⎥⎦

= det

⎡
⎢⎢⎣

sinc (0) sinc
(
1
2

)
sinc (1)

sinc
(
1
2

)
sinc (0) sinc

(
1
2

)
sinc (1) sinc

(
1
2

)
sinc (0)

⎤
⎥⎥⎦ ,

where the last line holds as the sinc function is an even function. Given that sinc (0) = 1,

sinc (1) = 0 and sinc
(
1
2

)
= 2

π , it follows that

det

[
1

π
I2(j − k)

]1
j,k=−1

= det

⎡
⎢⎢⎣
1 2

π 0

2
π 1 2

π

0 2
π 1

⎤
⎥⎥⎦

= det

⎡
⎣1 2

π

2
π 1

⎤
⎦− 2

π
det

⎡
⎣ 2

π
2
π

0 1

⎤
⎦

= 1−
(
2

π

)2

−
(
2

π

)2

= 1− 8

π2
.

170



We now check the value of det
[
1
π I2(j − k)

]1
j,k=−1

as stated by Theorem 6.5.0.36. We use the

full matrix notation to make our calculations clear, thus

det

[
1

π
I2(j − k)

]1
j,k=−1

=
1

3!

∫ π
2

−π
2

∫ π
2

−π
2

∫ π
2

−π
2

det
[
eijxl

]1
j,l=−1

det
[
e−ikxl

]1
k,l=−1

dx−1

π

dx0

π

dx1

π

=
1

6π3

∫ π
2

−π
2

∫ π
2

−π
2

∫ π
2

−π
2

det
([

eijxl
]1
j,l=−1

.
[
e−ikxl

]1
k,l=−1

)
dx−1 dx0 dx1

=
1

6π3

∫ π
2

−π
2

∫ π
2

−π
2

∫ π
2

−π
2

det

⎛
⎜⎜⎝
⎡
⎢⎢⎣
e−ix−1 e−ix0 e−ix1

1 1 1

eix−1 eix0 eix1

⎤
⎥⎥⎦
⎡
⎢⎢⎣
eix−1 eix0 eix1

1 1 1

e−ix−1 e−ix0 e−ix1

⎤
⎥⎥⎦
⎞
⎟⎟⎠ dx−1 dx0 dx1.

Note that the two matrices in the above expression are row equivalent and so

det

[
1

π
I2(j − k)

]1
j,k=−1

=
1

6π3

∫ π
2

−π
2

∫ π
2

−π
2

∫ π
2

−π
2

det

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎣
0 0 1

0 1 0

1 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣
eix−1 eix0 eix1

1 1 1

e−ix−1 e−ix0 e−ix1

⎤
⎥⎥⎦
2
⎞
⎟⎟⎟⎠ dx−1 dx0 dx1

= − 1

6π3

∫ π
2

−π
2

∫ π
2

−π
2

∫ π
2

−π
2

det

⎡
⎢⎢⎣
eix−1 eix0 eix1

1 1 1

e−ix−1 e−ix0 e−ix1

⎤
⎥⎥⎦
2

dx−1 dx0 dx1

= − 1

6π3

∫ π
2

−π
2

∫ π
2

−π
2

∫ π
2

−π
2

⎛
⎜⎜⎝det

⎡
⎢⎢⎣
eix−1 eix0 eix1

1 1 1

e−ix−1 e−ix0 e−ix1

⎤
⎥⎥⎦
⎞
⎟⎟⎠

2

dx−1 dx0 dx1.

Expanding the determinant gives

det

⎡
⎢⎢⎣
eix−1 eix0 eix1

1 1 1

e−ix−1 e−ix0 e−ix1

⎤
⎥⎥⎦

= − det

⎡
⎣ eix0 eix1

e−ix0 e−ix1

⎤
⎦+ det

⎡
⎣ eix−1 eix1

e−ix−1 e−ix1

⎤
⎦− det

⎡
⎣ eix−1 eix0

e−ix−1 e−ix0

⎤
⎦

= −ei(x0−x1) + e−i(x0−x1) + ei(x−1−x1) − e−i(x−1−x1) − ei(x−1−x0) + e−i(x−1−x0)

= −2i sin(x0 − x1) + 2i sin(x−1 − x1)− 2i sin(x−1 − x0).
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A further expansion of the terms inside the brackets then produces

det

[
1

π
I2(j − k)

]1
j,k=−1

= − 1

6π3

∫ π
2

−π
2

∫ π
2

−π
2

∫ π
2

−π
2

{−2i sin(x0 − x1) + 2i sin(x−1 − x1)− 2i sin(x−1 − x0)}2 dx−1 dx0 dx1

= − 1

6π3

∫ π
2

−π
2

∫ π
2

−π
2

∫ π
2

−π
2

{−4 sin2(x0 − x1) + 8 sin(x−1 − x1) sin(x0 − x1)− 4 sin2(x−1 − x1)

−8 sin(x−1 − x0) sin(x0 − x1) + 8 sin(x−1 − x0) sin(x−1 − x1)− 4 sin2(x−1 − x0)
}

dx−1 dx0 dx1.

We then use the double angle formulae to further simplify the integrand so that we may easily

evaluate it. Hence,

det

[
1

π
I2(j − k)

]1
j,k=−1

= − 1

6π3

∫ π
2

−π
2

∫ π
2

−π
2

∫ π
2

−π
2

{−2 + 2 cos 2(x0 − x1) + 4 cos(x−1 − x0)− 4 cos(x−1 + x0 − 2x1)− 2

+2 cos 2(x−1 − x1)− 4 cos(x−1 − 2x0 + x1) + 4 cos(x−1 − x1) + 4 cos(x1 − x0)

−4 cos(2x−1 − x0 − x1)− 2 + 2 cos 2(x−1 − x0)} dx−1 dx0 dx1

= − 1

6π3

∫ π
2

−π
2

∫ π
2

−π
2

∫ π
2

−π
2

{−6 + 4 cos(x0 − x1) + 2 cos 2(x0 − x1) + 4 cos(x−1 − x0)

+4 cos(x−1 − x1) + 2 cos 2(x−1 − x0) + 2 cos 2(x−1 − x1)− 4 cos(x−1 + x0 − 2x1)

−4 cos(x−1 − 2x0 + x1)− 4 cos(2x−1 − x0 − x1)} dx−1 dx0 dx1.

We evaluate the inner integral as follows,

I−1 =

∫ π
2

−π
2

{−6 + 4 cos(x0 − x1) + 2 cos 2(x0 − x1) + 4 cos(x−1 − x0) + 4 cos(x−1 − x1)

+2 cos 2(x−1 − x0) + 2 cos 2(x−1 − x1)− 4 cos(x−1 + x0 − 2x1)

−4 cos(x−1 − 2x0 + x1)− 4 cos(2x−1 − x0 − x1)} dx−1

= [{−6 + 4 cos(x0 − x1) + 2 cos 2(x0 − x1)}x−1 + 4 sin(x−1 − x0) + 4 sin(x−1 − x1)

+ sin 2(x−1 − x0) + sin 2(x−1 − x1)− 4 sin(x−1 + x0 − 2x1)− 4 sin(x−1 − 2x0 + x1)

−2 sin(2x−1 − x0 − x1)]
π
2

x−1=−π
2

= π [−6 + 4 cos(x0 − x1) + 2 cos 2(x0 − x1)] + 4 sin
(π
2
− x0

)
− 4 sin

(
−π

2
− x0

)
+4 sin

(π
2
− x1

)
− 4 sin

(
−π

2
− x1

)
+ sin(π − 2x0)− sin(−π − 2x0) + sin(π − 2x1)

− sin(−π − 2x1)− 4 sin
(π
2
+ x0 − 2x1

)
+ 4 sin

(
−π

2
+ x0 − 2x1

)
−4 sin

(π
2
− 2x0 + x1

)
+ 4 sin

(
−π

2
− 2x0 + x1

)
− 2 sin(π − x0 − x1)

+2 sin(−π − x0 − x1).

Using the double angle formulae we can simplify the integral above to obtain,

I−1 = π [−6 + 4 cos(x0 − x1) + 2 cos 2(x0 − x1)] + 8 cos(x0) + 8 cos(x1)− 8 cos(x0 − 2x1)

−8 cos(2x0 − x1).
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Therefore,

det

[
1

π
I2(j − k)

]1
j,k=−1

= − 1

6π3

∫ π
2

−π
2

∫ π
2

−π
2

{−6π + 8 cos(x1) + 8 cos(x0) + 4π cos(x0 − x1)− 8 cos(x0 − 2x1)

−8 cos(2x0 − x1) + 2π cos 2(x0 − x1)} dx0 dx1.

Again, evaluating the inner integral, i.e. the integral with respect to x0, we see that

I0 =

∫ π
2

−π
2

{−6π + 8 cos(x1) + 8 cos(x0) + 4π cos(x0 − x1)− 8 cos(x0 − 2x1)− 8 cos(2x0 − x1)

+2π cos 2(x0 − x1)} dx0

= [{−6π + 8 cos(x1)}x0 + 8 sin(x0) + 4π sin(x0 − x1)− 8 sin(x0 − 2x1)− 4 sin(2x0 − x1)

+π sin 2(x0 − x1)]
π
2

x0=−π
2

= π [−6π + 8 cos(x1)] + 8 sin
(π
2

)
− 8 sin

(
−π

2

)
+ 4π sin

(π
2
− x1

)
− 4π sin

(
−π

2
− x1

)
−8 sin

(π
2
− 2x1

)
+ 8 sin

(
−π

2
− 2x1

)
− 4 sin(π − x1) + 4 sin(−π − x1)

+π sin(π − 2x1)− π sin(−π − 2x1)

= π [−6π + 8 cos(x1)] + 16 + 8π cos(x1)− 16 cos(2x1).

Finally, we evaluate the remaining integral. Thus,

det

[
1

π
I2(j − k)

]1
j,k=−1

= − 1

6π3

∫ π
2

−π
2

{
16− 6π2 + 16π cos(x1)− 16 cos(2x1)

}
dx1

= − 1

6π3

[(
16− 6π2

)
x1 + 16π sin(x1)− 8 sin(2x1)

]π
2

x1=−π
2

= − 1

6π3

[
π
(
16− 6π2

)
+ 16π sin

(π
2

)
− 16π sin

(
−π

2

)
− 8 sin(π) + 8 sin(−π)

]
= − 1

6π3

[
48π − 6π3

]
= 1− 8

π2

as required.

Theorem 6.5.0.36 focuses on evaluating the integral expression of Ia. However, we can also

use Ramanujan’s formula 6.4.0.29 to evaluate det [Ia(tj − k)]
n
j,k=−n. Recall that for n ∈ N,

Γ(n) = (n − 1)!. We investigate the cases where 1
2 (a+ tj − k) and 1

2 (a− tj + k) are positive

integers to see how the general formula for Ia(tj−k) reduces to an expression involving factorials.

Firstly, we must set tj = j where j ∈ Z. Now, 1
2 (a+ j − k) and 1

2 (a− j + k) are positive integers

if a + j − k and a − j + k are even numbers. This can occur in two ways. Firstly, if a is even

then j − k must also be even. Secondly, if a is odd then j − k must also be odd. We consider

cases with a ∈ N and take n ∈ N throughout. The following lemma show what happens to the

function Ia when a is even.
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Lemma 6.5.0.39 Suppose that a = 2b for some b ∈ N. If j − k is even so that j−k
2 ∈ Z then

I2b(j − k) =
π(2b− 2)!

22b−2
(
b+ j−k

2 − 1
)
!
(
b− j−k

2 − 1
)
!

for j − k ≤ a− 2. Otherwise, I2b(j − k) = 0.

Proof. Let a = 2b for some b ∈ N and suppose that 2 divides j − k . Then, following on from

Ramanujan’s formula 6.4.0.29, for 2b > 1 we have

I2b(j − k) =
πΓ(2b− 1)

22b−2Γ
(

2b+j−k
2

)
Γ
(

2b−j+k
2

) .
Note that 2b is an even integer that is strictly bigger than 1, therefore 2b ≥ 2. Clearly we can

write Γ(2b− 1) = (2b− 2)!. In order to write Γ
(

2b+j−k
2

)
as a factorial, a necessary condition is

that

2b+ j − k

2
≥ 1.

This is clearly true in the case that j−k is positive. Similarly, if we assume that j−k is positive

then in order to write Γ
(

2b−j+k
2

)
as a factorial we must have

2b− j + k

2
≥ 1.

This is equivalent to the condition j − k ≤ 2b− 2. It suffices to show that the factorials exist in

the case j − k positive because I2b is an even function. Hence, for j − k ≤ a− 2

I2b(j − k) =
π(2b− 2)!

22b−2(b+ j−k
2 − 1)!(b− j−k

2 − 1)!
.

Note that for j − k > 2b− 2, 2b−j+k
2 will be a negative integer. Now, the Gamma function has

poles at the negative integers, therefore, 1
Γ has roots at the negative integers. It follows that

1

Γ
(

2b−j+k
2

) = 0,

hence I2b(j − k) = 0 for j − k > 2b− 2.

We continue with an analogous lemma for the case a odd.

Lemma 6.5.0.40 Suppose that a is an odd integer so that a = 2b+ 1 for some b ∈ N. If j − k

is odd then

I2b+1(j − k) =
π(2b− 1)!

22b−1
(
b+ j−k−1

2

)
!
(
b− j−k−1

2 − 1
)
!

for j − k ≤ a− 2. Otherwise, I2b+1(j − k) = 0.

Proof. Let a = 2b + 1 for b ∈ N. Suppose that j − k is odd, then j − k ± 1 is even, hence
j−k±1

2 ∈ Z. By Ramanujan’s formula 6.4.0.29,

I2b+1(j − k) =
πΓ(2b)

22b−1Γ
(

2b+1+j−k
2

)
Γ
(

2b+1−j+k
2

)
=

πΓ(2b)

22b−1Γ
(
b+ j−k+1

2

)
Γ
(
b− j−k−1

2

) .
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Since b ∈ N, 2b− 1 ≥ 1 and so Γ(2b) = (2b− 1)! is well defined. We wish to write Γ
(
b+ j−k+1

2

)
and Γ

(
b− j−k−1

2

)
as factorial expressions. As in the previous lemma, it suffices to show that

this can be done in the case j − k positive as I2b+1 is an even function. Thus take j − k ≥ 0

then, since b ∈ N we certainly have

b+
j − k + 1

2
≥ 1.

Also,

b− j − k − 1

2
≥ 1

if and only if j − k ≤ 2b− 1, that is j − k ≤ a− 2. Hence, for j − k ≤ a− 2 we have

I2b+1(j − k) =
π(2b− 1)!

22b−1
(
b+ j−k+1

2 − 1
)
!
(
b− j−k−1

2 − 1
)
!

=
π(2b− 1)!

22b−1
(
b+ j−k−1

2

)
!
(
b− j−k−1

2 − 1
)
!

as required. Finally we note that if j − k > 2b− 1 then b− j−k−1
2 < 1 and so 1

Γ(z) has a root at

z = b− j−k−1
2 , completing the proof.

Since a > 1 can take any value and j, k ∈ Z, the case in which a + j − k and a − j + k are

odd integers can also occur. Now, in order for this to happen, if a is even then j − k must be

odd. Similarly, if a is odd then j − k must be even. We summarise what happens in these cases

in the following two lemmas.

Lemma 6.5.0.41 Suppose that a is an even integer so that a = 2b for some b ∈ N. Let j − k be

odd then

I2b(j − k) =
22b

(
b− j−k

2 − 1
)
(2b− 2)!

(
b+ j−k−1

2 − 1
)
!
(
b− j−k−1

2 − 1
)
!

(2b+ j − k − 2)!(2b− j + k)!

for j − k ≤ a− 1. Otherwise, I2b(j − k) = 0.

Proof. Let a = 2b for some b ∈ N. Suppose for simplicity that j − k = 2p + 1 for some p ∈ N.

Note that we may assume p ∈ N since I2b is an even function. We have

I2b(j − k) =
πΓ(2b− 1)

22b−2Γ
(
b+ p+ 1

2

)
Γ
(
b− p− 1

2

) .
Now, using the Legendre duplication formula 6.4.0.27 we see that

Γ

(
b+ p+

1

2

)
=

√
πΓ(2b+ 2p)

22b+2p−1Γ(b+ p)
.

Similarly,

Γ

(
b− p− 1

2

)
=

Γ
(
b− p+ 1

2

)
b− p− 1

2

=

√
πΓ(2b− 2p)

22b−2p−1(b− p− 1
2 )Γ(b− p)

.
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Therefore,

I2b(j − k) =
πΓ(2b− 1)

22b−2
( √

πΓ(2b+2p)
22b+2p−1Γ(b+p)

)( √
πΓ(2b−2p)

22b−2p−1(b−p− 1
2 )Γ(b−p)

)
=

24b−2π
(
b− p− 1

2

)
Γ(2b− 1)Γ(b+ p)Γ(b− p)

22b−2πΓ(2b+ 2p)Γ(2b− 2p)

=
22b

(
b− p− 1

2

)
Γ(2b− 1)Γ(b+ p)Γ(b− p)

Γ(2b+ 2p)Γ(2b− 2p)
. (6.17)

Now, since b ∈ N it is clear that 2b−2 ≥ 0, hence Γ(2b−1) = (2b−2)! is well defined. We consider

if the other terms involving Γ can be easily converted into factorial expressions. As b, p ∈ N it is

also apparent that Γ(b + p) and Γ(2b + 2p) can be expressed as factorials. It therefore remains

to check that Γ(b − p) and Γ(2b − 2p) have factorial expressions. Now, Γ(b − p) can be written

as a factorial if b− p ≥ 1. This is equivalent to the condition 2p+ 1 ≤ 2b− 1, or j − k ≤ a− 1.

Similarly, we see that 2b− 2p ≥ 1 if and only if 2p+ 1 ≤ 2b and so Γ(2b− 2p) can be written as

a factorial if j − k ≤ a. Hence,

I2b(j − k) =
22b

(
b− p− 1

2

)
(2b− 2)!(b+ p− 1)!(b− p− 1)!

(2b+ 2p− 1)!(2b− 2p− 1)!

for j−k ≤ a−1. Returning to our original notation involving j and k we have, for j−k ≤ a−1,

I2b(j − k) =
22b

(
b− j−k−1

2 − 1
2

)
(2b− 2)!

(
b+ j−k−1

2 − 1
)
!
(
b− j−k−1

2 − 1
)
!

(2b+ j − k − 1− 1)!(2b− j + k + 1− 1)!

=
22b

(
b− j−k

2 − 1
)
(2b− 2)!

(
b+ j−k−1

2 − 1
)
!
(
b− j−k−1

2 − 1
)
!

(2b+ j − k − 2)!(2b− j + k)!
.

Finally, using (6.17), we note that if j − k = 2p+ 1 > a then 2b− 2p < 1 and so 1
Γ(z) has a zero

at z = 2b − 2p. Therefore, I2b(j − k) = 0 for j − k > a. In the case that j − k = a = 2b we

observe that

b− p− 1

2
= b− j − k − 1

2
− 1

2

= b− 2b− 1

2
− 1

2

= 0.

Hence, I2b(j − k) = 0 for j − k ≥ a.

Lemma 6.5.0.42 Suppose that a is an odd integer so that a = 2b+ 1 for some b ∈ N. If j − k

is even then

I2b+1(j − k) =
22b−1(2b− 1)!

(
b+ j−k

2 − 1
)
!
(
b− j−k

2 − 1
)
!

(2b+ j − k − 1)!(2b− j + k − 1)!

for j − k ≤ a− 3. Otherwise, I2b+1(j − k) = 0.

Proof. Let a = 2b+1 for some b ∈ N and suppose for simplicity that j−k = 2p for some p ∈ N.

Then

I2b+1(j − k) =
πΓ(2b)

22b−1Γ
(
b+ p+ 1

2

)
Γ
(
b− p+ 1

2

) .
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Using the Legendre duplication formula 6.4.0.27 we see that

Γ

(
b+ p+

1

2

)
=

√
πΓ(2b+ 2p)

22b+2p−1Γ(b+ p)

and

Γ

(
b− p+

1

2

)
=

√
πΓ(2b− 2p)

22b−2p−1Γ(b− p)
.

Therefore,

I2b+1(j − k) =
πΓ(2b)

22b−1
( √

πΓ(2b+2p)
22b+2p−1Γ(b+p)

)( √
πΓ(2b−2p)

22b−2p−1Γ(b−p)

)
=

24b−2Γ(2b)Γ(b+ p)Γ(b− p)

22b−1Γ(2b+ 2p)Γ(2b− 2p)
. (6.18)

Now, a = 2b+ 1 > 1 so clearly 2b+ 1 ≥ 3, that is b ≥ 1. Using this, together with the fact that

p ∈ N so p ≥ 1, it is obvious that Γ(2b), Γ(b+ p) and Γ(2b+ 2p) can be written as factorials. As

before, we check the conditions under which b − p ≥ 1 and 2b − 2p ≥ 1. First, b − p ≥ 1 if and

only if 2p ≤ 2b − 2. This is equivalent to j − k ≤ a − 3. Similarly, 2b − 2p ≥ 1 if and only if

2p ≤ 2b− 1, which is equivalent to j − k ≤ a− 2. Thus,

I2b+1(j − k) =
22b−1(2b− 1)!(b+ p− 1)!(b− p− 1)!

(2b+ 2p− 1)!(2b− 2p− 1)!

for j − k ≤ a− 3. Again, returning to the original notation yields

I2b+1(j − k) =
22b−1(2b− 1)!

(
b+ j−k

2 − 1
)
!
(
b− j−k

2 − 1
)
!

(2b+ j − k − 1)!(2b− j + k − 1)!
,

for j − k ≤ a − 3. Finally, from (6.18) we see that for j − k > a − 2 we have I2b+1(j − k) = 0

since 1
Γ(2b−2p) will have a zero, completing the proof.

With these lemmas in place, we are now ready to construct the matrices [Ia(j − k)]
n
j,k=−n,

in the cases of a odd and a even. We show the results in separate theorems.

Theorem 6.5.0.43 Let n ∈ N. Suppose that a is even so that a has the form a = 2b for

some b ∈ N. Then [Ia(j − k)]
n
j,k=−n is a real symmetric Toeplitz matrix with entries in Q[π].

Furthermore, let I = Ia then [Ia(j − k)]
n
j,k=−n has the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I(0) I(1) I(2) I(2b− 2) I(2b− 1) 0 0

I(1) I(0) I(1) I(2b− 2) I(2b− 1)
. . .

I(2) I(1) I(0)
. . . I(2b− 2)

. . . 0

. . .
. . .

. . . I(2b− 1)

I(2b− 2)

. . .
. . .

. . .

I(2b− 2)

I(2b− 1) I(2b− 2)
. . .

. . .

0 I(2b− 1) I(2b− 2)
. . . I(0) I(1) I(2)

. . .
. . .

. . . I(1) I(0) I(1)

0 0 I(2b− 1) I(2b− 2) I(2) I(1) I(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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where

I2b(j − k) =
π(2b− 2)!

22b−2
(
b+ j−k

2 − 1
)
!
(
b− j−k

2 − 1
)
!

if j − k ≤ 2b− 2 is even and

I2b(j − k) =
22b

(
b− j−k

2 − 1
)
(2b− 2)!

(
b+ j−k−1

2 − 1
)
!
(
b− j−k−1

2 − 1
)
!

(2b+ j − k − 2)!(2b− j + k)!

if j − k ≤ 2b− 1 is odd.

Remark 6.5.0.44 Note that for j − k even, I2b(j − k) is a rational multiple of π whereas for

j − k odd, I2b(j − k) is rational.

Proof. Let n ∈ N and suppose that a = 2b for some b ∈ N. It is then clear that

[I2b(j − k)]
n
j,k=−n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I2b(0) I2b(−1) I2b(−2) I2b(−2n)

I2b(1) I2b(0) I2b(−1)
. . .

I2b(2) I2b(1) I2b(0)
. . .

. . .

. . .
. . .

. . .
. . .

I2b(2n)
. . .

. . . I2b(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I2b(0) I2b(1) I2b(2) I2b(2n)

I2b(1) I2b(0) I2b(1)
. . .

I2b(2) I2b(1) I2b(0)
. . .

. . .

. . .
. . .

. . .
. . .

I2b(2n)
. . .

. . . I2b(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

since the function Ia is even. The desired entries for the matrix follow from Lemmas 6.5.0.39

and 6.5.0.41, completing the proof.

Note the banded nature of the matrix in Theorem 6.5.0.43. The following example gives an ap-

plication of Theorem 6.5.0.43 and helps the reader to see the shape of the matrix [I2b(j − k)]
n
j,k=−n.

Example 6.5.0.45

Set n = 1 so that we are working with a 3× 3 matrix. Let a = 4 then

[I4(j − k)]
1
j,k=−1 =

⎡
⎢⎢⎣
I4(0) I4(1) I4(2)

I4(1) I4(0) I4(1)

I4(2) I4(1) I4(0)

⎤
⎥⎥⎦ .

We use the theorem to evaluate each entry in turn. In the style of Theorem 6.5.0.43, we

have a = 2(2) giving b = 2. First we look at the cases of j − k even. When j − k = 0 we

have

I4(0) =
π(4− 2)!

24−2
(
2 + 0

2 − 1
)
!
(
2− 0

2 − 1
)
!

=
π

2
.
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Similarly, when j − k = 2 we have

I4(2) =
π(4− 2)!

24−2
(
2 + 2

2 − 1
)
!
(
2− 2

2 − 1
)
!

=
2π

222

=
π

4
.

Now, when j − k is odd, that is j − k = 1 we have

I4(1) =
24
(
2− 1

2 − 1
)
(4− 2)!

(
2 + 1−1

2 − 1
)
!
(
2− 1−1

2 − 1
)
!

(4 + 1− 2)!(4− 1)!

=
24
(
1
2

)
(2)

(3!)
2

=
4

9
.

Hence,

[I4(j − k)]
1
j,k=−1 =

⎡
⎢⎢⎣

π
2

4
9

π
4

4
9

π
2

4
9

π
4

4
9

π
2

⎤
⎥⎥⎦ .

The following theorem shows what happens to [Ia(j − k)]
n
j,k=−n in the case that a is odd. It

is analogous to Theorem 6.5.0.43. Again, note the banded nature of the matrix.

Theorem 6.5.0.46 Let n ∈ N. Suppose that a is odd so that a = 2b + 1 for some b ∈ N.

Then [Ia(j − k)]
n
j,k=−n is a real symmetric Toeplitz matrix with entries in Q[π]. Furthermore,

let I = Ia then the matrix [Ia(j − k)]
n
j,k=−n has the form⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I(0) I(1) I(2) I(2b− 2) I(2b− 1) 0 0

I(1) I(0) I(1) I(2b− 2) I(2b− 1)
. . .

I(2) I(1) I(0)
. . . I(2b− 2)

. . . 0

. . .
. . . I(2b− 1)

I(2b− 2)

. . .
. . .

. . .

I(2b− 2)

I(2b− 1) I(2b− 2)
. . .

. . .

0 I(2b− 1) I(2b− 2)
. . . I(0) I(1) I(2)

. . .
. . .

. . . I(1) I(0) I(1)

0 0 I(2b− 1) I(2b− 2) I(2) I(1) I(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

I2b+1(j − k) =
22b−1(2b− 1)!

(
b+ j−k

2 − 1
)
!
(
b− j−k

2 − 1
)
!

(2b+ j − k − 1)!(2b− j + k − 1)!

if j − k is even and

I2b+1(j − k) =
π(2b− 1)!

22b−1
(
b+ j−k−1

2

)
!
(
b− j−k−1

2 − 1
)
!

if j − k is odd.
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Remark 6.5.0.47 Note that for j − k even, I2b+1(j − k) is rational whereas for j − k odd,

I2b+1(j − k) is a rational multiple of π.

Proof. Let n ∈ N and suppose that a = 2b+ 1 for some b ∈ N. As I2b+1 is an even function we

clearly have the symmetric matrix

[I2b+1(j − k)]
n
j,k=−n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I2b+1(0) I2b+1(1) I2b+1(2) I2b+1(2n)

I2b+1(1) I2b+1(0) I2b+1(1)
. . .

I2b+1(2) I2b+1(1) I2b+1(0)
. . .

. . .

. . .
. . .

. . .
. . .

I2b+1(2n)
. . .

. . . I2b+1(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The entries for the matrix follows from Lemmas 6.5.0.40 and 6.5.0.42, completing the proof.

We close this section with an example to illustrate Theorem 6.5.0.46.

Example 6.5.0.48

Again let n = 1 so that we are working with a 3× 3 matrix. Set a = 5 then

[I5(j − k)]
1
j,k=−1 =

⎡
⎢⎢⎣
I5(0) I5(1) I5(2)

I5(1) I5(0) I5(1)

I5(2) I5(1) I5(0)

⎤
⎥⎥⎦ .

Now, using Theorem 6.5.0.46 we evaluate I5(j−k) in the cases that j−k is odd and even.

If a = 2b+ 1 we take b = 2. Taking j − k = 0 we have

I5(0) =
24−1(4− 1)!

(
2 + 0

2 − 1
)
!
(
2− 0

2 − 1
)
!

(4− 1)!(4− 1)!

=
233!

(3!)
2

=
4

3
.

Similarly, taking j − k = 2 we see that

I5(2) =
24−1(4− 1)!

(
2 + 2

2 − 1
)
!
(
2− 2

2 − 1
)
!

(4 + 2− 1)!(4− 2− 1)!

=
233!(2)

5!

=
4

5

Finally, letting j − k = 1 we have

I5(1) =
π(4− 1)!

24−1
(
2 + 1−1

2

)
!
(
2− 1−1

2 − 1
)
!

=
π3!

23(2)

=
3π

8
.

Hence,

[I5(j − k)]
1
j,k=−1 =

⎡
⎢⎢⎣

4
3

3π
8

4
5

3π
8

4
3

3π
8

4
5

3π
8

4
3

⎤
⎥⎥⎦ .
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6.6 The Evaluation of Ia Using Jacobi Polynomials

In this section we show that the function Ia can be used to give a value for various integrals that

arise in the theory of Jacobi polynomials. Specifically we are able to show that Ia represents the

integral of a Chebyshev polynomial whose weight function corresponds to the weight function of

the Jacobi polynomials. We refer the reader to [52] for background information on the Chebyshev

and Jacobi polynomials, both of which are orthogonal polynomials.

We begin by defining orthogonal polynomials and then we define the Jacobi polynomials. We

adopt this approach since the Jacobi polynomials are defined with a weight function. Therefore,

upon seeing that Ia is the integral of a Chebyshev polynomial with a weight function, the reader

will understand where this weight function comes from.

Definition 6.6.0.49 Let w(x) ≥ 0 be a weight such that

0 <

∫ b

a

w(x)dx < ∞.

Suppose that ∫ b

a

|x|n w(x) dx < ∞

for all n ≥ 0. If we orthogonalise the set {1, x, . . . , xn, . . . } we obtain a set of polynomials

{p0(x), p1(x), . . . , pn(x), . . . }

uniquely determined by the following conditions:

i) pn(x) has degree n with the coefficient of xn being positive;

ii) the system, {pn(x)}∞n=0 is orthonormal so that
∫ b

a
pr(x)ps(x) dm(x) = δrs.

We call {pn(x)}∞n=0 the orthogonal polynomials.

As previously mentioned, the Jacobi polynomials are orthogonal polynomials. We define the

Jacobi polynomials next and use them to derive the Chebyshev polynomials.

Definition 6.6.0.50 Suppose that α, β > −1. Let {pn}∞n=0 be orthogonal polynomials associated

with the weight

w(x) = (1− x)α(1 + x)β

on the interval [−1, 1]. We define the Jacobi polynomials, P
(α,β)
n (x) to be such that

P (α,β)
n (x) ∝ pn(x)

with normalisation given by P
(α,β)
n (1) =

(
n+α
n

)
.

Definition 6.6.0.51 Let P
(− 1

2 ,− 1
2 )

n (x) be the Jacobi polynomial with corresponding weight func-

tion
(
1− x2

)− 1
2 . Then

P
(− 1

2 ,− 1
2 )

n (x) =
1.3...(2n− 1)

2.4...2n
Tn(x)

where Tn(x) is a Chebyshev polynomial of the first kind. If x = cos θ then

Tn(x) = cosnθ.
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In the following two propositions we demonstrate how we can use Ia to evaluate two different

functions involving Chebyshev polynomials.

Proposition 6.6.0.52 Let Tk be a Chebyshev polynomial whose order, k is even. Then

Ia(k) =
1(√
2
)a−2

∫ 1

−1

(√
1 + x

)a−2

√
1− x2

Tk

(√
1 + x

2

)
dx

where Tk

(√
1+x
2

)
is a Chebyshev polynomial of order k

2 .

Proof. First we observe that

Ia(k) =

∫ π
2

−π
2

(cos t)a−2eikt dt

=

∫ π
2

−π
2

(cos t)a−2 cos kt dt+ i

∫ π
2

−π
2

(cos t)a−2 sin kt dt.

Since (cos t)a−2 sinxt is odd we have

∫ π
2

−π
2

(cos t)a−2 sin kt dt = 0,

therefore

Ia(k) =

∫ π
2

−π
2

(cos t)a−2 cos kt dt.

Also, as (cos t)a−2 cosxt is even we may write

∫ π
2

−π
2

(cos t)a−2 cos kt dt = 2

∫ π
2

0

(cos t)a−2 cos kt dt.

Noting that cos kt = Tk(cos t) it follows that

Ia(k) = 2

∫ π
2

0

(cos t)a−2Tk(cos t) dt.

We now make the substitution x = cos 2t. Using the double angle formulae we see that

cos 2t = 2 cos2 t− 1,

which rearranges to give

cos t =

√
cos 2t+ 1

2

=

√
x+ 1

2
.

We also note that dx = −2 sin 2t dt. Furthermore, using sin2 θ + cos2 θ = 1 we see that

1− x2 = 1− cos2 2t

= sin2 2t,

giving

sin 2t =
√
1− x2.
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Thus, with a change of limits,
[
0, π

2

] �→ [1,−1] we arrive at

Ia(k) = 2

∫ −1

1

(√
x+ 1

2

)a−2

Tk

(√
x+ 1

2

)
(−1)

2
√
1− x2

dx

=
1(√
2
)a−2

∫ 1

−1

(√
x+ 1

)a−2

√
1− x2

Tk

(√
x+ 1

2

)
dx

as required.

Next we present a more general version of the above result in the sense that it holds for a

Chebyshev polynomial of any order. The proof follows the same method as Proposition 6.6.0.52.

The only alteration is a different choice of substitution.

Proposition 6.6.0.53 Let Tk denote a Chebyshev polynomial of order k then

Ia(k) = 2

∫ 1

0

xa−2

√
1− x2

Tk(x) dx.

Proof. As in the proof of Proposition 6.6.0.52 we may write

Ia(k) = 2

∫ π
2

0

(cos t)a−2Tk(cos t) dt.

However, this time we make the substitution x = cos t. We note that dx = − sin t dt and use

sin2 θ + cos2 θ = 1 to obtain

sin t =
√

1− cos2 t

=
√
1− x2.

A final note of the change of limits tells us that
[
0, π

2

] �→ [1, 0], hence

Ia(k) = 2

∫ 0

1

xa−2Tk(x)
(−1)√
1− x2

dx

= 2

∫ 1

0

xa−2

√
1− x2

Tk(x) dx

as required.
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