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Imaging genetics is an emerging field in which the association between genes and

neuroimaging-based quantitative phenotypes are used to explore the functional role

of genes in neuroanatomy and neurophysiology in the context of healthy function

and neuropsychiatric disorders. The main obstacle for researchers in the field is the

high dimensionality of the data in both the imaging phenotypes and the genetic

variants commonly typed. In this article, we develop a novel method that utilizes Gene

Ontology, an online database, to select and prioritize certain genes, employing a stratified

false discovery rate (sFDR) approach to investigate their associations with imaging

phenotypes. sFDR has the potential to increase power in genome wide association

studies (GWAS), and is quickly gaining traction as a method for multiple testing

correction. Our novel approach addresses both the pressing need in genetic research

to move beyond candidate gene studies, while not being overburdened with a loss

of power due to multiple testing. As an example of our methodology, we perform

a GWAS of hippocampal volume using both the Enhancing NeuroImaging Genetics

through Meta-Analysis (ENIGMA2) and the Alzheimer’s Disease Neuroimaging Initiative

datasets. The analysis of ENIGMA2 data yielded a set of SNPs with sFDR values between

10 and 20%. Our approach demonstrates a potential method to prioritize genes based

on biological systems impaired in a disease.

Keywords: magnetic resonance imaging (MRI), genome wide association study (GWAS), gene ontology network,

Alzheimer’s disease (AD), stratified false discovery rate (sFDR), imaging genetics

INTRODUCTION

Imaging genetics is a burgeoning field that seeks to understand the association of neuroimaging-
based phenotypes, such as structural, functional (Thompson et al., 2010), and diffusion imaging-
based metrics, (Patel et al., 2010) with genetic variations. Candidate gene studies were initially the
method of choice for understanding gene function in humans, and successfully identified genes
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involved in Mendelian diseases; however, such studies have had
less success for complex genetic disorders, with many novel
findings failing to replicate in further studies (Hirschhorn et al.,
2002). Reasons for such failures include a lack of power to
identify the small effect sizes typically involved in complex
traits, as well as a lack of knowledge about which genes are
appropriate to study (Tabor et al., 2002; Ioannidis, 2005).
Around 2007, genome-wide association studies (GWAS) began
to make inroads as an efficient method for identifying variants
associated with complex disease.In this approach, approximately
one million single nucleotide polymorphisms (SNPs) across the
whole genome are interrogated simultaneously, hypothesis-free
(Wellcome_Trust_Case_Control_Consortium, 2007). However,
due to the large burden of multiple testing correction in a GWAS,
a p-value of 5 × 10−8 or less, roughly equivalent to a p =

0.05 after Bonferroni correction for half a million independent
variants, is generally required for a SNP to be recognized as
significantly associated with a trait (Dudbridge and Gusnanto,
2008). Given the polygenic nature of complex traits and low effect
sizes associated with these traits, large sample sizes are required
to achieve adequate statistical power. Recently, a large imaging
genetics study named ENIGMA (Enhancing NeuroImaging
Genetics through Meta-Analysis) was undertaken, in which
21,000 subjects were included in a GWAS in order to identify
genetic variants with association to hippocampal volume (Stein
et al., 2012). While this study was a landmark demonstration
for the use of imaging genetics techniques to investigate brain
structures, it is not plausible for individual investigators to obtain
such large sample sizes for their studies.

Various approaches have been described to reduce the
multiple testing burden for large scale GWAS. One such
approach is to control for the false discovery rate (FDR),
rather than the family-wise error rate (FWER) (Benjamini and
Hochberg, 1995). Where the family-wise error rate identifies the
probability of one type 1 error from the total tested hypotheses,
FDR calculates the proportion of expected type 1 errors. The use
of FWER is more stringent compared to the use of FDR leading
to less type 1 errors however the power associated with this
method is lower, limiting the chance of detecting potential new
discoveries. The differences are highlighted by an example from
Benjamini and Yekutieli (2005) based on an QTL (quantitative
trait locus) linkage analysis demonstrating a FDR threshold set
at 0.05, corresponded to a FWER threshold of 0.64. However the
utilization of FDR is more relevant in an exploration analysis on
a dataset where there are likely to be multiple true positives (Sun
et al., 2006). Furthermore FDR is useful as a screening method
in GWAS with multiple phenotypes and covariates (Sun et al.,
2006). Another suggested use of FDR is for types of studies where
there is less concern on making type 1 errors. In our study our
goal is to identifying loci which we would attempt to replicate
rather thanmaking strong claims of causality in the first instance,
hence an exploratory approach.

Stratified false discovery rate (sFDR) is an extension of
the FDR control approach, where the false discovery rate is
controlled in distinct subsets (strata) of the data, one or more
of which are believed to have a higher prior probability of
being associated with the trait of interest. Strata are defined

based on prior information such as linkage analysis, candidate
gene studies, or biological pathways (Sun et al., 2006, 2012). An
example of this approach by Sun et al. (2012) investigates the
susceptibility to meconium ileus (severe intestinal obstruction)
in individuals with cystic fibrosis by prioritizing a set of genes
involved in the apical plasma membrane. In this article, Sun
et al. (2012) selected strata defined by Gene Ontology (GO)
terms. GO is a biomedical ontology database, which contains
structured vocabulary terms known as GO terms designed to
describe protein function (Ashburner et al., 2000). In more
complex traits, this approach may not be refined enough for
the proper stratification of data in sFDR. There are different
approaches that can be used to prioritize genes depending on
how well the phenotype is characterized. Sun et al. (2012)
prioritized genes for stratification based on the single GO
term “apical plasma membrane” to investigate targeted genetic
modifiers of Cystic Fibrosis. However, applying that similar
approach to complex genetic diseases such as AD may not be
as effective. Utilizing a biological domain gene prioritization
approach via GO will allow us to capture a wider group of
potential genetics variants within biological systems associated
with AD.

There have been other approaches designed to create lists of
candidate genes based on previous findings. One example is the
work by Linghu et al. (2009) which focuses on multiple diseases
and the use of genomic features from a variety of databases.
Similarly, Chen et al. (2007) uses GO with a combination of
genomic databases to prioritize human disease candidate genes
by utilizing information from mouse phenotype ontology and
extracting mouse ortholog of human genes. Based on current
utilization of GO in gene prioritization, our approach is novel
in a number of aspects; (1) The gene seed list is based on
GWAS meta-analysis results. (2) The use of GO allows us to
take a biological system approach to investigate a disease of
interest. By taking advantage of the biological process ontology
we can feed in our gene list from previous GWAS results
and identify common biological process domains which have
not been seen in current gene prioritization methods using
standard GO terms. Instead of investigating the disease as
one system, our prioritization technique allows us to explore
candidate genes within different biological systems implicated
within the disease phenotype. (3) The use of sFDR allows
us to stratify SNPs within each biological process group and
implement it to GWAS data to identify if the set of SNPs
within a biological process group is associated with the disease
phenotype.

Another common use for GO terms is to use a list
of significant genes from association analysis and identify
enrichment of GO terms annotated to those genes. Commonly
used tools for GWAS approach include WebGestalt, INRICH
and Aligator. WebGestalt (WEB-based GEne SeT AnaLysis
Toolkit) is a functional enrichment tool that utilizes different
publically available resources, not only GO, but other genomic
databases such as phenotype ontologies and protein-protein
interaction datasets. Therefore a set of genes from an association
analysis can be uploaded to WebGestalt, and the gene list
is compared to genes in pre-defined functional categories.
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Similarly, INRICH (Interval-based Enrichment Analysis Tool for
Genome Wide Association Studies) and Aligator (Association
LIst Go AnnoTatOR) assess enrichment for GO terms based
on a list of either candidate genes or SNPs (Holmans et al.,
2009; Lee et al., 2012). Both INRICH and Aligator differ
from WebGesalt by determining if linkage disequilibrium (LD)
independent associated regions show an enrichment of specified
characteristics, primarily pathways defined by GO terms. An
example of an application is the paper by Lotan et al. (2014)
which uses an array of neuroinformatics tools to analyze
common and distinct genetic components associated in six
neuropsychiatric disorders. GO was used to identify which
biological domains were enriched within the gene list that
was common among the neuropsychiatric disorders (Lotan
et al., 2014). Studies similar to Lotan et al. (2014) has utilized
GO for enrichment of genes once results of genetic variants
have been obtained in association with a phenotype (Miyazaki
et al., 2009; Jones et al., 2010; Anney et al., 2011). We have
taken a reverse approach where we are using GO to build a
biological system network based on genes which have already
been associated with previous GWAS studies. The identification
of the biological network allows us to explore other genes
within a common biological process in association with the
phenotype.

We demonstrate our method’s efficacy by investigating
the association between genetic variants and hippocampal
volume in both the ENIGMA2 and Alzheimer’s Disease
Neuroimaging Initiative (ADNI1) dataset. The dominant
symptom of Alzheimer’s Disease (AD) is dementia, where
memory, reasoning, and thinking are all impaired. The
hippocampus plays a key role in cognitive functioning,
influencing processes such as learning and the ability to make
new memories (Braskie et al., 2013). Further, in considering
the neurodegeneration of medial temporal lobe structures, the
changes in hippocampal structure are considered to be one of the
strongest quantitative phenotypes associated with AD and can
often be used to predict cognitive decline in AD patients (Braskie
et al., 2013). A particular biological system of interest that we
used to prioritize our genes is the transport system which plays a
key role in AD. For example the PICALM (Phosphatidylinositol-
binding clathrin assembly protein) gene has been hypothesized
to be involved in the transport of Aβ (amyloid beta plaque) in
the blood stream (Baig et al., 2010) and Aβ clearance (Schjeide
et al., 2011). Schjeide et al. (2011) demonstrated risk alleles
for PICALM to be associated with reduced levels of Aβ in the
cerebrospinal fluid of AD patients compared to controls.

This article presents a novel, systematic method to determine
the optimal stratification of SNPs for sFDR analysis. We
employed GO alongside previous GWAS findings, and applied
our method to the ENIGMA2 and ADNI1 (Supplementary
Section 2) data, both dataset containing AD individuals. Our
method reduces the multiple testing correction burden with
the potential to discover novel biomarkers in imaging genetics.
Useful not only for new genetic studies, our tool is highly
applicable to mining already existing GWAS data and improving
the integration of publically available bioinformatics resources
such as GO with imaging genetics studies.

MATERIALS AND METHODS

Our methodological approach (Figure 1 highlights the overall
steps) was applied to two different datasets, ENIGMA2 summary
statistics and the ADNI1 dataset. In this paper, we focus on
applying our method on the ENIGMA2 dataset. Further details
of using our method with the ADNI1 dataset is documented in
the Supplementary Section 2.1 and Figure S1.

Alzheimer’s Disease (AD) Model: Selecting
Priority List of Genes
Below, we detail how we assembled a list of priority genes,
derived comprehensive gene networks based on these so-called
“seed” genes, and pruned these networks appropriately. Our
priority SNPs were selected from genes involved in biological
systems associated with AD. Figure 1 outlines the entire process
followed, including SNP selection (Figure 1A) and the utilization
of ENIGMA2 summary statistics on GWAS meta-analysis of
hippocampal volume (Figure 1B).

Step 1: Twenty-one hits from a previous meta-analysis of AD
GWAS signals were used as a starting point to identify top
gene hits (Lambert et al., 2013). In addition we added amyloid
precursor protein (APP) (Goate et al., 1991), Presenilin-1
(PSEN1) and Presenilin-2 (PSEN2) (Cruts et al., 1998) to
our gene list based on association with familial form of AD.
Furthermore rare variants within these gene regions also
increase the risk of late onset AD (Cruchaga et al., 2012).
Step 2: Gene Ontology (GO) (refer to Box 1, data release
July 1, 2015) was used to group genes, and subsequently to
derive common biological process networks using a three step
process detailed below.
Firstly, the biological process (BP) ontology dataset within
GO was examined using Quick GO (refer to Box 1) in
order to identify all BP terms associated with the genes
under investigation, hereafter called originally selected GO
terms (OGO terms). No restrictions were given on the type
of evidence codes used for the annotation of the OGO
terms. Secondly, a web based tool called Generic Gene
Ontology (GO) Term Mapper (http://go.princeton.edu/cgi-
bin/GOTermMapper) was used to identify common biological
processes among our gene list. Protein IDs of genes (Table 2)
were used as input data and the biological process ontology
was selected. The set of GO Slim terms used to obtain
common BP terms was the Generic GO Slim for human GO
annotations. GO Slim terms are GO terms that are very broad
and therefore parent terms of OGO terms. Thirdly, common
biological processes were identified based on having three or
more genes associated within a domain from the 21 genes
found in Table 2, resulting in a frequency of occurrence of
about 14% or more. Identifying domains with a minimum
of three genes aids in forming an in-depth GO network.
This is because with three genes there is sufficient amount
of associated GO terms to represent a meaningful network.
Only OGO terms associated with these common processes are
carried forward to the next step. Lastly, biological domains
selected should be a child term which is three or more child
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FIGURE 1 | Method overview of both the selection of priority SNPs and association testing analysis between ENIGMA2 GWAS summary statistics. (A)

Steps taken to select for priority SNPs. Gene hits from a meta-analysis by Lambert et al. (2013) were used as a starting point (Step 1) and GO was then used to

identify common biological processes within the gene hits (Step 2). Cytoscape was used to build and visualize common biological process networks – in this case the

“transport system” network was selected (Step 3 and Step 4). All genes from the selected GO terms in the network were extracted to form the priority list of SNPs.

sFDR was then implemented with the priority SNPs. (B) Shows the utilization of ENIGMA2 summary statistics of GWAS meta-analysis on hippocampal volume.

term away from its parent GO term “Biological Process.” GO
terms higher up (closer to the GO term “Biological Process”)
in the hierarchy of the ontology, are very broad encompassing
many genes resulting a biological domain that are not well-
defined, therefore potentially introducing noise.
Based on the outcome of the three steps outlined above, we
grouped all child terms that derived from parent terms in
the domains of vesicle-mediated transport, organic substance
transport and ion transport. These three parent terms were
found to be under the common network of “transport system,”
which was identified as a common biological process. GO
terms that fell under the network “transport system” were the
fifth level child terms from the Biological Process parent GO
term. Refer to Box 1 under Gene Ontology section for child
and parent terminology. In order to benchmark our approach
in the selection of common biological processes, INRICH (Lee
et al., 2012) was used as an alternative, objective, method to
derive the common biological process domains. However, no
significant results were identified to take forward to sFDR. The
INRICH process is defined in the Supplementary Section 1.
Step 3: Cytoscape 3.2.0 (refer to Box 1) was used to
visualize the biological process network “transport system,”
and parent GO terms from the OGO terms were extracted
to contextualize this network. As expected, the networks were
overly complex and contained much extraneous information.

To remedy this, an algorithm was developed to effectively
reduce redundant data in order to create an effectively
“pruned” network. This is accomplished by using building and
pruning techniques based on the relationships of OGO terms.
Figures 2–4 demonstrate different stages of this algorithm
with the OGO terms in green boxes. Figure 2 shows a
subsection of GO terms in the complete “transport system”
network before pruning of the data. Figures 3A–D display
how specific criteria were used to remove non-targeted GO
terms. Figure 4 shows the final pruned data of the transport
system.

The following criteria were used to select the child and parent
GO terms.

(a) When extracting the ontology of the OGO terms using
Cytoscape, child terms are automatically selected. Therefore,
to simplify the ontology networks, child terms were removed.
Orange terms in Figure 3A represent extra child terms of
the OGO terms, which are not needed in the network. For
example the GO term “clathrin-mediated endocytosis” has
two child terms “clathrin-mediated extracellular exosome
endocytosis” and “clathrin-mediated endocytosis of virus by
host cell.” These terms are not necessary because the genes
from step 1 have not been associated with these GO terms.
(Figure 3A).
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BOX 1 | GENE ONTOLOGY

Gene Ontology (http://geneontology.org/) is a publically available, free, ontology

database that describes protein function (Ashburner et al., 2000). Gene

products—proteins—are classified and grouped in three main ontologies:

cellular components (CC) where the protein is located within subcellular

compartments, molecular functions (MF) indicates the specific function of the

gene is carried out in normal conditions and biological processes (BP) which

describes the processes a protein is involved in (e.g.,: neurogenesis). The

ontology follows a hierarchical order and there are defined relationships between

the GO terms. In the ontology structure, terms at the top represent general

or broad concepts, whereas terms near the bottom represent more detailed

processes. Therefore, if a term has terms subordinate to it, it is referred to

as a “parent” term. Similarly, if a term has other terms superior to it, then it

is referred to as a “child” term. Both manual and automatic annotations of

proteins are available in the GO database. Automatic annotations are inferred

from electronic annotations and are not manually reviewed by a curator. In

manual annotations, a curator reviews primary articles to generate annotations,

and each annotation is based on experimental data referenced to a PubMed ID.

The documentation for manual curation can be found at http://geneontology.

org/page/annotation, and an example of annotations created by the authors

can be found in the Alzheimer’s University of Toronto dataset at http://www.ebi.

ac.uk/QuickGO/GAnnotation?source=Alzheimers_University_of_Toronto Quick

GO (http://www.ebi.ac.uk/QuickGO/) is a web based tool used to extract data

from the GO database.

Cytoscape

Cytoscape is an open source software platform visualization tool used to

integrate data into complex networks of molecular interaction and biological

pathways [(Saito et al., 2012), http://www.cytoscape.org/]. See Figure 4 as an

example of a biological network.

(b) If more than one parent term is identified for an OGO term,
then a common parent term, which is shared by most of the
OGO terms, is chosen. As an example, the term “receptor
internalization” has two parent terms, namely, “receptor
metabolic process,” and “receptor-mediated endocytosis.” In
Figure 3B the term “receptor metabolic process,” displayed
in a pink box, is removed because the alternate parent term,
“receptor-mediated endocytosis,” is a parent term to both
the selected GO terms “clathrin-mediated endocytosis” and
“receptor internalization.” (In this case receptor-mediated
endocytosis is an OGO term but the same criteria is followed
if receptor-mediated endocytosis was not an OGO term).

(c) A positive or negative regulation child term will have two
types of parents. As an example, we will investigate the term
“negative regulation of receptor-mediated endocytosis.” The
first parent will be the term it regulates (“receptor-mediated
endocytosis”) and the second parent would likely be a term
that has “regulation” as a key word in the term name,
for example, “regulation of receptor-mediated endocytosis”
could be a candidate. Therefore the parent term that is
regulated was selected, in this case the term “receptor-
mediated endocytosis,” and the parent term that regulates a
biological process but does not specify positive or negative
regulation (“regulation of receptor-mediated endocytosis”) is
removed—shown in a yellow box – because the child term is
more specific in terms of explaining how it is regulating the
parent term (e.g., negative regulation of receptor-mediated
endocytosis), Figure 3C.
Step 4: Quick GO was used to extract all the genes that are
associated to the OGO terms (as displayed in Figure 4 in

green boxes) in the pruned “transport system” network. SNPs
from these genes were extracted from the ENIGMA2 and
ADNI1 (Supplementary Section 2) dataset using a reference
file containing the start and end positions of the transcribed
gene portion according to the Homo sapiens build 37 protein
and coding genes from National Center for Biotechnology
Information (NCBI). This list of SNPs formed the priority
list for sFDR.

ENIGMA2 Dataset
The ENIGMA consortium is composed of a network of
international researchers collaborating together on large scale
genetic and MRI analysis (Thompson et al., 2014). Datasets from
70 institutions worldwide are utilized in meta-analysis studies
for imaging genetics. The initial sample size for ENIGMA1
included a total of 24,997 individuals. The first large scale project
for ENIGMA was investigating common genetic variants from
case controls samples for neuropsychiatric disorders (depression,
anxiety, Alzheimer’s disease and schizophrenia) in association
with hippocampal and intracranial volumes.

In this paper we use summary statistics of the ENIGMA2
dataset which includes ENIGMA1 individuals and new
individuals increasing the sample size to 30,717 individuals
from 50 cohorts. The summary statistic contained a total of
6,570,616 SNPs. In this large scale meta-analysis, association
testing was done with imputed GWAS data and volumes of
major subcortical structures including: intracranial volume,
nucleus accumbens, amygdala, caudate, pallidum, putamen,
thalamus, and hippocampus (Hibar et al., 2015). In this
paper we used summary statistic of GWAS association with
hippocampal volumes. Protocols for genetic and MRI quality
control and analysis for ENIGMA2 are available online at
http://enigma.ini.usc.edu/protocols/.

sFDR
Fixed FDR strategies are used to control FDR in a group of tests.
In sFDR, SNP p-values from the association analysis are grouped
into distinct strata, one or more of which are believed to have
a higher prior probability of being associated with the trait of
interest (Sun et al., 2006). The association p-values of each SNP
are transformed to q-values and FDR is controlled separately
within each strata. To control the FDR at a given level—for
example 10%—the null hypothesis is rejected when tests have
a q-value equal to or less than the specified threshold (0.1).
This method increases the power to identify true associations if
one of the strata is enriched with associated variants. When the
strata aren’t enriched, the method is still robust. Two SNP strata
were formed in our data. All SNPs in the genes associated to
the OGO terms (Figure 4) from the pruned “transport system”
network formed one, high priority, strata (274,272 SNPs), and
all the remaining SNPs formed the other (6,296,344 SNPs) in
our non-priority stratum. Association p-values from ENIGMA2
summary statistics were merged with each corresponding SNPs
in each strata (priority and non-priority list) for sFDR. A
Perl script was used to analyze priority and non-priority SNPs
(http://www.utstat.toronto.edu/sun/Software/SFDR/).
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FIGURE 2 | Sample of initial transport system network with selected GO terms before pruning. A subsection is selected to show how the criteria was used

to prune the complex GO network. Pruning steps are shown in Figure 3.

Null Models: Prostate Cancer and Random
Seed Gene List
To address the concern of overfitting to a generic biological signal
in GO, we tested our approach against a null model. We chose
prostate cancer since cancer and AD generally have different
biological characteristics (Behrens et al., 2009). A seed list of
21 genes associated with prostate cancer was identified from
Stadler et al. (2010) review (Stadler et al., 2010). In addition,
three random gene lists, were generated using a random number
generator of Entrez IDs in R to randomly select for 24 genes
(similar to the number of genes in our seed gene list for AD).
For each gene list four biological domains common to the genes
within the list were selected. We then undertook sFDR control
with these gene strata in the ENIGMA2 GWAS hippocampal
volume dataset.

Datasets
The two data sets used in this study are the ADNI1 data and
ENIGMA2 summary statistics.

The ENIGMA consortium is composed of a network of

international researchers collaborating together on large scale
genetic and MRI analysis. ENIGMA2 dataset was used in this

study, which includes also ENIGMA1 individuals with a total
sample of 30,717. In this large scale meta-analysis, association
testing was done with imputed GWAS data and volumes of major

subcortical structures such as hippocampal volume (Hibar et al.,
2015). To obtain access to the ENIGMA2 summary statistics, a

“Data Agreement for ENIGMA2Download form”was completed

online at http://enigma.ini.usc.edu/publications/enigma-2/data-
agreement-for-enigma2-download/. More information of the
ENIGMA dataset can be found in Section ENIGMA2 Dataset.
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FIGURE 3 | Criteria used to prune a complex network. Green box: Selected GO terms that are associated with a gene identified from Lambert et al. (2013).

Orange box: Child terms of selected GO terms. Pink box: Less common parent term only associated with one selected child GO term. Yellow box: Regulation GO

terms that do not specify positive or negative regulation. (A) Child terms of selected GO terms were removed. (B) A less common parent GO term (receptor metabolic

process) which has one selected child GO term (“receptor internalization”) is removed because “receptor-mediated endocytosis” is a parent term for both selected GO

terms “receptor internalization,” and “clathrin-mediated endocytosis.” (C) Regulation terms that do not specify the type of regulation is removed because selected GO

term “negative regulation of receptor-mediated endocytosis” is more descriptive than the parent GO term “regulation of receptor-mediated endocytosis.” (D) A sample

of a pruned network after following the criteria in Figures 3A–C.

The ADNI database has been established in 2003 to facilitate
the development of methods for biomarker investigation in
order to enable detection of Alzheimer’s disease at earlier stages.
The ADNI database contains different information including
neuroimaging, clinical, and genome-wide SNPs data. According
to the ADNI protocol, subjects are diagnosed as cognitively
normal (CN), mild cognitive impairment (MCI), or Alzheimer’s
disease (AD), based on the severity of their condition, and
are recruited from Canada and the United States. To obtain
access to the ADNI data “ADNI Data Use Agreement,” had
to be completed online at http://adni.loni.usc.edu/data-samples/
access-data/.More information of the ADNI dataset can be found
in Supplementary Section 2.1.

RESULTS

In this paper we will focus on the results obtained by
prioritizing genes from the transport system GO network using
the AD seeded gene list with the ENIGMA2 dataset (known
as our AD model) which improved sFDR values compared to
results obtained with the ADNI1 dataset. More information of
association analysis and sFDR analysis using ADNI1 data can be
found in the Supplementary Section 2.2.

AD Model: SNP Selection
The following results for selection of priority genes are shown
corresponding to each step presented in the methods section.
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FIGURE 4 | Gene Ontology (GO) biological process network of the “transport system” in association with AD. Green boxes are GO terms that are

associated with the specific genes (blue ovals) connected by purple dotted line. White boxes are intermediate parent GO terms related to the selected GO terms

(green boxes). Black arrows represent “is_a” relationship between the GO terms and its parent term; blue arrows shows a “part _of” relationship; orange arrows, a

“regulation” relationship; green arrows, a “positive_regulation” relationship and red arrows, a “negative_regulation” relationship.

In total 24 genes were used as our original gene list in which
GO terms associated to these gene were extracted to form
the “transport system” network. The extraction of additional
genes associated with OGO terms increased our gene list
from 24 to 1727 priority genes. Below, we discuss in detail
the results from each step when selecting for priority list of
genes.

Step 1: From the 21 loci identified in Lambert et al., (2013) in
association with AD, 10 were already known through previous
GWAS and 11 novel loci were found (Table 1). APP, PSEN1,
and PSEN2 were also added to the gene list.
Step 2: Common biological processes within the gene list
were identified using GO and Generic Gene Ontology (GO)
Term Mapper web based tool. INRICH was used as an
alternative objective method, but significant results were not
found. Regardless, results from INRICH are found in the
Supplementary Section 1.2. The GO database was accessed
on July 2nd, 2015. In the GO database all genes from
the list had BP GO terms annotated to them except the
gene Membrane-spanning 4-domains subfamily A member
6A (MS4A6A). Table 2 shows the common BP domains
associated with the 21 genes. In this study we focused on
the “transport system” network (Figure 4), which included
many genes from our original list. The network can be
broken down into sub-domains with key GO terms in
the areas of vesicle-mediated transport, organic substance
transport, and ion transport. For example, in the domain

“vesicle-mediated transport”, Phosphatidylinositol-binding
clathrin assembly protein (PICALM) has been associated with
GO terms “receptor-mediated endocytosis” and “clathrin-
mediated endocytosis.”
Step 3: Cytoscape visualization of the transport network is
shown in Figure 4.
Step 4: The list of genes associated with the OGO terms
from the pruned “transport system” network included
1727 genes, after removal of all non-autosomal genes
1671 genes remained and formed our stratum for sFDR.
Supplementary Excel Table S1 shows a list of all priority
genes with chromosome number, start and end position
and gene symbol. Furthermore Supplementary Excel Table
S2 contains all 274, 272 SNPs from 1671 genes used for
sFDR.

Summary Statistics of ENIGMA2 GWAS
Meta-Analysis of Hippocampal Volume
P-values were extracted from summary statistics of association
testing between SNPs and hippocampal volume from the
ENIGMA2 dataset. Significant SNPs were identified as p <

5 × 10−8. For example the top significant SNP rs77956314
(P = 9.33 × 10−11) is located in the intergenic region
near the gene, activator of apoptosis harakiri (HRK) on
chromosome 12. (For more information on association analysis
results and Manhattan plot please refer to Hibar et al.,
2015).
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TABLE 1 | Top genes associated with AD from the Lambert et al. (2013)

meta-analysis.

(A) 10 loci known to be associated with Alzheimer’s disease

Gene Symbol Gene Name

APOE Apolipoprotein E

BIN1 Myc box-dependent-interacting protein 1

CLU Clusterin (Apolipoprotein J)

ABCA7 ATP-binding cassette sub-family A member 7

CR1 Complement receptor type 1

PICALM Phosphatidylinositol-binding clathrin assembly protein

MS4A6A Membrane-spanning 4-domains subfamily A member 6A

CD33 Myeloid cell surface antigen CD33

CD2AP CD2-associated protein

EPHA1 Ephrin type-A receptor 1

(B) 11 new loci associated Alzheimer’s disease

HLA Human leukocyte antigen class II histocompatibility antigen

SORL1 Sortilin-related receptor

PTK2B Protein-tyrosine kinase 2-beta

SLC24A4 Sodium/potassium/calcium exchanger 4

NYAP1 Neuronal tyrosine-phosphorylated phosphoinositide-3-kinase

adapter 1

CELF1 Encode CUGBP, Elav-like family member 1 region

NME8 Thioredoxin domain-containing protein 3

FERMT2 Fermitin family homolog 2

INPP5D Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 1

MEF2C Myocyte-specific enhancer factor 2C

CASS4 Cas scaffolding protein family member 4

AD Model: sFDR Results Using ENIGMA2
GWAS Meta-Analysis of Hippocampal
Volume
In total there were 274, 272 SNPs in our priority stratum
(transport system) and 6,296,344 SNPs in our non-priority
stratum of our AD model. SNPs in the transport system priority
group showed a sFDR between 10 and 20% in gene regions
Sodium-driven chloride bicarbonate exchanger (SLC4A10),
Potassium voltage-gated channel subfamily H member 7
(KCNH7), Cationic amino acid transporter 2 (SLC7A2), Zinc
transporter ZIP1 (SLC39A1), and Protein PTHB1 (BBS9). FDR
was used as a benchmark for sFDR by comparing the q-values.
The top SNPs from our priority group rs117831534 in gene
region Calcineurin B homologous protein 3 (TESC) performed
the same in FDR and sFDR however SNP rs118025365 performed
slightly better in FDR than sFDR (Table 3). The remaining SNPs
in the transport system priority list showed improved q sFDR
values than FDR alone. For example a set of SNPs in the SLC4A10
gene has a q sFDR value of 0.118 (rs12472555, rs4500960,
rs6707646, rs7580486, and rs7604885) whereas FDR q-value was
0.152. Furthermore SNPs rs10048805 and rs10172470 showed
greater improvement of sFDR with a q-value of 0.165 compared
to FDR of 0.304.

AD Model Comparison against Null Model
SFDR Results
To ensure our approach of using GO to prioritize genes in our
AD model was not simply resulting in false positives we used
the ENIGMA2 GWAS data and selected set of genes not related
to AD. As our null models we chose prostate cancer and three
random gene lists which were classified into biological domains
using GO. Comparing the AD model against the prostate
cancer model and three random null models, SNPs within
each biological domain within the null models did not show
sFDR values below 20% for each of the four biological domains
selected within each gene list (Supplementary Excel Tables S3–
S6). Whereas SNPs within the ADmodel showed sFDR value less
than 20% (as described in Section ADModel: sFDR Results Using
ENIGMA2 GWAS Meta-Analysis of Hippocampal Volume).
In the gene seed list of the null models, biological domains
selected were: anatomical structure formation involved in
morphogenesis, cell differentiation, cellular component assembly
and signal transduction. Furthermore, there was no reduction in
sFDR q-values when compared to FDR within each biological
domain from both the prostate cancer and random gene seed
lists.

DISCUSSION

In contrast to existing approaches, our novel method provides
a systematic integration framework for previous knowledge
with the GO database. Alternatives such as Aligator and
INRICH both rely on the identification of over-represented
GO categories among significant hits. These approaches use
GO as the last step to identify which biological domains are
enriched based on significant genetic variants providing results
relating to the whole domain and not individual variants.
In contrast, we identify and adapt relevant categories based
on GO and use sFDR to increase power while controlling
for multiplicity, the method provides q-values for individual
variants. A direct comparison between our approach to
tools such as INRICH and Aligator is therefore difficult.
However we have compared the intermediate step of manually
selecting biological domains use in our approach to a gene
enrichment tool, INRICH (detail found in Supplementary
Section 1.1).

Results from sFDR are promising, in the ENIGMA2 dataset
q-values of sFDR ranged in the 10–20%. Furthermore SNPs
in the transport priority list using the ENIGMA2 data showed
improved q sFDR values than FDR (Table 3) indicating a
potential link between the genes in our pruned transport system
network in connection to hippocampal volume. SNPs with 10–
20% q sFDR from the ENIGMA2 data are found in gene regions
SLC4A10, KCNH7, SLC7A2, SLC39A1, and BBS9. However, the
SNPs are within introns region of (non-cording regions) the
gene therefore the role a SNP will have on a gene function is
unclear. RegulomeDB was used to investigate the role of these
SNPs in non-coding regions (Boyle et al., 2012), however no
further evidence of functionality was provided. The SNPs we
identifiedmay just be tagging SNPs hence the causal variants may
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TABLE 2 | Common GO Biological Process domains of gene hits from the Lambert et al. (2013) meta-analysis.

Gene Protein ID Transport

System

Steroid and

cholesterol metabolic

process

Immune system

process

Cell membrane

processes and Cell

migration

Nervous system

development and

Synaptic

transmission

Regulation of

calcium-mediated

signaling

DRB5 Q30154 X

SORL1 Q92673 X X X

PTK2B Q14289 X X X X

SLC24A4 Q8NFF2 X X

NYAP1 Q6ZVC0 X

MADD Q8WXG6 X

NME8 Q8N427 X

FERMT2 Q96AC1 X

INPP5D Q92835 X

MEF2C Q06413 X

CASS4 Q9NQ75

APOE P02649 X X X X X

BIN1 O00499 X X

CLU P10909 X X

ABCA7 Q8IZY2 X X X

CR1 P17927 X

PICALM Q13492 X X X

MS4A6A Q9H2W1

CD33 P20138 X X

CD2AP Q9Y5K6 X

EPHA1 P21709 X X

TABLE 3 | Top 10 sFDR results from summary statistics on ENIGMA2 GWAS meta-analysis of hippocampal volume.

Chromosome Number SNP Base position p-value q_valueFDR Rank FDR q_value sFDR Rank sFDR Gene

12 rs117831534 117506632 4.91E-07 0.068 47 0.067 47 TESC

12 rs118025365 117477082 4.00E-07 0.058 45 0.067 46 TESC

2 rs12472555 162816728 3.04E-06 0.152 103 0.118 53 SLC4A10

2 rs4500960 162818621 2.77E-06 0.152 91 0.118 52 SLC4A10

2 rs6707646 162808640 2.02E-06 0.152 70 0.118 49 SLC4A10

2 rs7580486 162810159 2.46E-06 0.152 83 0.118 51 SLC4A10

2 rs7604885 162806408 2.30E-06 0.152 80 0.118 50 SLC4A10

2 rs4664442 162828001 3.58E-06 0.152 150 0.122 55 SLC4A10

2 rs10048805 163466462 2.20E-05 0.304 473 0.165 216 KCNH7

2 rs10172470 163476863 1.66E-05 0.304 359 0.165 202 KCNH7

P-value is the associated significance between the SNP and phenotype (hippocampal volume). Significant SNPs at a GWAS level is p < 5 × 10−8. The sFDR q-value controls the false

discovery rate; the q-value is the adjusted p-value. “Rank” is the order of SNPs based on sFDR q-values from a total of 6,570,616 SNPs.

be within genes that are close by. For example, the SLC4A10 gene
is a sodium/bicarbonate co-transporter for intracellular chloride
exchange. It plays a key role in regulating intracellular and
extracellular pH for synaptic transmission, nerve stimulation,
and enzyme activities and it is expressed in the brain (Fang et al.,
2010). During aging and or ischemia, accumulation of acidic
metabolites decreases the pH which can affect the activity of
enzymes related to APP processing affecting the amyloid plaque
formation in AD (Song et al., 2003; Xue et al., 2006). Another
genes of interest to AD is KCNH7 which is a zinc transporter also

known as ZIP1. Tau protein phosphorylation and aggregation
is affected by changes in Zn+2 ion levels which in turn affect
neurofibrillary tangles (Mo et al., 2009) and amyloid plaque
formation (Lee et al., 2002).

In our AD model, stratified SNPs extracted from GO within
the transport system showed sFDR q-values less than 20%, using
the ENGIMA dataset which was not seen within each biological
domain in the null models (prostate cancer and random seed
gene lists). Comparison of ADmodel against the results from the
null models addresses the concern of overfitting in our approach
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because if our approach was identifying random errors or noise
as significant sFDR q-values, the null model will also identify
random SNPs as being significant. Furthermore the purpose of
applying sFDR is to investigate if a subset of SNPs based on
common biological characteristics has more significant q-values
compared to a standard FDR. In our AD model the sFDR results
for the selected biological process were more significant than that
of the standard FDR results but the results were the same in the
null datasets. Hence, stratification of SNPs alone did not make
the q-values more significant. As we are unable to provide nested
models of FDR and sFDR and we do not know which genes are
actually truly involved in AD, we are unable to determine if sFDR
is significantly better than FDR. Thus at this time our results are
suggestive.

Some aspects of the process by which priority SNPs are
selected for sFDR could be considered subjective and represent
an area of active development for our algorithm. For example,
often the associations in GWAS studies are designated to
the most promising gene in the region from a biological
standpoint, introducing bias in step 1. One approach to combat
this phenomenon would be for the input list to include all
genes within a high recombination region alongside the most
significant hit. Selection of the common biological domains in
step 2 can be performed in a variety of ways due to different
tools available. In our approach we used a web based tool
Generic Gene Ontology (GO) TermMapper which decreases the
subjectivity of identifying common biological domains. However
because there are different GO Slim terms that can be used
on a gene set, identified common biological domains in GO
can differ. Other potential standard pathway approaches are
INRICH or Aligator. We have performed pilot work using
INRICH as outlined in the Supplementary text. In this example
no pathways were identified, preventing us from pursuing this
avenue. This is likely due to a lack of power to identify relevant
pathways.

Another area of active development relating to SNP selection
revolves around growing and pruning the network of terms
utilized. As such, further pruning the GO network by focusing
on BP GO terms annotated to genes specific to one brain region,
such as the hippocampus, or neuronal cell type within such
structures may be crucial. Biological processes associated with
structural information have recently begun to be captured in GO
(Huntley et al., 2014). Therefore, when genes are annotated to
BP GO terms, additional information on where the biological
process is occurring can be recorded. As a result, filtering the data
and looking at BP GO terms occurring in neuro-anatomical cells
in region of the hippocampus may help in further pruning the
network.

Both automatic and manual curation was used to assign GO
terms to the genes in question. Automatic curation is the result
of machine learning algorithms, and the terms assigned tend
to be much broader than the manually curated ones and adds
a potential source of noise to our priority SNPs stratum. In
the example analysis presented here the inclusion of these sub-
optimal classifications was necessary due to the limited manual
annotation of the loci observed in Lambert et al. (2013) yet we
acknowledge the shortcomings of this approach and advise the

prioritization of manually curated GO data. To further address
the issue we are in the process of manually curating the list of 21
loci associated with AD.

In conclusion, this article introduces the use of GO, an online
database, as a novel method to efficiently prioritize data for
sFDR multiple testing control. We take advantage of how the
GO terms in the biological process ontology relates to each other
in a hierarchical order ontology and we capture the different
properties of a particular biological process that is impaired in
a disease.

In particular we applied this method to a GWAS of
hippocampal volume in the ENIGMA2 and ADNI1 dataset. Our
method has the potential to improve the identification of genes
in imaging-genetic studies; further development along the lines
described above could increase this ability.
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