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Abstract—In resource constraint wireless systems, achieving
higher spectral efficiency (SE) and energy efficiency (EE), and
greater rate fairness are conflicting objectives. Here a general
framework is presented to analyze the tradeoff among these
three performance metrics in cooperative OFDMA systems with
decode-and-forward (DF) relaying, where subcarrier pairing
and allocation, relay selection, choice of transmission strategy,
and power allocation are jointly considered. In our analytical
framework, rate fairness is represented utilizingα-fairness model
and the resource allocation problem is formulated as a multi-
objective optimization (MOO) problem. We then propose a
cross-layer resource allocation algorithm across application and
physical layers, and further devise a heuristic algorithm to
tackle the computational complexity issue. The SE-EE tradeoff
is characterized as a Pareto optimal set, and the efficiency and
fairness tradeoff is investigated through the price of fairness
(PoF). Simulations indicate that higher fairness results in a worse
SE-EE tradeoff. It is also shown imposing fairness helps to
reduce the outage probability. For a fixed number of relays,
by increasing circuit power, the performance of SE-EE tradeoff
is degraded. Interestingly, by increasing the number of relays,
although the total circuit power is increased, the SE-EE tradeoff
is not necessarily degraded. This is thanks to the extra degree of
freedom provided in relay selection.

Index Terms—Cross-layer optimization, cooperative commu-
nications, energy efficiency, OFDMA, price of fairness, rate
fairness, resource allocation, spectral efficiency.

I. I NTRODUCTION

RELAY-aided cooperative communication is a promis-
ing technique for improving performance in cellular

networks, including coverage area, transmission reliability,
and system throughput [1]. Meanwhile, orthogonal frequency
division multiple access (OFDMA) is the major access scheme
in current cellular networks. Due to the inherent spectrum
scarcity in wireless communications, great efforts have been
made to improve the spectral efficiency (SE) in OFDMA
cooperative systems [2]–[4]. Recently, because of the huge
amount of energy consumption in wireless communication
systems [5], increasing the energy efficiency (EE) has become
an essential issue in the current and future fifth-generation
(5G) cellular communication networks [6].
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Resource allocation schemes for maximizing SE in OFDMA
cooperative systems have been extensively studied in the lit-
erature. See, e.g., [2]–[4], [7]. Authors in [2] investigate relay
selection, subcarrier pairing and power allocation problems in
multi-relay OFDMA systems with one single user to maxi-
mize SE, where amplify-and-forward (AF) protocol is used.
Further in [3], a joint subcarrier and power allocation scheme
is proposed to maximize the system throughput in LTE-
Advanced cooperative networks, where subcarrier pairing and
relay selection are fixed and thus excluded from the proposed
resource allocation scheme. In [4], authors investigate QoS-
aware relay selection and subcarrier assignment via branch-
and-cut and dual method in multi-user OFDMA relay networks
to maximize sum-rate.

Since EE will be a key issue in the future 5G cellular net-
works, energy-aware system design has become an immediate
need in both industry and academia. Expanding bandwidth
increases EE, however it also degrades the system SE [8].
Considering the spectrum scarcity in wireless communications,
it is imperative to balance SE and EE as conflicting objectives.
Existing studies on the relationship of SE and EE can be
divided into two categories, and in both categories the rate
fairness is excluded.

The first category is based on the approach in which EE is
maximized [9]–[18], and the second category is focused on ex-
ploring the optimal achievable envelope of the SE-EE tradeoff
[19]–[22]. In [9]–[11], [17], [18], energy-efficient designs are
proposed where it is demonstrated that the power consumption
can be reduced by performing EE optimization. Considering
users’ quality-of-service (QoS) requirements, [12] and [13]
deal with the energy-efficient resource allocation problemin a
multiuser OFDMA system. Considering a pre-assigned relay to
each user, [14] formulates an EE maximization problem in AF
relay cellular networks, where subcarrier pairing is excluded.
In [15], EE is maximized while satisfying a SE requirement
in a three-terminal relay network. Afterwards, the transmitter
and receiver power consumption are jointly considered in
[16] to maximize the EE thus increasing the battery life, but
the SE requirement is not incorporated. All these schemes
mainly focus on EE maximization. For those with given SE
requirements, they are inflexible and often restrict the SE
performance. For those without SE requirements in place,
maximizing EE often leads to compromising SE performance.

The SE-EE tradeoff [19] has been investigated in the
second category. For OFDMA systems in [20], a new metric,
namely resource efficiency is introduced to enforce a balance
between SE and EE, where bandwidth and transmission power
are jointly optimized. The authors in [21], propose a new
formulation to characterize the Pareto optimal set of SE-EE
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tradeoff, but they do not provide specific resource allocation
schemes. In [22], a relay cooperation scheme is proposed
for MIMO cellular networks, where various relay decoding
strategies are considered, and the SE and EE are then evaluated
for this relay cooperation scheme. These works investigatethe
global relationship of SE and EE, and provide some flexible
techniques to manage the SE-EE tradeoff.

Given the time varying nature of wireless channels, rate
fairness is a critical performance indicator in cellular networks.
Fairness-aware energy efficient radio resource allocationis
considered in the literature in conventional OFDMA systems
without relays. In [23], EE definition is generalized as the
weighted number of delivered bits per unit energy to provide
fairness to some extent. More recently, EE maximization
resource allocation algorithms with proportional rate constraint
are proposed in [24]–[26]. However, in these fairness-aware re-
searches, the focus is on EE maximization without considering
the negative impact on the SE performance.

To our best knowledge, the three-factor tradeoff among SE,
EE and rate fairness has not been studied in the literature.
In this paper, we present a general framework to analyze the
SE, EE and rate fairness tradeoff in multi-user OFDMA coop-
erative systems. We devise a joint cross-layer radio resource
allocation algorithm based on Lagrangian Dual Decomposition
(LDD). Further, a heuristic resource allocation algorithmis
developed to reduce the computational complexity.

The main contributions of this paper are:
1) A novel general framework based on multi-objective

optimization is proposed to investigate the three-factor trade-
off among SE, EE and rate fairness, where rate fairness is
represented utilizingα-fairness model. The SE-EE tradeoff is
characterized as a Pareto optimal set and we introduce price
of fairness (PoF) to quantitatively evaluate the efficiencyand
fairness tradeoff.

2) Unlike previous literature such as [3], [4] and [14], we
exploit all degrees of freedom in resource allocation to jointly
manage the three-factor tradeoff for achieving satisfactory
performance. In our analytical framework, we first introduce
thevirtual relay concept which maps the problem of choosing
the transmission strategy into a relay selection problem, and
then propose a LDD-based cross-layer algorithm to jointly
obtain the optimal decisions on relay selection, subcarrier
pairing and allocation, and power allocation across application
and physical layer optimization.

3) We propose a novel heuristic resource allocation algo-
rithm to reduce the computational complexity of the LDD-
based cross-layer algorithm. The heuristic algorithm firstob-
tains subcarrier pairing and allocation, and relay selection,
and then carries out the optimal power allocation. Simulation
results show that the two algorithms closely follow the same
pattern and achieve similar performance, while the compu-
tational complexity of the proposed heuristic algorithm is
significantly lower than the LDD-based cross-layer algorithm.

Simulations indicate that higher fairness results in a worse
SE-EE tradeoff. It is also shown imposing fairness helps to
reduce the outage probability. Besides, we observe that for
a fixed number of relays, by increasing circuit power, the
performance of SE-EE tradeoff is degraded, i.e., for a given
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Fig. 1. (a) 1st slot of asynchronous mode. (b) 2nd slot of asynchronous mode.
(c) 1st slot of synchronous mode. (d) 2nd slot of synchronousmode.

fairness level and SE (EE), a lower EE (SE) is achieved.
Interestingly, by increasing the number of relays, although
the total circuit power is increased, the SE-EE tradeoff is not
necessarily degraded. This is because of the extra degree of
freedom provided in relay selection.

The rest of this paper is organized as follows. In Section II,
we present the system model and problem formulation. In Sec-
tion III, the optimization problem is solved using LDD method
and a cross-layer resource allocation algorithm is proposed. In
Section IV, a novel heuristic algorithm is proposed to reduce
the complexity in resource allocation. Simulation resultsare
presented in Section V followed by the conclusions in Section
VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the downlink in a multi-user relay-aided OFDMA
cooperative cellular network with one base station (BS),M
users, andL relays. The total bandwidth is divided into
N orthogonal subcarriers, and the intra-cell interference is
negligible. All the relays are assumed to be half-duplex, which
means they cannot transmit and receive signals simultaneously.
Perfect channel state information (CSI) is available at the
receivers, and this information is fed back to the BS. Since
relays in a cellular network are usually deployed to assist the
transmission of users located at the cell-edge, in this paper, our
focus is on the users located at the cell-edge and experiencing
deteriorated wireless link from the BS due to the channel
fading.

We consider three transmission modes, i.e., asynchronous
mode, synchronous mode and direct mode. Each transmis-
sion frame is divided into two consequent slots, and the
channel gains are assumed to be constant during the two
slots. The normalized channel gains over noise on subcarrier
i ∈ {1, 2, ..., N} from BS to relayl ∈ {1, 2, ..., L} and user
m ∈ {1, 2, ...,M} are denoted asgl,isr and gm,i

sd , respectively.
Similarly, for subcarrierj ∈ {1, 2, ..., N}, the normalized
channel gains from relayl and BS to userm are denoted
by gml,j

rd andgm,j
sd , respectively.
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For the asynchronous mode, as shown in Fig. 1 (a) and
(b), in the first slot, BS broadcasts the signals over subcarrier
i with power ps to all the relays and users. In the second
slot, relays transmit their received signals over subcarrier j
with power pml,j

rd to users using decode-and-forward (DF)
protocol. While for the synchronous mode, as shown in Fig. 1
(c) and (d), BS broadcasts over subcarrieri with powerξml

ij ps
in the first slot, whereξml

ij ∈ (0, 1). In the second slot, in
addition that relays forwards signals over subcarrierj with
powerpml,j

rd , BS also transmits over subcarrierj with power

ξ
ml

ij ps to cooperate with relays, whereξ
ml

ij = 1 − ξml
ij . Users

combine the received signals within the two slots utilizing
maximum ratio combining (MRC) followed by decoding.

Therefore, for a cooperative transmission link(ml, ij) with
DF protocol, the normalized maximum achievable data rate
over bandwidth is [3]

rml,ij
DF = max

0≤ξml
ij

≤1
min 1

2

{

log2
(

1 + gl,isrξ
ml
ij ps

)

,

log2

[

1 + gm,i
sd ξml

ij ps +

(

√

gm,j
sd ξ̄ml

ij ps +
√

gml,j
rd pml,j

rd

)2
]}

(1)
Here, we setξml

ij ∈ [0, 1] and ξ
ml

ij = 1 − ξml
ij . ξml

ij is the
portion of the BS transmit power used to cooperate with relays.
The maximum data rate is achieved when the decoding rate at
the relay is equal to the destination decoding rate. Therefore,
one can jointly adjustps, pml,j

rd and ξml
ij such that the two

rates become equal. If the relay decoding rate is lower than
that of the destination, we setξml

ij = 1, which is known as
the “asynchronous mode” [3]. Otherwise, if the destination
decoding rate is lower,ξml

ij is reduced until these two rates
become equal. This case is referred to as the “synchronous
mode” [3].

For the asynchronous mode, if settingps,asyn + pml,j
rd,asyn =

pml,ij
asyn , we then express the normalized maximum achievable

data rate for the transmission link(ml, ij) as

rml,ij
asyn =

1

2
log2

(

1 + gml,ij
asyn pml,ij

asyn

)

, (2)

where the power allocation and equivalent channel gain is
given by

ps,asyn =
gml,j
rd

gml,j
rd + gl,isr − gm,i

sd

pml,ij
asyn , (3)

pml,j
rd,asyn =

gl,isr − gm,i
sd

gml,j
rd + gl,isr − gm,i

sd

pml,ij
asyn , (4)

gml,ij
asyn =

gml,j
rd gl,isr

gml,j
rd + gl,isr − gm,i

sd

. (5)

For the synchronous mode, where0 ≤ ξml
ij < 1, andps,syn+

pml,j
rd,syn = pml,ij

syn , the normalized maximum achievable data
rate for the transmission link(ml, ij) is

rml,ij
syn =

1

2
log2

(

1 + gml,ij
syn pml,ij

syn

)

, (6)

where the optimal power division and equivalent channel gain

is given by

ξml
ij ps,syn =

Gml,ij
1

Gml,ij
2

pml,ij
syn , (7)

ξ
ml

ij ps,syn =
gm,j
sd Gml,ij

3

Gml,ij
1 Gml,ij

2

pml,ij
syn , (8)

pml,j
rd,syn =

gml,j
rd Gml,ij

3

Gml,ij
1 Gml,ij

2

pml,ij
syn , (9)

gml,ij
syn =

gl,isrG
ml,ij
1

Gml,ij
2

. (10)

whereGml,ij
1 = gm,j

sd + gml,j
rd , Gml,ij

2 = gml,j
rd − gm,i

sd + gl,isr

+ gm,j
sd andGml,ij

3 = gl,isr − gm,i
sd .

For the direct mode, the BS transmits to userm on subcar-
rier i in the first slot and on subcarrierj in the second slot.
Therefore, the normalized achievable data rate is

rm,ij
DT =

1

2

[

log2

(

1 + gm,i
sd pm,i

sd

)

+ log2

(

1 + gm,j
sd pm,j

sd

)]

,

(11)
wherepm,i

sd , and pm,j
sd are the BS transmit power in the first

and second slots, respectively, and

pm,ij
DT

∆
= pm,i

sd + pm,j
sd . (12)

A. The Unified Framework

In order to analyze asynchronous, synchronous and direct
modes of transmission in a unified framework, here in ad-
dition to L real relays, we introduceL + 1 virtual relays
denoted as{0} and {L+ 1, L+ 2, ..., 2L}. Therefore,l ∈
{0, 1, 2, ..., 2L}. For a virtual relayl ∈ {L+ 1, L+ 2, ..., 2L},
the normalized channel gains aregl,isr = g

(l−L),i
sr , andgml,j

rd =

g
m(l−L),j
rd . In asynchronous mode, a real relayl ∈ {1, 2, ..., L}

is selected, whereas in synchronous mode, a virtual relay
l ∈ {L+ 1, L+ 2, ..., 2L} is chosen. For the direct mode,
however,l = 0. By introducingvirtual relays, the choice of
transmission strategy can be incorporated into relay selection
problem.

Therefore, combining (2), (6) and (11), the normalized
maximum achievable data rate of the transmission link(ml, ij)
is

rml
ij =















1
2 log2

(

1 + gml
ij pml

ij

)

, l ∈ {1, 2, ..., 2L} ,
1
2

[

log2

(

1 + gm,i
sd pm,i

sd

)

+ log2

(

1 + gm,j
sd pm,j

sd

)]

, l = 0,

(13)

where

gml
ij =











g
ml,j

rd
gl,i
sr

g
ml,j

rd
+g

l,i
sr−g

m,i

sd

, l ∈ {1, 2, ..., L} ,

gl,i
sr (g

m,j

sd
+g

ml,j

rd )
g
ml,j

rd
−g

m,i

sd
+g

l,i
sr+g

m,j

sd

, l ∈ {L+ 1, L+ 2, ..., 2L} ,

(14)

pml
ij =











ps,asyn + pml,j
rd,asyn, l ∈ {1, 2, ..., L} ,

ps,syn + pml,j
rd,syn, l ∈ {L+ 1, L+ 2, ..., 2L} ,

pm,i
sd + pm,j

sd , l = 0.
(15)

We further defineρij ∈ {0, 1} as the subcarrier pairing
indicator which is equal to 1 if subcarriersi, andj are paired
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in the two transmission slots, and 0, otherwise. We denote
βml
ij ∈ {0, 1} as the subcarrier pair allocation and relay

selection indicator, which is equal to 1, if userm is assisted
by relay l using subcarrier pair(i, j), and 0, otherwise. Then
the total normalized achievable data rate over bandwidth for
userm can be expressed as

Rm =
2L
∑

l=0

N
∑

i=1

N
∑

j=1

ρijβ
ml
ij rml

ij . (16)

B. Power Consumption Model

The total power consumption for transmission consists of
the circuit power, and dynamic amplifier power of the BS and
relay nodes. Circuit power consumption is assumed to be fixed.
The total transmit power of the BS and all relay nodes is

Pt =
1

2

2L
∑

l=0

M
∑

m=1

N
∑

i=1

N
∑

j=1

ρijβ
ml
ij pml

ij . (17)

The total power consumption is therefore the summation of
the circuit power and the amplifiers’ power:

Ptotal = PC + εPt, (18)

wherePC is the total fixed circuit power of the BS and all
relays, and1/ε is the amplifiers’ efficiency. Here, for brevity
we assume the amplifiers’ efficiency in the BS and relays is
equal.

C. SE, EE and Rate Fairness

In this paper, SE is defined as the normalized system
throughput over bandwidth, i.e.,SE =

∑M
m=1 Rm, while

EE is defined as the delivered bits per unit energy, i.e.,
EE =

(

∑M
m=1 Rm

)/

Ptotal.
Furthermore, due to the random nature of wireless chan-

nels, in cellular radio communications, the users with better
channels may achieve much higher data rate compared with
those with worse channels, leading to rate unfairness among
users. To incorporate rate fairness in resource allocation, here
we adoptα-fair utility function as defined in [27]:

uα (Rm) =

{

ln (Rm) , if α = 1,
R1−α

m

/

(1− α), if α 6= 1, α ≥ 0.
(19)

As it is seen,α-fair utility function represents a family
of utility functions, where the values ofα indicate different
levels of rate fairness. Maximizing the sum-utility of all users
in the coverage area results in anα-fair resource allocation.
Adjustingα, one can examine the tradeoff between the system
efficiency and different levels of fairness. For instance, if
no fairness is required, i.e.,α = 0, then Uα (Rm) = Rm.
Therefore, maximizing the sum-utility of all users is equivalent
to maximizing the total network throughput. In this case,
the highest total throughput is achieved while rate fairness
among users is completely ignored. We also note that for
α > 0, sinceα-fair utility function is strictly increasing and
concave, its marginal utility diminishes when the data rate
increases. Therefore, it can balance efficiency and fairness. To
be specific, by increasingα, the rate fairness among users

rises while the efficiency declines. In particular,α = 1, and
α → ∞, are corresponding to the proportional, and max-min
fairness among users, respectively.

In reality, achieving higher SE, EE and rate fairness are
three conflicting performance objectives. In the following, we
will investigate the three-factor tradeoff in resource allocation.

D. Problem Formulation

As maximizing the sum-utility of all users results in an
α-fair resource allocation and achieves efficiency and fair-
ness tradeoff, studying the three-factor tradeoff among SE,
EE and rate fairness is actually equivalent to maximizing
the sum-utility and minimizing the total power consumption
simultaneously. Therefore, we formulate it as a multi-objective
optimization (MOO) problem as following:

max
p,ρ,β

M
∑

m=1

uα (Rm), (20a)

max
p,ρ,β

− Ptotal, (20b)

s.t. C1 : Pt ≤ PT, (20c)

C2 : pml
ij ≥ 0, ∀m, l, i, j, (20d)

C3 :

N
∑

i=1

ρij = 1, ∀j, (20e)

C4 :

N
∑

j=1

ρij = 1, ∀i, (20f)

C5 :
M
∑

m=1

2L
∑

l=0

βml
ij = 1, ∀i, j, (20g)

C6 : ρij , β
ml
ij ∈ {0, 1} , ∀m, l, i, j, (20h)

where p = {pml
ij }, ρ = {ρij}, β = {βml

ij }, and PT is
the maximum summation transmit power of BS and all relay
nodes. Constraint C6 ensures that the subcarrier and relay
assignment indicators are binary variables. Along with C6,
constraints C3 and C4 ensure that each subcarrier is only
paired with one subcarrier in each frame. C5 further enforces
exclusive assignment of subcarrier pair(i, j) to only one relay
(inclusive of virtual relays) and user pair(m, l).

III. C ROSS-LAYER OPTIMIZATION FOR SE, EEAND RATE

FAIRNESSTRADEOFF

To understand the tradeoff among SE, EE, and rate fairness,
we need to investigate the solution set of the optimization
problem in (20). In this section, we propose a cross-layer
algorithm based on Lagrangian dual decomposition (LDD)
method, to obtain the solution set of (20).

A. Transformation to Single Objective Optimization

To obtain the optimal solution set of (20), we employ
weighted sum method [28] to transfer the MOO problem into
a single-objective optimization (SOO) problem. In order to
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ensure a consistent comparison, we normalize the objective
functions in (20) as the following:

max
p,ρ,β

[

M
∑

m=1

uα (Rm)− Uα
min

]/

(Uα
max − Uα

min), (21a)

max
p,ρ,β

−Ptotal/Pmax, (21b)

wherePmax is the maximum total power consumption, and
Uα
max andUα

min are the maximum and minimum achievable
sum-utility with fairness parameterα under the constraints
C1-C6:

Pmax = PC + εPT, (22a)

Uα
max = max

p,ρ,β

M
∑

m=1

uα (Rm) |Pt=PT
, (22b)

Uα
min =















M
∑

m=1
ln (δ), if α = 1,

M
∑

m=1
δ1−α

/

(1− α), if α 6= 1, α ≥ 0,

(22c)

where δ is a predefined and sufficiently small value. We
exclude the case where the data rate of each user is zero,
thus we assumeRm ≥ δ for all users.

Applying the weighted sum method, the MOO problem can
be then converted into an equivalent SOO problem as the
following:

max
p,ρ,β

w

M
∑

m=1
uα (Rm)− Uα

min

Uα
max − Uα

min

− (1− w)
Ptotal

Pmax
, (23a)

s.t. C1− C6, (23b)

wherew ∈ [0, 1] is a weighting parameter, which can be used
to reflect the importance level of the two objectives.

B. The Cross-Layer Optimal Solution Set

For a givenα, finding the optimal solutions to the SOO
problem in (23) for different values ofw, forms a Pareto
optimal solution set for the original MOO problem in (20)
[28]. Pareto optimal solution set provides the best achievable
values of the conflicting objective functions for any given value
of fairness parameterα. In the following, we adopt cross-layer
optimization based on Lagrangian dual decomposition (LDD)
method [29] to find the optimal solutions to the SOO problem
in (23). We consider two cases:α > 0, andα = 0.

1) Case I: α > 0: To enable the cross-layer optimiza-
tion, similar to [30], we introduce an auxiliary vectort =
[t1, t2, ..., tm]T and rewrite the SOO problem (23) as

max
t,p,ρ,β

w

M
∑

m=1
uα (tm)− Uα

min

Uα
max − Uα

min

− (1− w)
Ptotal

Pmax
, (24a)

s.t. C1− C6, (24b)

C7 : tm ≤ Rm, ∀m. (24c)

The auxiliary variabletm is defined in the application layer,
which represents the demand of data rate in the application

layer for userm, while Rm represents the supply in the
physical layer. Hence, constraint C7 means the application-
layer demand of data rate must be less than or equal to the
physical-layer supply. In fact, sinceα-fair utility function is
a strictly increasing function, at the optimal point,tm must
be equal toRm. Therefore, (24) must have the same optimal
solution as (23).

The key step in adopting LDD-based cross-layer optimiza-
tion is to relax C7. To characterize the duality gap between the
primal and dual solutions, time-sharing condition is defined in
[31] where it is shown that holding this condition, the duality
gap is zero even if the original optimization problem is not
convex. In practical multicarrier systems with a large number
of subcarriers, channel conditions in the adjacent subcarriers
are often similar. In such case, the time-sharing conditionis
readily satisfied, and accordingly the duality gap is nearlyzero
[31]. Thus, by relaxing C7, Lagrangian function associatedto
(24) is

L (t,p,ρ,β, λ) = w

M∑

m=1

uα(tm)−Uα
min

Uα
max

−Uα
min

− (1− w) Ptotal

Pmax

+
M
∑

m=1
λm (Rm − tm)

=



w

M∑

m=1

uα(tm)−Uα
min

Uα
max

−Uα
min

−
M
∑

m=1
λmtm





+

[

M
∑

m=1
λmRm − (1− w) Ptotal

Pmax

]

,

(25)
whereλ = [λ1, λ2, ..., λm]T is the dual vector for constraint
C7 corresponding to each user. Therefore, the dual functionis

h (λ) = max
t,p,ρ,β

L (t,p,ρ,β, λ) , (26a)

s.t. C1− C6. (26b)

The corresponding dual problem is then

min
λ≥0

h (λ) . (27)

To obtain the optimal solution to (27), we use the sub-
gradient method, where the dual variables are updated as

λk+1
m =

[

λk
m + χk (tm −Rm)

]+
, (28)

andχk is the diminishing step size at thekth iteration. The
above sub-gradient update is guaranteed to converge to the
optimal solution as long as the step size is chosen to be
sufficiently small [31], [32].

As it is seen in (25) and (26), the dual functionh (λ)
considers both application-layer and physical-layer variables,
i.e., t, which is defined in the application layer, andp, ρ,
andβ, which are physical-layer variables. The dual vectorλ

interrelates the two layers, reflecting the cross-layer interaction
between application layer and physical layer. Hence, this is
a cross-layer optimization problem. Using LDD method, the
dual functionh (λ) can be decomposed into two maximization
subproblems, namelyapplication layer and physical layer
subproblems.

The application layersubproblem is a utility maximization
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Fig. 2. LDD-based cross-layer algorithm diagram.

problem as follows:

h1 (λ) = max
t

f (t) = w

[

M
∑

m=1
uα (tm)− Uα

min

]

Uα
max − Uα

min

−

M
∑

m=1

λmtm.

(29)
The physical layersubproblem is a joint subcarrier pairing
and allocation, relay selection, and power allocation problem
as the following:

h2 (λ) = max
p,ρ,β

M
∑

m=1

λmRm − (1− w)
Ptotal

Pmax
, (30a)

s.t. C1− C6. (30b)

Note that the two subproblems are not independent. They
are interrelated by the dual vectorλ across application layer
and physical layer. Therefore, in the following, we will solve
the two subproblems in (29) and (30) by cross-layer optimiza-
tion. See Fig. 2 for the LDD-based cross-layer optimization
diagram.

In (29), we note that bothuα (tm) and f (t) are concave
functions oftm. Therefore, the optimal solutions of (29) are
obtained by setting the derivation off (t) with respect totm
to zero. The optimal value oftm is then obtained as

t∗m = α

√

w

λm (Uα
max − Uα

min)
. (31)

To solve thephysical layersubproblem in (30), we adopt
Lagrangian dual method where we further introduce another
dual variable related to the price of transmit power to enable
the second layer LDD. By relaxing C1, Lagrangian function
associated to (30) is

Q (p,ρ,β, µ) =
M
∑

m=1
λmRm − (1− w) Ptotal

Pmax
+ µ (PT − Pt)

=
M
∑

m=1

2L
∑

l=0

N
∑

i=1

N
∑

j=1

{

λmrml
ij −

[

(1−w)ε
2Pmax

+ µ
2

]

pml
ij

}

ρijβ
ml
ij

− (1−w)PC

Pmax
+ µPT,

(32)

whereµ is the dual variable defined corresponding to C1. The
corresponding dual objective function is

q (µ) = max
p,ρ,β

Q (p,ρ,β, µ) , (33)

and the dual problem is

min
µ≥0

q (µ) . (34)

Similar to the above, the derivative ofQ (p,ρ,β, µ) with
respect top is set to zero. This provides us with the optimal
power allocation for each transmission link(ml, ij) as the
following:

pml∗
ij =

[

∆(m)−
1

gml
ij

]+

, (35a)

pm,i∗
sd =

[

∆(m)−
1

gm,i
sd

]+

, (35b)

pm,j∗
sd =

[

∆(m)−
1

gm,j
sd

]+

, (35c)

wherel ∈ {1, 2, ..., 2L}, (x)+
∆
= max {0, x}, and

∆(m) =
λm

[

(1−w)ε
Pmax

+ µ
]

ln 2
(36)

is the water-filling level of userm. For l = 0, we further
obtain

pml∗
ij = pm,i∗

sd + pm,j∗
sd , l = 0. (37)

Here we defineΨml
ij as the contribution of transmission link

(ml, ij) to Q (p,ρ,β, µ). Therefore,

Ψml
ij = λmrml∗

ij −

[

(1− w) ε

2Pmax
+

µ

2

]

pml∗
ij , (38)

where

rml∗
ij =















1
2 log2

(

1 + gml
ij pml∗

ij

)

, l ∈ {1, 2, ..., 2L} ,
1
2

[

log2

(

1 + gm,i
sd pm,i∗

sd

)

+ log2

(

1 + gm,j
sd pm,j∗

sd

)]

, l = 0.

(39)
We further notice that the last two terms in (32) are both con-
stants. Thus, the original Lagrangian functionQ (p,ρ,β, µ)
can be decomposed into(2L+1)MN2 independent subprob-
lems as the following:

Q
(

pml
ij , ρij , β

ml
ij , µ

)

= ρijβ
ml
ij Ψml

ij . (40)

According to C5 and C6, each subcarrier pair is exclusively
assigned to only one relay-user pair. Therefore, to maximize
Q (p,ρ,β, µ), the subcarrier pair(i, j) should be allocated to
the relay-user pair(m, l) with maximum value ofΨml

ij . This
yields the optimal subcarrier pair allocation and relay selection
indicator as

βml∗
ij =

{

1, if (m, l) = argmax
m,l

Ψml
ij ,

0, otherwise.
(41)

We then denoteΩij = max
m,l

Ψml
ij and further simplify the
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dual objective function (33) as the following:

q (µ) = max
ρ

N
∑

i=1

N
∑

j=1

ρijΩij , (42)

which is in fact a two-dimensional assignment problem. Hun-
garian Algorithm (HA) is an efficient algorithm to obtain the
solution of such assignment problem with the complexity of
O
(

N3
)

[33]. Without loss of generality, we can express the
subcarrier pairing result as

ρ∗ij =

{

1, if (i, j) = HA (Ωij) ,
0, otherwise.

(43)

Finally, we use the sub-gradient method to minimize the
dual objective function, where the dual variable is updatedby
the following:

µk+1 =
[

µk + υk (Pt − PT)
]+

, (44)

andυk is the diminishing step size at thekth iteration.
2) Case II:α = 0: In this case,Uα (Rm) = Rm, and the

problem in (23) is reduced to

max
p,ρ,β

w

M
∑

m=1
Rm − U0

min

U0
max − U0

min

− (1− w)
Ptotal

Pmax
, (45a)

s.t. C1− C6. (45b)

This optimization problem can be directly solved adopting
LDD method, and only the physical layer problem is involved.
Here for brevity we skip the details as it follows the same
line of argument as in case I without introducing the auxiliary
vector t. The optimal power allocation to transmission link
(ml, ij) is then obtained as

pml∗
ij =

[

Γ−
1

gml
ij

]+

, (46a)

pm,i∗
sd =

[

Γ−
1

gm,i
sd

]+

, (46b)

pm,j∗
sd =

[

Γ−
1

gm,j
sd

]+

, (46c)

wherel ∈ {1, 2, ..., 2L}, and

Γ =
w

(U0
max − U0

min)
[

(1−w)ε
Pmax

+ µ
]

ln 2
(47)

is the water-filling level for all users. Similarly forl = 0, we
also have

pml∗
ij = pm,i∗

sd + pm,j∗
sd , l = 0. (48)

The resource allocation indicators are the same as in (41)
and (43). In this case, however, the contribution of transmis-
sion link (ml, ij) is different from (38), which is

Ψml
ij =

w

(U0
max − U0

min)
rml∗
ij −

[

(1− w) ε

2Pmax
+

µ

2

]

pml∗
ij . (49)

From (35), we observe that in the case ofα > 0, the
optimal power allocation is in fact a multi-level water-filling

Algorithm 1 LDD-based cross-layer joint resource alloca-
tion algorithm (LDDA)

Step 1. For a given weighting parameterw, initialize the
dual variablesλ0 (if α > 0) andµ0;

Step 2. For each transmission link(ml, ij), obtain the
optimal power allocation via (35) (ifα > 0) or
(46) (if α = 0) at givenw, λ andµ, and then
obtain the resource allocation indicators by (41)
and (43), respectively;

Step 3. Update dual variableµ by the sub-gradient
method in (44);

Step 4. Repeat Step 2 and Step 3 until the inner
physical layer subproblem converges. Ifα = 0,
the algorithm terminates. Ifα > 0, go to Step 5;

Step 5. Update dual vectorλ by the sub-gradient method
in (28);

Step 6. Repeat Step 2 to Step 5 until the outer application
layer subproblem converges.

problem. In other words, by imposing fairness, users would
have different water-filling levels according to their subcarrier
allocation and relay selection. On the contrary, ifα = 0, all
of the users will have the same water-filling level as in (46),
which is the common case of optimal power allocation.

C. LDD-Based Cross-Layer Algorithm (LDDA) for SE, EE
and Rate Fairness Tradeoff

The LDD-based cross-layer joint resource allocation algo-
rithm (LDDA) for SE, EE and rate fairness tradeoff is outlined
in Algorithm 1 . To derive the joint resource allocation algo-
rithm, we consider two cases:α > 0, andα = 0. For α > 0,
the solution is obtained through an LDD-based cross-layer
algorithm, and the algorithm diagram is shown in Fig. 2. By
introducing an auxiliary vectort, this problem consists of two-
layer subproblems, where the application layer subproblemis
the outer layer and the physical layer subproblem is the inner
layer. The outer and inner layer subproblems are interrelated
via the dual vectorλ, reflecting the cross-layer interaction
between the two layers. Hence, this is a cross-layer opti-
mization algorithm. In each iteration, the inner physical layer
subproblem is first solved through LDD for a givenλ. Then,
λ is updated according tot∗m and the solution to the inner
layer subproblem,Rm. The iterations continue until the outer
application layer subproblem converges, and the algorithm
terminates by converging the outer layer subproblem. This
process is outlined in Steps 2-6 inAlgorithm 1 . While for
the case ofα = 0, since the auxiliary vectort is unnecessary,
only the physical layer problem is involved. In this case, it
can be directly solved using LDD.

IV. A H EURISTIC ALGORITHM FOR SE, EEAND RATE

FAIRNESSTRADEOFF

Since the LDD-based cross-layer resource allocation algo-
rithm in Section III needs to iteratively converge to the optimal
solution, this results in high computational complexity for a
large number of users and subcarriers. To address this issue,
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in this section, we develop a novel low-complexity heuristic
resource allocation algorithm to obtain a sub-optimal solution
to the SE, EE and rate fairness tradeoff. The proposed low-
complexity heuristic algorithm includes two key steps. We first
obtain subcarrier pairing and allocation and relay selection,
followed by optimal power allocation as a multi-level water-
filling.

To develop the low-complexity resource allocation algo-
rithm, here we define a new resource allocation indicator
ηml
ij ∈ {0, 1} and setηml

ij = ρijβ
ml
ij . Then the normalized

end-to-end data rate over bandwidth for userm is obtained
from (16) as

Rm =
2L
∑

l=0

N
∑

i=1

N
∑

j=1

ηml
ij rml

ij . (50)

The total transmit power consumption is

Pt =
1

2

2L
∑

l=0

M
∑

m=1

N
∑

i=1

N
∑

j=1

pml
ij , (51)

where forηml
ij = 1, pml

ij > 0, and otherwise,pml
ij = 0.

Accordingly, the SOO problem with total transmit power
constraint in (23) is reduced as

max
p,η

w

M
∑

m=1
uα (Rm)− Uα

min

Uα
max − Uα

min

− (1− w)
Ptotal

Pmax
, (52a)

s.t. Pt ≤ PT, (52b)

pml
ij ≥ 0, ∀m, l, i, j, (52c)
M
∑

m=1

2L
∑

l=0

ηml
ij = 1, ∀i, j, (52d)

ηml
ij ∈ {0, 1} , ∀m, l, i, j. (52e)

Considering the SOO problem in (52), we present the
following proposition.

Proposition 1: To obtain the optimal solution of (52) for
any given fairness parameterα and weighting parameterw,
the subcarrier pair(i, j) and relayl ∈ {0, 1, 2, ..., 2L} should
be allocated to userm∗, where

m∗ = arg max
m

rml
ij

(Rm)α
, (53)

and the optimal power allocated to this transmission link
(m∗l, ij) is

pm
∗l

ij =

[

Θ(m∗)−
1

gm
∗l

ij

]+

, l ∈ {1, 2, ..., 2L} , (54a)

pm
∗,i

sd =

[

Θ(m∗)−
1

gm
∗,i

sd

]+

, (54b)

pm
∗,j

sd =

[

Θ(m∗)−
1

gm
∗,j

sd

]+

, (54c)

where

Θ(m∗) =
w

(Uα
max − Uα

min) (Rm∗)α
[

(1−w)ε
Pmax

+ µ
]

ln 2
(55)

is the water-filling level of userm∗.

Proof: See Appendix A. �

Similar to the Section III.B, ifα > 0, the optimal power
allocation in (54) is also a multi-level water-filling, while for
the case ofα = 0, the water-filling levels of all users are
identical.

A. A Low-Complexity Heuristic Algorithm (LCA) for SE, EE
and Rate Fairness Tradeoff

As it is seen in (53) and (54), the transmission link assign-
ment and power allocation are interrelated. This is the main
reason of the high computational complexity of obtaining the
optimal solutions. To address this issue, in the first step, we
assume equal power distribution among all transmission links,
i.e., pml

ij = PT/N , ∀ (ml, ij). Also, for the direct mode, equal
power allocation is assumed between the two slots within a
frame, i.e.,pm,i

sd = pm,j
sd = pml

ij /2. Then in the second step we
perform optimal power allocation.

In the first step, subcarrier pair(i, j) and relayl are allocated
to userm∗ based on (53), and thenRm∗ is updated as,Rm∗ =
Rm∗ + rm

∗l
ij . Note that the subcarrier pairing and allocation is

conducted per subcarrier basis, and both allocated subcarriers
are then removed from the set of available subcarriers. This
process repeats until all subcarriers are paired and allocated.

According to (53), userm∗ which has better channel gains
is given a higher priority for allocating a transmission link.
Rm∗ is then updated and thus becomes larger. This reduces
the chance of allocating another transmission link to userm∗

and helps to impose rate fairness among users. As expected,
by increasingα, the chance of allocating new transmission
link to userm∗ is also decreased, which means a stricter rate
fairness among users in resource allocation.

The solution obtained through the above algorithm is in fact
sub-optimal. This is because we assume equal power distribu-
tion among all transmission links and subcarriers pairing is
conducted per subcarrier basis, without applying Hungarian
algorithm which is optimal for two-dimensional assignment
problem. In the simulation results, however, it is observedthat
only a slight performance gap exists between the proposed
low-complexity heuristic algorithm and the LDD-based cross-
layer algorithm.

Since each subcarrier pair(i, j) and relay l have been
assigned to users, the optimal power allocation is performed
in the second step. For notation brevity here, the resource
allocation indicatorsηml

ij is substituted by its solution obtained
in the first step, which is denoted asηml∗

ij . Therefore, the
normalized end-to-end data rate of userm is

Rm =
2L
∑

l=0

N
∑

i=1

N
∑

j=1

ηml∗
ij rml

ij . (56)
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Algorithm 2 Low-complexity heuristic resource allocation
algorithm (LCA)

Step 1. Initialize pml
ij = PT/N and pm,i

sd = pm,j
sd =

pml
ij /2, ∀m, l, i, j;

Step 2. Initialize the data rate of each user asR (m) =
1. The available subcarrier sets in the first and
second slot areΛ andΠ, respectively, i.e.,i ∈ Λ
andj ∈ Π;

Step 3. For each available subcarrieri ∈ Λ, allocate a
subcarrierj ∈ Π, a relayl ∈ {0, 1, 2, ..., 2L} to
userm∗ according to (53);

Step 4. Update available subcarrier sets asΛ=Λ-i and
Π=Π-j; UpdateR(m∗) = R(m∗) + rm

∗l
ij ;

Step 5. Repeat Step 3 and Step 4 until all available
subcarrier pairs are allocated to users;

Step 6. Conduct optimal power allocation by standard
convex optimization method based on the convex
optimization problem in (57).

The SOO problem in (52) then becomes only a function of
pml
ij , and it can therefore be simplified as the following:

max
p

w

M
∑

m=1
uα (Rm)− Uα

min

Uα
max − Uα

min

− (1− w)
Ptotal

Pmax
, (57a)

s.t. Pt ≤ PT, (57b)

pml
ij ≥ 0, ∀m, l, i, j. (57c)

Proposition 2: For any given fairness parameterα and
weighting parameterw, (57) is a convex optimization problem.

Proof: See Appendix B. �

According to Proposition 2, (57) has a unique global optimal
solution. There exist many efficient numerical algorithms such
as the interior-point method to obtain the optimal solution.

The proposed low-complexity heuristic resource allocation
algorithm (LCA) for SE, EE and rate fairness tradeoff is
outlined inAlgorithm 2 .

B. Complexity Analysis

Here we compare computational complexity of the ex-
haustive search method and the two proposed algorithms.
For the exhaustive search method, the complexity of sub-
carrier pair allocation isO

{

[(2L+ 1)M ]N
}

. For subcar-

rier pairing within the two slots, its complexity isO (N !).
Hence, the total complexity of exhaustive search method is
O
{

N ! [(2L+ 1)M ]
N
}

.

For LDDA, (2L+ 1)MN2 times of optimal power alloca-
tion are calculated by (35) or (46). Further, the complexityof
Hungarian Algorithm for subcarrier pairing isO

(

N3
)

. For La-
grangian dual variable update based on sub-gradient method,
its complexity is a polynomial function of the dual problem
dimension, i.e.,M for h (λ), and 1 forq (µ) [30]. Therefore,
the complexity of updating all dual variables is in the order
of Mφ, whereφ is a positive constant [2]. Hence, the total
complexity of LDDA isO

{[

(2L+ 1)MN2 +N3
]

Mφ
}

. For
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Fig. 3. Jain’s fairness indexvs. spectral efficiency.

LDDA without subcarrier pairing (LDDAwoSP), its complex-
ity is O

{[

(2L+ 1)MN2
]

Mφ
}

.
For LCA, the complexity of subcarrier pairing isN +

(N − 1) + ...+ 2 + 1 = 1
2N (N + 1) for each relay and user

pair. There are(2L+ 1)M possible relay and user pairs, so
the total complexity of LCA isO

[

1
2N (N + 1) (2L+ 1)M

]

.
Note that in wireless systems, the number of users,M , is
usually much smaller than the number of subcarriers,N , i.e.,
M ≪ N . Therefore, compared with LDDA and LDDAwoSP,
the complexity of LCA is significantly reduced.

V. SIMULATION RESULTS

In this section, we investigate the performance of the two
proposed algorithms through simulations. In the simulations,
we consider a cellular network withM = 8 users randomly
and uniformly distributed at the cell-edge region. BS is located
at the center of the cell and the number of relaysL, is equal
to 3. Each relay is located on the axis of the corresponding
sector with equal angle interval of2π/L, and the distance
between each relay and BS is half of the cell radius. The
number of subcarriers isN = 128 in both slots and the
noise power spectral density is -174dBm/Hz. Without loss
of generality, the circuit power of the BS and each relay is
normalized to 1W while the drain efficiencies of the power
amplifiers are assumed to be 38% as in [23]. The links between
the BS and relays are in line-of-sight (LOS) and each user
experiences independent frequency-selective Rayleigh fading.
The modified Hata urban propagation model is adopted for the
large-scale propagation loss, and the shadowing follows log-
normal distribution with zero-mean and standard deviationof
8dB.

A. SE, EE and Rate Fairness Tradeoff

Fig. 3 shows the rate fairness performance of the two
proposed algorithms with different values ofα, where the
fairness performance is measured by Jain’s fairness index [7].
The value of Jain’s fairness index is bounded between 0 and
1. If the index is 1, it means all users get the same data rate



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. XX, NO.XX, XX 2016 10

SE (bits/s/Hz)
15 16 17 18 19 20 21 22

E
E

 (
bi

ts
/J

ou
le

/H
z)

1

1.5

2

2.5

3

3.5

4

4.5

5

LCA, α=0
LCA, α=0.2
LCA, α=1
LDDA, α=0
LDDA, α=0.2
LDDA, α=1
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fairness.

and the system is 100% fair. As the disparity of data rate
increases, the index gradually decreases to 0. For simplicity,
in Fig. 3, we only show four different values ofα. As it
is seen, by increasingα, the fairness among users is also
increased. This verifies that the two proposed algorithms can
both achieve different levels of rate fairness by adjustingα. We
also observe that the two proposed algorithms achieve almost
identical fairness performance for the same value ofα. In fact,
by continuously adjustingα, the algorithms can achieve any
certain level of fairness, from no fairness (α = 0) to absolute
fairness (α → ∞).

Fig. 4 shows the Pareto optimal sets for SE-EE tradeoff with
different levels of fairness. LDDA is based on dual method
and for a large number of subcarriers, its duality gap becomes
negligible. Therefore, we consider LDDA as the benchmark
for performance comparisons. As shown in this figure, LCA
follows the same pattern with LDDA. With the increase of SE,
EE first increases and then decreases, and the performance gap
between LCA and LDDA is slight. When SE is lower, since
the radiated power is negligible compared with the circuit
power, the growing of SE is much faster than that of the
total power consumption. Thus, EE grows as SE increases.
However, after the maximum point for EE, the circuit power
does not dominate any longer and the increase of radiated
power greatly affects the total power consumption. Under this
circumstance, the growing of SE becomes slower than that of
the total power consumption, and accordingly, EE gradually
declines to a very low level. Note that as SE goes to infinity,
EE will asymptotically approach zero. Therefore, the EE-SE
relationship is actually quasiconcave.

In Fig. 4, it is also indicated that with largerα, for the same
level of SE (EE), a lower EE (SE) is achieved compared with
the case with smallerα. This means higher fairness results
in a worse SE-EE tradeoff. As mentioned previously, since
efficiency and fairness are conflicting objectives, fairness is
usually enhanced at the cost of degrading the performance of
SE-EE tradeoff. Besides, it is noteworthy that in this figure,
after the maximum points of EE, a moderate reduction of SE
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may allow a significant improvement of EE, i.e., a noticeable
energy saving. Fig. 4 provides the optimal envelop of the
entire SE-EE region for different levels of fairness, so it is
flexible to make SE-EE tradeoff for different preferences. But
in practice, only the tradeoff after the maximum points of EE
make sense. That is because before these maximum points, by
increasing SE, EE also increases. In that case, SE and EE are
not conflicting objectives.

Besides, we also compare the performance of LCA and
LDDAwoSP (LDDA without subcarrier pairing). As shown in
Fig. 5, LCA slightly outperforms LDDAwoSP. Furthermore, as
mentioned in Section IV.B, the complexity of LCA is much
lower than that of LDDAwoSP, especially when the numbers
of users and subcarriers are very large.

To further illustrate the fairness performance, Fig. 6 shows
the cumulative distribution function (CDF) of the data rate
of each user. Here, we only take LCA as an example, and
similar results can also be obtained for LDDA. Two cases of
SE=20.5bits/s/Hz and SE=18bits/s/Hz are investigated. From
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Fig. 7. Price of fairness (PoF)vs. spectral efficiency.

this figure, we can see that for both cases of SE, whenα is
lower, the ratio of users with smaller data rate is relatively
higher, and the CDF curves experience a slower increase.
This means the data rate variance is larger, and accordingly,
some users suffer from unfairness. While by increasingα, for
example, whenα = 1, the CDF jumps to 100%, implying
the users’ data rate distribution is better balanced, and this is
consistent with the high fairness index in Fig. 3. Besides, when
the value ofα is higher, the ratio of users with higher data
rate is lower. It stems from the fact that due to the fairness
requirement, users with better channel conditions sacrifice
their data rates to compensate those users with worse channel
conditions. Such compensations will degrade the performance
of SE-EE tradeoff, which is consistent with the previous results
in Fig. 4 and Fig. 5.

B. Price of Fairness

To quantify the tradeoff between efficiency and fairness,
we adopt the metric of price of fairness (PoF) as in [34], [35].
The PoF is defined asPoF (EE (α)) = EE(0)−EE(α)

EE(0) , where
EE (α), andEE (0) are the system EE withα-fairness, and
without fairness (i.e.,α = 0), respectively. For various values
of α, PoF quantifies the reduction of system EE caused by
imposing rate fairness, in comparison with the system without
fairness.

The PoF versus SE is shown in Fig. 7. As illustrated, for a
fixed SE, the PoF with a largerα is higher than the case with
a smallerα. Therefore, the better the rate fairness, the higher
is the EE loss. Interestingly, as SE increases, the PoF goes up
very significantly. For instance, for LDDA, whenα = 1, by
increasing SE from 19bits/s/Hz to 20.5bits/s/Hz, the PoF rises
from 0.15 to 0.59 by up to three times. Therefore, if SE is
increased in the SE-EE tradeoff, a higher EE sacrifice level
is required to guarantee the fairness among users. Besides,
with the same value ofα, the PoF of LCA is always larger
than LDDA for any certain SE. The metric of PoF enables the
network operators to quantitatively evaluate the cost of fairness
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Fig. 8. Outage probability for different levels of fairness.

and balance the tradeoff between efficiency and fairness for
different preferences.

C. Impact of Fairness on the Outage Probability

Fig. 8 demonstrates the outage probability for different lev-
els of fairness. Outage probability is defined as the probability
that user’s data rate drops below the minimum rate require-
ment (MinR). Here the MinR is set as 2.5 Mbits/s for each
user. As displayed, fairness requirement helps to reduce the
outage probability dramatically, providing enhanced quality
of experience (QoE) to more users than the scheme without
fairness (i.e.,α = 0). This is because imposing fairness helps
to balance the users’ data rate distribution, as shown in Fig. 6.
With the increase of system SE, the better balanced data rates
among users exceed MinR and hence the outage probability
plummets to near 0. Compared with them, if there is no
fairness requirement, the data rate distribution would be highly
concentrated to those users with better channel conditions.
Thus, the outage probability declines slowly.

D. Impact of Number of Relays and Circuit Power

Fig. 9 illustrates the SE-EE tradeoff performance with
different numbers of relays, where the maximum transmit
power constraints are identical. We only show the case of
α = 0.5 as an example. As can be seen from this figure,
since having more relays introduces higher circuit power,
for most cases of SE, EE declines with the increase of the
number of relays. However, when SE is larger, the EE may
even become larger by increasingL. This is because with
more relays, the system will have a higher degree of freedom
in resource allocation, and accordingly, the achievable SEis
increased. By exploring the diversity gains brought by more
relays, the negative impact of increasing circuit power on EE
might be less than the positive contribution of increased SE.
Hence, introducing more relays does not necessarily always
degrade the performance of SE-EE tradeoff. It is predicted
that if the maximum transmit power (i.e., maximum achievable
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SE) is further increased, this trend will be more significant.
Consequently, how many relays should be deployed in the cell
is also a tradeoff for different preferences.

The SE-EE tradeoff for different circuit power withα = 0.5
is displayed in Fig. 10, where the number of relays is fixed
(i.e., L = 3). Different from Fig. 9, as circuit power has no
impact on the achievable SE, EE is always reduced by increas-
ing circuit power. Therefore, given a fixed number of relays,
increasing circuit power always degrades the performance of
SE-EE tradeoff.

VI. CONCLUSION

In this paper, a general framework is presented to analyze
the three-factor tradeoff among SE, EE and rate fairness in
relay-aided cooperative OFDMA systems. We formulate the
problem as a MOO problem where rate fairness is repre-
sented usingα-fairness model. A LDD-based cross-layer joint
resource allocation algorithm (LDDA) and a low-complexity
heuristic resource allocation algorithm (LCA) are proposed

to efficiently manage the three-factor tradeoff. The Pareto
optimal solution is obtained to show the global relationship
of SE and EE, while the PoF is applied to quantify the
tradeoff of efficiency and fairness. Simulation results show that
imposing a higher level of fairness may significantly reduce
the outage probability. Besides, by increasing the number of
relays, although the total circuit power is increased, the SE-EE
tradeoff is not necessarily degraded due to the extra degreeof
freedom provided in relay selection.

APPENDIX A
PROOF OFPROPOSITION1

Proof: We adopt Lagrangian dual method. Relaxing con-
straints C1 and C3 in (52), Lagrangian function associated to
(52) is

G (p,η, θ, µ) = w

M∑

m=1

uα(Rm)−Uα
min

Uα
max

−Uα
min

− (1− w) Ptotal

Pmax

+
N
∑

i=1

N
∑

j=1

θij

(

1−
M
∑

m=1

2L
∑

l=0

ηml
ij

)

+ µ (PT − Pt) ,

(58)

whereθ andµ are Lagrangian dual variables.
By taking derivation ofG (p,η, θ, µ) with respect toηml

ij ,
we obtain the necessary conditions for optimal resource al-
location according to Karush-Kuhn-Tucker (KKT) conditions
[36] as

∂G (p,η, θ, µ)

∂ηml
ij

=
wrml

ij

(Uα
max − Uα

min) (Rm)α
− θij ≤ 0, (59)

ηml
ij

(

wrml
ij

(Uα
max − Uα

min) (Rm)
α − θij

)

= 0. (60)

Based on (59) and (60), if subcarrier pair(i, j)
and relay l are allocated to userm, i.e., ηml

ij =

1, then

(

wrml
ij

(Uα
max

−Uα
min)(Rm)α

− θij

)

= 0; otherwise,
(

wrml
ij

(Uα
max

−Uα
min)(Rm)α

− θij

)

≤ 0. Therefore, subcarrier pair

(i, j) and relay l should be allocated to userm with the

highest value of

(

wrml
ij

(Uα
max

−Uα
min)(Rm)α

− θij

)

. Givenw, Uα
max

andUα
min are all constants, the subcarrier pair(i, j) and relay

l should be allocated by (53).
Similarly, by taking derivation ofG (p,η, θ, µ) with respect

to pml
ij (l 6= 0), we have

∂G(p,η,θ,µ)

∂pml
ij

=
wgml

ij ηml
ij

(Uα
max

−Uα
min)(Rm)α(1+gml

ij
pml
ij ) ln 2

− (1−w)ε
Pmax

− µ ≤ 0,

(61)

pml
ij

(

wgml
ij ηml

ij

(Uα
max

−Uα
min)(Rm)α(1+gml

ij
pml
ij ) ln 2

− (1−w)ε
Pmax

− µ
)

= 0.

(62)
If subcarrier pair(i, j) and relayl are allocated to userm,

i.e., ηml
ij = 1, thenpml

ij > 0. Thus, from (62), we have

wgml
ij ηml

ij

(Uα
max − Uα

min) (Rm)
α (

1 + gml
ij pml

ij

)

ln 2
−
(1− w) ε

Pmax
−µ = 0.

(63)
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Then, by substitutingηml
ij = 1 into (63), the optimal power

allocationpml
ij (l 6= 0) can be obtained as (54a).

For l = 0, following the same line of argument, the optimal
power allocationpm,i

sd and pm,j
sd are obtained as (54b) and

(54c). This completes the proof. �

APPENDIX B
PROOF OFPROPOSITION2

Proof: It is easy to show thatRm is a concave function of
pml
ij . Further, sinceα-fair utility function is strictly increasing

and concave for any givenα, according to (3.10) in [36],
their composition,uα (Rm), is also a concave function ofpml

ij .
Besides,−Ptotal is a linear function ofpml

ij , which is concave.
Therefore, the objective function in (57) can be viewed

as a nonnegative weighted summation of concave functions.
Hence, according to [36], the objective function is still a
concave function ofpml

ij for any given fairness parameterα
and weighting parameterw. �
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