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Abstract

Understanding the electronic and phononic transport properties of junctions consisting of a

scattering region such as a nanoscale region or molecule connected two or more electrodes is the

central basis for future nano and molecular scale applications. The theoretical and mathematical

techniques to treat electron and phonon transport are leading to model the physical properties of

nano and molecular scale junctions. In this thesis, I use these methods not only to understand

the experimental observations by experimental collaborators, but also to develop strategies to

design and engineer molecular electronic building blocks, thermoelectric devices and sensors.

In this thesis, after a discussion about the theoretical methods used to model electron and

phonon transport through the nanoscale junctions, I cover four main results in the areas of molec-

ular sensing, new graphene-based molecular junctions, quantum interference rules and thermo-

electricity (or thermal management). I demonstrate the discriminating sensing properties of

new bilayer-graphene, sculpturene-based nano-pore devices for DNA sequencing. A unique and

novel signal processing method is presented to selectively sense the nucleobases based on direct

electrical current. Then I consider a newly developed platform for single-molecule device fabri-

cation based on electro-burnt graphene nano-junctions, which allows three terminal device real-

ization at a single molecule level with gating capability. I provide a fundamental understanding

of transport phenomena in these junctions. Furthermore, I discuss our newly developed mid-gap

transport theory for single molecules, where in the weak coupling regime and in the vicinity of

the middle of the HOMO and LUMO gap, a minimal parameter-free theory of the connectivity

dependent transport and quantum interference could be used to model conductance measure-

ments in polycyclic aromatic hydrocarbons. After these discussion of the electronic properties

of the junctions, I consider the phonon transport through the nano and molecular scale devices.

This allows me to identify strategies for controlling the transmission of phonons from one side

of the junction to another for both low-power thermoelectric and thermal management devices.
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Chapter 1

Introduction

1.1 Molecular Electronics

The idea of using single molecules as building blocks to design and fabricate molecular elec-

tronic components has been around for more than 40 years [1], but only recently it has attracted

huge scientific interest to explore their unique properties and opportunities. Molecular electron-

ics including self-assembled monolayers [2] and single-molecule junctions [3] are of interest

not only for their potential to deliver logic gates [4], sensors[5], and memories [6] with ultra-

low power requirements and sub-10-nm device footprints, but also for their ability to probe

room-temperature quantum properties at a molecular scale such as quantum interference [7]

and thermoelectricity [8]. There are five main area of research in molecular-scale electronics

[3] namely: Molecular mechanics, molecular optoelectronics, molecular electronics, molecu-

lar spintronics and molecular thermoelectrics as shown in figure 1.1.1 in which studying the

electronic and phononic transport properties of the junction is the central basis toward junction

characterization for a wide range of the applications.

Mechanics Optoelectronics Electronics Spintronics Thermoelectrics

Figure 1.1.1: Molecular electronic active area of research[3]
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By studying electron and phonon transport across a junction consisting of two or more elec-

trodes connected to a single or a few hundred molecules, one could study all phenomenon shown

in figure 1.1.1 from mechanical properties of the junction to electronic and thermoelectrics.

For example, when a single molecule is attached to metallic electrodes, de Broglie waves of

electrons entering the molecule from one electrode and leaving through the other form com-

plex interference patterns inside the molecule. These patterns could be utilize to optimize the

single-molecule device performance [4, 9]. Furthermore, recently their potential for remov-

ing heat from nanoelectronic devices (thermal management) and thermoelectrically converting

waste heat into electricity has also been recognised [8]. Indeed, electrons passing through sin-

gle molecules have been demonstrated to remain phase coherent, even at room temperature. In

practice, the task of identifying and harnessing quantum effects is hampered because transport

properties are strongly affected by the method used to anchor single molecules to electrodes.

1.2 Thesis Outline

My aim in this thesis is to review the theoretical and mathematical techniques to treat electron

and phonon transport in nano and molecular scale junctions leading to models of their physical

properties. This helps not only to understand the experimental observations but also provides a

vital design tool to develop strategies for molecular electronic building blocks, thermoelectric

device and sensors. In my PhD study, I have tried to cover both aspects. In this period, not only

I have used this techniques to understand the experiments done by our collaborators [9–13], but

also I have introduced a set of the strategies to enhance the thermoelectric power generation

[8, 14–18], to design single molecule transistors [15] and nanomotors [19], to use quantum

interference for logic applications [4, 20], to use graphene to probe molecules [21, 22], for

DNA sequencing [21, 23, 24], for molecular sensing [25, 26] and to engineer phonons’ transport

through the junction [8].

In this thesis after this introductory chapter, I introduce the general idea about nanoscale

transport and the methods which could be applied to model nano and molecular scale devices.

In the next chapters, four selected papers out of my publication are included. I then close with

the discussion and concluding chapter.
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Chapter 2

Transport in molecular scale

My focus in this chapter is on reviewing the methods used to model electron and phonon trans-

port in nano and molecular scale systems. Any device consists of two or more electrodes (leads)

connected to a scattering region (figure 2.0.1). The electrodes are perfect waveguides where

electrons and phonons transmit without any scattering. The main scattering occurs either at the

junction to the leads or inside the scattering region. The goal is to understand electrical and

vibrational properties of nano and molecular junctions where nanoscale scatter or molecules are

the bridge between the electrodes with or without surroundings, such as an electric field (gate

and bias voltages or local charge), a magnetic field, a laser beam or a molecular environment

(water, gases, biological spices, donors and acceptors, etc). In principle, the molecule could

be coupled to the electrodes with a weak or strong coupling strength. However, in most cases

the coupling is weak. There are different approaches to study the electronic and vibrational

properties of the junctions [1] though, my focus in this thesis is mostly on the Green’s function

formalism and partially the master equation approach.

In this chapter, I will begin with the Schrödinger equation and try to relate it to the physical

description of matter at the nano and molecular scale. Then I will discuss the definition of the

current using the time-dependent Schrödinger equation and introduce tight binding description

of the quantum system. The scattering theory and non-equilibrium Green’s function method are

discussed and different transport regimes (on and off resonances) are considered. One dimen-

sional system and a more general multi-channel method are derived to calculate transmission

coefficient T (E) in a molecular junction for electrons (phonons) with energy E (~ω) travers-

ing from one electrode to another. I then briefly discuss the master equation method to model

transport in the Coulomb and Franck-Condon blockade regimes. I follow with a discussion
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Reservoir Lead ReservoirLead

Scattering region

Figure 2.0.1: A scattering region is connected to the reservoirs trough ballistic leads. Reservoirs
have slightly different electrochemical potentials to drive electrons from the left to the right lead. All
inelastic relaxation process take place in the reservoirs and transport in the leads are ballistic.

about physical interpretation of a quantum system and different techniques used to model the

experiment.

2.0.1 Schrödinger equation

The most general Schrödinger equation [2] describes the evolution of the physical properties of

a system in time and was proposed by the Austrian physicist Erwin Schrödinger in 1926 as:

i~
∂

∂t
Ψ(r, t) = ĤΨ(r, t) (2.0.1)

where i is
√
−1, ~ is the reduced Planck constant (h/2π), Ψ is the wave function of the quantum

system, and Ĥ is the Hamiltonian operator which characterizes the total energy of any given

wave function. For a single particle moving in an electric field, the non-relativistic Schrödinger

equation reads as:

i~
∂

∂t
Ψ(r, t) = [

−~2

2m
52 +V (r, t)]Ψ(r, t) (2.0.2)

If we write the wavefunction as a product of spatial and temporal terms: Ψ(r, t) = ψ(r)θ(t), the

Schrödinger equation become two ordinary differential equations:

1
θ(t)

d
dt

θ(t) =− iE
~

(2.0.3)
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and

Ĥψ(r) = Eψ(r) (2.0.4)

where Ĥ = −~2

2m 5
2 +V (r). The solution of equation 2.0.3 could be written as: θ(t) = e−iEt/~.

The amplitude of θ(t) does not change with time and therefore the solutions θ(t) are purely

oscillatory. The total wave function

Ψ(r, t) = ψ(r)e−iEt/~ (2.0.5)

differs from ψ(r) only by a phase factor of constant magnitude and the expectation value |Ψ(r, t)|2

is time-independent. Of course 2.0.5 is a particular solution of time-dependent Schrödinger

equation. The most general solution is a linear combination of these particular solutions as:

Ψ(r, t) = ∑
i

φie−iEit/~ψi(r) (2.0.6)

In time independent problems only the spatial part needs to be solved since the time dependent

phase factor in 2.0.5 is always the same. Equation 2.0.4 is called time-independent Schrödinger

equation and it is an eigenvalue problem where E’s are eigenvalues of the Hamiltonian Ĥ. Since

the Hamiltonian is a Hermitian operator, the eigenvalues E are real. ψ(r) describes the stand-

ing wave solutions of the time-dependent equation, which are the states with definite energy

called ”stationary states” or ”energy eigenstates” in physics and ”atomic orbitals” or ”molecular

orbitals” in chemistry.

The Schrödinger equation must be solved subject to appropriate boundary conditions. Since

the electrons are fermions, the solution must satisfy the Pauli exclusion principle and wavefunc-

tion ψ must be well behaved everywhere. The Schrödinger equation can be solved analytically

for a few small systems such as the hydrogen atom. However, this is too complex to be solved

in most cases even with the best supercomputers available today, so some approximations are

needed. To describe the electronic properties of the system in this thesis I am going to use a

series of the approximations [3] such as the Born-Oppenhaimer approximation to decouple the

movement of the electrons and the nuclei; density functional theory (DFT) to describe the elec-

tron - electron interactions and pseudopotentials to treat the nuclei and the core electrons except

those in the valence band. These methods are well-known and are described in [3] and breifley

discussed in the next section. In this thesis, I shall start from the DFT mean-field Hamiltonian

or build a simple tight-binding Hamiltonian using Huckel parameters for the desired system and

18



use these to describe the transport through these systems.

To reduce the size of the Hamiltonian, it is appropriate to define the idea of the basis func-

tions where

Ψ(r) = ∑
i

φiψi(r) (2.0.7)

The wavefunction then can be represented by a column vector |φ〉 consisting of the expansion

coefficients φi. The time-independent Schrödinger equation could be written as a matrix equa-

tion:

[H]|φ〉= E[S]|φ〉 (2.0.8)

where

Si j = 〈i| j〉=
∫

drψ
∗
j(r)ψi(r) (2.0.9)

and

Hi j = 〈i|H| j〉=
∫

drψ
∗
j(r)Hψi(r) (2.0.10)

The evaluation of these integrals is the most time-consuming step, but once [H] and [S] are ob-

tained, the eigenvalues En and eigenvectors φn are easily calculated. If 〈i| and | j〉 are orthogonal

then Si j = δi j where δi j is the Kronecker delta (δi j = 1 if i = j and δi j = 0 if i 6= j).

2.0.2 Density functional theory (DFT)

In order to understand the behaviour of molecular electronic devices, it is necessary to possess

a reliable source of structural and electronic information. A solution to the many body problem

has been sought by many generations of physicists. The task is to find the eigenvalues and

eigenstates of the full Hamiltonian operator of a system consisting of nuclei and electrons as

shown in figure 2.0.2. Since this is not practically possible for the systems bigger than a few

particles, some approximations are needed. The atomic masses are roughly three orders of

magnitudes bigger than the electron mass, hence the Born-Oppenheimer approximation [3] can

be employed to decouple the electronic wave function and the motion of the nuclei. In other

words we solve the Schrödinger equation for the electronic degrees of freedom only. Once we

know the electronic structure of a system we can calculate classical forces on the nuclei and

minimize these forces to find the ground-state geometry (figure 2.0.2a).
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Once the Schrödinger equation was solved, the wavefunction is known and all physical quan-

tities of intereste could be calculated. Although the Born-Oppenheimer approximation decouple

the electronic wave function and the motion of the nuclei, the electronic part of the problem

has reduced to many interacting particles problem which even for modest system sizes i.e. a

couple of atoms, its diagonalization is practically impossible even on a modern supercomputer.

The virtue of density functional theory DFT [3, 4] is that it expresses the physical quantities in

terms of the ground-state density and by obtaining the ground-state density, one can in principle

calculate the ground-state energy. However, the exact form of the functional is not known. The

kinetic term and internal energies of the interacting particles cannot generally be expressed as

functionals of the density. The solution is introduced by Kohn and Sham in 1965. According

to Kohn and Sham, the original Hamiltonian of the many body interacting system can be re-

placed by an effective Hamiltonian of non-interacting particles in an effective external potential,

which has the same ground-state density as the original system as illustrated in figure 2.0.2a.

The difference between the energy of the non-interacting and interacting system is referred to

the exchange correlation functional (figure 2.0.2a).

Exchange and correlation energy: There are numerous proposed forms for the exchange

and correlation energy Vxc in the literature [3, 4]. The first successful - and yet simple - form was

the Local Density Approximation (LDA) [4], which depends only on the density and is therefore

a local functional. Then the next step was the Generalized Gradient Approximation (GGA) [4],

including the derivative of the density. It also contains information about the neighborhood

and therefore is semi-local. LDA and GGA are the two most commonly used approximations

to the exchange and correlation energies in density functional theory. There are also several

other functionals, which go beyond LDA and GGA. Some of these functionals are tailored to

fit specific needs of basis sets used in solving the Kohn-Sham equations and a large category

are the so called hybrid functionals (eg. B3LYP, HSE and Meta hybrid GGA), which include

exact exchange terms from Hartree-Fock. One of the latest and most universal functionals, the

Van der Waals density functional (vdW-DF), contains non-local terms and has proven to be very

accurate in systems where dispersion forces are important.

Pseudopotentials: Despite all simplifications shown in 2.0.2, in typical systems of molecules

which contain many atoms, the calculation is still very large and has the potential to be compu-

tationally expensive. In order to reduce the number of electrons, one can introduce pseudopo-

tentials which effectively remove the core electrons from an atom. The electrons in an atom can
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system is equal to density of an 
auxiliary non-interacting 

independent particle system 

Hohenberg-Kohn theorem: 
1- For any system of interacting particles in an external potential V

ext
(r), the potential V

ext
(r) is determined uniquely, 

except for a constant, by the ground state particle density n
0
(r).

2- A universal functional for the energy E[n] in terms of the density n(r) can be defined, valid for any external potential 
V

ext
(r). For any particular V

ext
(r), the exact ground state of the system is the global minimum value of this functional, and 

the density n(r) that minimizes the functional is the exact ground state density n
0
(r).
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Calculate effective potential
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Compute electron density
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Figure 2.0.2: From many-body problem to density functional theory DFT. (a) Born-Oppenheimer
approximation, Hohenberg-Kohn theorem and Kohn-Sham ansatz, (b) Schematic of the DFT self-
consistency process.
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be split into two types: core and valence, where core electrons lie within filled atomic shells

and the valence electrons lie in partially filled shells. Together with the fact that core electrons

are spatially localized about the nucleus, only valence electron states overlap when atoms are

brought together so that in most systems only valence electrons contribute to the formation of

molecular orbitals. This allows the core electrons to be removed and replaced by a pseudopo-

tential such that the valence electrons still feel the same screened nucleon charge as if the core

electrons were still present. This reduces the number of electrons in a system dramatically and

in turn reduces the time and memory required to calculate properties of molecules that contain a

large number of electrons. Another benefit of pseudopotentials is that they are smooth, leading

to greater numerical stability.

Basis Sets: For a periodic system, the plane-wave basis set is natural since it is, by itself,

periodic. However, since we need to construct a tight-binding Hamiltonian, we need to use

localised basis sets discussed in the next section, which are not implicitly periodic. An example

is a Linear Combination of Atomic Orbital (LCAO) basis set which are constrained to be zero

after some defined cut-off radius, and are constructed from the orbitals of the atoms.

To obtain a ground state mean-field Hamiltonian from DFT, the calculation is started by

constructing the initial atomic configuration of the system. Depending on the applied DFT

implementation, the appropriate pseudopotentials for each element which can be different for

every exchange-correlation functional might be needed. Furthermore, a suitable choice of the

basis set has to be made for each element present in the calculation. The larger the basis set,

the more accurate our calculation - and, of course, the longer it will take. With a couple of

test calculations we can optimize the accuracy and computational cost. Other input parameters

are also needed that set the accuracy of the calculation such as the fineness and density of the

k-grid points used to evaluate the integral([4, 5]). Then an initial charge density assuming no

interaction between atoms is calculated. Since the pseudopotentials are known this step is simple

and the total charge density will be the sum of the atomic densities.

The self-consistent calculation [4](figure 2.0.2b) starts by calculating the Hartree poten-

tial and the exchange correlation potential. Since the density is represented in real space, the

Hartree potential is obtained by solving the Poisson equation with the multi-grid or fast Fourier-

transform method, and the exchange-correlation potential is obtained. Then the Kohn-Sham

equations are solved and a new density is obtained. This self-consistent iterations end when the

necessary convergence criteria are reached such as density matrix tolerance. Once the initial
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electronic structure of a system obtained, the forces on the nucleis could be calculated and a

new atomic configuration to minimize these forces obtained. New atomic configuration is new

initial coordinate for self-consistent calculation. This structural optimization is controlled by the

conjugate gradient method for finding the minimal ground state energy and the corresponding

atomic configuration [4]. From the obtained ground state geometry of the system, the ground

state electronic properties of the system such as total energy, binding energies between different

part of the system, density of states, local density of states, forces, etc could be calculated. It

is apparent that the DFT could potentially provide an accurate description of the ground state

properties of a system such as total energy, binding energy and geometrical structures. However,

DFT has not been originally designed to describe the excited state properties and therefore all

electronic properties related to excited states are less accurate within DFT. If the LCAO basis

is used, the Hamiltonian and overlap matrices used within the scattering calculation could be

extracted.

2.0.3 Tight-Binding Model

By expanding the wavefunction over a finite set of the atomic orbitals, the Hamiltonian of the

system can be written in a tight-binding model. The main idea is to represent the wave function

of a particle as a linear combination of some known localized states. A typical choice is to

consider a linear combination of atomic orbitals (LCAO). For a periodic system where the wave-

function is described by a Bloch function, equation 2.0.8 could be written as

∑
β,c′

Hα,c;β,c′φβ,c′ = E ∑
β,c′

Sα,c;β,c′φβ,c′ (2.0.11)

where c and c′ are the neighbouring identical cells containing states α and

Hα,c;β,c′ = Hα,β(Rc−Rc′) (2.0.12)

and

φβ,c = φβeik.Rc (2.0.13)
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The equation 2.0.11 could be written as

∑
β

Hαβ(k)φβ = E ∑
β

Sαβ(k)φβ (2.0.14)

where

Hαβ(k) = ∑
c′

Hαβ(Rc−Rc′)eik(Rc−Rc′ ) (2.0.15)

and

Sαβ(k) = ∑
c′

Sαβ(Rc−Rc′)eik(Rc−Rc′ ) (2.0.16)

More generally, the single-particle tight-binding Hamiltonian in the Hilbert space formed by

|Rα〉 could be written as:

H = ∑
α

(εα + eVα)|α〉〈α|+∑
αβ

γαβ|α〉〈β| (2.0.17)

where εα is the corresponding on-site energy of the state |α〉, Vα is the electrical potential and

the γαβ is the hopping matrix element between states |α〉 and |β〉. For conjugated hydrocarbon

systems, the energies of molecular orbitals associated with the pi electrons could be determined

by a very simple LCAO molecular orbitals method called Huckel molecular orbital method

(HMO). Therefore, a simple TB description of the system could be conduct just by assigning a

Huckel parameter for on-site energy εα of each atom in the molecule connected to the nearest

neighbours with a single Huckel parameter for hopping matrix element γαβ. Obviously, more

complex TB models could be made using HMO by taking second, third, forth or more nearest

neighbours hopping matrix element into account.

One dimensional (1D) infinite chain

As an example, a single-orbital orthogonal nearest neighbour tight binding Hamiltonian of an

infinite linear chain of hydrogen atoms shown in figure 2.0.3 with on-site energy 〈 j|H| j〉 = ε0

and the hopping matrix element 〈 j|H| j±1〉= 〈 j±1|H| j〉=−γ could be written as:

H = ∑
j

ε0| j〉〈 j|− ∑
j, j+1

γ| j〉〈 j+1|− ∑
j−1, j

γ| j−1〉〈 j| (2.0.18)
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Figure 2.0.3: One dimensional (1D) infinite chain. (a) hydrogen atoms in an infinite chain with one
orbital per atom, (b) 1D balls and springs, (c,d) electronic and phononic band structures and (e,f) density
of states (DOS) for a and b.

Therefore the Schrödinger equation reads

ε0φ j− γφ j−1− γφ j+1 = Eφ j (2.0.19)

where −∞ < j <+∞. The solution of this equation could be obtained using the Bloch function

as

|ψk〉=
1√
N ∑

j
eik ja0 | j〉 (2.0.20)

and

E(k) = ε0−2γcos(ka0) (2.0.21)

where −π/a0 < k < π/a0 in the first Brillouin zone. Equation 2.0.21 is called a dispersion

relation (E − k) or electronic bandstructure of a 1D chain. Since −1 < cos(ka0) < 1, hence

ε0− 2γ < E < ε0 + 2γ; therefore the bandwidth is 4γ. The density of states (DOS) could be

calculated from:

D(E) = ∑
i

δ(E− εi) (2.0.22)
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where εi is the eigenvalues of a system and δ is Kronecker delta. Figure 2.0.3a shows the band

structure and density of states for a 1D chain.

I have yet discussed the electronic properties of a quantum system e.g. 1D chain. Now

consider a chain of the atoms with mass m connected to each other with the springs with spring-

constant K = −γ as shown in figure 2.0.3. In one hand, the derivative of the energy with re-

spect to the position of the atoms describe the forces in the system (F = − ∂

∂xU). On the other

hand, from Newton’s second law F = −m d2x
dt2 . Using the harmonic approximation method the

Schrödinger-like equation could be written as:

−m
d2xn

dt2 =−K[2xn− xn−1− xn+1] (2.0.23)

Similar to what was discussed above, using xn(t) = Aei(kn−ωt), equation 2.0.23 reads −mω2 =

−K[2− e−ik− eik] and therefore the phononic dispersion relation is obtained as

ω(k) =

√
2γ−2γcosk

m
(2.0.24)

Comparing the equation 2.0.21 and 2.0.24, it is apparent that the equation 2.0.24 could be written

by changing the E → mω2 and ε0 → 2γ in the equation 2.0.21. ε0 = 2γ is the negative of the

sum of all off-diagonal terms of the 1D chain TB Hamiltonian in which make sense to satisfy

translational invariance. The general Schrödinger equation for phonons could be written as

ω
2
ψ = Dψ (2.0.25)

This is very similar to the equation 2.0.8, where E→ ω2, and the dynamical matrix D =−K/M

where M is the mass matrix, Ki j could be calculated from the force matrix and Kii = ∑i 6= j Ki j.

One dimensional (1D) finite chain and ring

To analyse the effect of the different boundary conditions in the solution of the Schrödinger

equation, I consider three examples shown in figure 2.0.4. Consider a 1D finite chain of N

atoms. As a consequence of introducing the boundary condition at the two ends of the chain,

the energy levels and states are no longer (continuous) in the range of ε0− 2γ < E < ε0 + 2γ;

instead there are discrete energy levels and corresponding states in this range. The differences

in the allowed energy levels between a 1D finite chain and a 1D ring demonstrates that small
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Figure 2.0.4: 1D finite chain and ring. The energy levels and corresponding wave functions or orbitals
for a 1D finite chain and ring. The phononic mode for a finite chain of balls and springs with mass m.

changes in the system significantly affect the energy levels and corresponding orbitals. This is

more important where few number of atoms investigated e.g. the molecules, so two very similar

molecule could show different electronic properties.

Two dimensional (2D) square and hexagonal lattices

Using the TB Hamiltonian of a 1D chain, I calculated its band-structure and density of states.

Now let’s consider two most used 2D lattices: a square lattice where the unit-cell consist of

one atom is connected to the first nearest neighbour in two dimensions (figure 2.0.5a) and a

hexagonal lattice where a unit cell consist of two atoms is connected to the neighbouring cells in

which first (second) atom in a cell is only connected to the second (first) atom in any first nearest

neighbour cell (figure 2.0.5b). The TB Hamiltonian and corresponding band-structure could be

calculated [1] using the equation 2.0.17 and the Bloch wave function has the form of Aeikx j+ikyl

as shown in figure 2.0.5.

Figures 2.0.5b,c,f,g show the bandstructure of square and hexagonal lattices. Furthermore,

the number of conduction channels could be calculated as shown in figures 2.0.5d,h using the

method described in section 2.1.4. The number of channels has a maximum in the middle of

the band for a square lattice, whereas for a hexagonal lattice, there are fewer open channels (e.g.

only two for graphene) in the middle of the band.
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Figure 2.0.5: Two dimensional square and hexagonal lattices. Lattice geometry of (a) square and
(e) hexagonal lattices, the bandstructure of (b,c) square and (f,g) hexagonal lattices and the number of
conduction channels in (d) square and (h) hexagonal lattices.

2.0.4 Current carried by a Bloch function

The time evolution of the density matrix ρt = |ψt〉〈ψt | allows us to obtain current associated

with a particular quantum state |ψt〉. Using the time-dependent Schrödinger equation 2.0.1, I

define

I =
d
dt
|ψt〉〈ψt |=

1
i~
[H|ψt〉〈ψt |− |ψt〉〈ψt |H] (2.0.26)

By expanding |ψt〉 over orthogonal basis | j〉 equation 2.0.26 could be written as:

dρt

dt
=

1
i~
[∑

j j′
H| j〉〈 j′|ψ jψ

∗
j′−∑

j j′
| j〉〈 j′|Hψ jψ

∗
j′ ] (2.0.27)

For a 1D infinite chain with the Hamiltonian of the form of 2.0.18, the rate of change of charge

Il = dρl
t/dt at site l could be obtained by calculating the expectation value of both side of 2.0.27

over the state |l〉

dρl
t

dt
=

1
i~
[∑

j j′
〈l|H| j〉〈 j′|l〉ψ jψ

∗
j′−∑

j j′
〈l| j〉〈 j′|H|l〉ψ jψ

∗
j′ ] (2.0.28)

which could be simplified as

dρl
t

dt
= Il+1→l + Il−1→l (2.0.29)
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where

Il+1→l =−
1
i~
[〈l|H|l +1〉ψl+1ψ

∗
l −〈l +1|H|l〉ψlψ

∗
l+1] (2.0.30)

and

Il−1→l =−
1
i~
[〈l|H|l−1〉ψl−1ψ

∗
l −〈l−1|H|l〉ψlψ

∗
l−1] (2.0.31)

The charge density is changing at atom site l as a result of two currents: right moving electrons

Il+1→ l and left moving electrons Il−1→ l. The corresponding current to a Bloch state ψ j(t) =

eik j−iE(k)t/~ are:

Il+1→l =−vk (2.0.32)

and

Il−1→l =+vk (2.0.33)

where vk = ∂E(k)/~∂k = 2γsin(k)/~ is the group velocity. It is apparent that although the in-

dividual currents are non-zero proportional to the group velocity, the total current I = Il+1→l +

Il−1→l for a pure Bloch state is zero due to an exact balance between left and right going currents.

It is worth to mention that to simplify the notation, a Bloch state eik j is often normalized with

its current flux 1/
√

vk calculated from equation 2.0.32 and 2.0.33 to obtain a unitary current.

Hence I will mostly use a normalized Bloch state eik j/
√

vk in later derivations.

2.1 Transport on resonance and off resonance

Nanoscale transport can be described by three regimes:

(1) The self-consistent field (SCF) regime in which the thermal broadening kBT and coupling

Γ to the electrodes are comparable to the Coulomb energy U0. The SCF method (single electron

picture) implemented with NEGF could be used to describe transport in this regime as discussed

in sections 2.1.1 to 2.1.5. In molecular junctions smaller than ∼ 3nm, it is shown that the trans-

port remain elastic and phase coherent at room temperature. Therefore, it is well accepted in

the mesoscopic community to use SCF models to describe the properties of the molecular junc-

tions. Based on a single electron picture and without taking into account the Coulomb energy,

this NEGF method coupled to the SCF Hamiltonian describes the properties of the system on
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and off resonances. Good agreement between these models and many room-temperature exper-

iments suggest applicability of this method. A simplified Breit-Wigner formula derived from

this method also could be used to model on-resonances transport through the device provided

the level spacing is big compared with the resonances width. However, in those cases where

the Coulomb energy has higher contribution, this method cannot describe the properties of the

system on resonance.
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Figure 2.1.1: Transport on resonance and off resonance. The transport mechanism in a molecu-
lar junction could be either in tunnelling regime (off-resonance) where electrons tunnelled through the
molecule modelled usually with NEGF, or on resonance where electrons are transmitted with high rate
through a energy level modelled using master equation. The intermediate state (cross-over) between on
and off resonance regimes are difficult to interpret either with NEGF or master equation.

(2) The Coulomb blockade (CB) regime in which Coulomb energy U0 is much higher than

both the thermal broadening kBT and coupling Γ where the SCF method is not adequate and the

multi-electron master equation should be used to describe the properties of the system in this

regime as discussed in section 2.1.6. This is needed usually to model the properties of molecular

junctions at low temperature where an electrostatic gate voltage could be applied through back

gate.

(3) The intermediate regime in which the Coulomb energy U0 is comparable to the larger of

the thermal broadening kBT and coupling Γ. There is no simple approach to model this regime.

Neither the SCF method nor master equation could be used to well describe the transport in this

regime because SCF method does not do justice to the charging, while the master equation does

not do justice to the broadening.
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2.1.1 Breit-Wigner formula (BWF)

In the SCF regime, provided the coupling to electrodes was weak enough where the level broad-

ening on resonances due to the electrodes are small enough and the level spacing (differences

between the eigenenergies of a quantum system) is large enough, the on resonance transmis-

sion coefficient T of the electrons with energy E through a molecule could be described by a

Lorentzian function, via the Breit-Wigner formula [6]:

T (E) =
4Γ1Γ2

(E− εn)2 +(Γ1 +Γ2)2 (2.1.1)

where Γ1 and Γ2 describe the coupling of the molecular orbital to the electrodes and εn = En−σ

is the eigenenergy En of the molecular orbital shifted slightly by an amount σ due to the coupling

of the orbital to the electrodes. This formula shows that when the electron resonates with the

molecular orbital (e.g. when E = εn), electron transmission is a maximum. The formula is valid

when the energy E of the electron is close to an eigenenergy En of the isolated molecule, and

if the level spacing of the isolated molecule is larger than (Γ1 +Γ2). If Γ1 = Γ2 (a symmetric

molecule attached symmetrically to identical leads), T (E) = 1 on resonance (E = εn).

If a bound state (e.g. a pendant group εp) is coupled (by coupling integral α) to a con-

tinuum of states, Fano resonances could occur. This could be modelled by considering εn =

ε0 +α2/(E− εp) in BWF. At E = εp, the electron transmission is destroyed (the electron anti-

resonates with the pendant orbital) and at E = εn, the electron transmission is resonated by εn.

The level spacing between this resonance and antiresonance is proportional to α.

2.1.2 Scattering theory and non-equilibrium Green’s function

Non-equilibrium Green’s function method has been widely used in the literature to model elec-

tron and phonon transport in nano and molecular scale devices and has been successful to predict

and explain different physical properties. The Green’s function is a wave function in a specific

point of the system due to an impulse source in another point. In other words, the Green’s func-

tion is the impulse response of the Schrdinger equation. Therefore, a Green’s function should

naturally carry all information about wave-function evolution from one point to another in a sys-

tem. In this thesis, I have used the standard Green’s function methods to calculate the transport.

I will discuss it briefly but more detail discussion could be found in [1, 7–9].

Figure 2.1.2 shows how the Green’s function could be used to calculate the transmission and
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vk) and reflected with
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Hamiltonian of the scattering region in witch bridge two leads h and Dyson’s equation, the total Green’s
function G could be calculated. The Green’s function is the impulse response of the system and could be
used to calculate the transmission t and reflection r amplitudes.

reflection amplitudes in a two terminal system where two semi-infinite crystalline 1D leads are

connected to a scattering region. The main question is what are the amplitudes of the transmitted

and reflected waves? There are two main steps, first to calculate the total Green’s function

matrix element between the site 0 and 1 (G10) or 0 and 0 (G00); and secondly project these to

the wavefunction to calculate transmission t and reflection r amplitudes. The total transmission

and reflection probabilities then could be calculated by

T = ∑
i j

ti jt∗i j = Tr(tt†) (2.1.2)

and

R = ∑
i j

ri jr∗i j = Tr(rr†) (2.1.3)

ti, j (ri, j) is the transmission (reflection) amplitude describing scattering from the jth channel of

the left lead to the ith channel of the right (same) lead. Scattering matrix S is defined from

ψOUT = SψIN and could be written by combining reflection and transmission amplitudes as:

S =

r t ′

t r′

 (2.1.4)
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The S matrix is a central object of scattering theory and charge conservation implies that the S

matrix to be unitary: SS† = I.

As shown in figure 2.1.2, the total Green’s function (first step) could be obtained using

Dyson equation G = (g−1− h)−1 where the surface Green’s functions of decoupled two semi

infinite leads g =
( g00 0

0 g11

)
and the Hamiltonian in which couples them together h are known.

The second step is to calculate the projector which projects the Green’s function in the leads

g = ∑
jl

g jl| j〉〈l|= ∑
jl

eik| j−l|

i~vk
| j〉〈l| (2.1.5)

to the normalized wavefunction at site l (eikl). It could be shown that [7, 8], this projector P( j)

also projects the total Green’s function G to the wavefunction ψ and therefore could be used

to calculate t and r. Using this projector at site j = 0, P(0) and G10 (G00), the transmission

(reflection) amplitude is obtained (see figure 2.1.2).

2.1.3 The Landauer Formula

Landauer used the scattering theory of transport as a conceptual framework to describe the elec-

trical conductance and wrote ”Conductance is transmission” [10]. In the Landauer approach a

mesoscopic scatterer is connected to two ballistic leads (see figure 2.0.1). The leads are con-

nected to the reservoirs where all inelastic relaxation processes take place. The reservoirs have

slightly different electrochemical potentials µL− µR → 0 to drive electrons from the left to the

right lead. The current therefore could be written as:

I =
e
h

∫
dE T (E)( f (E−µL)− f (E−µR)) (2.1.6)

where e is the electronic charge, T (E) is the transmission coefficient and f is Fermi-Dirac dis-

tribution function f (E− µ) = 1/(1+ e(E−µ)/kBT ) associated with the electrochemical potential

µ, kB is Boltzmann constant and T is temperature. The Fermi functions can be Taylor expanded

over the range eV ,

I =
e
h

∫
dE T (E)

(
−∂ f (E)

∂E

)
(µL−µR) (2.1.7)
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where µL−µR = eV . By including the spin, the electrical conductance G = I/V reads as:

G =
2e2

h

∫
dE T (E)

(
−∂ f (E)

∂E

)
(2.1.8)

At T = 0K, − ∂ f (E−µ)
∂E = δ(µ) where δ(µ) is the Kronecker delta. For an ideal periodic chain

where T (E) = 1 at T = 0K, the Landauer formula becomes:

G0 =
2e2

h
' 77.5 µ Siemens (2.1.9)

G0 is called the ”Conductance Quantum”. In other words, the current associated with a single

Bloch state vk/L and generated by the electrochemical potential gradient is I = e(vk/L)D∆µ

where the density of states D = ∂n/∂E = L/hvk. It is worth mentioning that the Landauer for-

mula 2.1.7 describes the linear response conductance, hence it only holds for small bias voltages,

δV → 0.

Landauer-Buttiker formula for multi-terminal structuers

Conductance measurements are often performed using a four-probe structure to minimize the

contact resistance effect. Also multi-probe structures are widely used to describe the Hall-effect

or in sensing applications. Based on the Landauer approach for two terminal system, Buttiker

[11] suggested a formula to model multi-probe currents for structures with multiple terminals

as:

Ii =
e
h ∑

j
Ti j(µi−µ j) (2.1.10)

where Ii is the current at ith terminal and Ti j is the transmission probability from terminal j to

i. In a multi-terminal system, it is consistent to assume one of the probes as reference voltage

Vre f = 0 and write the currents based on that. As an example, for a four probe structure, the

current in each probe could by written as:



I1

I2

I3

I4


=

2e2

h



N1−T11 −T12 −T13 −T14

−T21 N2−T22 −T23 −T24

−T31 −T32 N3−T33 −T34

−T41 −T42 −T43 N4−T44





V1

V2

V3

V4


(2.1.11)
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where Ni is number of open conduction channels in lead i. In a four probe structure, if probe 3

and 4 are outer voltage probes (I3 = I4 = 0) and probe 1 and 2 are the inner current probes, the

four probe conductance is G f our−probe = (2e2/h)(V3−V4)/I1.

2.1.4 Generalized model to calculate T(E)

In this section, I would like to discuss the generalized approach to calculate the transmission

coefficient T of the electrons (phonons) with energy E (~ω) passing from one electrode to an-

other using non-equilibrium Green’s function method. Consider a quantum structure connected

to ideal, normal leads of constant cross-section, labelled L = 1,2, . . . and therefore begin by con-

sidering two vector spaces A (representing the normal leads) and B (representing the structure of

interest), spanned by a countable set of basis functions. For a system with an orthogonal basis

set where the overlap matrix is unitary matrix I, the expression for the transmission coefficient

Tnn′ between two scattering channels n,n′ of an open vector space A, in contact with a closed

sub-space B could be written as [7]:

Tnn′ = |tn,n′(E,H)|2 (2.1.12)

As shown in figure 2.1.3, the transmission amplitudes could be written [7] using the surface

Green’s function in the leads A and the Green’s function of the scattering region B coupled to

the outside world through coupling matrix elements H1.

tnn′ = i~
√

vn
√

v′n〈n|gWGBBW †g|n′〉 (2.1.13)

or more precisely

tnn′ = i~
√

vn
√

v′n ∑
x,x′

gn(xn,x)〈n,x|WGBBW †|n′,x′〉gn′(x′,xn′) (2.1.14)

where

(G−1
BB)µν

= (E− εν)δµν−Σµν + iΓµν, (2.1.15)

and

gn(x,x′) =
eikn

x |x−x′|− e−ikn
x (x+x′−2(xL+a))

i~vn
(2.1.16)
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Figure 2.1.3: Generalized transport model using Non-equilibrium Green’s function method[7].
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is the Green’s function of the semi-infinite lead between any position point x and x′ in the trans-

port direction terminated at x = xL and vanishes at x = xL +a. kn
x is the longitudinal wavevector

of channel n. If the lead belonging to channel n terminates at x = xL, then on the surface of the

lead, the Green’s function gn(x,x′) takes the form gn(xL,xL) = gn, where gn = an + ibn with an

real and bn equal to π times the density of states per unit length of channel n. Moreover, if vn

is the group velocity for a wavepacket travelling along channel n, then ~vn = 2bn/|gn|2. It is

interesting to note that if x and x′ are positions located between xL and some point xn,

gn(x,xn)g∗n(x
′,xn) =

−2
~vn

Imgn(x,x′) =
−2
~vn

Imgn(x′,x) (2.1.17)

The eigenvalue and eigenvectors associated with the Hamiltonian of the B is obtained from the

Schrödinger equation HB| fν〉 = εν| fν〉. The self-energies Σ and broadening Γ then could be

written as [7]:

Σµν = ∑
n

∑
x,x′
〈 fµ|W †|n,x〉[Regn(x,x′)]〈n,x′|W | fν〉+∑

n̄m̄

′〈 fµ|W †|n̄〉gn̄m̄〈m̄|W | fν〉 (2.1.18)

and

Γµν(n) =−∑
n

∑
x,x′
〈 fµ|W †|n,x〉[Imgn(x,x′)]〈n,x′|W | fν〉 (2.1.19)

This is very general and makes no assumptions about the presence or otherwise of resonances.

For a system with non-orthogonal basis states, in equation 2.1.15 δµν should be replaced with

the overlap matrix Sµν = 〈 fµ| fν〉. It is interesting to note that the vector spaces A representing

the normal leads include both crystalline structures connected to the outside world and any close

system coupled to the vector spaces B representing the structure of interest. In the latter case,

the only effect of the closed part of the vector spaces A is to contribute in the scattering by its

self-energy. The physical meaning of this and where it could be useful are discussed more in

the next section. Furthermore, figure 2.1.4 shows a slightly different approach to calculate the

transmission (reflection) amplitude t (r) in a two terminal system with non-orthogonal basis set

derived in [8]. For better understanding, as well as the most general approach a simplified spe-

cific case for a one dimensional lead connected to an arbitrary scattering region is also included

in this figure.
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2.1.5 Equilibrium vs. non-equilibrium I-V

There are the terms usually used in the literature such as elastic vs. inelastic processes, coherent

vs. incoherent regime or equilibrium vs. non-equilibrium Green’s function method. The average

distance that an electron (or a hole) travels before changing its momentum (energy) called elastic

(inelastic) mean free path. For a junction with the length smaller than elastic (or inelastic)

mean free path the process is assumed to be ballistic. These definition are well accepted in

the mesoscopic community. However, the equilibrium and non-equilibrium process are defined

differently in the literature. The view I adopt in this thesis is to call any process where the

current is derived from any differences in the electrochemical potential whether small or big is

called non-equilibrium condition. To calculate the current using Landauer formula (equation

2.1.6), one needs to bear in mind that the Landauer formula only holds in the linear response

regime for a transmission coefficient T which describes the transmission probability of particle

with energy E from one electrode to another calculated in steady state condition and assuming

the junction is close to equilibrium (δV → 0). However, for the non-linear regime where the

voltage condition is big, the transmission coefficient T could be a function of bias voltages Vb.

The potential profile applied to the junction due to a given electric field caused by bias voltage

should be calculated by Poisson’s equation [1]. In the non-equilibrium condition, the Landauer

formula then takes the form,

I(Vb,Vg) =
e
h

∫
dE T (E,Vb,Vg)

(
f (E +

eVb

2
)− f (E− eVb

2
)

)
(2.1.20)

It is worth mentioning that in some experiments due to very noisy measured conductance spec-

trum G= I/Vb, the differential conductance map Gdi f f (Vb,Vg) = dI(Vb,Vg)/dVb is plotted which

could be calculated by differentiation of equation 2.1.20 with respect to the bias voltage Vb.

Another interesting point is how to interpret transport in a nano and molecular scale junc-

tions physically. If ES|ψ〉 = H|ψ〉 describes the properties of the closed system H with non-

orthogonal basis set S, then once it connects to the outside world and became an open system

(see figure 2.1.5), the modified Schrödinger equation in non-equilibrium condition could be

written [1]:

ES|ψ〉= H|ψ〉+Σ|ψ〉+ |s〉 (2.1.21)

where the terms Σ|ψ〉 and |s〉 describe the outflow and inflow, respectively arises from the bound-
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ary conditions. Equation 2.1.21 could be rewritten as

|ψ〉= [GR]|s〉 (2.1.22)

where GR = [ES−H − Σ]−1 is retarded Green’s function (GA = [GR]†), Σ = Σ1 + Σ2 + Σ0 is

self-energies due to the electrodes Σ1, Σ2, and surroundings Σ0 such as dephasing contact or

inelastic scattering e.g. electron-phonon coupling, emission, absorption, etc. Dephasing contact

terms could be described by SCF method whereas for inelastic processes one needs to use for

instance Fermi’s golden rule to describe these self energies. There are some disagreement in

  

f
1

f
2channel

A
V

b
I

NEGF equations

Figure 2.1.5: Non-equilibrium Green’s function (NEGF) equations.

the literature about how to treat incoherent and inelastic processes [1, 12]. Buttiker’s [12] view

is to treat the inelastic and incoherent scattering by introducing a new electrode to the original

coherent system. This could be seen as assigning the new self-energies associated with any

inelastic or incoherent process. However, Datta has slightly different view. If you treat the

incoherent and inelastic effect by introducing an extra electrode, you assign a corresponding

distribution function e.g. Fermi function for electrons which in general may not be the case.
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More generally, you could introduce any incoherence and/or inelastic process by appropriate

self energy which not necessarily described by equivalent Fermi function in the contact.

For a normal, coherent elastic junction if H1,2 are the coupling matrices between electrode

1 (2) and scattering region and g1,2 are the surface Green’s function of the electrodes, Σ1,2 =

H†
1,2g1,2H1,2. Furthermore, the current could be calculated as I1 =

e
h Trace[−Γ1Gn+∑

in
1 A] where

Γ1, Gn, ∑
in
1 and A defined in figure 2.1.5. From the basic law of equilibrium, in a special situation

where we have only one contact connected; the ratio of the number of electrons to the number

of states must be equal to the Fermi function in the contact (∑in
1,2 = Γ1,2 f1,2(E)). However,

in dephasing contact, Σin
0 is not described by any Fermi function and since inflow and outflow

should be equal Trace[∑in
0 A] = Trace[Γ0Gn]. Figure 2.1.5 summarize the basic non-equilibrium

Green’s function (NEGF) equations to calculate the current in a most general junction where

surroundings presents. In the absence of surroundings, current in lead i could be written as [1]:

Ii =
e
h ∑

j
Trace[ΓiGR

Γ jGA]( fi− f j) (2.1.23)

where Ti j(E) = Trace[Γi(E)GR(E)Γ j(E)GA(E)] is the transmission coefficient for electrons

with energy E passing from lead i to lead j. Consider two identical 1D leads with on-site

  

......

Figure 2.1.6: Two terminal system with two 1D leads connected to a scattering region ε1.

energies ε0 and hoping integrals γ connected to a scattering region ε1 with coupling integrals

α and β as shown in figure 2.1.6. The transmission coefficient T for electrons with energy E

traversing from left to right lead can be calculated as

T (E) = ΓL(E)GR(E)ΓR(E)GA(E) (2.1.24)

where the retarded Green’s function is GR(E) = (E − ε1−Σ), the self-energies Σ = ΣL +ΣR

obtained from ΣL = α2eik/γ and ΣR = β2eik/γ and the broadening due to the left and right leads

are ΓL = i(ΣL−Σ
†
L) =−2α2sin(k)/γ and ΓR = i(ΣR−Σ

†
R) =−2β2sin(k)/γ.
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2.1.6 Master equation

In the multi-electron picture, the overall system has different probabilities Pα of being in one

of the 2N possible states α. Furthermore all of these probabilities Pα must add up to one. The

individual probabilities could be calculated under steady-state conditions where there is no net

flow into or out of any state (see figures 2.1.7 and 2.1.8)

∑
β

R(α→ β)Pα = ∑
β

R(β→ α)Pβ (2.1.25)

where R(α→ β) is the rate constants obtained by assuming a specific model for the interaction

with the surroundings. In a system that the electrons can only enter or exit from the source and

drain contacts, these rates are given in figures 2.1.7 and 2.1.8 for one and two level systems.

This equation is called a multi-electron master equation [1].

One level system

One-electron energy levels represent differences between energy levels corresponding to states

that differ by one electron. If E(N) is the energy associated with the N-electron state, the energy

associated with the addition (removal) of one electron are called affinity (ionization) energy.

IP = E(N−1)−E(N),

EA = E(N)−E(N +1)
(2.1.26)

The energy-gap Eg of a molecule (sometimes called additional energy) could be calculated from

IP and EA as: Eg = IP−EA [1]. The important conceptual point is that the electrochemical

potential µ should lie between the affinity levels (above µ) and ionization levels (below µ). Figure

2.1.7 shows the master equation for spin-degenerate one level system with energy ε where there

are only two possibilities, either the state is full |1〉 or empty |0〉. The current then could be

calculated as:

I =
e
~

γ1γ2

γ1 + γ2
( f1(E)− f2(E)) (2.1.27)

where γ1 and γ2 are the rates electron can go in and out from the left and right electrodes with

f1(E) and f2(E) Fermi functions.
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Two level system

However, in two level system there are four possibilities, both empty |00〉 or full |11〉 and either

one of them full and another empty (|01〉 and |10〉). Figure 2.1.8 shows the obtained current

for two level system [1]. The crucial point here is that, as soon as one state is full, there need

an additional energy (Coulomb repulsion energy) to have second electron in the another state in

addition to the level spacing energy. Another conceptual point is, it is incorrect to assume one

Fermi function for all transitions. Due to the Coulomb blockade energy, each level needs certain

electrochemical potential to overcome the barrier and current flow.

Coulomb and Franck-Condon blockade regimes

The electronic properties of weakly coupled molecules are dominated by Coulomb interactions

and spatial confinement at low temperatures. This could lead to Coulomb blockade (CB) regimes

in which the channel is blocked due to the presence of an electron trapped in the channel. In

addition, charge transfer can excite vibrational modes or vibrons, and strong electron-vibron

coupling leads to suppression of tunnel current at low bias called Franck-Condon (FC) blockade

regimes.

To describe the transport in this regime, a minimal model (the Anderson-Holstein Hamil-

tonian) could be used [13] that captures the CB, FC and the Kondo effect if three assumptions

are made: (1) the relaxation in the leads assumed to be sufficiently fast leading to Fermi func-

43



  

Master 
equation

Two level 
system

Current

Number of 
electrons in 

system

Figure 2.1.8: Two level system.

tions for the distribution of the electrons in thermal equilibrium at all times; (2) the transport

through the molecule is dominated by tunneling through a single, spin-degenerate electronic

level, and (3) one vibron taken into account within the harmonic approximation. In this case, the

Anderson-Holstein Hamiltonian reads H = Hmol +Hleads +HT with

Hmol = εdnd +Und↑nd↓+~ωb†b+λ~ω(b† +b)nd (2.1.28)

describing the electronic and vibrational degrees of freedom of the molecule,

Hleads = ∑
a=L,R

∑
p,σ

(εap−µa)c†
apσcapσ (2.1.29)

the noninteracting leads, and

HT = ∑
a=L,R

∑
p,σ

(tapc†
apσdσ +h.c.) (2.1.30)

the tunneling between the leads and molecule. Here, Coulomb blockade is taken into account

via the charging energy U where eV,kBT << U . The operator dσ (d†
σ) annihilates (creates)
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an electron with spin projection σ on the molecule, nd = ∑σ dσd†
σ denotes the corresponding

occupation-number operator. Similarly, capσ (c†
apσ) annihilates (creates) an electron in lead a

(a = L,R) with momentum p and spin projection σ. Vibrational excitations are annihilated

(created) by b (b†). They couple to the electric charge on the molecule by the term∼ nd(b†+b),

which can be eliminated by a canonical transformation, leading to a renormalization of the

parameters ε and U , and of the lead-molecule coupling ta→ tae−λ(b†+b). The master equations

determining the molecular occupation probabilities Pn
q for charge state n and vibrons q is:

dPn
q

dt
= ∑

n′,q′
(Pn′

q′W
n′→n
q′→q −Pn

qW n→n′
q→q′ )−

1
τ
(Pn

q −Peq
q ∑

q′
Pn

q′) (2.1.31)

Peq
q denotes the equilibrium vibron distribution with a relaxation time τ and W n→n′

q→q′ denotes the

total rate for a transition from |n,q〉 to |n′,q′〉.

W n→n+1
q→q′ = ∑

a=L,R
( fa(En+1

q′ −En
q ))Γ

n→n+1
q→q′;a ,

W n→n−1
q→q′ = ∑

a=L,R
(1− fa(En

q −En−1
q′ ))Γn→n−1

q→q′;a

(2.1.32)

where fa is the Fermi function and the transition rates Γ are calculated from Fermi’s golden rule.

Γ
n→n+1
q→q′;a = sn→n+1 2π

~
ρa(En+1

q′ −En
q )|Mn→n+1

q→q′;a |

Γ
n→n−1
q→q′;a = sn→n−1 2π

~
ρa(En

q −En−1
q′ )|Mn→n−1

q→q′;a |
(2.1.33)

Here, ρa denotes the density of states in lead a, Mn→n±1
q→q′;a denotes the FC matrix elements and

sn→m the spin factor [14] such that for sequential tunnelling and assuming twofold degeneracy

they are s1→0 = s1→2 = 1,s0→1 = s2→1 = 2. The matrix elements Mn→n±1
q→q′;a defined for vibrations

are

Mn→n±1
q→q′;a = t0

√
q1!
q2!

λ
q2−q1e−λ2/2 (2.1.34)

where q1 = min{q,q′} and q2 = max{q,q′}.

2.2 Modelling the experiment

So far I have briefly discussed, different transport regimes and the methods to model electron

and phonon through nanoscale junctions. However, all these tools are only useful if they can
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explain new physical phenomenon or predict a new characteristic for a future physical system.

Experiments in the field of molecular electronics either study new junction physical properties

such as conductance and current or they focus on using well characterized junctions for future

applications. The crucial point is, there are certain phenomenon that only theory could access

and analyse such as wave-functions, which is not a physical observable and others that only

experiment could shed light, such as the position of the Fermi energy, the overall effect of the

inhomogeneous broadening on the transport, or screening effects which is related to the exact

junction configuration in the real-time experiment. Therefore, theoretically, predictions made

based for the trends by comparing two or more system with the similar condition are potentially

more reliable than those which are only based on the numbers predicted from the theory.

The bottom line is the theory and experiment are not two isolated endeavours. They need to

talk to each-other to lead a new discoveries. Those quantities that cannot be computed reliably,

but for which experimental data is available, can be used to correct and refine theoretical models.

Usually to explain new phenomena, one needs to make a working hypothesis and then try to

build a model to quantify the phenomenon. To make an initial hypothesis, a theorist needs to

know how different physical phenomenon such as the effect of the environment, presence of an

electric or magnetic field could be modelled. In the following, my aim is to make a few bridges

between the well-known physical phenomena and the methods to model them theoretically, some

of which I have used to obtain results presented in this thesis and some others that applied in my

other investigations reflected in my papers.

2.2.1 Virtual leads versus physical leads

Let’s start by considering the differences between a lead and a channel theoretically? From a

mathematical viewpoint, channels connect an extended scattering region to a reservoir and the

role of lead i is simply to label those channels ki, q̄i, which connect to a particular reservoir i.

Conceptually, this means that from the point of view of solving a scattering problem at energy

E, a single lead with N(E) incoming channels can be regarded as N(E) virtual leads, each with

a single channel. We could take advantage of this equivalence by regarding the above groups

of channels with wave-vectors kαi , q̄αi as virtual leads and treating them on the same footing as

physical leads.

This viewpoint is particularly useful when the Hamiltonians H i
0, H i

1 describing the principle

layers PLs (the identical periodic unit cells H i
0 connected to each other by H i

1) of the physical
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lead i are block diagonal with respect to the quantum numbers associated with kαi , q̄αi . For

example, this occurs when the leads possess a uniform magnetization, in which case the lead

Hamiltonian is block diagonal with respect to the local magnetization axis of the lead and α

represents the spin degree of freedom σ. This occurs also when the leads are normal metals, but

the scattering region contains one or more superconductors, in which case the lead Hamiltonian

is block diagonal with respect to particle and hole degrees of freedom and α represents either

particles p or holes h. More generally, in the presence of both magnetism and superconductivity,

α would represent combinations of spin and particles and holes degrees of freedom.

In all of these cases, H i
0, H i

1 are block diagonal and it is convenient to identify virtual leads αi

with each block, because I can compute the channels kαi , q̄αi belonging to each block in separate

calculations and therefore guarantees that all such channels can be separately identified. This

is advantageous, because if all channels of H i
0, H i

1 were calculated simultaneously, then in the

case of degeneracies, arbitrary superpositions of channels with different quantum numbers could

result and therefore it would be necessary to implement a separate unitary transformation to sort

channels into the chosen quantum numbers. By treating each block as a virtual lead, this problem

is avoided.

2.2.2 Charge, spin and and thermal currents

When comparing theory with experiment, we are usually interested in computing the flux of

some quantity Q from a particular reservoir. If the amount of Q carried by quasi-particles of

type αi is Qαi(E), then the flux of Q from reservoir i is:

Ii
Q =

∫
(dE/h) ∑

αi, j,β j

Pi, j
αi,β j

f̄ j
β j
(E) (2.2.1)

Pi, j
αi,β j

in this expression is transmission coefficient of quasi-particles of type αi. In the simplest

case of a normal conductor, choosing Qαi = −e , independent of αi, this equation yields the

electrical current from lead i. αi may represent spin, and in the presence of superconductivity it

may represent hole (αi = h) or particle (αi = p) degrees of freedom. In the latter case, the charge

Qp carried by particles is −e, whereas the charge Qh carried by holes is +e. In the presence of

non-collinear magnetic moments, provided the lead Hamiltonians are block diagonal in spin
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indices, choosing αi = σi and Qαi =−e in Eq. (2.2.1) yields for the total electrical current

Ii
e =−e

∫
(dE/h) ∑

σi, j,σ j

Pi, j
σi,σ j f̄ j

β j
(E) (2.2.2)

Note that in general it is necessary to retain the subscripts i, j associated with σi or σ j, because

the leads may possess different magnetic axes.

Similarly the thermal energy carried by the electrons from reservoir i per unit time is

Ii
q =

∫
(dE/h) ∑

σi, j,σ j

(E−µi)P
i, j
σi,σ j f̄ j

β j
(E) (2.2.3)

For the special case of a normal multi-terminal junction having collinear magnetic moments,

αi = σ for all i and since there is no spin-flip scattering, Pi, j
σ,σ′ = Pi, j

σ,σδσ,σ′ . In this case, the total

Hamiltonian of the whole system is block diagonal in spin indices and the scattering matrix

can be obtained from separate calculations for each spin. I assume that initially the junction

is in thermodynamic equilibrium, so that all reservoirs possess the same chemical potential µ0.

Subsequently, I apply to each reservoir i a different voltage Vi, so that its chemical potential is

µi = µ0−eVi. Then from equation (2.2.1), the charge per unit time per spin entering the scatterer

from each lead can be written as

Ii
e =−e

∫
(dE/h)∑

σ, j
Pi, j

σ,σ f̄ j
σ(E) (2.2.4)

and the thermal energy per spin per unit time is

Ii
q =

∫
(dE/h)∑

σ, j
(E−µi)P

i, j
σ,σ f̄ j

σ(E) (2.2.5)

where e = |e| and f̄ i
σ(E) = f (E−µi)− f (E−µ) is the deviation in Fermi distribution of lead i

from the reference distribution f (E−µ).

In the linear-response regime, the electric current I and heat current Q̇ passing through a

device is related to the voltage difference ∆V and temperature difference ∆T by

∆V

Q̇

=

G−1 −S

Π κel


 I

∆T

 (2.2.6)

where electrical conductance G (thermal conductance κel) is the ability of the device to conduct
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electricity (heat) and the thermopower Se (Peltier Π) is a measure of generated voltage (tem-

perature) due to a temperature (voltage) differences between two sides of the device. In the

limit of small potential differences or small differences in reservoir temperatures, the deviations

in the distributions from the reference distribution f̄ j
σ(E) can be approximated by differentials

and therefore to evaluate currents, in the presence of collinear magnetism, the following spin-

dependent integrals provided

Ln
i j,σ(T,EF) =

∫
∞

−∞

dE (E−EF)
n T i j

σ,σ(E,EF)

(
− ∂ f

∂E

)
(2.2.7)

where f (E,T ) = (1+ e(E−EF )/kBT )−1 is Fermi-Dirac distribution function and kB is Boltzmanns

constant. In the presence of two leads labeled i = 1,2, the spin-dependent low-voltage electrical

conductance G(T,EF), the thermopower (Seebeck coefficient) S(T,EF), the Peltier coefficient

Π(T,EF) and the thermal conductance due to the electrons κel(T,EF) as a function of Fermi

energy EF and temperature T can be obtained as

G(T,EF) = ∑
σ

e2

h
L0

12,σ

S(T,EF) = − 1
eT

∑σ L1
12,σ

∑σ L0
12,σ

Π(T,EF) = T S(T,EF)

κel(T,EF) =
1

hT

(
∑
σ

L2
12,σ−

(∑σ L1
12,σ)

2

∑σ L0
12,σ

)
(2.2.8)

Note that the thermal conductance is guaranteed to be positive, because the expectation value of

the square of a variable is greater than or equal to the square of the expectation value.

Efficency of a thermoelectric matrial η is defined as the ratio between the work done per unit

time against the chemical potential difference (between two hot and cold reservior) and the heat

extracted from the hot reservior per unit time. The maximum efficiency ηmax could be written

as:

ηmax =
∆T
Th

√
Z.Tavg +1−1√
Z.Tavg +1+ Tc

Th

(2.2.9)

where Th and Tc are the hot- and cold-side temperatures, respectively, ∆T = Th−Tc and Tavg =

(Th + Tc)/2. The thermoelectric conversion efficiency (equation 2.2.9) is the product of the

Carnot efficiency ( ∆T
Th

) and a reduction factor as a function of the materials figure of merit

Z = S2Gκ−1, where S, G, and κ = κel +κph are the Seebeck coefficient, electrical conductance,
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and thermal conductance due to both electrons and phonons, respectively. More commonly a

dimensionless figure of merit (ZT = Z.Tavg) is used to account for the efficency of the thermo-

electric materials. The thermoelectric figure of merit could be written as

ZT = ZTel
κel

κel +κph
(2.2.10)

where the electronic thermoelectric figure of merit for a two-terminal system is

ZTel =
L1

12

L0
12 L2

12−L1
12

(2.2.11)

To calculate the total ZT , not only the thermal conductance due to the electrons are needed but

also it is absolutely crucial to take the phonons contribution to the thermal conductance (κph)

into account as described in the next section.

2.2.3 Phonon thermal conductance

To calculate the heat flux through a molecular junction carried by the phonons, the equation

2.2.1 could be used where the thermal conductance due to the phonons κph could be obtained

[15] by calculating the phononic transmission Tph for different vibrational modes as

κph(T ) =
1

2π

∫
∞

0
~ωTph(ω)

∂ fBE(ω,T )
∂T

dω (2.2.12)

where fBE(ω,T ) = (e~ω/kBT − 1)−1 is Bose-Einstein distribution function and ~ is reduced

Plancks constant and kB is Boltzmanns constant. To calculate the vibrational modes of a sys-

tem, I use the harmonic approximation method to construct the dynamical matrix D. From the

ground state relaxed xyz coordinate of the system, each atom is displaced from its equilibrium

position by δq and δq in x, y and z directions and the forces Fq
i = (Fx

i ,F
y

i ,F
z

i ) in three directions

qi = (xi,yi,zi) on each atoms calculated. For 3n degrees of freedom (n = number of atoms), the

3n×3n dynamical matrix D is constructed

Di j =
Kqq′

i j

Mi j
(2.2.13)
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where Kqq′
i j for i 6= j are obtained from finite differences

Kqq′
i j =

Fq
i (δq′j)−Fq

i (δq′j)

2δq′j
(2.2.14)

and the mass matrix M =
√

MiM j. To satisfy momentum conservation, the Ks for i = j (diag-

onal terms) are calculated from kii = −∑i 6= j Ki j. Once the dynamical matrix is constructed the

Green’s function method as described in 2.1.4 could be used to calculate the phononic transmis-

sion coefficent Tph.

2.2.4 Spectral adjustment

Although DFT is good at predicting the trends, it usually underestimates the position of the

Fermi energy EF , the exact energy levels (Kohn-Sham eigenvalues [16]) and therefore the po-

sition of the HOMO and LUMO and the energy gap. Therefore, to compare mean-field theory

with experiment, some corrections are needed. One way is to use hybrid functionals e.g. B3LYP

[17] or many body calculations e.g. GW approximation [18]. These methods are either com-

putationally very expensive (GW) where you cannot do calculation for a system with about 100

atoms in the best supercomputers today or they are fitted parameters to the experiment where

their accuracy is not definite in new structures. For example, B3LYP combines the Hartree po-

tential which usually overestimates the energy gap within the Kohn-Sham scheme which usually

underestimate it to give more realistic gap. An alternative way is to correct the HOMO-LUMO

gap using the values measured experimentally. A phenomenological scheme that improves the

agreement between theoretical simulations and experiments in, for example, single-molecule

electronics consists of shifting the occupied and unoccupied levels of the M (e.g. Molecule)

region downwards and upwards respectively to increase the energy gap of the M region. The

procedure is conveniently called spectral adjustment in nanoscale transport (SAINT) [9]. The

Hamiltonian K = H−ES of a given M region could be modified as:

KM = K0
M +(∆o−∆u)SM ρM SM +∆u SM (2.2.15)

where ∆o,u are energy shifts and (no, nu) denote the occupied and unoccupied states, respectively.

ρM = ∑no |Ψno〉〈Ψno| is the density matrix and SM is overlap matrix. If experimental HOMO

and LUMO energies are available, ∆o,u can be chosen to correct HOMO and LUMO obtained

from mean-field Hamiltonian. Alternatively, in the simplest case, the shifts ∆o,u are chosen to
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align the highest occupied and lowest unoccupied molecular orbitals (ie the HOMO and LUMO)

with (minus) the ionization potential (IP) and electron affinity (EA) of the isolated molecule

∆
0
o = εHOMO + IP

∆
0
u = −(εLUMO +EA) (2.2.16)

However the Coulomb interactions in the isolated molecule are screened if the molecule is placed

in close proximity to the metallic electrodes. This could be taken into account by using a simple

image charge model, where the molecule is replaced by a point charge located at the middle

point of the molecule and where the image planes are placed 1 Å above the electrodes’ surfaces.

Then the shifts are corrected by screening effects ∆o,u = ∆0
o,u + e2 ln2/(8πε0a) where a is the

distance between the image plane and the point image charge.

2.2.5 Inclusion of a Gauge field

For a scattering region of area A, if a magnetic field B is applied the magnetic flux φ = B×A. To

compute transport properties in the presence of a magnetic field, a Peierls substitution could be

introduced by changing the phase factors of the coupling elements between atomic orbitals. For

example in the case of a nearest-neighbor tight-binding Hamiltonian, the hoping matrix element

Hi j between site i and site j is replaced with the modified element,

HB
i j = Hi je−iφ, (2.2.17)

where

φ =
e
~

∫ ri

r j

A(r)dr (2.2.18)

and ri and r j are the positions of site i and j and A is the vector potential. The gauge should

be chosen such that the principal layers of the leads remain translationally invariant after the

substitution.

2.2.6 Superconducting systems

Figure 2.2.1a shows a two-probe normal-superconductor-normal (N-S-N) device with left and

right normal reservoirs connected to a scattering region containing one or more superconduc-
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(a)

(b)

Virtual Lead p1

electrons

Virtual Lead h1

holes

Virtual Lead p2

electrons

Virtual Lead h2

holes

1

Left 
Reservoir

Right
Reservoir

Figure 2.2.1: Two-probe device consist of reservoirs α and β connected to a superconductor

tors. If the complete Hamiltonian describing a normal system is HN , then in the presence of

superconductivity within the extended scattering region, the new system is described by the

Bogoliubov-de Gennes Hamiltonian

H =

 HN ∆

∆∗ −H∗N

 (2.2.19)

where the elements of the matrix ∆ are non-zero only in the region occupied by a superconduc-

tor, as indicated in figure 2.2.1b. Physically, HN describes particle degrees of freedom, −H∗N

describes hole degrees of freedom and ∆ is the superconducting order parameter.

The multi-channel scattering theory for such a normal-superconducting-normal (N-S-N)

structure could be written as [19]:

 Ile f t

Iright

=
2e2

h
a

 µle f t−µ
e

µright−µ
e

 (2.2.20)

where Ile f t (Iright) is the current from the left (right) reservoir, µle f t−µ (µright−µ) is the difference

between the chemical potential of the left (right) reservoir and the chemical potential µ of the

superconducting condensate and the voltage difference between the left and right reservoirs is

(µle f t −µright)/e. In this equation,

a =

 Nle f t −Ro +Ra −T ′o +T ′a

−To +Ta Nright −R′o +R′a

 (2.2.21)

where Nle f t (Nright) is the number of open channels in the left (right) lead, Ro,To (Ra,Ta) are
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normal (Andreev) reflection and transmission coefficients for quasi-particles emitted from the

right lead, R′o,T
′

o (R′a,T
′

a) are normal (Andreev) reflection and transmission coefficients from the

left lead and all quantities are evaluated at the Fermi energy E = µ. As a consequence of unitarity

of the scattering matrix, these satisfy Ro +To +Ra +Ta = Nle f t and R′o +T ′o +R′a +T ′a = Nright .

The current-voltage relation of Equ. (2.2.20) is fundamentally different from that encoun-

tered for normal systems, because unitarity of the s-matrix does not imply that the sum of each

row or column of the matrix a is zero. Consequently, the currents do not automatically depend

solely of the applied voltage difference (µle f t − µright)/e (or more generally on the differences

between incoming quasi-article distributions). In practice such a dependence arises only after

the chemical potential of the superconductor adjusts itself self-consistently to ensure that the

current from the left reservoir is equal to the current entering the right reservoir. Insisting that

Ile f t =−Iright = I, the two-probe conductance G = I/((µle f t −µright)/e) takes the form of

G =
2e2

h
a11a22−a12a21

a11 +a22 +a12 +a21
(2.2.22)

The above equation demonstrates why a superconductor possesses zero resistivity, because if

the superconductor is disordered, then as the length L of the superconductor increases, all

transmission coefficients will vanish. In this limit, the above equation reduces to (h/2e2)G =

2/Ra + 2/R′a. In contrast with a normal scatterer, this shows that in the presence of Andreev

scattering, as L tends to infinity, the resistance ( = 1/conductance) remains finite and therefore

the resistivity (ie resistance per unit length) vanishes.

2.2.7 Environmental effects

To model environmental effects e.g. water, counter-ions, etc on the transport properties of a

molecular junction, usually a statistical analysis needs to be carried out. Since a molecular junc-

tion in the presence of the surrounding molecules is a dynamic object at room temperature, a

molecular dynamics simulation is usually needed first, to understand the range of possible con-

figurations of the system. A few configuration then should be extracted and full DFT calculations

carried out to obtain the mean field Hamiltonian of the system in the presence of the surrounding

molecules. Another way to study the environmental effect is to create a series of configurations

in the presence of the surrounding molecules in a more systematic but less physical way e.g. by

moving the surroundings artificially in different directions. Then without geometry relaxation,
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one could find the binding energy of the surroundings to the backbone of the molecule for each

configuration and only study those with higher binding energies. Both of these methods are

widely used in the literature to model environmental effects. In this thesis whenever needed, I

have used the first method in which molecular dynamics is used to study the dynamics of the

system before full DFT-NFGF calculation. It is worth mentioning that since different effects

such as physobrtion, charge transfer, etc could play important role in these simulations, SCF

methods need to be used to calculated the transport from mean-field Hamiltonian.

2.3 GOLLUM transport code

In this thesis, in most cases otherwise explicitly stated, I have used GOLLUM transport code

[9], developed and maintained in Lancaster and Oviedo universities (physics.lancs.ac.uk/gollum)

for transport calculations. Gollum is a program that computes the charge, spin and thermal

transport properties of multi-terminal nano-scale junctions. The program can compute transport

properties of either user-defined systems described by a tight-binding Hamiltonian, or more

material-specific properties of systems composed of real atoms described by DFT mean field

Hamiltonians. As Gollum administrator and one of the Gollum authors, I have been a part of

Gollum development process throughout my PhD and the most of the functionalities described

in this thesis either already included in official version of the Gollum available for academics

free of charge or will be included in the near future.
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Chapter 3

DNA nucleobase sensing

To demonstrate the potential of nanopores in bilayer graphene for DNA sequencing, I com-

pute the current-voltage characteristics of a bilayer graphene junction containing a nanopore

and show that this changes significantly when nucleobases are transported through the pore. To

demonstrate the sensitivity and selectivity of exemplar devices, I compute the probability dis-

tribution Px(β) of the quantity β representing the change in the logarithmic current through the

pore due to the presence of a nucleobase x (= adenine, thymine, guanine or cytosine). I quan-

tify the selectivity of the bilayer-graphene nanopores by showing that Px(β) possesses distinct

peaks for each base x. To demonstrate that such discriminating sensing is a general feature of

bilayer nanopores, the well-separated positions of these peaks are shown to be present for dif-

ferent pores, with alternative examples of electrical contacts.

The results presented in this chapter were published in: Sadeghi, et al. Graphene sculp-

turene nanopores for DNA nucleobase sensing, 2014, The Journal of Physical Chemistry B 118

(24), 6908-6914 and protected by patent number WO2015092411 A1 (18 Dec 2013) entitled:

Nanopore arrangement for DNA sequencing.
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A single strand of deoxyribonucleic acid (DNA) is constructed from a deoxyribose sugar and 

phosphate backbone with sequences of four nucleic acid bases, adenine (A), thymine (T), 

guanine (G) and cytosine (C) (see figure 3.1) attached along its length. Apart from well-

established biological functionalities [1], DNA also exhibits interesting electrical characteristics, 

including a range of superconducting, conducting, semiconducting and insulating properties [2].  

 

 

Figure 3.1. Schematics of the four DNA bases: adenine (A), thymine (T), guanine (G) and 

cytosine (C) [1]. 

 

Sequencing of nucleobases within single-stranded DNA is the focus of a great deal of research 

aimed at developing efficient and cost effective personalised medicine [3]. Established 

technologies, such as chain-termination and single-molecule sequencing methods [4-6] are time 

consuming and costly [7] and the search for alternative fourth-generation sequencing methods is 

attracting huge scientific interest [8, 9].  

All molecular-based biosensors rely on a molecular recognition layer and a signal 

transducer that reports specific recognition events. Electrochemical or electrical methods are 

well suited for DNA sequencing, because there is no need for separate transduction to an 

electrical signal and therefore detection can be accomplished with an inexpensive 

electrochemical analyser [10]. Furthermore, recent developments in device miniaturization 

provide electrical transduction capabilities at the nano- and molecular scales, leading to low-cost 

and low-power requirements compared to conventional methods. One implementation of this 

approach is based on measurement of the variation in the ionic current through a solid state [11-

15] or biological [16, 17] nanopore, due to the translocation of a DNA strand through the pore. 

However, the current leakage through such pores, low signal-to-noise ratios and poor control of 

the speed of the strand through the pore create significant obstacles [18, 19]. To overcome the 
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key technical problems associated with real-time, high-resolution nucleoside monophosphate 

detection, biological nanopores MspA and α-hemolysin have been employed as recognition sites 

inside the pore [16]. However the sensitivity of biological nanopores to experimental conditions, 

the integration of biological systems into large-scale arrays, the small (∼pA) ionic currents and 

the mechanical instability of the lipid bilayer that supports the nanopore still need to be 

improved [19-22].  

 

 

Schematic 3.1. Device structure proposed for DNA sequencing in this chapter. Different 

membrane nanopores could be used as the recognition site. A single strand DNA is translocated 

through the nanopore. A two terminal (I-Vds) or three terminal (G-Vg) configurations with back 

gate voltage Vg could be utilized.  
 

In this chapter, I examine an alternative strategy, which involves measuring changes in the 

electrical conductance of the membrane containing the pore (Schematic 3.1), rather than 

variations in an ionic current passing through the pore. In particular, I demonstrate the potential 

of this approach for sequencing nucleobases passing through nanopores in bilayer graphene. For 

sensing applications, graphene has a number of potential advantages, such a wide 

electrochemical potential window, low electrical resistance, and well-defined redox peaks, 

which can lead to increased sensitivity [23]. It also offers superior performance for future bio 

sensing applications [24] and high sensitivity towards the detection of a range of molecules and 

ions [25-34]. In addition, current technologies such as transmission electron microscopy (TEM) 
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allow the drilling of nanopores with different diameters, down to sub-angstrom precision [35-

38]. Some of the first graphene nanopores for DNA sequencing were realized experimentally by 

Schneider et al. [39] and Merchant et al. [40], where they measured the change in ionic currents 

through graphene nanopores on top of silicon nitride, due to single-molecule DNA translocation. 

However, the response of device to changes of the ionic current upon translocation of DNA 

bases are slow (on the scale of ms) [41] compared with much faster response available to direct 

electrical measurement (on the scale of µs to ns) [42]. 

The first ab initio density functional theory (DFT) study of the interaction of nucleobases 

with a monolayer graphene nanopore device was reported by Nelson et al where the variation of 

the electrical current upon translocation of DNA bases inside the pore was proposed as a 

detection method [43]. Saha, et al also calculated the conductance of a monolayer graphene 

nanopore containing nucleobases and showed that the conductance depended on the orientation 

of the nucleobases within the pore [3]. However, they did not propose a clear method of 

distinguishing between different bases. Furthermore, nanopores in monolayer graphene are 

unstable and change their shape over time [44]. For DNA sequencing, it may be necessary to 

calibrate individual pores and such instabilities would lead to a progressive loss of calibration. 

On the other hand, our calculations in [45, 46] show that bilayer pores are stable and 

experiments such as [47] show that the edge reconstruction which stabilises such pores is 

persistent. For this reason, I examine in this chapter the potential of nanopores in bilayer 

graphene, which are more stable than their monolayer counterparts.  

An exemplar platform consists of a bilayer graphene nanoribbon containing a 

reconstructed, stable nanopore, as shown in figure 3.2. This structure is an example of a class of 

sp2-bonded carbon structures known as sculpturenes [45]. The latter are formed by sculpting 

selected shapes from AB-stacked bilayer graphene and allowing the shapes to spontaneously 

reconstruct to form stable structures of sp2-bonded carbon, which remain stable over time.  

For the structure of figure 3.2, after performing a structure relaxation using the density-

functional theory code SIESTA, the top and bottom graphene layers adjust their positions to 

achieve a more locally-energetically-stable AA-stacking in the vicinity of the pore. This type of 
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relaxation has been recently reported elsewhere[48]. The width of the graphene nano-ribbon and 

the diameter of the pore in figure 3.2 are ~3nm and ~1.5nm respectively with an inter-sheet 

separation of 0.34 nm. Since the distance between two bases in a DNA strand is also ~0.34 nm 

[49], the proposed bilayer graphene nanopore (BLGNP) is optimised for base detection, because 

on the one hand, a membrane of thickness more than 0.34 nm, would contain more than one 

base at a time inside the pore, thereby reducing its ability to discriminate [50], while on the other 

hand, a monolayer pore is less stable structurally.  

 

 

Figure 3.2. Relaxed atomic structure of a sculpted bilayer graphene nanopore with monolayer 

graphene leads (a) and the transmission coefficients T(E) (b). The inset in (b) shows the 

logarithm of the transmission T(E). The Fermi energy is set to EF = 0.0 eV. 

 

Furthermore the method should be easier to implement than an alternative nanopore technique, 

which relies on locating electrodes on an insulating pore-containing substrate and passing a 

tunnelling current through individual nucleobases [51]. To further optimise the device, I also 

propose that the pore is contacted to the outer current source via monolayer graphene leads, as 

shown in figure 3.2. As shown in the side view at the bottom of figure 3.2a, in order for the 

electrical current to flow from left to right through the monolayer graphene current-carrying 

leads, it must pass through the orbitals of the carbon atoms on the inner surface of the pore, 

which increases the sensitivity of the device to the presence of nucleobases. After relaxation, the 

surface carbon atoms are mainly sp2 bonded, although there are also a small number of 

unsaturated bonds. In the structure of figure 3.2, these are passivated by adding hydrogen to 

(a) (b) 

 

Lead 

  

Lead 
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form C-H bonds [52]. In what follows, I compute the current I as a function of the voltage V 

between the left and right leads (i.e. between the source and drain) and show that through 

appropriate data analysis, this device can be used to discriminate between nucleobases passing 

through the pore. 

To find the optimized geometry and ground state Hamiltonian of the structure of figure 

3.2, I followed the procedure described in [45] and employed the SIESTA [53] implementation 

of DFT using the generalized gradient approximation (GGA) of the exchange and correlation 

functional with the Perdew-Burke-Ernzerhof parameterization (PBE) [54] a double zeta 

polarized basis set, a real-space grid defined with a plane wave cut-off energy of 250 Ry and a 

maximum force tolerance of 40 meV/Å. To describe the many possible orientations and positions 

of nucleobases within the pore, molecular dynamics simulations of the nucleobases were carried 

out using the LAMMPS package [55]. The atoms were treated in the DREIDING force field 

model, a Langevin thermostat at 300K was employed and the atomic positions updated in 0.02fs 

time steps. During the simulation, a number of snapshots were taken and for each frozen 

snapshot, the electronic structure of the combined nucleobase and nanopore was obtained self-

consistently using the SIESTA-based implementation of DFT described above. From the 

converged DFT calculation, the underlying mean-field Hamiltonian was combined with the 

SMEAGOL [56] implementation of the NEGF method. This yields the transmission coefficient 

T(E) for electrons of energy E (passing from the source to the drain) via the relation 

 

†( ) { ( ) ( ) ( ) ( )}R R
R LT E Trace E G E E G E        (3.1) 

 

In this expression, ��,�(�) = � �∑�,�(�) − ∑�,�
�(�)� describe the level broadening due to the 

coupling between left (L) and right (R) electrodes and the central scattering region associated 

with the pore, ∑�,�(�) are the retarded self-energies associated with this coupling and �� =

(�� − � −∑� − ∑�)
�� is the retarded Green’s function, where H is the Hamiltonian and S is 

overlap matrix (both of them obtained from SIESTA). 
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To highlight the underlying changes in transport properties due to a nucleobase X=[A, C, 

G, T], located within the pore, with orientation m, I compute the transmission coefficient TX,m(E) 

and define the quantity 

 

X, 10 X, 10 bare( ) log ( ( )) log ( ( ))m mE T E T E       (3.2) 

 

where Tbare(E) is the transmission coefficient for electrons of energy E passing from left to right 

in the presence of a ‘bare’ (ie unoccupied) pore. αX,m(E) is a measure of the differences between 

TX,m(E) and the transmission Tbare(E) in the absence of a base. To differentiate between different 

bases, I analyse the set of all values of αX,m(E) for Emin < E < Emax and configuration m = 1,…, M 

belonging to a given base X. The probability distribution of the set{αX,m(E)}for a given base X is 

then defined by 
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     (3.3) 

 

where �(� − ��,�(�)) is a Dirac delta function. This has the property that the fraction of 

values of αX,m(E) between α = a and α = b is ∫ d���(�)
�

�
. 

From an experimental point of view, αX,m(E) is not directly accessible in a two-terminal 

device such as that shown in figure 3.2, therefore for the purpose of analyzing experimentally-

accessible two-terminal data, I also examine the quantity  ,X m V defined by 

 

        , 10 , 10 barelog logX m X mV I V I V        (3.4) 
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is the finite-bias current evaluated for bias voltage V for each orientation m = 1,…, M of a given 

base X within the pore. The probability distribution of the set {βX,m(E)} for a given base X is then 

defined by 
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m

P dV V
M eV eV

   


 


     (3.6) 

 

Figure 3.2b shows the transmission coefficient Tbare(E) versus energy (where the energy origin is 

chosen such that Fermi energy EF = 0.0 eV) in the absence of any nucleobase. It should be noted 

that for the purpose of this proof of principle, the effect of water has not been included in the 

calculations, because the H-π interactions between water molecules and graphene are weak and 

in a recent paper, [57] the effect of water was found to be insignificant. To study the sensing 

properties of the nanopore platform and the effect of the orientation of the bases inside the pore 

on the transmission, I chose 54 different configurations for each of the four nucleobases and 

calculated the transmission for all 4x54=216 possibilities. These configurations were obtained 

using molecular dynamics simulations, in which each base was allowed to move inside the pore. 

54 different snapshots were taken and a full NEGF calculation was performed for each 

configuration. As examples, the left hand side in figures 3.3(a-d) show one configuration for 

each of the A, C, G and T bases, located inside the nanopore. The resulting logarithmic 

transmission coefficients (log10 TX,m(E)) and their deviations from those of the bare pore (αX,m(E)) 

are shown in the centre and left hand side of figure 3.3, respectively.  

Figure 3.4 shows all 216 plots of log10 TX,m(E) superposed on the same graph, for each of 

the A, C, G and T bases and 54 different configurations for each base. This shows that the low-

voltage conductance alone (which is proportional to the transmission coefficient TX,m(E) 

evaluated at the Fermi energy E=0) does not provide enough information to discriminate 

between different nucleotides and therefore a more comprehensive analysis based on 

measurement of αX or βX is required.  
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Figure 3.3. The left panels show one example each of the nucleobase bases A, C, G and T (parts 

(a), (b), (c) and (d) respectively) located inside the nanopore. The central panels show the 

resulting logarithmic transmission log10TX,m(E) and the right panels show their deviations αX,m(E) 

from that of the bare (unoccupied) pore. 

(a) 

(b) 

(c) 

(d) 
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Figure 3.4 also shows that the energy dependence of TX,m(E) reflects a complex interference 

pattern, which arises from quantum interference in the vicinity of the pore surface. In this sense, 

the pore acts like a chaotic quantum dot, whose properties were well studied by the mesoscopic 

physics community in the late 1980s [58]. From the plots in figure 3.4, the probability 

distributions PX(α) are obtained by sampling the curves at a uniformly-spaced set of energies 

and creating histograms of the associated values of αX,m(E). The resulting probability 

distributions are shown in figure 3.5.  

 

 

 

Figure 3.4. Logarithm of the transmission versus energy for each base with 54 different 

configurations (a total of 216 curves).  

 

 

The presence of distinct peaks in figure 3.5 demonstrates the potential of this bilayer nanopore 

for the discriminating sensing of nucleobases. Figure 3.6(a) shows corresponding plots for the 

experimentally-accessible quantities βX,m(E), whose probability distributions are shown in figure 

3.6(b). Again the presence of distinct peaks demonstrates the excellent sensing potential of the 

proposed bilayer nanopore for sequencing DNA. 
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Figure 3.5. The probability distribution (Px(α)) of the set{αX,m(E)}are shown for a given base X 

where X = A in black, C in red, G in blue and T in green.  

 

To demonstrate that discriminating sensing is a general feature of other sculpturene-based 

nanopores, with alternative electrical contacts, I now investigate the effect of varying the 

structure of both the pore and the electrical contacts. As discussed in [45], a range of stable 

nanopore-containing sculpturenes can be created by sculpting shapes from bilayer graphene and 

allowing the shapes to relax. Figure 3.7a (upper structure) shows one such structure, obtained by 

cutting bilayer graphene into a torus-containing nanoribbon and allowing it to reconstruct to 

form a two terminal hollow torus connected to carbon nanotube (CNT) leads. In figure 3.7a, the 

pore is approximately 1.6 nm in diameter and it is linked to (6,6) armchair CNTs with a 

thickness of approximately 0.5 nm. For the bare, unoccupied pore, figure 3.7b shows the 

transmission coefficients for electrons of energy E. 

By introducing structurally optimised nucleobases into the cavity of the torus and 

calculating the I(V) characteristic for 4 different orientations of each base, I obtain the 

probability distributions Px(β) shown in figure 3.7c. Despite the more limited data set, this figure 

again demonstrates the potential of this nanopore for discriminating nucleobase sensing and 

suggests that nanopores formed from bilayer graphene provided a basic technology platform for 

discriminating sensing. Since the ordering of the peaks in the figure 3.7c differs from that of 

figure 3.6b, this suggests that the size and shape of the pores is poorly controlled, then each pore 

would need to be calibrated prior to use. Furthermore the ordering of the peaks will also depend 

G 

C 

A 
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on sample preparation. To demonstrate this feature, the inset of figure 3.7c shows the probability 

distributions arising when the phosphate deoxyribose backbone remains attached to the bases as 

they pass through the pore, as shown in figure 3.7d. Again the peaks in Px(β) remain well 

separated, but their ordering is changed.  

 

 

Figure 3.6. (a) The differences between the logarithm of the current in the presence of each base 

for 54 different configurations (βX,m). (b) The probability distribution (Px(β)) of the set{βX,m}are 

shown for a given base X where X = A in black, C in red, G in blue and T in green.  

 

 

Figure 3.7. (a) Atomic structure of a two terminal hollow torus connected to carbon nanotube 

(CNT) leads. (b) The transmission coefficient Tbare(E) calculated for single electron transport 

from the left to the right leads. (c) Probability distribution (Px(β)) of the set{βX,m}for a given 

base X with backbone (inset: without backbone). (d) Schematics of the four DNA bases attached 

to phosphate deoxyribose: adenine (A), thymine (T), guanine (G) and cytosine (C). 
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In this chapter, I have demonstrated the discriminating sensing properties of new bilayer-

graphene, sculpturene-based nano-pore devices by calculating the electrical current-voltage 

characteristics of two-terminal device in the absence and presence of given nucleobase for many 

different positions and orientations of bases within the pore. The resulting fingerprint probability 

distribution Px(β) shows distinct peaks for different nucleobase. The proposed method is based 

on direct electrical current measurement and potentially has clear advantages comparing with 

conventional DNA sequencing methods based on ionic current measurement. One of these is 

higher signal to noise, because the current through the graphene is of order microamps, whereas 

the current measured in ion-current-based methods are of order picoamps and there is no reason 

to suppose the noise would be greater. Another is the potential for a faster response, because 

conventional nanoelectronics can complete a current-voltage cycle on the scale of micro- or 

even nanoseconds, whereas ionic current-based methods require milliseconds or longer. By 

comparing bilayer and toroidal pore within different geometries and electrical contacts and by 

sensing bases in the absence and presence of the phosphate deoxyribose backbone, I have 

demonstrated that discriminating sensing is resilient. However the ordering of the peaks in Px(β) 

depends on the shape of the pore and on the presence of phosphate deoxyribose and therefore it 

is likely that nanopores will need to be calibrated individually before use. This calibration is 

feasible, because bilayer nanopores are much more stable than their monolayer counterparts and 

graphene-based nanostructures can be interfaced with CMOS electronics, thereby allowing them 

to be individually addressed and replicated many times in a single chip. Therefore, the proposed 

method could open new routes for label free, fast and cheap DNA sequencing. 
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Chapter 4

Picoscale graphene nanojunctions

Provided the electrical properties of electro-burnt graphene junctions can be understood and con-

trolled, they have the potential to underpin the development of a wide range of future sub-10nm

electrical devices. In this chapter, the electrical conductance of electro-burnt graphene junctions

at the last stages of nanogap formation is examined both theoretically and experimentally. I ac-

count for the appearance of a counterintuitive increase in electrical conductance just before the

gap forms. This is a manifestation of room-temperature quantum interference and arises from

a combination of the semi-metallic band structure of graphene and a crossover from electrodes

with multiple-path connectivity to single-path connectivity just prior to breaking. Therefore

these results suggest that conductance enlargement prior to junction rupture is a signal of the

formation of electro-burnt junctions, with a pico-scale current path formed from a single sp2-

bond.

The results presented in this chapter were published in: Sadeghi, et al. Conductance en-

largement in picoscale electroburnt graphene nanojunctions, 2015, Proceedings of the National

Academy of Sciences (PNAS), 112 (9), 2658-266

This study is a collaborative work and the experiment has been carried out in the University

of Oxford.
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Graphene nanojunctions are attractive as electrodes for electrical contact to single molecules [1-

7], due to their excellent stability and conductivity up to high temperatures and a close match 

between their Fermi energy and the HOMO (highest occupied molecular orbital) or LUMO 

(lowest unoccupied molecular orbit) energy levels of organic materials. Graphene electrodes 

also facilitate electrostatic gating due to their reduced screening compared with more bulky 

metallic electrodes. Although different strategies for forming nano-gaps in graphene such as 

atomic force microscopy, nanolithography [8], electrical breakdown [9] and mechanical stress 

[10] have been employed, only electro-burning delivers the required gap-size control below 

10 nm [11-13]. This new technology has the potential to overcome the challenges of making 

stable and reproducible single-molecule junctions with gating capabilities and compatibility 

with integrated circuit technology [14] and may provide the breakthrough that will enable 

molecular devices to compete with foreseeable developments in Moore’s Law, at least for some 

niche applications [15-17].  

One set of such applications is likely to be associated with room-temperature 

manifestations of quantum interference (QI), which are enabled by the small size of these 

junctions. If such interference effects could be harnessed in a single-molecule device, this would 

pave the way towards logic devices with energy consumption lower than the current state-of-

the-art. Indirect evidence for such QI in single-molecule mechanically-controlled break 

junctions has been reported recently in a number of papers [18], but direct control of QI has not 

been possible, because electrostatic gating of such devices is difficult. Graphene electro-burnt 

junctions have the potential to deliver direct control of QI in single molecules, but before this 

can be fully achieved, it is necessary to identify and differentiate intrinsic manifestations of 

room temperature QI in the bare junctions, without molecules. In the present chapter, I account 

for one such manifestation, which is a ubiquitous feature in the fabrication of pico-scale gaps for 

molecular devices, namely an unexpected increase in the conductance prior to the formation of 

a tunnel gap. 

Only a few groups in the world have been able to implement electro-burning method to 

form nanogap size junctions. In a recent study of electro-burnt graphene junctions, Barreiro, et 
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al. [19] used real-time in situ transmission electron microscopy (TEM) to investigate this 

conductance enlargement in the last moment of gap formation and ruled out the effects of both 

extra edge scattering and impurities, which reduce the current density near breaking. Also they 

showed that the graphene junctions can be free of contaminants prior to the formation of the 

nano-gap. Having eliminated these effects, they suggested that the enlargement may arise from 

the formation of the seamless graphene bilayers. Here I show that the conductance enlargement 

occurs in monolayer graphene, which rules out an explanation based on bilayers. Moreover, we 

have observed the enlargement in a large number of nominally identical graphene devices and 

therefore we can rule out the possibility of device- or flake-specific features in the electro-

burning process. An alternative explanation was proposed by Lu, et al. [20], who observed the 

enlargement in few-layer graphene nanoconstrictions fabricated using TEM. They attributed the 

enlargement to an improvement in the quality of few-layer graphene due to current annealing, 

which simply ruled out by our experiments on electro-burnt single layers. They also attributed 

this to the reduction of the edge scattering due to the orientation of the edges (i.e. zigzag edges). 

However such edge effects have been ruled out by the TEM images of Barreiro, et al. Therefore, 

although this enlargement appears to be a common feature of graphene nano-junctions, so far 

the origin of the increase remains unexplained.  

In what follows, my aim is to demonstrate that such conductance enlargement is a 

universal feature of electro-burnt graphene junctions and arises from quantum interference (QI) 

at the moment of breaking. Graphene provides an ideal platform for studying room-temperature 

QI effects [21], because as well as being a suitable material for contacting single molecules, it 

can serve as a natural two-dimensional grid of interfering pathways. By electro-burning a 

graphene junction to the point where only a few carbon bonds connect the left and right 

electrodes, one can study the effect of QI in ring- and chain-like structures that are covalently 

bonded to the electrodes. A feedback-controlled electro-burning on single-layer graphene nano-

junctions performed by our collaborators confirms that there is an increase in conductance 

immediately before the formation of the tunnel-junction. My transport calculations for a variety 

of different atomic configurations using the non-equilibrium Green’s function (NEGF) method 
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coupled to density functional theory (DFT) show a similar behaviour. To elucidate the origin of 

the effect, I provide a model for the observed increase in the conductance based on the transition 

from multi-path connectivity to single-path connectivity, in close analogy to an optical double 

slit experiment. The model suggests that the conductance increase is likely to occur whenever 

junctions are formed from any sp2-bonded material. 

Experimentally the conductance jumps is studied by applying the method of feedback-

controlled electro-burning to single-layer graphene (SLG) that was grown using chemical 

vapour deposition (CVD) and transferred onto a pre-patterned silicon chip as explained in the 

methods below and performed by our collaborators. The CVD graphene was patterned into 3 

μm wide ribbons with a 200 nm wide constriction (see figure 4.1a) using electron-beam 

lithography and oxygen plasma etching. Feedback-controlled electro-burning has been 

demonstrated previously using few-layer graphene flakes that were deposited by mechanically 

exfoliation of kish graphite [11]. However, by applying the method to an array of nominally 

identical single-layer graphene devices, the possibility of device- or flake-specific features in the 

electro-burning process can be ruled out.    

 

 

 

Figure 4.1. (a) Scanning electron micrograph of the graphene device, (b) Measured current-

voltage characteristic of the final voltage ramp prior to the formation of the nano-gap. This 

exhibits a sharp increase of the conductance just before the nano-gap forms. (c-e) three atomic 

configuration with two (c), one (d) and zero (e) pathways. 
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The nano-gaps is formed by ramping up the voltage that is applied across the graphene device. 

As the conductance starts to decrease due to the breakdown of the graphene, the voltage is 

ramped back to zero. This process is repeated until the nano-gap is formed. The I-V traces of the 

voltage ramps, closely resemble those recorded for mechanically exfoliated graphite flakes. As 

the constriction narrows, the conductance of the SLG device decreases. When the conductance 

becomes less than the conductance quantum G0 = 2e2/h, the low-bias I–V traces are no longer 

Ohmic and start exhibiting random telegraph signal (RTS) as the SLG device switches between 

different atomic configurations. Figure 4.1b shows the I–V trace of the final voltage ramp, 

which exhibits a sharp increase of the conductance just before the nano-gap forms. This 

behaviour is characteristic of many of the devices. Out of the 279 devices that were studied, 138 

devices showed a sharp increase in the conductance prior to the formation of the nano-gap. 

To investigate theoretically the transport characteristics of graphene junctions upon 

breaking, I used classical molecular-dynamics simulations to simulate a series of junctions with 

oxygen and hydrogen terminations as well as carbon terminated edges and then used DFT 

combined with non-equilibrium Green’s function (NEGF) methods to compute the electrical 

conductance of each structure as explained in the methods below. Figures 4.1c-e show three 

examples of the resulting junctions with oxygen terminated edges (which are the most likely to 

arise from the burning process), in which the left and right electrodes are connected via two 

(figure 4.1c), one (figure 4.1d) and zero (figure 4.1e) pathways.  

Surprisingly, the conductance G through the single-path junction (figure 4.1d) is larger 

than the conductance through the double-path junction (figure 4.1c) (e.g. G = 18µS for one path 

versus G = 0.4µS for two paths in the low bias regime V = 40mV). For the nano-gap junction 

shown in figure 4.1e, the conductance is less than both of these (G = 0.016 µS). I have 

calculated the conductance for 42 atomic junction configurations (see figures 4.2 and 4.3), and 

commonly find that the conductance is larger for single-path junctions than for those with two 

or a few conductance paths. 
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Figure. 4.2. (a) The first set of break junction traces configurations [1, 4, 8, 9, 10, 11, 12, 13, 14, 

15, 16, 17, 18, 19, 20, 21]. (b) Second set of the break junction traces [1, 4, 8, 9, 10, 11, 12, 13, 

14, 15, 16, 17, 18, 19, 20, 21]. 

 

The changes in the calculated conductances of junctions approaching rupture show a close 

resemblance to the experiments presented in this chapter and by Barreiro, et al. [19] and arise 

from the changes in the atomic configuration of the junction. I therefore attribute the 

experimentally-observed jumps of the conductance to a transition from two- or few-path atomic 

configurations to single-path junctions, even though naïve application of Ohm’s Law would 

predict a factor 2 decrease of the conductance upon changing from a double to a single pathway. 

(a) 

(b) 
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In the remainder of this chapter I will give a detailed analysis of the interference effects leading 

to the sudden conductance increase prior to the formation of a graphene nano-gap. 

 

 

 

 

Figure 4.3. Calculated current in different applied bias voltages for (a) 21 different 

configurations shown in figure 4.2a and (b) another 21 different configurations shown in figure 

4.2b. 

 

Before proceeding to an analysis of QI effects, I first note that the conductance enlargement 

cannot be attributed to changes in the band structure near breaking. The band structures of the 

periodic chains and ribbons shown in figure 4.4 reveal that all are semi-metallic except alkane 

(figure 4.4c), due to the formation of a π band associated with the p orbital perpendicular to the 

plane of the structures. Moreover, the ribbon (figure 4.4e) has more open conductance channels 

than the chain (figure 4.4d) around the Fermi energy (E=0). The increase in conductance upon 

changing from a ribbon to a chain is therefore not due to a change in band structure, but rather 

due to QI in the different semi-metallic pathways. A similar behaviour is also found for 

(a) 

(b) 

84



structures with hydrogen-termination and combined hydrogen-oxygen termination as shown in 

figure 4.4a-i.  

 

Figure 4.4. Band structure of (a) C-H atomic chain, (b) C-H benzene chain, (c) C-H2 atomic 

chain, (d) C-O atomic chain, (e) C-O benzene chain, (f) C-O-H atomic chain, (g) C-O-H 

benzene chain 1 and (h) C-O-H benzene chain 2 (i) COOH benzene chain. 

 

Figure 4.5b shows the calculated current-voltage curves (corresponding transmission 

coefficients T(E) for electrons of energy E traversing the junctions are shown in figure 4.5d) for 

the five oxygen-terminated constrictions c1-c5 of figure 4.5a, with widths varying from 3 nm (c5) 

down to a single atomic chain (c1). The chains and ribbons in figure 4.5a are connected to two 

hydrogen-terminated zigzag graphene electrodes. The blue curve of figure 4.5b shows that the 

current through the chain c1 is higher than the current through the ribbon c2 (green curve in figure 

4.5b), particularly at higher bias voltages.  
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Figure 4.5. (a) Ideal configuration with reduced junction width down to the atomic chain, (b) 

Calculated current-voltage relations in oxygen-terminated junctions, (c) I–V characteristic for 

junctions c1 and c2 over a wider voltage range. Dashed lines and arrows indicate the current 

jump from double bond of structure c2 to that of structure c1 when an electroburning event 

occurs, (d) Calculated conductance vs. electrons energy. 

 

To demonstrate that a two-path contact between two graphene electrodes typically has a lower 

conductance than a single-path contact, consider a graphene nanoribbon (on the left of figures 

4.6a-d) connected to a carbon chain (on the right in figures 4.6a and 4.6b) or to hexagonal 

chains (figures 4.6c and 4.6d). To calculate the current flow through the junctions 4.6a-d and to 

study the effect of a bond breaking on the current when all other parameters fixed, we built a 

tight-binding Hamiltonian of each system as described in the methods section. Starting from 

junctions 4.6a and 4.6c with two pathways between the leads, I examined the effect of breaking 

a single bond to yield junction 4.6b and 4.6d respectively, with only one pathway each. As 

shown in figure 4.6, the current is increased when a bond broken. Moreover, even when the 

connection point z=[0,1,2] of the linear chains is varied relative to the lower edge of the left-

hand graphene nanoribbons, typically the single-bonded structures show higher currents. This 

demonstrates how constructive quantum interference in pico-scale graphene junctions produces 

c5 c4 

c3 c2 

(a) 

(b) 

c1 

(c) (d) 
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a significant jump in the current before breakdown. As an example, figure 4.6 shows that when 

only one of two single bonds in the hexagon–graphene junction is broken, the current increases 

by a factor of 11.5. This shows that in a junction formed from strong covalent bonds, the current 

in the one-pathway junction can be higher than in junctions with more than one pathway. This 

captures the feature revealed by the DFT-NEGF calculations on the structures of figure 4.1, that 

if bonds break in a filament with many pathways connecting two electrodes from different 

points, the current flow can increase. This result is highly non-classical and as shown in the next 

section, is a consequence of constructive quantum interference in pico-scale graphene junctions.  

 

 

 

Figure 4.6. Each of figs a-d show an electrode formed from a graphene nanoribbon (on the left) 

in contact with an electrode (on the right) formed from a linear chain (a and b) or a chain of 

hexagons (c and d). For (a) and (c) the contact to the chain is via a single bond. For (b) and (d) 

the contact to the chain is via two bonds. For a voltage V=20mV, the circles show the current 

through each structure. The arrows indicate that upon switching from a two-bond contact to a 

single-bond contact, the current increases. I0=77.4 µA is the current carried by a quantum of 

conductance G0 at 1 volt. The blue, green and red circles correspond to different positions z=0, 

1, 2 of the contact. 
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Figure 4.7. Transmission coefficient and number of open channels for the structures 4.6a-d. NC, 

NB and NG are the number of open channels in 1d carbon chain, benzene chain and 6N zigzag 

graphene ribbon, respectively. Inset: corresponding I-V relations and 

 

To illustrate the origin of the jumps, figure 4.7 shows examples of the transmission coefficient 

and current-voltage relations calculated based on the simple tight-binding model with a single 

orbital per atom �� = 0�� and nearest neighbour couplings = −1�� , as described in method 

section. The graphs labelled  NC, NB and NG are the number of open channels in a 1d carbon 

chain (right hand lead in figure 4.6a,b), benzene chain (right hand lead in figure 4.6c,d) and 6N-

zigzag graphene ribbon (left hand lead in figure 4.6a-d), respectively. In all cases only one 

channel is opened at low energies, due to the band structure of the graphene nanoribbon. The 

corresponding transmission coefficients and I-V curves for the structures shown in figure 4.6a-d 

are labelled a-d in figure 4.7. The inset of figure 4.7 shows that the current of the structure 

shown in figure 4.6b is higher than all other structures in figure 4.6, reflecting the fact that 

graphene-1d carbon chain single junction carries higher current. When an extra coupling is 

added to the junction as shown in figure 4.6a; the current drops as shown by the dashed red 

curve in figure 4.7. Similarly for the hexagonal chain connected to the ribbon, cutting one of the 

two couplings (figure 4.6c to figure 4.6d) causes the current to increase, as shown by the dashed 

blue curves in figure 4.7.  

To illustrate analytically the consequences of QI in few-pathway junctions, consider the 

structure shown in figure 4.8a, which consists of an atomic chain (in figure 4.8a this comprises 

atoms 2 and 3) connected to a single-channel lead terminating at atom i=1 and to a second 
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single-channel lead terminating at atom j=4. Now consider adding another atomic chain in 

parallel to the first, to yield the structure shown in figure 4.8b.  

 

 

Figure 4.8. (a) shows a 1-d chain connected to 1d semi-infinite leads on the left and right, (b) 

shows two parallel chains forming a ring with para coupling to the leads and (c) shows two 

parallel chains with meta coupling to the leads. Classically this could be modeled with the serial 

and parallel resistors as the bottom raw. 

 

In the following, I shall show that the single-path structure of figure 4.8a has the highest of the 

three conductances. This trend is the opposite of what would be expected if the lines were 

classical resistors as shown in the bottom raw of figure 4.8, and the circles were perfect 

connections. In that case (a) would have the lowest conductance and (c) the highest conductance 

since �� = 1/(2�� + ��), �� = 1/(2�� +
��

�
) and �� = 1/(2�� +

����

�����
), �� is always smaller 

than �� and ��. An intuitive understanding begins by noting that in the quantum case, electrical 

conductance is proportional to the transmission coefficient T(E) of de Broglie waves of energy E 

passing through a given structure. If I neglect the lattice nature of the system, and consider the 

paths simply as classical waveguides, then for a wave propagating from the left hand end in 

each case, the bifurcations in (b) and (c) present an impedance mismatch, so that a fraction of 

the wave is reflected. Considering a waveguide of impedance Z with a bifurcation into two 

waveguides, for unit incident amplitude the total transmitted amplitude is (2√2 3⁄ ), and the 

transmitted intensity is � = 8 9⁄ .  A similar analysis can be applied to a 1-D lattice formed of M 

semi-infinite chains. This is illustrated in figure 4.9a for M = 2 (a continuous chain) and figure 

4.9b for M = 3 (a bifurcation). 
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Within a tight-binding or Hückel description of such systems, the transmission and 

reflection amplitudes r and t are obtained from matching conditions at site “0”. Then for 

electron energies E at the band centre (ie HOMO-LUMO gap centre, which coincides with the 

charge neutrality point in my model), it can be shown (see appendix A) that the transmission 

coefficient T=|t|2 is given by       

      

 T = 4 (M-1) / M2                                                      (4.1) 

 

For M = 2, this formula yields T=1, as expected, because system 4.9a is just a continuous chain 

with no scattering. Since T cannot exceed unity, any changes can only serve to decrease T. For a 

bifurcation (M = 3), equation 4.1 yields T = 8/9, which is the same result as a continuum 

bifurcated waveguide. 

 

 

Figure 4.9. (a) A system with M=2 semi-infinite chains, centred on site 0. (b) A system with 

M=3 semi-infinite chains, centred on site 0. In each case, a plane wave from the left is either 

reflected with reflection amplitude r, or transmitted with transmission amplitude t. 

 

When the two branches of figure 4.9b come together again to form a ring, there can be further 

interference effects, associated with additional reflections where the branches rejoin. These may 

serve to decrease or increase the transmission. At most the transmission will increase to T = 1, 

but in general T will remain less than unity. It might be expected that the asymmetrical ring in 

figure 4.8c will be more likely to manifest destructive interference than the symmetrical ring in 

figure 4.8b. These intuitive conclusions from continuous and discrete models are confirmed by 
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the following rigorous analysis based on a tight-binding model of the actual atomic 

configurations, which captures the key features of the full DFT-NEGF calculations.  

We consider a simple tight-binding (Hückel) description, with a single orbital per atom of 

‘site energy’ �� and nearest neighbour couplings –�. As an example, for an infinite chain of 

such atoms, the Schrodinger’s equation takes the form: ����− ����� − ����� = ��� for 

−∞ < �< ∞ . The solution to this equation is ��= ����, where −�< � < � is wave vector. 

Substituting this into the Schrodinger’s equation yields the dispersion relation of � = �� −

2�����. This means that such a 1d chain possesses a continuous band of energies between 

�� = �� − 2� and �� = �� + 2�. Since the 1-d leads in figure 4.8 are infinitely long and 

connected to macroscopic reservoirs (not shown), systems 4.8a-c are open systems. In these 

cases, the transmission coefficient �(�) for electrons of energy � incident from the first lead is 

obtained by noting that the wave vector	�(�) of an electron of energy � traversing the ring is 

given by �(�) = �����(�� − �)/2�. When � coincides with the mid-point of the HOMO-

LUMO gap of the bridge, ie when � = ��, this yields �(�) = 	�/2. Since �(�) is proportional 

to �1 + �����
�
, where � is the difference in path lengths between the upper and lower branches, 

for structure 4.8b, one obtains constructive interference, because ����= ��� = 1 and for 

structure 4.8c destructive interference, because ����= ���� = −1. This result is unsurprising, 

because it is well known that the meta-coupled ring 4.8c should have a lower conductance than 

the para-coupled ring 4.8b [22]. More surprising is the fact the single-chain structure 4.8a has a 

higher conductance than both 4.8b and 4.8c. To illustrate this feature, we note (see appendix A 

for more details) that the ratio of the Green’s function �����	of the structure of figure 4.8b to the 

Green’s function of the chain 4.8a, evaluated between the atoms 1 and 4 is: 

 

 Gring  /  Gchain = (1-ɑ) / 2                                                            (4.2) 

 

where α is a small self-energy correction due to the attachment of the leads. For small α, this 

means that the transmission of the linear chain at the gap centre is 4x higher than the 
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transmission of a para ring (because transmission is proportional to the square of the Green’s 

function), which demonstrates that the conductances of both the two-path para and meta coupled 

structures are lower than that of a single-path chain. This result is the opposite of the behaviour 

discussed in [23], where the conductance of two identical parallel chains was found to be 4x 

higher than that of a single chain. The prediction in ref. [23] is only applicable in the limit that 

the coupling of the branches to the nodes is weak, whereas in sp2-bonded graphene junctions, 

the coupling is strong. 

I have addressed a hitherto mysterious feature of electro-burnt graphene junctions, 

namely a ubiquitous conductance enlargement at the final stages prior to nanogap formation. 

Through a combined experimental and theoretical investigation of electro-burnt graphene 

nanojunctions, we have demonstrated that conductance enlargement at the point of breaking a 

consequence of a transition from multiple-path to single-path quantum transport. This 

fundamental role of quantum interference was demonstrated using calculations based on DFT-

NEGF methods, tight-binding modelling and analytic results for the structures of figure 4.8. 

Therefore these results suggest that conductance jumps provide a tool for characterising the 

atomic-scale properties of sp2-bonded junctions and in particular, conductance enlargement prior 

to junction rupture is a signal of the formation of electro-burnt junctions, with a current path 

formed from a single sp2-bond. Conductance enlargement is common, but does not occur in all 

electro-burnt nanojunctions, because direct jumps from two-path to broken junctions can occur. 

With greater control of the electro-burning feedback, my analysis suggests that one could create 

carbon-based atomic chains and filaments, which possess many of the characteristics of single 

molecules without the need for anchor groups, because the chains are already covalently bonded 

to electrodes.  

 

Computational Methods: The Hamiltonian of the structures described in this chapter were 

obtained using density functional theory as described below or constructed from a simple tight-

binding model with a single orbital per atom of site energy �� = 0 and nearest neighbour 

couplings �= −1. 
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DFT calculation: The optimized geometry and ground state Hamiltonian and overlap matrix 

elements of each structure was self-consistently obtained using the SIESTA [24] implementation 

of density functional theory (DFT). SIESTA employs norm-conserving pseudo-potentials to 

account for the core electrons and linear combinations of atomic orbitals to construct the valence 

states. The generalized gradient approximation (GGA) of the exchange and correlation 

functional is used with the Perdew-Burke-Ernzerhof parameterization (PBE) [25] a double-ζ 

polarized (DZP) basis set, a real-space grid defined with an equivalent energy cut-off of 250 Ry. 

The geometry optimization for each structure is performed to the forces smaller than 40 meV/Å. 

For the band structure calculation, given structure was sampled by a 1×1×500 Monkhorst-Pack 

k-point grid. 

Transport calculation: The mean-field Hamiltonian obtained from the converged DFT 

calculation or a simple tight-binding Hamiltonian was combined with our home-made 

implementation of the non-equilibrium Green’s function method, the GOLLUM [26], to 

calculate the phase-coherent, elastic scattering properties of the each system consist of left 

(source) and right (drain) leads and the scattering region. The transmission coefficient T(E) for 

electrons of energy E (passing from the source to the drain) is calculated via the relation: 

 

 	�(�) = ��������(�)�
�(�)��(�)�

��(�)�                                      (4.3) 

 

In this expression,	��,�(�) = ��∑�,�(�) − ∑�,�
�(�)� describe the level broadening due to the 

coupling between left (L) and right (R) electrodes and the central scattering region, ∑�,�(�)	are 

the retarded self-energies associated with this coupling and �� = (��− � − ∑�− ∑�)
�� is the 

retarded Green’s function, where H is the Hamiltonian and S is overlap matrix. Using obtained 

transmission coefficient (�(�)), the conductance could be calculated by Landauer formula 

(� = �� ∫��	�(�)(−��/��)) where �� = 2��/ℎ is the conductance quantum. In addition, the 

current through the device at voltage V could be calculated as: 
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                                   (4.4) 

 

where	�(�) = (1 + exp	((� − ��) ���⁄ ))�� is the Fermi-Dirac distribution function, T is the 

temperature and kB= 8.6x10-5 eV/K is Boltzmann’s constant. 

Molecular dynamics: Left and right leads (figs 1c-e) were pulled in the transport direction by -

0.1Å and 0.1Å every 40fs (200 time steps) using the molecular dynamic code LAMMPS [27]. 

Energy minimization of the system was achieved in each 200 time steps by iteratively adjusting 

atomic coordinates using following parameters: the stopping energy of 0.2, the force tolerances 

of 10-8, the maximum minimizer iterations of 1000 and the number of force/energy evaluations 

of 10000. The atoms were treated in the REAX force field model with reax/c parameterization 

and charge equilibration method as described in [27] with low and high cut-off of 0 and 10 for 

Taper radius and the charges equilibrated precision of 10-6. The atomic positions are updated in 

0.02fs time steps at 400K with constant volume and energy. The snapshot of the atomic 

coordinates was sampled every 665 time steps. The whole procedure performed twice and 

totally 42 configuration extracted. Each of obtained set of coordinates was used as an initial set 

of coordinates for the subsequent self-consistent DFT loops as described above. 

Experimental Methods: Similar to previous studies using few-layer graphene flakes, the feed-

back controlled electro-burning is performed in air at room temperature. The feedback-

controlled electro-burning of the SLG devices [28] is based on the same method as previously 

used for electro-burning of few-layer graphene flakes [11] and electro-migration of metal 

nanowires [29]. A voltage (V) applied between the two metal electrodes is ramped up at a rate 

of 0.75 V/s, while the current (I) is recorded with a 200 µs sampling rate. When the feedback 

condition, which is set at a drop ΔI of the current within the past 15 mV is met the voltage is 

ramped down to zero at a rate of 225 V/s. After each voltage ramp the resistance of the SGL 

device is measured and the process is repeated until the low-bias resistance exceeds 500 MΩ. To 

prevent the SGL device from burning too abruptly at the initial voltage ramps, the feedback 
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condition is adjusted for the each voltage ramp depending on the voltage at which the previous 

current drop occurred. 
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Chapter 5

A Magic-Ratio Rule (MRR)

In this chapter, I demonstrate a new magic ratio rule (MRR), which captures the contribution

of connectivity to the electrical conductance of graphene-like aromatic molecules. When one

electrode is connected to a site i and the other is connected to a site i′ of a particular molecule, I

assign the molecule a magic integer Mii. Two molecules with the same aromatic core, but differ-

ent pairs of electrode connection sites (i,i′ and j, j respectively) possess different magic integers

Mii and M j j. Based on connectivity alone, I predict that when the coupling to electrodes is weak

and the Fermi energy of the electrodes lies close to the centre of the HOMO-LUMO gap, the

ratio of their conductances is equal to (Mii/M j j)
2. The MRR is exact and parameter free for a

tight binding representation of a molecule and a qualitative guide for real molecules.

The results presented in this chapter were published in: Geng, et al. Magic ratios for

connectivity-driven electrical conductance of graphene-like molecules, 2015, Journal of the

American Chemical Society (JACS), 137 (13), 4469-4476

This study is a collaborative work and the experiment has been carried out in the University

of Bern.
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Charge transport through polycyclic aromatic hydrocarbons (PAHs) has attracted intensive attention 

in recent years [1, 2], partly due to their role in the design and development of molecular electronic 

devices [3-6]. Since PAHs are well-defined and defect free, they also provide model systems for 

understanding transport in graphene, treated as an infinite alternant PAH, and graphene-based 

nanostructures [7-9]. When a single molecule is connected to metallic electrodes, electrons passing 

through the molecule from one electrode to the other can remain phase coherent, even at room tem-

perature [10, 11]. This has led to a great deal of discussion about the role of quantum interference 

(QI) in determining the electrical conductance of single molecules [12-21], culminating in a series 

of recent experiments revealing room-temperature signatures of QI [22-30].  

Both experiment and theory have focused primarily on elucidating the conditions for the ap-

pearance of constructive or destructive interference. In the simplest case, where electrons are inject-

ed at the Fermi energy EF of the electrodes, constructive QI arises when EF coincides with a delocal-

ized energy level En of the molecule. Similarly a simple form of destructive QI occurs when EF co-

incides with the energy Eb of a bound state located on a pendant moiety [31, 32]. In practice, unless 

energy levels are tuned by electrostatic, electrochemical or mechanical gating, molecules located 

within a junction rarely exhibit these types of QI, because EF is usually located in the HOMO-

LUMO (H-L) gap. For this reason, discussions have often focussed on conditions for destructive or 

constructive QI when EF is located at the centre of the H-L gap. For the purpose of identifying con-

ditions for destructive QI within the delocalised π-system, a useful conceptual approach is to repre-

sent molecules by lattices of connected sites (C(sp2) atoms), such as those shown in figure 5.1, in 

which 1a represents a benzene ring, 1b represents naphthalene, 1c represents anthracene and 1d rep-

resents anthanthrene. Such abstractions highlight the role of connectivity in determining the pres-

ence or absence of destructive QI. For example, the lattices of figure 5.1 are bipartite, being com-

posed of equal numbers of ‘primed’ and ‘unprimed’ sites, such that primed sites (labelled by primed 

integers such as 1′,2′,3′) are connected to unprimed sites only (labelled by non-primed integers such 

as 1,2,3) and vice versa. It is well known [33-38], (see also the appendix B) that if electrodes are 
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connected to two sites which are both primed or both unprimed, then destructive interference occurs 

and the contribution from π-orbitals to the electrical conductance G vanishes. For a benzene ring 

this corresponds to the well-known case of meta-coupled electrodes, but more generally it holds for 

any bipartite lattice.  

Studies of such lattices have yielded a variety of simple rules for the appearance of destruc-

tive QI [21, 33-38], for which the π-orbital contribution to G vanishes. The aim of the this chapter is 

to elucidate a simple rule for determining the non-zero values of electrical conductance arising from 

constructive QI in aromatic molecules. At first sight, this task seems rather daunting, because there 

is only one conductance (i.e. G = 0) when QI is destructive, whereas there are many possible non-

zero values of G when QI is constructive. Furthermore, the non-zero values of conductances in the 

presence of constructive QI depend on the strength and detailed nature of the contacts to electrodes. 

 

 

Figure 5.1. Four examples of bipartite lattices, with the magnitude of their magic numbers shown 

underneath each lattice. (a) represents benzene, (b) naphthalene, (c) anthracene and (d) an-

thanthrene. 

 

Remarkably, in what follows, I demonstrate a “magic ratio rule” based on tables of quantum num-

bers Mii’, which capture the contribution of connectivity to the electrical conductance of graphene-

like aromatic molecules, or molecules with graphene-like cores, when one electrode is connected to 

1
1’

2

2’

3

3’

(a) |M|=1       (b) |M|= (1,2)           (c) |M|= (1,2,3,4)            (d) |M|= (1,2,3,4,6,7,8,9) 
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an ‘unprimed’ site i and the other is connected to a ‘primed’ site i′. In particle physics, quantum 

numbers such as ‘charm’ and ‘colour’ are assigned to elementary particles. In the case of lattices 

such as those in figure 5.1, I refer to these new quantum numbers as ‘magic integers Mii’’. For each 

of the molecules shown in figure 5.1, the allowed values of |Mii’| are shown beneath each lattice. 

Clearly the spectrum of magic integers increases with size of the aromatic core. The precise values 

of Mii’ are not trivial, since for example Mii’ = 5 is missing from the set of anthanthrene integers.  

 

 1′ 2′ 3′ 4′ 5′ 

1 -2 1 -1 1 -1 

2 -1 -1 1 -1 1 

3 1 -2 -1 1 -1 

4 -1 2 -2 -1 1 

5 2 -1 1 -1 -2 

 

Table 5.1. The M-table of MIs Mii’ for the naphthalene lattice of figure 5.1b. 

 

Magic integers (MIs) capture the complexity of interference patterns created by electrons at the cen-

tre of HOMO-LUMO gap and allow the prediction of conductance ratios via the following ‘magic 

ratio rule’ (MRR), which states that “the ratio of conductances of two molecules is equal to the 

squares of the ratios of their magic integers.” Clearly, when comparing conductances of the same 

aromatic core, but different contacts, the signs of the MIs are irrelevant. This rule is derived in the 

appendix B. To each lattice such as those in figure 5.1, the quantum numbers Mii’ form a table of 

MIs, which I refer to as M-tables. As shown in the table 5.3, for the benzene ring 1a, this is a 3×3 

table, with all entries equal to +/-1, so that |Mii’| = 1 is the only possibility and therefore as expected, 

para (i.e. 3,1′) or ortho (3,2′ or 3,3′) connectivities yield the same electrical conductances. For the 

naphthalene lattice 1b, the 5×5 M-table is shown in table 5.1. As expected from symmetry, this table 
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shows the conductances associated with contact sites 1,1′ and 5,5′ are equal and proportional to (2)2 

= 4. It also shows that the conductance with contact sites 4,2′ or 5,1′ would take the same value, 

which is a less obvious result.  

 

 1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′ 9′ 10′ 11′ 

1 -9 7 -4 4 -1 1 -1 1 -1 2 -3 

2 -1 -7 4 -4 1 -1 1 -1 1 -2 3 

3 1 -3 -4 4 -1 1 -1 1 -1 2 -3 

4 -1 3 -6 -4 1 -1 1 -1 1 -2 3 

5 1 -3 6 -6 -1 1 -1 1 -1 2 -3 

6 -1 3 -6 6 -9 -1 1 -1 1 -2 3 

7 3 -9 8 -8 7 -7 -3 3 -3 6 1 

8 -6 8 -6 6 -4 4 -4 -6 6 -2 -2 

9 6 -8 6 -6 4 -4 4 -4 -6 2 2 

10 3 1 -2 2 -3 3 -3 3 -3 -4 1 

11 -2 6 -2 2 2 -2 2 -2 2 -4 -4 

 

Table 5.2. The M-table for the anthanthrene lattice of figure 5.1d. Note that the first (row) index is 

non-primed and the second (column) index is primed.  

 

The MRR is an exact formula for conductance ratios of tight-binding representations of molecules 

in the weak coupling limit, when the Fermi energy is located at the centre of the HOMO-LUMO (H-

L) gap. It does not depend on the size of the H-L gap and is independent of asymmetries in the con-

tacts. In what follows, I explore the real-life implications of the MRR by evaluating the conductance 

ratio of two molecules both experimentally carried out by our collaborator and using density func-

tional theory (DFT) combined with non-equilibrium Green’s functions. 
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1
1’

2

2’

3

3’

Molecule C-table M-table 
 

 

 1 2 3 

1’ 1 1 0 

2’ 0 1 1 

3’ 1 0 1 

 

 1’ 2’ 3’ 

1 1 -1 1 

2 1 1 -1 

3 -1 1 1 

 
 

 
 

 1 2 3 4 5 

1’ 1 1 0 0 0 
2’ 0 1 1 0 0 
3’ 0 0 1 1 0 
4’ 0 1 0 1 1 
5’ 1 0 0 0 1 

 

 

 1’ 2’ 3’ 4’ 5’ 

1 -2 1 -1 1 -1 
2 -1 -1 1 -1 1 
3 1 -2 -1 1 -1 
4 -1 2 -2 -1 1 
5 2 -1 1 -1 -2 

 

 

 

 1 2 3 4 5 6 7 

1’ 1 1 0 0 0 0 0 
2’ 0 1 1 0 0 0 0 
3’ 0 0 1 1 0 0 0 
4’ 0 0 0 1 1 0 0 
5’ 0 0 1 0 1 1 0 
6’ 0 1 0 0 0 1 1 
7’ 1 0 0 0 0 0 1 

 

 

 1’ 2’ 3’ 4’ 5’ 6’ 7’ 

1 -3 2 -1 1 -1 1 -1 
2 -1 -2 1 -1 1 -1 1 
3 1 -2 -1 1 -1 1 -1 
4 -1 2 -3 -1 1 -1 1 
5 1 -2 3 -3 -1 1 -1 
6 -2 4 -2 2 -2 -2 2 
7 3 -2 1 -1 1 -1 -3 

 

Table 5.3. Examples of M-tables of magic integers for Benzene, Naphthalene and Anthracene. 

I first restrict the discussion to bipartite lattices with equal numbers of primed and non-primed sites. 

To obtain the M-table for a given lattice, first construct a connectivity table C, with rows labelled by 

primed integers and columns by unprimed integers, such that the entry Ci’i contains a ‘1’ if sites i’ 

and i are connected and zero otherwise. The corresponding M-table M is then defined to be the 

transpose of the cofactor matrix of C. This means that if the determinant of the matrix obtained by 

removing the ith column and i’th row of C is denoted dii’, then Mii’ = (-1)(i+i’)dii’. 

 

To aid the experimental investigation of the MRR, it is helpful to select two molecules exhibiting 

constructive QI with very different values of Mii’ and therefore, based on the M-table of table 5.2, I 

compared the conductance of molecule 1, derived from an anthanthrene core as shown in scheme 

5.1, with an MI of M15’ = -1, with that of the corresponding molecule 2, for which M72’ = -9. This 

means that the MRR prediction for the electrical conductance of the core of 2 is (9)2 = 81 times 

higher than that of the core of 1. Below I demonstrate that even though 1 and 2 differ from the ideal-

isation of figure 5.1d, this ratio is reflected in employed a mechanically controllable break junction 

(MCBJ)  measurements of their conductances, which reveal that the single-molecule conductance of 
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short-axis contacted anthanthrene 2 is approximately 79 times higher than that of its long-axis con-

tacted analogue 1. 

 

 

Scheme 5.1. Two molecules studied experimentally, each with the anthanthrene core. Following the 

numbering convention in figure 5.1d, 1 is long-axis contacted with connection sites 1,5′ and 2 is 

short-axis contacted with connection sites 7,2′.  

 

Anthanthrene is the compact dibenzo[def,mno]chrysene molecule, which together with its angular 

counterpart, dibenzo[b,def]chrysene, represents a promising building block for many applications in 

the field of organic electronic materials [39-41]. Advantageously, what sets these prototypical non-

linear PAHs apart from the linearly fused acenes, such as anthracene and pentacene, is the enhanced 

stability towards degradative chemical reactions and photooxidation [42-44]. To measure their sin-

gle-molecule electrical conductances, a MCBJ setup capable of operating in solution is employed. In 

a MCBJ experiment, molecular junctions are formed by opening and closing a nanogap between 

two gold electrodes. Further details of conductance measurements could be found in [22, 45, 46].  
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Figure 5.2a displays typical conductance (G) versus distance (Δz) stretching traces, as plotted on a 

semi-logarithmic scale, and recorded for 0.1 mM molecules 1 and 2 in a solution of mesitylene and 

THF (4:1 v/v) using the MCBJ technique. For reference, two traces (black curves) representing the 

molecule-free solution is also plotted, which reveal classical tunnelling characteristics, i.e. an expo-

nential decrease of the conductance upon junction elongation. After the Au-Au contacts break, the 

formation of molecular junctions is signalled by the presence of additional plateaus in the range 10−3 

G0 ≥ G ≥ 10−7.0 G0 (G0 = 2e2/h, quantum conductance). Typically 1000 individual conductance ver-

sus relative displacement traces (G vs Δz) were recorded for both molecules 1 and 2, and analysed 

further by constructing all-data-point histograms without any data selection to extract statistically 

significant results from the different junction configurations (as shown in figure 5.2b). The promi-

nent peaks between 10-7 G0 < G < 10-4 G0 represent molecular junction features. The statistically-

most-probable conductance of each molecular junction is obtained by fitting Gaussians to the char-

acteristic maxima in the one-dimensional (1D) conductance histograms. As shown in figure 5.2b, 

the most probable conductance for the anthanthrene molecules is 10-4.6 G0 for 2 and 10-6.1 G0 for 1, 

indicating that the conductance of molecule 2 is a factor of 32 higher than the conductance of 1. 

However, it should be noted that the most probable conductance results from the molecular con-

ductances associated with different contact configurations and a variety of electrode separations. To 

facilitate comparison with theory, it is of interest to explore the molecular conductance through fully 

stretched junctions, for which contact occurs via the pyridyl groups. Quantitative analyses of 2D 

histograms (figure 5.2c,d) reveals the evolution of molecular orientations and junction configura-

tions during the stretching process.  

The statistically averaged conductance−distance traces (figure 5.2c,d) exhibit “through-

space” tunnelling at the beginning of the stretching process (< 0.3 nm) and then a clear molecular 

plateau with slightly different conductance decays for both molecules. The analysis of stability and 

junction formation probability was performed by constructing the stretching distance distribution 

shown in the inset of figure 5.2c,d. The single peak distribution suggests the junction formation 
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probability of the anthanthrene-based molecules could reach up to ~100%. The single maximum in 

the plateau-length histogram represents the most probable relative characteristic stretching distance 

Δz* = 1.7 nm for 1, and 1.5 nm for 2.  

 

 

Figure 5.2. (a) Individual conductance-distance traces of 1 (red) and 2 (blue) using THF/mesitylene; 

(b) conductance histograms of 1 (red) and 2 (blue), the sharp peak around 10−7.5 G0 is attributed to 

the noise limit of MCBJ setup under the current experimental condition; (c,d) 2D conductance his-

tograms of 1 (c) and 2 (d) with statistically averaged conductance−distance traces (circles) with var-

iation indicated by the standard deviation (bar) and linear fitting (line). The solid circles represent 

the last data point in the linear fitting before junction rupture, and the solid error bar was determined 

from the Gaussian fitting of the log G peak of last data point. Insets: Stretching distance distribu-

tions determined from 0.1 G0 to 10-7 G0 (c) and from 0.1 G0 to 10-5.9 G0 (d). 

 

The most probable absolute displacement z* in an experimental molecular junction formed between 

two gold tips is obtained by adding the snap-back distance Δzcorr to the relative displacement, namely 

z* = Δz* + Δzcorr. Taking into account Δzcorr = (0.5 ± 0.1) nm, the z* values are estimated to be 2.2 

nm for 1 and 2.0 nm for 2, which is quite close to the corresponding molecular length, and suggests 

that both molecules can be fully stretched during the break junction measurement. Thus the con-

ductance of the fully-stretched molecular junction for molecules 1 and 2 are determined to              

be 10-6.7±0.7 G0 (solid red circle in figure 5.2c) and 10-4.8±0.6 G0 (solid blue circle in figure 5.2d), with 
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the conductance ratio of ~79, which is in good agreement with the MRR. To further investigate the 

accuracy of the MRR and to elucidate the origins of deviations from the rule, I performed DFT-

based calculations of the transmission coefficients T(E) of electrons of energy E passing from one 

electrode to the other, from which the zero temperature electrical conductance is given by Landauer 

formula:	� = ���(��) and the room-temperature conductance obtained by integrating T(E) over E, 

weighted by the derivative of the Fermi function.  

Clearly the anthanthrene cores of molecules 1 and 2 do not directly contact the electrodes, but 

instead make indirect contact via the pyridyl rings and acetylene linkers. Therefore as an initial step, 

I computed the electrical conductance of the anthanthrene cores of figure 5.3a, when they are in di-

rect contact with the gold electrodes. When the left and right electrodes are connected to atoms i,i′ = 

1,5′ respectively, this resembles the core of molecule 1. Similarly the i,i′ = 7,2′ connected structure 

resembles the core of molecule 2. Figure 5.3b shows the conductance of the anthanthrenes with 1,5′ 

(red curve) and 7,2′ (blue curve) connectivities obtained from a DFT-NEGF calculation, obtained in 

the weak coupling limit (when the gold-carbon distance is 2.4 Å). It is well known that the value of 

the Fermi energy predicted by DFT (i.e. E0
F = 0 in figure 5.3b) is not necessarily reliable and there-

fore it is of interest to evaluate the conductance ratio for various values of EF. From figure 5.3b, I 

find that in the range 0.2 < EF < 0.4 eV the conductance ratio varies between 69 and 88 and for a 

Fermi energy of EF = 0.331 eV a conductance ratio of 81 is obtained. 

For the complete molecules measured experimentally, figure 5.4c and 4d show the logarithm 

of the G/G0 at zero and room temperatures, respectively for molecule 1 (red solid line) and 2 (blue 

solid line) as a function of the Fermi energy EF. Since DFT does not yield the correct H-L gap, spec-

tral adjustment has been employed based on the experimental values of the H-L gaps [47]. As ex-

pected, figure 5.4 shows that the value of the conductance ratio depends on the location of the Fermi 

energy, but whatever value is chosen within the H-L gap, the conductance of 2 is much greater than 

that of 1, in agreement with the MRR trend. Indeed for a value of EF = -0.33 eV, the conductance of 

molecule 2 (10-4.98) is 81 times higher than that of molecule 1 (10-6.9). 
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Figure 5.3. (a) The anthanthrene cores connected to gold electrodes. (b) Conductance of the an-

thanthrene with 1,5′ (red curve) and 7,2′ (blue curve) cores obtained from DFT-NEGF.  

 

Beyond the molecules investigated above, I have also examined conductances ratios of naphthalene 

and athracene cores obtained from the experiments reported in ref [26]. For naphthalene (molecules 

4 and 6 in ref [26]) with connectivities 5,1’ and 3,5’ conductances of 20.8 nS and 4.1 nS were re-

ported, which yields a measured conductance ratio of 5.1. From table 1, the MIs of these molecules 

are 2 and -1 respectively, yielding a MRR of 4, which is in good agreement with the experimental 

ratio. For anthracene (molecules 5 and 7 in ref [26]) with connectivities 6,2’ and 4,7’ conductances 

of 36.8 nS and 3.6 nS were reported, which yields a measured conductance ratio of 10.2. From the 

anthracene M-table presented in the SI, the MIs of these molecules are 4 and 1 respectively, yielding 

a MRR of 16, which also captures the trend of the experimental ratio. In this case slight disagree-

ments may arise, because the conductance values in ref [26] include configurations in which contact 

is made directly with the core, rather than only through the terminal anchor groups. 

 

(a) 

(b) 
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Figure 5.4. (a) and (b) show the structures of 1 and 2 when the electrodes are connected to nitrogen 

atoms of the pyridyl anchor groups. The conductance of molecules 1 and 2 at (c) zero temperature 

and (d) room temperature with predicted DFT-gap from Kohn-Sham mean field Hamiltonian and 

with spectral adjustment based on the experimental values, respectively.  

 

I have identified a new magic ratio rule (MRR), which captures the contribution of connectivity to 

the conductance ratios of graphene-like cores, when the coupling to the electrodes is weak and the 

Fermi energy coincides with the centre of the HOMO-LUMO gap. The MRR is simple to imple-

ment and exact for a tight-binding, bipartite lattice of identical sites with identical couplings, when 

the Fermi energy is located at the gap centre and the number of primed sites is equal to the number 

of unprimed sites. It states that connectivity-driven conductance ratios are simply the squares of two 

magic integers, whose values depend only on the connectivity to the electrodes. Based on their 

‘magic integers’ alone, the MRR predicts that the conductance of 2 is a factor of 81 higher than that 

of 1, which is in good agreement with trends obtained from both experiment and DFT calculations. 

Literature values of conductances for naphthalene and anthracene [26] also reveal that the MRR 

predicts conductance trends for these molecules. This demonstrates that connectivity is a useful 

starting point for designing single-molecule junctions with desirable electrical properties. As an ex-

(c) 

  

(d) 

  

(a) 

  

(b) 
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ample of such design considerations, for the purpose of connecting molecules to source-drain elec-

trodes, a high conductance is desirable. On the other hand for the purpose of connecting to an elec-

trostatic gate, a low conductance is needed to avoid leakage currents. This study suggests that both 

features can be obtained using the same molecule provided connectivities are selected with high and 

low MIs for source-drain and gate electrodes, respectively. As a second example, this results suggest 

that the MRR may be a useful guide for the design of future molecular-scale information processors, 

because with appropriate connectivities, graphene-like molecules provide direct information 

about the inverse (M) of a matrix (C). 

 

DFT calculation: The optimized geometry and ground state Hamiltonian and overlap matrix ele-

ments of each structure was self-consistently obtained using the SIESTA [48] implementation of 

density functional theory (DFT). SIESTA employs norm-conserving pseudo-potentials to account for 

the core electrons and linear combinations of atomic orbitals to construct the valence states. The 

generalized gradient approximation (GGA) of the exchange and correlation functional is used with 

the Perdew-Burke-Ernzerhof parameterization (PBE) [49] a double-ζ polarized (DZP) basis set, a 

real-space grid defined with an equivalent energy cut-off of 250 Ry. The geometry optimization for 

each structure is performed to the forces smaller than 10 meV/Å.  

Transport calculations: The mean-field Hamiltonian obtained from the converged DFT calculation 

or a tight-binding Hamiltonian (using single orbital energy site per atom with Hückel parameterisa-

tion) was combined with our implementation of the non-equilibrium Green’s function method, 

GOLLUM [50], to calculate the phase-coherent, elastic scattering properties of the each system con-

sisting of left gold (source) and right gold (drain) leads and the scattering region (molecule 1 or 2). 

The transmission coefficient T(E) for electrons of energy E (passing from the source to the drain) is 

calculated via the relation: �(�) = �����(��(�)�
�(�)��(�)�

��(�)). In this expression,	��,�(�) =

� �∑�,�(�) − ∑�,�
�(�)� describe the level broadening due to the coupling between left (L) and right 
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(R) electrodes and the central scattering region, ∑�,�(�)	are the retarded self-energies associated 

with this coupling and �� = (�� − � − ∑� − ∑�)
�� is the retarded Green’s function, where H is the 

Hamiltonian and S is overlap matrix. Using obtained transmission coefficient	�(�), the conductance 

could be calculated by Landauer formula (� = �� ∫ ��	�(�)(−��/��)) where �� = 2��/ℎ is con-

ductance quantum. 
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Chapter 6

Molecular thermoelectric devices

Understanding phonon transport at a molecular scale is fundamental to the development of high-

performance thermoelectric materials for the conversion of waste heat into electricity. We have

studied phonon and electron transport in alkane and oligoyne chains of various lengths and find

that due to the more rigid nature of the latter, the phonon thermal conductances of oligoynes are

counter intuitively lower than that of the corresponding alkanes. The thermal conductance of

oligoynes decreases monotonically with increasing length, whereas the thermal conductance of

alkanes initially increases with length and then decreases. This difference in behaviour arises

from phonon filtering by the gold electrodes and disappears when higher-Debye-frequency elec-

trodes are used. Consequently a molecule that better transmits higher-frequency phonon modes,

combined with a low-Debye-frequency electrode that filters high-energy phonons is a viable

strategy for suppressing phonon transmission through the molecular junctions. The low thermal

conductance of oligoynes, combined with their higher thermopower and higher electrical con-

ductance lead to yield a maximum thermoelectric figure of merit of ZT = 1.4, which is several

orders of magnitude higher than for alkanes.

The results presented in this chapter were published in: Sadeghi, et al. Oligoyne molecular

junctions for efficient room temperature thermoelectric power generation, 2015, Nano letters 15

(11), 7467-7472
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For many years, the attraction of the single-molecule electronics [1-6] has stemmed from their 

potential for sub-10nm electronic switches and rectifiers, and from their provision of sensitive 

platforms for single-molecule sensing. In the recent years, their potential for removing heat from 

nanoelectronic devices (thermal management) and thermoelectrically converting waste heat into 

electricity [7-10] has also been recognised. The efficiency of a thermoelectric device for power 

generation is characterised by the dimensionless figure of merit ZT = GS2T/κ, where G is the 

electrical conductance, S is the thermopower (Seebeck coefficient), T is temperature and κ is the 

thermal conductance [11-14]. Therefore low-κ materials are needed for efficient conversion of 

heat into electricity, whereas materials with high κ are needed for thermal management. 

Inorganic materials for thermoelectricity have been extensively studied and have delivered ZT 

values as high as 2.2 at temperatures over 900K [15]. However this level of efficiency does not 

meet the requirements of current energy demands [16] and furthermore, the materials are 

difficult to process and have limited global supply. Organic thermoelectric materials may be an 

attractive alternative, but at present the best organic thermoelectric material with a ZT of 0.6 in 

room temperature [17, 18] is still not competitive with inorganics. In an effort to overcome these 

limitations, single organic molecules and self-assembled monolayers have attracted recent 

scientific interest, both for their potential as room temperature thermoelectric materials and 

thermal management [19, 20]. 

Strategies for reducing the denominator (ie κ) of ZT in single-molecule junctions are 

fundamentally different from inorganic bulk materials. In the latter, phonon transport can be 

reduced by nanostructuring [21, 22], whereas molecular junctions are naturally nanostructured 

and additional strategies based on molecular phonon conversion [23] become possible, including 

the reduction of thermal conductance due to weak overlap between the continuum of vibrational 

states in the electrodes and discrete vibrational states of the molecules or the weak interaction 

between different part of the molecules, as in π-π stacked structures [24]. On the other hand, 

strategies for increasing the numerator of ZT (ie the power factor) focus on tuning electron 

transport properties, which are determined by the energetic position of the electrode Fermi 

energy relative to transport resonances through the frontier orbitals of the molecule. If Tel(E) is 
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the transmission coefficient of electrons of energy E passing from one electrode to the other 

through a molecule, then the thermopower S is approximately proportional to the slope of the 

lnTel(E), evaluated at the Fermi energy EF, whereas the electrical conductance is proportional to 

Tel(EF). Therefore if the Fermi energy lies in a region of high slope, close to a transmission 

resonance of the frontier orbitals and provided the (HOMO-LUMO) gap between the resonances 

is greater than ~ 4kBT (ie ~ 100 meV at room temperature), then both G and S can be enhanced 

[11]. In the literature, there are many experiments addressing electronic properties of single 

molecules, but far fewer addressing single-molecule phonon transport, partly because it is 

extremely difficult to measure the thermal conductance of a single molecule. This difficulty is 

partly circumvented by scanning thermal microscope measurements of a few thousands of 

molecules in parallel, such as a recent experimental study of the length-dependent thermal 

conductance of alkanes by the IBM group [25], which revealed a surprising initial increase in 

thermal conductance with length for short alkanes. 

In this chapter, I present a comparative theoretical study of the length dependent thermal 

properties of the alkanes and oligoynes, which elucidates the origin of this initial increase and 

demonstrate that oligoynes offer superior performance for future efficient thermoelectric power 

generation. Since the thermopower and electrical conductance of oligoynes and alkanes are 

generally understood [26-28], my main focus in this chapter is to calculate the thermal 

conductance of these materials, which contains contributions from both electrons and phonons. 

The main unexpected result from my study is that thermal conductances of oligoynes are lower 

than alkanes of the same length, which is counter intuitive, because alkanes are more floppy 

than oligoynes. Moreover, the thermopower and electrical conductance is higher in oligoynes. 

The resulting combination of low thermal conductance, high thermopower and high electrical 

conductance lead to a high value of ZT and make oligoynes attractive for future thermoelectric 

devices.  

Recently length-dependent thermopowers of alkane, alkene, and oligoyne chains with 

four different anchor groups (thiol, isocyanide, and amine end groups and direct coupling) were 

theoretically studied for the chains with the length 2, 4, 6 and 8 carbon atoms [26-28]. It was 
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shown that the sign and magnitude of the thermopower, and the conductance-length attenuation 

factor (β) are strongly affected by the anchor groups. For example, in oligoynes the 

thermopower was found to be positive with a direct C-Au bond or thiol anchor and negative 

with a NC end group [29]. Furthermore, while the conductance G decays exponentially as   

exp(-βL) with increasing molecular length L, the thermopower shows a linear length dependence 

[30]. The crucial point is that higher thermopower is predicted for oligoynes compared with 

alkanes for all lengths [29], a fact that is in good agreement with my calculations below. 

Although the thermal conductance of self-assembled monolayers of alkanes sandwiched 

between gold and GaAs was shown to be length independent and as high as 27 MW m−2K−1 [23], 

recent experiment on alkanes sandwiched between gold and SiO2 shows length dependencies 

[25] in agreement with my study in this chapter.  

As shown in figures 6.1a and 6.2a, the alkanes and oligoynes of interest in this study are of 

lengths of 2, 4, 8 and 16 carbon atoms (N = 1, 2, 4, and 8) and are connected to two gold electrodes 

through dihydrobenzo[b]thiophene (BT) anchor groups. To study the thermal properties of the 

alkanes (figure 6.1a) and oligoynes (figure 6.2a), I use density functional theory (DFT) to calculate 

their electronic and vibrational properties within the junction. I first carry out geometry 

optimization of each molecule placed between two gold electrodes using DFT [31, 32] to find the 

ground state optimum positions of the atoms (q) relative to each other’s and electronic mean field 

Hamiltonian of the system including electrodes and molecule (see methods below). The mean field 

Hamiltonian is combined with our Green’s function scattering method [33] to calculate the 

electron transmission coefficient Tel(E), from which the electrical conductance 

� = �� ∫��	������ �(−�� ��⁄ ) is obtained, where �� is the conductance quantum and �(�) is 

the Fermi function. Figures 6.1b and 6.2b show Tel(E) for alkanes with N = 1, 2, 4 and 8 pairs of 

carbon atoms and oligoynes with N = 1, 2 and 4 pairs of carbon atoms, respectively. In agreement 

with previous experimental and theoretical studies [26, 34-37], when evaluated at the DFT-

computed Fermi energy (��
���) the transmission coefficients decrease with the length for both 

alkanes and oligoynes. However, the conductances of the oligoynes are higher than those of the 

alkanes for equivalent lengths, due to the broken π-conjugation in the alkanes.  
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Figure 6.1. Molecular structure and transport properties of alkanes with the length of N = 1, 2, 

4, 8 between two gold electrodes. (a) Schematic of the junction, (b) electronic and (c-f) 

phononic transmission coefficients. (g) The integrated phonon transmission I(ω). All molecules 

are terminated with BT (ie dihydrobenzo[b]thiophene) anchor groups.  

 

To calculate the vibrational modes of each structure, I use the harmonic approximation method 

to construct the dynamical matrix D. Each atom is displaced from its equilibrium position by δq’ 

and –δq’ in x, y and z directions and the forces on all atoms calculated in each case. For 3n 

degrees of freedom (n = number of atoms), the 3n × 3n dynamical matrix ��� = (��
�
����

�� −

��
�
(−���

�))/2������
�  is constructed, where F and M are the force and mass matrices (see 

methods below). For an isolated molecule, the square root of the eigenvalues of D determines 

the frequencies � associated with the vibrational modes of the molecule in the junction. For a 

molecule within a junction, the dynamical matrix describes an open system composed of the 
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molecule and two semi-infinite electrodes and is used to calculate the phononic transmission 

coefficient ���(�) for the phonons with energy ℏ� passing through the molecule from the right 

to the left electrode. Figures 6.1c-f and 6.2c-e show ���(�) for alkanes and oligoynes 

respectively of different lengths. To elucidate the different areas under these curves, figure 6.1g 

and 6.2f show their integrated transmission coefficients �(�) = ∫ ���(�)��
�

�
. At high 

frequencies, the transmission is limited by the number of open phonon channels in the gold 

electrodes, which falls to zero above the gold (111) Debye frequency of 21 meV. This shows 

that a molecule that better transmits higher modes, combined with a low-Debye-frequency 

electrode that filters high energy phonons could be a viable strategy to suppress phonon 

transmission through the junction.  

 

Figure 6.2. Molecular structure and transport properties of oligoynes with the length of N = 1, 2, 

4 between two gold electrodes. (a) Schematic of the junction, (b) electronic and (c-e) phononic 

transmission coefficients. (f) The integrated phonon transmission I(ω). All molecules are 

terminated with BT (ie dihydrobenzo[b]thiophene ) anchor groups.  
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The thermal conductance of the junction (κ = κph + κel) is obtained by summing the 

contributions from both electrons (κel) and phonons (κph). The electronic (phononic) thermal 

conductances are calculated from the electronic (phononic) transmission coefficients shown in 

figures 6.1b and 6.2b (figures. 6.1c-f and 6.2c-e) as described in the methods section below.  

Figure 6.3a,b shows the resulting electronic thermal conductance κel and figure 6.3c,d the 

phononic thermal conductance κph for alkanes and oligoynes, respectively. In general, the 

thermal conductance is dominated by phonons. For example the phononic thermal conductance 

κph of the N = 1 oligoyne (alkane) is more than 30 (700) times bigger than electronic thermal 

conductance κel at room temperature. Therefore for these molecules κel is negligible. In addition, 

the thermal conductances of the alkanes are higher than those of the oligoynes, which suggests 

that alkanes are potentially useful for thermal management, but less useful for thermoelectricity.  

 

 

Figure 6.3. Electronic and phononic thermal conductance of alkanes and oligoynes.  (a,b) show 

the electronic thermal conductance of alkanes and oligoynes respectively. (c,d) show the 

phononic thermal conductance of alkanes and oligoynes respectively. Results are shown for 

molecules of different lengths. For colour coding see figure 6.1. 

 

In both types of junctions, the thermal conductance increases with temperature up to about 

170K, (ie the Debye temperature of the gold electrodes) and then remains constant (fig. 6.3c,d). 

For oligoynes, at room temperature, κ is equal to 15.6, 9.2 and 7.7 pW/K for N = 1, 2, 4 
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respectively. It is apparent that the thermal conductance of the oligoyne molecules decreases 

monotonically with length. In contrast, for alkanes, thermal conductance initially increases with 

length and then decreases. At room temperature, the κ of alkanes are equal to 25.4, 33.4, 30.3 

and 5.6 pW/K for N = 1, 2, 4 and 8 respectively, revealing that the N = 2 alkane has the highest 

thermal conductance. This initial increase in thermal conductance with length followed by a 

decrease has been observed experimentally [25] and predicted theoretically [38] in previous 

studies, although its origin remains unexplored. To account for this behaviour it is useful to 

understand why it does not occur for the more rigid oligoynes.  

 

 

 

Figure 6.4. A calculation of the phonon transmission coefficient and thermal conductance of a 

1D chain of atoms (with a single degree of freedom) connected by harmonic springs. (a) 

schematic of junction structure, (b,c) the phonon transmission coefficient of chains of varying 

length with (b) weak and (c) stronger springs between the atoms and with a fixed coupling 

between the anchor atom and lead. (d, e) the  corresponding thermal conductances (d) for (b) 

and (e) for (c). In both cases, the resonance widths decrease with increasing length. For the more 

floppy molecule (b) increasing from N=2 to N=4 causes more resonances enter the non-filtered 

low-energy window, leading to an increase in thermal conductance. 

 

First I note that the phonon thermal conductance of oligoynes is lower than that of alkanes, 

because due to their rigidity, the phonon level spacing between the oligoyne modes is bigger 
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than that of the alkanes (figure 6.1c-f and figure 6.2c-e). Consequently a greater fraction of the 

oligoyne modes lie above the Debye frequency of the gold electrodes and are therefore filtered 

by the gold. In the less-rigid alkanes, which possess more low-frequency modes (figure 6.1c-f), 

this filtering effect is less pronounced. As the length of the chain is increased, all modes move to 

lower frequencies (which tends to increase the thermal conductance) and the widths of 

transmission resonances decrease (which tends to decrease the thermal conductance), because 

the imaginary part of the self-energy is proportional to the inverse length of the molecules [39].  

 

 

Figure 6.5. Alkane chains connected to two gold lead with (a, c) normal gold mass and (b, d) 

reduced gold mass. (a, b) show the phonon  transmission coefficient and (c, d) phonon thermal 

conductance. At high frequencies, the transmission is limited by the number of open phonon 

channels in the gold electrodes, which falls to zero above the gold Debye frequency. This shows 

that a molecule that better transmits higher modes, combined with a low-Debye-frequency 

electrode that filters high energy phonons could be a viable strategy to suppress phonon 

transmission through the junction. 

 

This unconventional behaviour is also illustrated by a simple “tight-binding” model (see fig. 6.4) 

with one degree of freedom per atom. In oligoynes, relatively-high frequency of the modes 

means that resonance narrowing dominates at all lengths. In the case of alkanes, a significant 

number of the N=1 modes are filtered by the gold and upon increasing to N=2, these modes 

move to lower frequencies and are no longer filtered, leading to the unexpected increase in 

thermal conductance. At longer lengths decrease in resonance widths with increasing length 

dominates and κph decreases with length. To demonstrate that this counter-intuitive effect 

disappears when phonon filtering is removed, I have examined the effect of artificially reducing 
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the mass of the electrodes gold atoms. This is achieved by simply multiplying the mass matrix 

���	by a scale factor in the DFT-constructed dynamical matrix, which increases the Debye 

frequency of the electrodes. As shown in figure 6.5, the resulting thermal conductance of the 

alkanes decreases monotonically with length. This leads us to predict that conventional length 

dependence for thermal conductance of alkanes will be observed if higher-Debye-frequency 

electrodes such as graphene [5] are used.  
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Figure 6.6. Thermal conductance of the alkanes and oligoynes with artificially-scaled masses of atoms 
on the BT anchors or the electrode surface.  
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In addition, to demonstrate the effect of the junction properties e.g. different anchor and 

electrode surface on the phononic thermal conductance, I have examined the effect of artificially 

changing the mass of the atoms in the BT anchors by a factor of 0.5 or 2 and of the atoms on the 

surface of the electrodes by a factor of 2 as shown in figure 6.6. Although thermal conductance 

is affected by changes in the anchor or electrodes surface, in all cases, the alkanes show an 

initial rise in κph upon increasing the length from N=1 to N=2 and the thermal conductance of 

alkanes is higher than that of the corresponding oligoynes.  

 

 

 

Figure 6.7. Junction configurations. Three different anchors (a) dihydrobenzo[b]thiophene (BT), 

(b) thiol (SH) and (c) amine (NH2) anchors connected to the similar electrode and (d) BT anchor 

connected to the electrode with different surface structure (pyramid tip). 

 

 

Furthermore, to demonstrate that this trend is resilient and independent of the anchor and 

electrode surface configuration, using DFT-constructed dynamical matrix, I have calculated the 

phononic thermal conductance of the alkane and oligoyne with the length of N=4 with two other 

anchors (amine and thiol anchors) and a different configuration of the electrode tip as shown in 

figure 6.7. The corresponding electronic and phononic transmission coefficients are shown in 

figure 6.8 and 6.9 for alkanes and oligoynes, respectively. Although the amplitude of the 

thermal conductance varies with anchor and tip configuration (figure 6.10), the thermal 

conductance of oligoynes is still lower than that of the corresponding alkanes. 
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Figure 6.8. Electronic and phononic properties of alkane N=4 junctions shown in figure 6.7. (a) 

electronic, (b-e) phononic transmission coefficients, (f) cumulative phononic transmission 

coefficient I(ω).  

 

Figure 6.9. Electronic and phononic properties of oligoyne N=4 junctions shown in figure 6.7. 

(a) electronic, (b-e) phononic transmission coefficients, (f) cumulative phononic transmission 

coefficient I(ω).  
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Figure 6.10. Phononic thermal conductance of the alkanes and oligoynes with different junction 

structure (shown in figure 6.7) versus different temperatures. (a) alkanes and (b) oligoynes. 

Colour map is as figures 6.8 and 6.9.  

 

To compare the potential of these two families of molecules for thermoelectricity, I calculated 

the electrical conductance and thermopower of the alkanes and oligoynes as described in the 

methods section below. Since the thermopower depends on the Fermi energy of the leads and 

could be tuned by electrostatic or electrochemical gating or doping, I computed the electrical 

conductance, thermopower and total thermoelectric figure of merit at different Fermi energies. 

Figures 6.11a,b show the thermopower of alkanes and oligoynes respectively with different 

lengths at room temperature and for different Fermi energies. In general the thermopower is an 

order of magnitude higher for oligoynes. This is because for oligoynes, the Fermi energy lies in 

the tail of the HOMO or LUMO resonance [26] depending on the anchor groups (see eg figure 

6.2b and figure 6.9a) and therefore the slope of the lnTel(E) is high, which leads to higher 

thermopower. In contrast, the Fermi energy for alkanes is near the middle of the HOMO-LUMO 

gap (see fig. 6.1b and figure 6.8a), where the slope of the lnTel(E) is much lower. The electrical 

conductance of alkanes also is lower than oligoynes due to the broken π-conjugation (figures 

6.1b and 6.2b). Simultaneously, as discussed above, the thermal conductance is lower for 

oligoynes. Combining the high electrical conductance of oligoynes, with their high 

thermopower and low thermal conductance, yields a maximum ZT of 1.4 (at a Fermi energy of 

0.3eV), which is several orders of magnitude higher than for alkanes, as shown in figures 

6.11c,d. To achieve this high value, the Fermi energy should be optimally located in the tail of 

the LUMO resonance, which could be achieved by doping, or gating the molecules. 
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Figure 6.11. Thermopower S and full thermoelectric figure of merit ZT for alkanes and 

oligoynes. (a,b) show the thermopower of alkanes and oligoynes respectively. (c,d) show the 

figure of merit of alkanes and oligoynes respectively. Results are shown for molecules of 

different lengths N.  

 

Understanding phonon and electron transport through molecules attached to metallic electrodes 

is crucial to the development of high-performance thermoelectric materials and to thermal 

management in nanoscale devices. I have studied simultaneously phonon and electron transport 

in alkane and oligoyne chains as model systems and find that due to the more rigid nature of the 

latter, the phonon thermal conductances of oligoynes are lower than that of the corresponding 

alkanes. Therefore in view of their higher thermal conductance, I conclude that alkanes are the 

better candidates for thermal management. The thermal conductance of oligoynes decreases 

monotonically with increasing length, whereas the thermal conductance of alkanes initially 

increases with length and then decreases. This difference in behaviour arises from phonon 

filtering by the gold electrodes and leads us to predict that the initial rise in thermal conductance 

of alkanes would disappear if higher-Debye-frequency electrodes such as graphene are used. 

Furthermore, by comparing results for different anchor groups and tip configurations I conclude 

that the above trends are resilient.  This is a significant result, because it demonstrates that not 

just the molecule alone, but combinations of molecules and electrodes and their interplay should 
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be included in design strategies for future organic-molecule-based thermoelectricity. The low 

thermal conductance of oligoynes, combined with their higher thermopower and higher 

electrical conductance yield a maximum ZT of 1.4, which is several orders of magnitude higher 

than for alkanes. Therefore oligoynes are attractive candidates for high-performance 

thermoelectric energy conversion.  

 

Computational Methods: The geometry of each structure consisting of the gold electrodes and 

a single molecule (alkane or oligoyne) was relaxed to the force tolerance of 20 meV/Å using the 

SIESTA[32] implementation of density functional theory (DFT), with a double-ζ polarized basis 

set (DZP) and the Generalized Gradient Approximation (GGA) functional with Perdew-Burke-

Ernzerhof (PBE) parameterization. A real-space grid was defined with an equivalent energy cut-

off of 250 Ry. From the relaxed xyz coordinate of the system, sets of xyz coordinates were 

generated by displacing each atom in positive and negative x, y and z directions by ��′ = 0.01Å. 

The forces in three directions �� = (��, ��, ��) on each atom were then calculated by DFT 

without geometry relaxation. These sets of the force ��
�
= (��

�, ��
�
, ��
�) are used to construct the 

dynamical matrix as:  

 

��� =
���
���

���
 (6.1) 

 

where ���
���

 for � ≠ � are obtained from finite differences 

 

���
���
=
��
�
����

�� − ��
�
(−���

�)

2���
�  (6.2) 

 

and the mass matrix � = �����. To satisfy momentum conservation, the K for � = � (diagonal 

terms) is calculated from ��� = −∑ ������ . The phonon transmission ���(�) then can be 

calculated from the relation: 
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���(�) = ��(Γ�
��
(�)���

� (�)Γ�
��
(�)���

��(�)) (6.3) 

 

In this expression,	Γ�,�
��(�) = � �∑�,�

�� (�) − ∑�,�
�� �(�)� describes the level broadening due to the 

coupling between left (L) and right (R) electrodes and the central scattering region formed from 

the molecule and closest contact layers of gold, ∑�,�
�� (�)	are the retarded self-frequencies 

associated with this coupling and ���
� = ���� − D − ∑�

��
− ∑�

��
�
��

 is the retarded Green’s 

function, where D and I are the dynamical and the unit matrices, respectively. The phonon 

thermal conductance ��� at temperature � is then calculated from: 

 

���(�) =
1

2�
� ℏ����(�)

����(�, �)

��
��

�

�

 (6.4) 

 

where ���(�, �) = (�
ℏ�/��� − 1)�� is Bose–Einstein distribution function and ℏ is reduced 

Planck’s constant and �� = 8.6	 × 10
��	��/� is Boltzmann’s constant.  

To calculate electronic properties of the molecules in the junction, from the converged 

DFT calculation, the underlying mean-field Hamiltonian H was combined with our quantum 

transport code, GOLLUM [33]. This yields the transmission coefficient ���(�) for electrons of 

energy � (passing from the source to the drain) via the relation 

���(�) = ��(Γ�
��(�)���

� (�)Γ�
��(�)���

��(�)) where Γ�,�
�� (�) = � �∑�,�

�� (�) − ∑�,�
�� �(�)� describes the 

level broadening due to the coupling between left (L) and right (R) electrodes and the central 

scattering region, ∑�,�
�� (�) are the retarded self-energies associated with this coupling and 

���
� = (�� − � − ∑�

�� − ∑�
��)�� is the retarded Green’s function, where H is the Hamiltonian and S 

is the overlap matrix obtained from SIESTA. Using the approach explained in [11, 14, 33], the 

electrical conductance ���(�) = ����, the electronic contribution of the thermal conductance 

��(�) = (���� − ��
�)/ℎ��� and the thermopower �(�) = −��/���� of the junction are calculated 

from the electron transmission coefficient ���(�) where: 
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��(�) = � ��	(� − ��)
�	���(�) �−

����(�, �)

��
�

��

��

 (6.5) 

 

and ���(�, �) is the Fermi-Dirac probability distribution function ���(�, �) = (�
(����)/��� +

1)��, T is the temperature, EF is the Fermi energy, �� = 2�
�/ℎ is the conductance quantum, e is 

electron charge and h is the Planck’s constant. Since the above methodology ignores phonon-

phonon and electron-phonon scattering, my agreement with the measurements of ref [25] 

suggests that such inelastic scattering is not a large effect. This is consistent with measurements 

on other molecules, which suggest that inelastic scattering of electrons at room temperature is a 

small effect, provided the length of the molecule is less than approximately 3nm (see eg [40, 

41]). In our calculations, the size of the molecules are between 1.2 to 2.9 nm. 
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Chapter 7

Conclusions

My focus in this thesis was on electron and phonon transport theory in nano and molecular scale

quantum devices, the modelling of the experiments and the developments of new concepts for

future applications. I mainly considered junctions through which transport is assumed to be

elastic and coherent. Good agreement between predictions and experiment suggests that this is a

reasonable assumption. However, the method could be extended to the incoherent and inelastic

regimes provided those parameters that the theory lacks are provided from experimental data e.g.

the experimental HOMO-LUMO gap, the broadening due to the screening effect, Coulomb or

additional energy, etc. There is some debate in the community whether or not these parameters

could be predicted theoretically, but at present there is no method that could give a reliable

result. In some cases the nature of the problem and the experimental limits do not even allow a

qualitative treatment. For example screening effects depend on the actual shape of the contact for

which the precise imaging of the junction (e.g. graphene - molecule - graphene) is not possible

without destroying the junction.

As a theorist there are some quantities that you can calculate and some which you can not

calculate. From my view, the crucial point is that we shall be able to predict the trends and

develop new design strategies for future applications. I have tried throughout my PhD to utilize

this modelling power with additional information revealed from the measurement for predicting

new trends and proposing new applications, some of which is shown to be correct experimentally

and some others that still need the experimental proof. Some of these results have been included

in this thesis.

In this thesis explicitly I covered four main results in the areas of molecular sensing, new

graphene-based molecular junctions, quantum interference rules, thermoelectricity and thermal
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management. In the chapter 3, I demonstrated the discriminating sensing properties of new

bilayer-graphene, sculpturene-based nano-pore devices by calculating the electrical current-

voltage characteristics of two-terminal device in the absence and presence of given nucleobase

for many different positions and orientations of bases within the pore. The proposed method is

based on direct electrical current measurement and potentially has clear advantages compared

with conventional DNA sequencing methods based on ionic current measurement. I showed

that discriminating sensing is resilient but the nanopores will need to be calibrated individually

before use. Therefore, the proposed method could open new routes for label free, fast and cheap

DNA sequencing. This is still to be realized and our collaborators in Oxford University and

Oxford nanopore technology are currently trying to implement these strategy supported by the

QuEEN Program Grant funded by the UK EPSRC.

In chapter 4, I considered newly developed platform for single molecule device fabrication

namely electro-burnt graphene nano-junctions which allows three terminal device realization

at a single molecule level with gating capability. I addressed a hitherto mysterious feature

of electro-burnt graphene junctions, namely a ubiquitous conductance enlargement at the fi-

nal stages prior to nanogap formation. I showed that conductance enlargement at the point of

breaking is a consequence of a transition from multiple-path to single-path quantum transport

which suggest that conductance jumps provide a tool for characterising the atomic-scale prop-

erties of sp2-bonded junctions. In particular, conductance enlargement prior to junction rupture

is a signal of the formation of electro-burnt junctions, with a current path formed from a single

sp2-bond. I demonstrated that with greater control of the electro-burning feedback, one could

create carbon-based atomic chains and filaments, which possess many of the characteristics of

single molecules without the need for anchor groups, because the chains are already covalently

bonded to electrodes.

In chapter 5, I discussed our newly developed mid-gap transport theory, where in the weak

coupling regime and in the vicinity of the middle of the HOMO and LUMO gap, a minimal

theory of the connectivity dependent transport and quantum interference could be used to model

conductance measurements at least in most cases even better than the current very expensive

DFT or GW calculations. Whereas DFT and GW treat EF as a free parameter, chosen to give the

best agreement with experiment, mid-gap transport theory is parameter free because the Fermi

energy is restricted to be the mid-point of HOMO-LUMO gap. This allowed us to identify a

new magic ratio rule (MRR), which captures the contribution of connectivity to the conductance
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ratios of graphene-like cores. The MRR is simple to implement and exact for a tight-binding,

bipartite lattice of identical sites with identical couplings, when the Fermi energy is located at the

gap centre. This theory states that connectivity-driven conductance ratios are simply the squares

of two magic integers, whose values depend only on the connectivity to the electrodes. This

is shown to be in good agreement with our measurement and other experimental data from the

literature. The MRR may be a useful guide for the design of future molecular-scale information

processors.

In chapter 6, my focus was mostly on phonon transport in the molecular junction. This

allows us to engineer transmitted phonons from one side of the junction to another for both ther-

moelectricity and thermal management. Ideally we would want to kill the phonons for efficient

conversion of heat to electricity in thermoelectric device, whereas a high thermal conductance

junction is needed for thermal management proposes to for instance, cool down the electronic

circuit. Understanding both phonon and electron transport through molecules attached to metal-

lic electrodes is crucial to the development of high-performance thermoelectric materials and

to thermal management in nanoscale devices. I have studied simultaneously phonon and elec-

tron transport in alkane and oligoyne chains as model systems and find that due to the more

rigid nature of the latter, the phonon thermal conductances of oligoynes are lower than those of

the corresponding alkanes. Therefore in view of their higher thermal conductance, I conclude

that alkanes are the better candidates for thermal management. The thermal conductance of

oligoynes decreases monotonically with increasing length, whereas the thermal conductance of

alkanes initially increases with length and then decreases. This difference in behaviour arises

from phonon filtering by the gold electrodes and leads us to predict that the initial rise in thermal

conductance of alkanes would disappear if higher-Debye-frequency electrodes such as graphene

are used. Furthermore, by comparing results for different anchor groups and tip configurations I

conclude that the above trends are resilient. This is a significant result, because it demonstrates

that not just the molecule alone, but combinations of molecules and electrodes and their interplay

should be included in design strategies for future organic-molecule-based thermoelectricity. The

low thermal conductance of oligoynes, combined with their higher thermopower and higherelec-

trical conductance yield a maximum ZT of 1.4, which is several orders of magnitude higher than

for alkanes. Therefore oligoynes are attractive candidates for high-performance thermoelectric

energy conversion.
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Appendix A

Analytical calculation for the electrical

conductance of rings and chains

To derive equations 4.1 and 4.2 of the chapter 4, consider the multi-branched structure shown

below, which is composed of (generally different) left and right leads connected to a structure

containing M (generally different) branches. An analytic formula for the transmission coefficient

….   

….   

.

.

.

Figure A.0.1: A multi-branch structure described by a tight-binding model, with nodal sites L and R on
the left and right connecting external current-carrying leads, by hopping matrix elements −αL on the left
and −βR on the right, and to internal branches l, by hopping matrix elements −αL and −βl , respectively.
The energies of the nodal sites are εL

0 and εR
0 . The site energy and hopping matrix element of branch l are

εl and γl , respectively.

of the above structure could be obtained [1] where the transmission coefficient is given by

T (E) = vL(
αL

γL
)2|GRL|2(

βR

γR
)2vR (A.0.1)
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In this expression, vL (vR) is the electron group velocity in the left (right) lead, γL (γR) is the

hopping element in the left (right) lead, αL (βR) are the coupling between the left (L) and right

(R) nodal atom to the left (right) lead and GRL is the Green’s function of the whole structure

describing a wave propagating from nodal atom L to nodal atom R.

To evaluate equation (A.0.1), the hopping elements γL ,γR,γl and orbital energies εL, εR, εl

defining the left (L) and right (R) leads and each branch l should be chosen. For a given energy E,

the wave-vectors in L, R and l are then given by kL(E)= cos−1(εL−E)/2γL, kR(E)= cos−1(εR−

E)/2γR and kl(E) = cos−1(εl −E)/2γl . The sign of the wave vectors is chosen such that the

corresponding group velocities vL = 2γLsinkL(E) , vR = 2γRsinkR(E) and vl = 2γlsinkl(E) are

positive, or if the wavevector is complex, such that the imaginary part is positive. Next the orbital

energies ε0
L, ε0

R of the nodal sites L and R and their respective couplings -αL,-αl and -βR,-βlto the

leads and branches should be chosen.

The final step in evaluating equation (A.0.1) is to compute the Green’s function GRL con-

necting the left nodal site L to the right nodal site R via the expression:

GRL =
y
∆

(A.0.2)

In this equation, the numerator y is given by the following superposition of contributions from

each of the M branches:

y =
M

∑
l=1

yl (A.0.3)

where

yl =
αlβlsinkl

γlsinkl(Nl +1)
(A.0.4)

and Nl is the number of atoms in branch l. (For the special case Nl = 1, one should choose

αl = βl = γl .)

The denominator ∆ of equation (A.0.2), which is given by

∆ = y2−
(
aL− xL)(aR− xR) (A.0.5)

In this expression, the quantities xL and xR describe how a wave from the left or right nodal sites
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is reflected back to those sites and are given by

xL =
M

∑
l=1

xL
l (A.0.6)

xR =
M

∑
l=1

xR
l (A.0.7)

xL
l =

α2
l sinkl (Nl)

γlsinkl(Nl +1)
(A.0.8)

and

xR
l =

β2
l sinkl (Nl)

γlsinkl(Nl +1)
(A.0.9)

Finally, the quantities aL and aR contain information about the nodal site energies and their

coupling to the left and right leads and are given by

aL =
(
ε

0
L−E

)
− α2

L

γL
eikL (A.0.10)

and

aR =
(
ε

0
R−E

)
− β2

R

γR
eikR (A.0.11)

Consider the Green’s function GRL of a ring of atoms with N1 atoms in branch 1 and N2 atoms

in branch 2. For a para-connected phenyl ring, N1= N2=2, while for a meta connect ring, N1=

1 and N2=3. Since all atoms are identical, all site energies within the branches are equal to a

constant ε0 and all couplings in figure A.0.1. (except αR and αL) are equal to γ, ie αl = βl =

γl = γ. This means that all wave vectors are equal to k(E) = cos−1(ε0−E)/2γ and xL=xR. First

consider the case of an isolated ring for which αL = βR=0, in which case aL = aR = 2γcosk ,

xl =
γsinkl (Nl)

sinkl(Nl+1) , yl =
γsinkl

sinkl(Nl+1) . Since γcosk − xl = γsink Cl
Sl

- where Sl = sinkl (Nl +1) and

Cl = coskl (Nl +1) , one obtains aL − x = γsink ( C1
S1
+ C2

S2
), y = γsink (S1 + S2)/S1S2 and ∆ =

4γ2sin2k
S1S2

sin2kN/2, where N=N1+N2+2.These combine to yield

GRL =
y
∆
=

cosk(N1−N2
2 )

2γsinksinkN/2
(A.0.12)

More generally, when the coupling to the left and right leads (αLandβR) are not zero, aL =
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2γcosk +σL where σL =
(
ε0

L− ε0
)
− α2

L
γL

eikL and similarly for aR . In this case, I obtain equation

GRL =
cosk(N1−N2

2 )

2γsinksin kN
2 + σring

(A.0.13)

where

σring =
2γsinksinkN (σL +σR)−S1S2σLσR

2γsinksin kN
2

(A.0.14)

Furthermore, the calculation can easily be repeated for a single branch to yield

GRL =
−sink

γsink (N1 +3)+σchain
(A.0.15)

where

σchain =−2sink(N1 +2) (σL +σR)− sink (N1 +1) σLσR/γ (A.0.16)

As an example, for N=6, k=π/2, equation (A.0.13) for the a ring yields

GRL =
−2γcosk(N1−N2

2 )

4γ2− sink(N1 +1)sink(N2 +1)σLσR
(A.0.17)

For the para case, where N1=N2=2, this yields

GRL =
−2γ

4γ2− σLσR
(A.0.18)

For the meta case, where N1=1, N2=3, it yields GRL = 0 and for the ortho case, where N1=0,

N2=4, it yields

GRL =
2γ

4γ2− σLσR
(A.0.19)

These expressions demonstrate that at the centre of the HOMO-LUMO gap, ortho and para

couplings lead to the same electrical conductance.

As a second example, of this odd-even conductance variation as a function of N1 consider

the Greens function of a linear chain at k=π/2. In this case equation (A.0.14) yields

GRL = (−1)
N1+1

2
1

2(σL +σR)
for N1 odd (A.0.20)
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and

GRL = (−1)
N1
2

1
γ+σLσR/γ

for N1 even (A.0.21)

which shows that the conductance of such a chain also exhibits an odd-even oscillation as a

function of the chain length. Furthermore, after dividing equation A.0.19 by equation A.0.22,

one obtains

Gring

Gchain
=

1−α

2
(A.0.22)

where α = 3σLσR/4γ2

1−σLσR/4γ
2 .
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Appendix B

Connectivity driven conductances in

molecular junctions

The following derivation of the MRR involves proving the three ’ratio rules’ of equations B.0.1,

B.0.2 and B.0.3 stated below. Figure B.0.1a shows an example of a structure of interest, com-

prising a central region 2, connected by single atoms i and j to moieties on the left and right. The

Greens function Ĝi j (E) connecting sites i and j of the structure of figure B.0.1a is proportional

to the de Broglie wave amplitude at j, created by an incoming electron at i and the transmission

coefficient Ti j (E) is proportional to |Ĝi j (E) |2. Consequently the ratio of two transmission coef-

ficients corresponding to connectivities i, j and l,m is given by the following Generalised Ratio

Rule (GRR):

Ti j(E)
Tlm(E)

=
|Ĝi j(E)|2

|Ĝlm(E)|2
(B.0.1)

This ratio does not depend on details of the electrodes or anchor groups, provided these are

identical for both connectivities. Furthermore, if the coupling to moieties on the left and right

are sufficiently weak, and E does not coincide with an eigenvalue of the isolated central region

2, Ĝi j (E) ≈ ĝi j (E), where ĝi j (E) is the Greens function of the isolated central region. In this

case, the ratio of two transmission coefficients is given by the following Weakly-coupled Ratio

Rule (WRR):

Ti j(E)
Tlm(E)

=
|ĝi j(E)|2

|ĝlm(E)|2
(B.0.2)
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Figure B.0.1: (a) shows a physical realisation of a central moiety with sites i and j connected to current-
carrying bonds, which in turn are connected to anchor groups and external electrodes. (b) shows a math-
ematical abstraction of such a system, in which an ’inner world’ 2 is connected to an ’outer world’ 1 and
3 by coupling matrices h12 and h23.

Finally if E is located at the centre of the H-L gap (ie E = EF = 0) , then for a bi-partite lattice of

identical sites, with equal numbers of primed and un-primed sites, described by a tight-binding

model, ĝi j (0) ≈ (−1
d ) Mi j. Hence the ratio of two transmission coefficients corresponding to

connectivities i, j and l,m is given by the following Magic Ratio Rule (MRR):

Ti j (0)/Tlm (0) = (Mi j/Mlm)
2 (B.0.3)

The derivation of these ratio rules starts by noting that, the structure of figure B.0.1a is mathe-

matically equivalent to the three-component system of figure B.0.1b, in which the central region

2 is connected to components 1 and 3, which at large distances from 2 take the form of crys-

talline, periodic leads, which extend to – infinity and + infinity respectively. Conceptually, when

the coupling matrices h12 and h23 between these regions are set to zero, such a structure consists

of a ‘closed inner world’ (ie an inner vector space) 2, whose Greens function g22 (for real E) is

Hermitian, connected to an open ‘outer world’ composed of 1 and 3, whose Greens function is

non-Hermitian.

When the coupling matrices are non-zero, the transmission coefficient Ti j (E) from 1 to 3 is

obtained from the Greens function G31 connecting orbitals on electrode atoms of 1 to orbitals

on electrode atoms of 3. In fact at large distances from 2, where G31 can be projected onto

scattering channels |n3〉and |n1〉 of the crystalline leads of 3 and 1, the transmission coefficient
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can be written

Ti j (E) = ∑
n1n3

Tn1n3(E) (B.0.4)

where Tn1n3 (E) = Vn1Vn3 |〈n3|G31|n1〉|2. In this equation Vn1 and Vn3 are group velocities of

electrons in channels |n1〉 and |n3〉. (This expression is mathematically equivalent to the formula

Ti j (E) = 4 Tr{Γ1G22Γ3G†
22 }, where G22is the Greens function of region 2, in the presence of

couplings to regions 1 and 3.)

When h12 = 0 and h23 = 0, I denote the Greens functions of components 1, 2 and 3 by

g11 and g22 and g33 respectively. Then Dyson’s equation yields

G31 = g33h32G22h21g11 (B.0.5)

where

G22 = (g−1
22 − Σ)−1 (B.0.6)

or equivalently

G22 = g22 +g22ΣG22 (B.0.7)

In this expression, Σ = Σ1 +Σ3, where Σ1 = h21g11h12 and Σ3 = h23g33h32.

So far the analysis has been rather general. I now consider the case where 1 is only coupled

to a single orbital |i〉 in 2 and 3 is coupled to only a single orbital | j〉 in 2. (More generally, |i〉 and

|j〉 could be arbitrary vectors in the inner vector space.) This situation is described by coupling

matrices of the form h21 = |W1〉〈i| and h32 = |W3〉〈j| , where |W1〉 (|W3〉) is a vector of matrix

elements, in the space of 1 B.0.2, describing coupling of |i〉 (| j〉) to orbitals in 1 B.0.2. In this

case, Σ = σ1|i〉〈i|+σ3| j〉〈 j|, where σl = 〈Wl |gll|Wl〉, (l = 1 or 3). Writing Ĝi j = 〈i |G22| j〉,

ĝi j = 〈i |g22| j〉 where

Ĝ =

 Ĝii Ĝi j

Ĝ ji Ĝ j j

 and ĝ =

 ĝii ĝi j

ĝ ji ĝ j j

 ,
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yields from equation B.0.7,

Ĝ = ĝ+ ĝσĜ (B.0.8)

where the self-energy matrix σ is given by σ =

 σ1 0

0 σ3

 Hence

Ĝ = ĝ(1−σĝ)−1 (B.0.9)

Similarly equation B.0.5 yields

G31 = g33|W 3〉Ĝi j〈W 1|g11 (B.0.10)

This expression shows that all elements of the matrix G31 are proportional to the single number

Ĝi j. Hence from equation B.0.4,

Ti j (E) = L(E)|Ĝi j|2 (B.0.11)

which proves the GRR of equation B.0.1. In equation B.0.11, the constant of proportionality

L(E) = ∑n1n3 Vn1Vn3 |〈n3|g33|W 3〉Ĝi j〈W 1|g11|n1〉|2 is independent of the choice of i, j. Further-

more in equation B.0.9, ĝ is independent of the couplings |W1〉 and |W3〉. On the other hand,

the self-energies σ1 and σ3 do depend on the couplings and oni, j. However in the weak cou-

pling limit, these vanish and therefore in equation B.0.9, for sufficiently-weak couplings, it is

safe to neglect the product σĝ, provided ĝ is finite. Since ĝ is the Greens function of the iso-

lated region 2, which diverges when E coincides with an eigenvalue of 2, this condition requires

that E should lie in an energy gap of 2. (It is interesting to note that this is the opposite of

the condition for applicability of the Breit-Wigner formula for resonant transmission, which

requires that E should be close to an energy level of 2.) When these conditions are satisfied,

Ĝi j (E) ≈ ĝi j (E), and the WRR of equation B.0.2 is obtained. The WRR can be utilised by

noting that g22 (E) = (E−H)−1, where H is the Hamiltonian for the isolated region 2. The WRR

is a generally valid whenever σĝ can be neglected compared with unity. Physically this means

that if δ is the smaller of |EF - EHOMO| and |EF - ELUMO|, then the level broadening Γ should be

much less than δ, so the ratio Γ/ δ << 1.

The MRR of equation B.0.3 follows from the fact that if region 2 is a bi-partite lattice, then
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the Hamiltonian H for the isolated region 2 is of the form

H =

 0 C

Ct 0

 (B.0.12)

To obtain the transmission coefficient at the centre of the HOMO-LUMO gap, I evaluate the

associated Green’s function at E = 0, which yields

g22 (0) = (
−1
d

)

 0 Mt

M 0

 (B.0.13)

where d is the determinant of C and the matrix of MIs M is the transpose of the cofactor

matrix of C. Since the ratio of two matrix elements of g22 (0) does not involve d, this completes

the derivation of the MRR of equation B.0.3.

The condition that g22 (0) is finite requires that d should not vanish. Clearly d = 0 when

the rows or columns of C are linearly dependent, which occurs when C is not a square matrix;

ie when the number of primed sites is not equal to the number of un-primed sites. In this case,

a transmission resonance occurs at E = 0 and the Breit-Wigner formula should be used. For

this reason, the MRR is restricted to bi-partite lattices of identical atoms with equal numbers of

primed and un-primed atoms. If this condition is not satisfied, then for non-zero energies, the

WRR should be used.

Since the upper left (lower right) blocks of g22 correspond to matrix elements between

primed and primed (unprimed and unprimed) sites, the conductance vanishes when both elec-

trodes connect to primed sites only (or unprimed sites only). For this reason, in addition to the

non-trivial MIs shown in the M-tables tables, I assign an MI of zero to connectivities between

primed and primed (or unprimed and unprimed) sites.

The above derivation also reveals that in addition to the MIs, each lattice possesses a second

integer d. To each magic integer Mii′ , I assign a magic number (MN) defined by mii′= Mii′ /d.

These allow the prediction of conductance ratios of molecules with different central cores via

the following ’magic ratio rule’ (MRR), which states that ”the ratio of conductances of two

molecules is equal to the squares of the ratios of their magic numbers.”

Finally it is worth noting that knowledge of Ti j (E) at E = 0 is particularly useful for bipartite

lattices, because, g22 (E) is symmetric about E = 0, so in the weak coupling limit Ti j (E) will

have a maximum or minimum (depending on the sign of the MI) at E = 0. Therefore at E
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= 0, dTi j(E)
dE is zero and Ti j (E) varies slowly with E. Finally I note that magic numbers are

a useful concept for non-bipartite lattices of identical atoms, provided det H is non-zero. In

this case, MIs are obtained by equating H to a connectivity matrix, which contains unit matrix

elements Hi j = 1 between connected sites i and j only and defining M = (detH) H−1 . However

in this case the spectrum is not necessarily symmetric about the gap centre and Ti j (E) will not

necessarily be either a maximum or a minimum at E = 0.
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