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Issue 41 of Foresight featured a short commentary by Sujit Singh on the gaps between academia and 

business. Powered by our focus to produce and disseminate research that is directly applicable to 

practice, in this commentary we present our views on some of the very useful and interesting points 

raised by Sujit and conclude with our vision for enhanced communication between the two worlds. 

ON TRANSLATING ACCURACY TO MONEY 

It is true that the majority of traditional error measures (along with the very widely used in practice 

MAPE) focus on the performance of point forecasts and their respective accuracy. These are 

convenient as summary statistics that are context free, but hardly relate to the real decision costs. 

Therefore, a critical question is how these are translated into business value and how improving 

forecasting affects utility metrics, such as inventory and backlog costs, customer service level (CSL) 

and mitigating the bullwhip effect. Fortunately, there is a good bit of research that focuses on such 

links. Here two very recent examples.  

Barrow and Kourentzes (2016) explored the impact of forecast combinations – combining forecasts 

from different methods -- on safety stocks and found that combinations can lead to reductions 

compared to using a single `best’ forecast. Wang and Petropoulos (2016) evaluated the impact on 

inventory of base-statistical and judgmentally-revised forecasts. These works show that there is a 

strong connection between the variance of forecast errors and improved inventory performance. 

However, one important point has to be emphasised here: there is limited transparency how 

forecasts produced by demand planners are translated into ordering decisions by inventory 

managers. Research typically looks at idealized cases, ignoring the targets and politics that drive 

inventory decisions. In such cases, the economic benefit of improved forecasts may not reflect 

organizational realities: forecasting research should pay more attention to the organisational aspects 

of forecasting. 

ON WHAT IS GOOD ACCURACY 

Forecast accuracy levels vary across the different industries and horizons. For example a 20% 

forecast error would be sensible in certain retailing setups, but disastrous in aggregate electricity 

load forecasting. Short-term forecasting is typically easier, while long-term is more challenging. The 

nature of the available data is also relevant: fast versus slow moving items; presence of trend and/or 

seasonality; promotional frequency and so on.  

Our approach would be always to benchmark against (i) simple methods, such as naïve or seasonal 

naïve and (ii) industry-specific (“best practices”) benchmarks. Reporting the improvements in 

accuracy relative to a these benchmarks helps identify specific problems with the forecasting 

function and  can lead to further refinements. Using relative metrics also overcomes the misplaced 

focus on what is a good target for percentage accuracy, since these targets do not appreciate the 

data intricacies that the forecast has to deal with.   



ON AVAILABLE SOFTWARE PACKAGES 

Different software packages offer different core features, with some of them specialising in specific 

families of methods and/or industries. Previously, software vendors were invited to participate in 

large-scale forecasting exercises (see M3-competition) with the relative rankings of the participating 

software being available through the original (Makridakis and Hibon, 2000) and subsequent research 

reports.  

In any case, the expected benefits from adopting a software package are a function of data 

availability, the forecast objective (what needs to be forecast and how long into the future) and the 

need for automation. Nonetheless, there is need for an up-to-date review and benchmarking of 

available commercial and non-commercial software packages. Differences exist even in the various 

implementations of even the simplest methods (such as Simple Exponential Smoothing), with often 

unknown effects in accuracy. But software packages are important in structuring the forecasting 

process but vendors often impose their own visions of what is important and these are not often  

backed up by research. How should one explore the time series at hand? Can we support model 

selection and specification? How to best incorporate judgemental adjustments?  

Our view is that software vendors should provide the tools for users of varying expertise to solve 

their problems (see comments on customisability by Petropoulos, 2015), but also be explicit about 

the the risks of a solution. Training users is regarded as an important dimension of improving the 

forecast quality (Fildes and Petropoulos, 2015) as demand planners cannot be replaced by an 

algorithm. We should not aim for a single solution that will magically do everything and there are 

always `horses for courses’. 

ON HIERARCHICAL FORECASTS 

Organisations often look at their inventory of data in hierarchies. These can be across products, 

across markets or across any other classification that is meaningful from a decision making or 

reporting point of view. Data at different hierarchical levels reveal different attributes of the product 

history. Although forecasts produced at different hierarchical levels can be translated to forecasts of 

other levels via aggregation or disaggregation (top-down and bottom-up), the level at which the 

forecasts are produced will influence the quality of the final forecasts at all the various levels.  

Can we know a-priori what is the best level to produce forecasts? Unfortunately, not possible: data 

have different properties, resulting in different ‘ideal levels’, but, more importantly, companies have 

different objectives. Each objective may require different setups.  

We believe that the greatest benefit from implementation of hierarchical approaches to forecasting 

is the resulting reconciliation of forecasts at different decision making levels. The importance of 

aligning decision-making across levels cannot be understated. More novel techniques allows 

hierarchies to be forecast and reconciled across different forecast horizons (Petropoulos and 

Kourentzes, 2014). Recent research (Hyndman and Athanasopoulos, 2014) has demonstrated that 

approaches that focus on a single levels of the hierarchy, such as top-down or bottom-up, should be 

replaced with approaches that appropriately combine forecasts (and subsequently information) 

from all aggregation levels. 

It’s important to remember that forecasts calculated from data at any level of the hierarchy can be 

evaluated at all other required levels. One first has to produce the aggregated/disaggregated 

forecasts and then compare with the actual data points at the respective level.  



FORECASTS ARE USED BY COMPANIES 

Research often considers forecasting as an abstract function that is not part of a company or its 

ecosystem.  At the same time, there is ample evidence of the benefits of collaborative forecasting 

and information-sharing both within the different departments of a company and across the supply 

chain.  

A recent example is provided by Trapero and colleagues (2012) who analyse retail data and show 

that information sharing between retailer and supplier can significantly improve forecasting 

accuracy (up to 8 percentage points in terms of MAPE). This research is useful both for modelling in 

the context of how forecasts are generated and used in organizations.  

A CALL FOR MORE DATA AND CASE STUDIES 

Sujit urges production of evidence of “minimum/average/maximum” benefits in different contexts. 

But current forecasting research has analysed very few data sets. And very few company cases are 

publicly available. The M1 and M3 competition data sets have been utilised time and again in 

subsequent studies, so that the results and solutions they derived are susceptible to “over-fitting” 

and hence not generalisable. Most papers on intermittent demand forecasting make use only of 

automotive-sales data as well as data sets from the Royal Air Force in the UK. It would be valuable to 

test our theories and methods on more diverse data sets, but researchers find these are hard to 

acquire.  

We call on practitioners and on vendors to share (after anonymising) empirical data with 

researchers. The availability of a large number of time series and/or cross-sectional data across a 

number of industries will increase our understanding of the advantages, disadvantages, and 

limitations of existing and new forecasting methods, models, frameworks, and approaches.  

Researchers are hungry for data while practitioners hunger for solutions to their problems: reducing 

the barriers will benefit both sides. Still, researchers must appreciate the constraints that limit a 

company’s willingness to make its data public, and practitioners need to be more proactive in 

facilitating forecasting researcher. 
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