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Fig. 1. Cell viability of GC-2spd cells after treatment with 0.1% DMSO, 50, 100, 200 or 400µM DEHP for 24h. 
Data are obtained from MTT assay (mean±SD) and are normalized to DMSO group. Statistical significance 

was analyzed by one-way ANOVA. Significant difference: (*) P < 0.05.  
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Fig. 2. Flow cytometric analysis of GC-2spd cells after treatment with DEHP. Cellular apoptosis was tested by 
apoptosis detection kit. A–D represented as treatment of  0.1% DMSO (A), 50µM DEHP (B), 100µM DEHP 
(C), 200µM DEHP (D). The comparison of apoptotic rate(%) after treatment with different concentration of 

DEHP is presented in E. Data were presented as mean±SD. There are three independent experiments 
performed in triplicate. Significant difference: (*) P < 0.05, compared with the control group.  
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Fig. 3. A-C represent the oxidative stress levels after treatment with DEHP. Effect of different concentration 
of DEHP on Malondialdehyde (MDA) Level(A), Superoxide Dismutase (SOD) Activity(B) and Glutathione 

Peroxidase (GSH-Px) Activity(C) in GC-2spd cells. Significant difference: (*) P < 0.05, compared with the 
control group.  
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Fig. 4. A-B represent the real time quantitative PCR dissociation curve of Bcl-2(A) and Bax(B). C-D is the 
effect of different concentration of DEHP on Bcl-2 and Bax relative mRNA expression（C）, and the ratio of 

Bcl-2 and Bax(D), Significant difference: (*) P<0.05, compared with control.  
142x109mm (96 x 96 DPI)  
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Fig. 5. A-C represent the real time quantitative PCR dissociation curve of cytochrome c (A) caspase-9(B) and 
caspase-3(C). D is the effect of different concentration of DEHP on cytochrome c, caspase-9 and caspase-3 

relative mRNA expression(D). Significant difference: (*) P<0.05, compared with control.  
152x118mm (96 x 96 DPI)  
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Fig. 6. Effects of DEHP exposure on the expression levels of Bcl-2, Bax, cytochrome c, procaspase-9 and 
procaspase-3 in GC-2spd cells(A).The level of proteins was measured using immunoblotting(B). Values 

represent the mean±SD. Significant difference: (*) P<0.05, compared with control.  
199x201mm (96 x 96 DPI)  
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ABSTRACT: Di(2-ethylhexyl) phthalate (DEHP), a plasticizer of synthetic polymers, 

is a well-known endocrine disrupting chemical (EDC) and reproductive toxicant. 

Addressing the unclear mechanism of DEHP-induced reproductive dysfunction, this 

study used GC-2spd cells to investigate the molecular mechanism involved in the 

DEHP-induced toxicity in the male reproductive system. The results indicated that the 

apoptotic cell death was significantly induced by DEHP exposure over 100 µM. 

Furthermore, DEHP treatment could induce oxidative stress in GC-2spd cells 

involving in the decrease of superoxide dismutase (SOD) activity (200 µM) and 

glutathione peroxidase (GSH-Px) activity (50 and 100 µM). In addition, DEHP 

induction also caused the elevated ratios of Bax/Bcl-2, release of cytochrome c and 

decomposition of procaspase-3 and procaspase-9 in GC-2spd cells. Taken together, 

our work provided the evidence that DEHP exposure might induce apoptosis of 

GC-2spd cells via mitochondria pathway mediated by oxidative stress. 

Keywords: Di(2-ethylhexyl) phthalate (DEHP), GC-2spd cells, oxidative stress, 

apoptosis, mitochondrial pathway  
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INTRODUCTION 

Endocrine disrupting chemicals (EDCs) are a group of exogenous agents acting as 

endogenous hormones to alter the functions of endocrine system of both vertebrates 

and invertebrates, and thereby interfere with their survival, development, sexual 

differentiation and reproduction (Zoeller et al., 2012). These environmental 

xenobiotics may lead to dysgenic development of reproductive organ (Borch et al., 

2004; Parks et al., 2000) and abnormal reproductive functions in adulthood 

(Daxenberger, 2002) 

Di(2-ethylhexyl) phthalate (DEHP), a phthalate derivative and a well-recognized 

EDC, is widely used as a plasticizer and solvent in polyvinyl chloride (PVC) products, 

cosmetics, children’s toys, shampoos, medical tubing, and other products (Cho et al., 

2015; Erkekoglu et al., 2011). Not covalently bound to the plastic matrix or other 

chemicals in the formulations, DEHP can readily leach out of the plastic products and 

cause contamination in the external environment (Li et al., 2012a; Li et al., 2012b). 

Thus, increasing populations face the exposure risks to DEHP through contaminated 

foods, food packaging, or medical products (Koo and Lee, 2004; Silva et al., 2006). 

Many previous studies have reported the adverse effects of DEHP on male 

reproductive system. In rats, DEHP exposure resulted in testis weight loss, delayed 

preputial separation, and decreased serum testosterone (Botelho et al., 2009; Helal, 

2014). For marine medaka, a reduced number of spermatozoa were induced by DEHP 

(Ye et al., 2014). In human, an occupational exposure model demonstrated that 

maternal exposure to phthalates increased the risks of hypospadias in offspring 

(Ormond et al., 2009). Most of these studies addressed the alteration of reproductive 

system in histomorphology caused by DEHP exposure, however neglecting the 

detailed mechanisms of DEHP on reproductive system. 

Spermatogenic cells apoptosis is reported as a sensitive marker for testicular 

histopathology (Park et al., 2002; Wang et al., 2010). Apoptosis is a process of 

spontaneous and programmed cell death, with the roles in maintaining the evolution 

and homeostasis as well as the development of several system (Hotchkiss et al., 2009). 

Spermatogenic cells include spermatogonia, spermatocytes, spermatids, and 
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spermatozoa (Wang et al., 2014). Spermatogenesis represents the development 

process of immature spermatogonia into spermatozoa in seminiferous tubules (RAO 

and SHAHA, 2000). It is well known that normal spermatogenesis is a complex and 

coordinated process of cell differentiation which depends on a balance of cell 

apoptosis and proliferation (Qu et al., 2014), and the alteration in apoptosis rate might 

lead to the disruption in spermatogenesis (Shukla et al., 2012; Tripathi et al., 2009). 

The exposure to DEHP or MEHP was reported to increase germ cells apoptosis in rat 

testis (Giammona et al., 2002; Kijima et al., 2004; Park et al., 2002). Pachytene 

spermatocytes have been suggested to be vulnerable to DEHP-induced apoptosis in 

the testis (Zoeller et al., 2012). To date, few studies investigated the apoptosis 

pathway induced by DEHP in pachytene spermatocytes. 

The present study aims to reveal the effects of DEHP concentration on apoptosis 

of GC-2spd cells, a mouse pachytene spermatocyte-derived cell line, and discuss the 

mitochondria-mediated apoptotic pathway. By quantifying the expressions of Bax, 

Bcl-2 and cytochrome c in DEHP-induced apoptosis, we identified that caspase 

family members play an important role in spermatogenesis and apoptosis. It is also of 

interest to determine the regulation of caspase-3 and caspase-3-9 in DEHP-induced 

apoptosis. 

 

MATERIAS AND METHODS   

Subculture of GC-2spd Cells and Cell Treatment  

The GC-2spd cells were presented by Nanjing Medical University. The cells were 

cultivated with modified RPMI-1640 medium (HyClone, Beijing, China), containing 

10% fetal bovine serum (Invitrogen, USA) and supplemented with 1% penicillin and 

streptomycin (Genom, China), in a moist atmosphere (95% air and 5% carbon dioxide, 

v/v) at 37°C. The culture medium was renewed every other day. 

DEHP (Sigma-Aldrich, USA) was dissolved to different concentrations with 

dimethyl sulfoxide (DMSO, Sigma-Aldrich, USA) as stock solution, followed by 

serious dilution with culture medium to different final concentrations (50, 100, 200, 

400 µM) which were chosen according to our preliminary results. In the control group, 
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the cells were exposed to culture medium with 0.1% DMSO only. The final 

concentration of DMSO in all the treatments was 0.1%, which did not affect the 

viability of GC-2spd cells. 

MTT Assay  

The assay is based on the cellular reduction of 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT, Beyotime, 

China) which is restored by mitochondria succinodehydrogenase of viable cells to 

blue-violet formazan detected by spectrophotometer. MTT was dissolved with 

phosphate-buffered saline (PBS) solution, added to each well with the final 

concentration of 5 mg/mL, and cultivated for 4 hours. Subsequently, the mediums 

were discarded and replaced by 200 µL DMSO to dissolve the residual formazan 

crystals. The culture plate was further incubated at 37°C for 15 min with shaking. The 

optical density (Zoeller et al.) of each well was detected at 570 nm with an ELISA 

Reader (Bio-Rad, USA). Cellular viability (%) was calculated according to the 

following equation: Cellular viability(%)= (ODtreatment/ODcontrol)×100%. 

Apoptosis Assay with Flow Cytometric Analysis 

Translocation of phosphatidylserine from the inner cellular membrane to the outer 

leaflet in the early stage of apoptosis is an important characteristic of apoptosis 

(Clewell et al., 2010). After the GC-2spd cells were seeded in 6-well plate and treated 

with different concentrations of DEHP, the apoptosis was measured by AnnexinV/PI 

apoptosis kit (Multi Science, China) according to manufacturer’s instruction. The 

treated GC-2spd cells were trypsinized, collected by 1000 rpm centrifugation for 5 

min and washed with PBS. The cell pellets were further resuspended in 1 mL 1×buffer 

solution, 5 µL AnnexinV-FiTc and 10 µL propidium iodide (Gavathiotis et al.), and 

incubated in the dark at room temperature for 5 min. Finally, the stained cells were 

tested by a flow cytometer (Becton Dickinson, USA) and the data were analyzed by 

Cellquest software (Becton Dickinson, USA). 

Measurement of Malondialdehyde (MDA) Level, Superoxide Dismutase (SOD) 

Activity and Glutathione Peroxidase (GSH-Px) Activity 

The treated GC-2spd cell pellets were lysed in 0.5 mL cell lysis solution (containing 1 
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mM Na2EDTA, 150 mM NaCl, 10 mM PMSF, 10 mM Tris, 1 mM aprotin) to evaluate 

the lipid peroxidation with MDA, SOD and GSH-Px assay (Nanjing Jiancheng 

Bioengineering Institute, China) according to manufacturer’s instruction. As the final 

thermal decomposition products of cytomembrane lipid peroxidation, MDA reflects 

the level of oxidative damage indirectly and was detected by the absorbance of the 

products of MDA and thiobarbituric acida (TBA). SOD activity was measured by the 

reduction rate of nitro blue tetrazolium (NBT) to O2
- 

produced by the 

xanthine-xanthineoxiase system. The one unit of SOD activity was defined as the 

inhibition ratio of NBT reduced by 50 percent. GSH-Px is the key enzyme in the 

process of glutathione (GSH) to oxidized glutathione, and its activity was assayed by 

the reduction of GSH. The one unit of GSH-Px activity was defined as the 1µM 

reduction of GSH in 1 min per mg protein. 

Real time quantitative PCR  

Real time quantitative PCR (RT-qPCR) was performed to determine the mRNA levels 

of cytochrome c, caspase-9, caspase-3, Bcl-2, Bax, and β-actin. The total RNA was 

extracted from the treated GC-2spd cells using Trizol reagent (Invitrogen, USA) 

according to the methods of Shi, et al (Shi et al., 2009). RNA purity was tested by 

BioPhotometer (Eppendorf, Germany), which showed a satisfactory optical density 

ratio (OD260/OD280) between 1.8 and 2.0. The cDNAs were synthesized from 1.0 µg 

total RNA with RevertAid First Strand Synthesis Kit (Thermo Scientific, Lithuania) in 

accordance with manufacturer’s instructions. Then 1 µL incubation mixture was 

diluted to a final concentration of 1:20 and added to the individual capillary tube with 

reagents in Platinum® SYBR® Green qPCR SuperMix-UDG (Invitrogen, USA). 

Some primer pairs (Bioasia Corp, China) were used to amplify the targeting 

cytochrome c (5’-AGACAGGACAAGCACCAGGA-3’; 

5’-TCACTCTTCTTTTTGATACC-3’), caspase-9 

(5’-GCAAAGGAGCAGAGAGTAGT-3’; 5’-TCCCTGGAACACAGACATCA-3’), 

caspase-3 (5’-GTCTGACTGGAAAGCCGAAA-3’; 

5’-GCAAAGGGACTGGATGAACC-3’), Bcl-2 

(5’-ACTTCTCTCGTCGCTACCGT-3’; 5’-ACAATCCTCCCCCAGTTCAC-3’), Bax 
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(5’-GCTGATGGCAACTTCAACTG-3’; 5’-CCCGAAGTAGGAGAGGAGGC-3’) 

and β-actin (5’-GTGACGTTGACATCCGTAAAGA-3’; 5’- 

GTAACAGTCCGCCTAGAAGCAC-3’), respectively. 

The cDNAs of cytochrome c, caspase-9, caspase-3, Bcl-2, Bax and β-actin were 

individually amplified with an ABI PRISM® 7900HT Sequence Detection System 

(Applied Biosystems, USA). The 10 µL PCR reaction system contained 5 µL 

SuperMix, 0.2 µL ROX Reference Dye, 0.2 µL of each primer (10 µM), 2 µL diluted 

cDNA template, and 2.4 µL PCR-grade water. The amplification program was: initial 

denaturation at 50°C for 2 min and 95°C for 10 min; 40 cycles of 95°C for 15 s, 60°C 

for 1 min. PCR products were collected 40 cycles after reaching the log-linear phase. 

Dissociation curves were obtained by an additional cycle (95°C for 15 s, 60°C for 15 s 

and 95°C for 15 s). The relative expression of target genes was calculated using 2
-∆∆Ct

. 

Western Blotting 

About 5×10
6
 treated GC-2spd cells were lysed in 100 µL lysis buffer (20 mM 

Tris-HCl (pH 7.4), 10 mM EDTA, 2 mM EGTA, 250 mM sucrose, 0.1% Triton X-100, 

1 mM phenylmethylsulfonyl chloride, and 100 mM PMSF) and scraped from the plate 

to detect cytochrome c, procaspase-9, procaspase-3, Bcl-2, Bax proteins. Each protein 

sample was measured by a DC protein assay (Bio-Rad, USA). Cells extracts were 

separated in SDS-polyacrylamide gel and transferred electrophoretically onto a PVDF 

membrane. The membranes were blocked in PBS containing 5% (w/v) nonfat dry 

milk and then incubated at 4°C overnight with anti-Bcl-2 (Cell Signaling Technology, 

USA), anti-Bax (Epitomics, China), anti-cytochrome c (Epitomics, China), 

anti-procaspase-9 (Santa Cruz Biotechnology, USA) and anti-procaspase-3 (Bioworld 

Technology, USA) at 1:1000 dilution. Then the membranes were incubated at 37°C 

for 2 h with the secondary antibody combined with horseradish peroxidase (1:5000 

dilution, Amersham Pharacia, UK). Finally, the immune-reactive proteins were 

detected using an ECL western blotting detection system (Pierce Biotechnology, 

USA), and the densitometric analysis of immunoblots was performed with Gel pro 3.0 

software. 

Statistical Analysis 
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Results were represented as mean ± standard deviation (SD). Significance was 

assessed by One Way ANOVA following variance normalization and equalization 

where necessary. Mean values were compared by subsequent student-Newman-Keuls 

(SNK) using the SPSS statistical package 20.0 (SPSS, USA). A difference at p < 0.05 

was considered statistically significant. 

 

RESULTS 

DEHP Inhibited the Viability of GC-2spd Cells  

Treated with 50, 100, 200 and 400 µM DEHP for 24h, the viability of GC-2spd cells 

were analyzed by MTT assay and the results were illustrated in Figure 1. Compared to 

the control, the viability of GC-2spd cells was significantly reduced (P<0.05) in the 

treatments with 200 or 400 µM DEHP. Particularly in 400 µM DEHP treatment, the 

cellular viability was less than 70% of that in the control. Accordingly, 50, 100 and 

200 µM was the optimal concentration to study the impacts of DEHP on apoptosis and 

was used in the following experiments. 

DEHP-induced Apoptosis of GC-2spd Cells 

After exposing GC-2spd cells to different concentrations of DEHP (50, 100 and 200 

µM) for 24h, the results of Annexin/PI double staining characterized the 

phosphatidylserine exposure and revealed the DEHP-induced apoptosis of GC-2spd 

cells. From Figure 2, the dose-effect relationship was identified between DEHP 

exposure and apoptotic cell death. A significantly increasing apoptotic ratios of 

GC-2spd cells were found in the treatments with 100 and 200 µM DEHP (P<0.05). 

Effects of DEHP on MDA Level, SOD Activity and GSH-Px Activity in GC-2spd 

Cells 

To assess the influence of oxidative stress, MDA level, SOD activity and GSH-Px 

activity were measured in GC-2spd cells. As illustrated in Figure 3, DEHP induction 

showed slightly positive dosage effect on MDA level, but without significant 

difference compared to the control (P>0.05). The SOD activity was limited affected 

after exposure to 50 and 100 µM DEHP, but significantly declined in 200 µM DEHP 

treatment (P<0.05). As for GSH-Px activity, a remarkable decrease was found in 50 
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and 100 µM DEHP treatments compared to that in the control (P<0.05). 

DEHP Affected Expression of Cytochrome c, Caspase-3, Caspase-9, Bcl-2 and 

Bax in GC-2spd cells at mRNA LeveL 

The mRNA levels were detected by RT-qPCR in the GC-2spd cells exposed to 

different concentrations of DEHP. The transcriptional changes of cytochrome c, 

caspase-3 and caspase-9 were shown in Figure 4(D). Cytochrome c mRNA levels in 

100 and 200 µM treatments were significantly higher than that of the control (P<0.05). 

Compared to the control, caspase-9 was remarkably higher transcribed when exposed 

to 50 µM and 200 µM DEHP (P<0.05), whereas the caspase-3 mRNA level in 100 µM 

DEHP treatment was statistically higher than that of the control (P<0.05). From the 

mRNA levels of Bcl-2 and Bax illustrated in Figure 5(C), the transcription of Bcl-2 

was significantly declined in all the DEHP treatments (P<0.05), and remarkably 

higher Bax mRNA level was observed in 50 µM and 200 µM DEHP treatments 

(P<0.05). Meanwhile, Figure 5(D) showed that the transcriptional ratio of Bcl-2 and 

Bax in different DEHP treated groups was statistically lower than that of the control 

(P<0.05). 

DEHP Altered Expression of Cytochrome c, Procaspase-3, Procaspase-9, Bcl-2 

and Bax in GC-2spd cells at Protein Level 

From the results of Western blot (Figure 6), Procaspase-3 and Procaspase-9 were 

significantly decreased after treated with 100 µM or 200 µM DEHP, suggesting the 

activation of proapoptotic caspase-3 and caspase-9 genes. DEHP also led to markedly 

declining expression of Bcl-2 in 200 µM DEHP treatment but induced the expressions 

of Bax and cytochrome c. 

 

DISCUSSION 

The present study revealed that DEHP was toxic to GC-2spd cells, resulting in their 

decreasing viability and the induction of apoptosis. Furthermore, mitochondria-related 

proteins (cytochrome c, Bax and Bcl-2) might play critical roles in DEHP-induced 

apoptosis. 

Apoptosis is an important process to eliminate unwanted or defective cells 
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through an orderly process of cellular disintegration (Ameisen, 1996) and the 

alteration in apoptosis rate may result in disruption in spermatogenesis (Shukla et al., 

2012; Tripathi et al., 2009). Previous studies have already reported that some known 

endocrine disruptors could induce spermatogenic cell apoptosis, such as MEHP (an 

active metabolite of DEHP) (Awal et al., 2004), bisphenol A (BpA) (Wang et al., 2010) 

and aroclor 1254 (Qu et al., 2014). In the present study, we revealed the effects of 

DEHP exposure on GC-2spd cell apoptosis using flow cytometric assessment. Our 

results suggested that a significant apoptosis of GC-2spd cells was induced after 

exposure to 100 and 200 µM DEHP. The findings were compatible with recent report 

by Erkekoglu (Erkekoglu et al., 2012) who suggested that 1000 mg/kg DEHP 

treatment caused an approximately 8-fold increase of apoptosis in rat germ cells. The 

excess apoptosis of spermatogenic cells therefore might be one of the major molecular 

mechanisms of endocrine disruptors in male reproductive toxicity. 

Oxidative stress is often caused by various environmental pollutes. Constant 

oxidative stress can produce an imbalance between endogenous and exogenous 

reactive oxygen species (ROS) levels, which subsequently lead to lipid peroxidation, 

antioxidant defenses and even oxidative damage in organisms (Khan et al., 2015; Ott 

et al., 2007; Valavanidis et al., 2006). There is a general agreement that male 

reproductive organs are particularly susceptible to oxidative stress, which ultimately 

lead to impaired fertility (Jacobson, 1996). Song found that p,p'-DDE exposure 

induced the apoptosis of rat sertoli cell via oxidative stress with the elevation of ROS, 

decrease in SOD activity, and increase in the leakage rate of lactate dehydrogenase 

(LDH) and MDA levels (Song et al., 2008). Madhubabu reported that oral exposure to 

allethrin had increasing lipid peroxidation and declining activities of catalase, 

glutathione peroxidase, glutathione-S-transferase and superoxide dismutase, 

consequently affecting fertility (Madhubabu and Yenugu, 2014). In the present study, 

SOD and GSH-Px (ROS scavengers) were depleted and MDA was accumulated as a 

product of lipid peroxidation in GC-2spd cells, consistent with previous findings that 

DEHP exposure induced spermatogenic disturbance mediated by oxidative stress 

(Hirai et al., 2015). 
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From many previous studies, cell apoptosis could be induced via the activation of 

oxidative stress (Abdullah et al., 2015; Kannan and Jain, 2000). Zoeller (Zoeller et al., 

2012) suggested that the MEHP-induced apoptosis of spermatocytes follows the 

enhancing generation of ROS by testicular cells. The mitochondrial pathway of 

apoptosis is under the control of Bcl-2 family (Maire et al., 2005) which can be 

categorized into three subfamilies, namely anti-apoptotic Bcl-2 members (Bcl-2, 

Bcl-XL and Mcl-1), pro-apoptotic Bax members (Bax, Bak and Bok), and BH3-only 

members (Bad, Bid, Bim, Bik and Puma) (Cory and Adams, 2002). It is 

well-established that the major mechanism of mitochondria-mediated apoptosis is the 

regulation of the mitochondrial outer membrane permeabilization (MOMP) and the 

release of mitochondrial intermembrane space (IMS) proteins, such as cytochrome c 

(Renault and Chipuk, 2014). Bax and Bcl-2, the positive and negative regulator 

respectively, are the representative members of Bcl-2 family (Borner, 2003). Under a 

normal state, Bax might be either on outer mitochondrial membrane or in the cytosol. 

Once triggered by apoptotic signals, the BH3-only proteins such as Bid (Desagher et 

al., 1999; Wei et al., 2000) and Bim (Gavathiotis et al., 2008; Kim et al., 2009) act as 

direct activators to induce oligomerization and enhance pore-forming activity of Bax. 

Then the homodimer Bax/Bax with the structure of micropore will induce MOMP and 

allow the release of mitochondrial IMS proteins (e.g. cytochrome c) (Kluck et al., 

1997; Liu et al., 1996) to activate the cell death proteases called caspases (Cory and 

Adams, 2002). Bcl-2 is located on outer mitochondrial membrane. It can combine the 

Bax competitively to form more stable heterodimer Bax/Bcl-2 and therefore inhibit 

the apoptosis induced by the Bax/Bax (Rogerio et al., 2006). Thus, Bcl-2/Bax ratio is 

very important in apoptosis regulation. The down-regulation of Bcl-2 protein and the 

up-regulation of Bax protein can cause MOMP and induce cell apoptosis eventually 

(Kim et al., 2015). The present study showed an increasing expression of Bax at both 

mRNA and protein levels in GC-2spd cells after exposure to DEHP, accompanying 

with the decreasing expression of Bcl-2. Thus, a declining Bcl-2/Bax ratio was 

observed in DEHP treatments, compatible with the findings that the exposure of mice 

to BPA during puberty resulted in a significant increase in Bax/Bcl-2 ratio in testes 
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and a consequent increase in germ cells apoptosis(Wang et al., 2010).  

Cytochrome c is a key factor in mitochondrion-mediated apoptosis and presents 

in the mitochondrial intermembrane serving as a transducer of electrons in the 

respiratory chain under normal conditions. Once mitochondrial dysfunction causing 

the collapse of mitochondria membrane potential(MMP) and intracellular imbalance 

between Bcl-2 and Bax proteins, the mitochondrial permeability transition pore 

(MPTP) will open (Fulda and Debatin, 2006; Wang et al., 2013; Zhang et al., 2015), 

leading to the release of cytochrome c from the mitochondrial intermembrane space 

into the cytoplasm. Then cytochrome c can bound with Apaf-1 and procaspase-9 

(Zhivotovsky et al., 1998), causing the formation of apoptosome (Adrain and Martin, 

2001).The apoptosome activates caspase-9, and then cleaves and activates other 

caspases, such as caspase-3 (Zhivotovsky et al., 1998). Caspase-3 serves as the final 

executor of apoptosis responsible for the cleavage of key cellular proteins and 

contributable to apoptosis (Budihardjo et al., 1999). In agreement with the theory, our 

study showed that the cytochrome c was upregulated after 200µM DEHP treatment at 

both mRNA and protein levels. Procaspase-9 and procaspase-3 are the inactive 

precursor forms of caspase-9 and caspase-3. Our results illustrated the increasing 

mRNA levels of caspase-9 and caspase-3, intrinsically linked to the decreasing protein 

levels of procaspase-9 and procaspase-3 in DEHP-treated GC-2spd cells. These data 

is consistent with previous findings that BPA caused the release of cytochrome c and 

subsequently increased the expression of caspase-3 significantly in GC-2spd cells 

confirming the involvement of mitochondria-dependent pathway in BPA-induced 

apoptotic events in GC-2spd cells(Qian et al., 2015). However, Wójtowicz et al 

(Wojtowicz et al., 2007) reported decreasing caspase-3 in DDE-treated JEG-3 cells. 

The different mechanism for DEHP and DDE in different cell lines may be the best 

explanation. 

Frankly, there are some limitations in the present study. Firstly, the ROS inhibitor 

such as N-acetyl-l-cysteine (NAC) might affect the apoptosis induced by DEHP and 

should be tested here to get more convictive conclusions. Additionally, it is well 

known that apoptosis occurs via two primary pathways: the extrinsic pathway, which 
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is associated with cell death receptors and their ligands on the cellular surface, and the 

intrinsic pathway, which is dependent on mitochondria. This study only investigated 

the roles of mitochondria pathway on the DEHP-induced apoptosis of GC-2spd cells, 

and some more studies should be included and will be further investigated on another 

pathway.  

In conclusion, DEHP induced the apoptotic rate in GC-2spd cells, possibly 

explained by the mechanism involving mitochondria-mediated pathway. In vitro 

exposure to DEHP can enhance oxidative stress, induce an increasing expression of 

Bax, cytochrome c, caspase-9 and caspase-3 at both mRNA and protein levels, and 

suppress the expression of Bcl-2 in GC-2spd cells. Mitochondrial pathway is an 

extrinsic program of apoptotic death, which is characterized in this study by the 

disruption of Bcl-2/Bax balance and the activation of cytochrome c and caspase-9. 

Finally, the apoptosis of GC-2spd cells is regulated by a final executioner, Caspase-3, 

thereby disturbing the spermatogenic process. The results in the present study provide 

preliminary but valuable evidence on the mechanisms of DEHP-induced apoptosis of 

GC-2spd cells and suggestions for further study of reproductive endocrine disorder 

resulting from environmental EDCs. 
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