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Abstract
Homeless youth are prone to HIV due to their engage-
ment in high risk behavior. Many agencies conduct
interventions to educate/train a select group of home-
less youth about HIV prevention practices and rely on
word-of-mouth spread of information through their so-
cial network. Previous work in strategic selection of in-
tervention participants does not handle uncertainties in
the social network’s structure and in the evolving net-
work state, potentially causing significant shortcomings
in spread of information. Thus, we developed PSINET,
a decision support system to aid the agencies in this
task. PSINET includes the following key novelties: (i)
it handles uncertainties in network structure and evolv-
ing network state; (ii) it addresses these uncertainties
by using POMDPs in influence maximization; (iii) it
provides algorithmic advances to allow high quality ap-
proximate solutions for such POMDPs. Simulations
show that PSINET achieves ∼60% more information
spread over the current state-of-the-art. PSINET was
developed in collaboration with My Friend’s Place (a
drop-in agency serving homeless youth in Los Angeles)
and is currently being reviewed by their officials.

1 Introduction
Homelessness affects ∼2 million youths in USA annually,
11% of whom are HIV positive (10 times the infection rate
in the general population) (NAHC 2011). Peer-led HIV pre-
vention programs such as POL (Kelly et al. 1997) try to
spread HIV prevention information through network ties and
recommend selecting intervention participants based on De-
gree Centrality (i.e., highest degree nodes first). Such peer-
led programs are highly desirable to agencies working with
homeless youth as these youth have minimal health care ac-
cess and are distrustful of adults (Rice and Rhoades 2013).

Agencies working with homeless youth prefer a series
of small size interventions deployed sequentially as they
have limited manpower to direct towards these programs.
This fact and emotional/behavioral problems of youth makes
managing groups of more than 5-6 youth at a time very
difficult (Rice et al. 2012). Strategically choosing interven-
tion participants is important so that information percolates
through their social network in the most efficient way.
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This paper introduces PSINET (POMDP based Social
Interventions in Networks for Enhanced HIV Testing),
a novel Partially Observable Markov Decision Process
(POMDP) based system which chooses the participants of
successive interventions in a social network. The key novelty
of our work is a unique combination of POMDPs and influ-
ence maximization to handle uncertainties about (i) friend-
ships between people in the social network; and (ii) evolu-
tion of the network state in between two successive inter-
ventions. Traditionally, influence maximization has not dealt
with these uncertainties, which greatly complicates the pro-
cess of choosing intervention participants. Moreover, this
problem is a very good fit for POMDPs as (i) we conduct
several interventions sequentially, similar to sequential ac-
tions taken in a POMDP; and (ii) we must handle uncertainty
over network structure and evolving state.

Unfortunately, our POMDP’s state (2300 states) and ac-
tion spaces (

(
150
10

)
actions) are beyond the reach of current

state-of-the-art POMDP solvers/algorithms. To address this
scale-up challenge, PSINET provides a novel on-line algo-
rithm, that relies on the following key ideas: (i) compact
representation of transition probabilities to manage the in-
tractable state and action spaces; (ii) combination of the
QMDP heuristic with Monte-Carlo simulations to avoid ex-
haustive search of the entire belief space; and (iii) voting
on multiple POMDP solutions, each of which efficiently
searches a portion of the solution space to improve accuracy.

Our work is done in collaboration with My Friend’s
Place1, a non-profit agency assisting Los Angeles’s home-
less youth to build self-sufficient lives by providing educa-
tion/support to reduce high-risk behavior. Thus, we evalu-
ate PSINET on real social networks of youth frequenting
this agency. This work is being reviewed by officials at My
Friend’s Place towards final deployment.

2 Related work
There are two primary areas of related work that we dis-
cuss in this section. First, we discuss work in influence max-
imization. Kempe, Kleinberg, and Tardos (2003) provided
a constant-ratio approximation algorithm to find ‘seed’ sets
of nodes to optimally spread influence in a graph. This was
followed by many speed up techniques (Kimura and Saito

1See http://myfriendsplace.org/



2006; Chen, Wang, and Wang 2010). All these algorithms
assume no uncertainty in the network structure and select
a single seed set. In contrast, we select several seed sets
sequentially in our work to select intervention participants.
Also, our problem takes into account uncertainty about the
network structure and evolving network state. Golovin and
Krause (2010) introduced adaptive submodularity and dis-
cussed adaptive sequential selection (similar to our work) in
viral marketing. However, unlike our work, they assume no
uncertainty in network structure and state evolution.

The second field of related work is online planning in
POMDPs, since offline planning approaches are unable to
scale up to problems of interest in our work (Smith 2013).
We focus on the literature on Monte-Carlo (MC) sampling
based online POMDP solvers since that sub-field is most
related to our work. Silver and Veness (2010) proposed
POMCP algorithm that uses Monte-Carlo tree search in on-
line planning. Somani et al. (2013) improved the worst case
performance of POMCP in DESPOT algorithm. These two
algorithms maintain a search tree for all sampled histories to
find best actions, which may lead to better solution qualities,
but it makes the algorithm less scalable (as we show in our
experiments). Therefore, our algorithm does not maintain a
search tree and uses the QMDP heuristic to find best actions.

3 Our Approach
A POMDP is a tuple ℘ = 〈S,A,O,T,Ω,R〉, where S, A
and O are sets of possible world states, actions and obser-
vations respectively; T(s,a, s′) is the transition probability
of reaching s′ by taking action a in s, Ω(o,a, s′) is the ob-
servation probability of observing o, by taking action a to
reach s′; and R(s,a) is the reward of taking action a in s.

A POMDP policy Π maps every possible belief state b
to an action a = Π(b). Our aim is to find an optimal
policy Π∗ = arg maxπ P

π (given an initial belief b0),
which maximizes the expected long term reward PΠ =∑
t=1..H E[R(st, at)] where H is the horizon. Comput-

ing optimal policies offline for finite horizon POMDPs is
PSPACE-Complete. Thus, focus has recently turned towards
online algorithms, which only find the best action for the
current belief state. Upon reaching a new belief state, online
planning again plans for this new belief. Thus, online plan-
ning interleaves planning and execution at every time step.

POMDP Model of our Domain
In describing our model, we first outline the homeless
youth social network and then map it onto our POMDP.
The social network of homeless youth is a digraph G =
(V,E) with |V | = n. Every v ∈ V represents a home-
less youth, and every {e = (a, b)|a, b ∈ V } ∈ E rep-
resents that youth a has nominated youth b in their so-
cial circle. Further, E = Ec ∪ Eu, where Ec(|Ec| =
l) is the set of certain edges, i.e., friendships which we
are certain about. Conversely, Eu(|Eu| = m) is the set
of uncertain edges, i.e., friendships which we are uncer-
tain about. For example, youth may describe their friends
“vaguely”, which is not enough for accurate identification
(Rice et al. 2012). In this case, there would be uncertain
edges from the youth to each of his “suspected” friends.

Figure 1: Graph G

Each uncertain edge (e ∈ Eu)
exists with an existence proba-
bility u(e), the exact value of
which is determined from do-
main experts. For example, if
it is uncertain whether node
B is node A’s friend, then
u(A,B) = 0.5 (say) implies
that B is A’s friend with a 0.5 chance. Accounting for these
uncertain edges is important as our node selection might de-
pend heavily on whether these edges exist with certainty or
not. We call this graph G an “uncertain graph” henceforth.
Figure 1 shows an uncertain graph on 6 nodes (A to F) and
7 edges. The dashed/solid edges represent uncertain/certain
edges respectively.

In our work, we use the independent cascade model, a
well studied influence propagation model (Kimura and Saito
2006). In this model, every node v ∈ V has an h-value,
where h : V → {0, 1}. h(v) = 1 and 0 determines whether
a node is influenced or not, respectively. Nodes only change
their h-value (from 0 to 1) when they first get influenced.
If node v ∈ V gets influenced at time step t, it influences
each of its 1-hop un-influenced neighbors with a propaga-
tion probability p(e) ∀e ∈ E for all future time steps. More-
over, every edge e ∈ Eu has an f-value (which represents
a sampled instance of u(e) and is unknown apriori), where
f : Eu → {0, 1}. f(e) = 1 and 0 determines whether the
uncertain edge exists with certainty in the real graph or not,
respectively. For e ∈ Eu, the influence probability (given by
p(e) ∗ u(e)) is contingent on the edge’s actual existence.

Recall that we need a policy for selecting nodes for suc-
cessive interventions in order to maximize the influence
spread in the network. Nodes selected for interventions are
assumed to be influenced (h(v) = 1) post-intervention with
certainty. However, there is uncertainty in how the h-value
of the unselected nodes changes in between successive in-
terventions. For example, in Figure 1, if we choose nodes
B and D for the 1st intervention, we are uncertain whether
nodes C and E (adjacent to nodes B and D) are influenced
before nodes for the 2nd intervention are chosen. We now
provide a POMDP mapping onto our problem.

States Consider strict total orders <v and <u on the sets
V and Eu respectively. A state S = 〈H,F 〉 is a 2-tuple.
H = 〈h(v1), h(v2), ..., h(vi), ...〉 ∀i ∈ 1..n is a binary tuple
representing the h-values of all nodes (ordered by<v). Also,
F = 〈f(e1), f(e2), ..., f(ei), ...〉 ∀i ∈ 1..m is a binary tuple
representing the f-values of all uncertain edges (ordered by
<u) in the graph. Our POMDP has 2n+m states.

Actions Every α ⊂ V s.t. |α| = k (k is the number of
nodes selected per intervention) is a POMDP action. For ex-
ample, in Figure 1, one possible action is {A,B} (assuming
k = 2). Our POMDP has

(
n
k

)
actions.

Observations We assume that we can “observe” the f-
values of uncertain edges outgoing from the nodes chosen
in an action. This translates to asking intervention partici-
pants about their 1-hop social circles, which is within the
agency’s capacity (Rice et al. 2012). For example, by taking
action {B,C} in Figure 1, the f-values of edge 4 and 5 (i.e.,
uncertain edges in the 1-hop social circle of nodes B and C)



would be observed. Consider Θ(α) = {e | e = (a,b) s.t. a ∈
α ∧ e ∈ Eu} ∀α ∈ A, which represents the ordered tuple of
uncertain edges that are observed when the agency takes ac-
tion α. Then, our POMDP observation upon taking action α
is defined as o(α) = 〈f(e1), f(e2), ..., f(ei)〉 ∀ei ∈ Θ(α),
i.e., the f-values of the observed uncertain edges.

Transition Probabilities Consider states s = 〈H,F 〉 and
s′ = 〈H ′, F ′〉 and action α ∈ A. In order for T (s, α, s′) to
be non zero, first we require that F ′[i] = F [i] ∀ i s.t. ei /∈
Θ(α) i.e., uncertain edges which were not observed will not
change their f-values. Second, H ′[i] = H[i] ∀ i s.t. H[i] =
1. Finally, H ′[i] = 1 ∀ i s.t. vi ∈ α. The last two condi-
tions imply that all nodes with h(v) = 1 in state s, and
all nodes selected by action α will remain influenced in fi-
nal state s′. If any of these three conditions is not true, then
T (s, α, s′) = 0. Otherwise, a heuristic method to calculate
T (s, α, s′) is described next (as accurate calculation needs
to consider all possible paths in a graph through which in-
fluence could spread, which is O(n!) in the worst case).

Transition Probability Heuristic Consider a weighted
adjacency matrix for graph Gσ (created from graph G) s.t.

Gσ(i, j) =


1 if (i, j) ∈ Ec ∧ (H[i] = 1 ∨ α[i] = 1)

u(i, j) if (i, j) ∈ Eu ∧ (H[i] = 1 ∨ α[i] = 1)

0 if otherwise.
(1)

Gσ is a pruned graph which contains only edges outgoing
from influenced nodes. We prune the graph because influ-
ence can only spread through edges which are outgoing from
influenced nodes. Note that Gσ does not consider influence
spreading along a path consisting of more than one uninflu-
enced node, as this event is highly unlikely in the limited
time in between successive interventions. However, nodes
connected to a chain (of arbitrary length) of influenced nodes
get influenced more easily due to reinforced efforts of all in-
fluenced nodes in the chain. We use Gσ to construct a diffu-
sion vector D, the ith element of which gives us a measure
of the probability of the ith node to get influenced. This dif-
fusion vector D is then used to estimate T (s, α, s′).

A known result states that if G is a graph’s adjacency ma-
trix, then Gr(i, j) (Gr = G multiplied r times) gives the
number of paths of length r between nodes i and j (Dies-
tel 2005). Additionally, note that if all edges ei in a path of
length r have different propagation probabilities p(ei) ∀ i ∈
[1, r], the probability of influence spreading between two
nodes connected through this path of length r is Πr

i=1p(ei).
For simplicity, we assume the same p(e) ∀e ∈ E; hence, the
probability of influence spreading becomes pr. Using these
results, we construct diffusion vector D:

D(p,T)nx1 =
∑

t∈[1,T]

( (
pGσ

)t ∗ 1nx1

)
(2)

Here, D(p,T) is a column vector of size nx1, p is the
constant propagation probability on the edges, T is a vari-
able parameter that measures number of hops considered for
influence spread (higher values of T yields more accurate
D(p,T) but increases the runtime2), 1nx1 is a nx1 column

2See https://www.dropbox.com/s/sh8pkiavlyk3zha/appendix.pdf
for more details and proofs.

vector of 1’s and Gσ is the transpose of Gσ . This formula-
tion is similar to diffusion centrality (Banerjee et al. 2013)
where they calculate influencing power of nodes. However,
we calculate power of nodes to get influenced (by usingGσ).

Proposition 1. Di, the ith element of D(p,T)nx1, upon
normalization, gives an approximate probability of the ith
graph node to get influenced in the next round.2

Consider the set4 = {i | H ′[i] = 1 ∧H[i] = 0 ∧ α[i] =
0}, which represents nodes which were uninfluenced in the
initial state s (H[i] = 0) and which were not selected in
the action (α[i] = 0), but got influenced by other nodes
in the final state s′ (H ′[i] = 1). Similarly, consider the set
Φ = {j | H ′[j] = 0 ∧ H[j] = 0 ∧ α[j] = 0}, which rep-
resents nodes which were not influenced even in the final
state s′ (H ′[j] = 0). Using Di values, we can now calcu-
late T (s, α, s′) = Πi∈4DiΠj∈Φ(1−Dj), i.e., we multiply
influence probabilities Di for nodes which are influenced in
state s′, along with probabilities of not getting influenced
(1−Dj) for nodes which are not influenced in state s′.

Observation Probabilities Given action α ∈ A and
final state s′ = 〈H ′, F ′〉, there exists an observation
o(α, s′), which is uniquely determined by both α and s′.
More formally, o(α, s′) = {F ′[i] ∀ei ∈ Θ(α)}. Therefore,
Ω(o, α, s′) = 1 if o = o(α, s′) and 0 otherwise.

Rewards The reward of taking action α ∈ A in state
s = 〈H,F 〉 is given asR(s, α) =

∑
s′∈S T (s, α, s′)(‖s′‖−

‖s‖), where ‖s′‖ is the number of influenced nodes in s′.
This gives the expected number of new influenced nodes.

PSINET
Initial experiments with the ZMDP solver (Smith 2013)
showed that state-of-the-art offline POMDP planners ran out
of memory on 10 node graphs. Thus, we focused on online
planning algorithms and tried using POMCP (Silver and Ve-
ness 2010), a state-of-the-art online POMDP solver which
relies on Monte-Carlo (MC) tree search and rollout strate-
gies to come up with solutions quickly. However, it keeps
the entire search tree over sampled histories in memory, dis-
abling scale-up to the problems of interest in this paper.
Hence, we propose a MC based online planner that utilizes
the QMDP heuristic and eliminates this search tree.

POMDP black box simulator MC sampling based plan-
ners approximate the value function for a belief by the av-
erage value of n (say) MC simulations starting from states
sampled from the current belief state. Such approaches
depend on a POMDP black box simulator Γ(st, αt) ∼
(st+1, ot+1, rt+1) which generates the state, observation and
reward at time t + 1, given the state and action at time
t, in accordance with the POMDP dynamics. In Γ, each
edge e ∈ Θ(αt) is sampled according to u(e) to generate
ot+1. Similarly, rt+1 = ‖st+1‖ − ‖st‖, i.e., the number
of new influenced nodes in st+1. To generate st+1, consider
st+1 = 〈H ′, F ′〉 and st = 〈H,F 〉. First, D(p,T)nx1 is
normalized to get probabilities of nodes getting influenced.
Let K = {H[i] = 1 ∨ αt[i] = 1} represent the set of nodes
which are certainly influenced. Then, H ′[i] = 1 ∀i ∈ K and
for all other i, H ′[i] is sampled according to D(p,T)nx1[i].
Also, F ′[i] = F [i] ∀i /∈ Θ(αt) and F ′[i] = ot+1[i] ∀i ∈



Algorithm 1: PSINET
Input: Belief state β, Uncertain graph G
Output: Best Action κ

1 Sample graph to get ∆ different instances;
2 for δ ∈ ∆ do
3 FindBestAction(δ, αδ, β);

4 κ = V oteForBestAction(∆, α)
5 UpdateBeliefState(κ, β);
6 return κ;

Θ(αt). Note that st+1 calculated this way represents a state
sampled according to T (st, αt, st+1).

QMDP It is a well known approximate offline plan-
ner, and it relies on Q(s, a) values, which represents the
value of taking action a in state s. It precomputes these
Q(s, a) values for every (s, a) pair by approximating them
by the future expected reward obtainable if the environ-
ment is fully observable (Littman, Cassandra, and Kael-
bling 1995). Finally, QMDP’s approximate policy Π is given
by Π(b) = arg maxa

∑
sQ(s, a)b(s) for belief b. Our in-

tractable POMDP state/action spaces make it infeasible to
calculate Q(s, a) ∀ (s, a). Thus, we propose to use a MC
sampling based online variant of QMDP in PSINET.

Algorithm Flow Algorithm 1 shows the flow of PSINET.
In Step 1, we randomly sample all e ∈ Eu in G (according
to u(e)) to get ∆ different graph instances. Each of these
instances is a different POMDP as the h-values of nodes are
still partially observable. Since each of these instances fixes
f(e) ∀e ∈ Eu, the belief β is represented as an un-weighted
particle filter where each particle is a tuple of h-values of all
nodes. This belief is shared across all instantiated POMDPs.
For every graph instance δ ∈ ∆, we find the best action αδ
in graph δ, for the current belief β in step 3. In step 4, we
find the best action κ for belief β, over all δ ∈ ∆ by voting
amongst all the actions chosen by δ ∈ ∆. Then, in step 5,
we update the belief state based on the chosen action κ and
the current belief β. PSINET can again be used to find the
best action for this or any future updated belief states. We
now detail the steps in Algorithm 1.

Sampling Graphs In Step 1, we randomly keep or re-
move uncertain edges to create one graph instance. As a sin-
gle instance might not represent the real network well, we
instantiate the graph ∆ times and use each of these instances
to vote for the best action to be taken.

FindBestAction Step 3 uses Algorithm 2, which finds the
best action for a single network instance, and works sim-
ilarly for all instances. For each instance, we find the ac-
tion which maximizes long term rewards averaged across n
(we use n = 28) MC simulations starting from states (par-
ticles) sampled from the current belief β. Each MC simula-
tion samples a particle from β and chooses an action to take
(choice of action is explained later). Then, upon taking this
action, we follow a uniform random rollout policy (until ei-
ther termination, i.e., all nodes get influenced, or the horizon
is breached) to find the long term reward, which we get by
taking the “selected” action. This reward from each MC sim-
ulation is analogous to a Q(s, a) estimate. Finally, we pick
the action with the maximum average reward.

Multi-Armed Bandit We can only calculate Q(s, a) for
a select set of actions (due to our intractable action space).
To choose these actions, we use a UCT implementation of a
multi-armed bandit to select actions, with each bandit arm
being one possible action. Every time we sample a new
state from the belief, we run UCT, which returns the action
which maximizes this quantity: Υ(s, a) = QMC(s, a) +

c0

√
logN(s)
N(s,a) . Here, QMC(s, a) is the running average of

Q(s,a) values across all MC simulations run so far. N(s)
is number of times state s has been sampled from the be-
lief. N(s, a) is number of times action a has been chosen in
state s and c0 is a constant which determines the exploration-
exploitation tradeoff for UCT. High c0 values make UCT
choose rarely tried actions more frequently, and low c0 val-
ues make UCT select actions having high QMC(s, a) to get
an even better Q(s, a) estimate. Thus, in every MC simula-
tion, UCT strategically chooses which action to take, after
which we run the rollout policy to get the long term reward.

Voting Mechanisms In Step 4, each network instance
votes for the best action (found using Step 3) for the uncer-
tain graph and the action with the highest votes is chosen.
We propose three different voting schemes:

(a)PSINET-S Each instance’s vote gets equal weight.
(b)PSINET-W Every instance’s vote gets weighted dif-

ferently. The instance which removes x uncertain edges has
a vote weight of W (x) = x ∀x ≤ m/2 and W (x) =
m−x ∀x > m/2. This weighting scheme approximates the
probabilities of occurrences of real world events by giving
low weights to instances which removes either too few or
too many uncertain edges, since those events are less likely
to occur. Instances which remove m/2 uncertain edges get
the highest weight, since that event is most likely.

(c)PSINET-C Given a ranking over actions from each
instance, the Copeland rule makes pairwise comparisons
among all actions, and picks the one preferred by a ma-
jority of instances over the highest number of other actions
(Pomerol and Barba-Romero 2000). Algorithm 2 is run D
times for each instance to generate a partial ranking.

Belief State Update Recall that every MC simulation
samples a particle from the belief, after which UCT chooses
an action. Upon taking this action, some random state (parti-
cle) is reached using the transition probability heuristic. This
particle is stored, indexed by the action taken to reach it. Fi-
nally, when all simulations are done, corresponding to every
action α that was tried during the simulations, there will be
a set of particles that were encountered when we took action
α in that belief. The particle set corresponding to the action
that we finally choose, forms our next belief state.

4 Experimental Evaluation
We provide two sets of results. First, we show results on
artificial networks to understand our algorithms’ properties
on abstract settings, and to gain insights on a range of net-
works. Next, we show results on the two real world homeless
youth networks that we had access to. In all experiments,
we select 2 nodes per round and average over 20 runs, un-
less otherwise stated. PSINET-(S and W) use 20 network
instances and PSINET-C uses 5 network instances (each in-



Algorithm 2: FindBestAction
Input: Graph instance δ, belief β, N simulations
Output: Best Action αδ

1 Initialize counter = 0;
2 while counter + + < N do
3 s = SampleStartStateFromBelief(β);
4 a = UCT MultiArmedBandit(s);
5 {s′, r} = SimulateRolloutPolicy(s, a);

6 αδ = action with max average reward;
7 return αδ;

stance finds its best action 5 times) in all experiments, unless
otherwise stated. The propagation and existence probabil-
ity values were set to 0.5 in all experiments (based on find-
ings by (Kelly et al. 1997)), although we relax this assump-
tion later in the section. In this section, a 〈X,Y, Z〉 network
refers to a network with X nodes, Y certain and Z uncer-
tain edges. We use a metric of “indirect influence spread”
(IIS) throughout this section, which is number of nodes “in-
directly” influenced by intervention participants. For exam-
ple, on a 30 node network, by selecting 2 nodes each for
10 interventions (horizon), 20 nodes (a lower bound for any
strategy) are influenced with certainty. However, the total
number of influenced nodes might be 26 (say) and thus, the
IIS is 6. All comparison results are statistically significant
under bootstrap-t (α = 0.05).
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Figure 2: Comparison on BTER graphs

Artificial networks First, we compare all algorithms on
Block Two-Level Erdos-Renyi (BTER) networks (having
degree distribution Xd ∝ d−1.2, where Xd is number of
nodes of degree d) of several sizes, as they accurately cap-
ture observable properties of real-world social networks (Se-
shadhri, Kolda, and Pinar 2012). Figures 2(a) and 2(b) show
solution quality and runtimes (respectively) of Degree Cen-
trality (DC) (which selects nodes based on their out-degrees,
and e ∈ Eu add u(e) to node degrees), POMCP and
PSINET-(S,W and C). We choose DC as our baseline as it is
the current modus operandi of agencies working with home-
less youth. X-axis is number of network nodes and Y-axis
shows IIS across varying horizons (number of interventions)
in Figure 2(a) and log of runtime (in seconds) (Figure 2(b)).

Figure 2(a) shows that all POMDP based algorithms beat
DC by∼60%, which shows the value of our POMDP model.
Further, it shows that PSINET-W beats PSINET-(S and C).
Also, POMCP runs out of memory on 30 node graphs. Fig-
ure 2(b) shows that DC runs quickest (as expected) and all
PSINET variants run in almost the same time. Thus, Figures
2(a) and 2(b) tell us that while DC runs quickest, it provides

the worst solutions. Amongst the POMDP based algorithms,
PSINET-W is the best algorithm that can provide good solu-
tions and can scale up as well. Surprisingly, PSINET-C per-
forms worse than PSINET-(W and S) in terms of solution
quality. Thus, we now focus on PSINET-W.

5

5.5

6

6.5

7

7.5

10 30 50 70 90

In
fl
u
e
n
ce
 S
p
re
a
d

Number of Network Instances

PSINET‐W

(a) Solution Quality

0
200
400
600
800
1000
1200

10 30 50 70 90

R
u
n
ti
m
e
 (
se
cs
)

Number of Network Instances

PSINET‐W

(b) Runtime

Figure 3: Increasing number of graph instances

Having shown the impact of POMDPs, we analyze the im-
pact of increasing network instances (which implies increas-
ing number of votes in our algorithm) on PSINET-W. Fig-
ures 3(a) and 3(b) show solution quality and runtime respec-
tively of PSINET-W with increasing network instances, for
a 〈40, 71, 41〉 BTER network with a horizon of 10. X-axis is
number of network instances and Y-axis shows IIS (Figure
3(a)) and runtime (in seconds) (Figure 3(b)). These figures
show that increasing the number of instances increases IIS
as well as runtime. Thus, a solution quality-runtime tradeoff
exists, which depends on the number of network instances.
Greater number of instances results in better solutions and
slower runtimes and vice versa. However, for 30 vs 70 in-
stances, the gain in solution quality is<5% whereas the run-
time is ∼2X, which shows that increasing instances beyond
30 yields marginal returns.
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Figure 4: Comparison of DC with PSINET-W

Next, we relax our assumptions about propagation (p(e))
probabilities, which were set to 0.5 so far. Figure 4(a) shows
the solution quality, when PSINET-W and DC are solved
with different p(e) values respectively, for a 〈40, 71, 41〉
BTER network with a horizon of 10. X-axis shows p(e) and
Y-axis shows IIS. This figure shows that varying p(e) min-
imally impacts PSINET-W’s improvement over DC, which
shows our algorithms’ robustness to these probability val-
ues (We get similar results upon changing u(e)). In Figure
4(b), we show solution qualities of PSINET-W and DC on a
〈30, 31, 27〉 BTER network (horizon=3) and vary number of
nodes selected per round (K). X-axis shows increasing K,
and Y-axis shows IIS. This figure shows that even for a small
horizon of length 3, which does not give many chances for
influence to spread, PSINET-W significantly beats DC with



increasing K.
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Figure 5: Real world networks

Real world networks Figure 5(a) compares PSINET
variants and DC (horizon = 30) on two real-world so-
cial networks (created by our collaborators through surveys
and interviews of homeless youth frequenting My Friend’s
Place’s) of homeless youth (each of size∼ 〈155, 120, 190〉).
X-axis shows the two networks and Y-axis shows IIS. This
figure clearly shows that all PSINET variants beat DC
on both real world networks by ∼60%, which shows that
PSINET works equally well on real-world networks. Also,
PSINET-W beats PSINET-S, in accordance with previous
results. Above all, this signifies that we could improve the
quality and efficiency of HIV based interventions over the
current modus operandi of agencies by ∼60%.

We now differentiate between the kinds of nodes selected
by DC and PSINET-W for the sample BTER network in Fig-
ure 5(b), which contains nodes segregated into four clusters
(C1 to C4), and node degrees in a cluster are almost equal.
C1 is biggest, with slightly higher node degrees than other
clusters, followed by C2, C3 and C4. DC would first select
all nodes in cluster C1, then all nodes in C2 and so on. Se-
lecting all nodes in a cluster is not “smart”, since selecting
just a few cluster nodes influences all other nodes. PSINET-
W realizes this by looking ahead and spreads more influence
by picking nodes in different clusters each time. For exam-
ple, assuming K=2, PSINET-W picks one node in both C1
and C2, then one node in both C1 and C4, etc.

5 Implementation Challenges & Conclusion
A few implementation challenges need to be solved when
PSINET gets deployed by agencies working with homeless
youth. A computer-based selection procedure for interven-
tion attendees may raise suspicions about invasion of privacy
for these youth. Public awareness campaigns in the agencies
working with this program would help overcome such fears
and to encourage participation. There is also a secondary is-
sue about protection of privacy for the involved youth. Agen-
cies working with homeless youth collect information on
their clients, most of which is not to be shared with third par-
ties, such as researchers etc. We propose deploying PSINET
as a software package that the agencies could use without
providing identifying information to our team.

This paper presents PSINET, a POMDP based decision
support system to select homeless youth for HIV based in-
terventions. Previous work in strategic selection of interven-
tion participants does not handle uncertainties in the social
network’s structure and evolving network state, potentially

causing significant shortcomings in spread of information.
PSINET has the following key novelties: (i) it handles un-
certainties in network structure and evolving network state;
(ii) it addresses these uncertainties by using POMDPs in in-
fluence maximization; and (iii) it provides algorithmic ad-
vances to allow high quality approximate solutions for such
POMDPs. Simulations show that PSINET achieves ∼60%
improvement over the current state-of-the-art. PSINET was
developed in collaboration with My Friend’s Place and is
currently being reviewed by their officials.
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