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ABSTRACT 

 
The introduction of GaSb quantum dots (QDs) within a GaAs single junction solar cell is attracting increasing interest as 

a means of absorbing long wavelength photons to extend the photoresponse and increase the short-circuit current. The 

band alignment in this system is type-II, such that holes are localized within the GaSb QDs but there is no electron 

confinement. Compared to InAs QDs this produces a red-shift of the photoresponse which could increase the short-circuit 

current and improve carrier extraction. GaSb nanostructures grown by molecular beam epitaxy (MBE) tend to 

preferentially form quantum rings (QRs) which are less strained and contain fewer defects than the GaSb QDs, which 

means that they are more suitable for dense stacking in the active region of a solar cell to reduce the accumulation of 

internal strain and enhance light absorption. Here, we report the growth and fabrication of GaAs based p-i-n solar cells 

containing ten layers of GaSb QRs. They show extended long wavelength photoresponse into the near-IR up to 1400 nm 

and enhanced short-circuit current compared to the GaAs control cell due to absorption of low energy photons. Although 

enhancement of the short-circuit current was observed, the thermionic emission of holes was found to be insufficient for 

ideal operation at room temperature. 

 

Keywords: Solar Cells, GaSb, Molecular beam epitaxy, Photoluminescence 

 

1. Introduction 

 
There is currently great worldwide interest in introducing quantum dots (QDs) into solar cells (SCs) to increase the 

photovoltaic efficiency through the absorption of infrared radiation. One approach is the QD intermediate-band solar cell 

(IBSC), which is theoretically predicted to reach efficiencies up to 63%1. Here electrons are optically pumped from the 

valence to the conduction band via the QD intermediate band through the absorption of two photons which are below the 

band gap of the host semiconductor. Another approach is to insert QDs into the GaAs section of a triple junction solar cell 

to extend the absorption spectrum to longer wavelengths and reduce the band gap towards 1 eV to achieve current 

matching2. To date, there have been several reports of InAs/GaAs3, InAs/GaAsN4, InGaAs/GaAs5, InAs/AlGaAs6 and 

InAs/GaAsSb7 QDs. Previously we reported on GaAs SCs containing stacked layers of GaSb/GaAs quantum rings (QRs)  

8, 9, 10. These are unique compared to conventionally grown Stranski-Krastanov (SK) based InAs/GaAs QDs. Firstly, the 

type-II band alignment provides strong hole confinement (600 meV) but no electron confinement, which could improve 

carrier extraction, prevent weakening of the built-in electric field and produce a red-shift of the photoresponse, thus 

increasing the short-circuit current. Secondly the use of GaSb QRs instead of QDs reduces the net strain associated with 

the large lattice mismatch (7.8 %), enabling multiple layers to be grown without generating threading dislocations or 

relaxed QDs. Finally, the incorporation of type-II GaSb QDs/QRs in GaAs has been proposed as a promising system to 

realize an IBSC11. The spatial separation of electron and holes provides an IB closer to the theoretical optimum and reduces 

thermal emission and capture processes. The resultant GaSb/GaAs QR SCs displayed improved efficiency at longer 

wavelengths extending out to 1400 nm, where the 1 sun short-circuit current density (Jsc) was enhanced by nearly 6% 

compared to the GaAs control cell. In this work, we provide a detailed study on the temperature dependent properties of 
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GaSb/GaAs QR SCs and elucidate important new information about the dominant recombination parameters which 

determines their potential and suitability for future concentrator applications.  

 

2. Molecular Beam Epitaxial Growth of GaSb/GaAs Quantum Rings 

 
A QD SC requires multiple layers of QDs in the active region to provide sufficient light absorption. However the large 

mismatch (7.8 %) makes stacking layers of GaSb/GaAs QDs difficult, leading to the formation of relaxed QDs containing 

defects and to the generation of dislocations due to the build-up of internal strain. Further difficulties include strong group-

V As-Sb exchange reactions during the capping procedure which can result in significant ring intermixing and dissolution, 

i.e., the volume of the rings are reduced substantially resulting in a thin GaAsSb layer and weak photoluminescence (PL) 

and photoresponse. The As-Sb exchange also creates a Sb floating layer at the growth surface, which can aggregate into 

further layers of QDs as they are stacked. This creates an inhomogeneous ring distribution where the size and density of 

the QDs increases up the stack, increasing the strain which generates threading dislocations. This problem was overcome 

through the use of a ‘cold-cap’ procedure to grow GaSb QRs rather than QDs12. Here the QDs/QRs are capped at a low 

growth temperature (at 430˚C) which reduces As-Sb exchange and Sb segregation. In the QR structures, Sb is redistributed 

from the centre of the dot towards the edge to stabilize the structure and reduce the net strain. Hence GaSb QRs contain 

fewer intrinsic defects than the GaSb QDs, making it possible to stack multiple layers in the solar cell to reduce the 

accumulation of internal strain. Also, despite the type- II band alignment, the reduced strain around the QR allows the 

electron to reside near or inside the QR in close proximity to the confined holes which increases the exciton oscillator 

strength required for strong light absorption. 

 

3. Solar Cell Growth and Fabrication 

 
SCs containing GaSb QRs were grown using a VG-V80H MBE reactor. A schematic of the structure is shown in figure 1a 

and an energy band diagram in figure 1b. A 3 µm thick n-type GaAs:Te layer was grown first at 570˚C with a doping 

density of 1017cm-3. This was followed by an intrinsic region containing ten GaSb QR sheets, a 0.5 µm p-type GaAs:Be 

layer with doping density of 2×1018 cm-3, followed by a 30 nm Al0.8Ga0.2As window layer and a 40 nm GaAs cap. A p-i-n 

GaAs control cell was also grown with a 400 nm intrinsic region which contained no QRs. The QRs were grown using the 

following procedure: the temperature was reduced under an As flux to 480˚C, then the GaAs surface was exposed to an 

antimony flux for 30 seconds creating an efficient As-Sb exchange reaction to form a thin ~ 0.5 monolayer (ML) of GaSb 

layer. Following the exchange procedure, GaSb is directly deposited using a growth rate of 0.3 ML/s, producing nominally 

2.1 ML of GaSb. The formation of the QRs was detected by a change in the RHEED pattern from streaky to spotty after 

the deposition of approximately 1.3 ML of GaSb. The QRs have approximate sizes of 23 nm outer diameter, 10 nm inner 

diameter and 1.7 nm height (figure 1c). Excellent structural quality is observed in each sample with no threading 

dislocations. The ring density per layer is approximately 1×1010 rings/cm2 with no significant variation in size or density 

in the separate layers. The temperature was then reduced to 430˚C under an Sb flux and capped with a 5 nm thin GaAs 

layer. The temperature was then increased to 570˚C under an As flux to grow the GaAs spacer layers (35 nm). The 

structures were processed into 3.5 mm diameter circular SCs with anti-reflection coatings (figures 1d and 1e). The spectral 

response of the SCs was measured using a 100 W tungsten-halogen light source through a ¼ metre monochromator. Current 

density (J) - voltage (V) curves were performed under 1 sun illumination using a 150 W Oriel solar simulator.  

 

 

4. Photoluminescence from stacked layers of GaSb/GaAs rings 

 
Figure 2a shows the power dependent 4 K PL spectra from samples containing ten stacked layers of GaSb QRs. Two peaks 

can be clearly identified, one at an energy of 1.32 eV from the wetting layer peak and a peak around 1.00 eV corresponding 

to recombination of holes localized in the GaSb QRs with electrons in the surrounding GaAs matrix. Figure 2(b) plots the 

change in emission energy over six orders of magnitude of laser power. In both cases a strong blueshift of the QR emission 

peak is observed. Such blueshifts are characteristic features of type-II systems and are attributed to a combination of band 

bending and capacitive Coulomb charging although the latter is more important in GaSb/GaAs QDs and QRs13. We note 

that the peak emission energies observed in figure 2 predominately correspond to emission from the QR heavy-hole ground 

state. Recombination from excited heavy-hole states and light-hole states are likely to be present in the PL, but not resolved.  



 

 

 
Figure 1 (a) Schematic of the GaSb/GaAs QR solar cell structure grown by MBE. (b) Schematic energy band-diagram of the structure. 

Absorption of photons with energy below the band gap of GaAs excites electrons from the discrete states in the GaSb QRs into the GaAs 

matrix. The photogenerated electron hole pairs are then separated under the influence of the built in electric field.  (c) Transmission 

electron microscopy (TEM) of a single QR. (d) Image of the fabricated (3.5 mm diameter) solar cell mounted on a T0-5 header. (e) 

Image taken using an optical microscope showing the circular metal grid design. 

 

 
 

Figure 2: (a) Power Dependent Photoluminescence spectra measured at 4.2 K where the transitions corresponding to the GaSb/GaAs 

quantum rings and wetting layer are identified. (b) QR PL peak energy as a function of laser power. 
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Figure 3 shows the temperature dependent PL spectra using high laser power (700 mW). The WL peak quickly quenches 

with temperature whilst the GaSb QRs exhibit strong PL emission up to room temperature, confirming their integrity and 

structural perfection. Figure 3a is an Arrhenius plot of the same data from which an activation energy of 240 meV was 

obtained. This energy is attributed to the leakage of holes out of the QR via the WL and is considered to be the main 

process responsible for the quenching of the luminescence. 

  

 
 
Figure 3: (a) Temperature Dependent Photoluminescence spectra (b) Arrhenius plot from which an activation energy of 240 meV is 

obtained.  

 

 

5. GaSb/GaAs Quantum Ring Solar Cells 

 
Figure 4a shows the room temperature dark current density (J) versus voltage (V) characteristics measured from the QR 

SCs (solid lines). The linear parts of the dark J-V curves are fitted (dashed lines) using the standard diode equation 

 

                                                                         𝐽 = 𝐽0 (𝑒𝑥𝑝 (
𝑞(𝑉−𝐼𝑅𝑠

𝑛𝑘𝑇
) − 1)     (1) 

where J0 is the reverse saturation current, q the elementary charge, Rs the series resistance, n the ideality factor, k the 

Boltzmann constant and T the temperature. The fitting parameters are listed in Table I. The reverse saturation current for 

the GaAs control is 7.3×10-12 A/cm2 and the ideality factor is 1.7, indicating that generation/recombination current 

dominates. An increase in the dark and reverse saturation currents is observed in the QR solar cells due to the introduction 

of additional recombination paths via the QR states. For the GaAs control cell unusual humps are observed at low voltage 

(0 - 0.5 V) which cannot be fitted using the standard diode equation. This behavior has been observed previously in GaAs14 

and silicon SCs and was attributed to a high edge/surface recombination current. This is in contrast to the dark J-V curves 

from the QR SCs where no such humps are observed. This indicates that similar to InGaAs/InAs15 QDs the use of 

GaSb/GaAs QRs enables one to suppress lateral current flow to the device perimeter thereby reducing edge recombination, 

making QR highly suitable for small area concentrator solar cells. Figure 4b shows the illuminated 1 sun IV characteristics 

for the QR and GaAs control solar cells. Table II lists the sample details, open circuit voltage (Voc), short-circuit current 

(Jsc), fill factor (FF) and efficiency for each SC. The short-circuit current density (Jsc) is enhanced by 5.9 % in the QR cell 

due to the additional absorption from sub-bandgap photon absorption. However, a reduced open-circuit voltage (Voc) was 

observed, which is caused by the increased recombination current via the QRs as indicated by the dark current 

characteristics.   
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Figure 4a.  Room temperature dark current density (J) versus forward bias (V) characteristics measured from the solar cells (solid lines) 

and fitted (dashed lines) using the standard diode equation. The non-ideal behavior for the GaAs control cell at low bias (<0.6 V) is 

characteristic of surface recombination which is suppressed in the QR solar cells. The tail-off at high voltages is due to series resistance. 

Figure 4b. Current density-voltage curves for the GaAs control and GaSb/GaAs QR solar cells obtained using 1 sun AM 1.5 illumination. 

The short-circuit current is enhanced by 5.9 % in the solar cell containing 10 layers of QRs. 

 

 
 

 

Table I: Dark I-V characteristics. The table indicates the fitting parameters: J0 (reverse saturation current density), n (the ideality factor) 

and Rs the series resistance. Table II: Measured 1 sun solar cell characteristics including FF (fill factor), Jsc (the short-circuit current 

density), Voc (open-circuit voltage) and efficiency. 

 

 

Figure 5 shows the temperature dependence of the short-circuit current density (JSC) and open-circuit voltage (VOC) under 

19 suns. Both the QR sample and the control sample show a constant increase of JSC with increasing temperature, resulting 

from the increased photo-absorption associated with the GaAs bandgap narrowing. At low temperature (100 K), JSC for 

the GaSb QR cell is lower than that of the GaAs control. However, JSC starts to increase rapidly above 180 K, and surpasses 

the GaAs control cell above 250 K. This behaviour is consistent with the observation that the photo-current due to sub-

bandgap photon absorption is dominated by thermionic emission of holes. At the same time, Voc for the GaSb QR cell 

shows a slight change of slope, resulting in a net reduction of the efficiency. Figure 6 shows the external quantum efficiency 

(EQE) for the SCs (without anti-reflection (AR) coatings) at 100 and 290 K. Although the  
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Figure 5: Temperature dependent device characteristics measured from the devices: short-circuit current density (Jsc), open-circuit 

voltage (Voc). 

 

 

 
 

Figure 6 EQE for the GaAs control and GaSb QR solar cells at temperatures of (a) 100 K and (b) 290 K. 

 

 

QR solar cells show enhanced absorption below the GaAs bandgap, the EQE is substantially reduced above the band-gap 

at low temperatures. Here photo excited minority carriers (holes) which are generated in the n-base region diffuse towards 

the p-GaAs top via the intrinsic region. Due to the large valence band offset at the GaAs/GaSb QR interface, some of these 

holes become trapped by the QRs and recombine decreasing the open-circuit voltage and photocurrent. At room 

temperature, there is a smaller reduction in the above band-gap EQE consistent with increased thermal hole emission as 

also evident from the Jsc increase. However, this decrease suggests that the thermionic hole emission might still be 
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insufficient at room temperature. Therefore in order to further improve the solar cell performance, hole capture by QRs 

must be reduced, and/or the hole extraction rate from the QRs must be increased.  

 

6. Conclusion 
 

In summary, we have reported the successful MBE growth and fabrication of ten stacked layers of type II GaSb/GaAs QR 

SCs which show improved efficiency at longer wavelengths extending into the near-infrared up to 1400 nm. A rapid 

increase of Jsc was observed above 180 K due to the increase of the thermionic emission of holes. At room temperature a 

5.9 % increase in short-circuit current over the GaAs control cell was observed at 1 sun. A decrease in the open-circuit 

voltage to around 0.6 V is observed due to additional recombination paths introduced via the QRs.  
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