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Abstract: A copper-tolerant phenanthrene (PHE)-degrading bacterium, 

strain Sphingobium sp. PHE-1, was newly isolated from the activated 

sludge in a wastewater treatment plant. Two key genes, ahdA1b-1 encoding 

polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHDɑ) 

and xyLE encoding catechol-2,3-dioxygenase (C23O), involved in the PHE 

metabolism by strain PHE-1 were identified. The PAH-RHD gene cluster 

showed 96% identity with the same cluster of Sphingomonas sp. P2. Our 

results indicated the induced transcription of xylE and ahdA1b-1 genes by 

PHE, simultaneously promoted by Cu(II). For the first time, high 

concentration of Cu(II) is found to encourage the expression of PAH-RHDɑ 

and C23O genes during PHE degradation. Applying Sphingomonas PHE-1 in 

PHE-contaminated soils for bioaugmentation, the abundance of xylE gene 

was increased by the planting of ryegrass and the presence of Cu(II), 

which, in turn, benefited ryegrass growth. The best performance of PHE 

degradation and the highest abundance of xylE genes occurred in PHE-

copper co-contaminated soils planted with ryegrass. 
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Dear Prof. Xing 

Thank you very much for the processing and considering our manuscript entitled 

“Characterisation of the phenanthrene degradation-related genes and degrading ability 

of a newly isolated copper-tolerant bacterium” (ENVPOL-D-16-01549) to Journal of 

Environmental Pollution for possible publication after a major revision. We have 

seriously considered the reviewers’ comments and made the responsive 

correction/modification according to the reviewers’ and editor’s comments, and the 

response was seen in the following. The English in this document has been checked 

by at least two professional editors, both native speakers of English. For a certificate, 

please see:   

http://www.textcheck.com/certificate/NeUUhK 

The present study investigated a newly isolated bacterium exhibiting high PHE 

biodegradability and copper tolerance, and the potential application in bioremediation 

of PHE-copper-co-contaminated soil. The genes encoding polycyclic aromatic 

hydrocarbon ring-hydroxylating dioxygenase (PAH-RHDɑ) and 

catechol-2,3-dioxygenase (C23O), and the PAH-RHD gene cluster involved in the 
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PHE degradation by strain PHE-1 were identified. The expression of PAH-RHDɑ and 

C23O genes has been reported to be stimulated by copper at a high concentration for 

the first time. When strain PHE-1 was applied to PHE-contaminated soil, the activity 

of C23O gene was improved by the planting of ryegrass and the presence of copper. 

The best performance of PHE degradation and the highest number of C23O gene 

copies occurred in PHE-copper-co-contaminated soil planted with ryegrass. The 

findings expand our knowledge on the microbial resource for bioremediation, and will 

be of interest for a wide range of researchers of environmental microbiology.  

 

I would be very grateful if you could let me know the results of the review process in 

the near future. Thank you very much for your help. I am looking forward to hearing 

from you soon.  

 

 

Responses to reviewers and editor: 

Editor: 

Comment: 

Please see below the referees' comments on your manuscript. As you can see, the 

reviewers have major concerns about your manuscript, for example, more 

experiments need to be designed to verify the conclusion that PHE-1 possessed 

powerful PHE biodegradability, even better than that reported by other researchers; 

some major reviews on biodegradation of PAHs need to be referred and included; the 

data discussion needs to be strengthened; and the language in this manuscript needs to 

be significantly improved. 

I concur with the reviewers. Your manuscript is not suitable for publication in its 

present form. It needs to be carefully revised and likely reviewed again before a final 

decision can be made on its suitability for publication in Environmental Pollution. 

Response: 

The authors would like to thank the efforts of the editor on the comments and have 

tried the best to correct the mistakes and modify the whole manuscript. The language 



has been checked by at least two professional editors, both native speakers of English. 

All the corrections in accordance with reviewers’ and editor’s comments are marked 

with yellow color. For a certificate, please see:   

http://www.textcheck.com/certificate/NeUUhK 

 

Reviewer #1: 

 

Comment: 

Reviewer #1: There are some innovation points in this study. Firstly, although many 

species of PAH-degrading bacteria have been isolated from different environments, 

but in most of these species, only their PAH-degrading ability was revealed, and little 

is known about whether they can degrade PAHs when heavy metals are also present. 

This study firstly found that high level Cu2+ can promote the expression of 

PAH-RHDɑ and C23O genes. Secondly, in previous studies, the combination of 

ryegrass and microorganisms performed well in the biodegradation of soil PAHs. 

However, limited information is available on the influence of ryegrass planting in the 

microbial degradation of organic pollutants when heavy metals are also present. This 

research gave answers for above questions. However, there are some details that 

needed to affirm. For example, the researcher said that they found a new bacterium, 

but 16S rRNA gene sequencing showed 99% identity with the nucleotide sequences of 

the Sphingobium abikonense strain NBRC 16140 (NR258 113839.1) and so on. We 

know that if 16S rRNA gene sequencing showed 95% or lower identity with the 

nucleotide sequences of known strains, so that we cannot call the bacterium in this 

study a "new" bacterium. Then, the results indicate that PHE-1 possessed powerful 

PHE biodegradability, even better than other researchers. I think the statement is not 

rigorous, for example, in those studies, the conditions of culture are different. More 

experiments should be designed to verify the conclusion. 

Response: 

Thank you for the comments. We are sorry for the mis-presentation and this strain is a 

newly isolated bacterium from the active sludge. We have revised the first point of 



highlight according to the comment, please see highlights in the manuscript.  

The sentences about the PHE biodegradability of the isolated Sphingomonas PHE-1 

were revised according to the comments. Its PHE biodegradability was compared with 

other strains with the similar conditions of culture. Besides, we also tested its ability 

in the artificial PHE-copper co-contaminated soils. Please see Lines 281-288.  

 

Specific comments: 

Comment: 

1. L22: the "a" is not suitable here, please check. 

Response: 

Thank you for the comments, the "a" has been deleted from the sentence. Please see 

Line 25 in the abstract. 

 

Comment: 

2. L25:"has" needs to be revised to "have", please check. 

Response: 

Thank you for the comments. The "has" is revised to "have" and we have also 

improved the language quality by editing services. Please see Lines 26-29. 

 

Comment: 

3. L146: "first" need to revised to " firstly" ，

some words of the same category in this issue should pay attention to also. 

Response: 

Thank you for the comments. The author has changed "first" to “firstly”, and the 

words of the same category are also revised according to the comments, please see 

Lines 165-174 in the manuscript. 

 

Comment: 

4. L149: the punctuation "," is not suitable here, please check the whole manuscript. 

Response: 



Thanks a lot for the comments. The authors have checked the whole manuscript and 

all the punctuation "," in similar situation are deleted in accordance with the 

comments. 

 

Comment: 

5. L173: as per the manufacturer's instructions? Please use right expression. 

Response: 

The sentence is revised as “16S rRNA genes were amplified following the 

manufacturer’s instructions”. Please see Lines 188-189 in the manuscript. 

 

Comment: 

6. When refer to heavy metal copper, writing it like "Cu", it not very standard. 

Response: 

Thank you for the comments. We have checked the whole manuscript, all the "Cu" 

were modified to Cu(II) to express copper. 

 

Comment: 

7. Line211-216, why only xylE was analyzed in soil, ahdA1b-1 analysis was not cond

ucted in soil experiment. 

Response: 

One of the key challenges in soil bioaugmentation is to encourage the growth and 

activities of the allochthonous strains, and this work tested the activities of strain 

PHE-1 in soils by analyzing the xylE gene because of its higher specificity than 

ahdA1b-1 gene. The results of this study showed that xylE and ahdA1b-1 of strain 

PHE-1 share 95% and 99% similarity with the known genes in nucleotide sequence 

level respectively. The author has modified the manuscript to clarify this point, please 

see Lines 466-468 in the manuscript. 

 

Comment: 

8. Line214 please indicate what kind of plasmid was used. 



Response: 

Thank you for the comments. The plasmid was constructed with the vector 

pEASY-T1 and xylE fragment. The author has revised the sentence for a better 

expression. See Lines 232-233 in the manuscript.   

 

Comment: 

9. L359: the "a" is not suitable here, please check. 

Response: 

Thank you for the comments. The "a" has been changed to “the”. See line 379. 

 

Comment: 

10. Fig 2A, the caption of the Fig is wrong, it should be the effect of incubation time o

n the xylE transcription. The same for Fig 4A. 

Response: 

Thank you for the comments. We have revised the captions of the two figures 

according to the review’s comments. Please see Fig 2A and Fig 4A. 

 

Comment: 

11. Line 167-171, the cultivation experiment should be introduced separately, but not i

n section of 2.2.3; on the contrary, analysis method of qPCR should be introduce in an

other section. 

Response: 

Thank you for the comments. The cultivation experiment and the analysis method of 

qPCR were separated according to the comments. The expression about the 

cultivation experiment was moved in Lines 132-138 and the analysis of qPCR was 

moved in Lines 186-204, respectively.  

 

Comment: 

12. line299-320 should be put after line346; lin388-408 should be moved to before 

line349. 



Response: 

Thank you for the comments. The author modified these sections, and the overall 

structure of the manuscript was revised according to the comments. Please see Lines 

358-374 and Lines 405-438 in the revised version.  

 

Comment: 

13. line 321-323, the meaning of the sentence is not clear. 

Response: 

It was often observed that the transcription of some functional genes was induced by 

the addition of specific substance. Here, we aimed to investigate how the transcription 

of C23O gene was affected by the addition of PHE. Thus the copies of xylE gene in 

samples with PHE as the sole carbon source were analyzed, compared to the samples 

using glucose only as control, to test the inductivity of xylE transcription by PHE 

addition. The author has revised the sentence for clearer expression. Please see Lines 

328-331 in the manuscript. 

 

Comment: 

14. The reason why Cu was selected should be further explained and mechanism 

should be further illustrated.  

Response: 

Thanks for the comments. The manuscript has been carefully modified to illustrate the 

reason copper was selected both in introduction, results and discussion, besides, the 

mechanism of copper on bacteria and gene expression was also elucidated in the 

discussion section. Please see Lines 48-52, 299-304 and 344-352 in the manuscript.  

 

Comment: 

15. Line409, it should be 3.5 

Response: 

Thanks for the comments and it was fixed in the revised version. 

 



Comment: 

16. Statistic analysis results should be marked in the respective figs 

Response: 

For all the relevant figures, small letters (a–e), standing for statistical significance at 

the 0.05 level with the LSD test, were used to illustrate the statistical analysis results 

between treatments, please see the figures.  

 

Comment: 

17. Fig 3 in the fig P1 should be changed to P2. 

Response: 

Sorry for the mistake, and we have changed P1 to P2 in the revised version, please see 

Figure 3. 

 

Comment: 

18. in Fig 7, the reason of the effect of ryegrass planting on xylE copies should further

 discussed. 

Thanks for the comments. We have carefully revised the manuscript, with more 

discussion on the explanation about the effect of ryegrass planting on xylE copies 

according to the comments, please see Lines 463-465 and 473-487 in the manuscript.  

 

Reviewer #2:   

Comment: 

1. There are spelling and grammatical mistakes at many places (e.g. replace 'highly' b

y 'high'; correct spelling of biodegradability in highlight 1; Line 25-replace 'has' by 'ha

ve'; line 53-has repeated full stops; line 55-replace 'potential' by 'potentially'; line 86 h

as repeated full stops; line 287- 'benz' to be replaced by 'benzo'; line 409- 3.4 be repla

ced by 3.5 etc.). Please check it thoroughly correct such mistakes. 

Response: 

Thank you for the comments. The authors have carefully checked the whole 

manuscript and corrected the spelling and grammatical mistakes according to the 

comments. The language quality in this manuscript has been checked by at least two 

professional editors, both native speakers of English, and the certificate can be found 



at:   

http://www.textcheck.com/certificate/NeUUhK 

 

Comment: 

2. Citation of reference for more than two authors be written as et al. (in italics), and n

ot in regular straight case, throughout the manuscript. 

Response: 

Thank you for the comments. The reference style was revised according to the 

requirement of Environmental Pollution. 

 

Comment: 

3.Table S1 and S2 are cited in the text, but given as supplementary material. Tables m

ay be included in manuscript, or may be removed from the text. 

Response: 

Tables S1 and S2 provided detailed information about primer name and sequence, 

which are essential material for this research. Since Environmental Pollution has the 

limitation for the number of figures and tables in the main text, we have to put them 

into the supplementary material as reference. 

 

Comment: 

4. The SI units for kilo is 'K' and not 'k', please correct. 

Response: 

Thanks for the comments. All the 'k' representing kilo was changed to 'K' being 

consistent with the comment. 

 

Comment: 

5. The authors have mentioned that Sokhn et al., 2001 mentioned improvement in PH

E degradation with increasing concentration of Cu (upto 4.01 mM); whereas authors r

eport it to be upto 4.03 mM which is almost the same concentration as observed by So

khn et al., 2001 (line 272-276). Why do the authors claim it to be 'firstly reported high



 level Cu to promote PHE degradation' (as given in highlight 2)? Please clarify. 

Response: 

Sorry for the mistake. We have carefully checked this reference and in Sokhn’s study, 

the mixed flora derived from a soil suspension did not significantly change the ability 

of PHE degradation with Cu(II) addition when the Cu(II) concentration was no more 

than 0.43 mM, which is ten times lower than the copper concentration of our study. 

The authors have revised the second point of highlight and the related content in the 

manuscript. Please see Lines 295-297 in the manuscript.  

 

Comment: 

6. Why do the authors attempt characterization of PAH-RHD gene only (and not for C

23O), whereas the experiments mention analysis of xyLE gene too (in text and figures

). Include the characterization of xyLE gene too. 

Response: 

Thank you for the comments. The characterization of xylE was included in the 

manuscript according to the comments, please see Lines 320-327. 

 

Comment: 

7.Line 277-297 is a mention of other studies and appears to be long. It should be cut s

hort. 

Response: 

The Lines 277-297 were revised in concise sentences in accordance with the review’s 

comments. Please see Lines 305-318 in the manuscript. 

 

Comment: 

8. Line 311-313 is repeated at 311-315; 315-316 repeated at 318-319. Correct the sam

e and avoid repetition of text. 

Response: 

Sorry for the mistake, the author has corrected the main text according to the 

comments. Please see Lines 370-374 in the manuscript. 



 

Comment: 

9. Line 406-408: ' To our......(Siunova et al., 2007)'- the meaning of this sentence is no

t clear. Please clarify/delete. 

Response: 

Siunova et al reported that the addition of nickel promoted the expression of the genes 

responsible for naphthalene degradation in a Pseudomonas strain, but no study prior 

to our work showed that the transcription of PAH-degrading genes was promoted by 

the addition of high level Cu(II). The author has revised the related sentences for 

audience’s better understanding. Please see Lines 401-404 in the manuscript 

 

Comment: 

10. Line 431: 'as found in previous study'-should be followed by a valid reference. Inc

lude the reference. 

Response: 

Thanks for the comments. The reference has been included in the revised version, 

please see Line 462. 

 

Comment: 

11. Some major reviews on biodegradation of PAHs (Cerniglia, 1992; Haritash & Kau

shik, 2009) may be referred and included. 

Response: 

Thank you for the comments. We referred some major reviews on the biodegradation 

of PAHs, as well as the effect of heavy metals on the expression of functional genes 

responsible for PAHs degradation and the influence of plants on the PAHs dissipation 

and PAHs degraders in soils. Some deeper analysis and discussion was represented in 

the revised version. Please see the modified content in Lines 282-287, 299-304, 

345-350 and 480-487 in the manuscript.  

 



 

Best wishes,  

  

Sincerely yours,  

  

Chunling Luo 

 



Responses to reviewers: 

The authors would like to thank the efforts of the editors and reviewers on the 

comments and have tried the best to correct the mistakes and modify the whole 

manuscript. All the corrections in accordance with reviewer’s comments are marked 

with yellow color.  

 

 

Reviewer #1: 

 

Comment: 

Reviewer #1: There are some innovation points in this study. Firstly, although many 

species of PAH-degrading bacteria have been isolated from different environments, 

but in most of these species, only their PAH-degrading ability was revealed, and little 

is known about whether they can degrade PAHs when heavy metals are also present. 

This study firstly found that high level Cu2+ can promote the expression of 

PAH-RHDɑ and C23O genes. Secondly, in previous studies, the combination of 

ryegrass and microorganisms performed well in the biodegradation of soil PAHs. 

However, limited information is available on the influence of ryegrass planting in the 

microbial degradation of organic pollutants when heavy metals are also present. This 

research gave answers for above questions. However, there are some details that 

needed to affirm. For example, the researcher said that they found a new bacterium, 

but 16S rRNA gene sequencing showed 99% identity with the nucleotide sequences of 

the Sphingobium abikonense strain NBRC 16140 (NR258 113839.1) and so on. We 

know that if 16S rRNA gene sequencing showed 95% or lower identity with the 

nucleotide sequences of known strains, so that we cannot call the bacterium in this 

study a "new" bacterium. Then, the results indicate that PHE-1 possessed powerful 

PHE biodegradability, even better than other researchers. I think the statement is not 

rigorous, for example, in those studies, the conditions of culture are different. More 

experiments should be designed to verify the conclusion. 

Response: 

*Response to Reviewers



Thank you for the comments. We are sorry for the mis-presentation and this strain is a 

newly isolated bacterium from the active sludge. We have revised the first point of 

highlight according to the comment, please see highlights in the manuscript.  

The sentences about the PHE biodegradability of the isolated Sphingomonas PHE-1 

were revised according to the comments. Its PHE biodegradability was compared with 

other strains with the similar conditions of culture. Besides, we also tested its ability 

in the artificial PHE-copper co-contaminated soils. Please see Lines 281-288.  

 

Specific comments: 

Comment: 

1. L22: the "a" is not suitable here, please check. 

Response: 

Thank you for the comments, the "a" has been deleted from the sentence. Please see 

Line 25 in the abstract. 

 

Comment: 

2. L25:"has" needs to be revised to "have", please check. 

Response: 

Thank you for the comments. The "has" is revised to "have" and we have also 

improved the language quality by editing services. Please see Lines 26-29. 

 

Comment: 

3. L146: "first" need to revised to " firstly" ，

some words of the same category in this issue should pay attention to also. 

Response: 

Thank you for the comments. The author has changed "first" to “firstly”, and the 

words of the same category are also revised according to the comments, please see 

Lines 165-174 in the manuscript. 

 

Comment: 



4. L149: the punctuation "," is not suitable here, please check the whole manuscript. 

Response: 

Thanks a lot for the comments. The authors have checked the whole manuscript and 

all the punctuation "," in similar situation are deleted in accordance with the 

comments. 

 

Comment: 

5. L173: as per the manufacturer's instructions? Please use right expression. 

Response: 

The sentence is revised as “16S rRNA genes were amplified following the 

manufacturer’s instructions”. Please see Lines 188-189 in the manuscript. 

 

Comment: 

6. When refer to heavy metal copper, writing it like "Cu", it not very standard. 

Response: 

Thank you for the comments. We have checked the whole manuscript, all the "Cu" 

were modified to Cu(II) to express copper. 

 

Comment: 

7. Line211-216, why only xylE was analyzed in soil, ahdA1b-1 analysis was not cond

ucted in soil experiment. 

Response: 

One of the key challenges in soil bioaugmentation is to encourage the growth and 

activities of the allochthonous strains, and this work tested the activities of strain 

PHE-1 in soils by analyzing the xylE gene because of its higher specificity than 

ahdA1b-1 gene. The results of this study showed that xylE and ahdA1b-1 of strain 

PHE-1 share 95% and 99% similarity with the known genes in nucleotide sequence 

level respectively. The author has modified the manuscript to clarify this point, please 

see Lines 466-468 in the manuscript. 

 



Comment: 

8. Line214 please indicate what kind of plasmid was used. 

Response: 

Thank you for the comments. The plasmid was constructed with the vector 

pEASY-T1 and xylE fragment. The author has revised the sentence for a better 

expression. See Lines 232-233 in the manuscript.   

 

Comment: 

9. L359: the "a" is not suitable here, please check. 

Response: 

Thank you for the comments. The "a" has been changed to “the”. See line 379. 

 

Comment: 

10. Fig 2A, the caption of the Fig is wrong, it should be the effect of incubation time o

n the xylE transcription. The same for Fig 4A. 

Response: 

Thank you for the comments. We have revised the captions of the two figures 

according to the review’s comments. Please see Fig 2A and Fig 4A. 

 

Comment: 

11. Line 167-171, the cultivation experiment should be introduced separately, but not i

n section of 2.2.3; on the contrary, analysis method of qPCR should be introduce in an

other section. 

Response: 

Thank you for the comments. The cultivation experiment and the analysis method of 

qPCR were separated according to the comments. The expression about the 

cultivation experiment was moved in Lines 132-138 and the analysis of qPCR was 

moved in Lines 186-204, respectively.  

 

Comment: 



12. line299-320 should be put after line346; lin388-408 should be moved to before 

line349. 

Response: 

Thank you for the comments. The author modified these sections, and the overall 

structure of the manuscript was revised according to the comments. Please see Lines 

358-374 and Lines 405-438 in the revised version.  

 

Comment: 

13. line 321-323, the meaning of the sentence is not clear. 

Response: 

It was often observed that the transcription of some functional genes was induced by 

the addition of specific substance. Here, we aimed to investigate how the transcription 

of C23O gene was affected by the addition of PHE. Thus the copies of xylE gene in 

samples with PHE as the sole carbon source were analyzed, compared to the samples 

using glucose only as control, to test the inductivity of xylE transcription by PHE 

addition. The author has revised the sentence for clearer expression. Please see Lines 

328-331 in the manuscript. 

 

Comment: 

14. The reason why Cu was selected should be further explained and mechanism 

should be further illustrated.  

Response: 

Thanks for the comments. The manuscript has been carefully modified to illustrate the 

reason copper was selected both in introduction, results and discussion, besides, the 

mechanism of copper on bacteria and gene expression was also elucidated in the 

discussion section. Please see Lines 48-52, 299-304 and 344-352 in the manuscript.  

 

Comment: 

15. Line409, it should be 3.5 

Response: 



Thanks for the comments and it was fixed in the revised version. 

 

Comment: 

16. Statistic analysis results should be marked in the respective figs 

Response: 

For all the relevant figures, small letters (a–e), standing for statistical significance at 

the 0.05 level with the LSD test, were used to illustrate the statistical analysis results 

between treatments, please see the figures.  

 

Comment: 

17. Fig 3 in the fig P1 should be changed to P2. 

Response: 

Sorry for the mistake, and we have changed P1 to P2 in the revised version, please see 

Figure 3. 

 

Comment: 

18. in Fig 7, the reason of the effect of ryegrass planting on xylE copies should further

 discussed. 

Thanks for the comments. We have carefully revised the manuscript, with more 

discussion on the explanation about the effect of ryegrass planting on xylE copies 

according to the comments, please see Lines 463-465 and 473-487 in the manuscript.  

 

Reviewer #2:   

Comment: 

1. There are spelling and grammatical mistakes at many places (e.g. replace 'highly' b

y 'high'; correct spelling of biodegradability in highlight 1; Line 25-replace 'has' by 'ha

ve'; line 53-has repeated full stops; line 55-replace 'potential' by 'potentially'; line 86 h

as repeated full stops; line 287- 'benz' to be replaced by 'benzo'; line 409- 3.4 be repla

ced by 3.5 etc.). Please check it thoroughly correct such mistakes. 

Response: 

Thank you for the comments. The authors have carefully checked the whole 



manuscript and corrected the spelling and grammatical mistakes according to the 

comments. The language quality in this manuscript has been checked by at least two 

professional editors, both native speakers of English, and the certificate can be found 

at:   

http://www.textcheck.com/certificate/NeUUhK 

 

Comment: 

2. Citation of reference for more than two authors be written as et al. (in italics), and n

ot in regular straight case, throughout the manuscript. 

Response: 

Thank you for the comments. The reference style was revised according to the 

requirement of Environmental Pollution. 

 

Comment: 

3.Table S1 and S2 are cited in the text, but given as supplementary material. Tables m

ay be included in manuscript, or may be removed from the text. 

Response: 

Tables S1 and S2 provided detailed information about primer name and sequence, 

which are essential material for this research. Since Environmental Pollution has the 

limitation for the number of figures and tables in the main text, we have to put them 

into the supplementary material as reference. 

 

Comment: 

4. The SI units for kilo is 'K' and not 'k', please correct. 

Response: 

Thanks for the comments. All the 'k' representing kilo was changed to 'K' being 

consistent with the comment. 

 

Comment: 

5. The authors have mentioned that Sokhn et al., 2001 mentioned improvement in PH



E degradation with increasing concentration of Cu (upto 4.01 mM); whereas authors r

eport it to be upto 4.03 mM which is almost the same concentration as observed by So

khn et al., 2001 (line 272-276). Why do the authors claim it to be 'firstly reported high

 level Cu to promote PHE degradation' (as given in highlight 2)? Please clarify. 

Response: 

Sorry for the mistake. We have carefully checked this reference and in Sokhn’s study, 

the mixed flora derived from a soil suspension did not significantly change the ability 

of PHE degradation with Cu(II) addition when the Cu(II) concentration was no more 

than 0.43 mM, which is ten times lower than the copper concentration of our study. 

The authors have revised the second point of highlight and the related content in the 

manuscript. Please see Lines 295-297 in the manuscript.  

 

Comment: 

6. Why do the authors attempt characterization of PAH-RHD gene only (and not for C

23O), whereas the experiments mention analysis of xyLE gene too (in text and figures

). Include the characterization of xyLE gene too. 

Response: 

Thank you for the comments. The characterization of xylE was included in the 

manuscript according to the comments, please see Lines 320-327. 

 

Comment: 

7.Line 277-297 is a mention of other studies and appears to be long. It should be cut s

hort. 

Response: 

The Lines 277-297 were revised in concise sentences in accordance with the review’s 

comments. Please see Lines 305-318 in the manuscript. 

 

Comment: 

8. Line 311-313 is repeated at 311-315; 315-316 repeated at 318-319. Correct the sam

e and avoid repetition of text. 



Response: 

Sorry for the mistake, the author has corrected the main text according to the 

comments. Please see Lines 370-374 in the manuscript. 

 

Comment: 

9. Line 406-408: ' To our......(Siunova et al., 2007)'- the meaning of this sentence is no

t clear. Please clarify/delete. 

Response: 

Siunova et al reported that the addition of nickel promoted the expression of the genes 

responsible for naphthalene degradation in a Pseudomonas strain, but no study prior 

to our work showed that the transcription of PAH-degrading genes was promoted by 
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Highlights 

 A newly isolated bacterium possesses high PHE biodegradability and 

Cu-tolerance. 

 High level Cu was reported to promote PAH-RHDɑ and C23O genes expression. 

 Structure of PAH-RHD gene cluster has high similarity to other Sphingobium 

strains. 

 Ryegrass and Cu enhanced PHE degradation and abundance of Sphingobium 

PHE-1. 
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Abstract 19 

A copper-tolerant phenanthrene (PHE)-degrading bacterium, strain Sphingobium sp. 20 

PHE-1, was newly isolated from the activated sludge in a wastewater treatment plant. 21 

Two key genes, ahdA1b-1 encoding polycyclic aromatic hydrocarbon 22 

ring-hydroxylating dioxygenase (PAH-RHDɑ) and xyLE encoding 23 

catechol-2,3-dioxygenase (C23O), involved in the PHE metabolism by strain PHE-1 24 

were identified. The PAH-RHD gene cluster showed 96% identity with the same 25 

cluster of Sphingomonas sp. P2. Our results indicated the induced transcription of 26 

xylE and ahdA1b-1 genes by PHE, simultaneously promoted by Cu(II). For the first 27 

time, high concentration of Cu(II) is found to encourage the expression of 28 

PAH-RHDɑ and C23O genes during PHE degradation. Applying Sphingomonas 29 

PHE-1 in PHE-contaminated soils for bioaugmentation, the abundance of xylE gene 30 

was increased by the planting of ryegrass and the presence of Cu(II), which, in turn, 31 

benefited ryegrass growth. The best performance of PHE degradation and the highest 32 

abundance of xylE genes occurred in PHE-copper co-contaminated soils planted with 33 

ryegrass. 34 

 35 

Keywords: Bioremediation; phenanthrene (PHE); Copper; Sphingobium; PAH-RHDɑ 36 

gene; C23O gene 37 

 38 

Capsule: The PHE biodegradability and expression of PHE degradation genes in a 39 

newly isolated bacterium strain were enhanced by high level copper.  40 



 41 

1. Introduction 42 

Soil contamination by organic pollutants and heavy metals is a global 43 

environmental issue due to rapid industrialisation and urbanisation. Polycyclic 44 

aromatic hydrocarbons (PAHs), among the most widespread organic pollutants in the 45 

environment, are of great concern for their persistence, chronic toxicity and 46 

accumulation throughout the food web (Gondek et al., 2008; Macek et al., 2000). 47 

Different to PAHs, heavy metals including copper are non-degradable, stay stabilized 48 

in soils for long-term, accumulate in vegetables, harm microbes by interfering with 49 

enzymes and DNA at high concentration, and often co-exist with organic 50 

contaminants in various environmental media (Guzik et al., 2010; Sokhn et al., 2001). 51 

It is even worse when PAHs and heavy metals co-exist, leaving the higher potential 52 

risks to human health and ecosystems. However, the establishment of effective 53 

methods to reduce the levels of these pollutants is a major challenge. Bioremediation, 54 

the introduction of allochthonous strains (called bioaugmentation) to degrade organic 55 

pollutants (Peng et al., 2008), has received increasing attentions because of its high 56 

potential for in situ or on-site treatments, which is low cost, high safety and no 57 

requirements for secondary waste treatment.  58 

The success of biodegradation depends greatly on the characteristics of 59 

allochthonous bacteria. Heavy metals can inhibit the biodegradation of organic 60 

pollutants by impacting both the physiology and ecology of degrading 61 

microorganisms (Ibarrolaza et al., 2009; Sandrin and Maier, 2003; Shen et al., 2006; 62 

Thavamani et al., 2012a; Thavamani et al., 2012b, c). For example, the activity of 63 

catechol dioxygenase is inhibited in the presence of some heavy metals (Guzik et al., 64 

2010). Bioaugmentation with bacteria exhibiting heavy metal tolerance and PAHs 65 

degrading capability is suggested as a potentially cost-effective strategy for the 66 

remediation of PAHs-metal co-contaminated soil (Thavamani et al., 2011). To date, 67 

more than 40 species of PAHs-degrading bacteria have been isolated from different 68 

environments (Gan et al., 2009; Zhang et al., 2004), e.g. Acinetobacter calcoaceticus 69 

(Zhao and Wong, 2009), Sphingomonas sp. (Gou et al., 2008), Pseudomonas sp. 70 



(Kazunga and Aitken, 2000), Mycobacterium sp. (Dandie et al., 2004; Zeng et al., 71 

2010), Rhodococcus sp. (Song et al., 2011), Achromobacter xylosoxidans (Al-Thani et 72 

al., 2009), Microbacterium sp. (Sheng et al., 2009) and Alcaligenes faecalis (Xiao et 73 

al., 2010). However, only PAHs-degrading abilities are revealed for most of these 74 

strains and little is known about whether their PAHs degrading performance can be 75 

maintained or encouraged in the presence of heavy metals (Wang et al., 2011).  76 

Some key PAH dioxygenase genes in bacteria involved in PAHs metabolism are 77 

typically used as indicators, attributing to their substrate-specificity, high conservation, 78 

and direct link to the functions of PAHs biodegradation (Baldwin et al., 2003). 79 

Microorganisms can adapt to the stress of organic pollutants by regulating the 80 

expression of degradation-related genes, and the degradation efficiency depends 81 

largely on the activities of enzymes encoded by the functional genes. The initial PAHs 82 

dioxygenase (PAH-RHD) and catechol-2,3-oxygenase (C23O) have been identified as 83 

the two key PAHs-degrading enzymes. They participate in the initial step of PAHs 84 

metabolism via the incorporation of molecular oxygen into the aromatic nucleus and 85 

the complete cleavage of the aromatic ring of the intermediate metabolites, 86 

respectively. Therefore, identifying the catabolic genes encoding these enzymes 87 

would significantly contribute to understanding the mechanism and mediating 88 

bacteria involved in the service of improving the degradation efficiency (Mrozik et al., 89 

2003). 90 

The activities of PAHs-degrading bacteria and the functional genes are often 91 

promoted in rhizospheric soils due to the root exudates and root deposition (Lin et al., 92 

2006). In turn, the growth of bacteria in the rhizosphere can increase host plant 93 

tolerance to abiotic stress by improving nutritional status, inhibiting plant disease, and 94 

degrading toxic xenobiotic substances (Peng et al., 2015). Ryegrass is usually selected 95 

as the model plant for treating hydrocarbon-contaminated soils for its fibrous root 96 

system with a large surface area near the soil surface (Xu et al., 2013). In previous 97 

studies, the combination of ryegrass and microorganisms performed well in the 98 

biodegradation of soil PAHs, petroleum and pesticides (Rezek et al., 2008; Tang et al., 99 

2010; Xie et al., 2012). However, limited information is available on the influence of 100 



ryegrass planting on the microbial degradation of organic pollutants in the 101 

co-presence of heavy metals (Sandrin and Maier, 2003).  102 

In the present study, phenanthrene (PHE) was selected as a model PAHs given its 103 

ubiquity in nature and typical characteristics of PAHs, such as K region and bend 104 

structure. This work involved three objectives: (1) to test the Cu(II) tolerance and 105 

PHE-degrading ability of bacterial strain isolated from a wastewater treatment plant; 106 

(2) to characterise the phylotype and expression of PAH-RHD and C23O genes of the 107 

newly isolated strain; and (3) to study its potential in the remediation of PHE-copper 108 

co-contaminated soils with ryegrass planting.  109 

2. Materials and methods 110 

2.1 Enrichment, isolation and PHE degradation test of PHE-degrading bacteria 111 

Activated sludge (20 g) from a wastewater treatment plant was added to an 112 

Erlenmeyer flask with 200 mL of sterile deionised water and shaken for 30 min at 180 113 

rpm and 30ºC. Five millilitres of this suspension was transferred into 95 mL of 114 

mineral salt medium (MSM) with 100 mg/L PHE as the sole carbon source and 115 

subsequently incubated on a rotary shaker (180 rpm) for 4 days at 30°C. The 116 

following enrichment cycles were performed by transferring 5 mL of the enrichment 117 

culture from the preceding enrichment cycle into fresh MSM supplemented with 100 118 

mg/L PHE every 4 days. After isolating the pure PHE-degrading microorganisms by 119 

spreading serially diluted enrichment culture samples onto MSM agar plates 120 

containing 100 mg/L PHE, high-performance liquid chromatography (HPLC) analysis 121 

was applied to evaluate PHE degradation rate in liquid culture medium. Among all the 122 

isolated bacterial strains, one strain was selected for further study because of its high 123 

PHE-degrading ability.  124 

The PHE-degrading ability of the isolated strain was tested by incubation in fresh 125 

MSM with initial PHE concentration of 0, 300, 500, 600, 700, 800 and 900 mg/L, 126 

respectively. The effect of copper on PHE degradation was investigated by incubating 127 

the strain in fresh MSM containing 100 mg/L PHE and Cu(II) (as CuCl2) 128 

concentration of 0, 0.81, 1.61, 2.42, 3.22, 4.03, 4.84, or 5.64 mM. Culture without 129 

inoculum was used as a sterile control to assess the abiotic loss of PHE. The residual 130 



PHE was analysed by HPLC immediately after sampling. 131 

For the treatments assessing the transcription of PAH-RHD and C23O genes, the 132 

isolated strain was inoculated in the MSM with 100 mg/L PHE and Cu(II) 133 

concentration of 0, 0.81, 2.42 and 4.03 mM for 24 h, or with 100 mg/L PHE only for 134 

12, 18, 24 and 48 h, respectively. MSM supplemented with glucose (no PHE) was 135 

used as the blank control. For each treatment, 3% (v/v) (OD600 ≈2.0) inocula were 136 

inoculated initially in triplicates. All the incubations were conducted on a rotary 137 

shaker (180 rpm) at 30°C without light.  138 

 139 

2.2 Characteristics of the isolated strain 140 

2.2.1 Identification of isolated strain, and PAH-RHD and C23O genes 141 

The isolated strain was identified by 16S rRNA sequencing. After DNA 142 

extraction with the PowerSoil kit (MO BIO Laboratories, USA), the 16S rRNA genes 143 

were amplified in accordance with the procedures described previously (Song et al., 144 

2015). The purified polymerase chain reaction (PCR) products were ligated into 145 

vector pEASY-T1 and transformed into Escherichia coli DH5α. Plasmids were 146 

extracted and sequenced as described previously (Jiang et al., 2015). Sequence 147 

similarity searches and alignments were performed using the Basic Local Alignment 148 

Search Tool (BLAST) algorithm (National Center for Biotechnology Information) and 149 

Molecular Evolutionary Genetics Analysis (MEGA 5.1). Sharing 99% identity with 150 

the nucleotide sequences of Sphingobium abikonense NBRC 16140, the isolated strain 151 

was named as Sphingobium PHE-1.  152 

The PAH-RHD and the C23O genes were amplified using the primers listed in 153 

Table S1 with genomic DNA of Sphingobium PHE-1 as the template. The primers 154 

were designed based on the previously reported PAH-RHDɑ and C23O genes. DNA 155 

amplification was performed by the following PCR program: 95ºC for 2 min; 30 156 

cycles at 94ºC for 30 s, 60ºC for 30 s and 72ºC for 60 s; and final extension at 72ºC 157 

for 10 min. The PCR products were checked by agarose gel electrophoresis (1.2%). 158 

The amplicons were further cloned, sequenced and subjected to phylogenetic analysis 159 

as mentioned above. 160 



2.2.2 Analysis of the PAH-RHD gene cluster 161 

The PAH-RHD gene cluster of Sphingobium PHE-1 was obtained by self-formed 162 

adaptor PCR (SEFA-PCR) as described previously (Wang et al., 2007). The primers 163 

used in this study were presented in Table S1. SEFA-PCR was conducted by the 164 

following procedures. Firstly, a single cycle with primer SP3 and the genomic DNA 165 

of Sphingobium PHE-1 as template was carried out as follows: 95ºC for 1 min, 94ºC 166 

for 30 s, 30ºC for 3 min, 70ºC for 5 min and 72ºC for 5 min. The 30-μL PCR mixture 167 

was prepared with 15 μL of 2×GC buffer I, 4 μL of dNTP (2.5 mM), 1 μL of SP3 (5 168 

μM), 0.3 μL of LA-Taq and 1 μL of template (about 50 ng/μL). Secondly, 1 μL of 169 

primer SP1 (25 μM) was added to the reaction mixture and 25 cycles of PCR were 170 

performed as follows: 94ºC for 30 s and 70ºC for 5 min. Thirdly, eight cycles of 171 

thermal asymmetric PCR were carried out with the following program: one cycle of 172 

94ºC for 30 s, 50ºC for 30 s and 70ºC for 5 min; followed by two cycles of 94ºC for 173 

30 s and 70ºC for 5 min. Fourthly, 1 μL of the products were diluted 1000 times and 174 

used as the template for another PCR in a 30-μL mixture containing 15 μL of 2×GC 175 

buffer I, 4 μL of dNTP (2.5 mM), 2 μL of SP2 (5 μM), 0.3 μL of LA-Taq and 1 μL of 176 

template. Then, the PCR was carried out by the following program: 95ºC for 2 min, 177 

followed by 30 cycles of 94ºC for 30 s and 70ºC for 5 min, with final extension at 178 

72ºC for 10 min. The presence of final PCR products was checked by agarose gel 179 

electrophoresis, followed by purification, ligation to vector pMD19-T and sequence. 180 

After assembly, the 9.1-kb DNA fragment containing the PAH-RHD gene was 181 

analysed using the online Open Reading Frame (ORF) Finder 182 

(http://www.ncbi.nlm.nih.gov/gorf/gorf.html) and the Blastx programme 183 

(http://www.blast.ncbi.nlm.nih.gov). 184 

2.2.3. Transcriptional analysis of PAH-RHD and C23O genes 185 

Quantitative reverse transcription PCR (qRT-PCR) was used to analyse the 186 

transcriptional levels of PAH-RHD and C23O genes as follows. Total RNA was 187 

extracted from each sample with a Bacterial RNA Extraction Kit (CWBIO, Beijing, 188 

China) following the manufacturer’s instructions. After removing genomic DNA with 189 

RNase-Free DNase (Qiagen, Hilden, Germany), cDNA was synthesised from RNA 190 

http://www.blast.ncbi.nlm.nih.gov/


template using the QuantiTect reverse transcription kit (CWBIO, Beijing, China) 191 

according to the manufacturer’s instructions. Primers used to amplify PAH-RHD, 192 

C23O, and 16S rRNA genes were designed based on the sequence of genomic DNA 193 

of Sphingobium PHE-1, respectively (Table S2). qRT-PCR was performed on an ABI 194 

Prism 7500 real-time PCR detection system using TransStart Top Green qPCR 195 

SuperMix as follows: 95°C for 30 s, followed by 40 cycles of 95°C for 5 s and 60°C 196 

for 34 s. Melting curves were obtained by slow heating from 60°C to 90°C at 0.1°C/s 197 

and continuous monitoring of the fluorescence signal (Singleton et al., 2009). Three 198 

replicates were performed for each sample. The quantities of PAH-RHD and C23O 199 

gene transcripts for each sample were determined by relative quantification using the 200 

2
−△△Ct 

method (Livak and Schmittgen, 2001). Standard curves for the quantification of 201 

PAH-RHD, C23O, and 16S rRNA genes were created by performing qPCR with serial 202 

dilutions of the standard plasmid containing the target DNA sequence by the 2
−△△Ct 

203 

method.  204 

2.3 Pot experiment with copper–PHE-co-contaminated soil 205 

2.3.1 Set-up of pot experiment 206 

Soil without detectable PAHs and copper was collected from an agricultural field 207 

in Jiangning District, Nanjing, China. After transferred to the laboratory, the soil was 208 

air-dried and sieved through a 2-mm mesh. The physiochemical properties of the soil 209 

were as follows: pH 7.10, total organic matter 2.92%, total nitrogen 0.68 g/Kg and 210 

total phosphorus 1.03 g/Kg. 211 

To prepare the soils contaminated with 500 mg/Kg PHE, the PHE (purity > 96%; 212 

Sigma-Aldrich, Germany) dissolved in methanol was spiked into 5% (w/w) of the 213 

total soil. After the evaporation of methanol in a fume-hood, this contaminated soil 214 

was thoroughly mixed with the remaining soil (Brinch et al., 2002). For PHE-copper 215 

co-contaminated soil, copper (as CuCO3) was added to the PAH-spiked soil at a final 216 

concentration of 500 mg/Kg. Next, 1 Kg of contaminated soil was placed in a ceramic 217 

pot. Following four dry-wet cycles within 4 weeks, the soil was planted with ryegrass 218 

seeds and inoculated with pre-cultivated strain Sphingobium PHE-1 at a density of 219 

1.5×10
7
 cells/g. In total, the four treatments included: PHE-1 inoculation, ryegrass 220 



planting, ryegrass planting with Sphingobium PHE-1 inoculation, and soil without 221 

ryegrass or PHE-1. The pots were watered daily with deionised water to maintain the 222 

moisture content at approximately 60% of the water-holding capacity of the soils. 223 

After 56 days of cultivation in a glasshouse at 20-30°C under natural light, the soils in 224 

the pots were collected, mixed, sieved through a 2-mm mesh, and stored at -20°C for 225 

DNA extraction and PHE analysis. 226 

2.3.2 Quantitation of C23O gene in soil 227 

Microbial genomic DNA was extracted from soil using the FastDNA Spin kit 228 

(MoBIO, USA) in accordance with the manufacturer’s instruction and then used as 229 

template to perform qPCR to quantify C23O gene named xylE. The standard curve for 230 

absolute quantitation of xylE gene was established by SYBR Green fluorescence 231 

quantitative PCR with a template obtained by a series of 10-fold dilutions of the 232 

plasmid constructed with vector pEASY-T1 and xylE fragment. 233 

2.4 PHE extraction and analysis 234 

During strain isolation and cultivation, the PHE was collected by liquid–liquid 235 

extraction. Briefly, the liquid culture was mixed with methylene chloride (1:1 v/v) by 236 

vigorous shaking and then held for 2 h at room temperature. After drying with 237 

anhydrous sodium sulphate, the resulting extract was then concentrated to 1 mL with 238 

a gentle stream of N2 for HPLC analysis (Thavamani et al., 2012c). 239 

PHE in soil samples were collected by ultrasonic extraction. After freeze-drying, 240 

5 g of soil was placed in a glass tube, to which 10 mL of dichloromethane was added. 241 

The suspension was ultrasonicated for 30 min with occasional stirring to prevent its 242 

adherence to the bottom of the tube. The mixture was then centrifuged at 4000 rpm, 243 

and the supernatant was discarded. The above procedure was repeated three times. All 244 

the supernatants were pooled and concentrated to ~0.5 mL after solvent exchange to 245 

hexane. The soil extracts were purified in a multilayer silica gel/alumina column (8 246 

mm i.d.) filled (from top to bottom) with anhydrous Na2SO4 (1 cm), neutral silica gel 247 

(3 cm, 3% w/w; deactivated) and neutral alumina (3 cm, 3% w/w; deactivated) via 248 

elution with 15 mL of hexane/dichloromethane (1:1, v/v). After concentrating with a 249 



gentle stream of N2, the residue was dissolved in methane with a final volume of 1.0 250 

mL for HPLC analysis (Chigbo et al., 2013).  251 

PHE was detected on a HPLC (Waters 600) equipped with an 
18

C reversed-phase 252 

column (4.6 mm × 25 cm) and a photo diode-array detector. Methanol:water (90:10, 253 

v/v) at a flow rate of 0.8 mL/min was used as the mobile phase. HPLC analysis was 254 

performed at a wavelength of 254 nm, and a 20-µL sample or standard PHE 255 

compounds were injected into the chromatograph under standardised conditions. An 256 

external standard method was used for quantitation in terms of peak areas (Dong et al., 257 

2008).  258 

2.5 Statistical analysis 259 

Statistical analysis was performed using SPSS 17.0. The statistical significance 260 

of differences (p-value <0.05) in PHE concentration, abundance of ahdA1b-1 and 261 

xyLE genes, and the biomass of dry ryegrass among the different treatments was 262 

analysed using one-way analysis of variance (ANOVA) and the least significant 263 

difference (LSD) test.  264 

3. Results and discussion 265 

3.1 Characterisation of PHE-degrading bacteria  266 

 After incubation in Luria–Bertani medium for 48 h, the colony of the isolated 267 

strain was observed to be yellow, with a diameter of 3–4 mm, translucent and glossy, 268 

with a smooth surface and neat edges (Figure 1A-a). The images of cells obtained by 269 

transmission electronic microscopy showed that the strain was rod-shaped (0.5-0.7 270 

μm × 1.2-1.7 μm) with flagella (Figure 1A-b). The results of 16S rRNA sequence 271 

showed its 99% identity with the nucleotide sequences of the Sphingobium 272 

abikonense strain NBRC 16140 (NR 113839.1), Sphingobium abikonense strain IAM 273 

12404 (NR 112079.1) and Sphingobium lactosutens strain DS20 (NR 116408.1) 274 

(Figure 1B). The strain was therefore classified as a Sphingobium strain within the 275 

genus Sphingomonas, family Sphingomonadaceae, class Alphaproteobacteria, and 276 

named as Sphingobium PHE-1. 277 

3.2 Impacts of Cu(II) on PHE degradation by Sphingobium PHE-1 278 



Figure S1 showed the PHE removal efficiency in MSM at 24 h with different 279 

concentrations of PHE as the sole carbon source. PHE was completely degraded when 280 

its initial concentration was less than 600 mg/L. Above this level, the removal 281 

efficiency decreased with the increasing initial PHE concentration. The results 282 

indicated that Sphingobium PHE-1 possesses powerful PHE biodegradability, better 283 

than Sphingobium chlorophenolicum C3R metabolizing ~60% of the PHE in 2 days 284 

with an initial concentration of 300 mg/L in liquid culture similar to this work 285 

(Colombo et al., 2011) and a Sphingobium strain utilizing more than 200 mg/L PHE 286 

within 24 h in liquid culture (Prakash and Lal, 2006). Besides, it was observed that ~ 287 

50% of the added PHE was degraded owing to the inoculation of strain Sphingobium 288 

PHE-1 in PHE-copper co-contaminated soils . 289 

To study the influence of Cu(II) on PHE degradation by strain Sphingobium 290 

PHE-1, the removal efficiency of PHE was tested in the presence of different 291 

concentrations of Cu(II). Figure S2 showed that PHE was almost completely degraded 292 

when Cu(II) was less than 3.22 mM. The removal efficiency maintained 88.2% even 293 

when the Cu concentration rose to 4.03 mM and then decreased with the increasing 294 

Cu(II). The similar behaviour was also observed for the mixed flora derived from soil 295 

suspensions, the PHE degradation ability of which was not significantly affected 296 

when the Cu(II) concentration was no more than 0.43 mM. Previous study showed the 297 

declining microbial respiration in the presence of Cu(II), and the higher the Cu(II) 298 

concentration, the more pronounced the inhibition (Sokhn et al., 2001). The limited 299 

impact caused by high level Cu(II) in this work might be explained by the little 300 

influence of Cu(II) on the enzymatic activity of dioxygenase related to PAHs 301 

degradation. It was reported replacement of the iron at the active site of 302 

iron-containing 2,3-dioxygenase with copper weakly affects its activity owing to the 303 

stability of the metal complexes (Gopal et al., 2005; Guzik et al., 2013). 304 

Sphingomonas species have long been known for degrading a wide range of PAHs 305 

in contaminated soils and are often detected in copper-contaminated media, such as 306 

copper-exposed groundwater treatment plants and soils near copper mines (Stolz, 307 

2009). Sphingobium, comprising 25 recognised species, is the main subgenus of the 308 



Sphingomonas genus with the capacity of PAHs degradation (Kertesz and Kawasaki, 309 

2010). It was demonstrated that Sphingobium chlorophenolicum strain C3R 310 

significantly improves the biodegradation rate of PHE in PAHs-contaminated soils in 311 

the presence of both cadmium and arsenic (Colombo et al., 2011). Some other 312 

Sphingobium strains with the ability to degrade PAHs and substituted PAHs were also 313 

isolated from a river, a pentachlorophenol-contaminated industrial site and freshwater 314 

sediment, a polluted stream and 2,4-dichloroprop-pretreated soils (Kertesz and 315 

Kawasaki, 2010). Furthermore, the enzymes involved in the catabolic pathways and 316 

the corresponding genes in Sphingobium strains have also been well studied (Leys et 317 

al., 2004; Pinyakong et al., 2003a; Story et al., 2000).  318 

3.3 The effect of PHE and Cu(II) on C23O gene transcription  319 

In this work, we successfully amplified a C23O gene from strain Sphingobium 320 

PHE-1 by using the primers designed in accordance with known ones. The 321 

phylogenetic information in Figure S3 showed that the xylE gene of Sphingobium 322 

PHE-1 was closely related to the genus Sphingobium, sharing 95%, 92% and 92% 323 

similarity with the nucleotide sequences of S. strain ZP1, S. yanoikuyae strain B1 and 324 

S. strain P2, which was consistent with 16s rRNA results. The copies of xylE gene 325 

were then analysed by qRT-PCR using the primers designed according to the nucleic 326 

sequences of acquired xylE gene. 327 

To test the effect of PHE addition on the expression of xylE gene and evaluate its 328 

change with time, the copy numbers of xyLE gene of Sphingobium PHE-1 in the 329 

presence of PHE were compared to the control (PHE replaced by glucose), as 330 

illustrated in Figure 2A. It was clear that the copies of xyLE kept increasing in the first 331 

24 h and then decreased from 24 to 48 h. Comparison with the constant copy numbers 332 

of xyLE gene in the control yielded the inference that xyLE gene is induced by PHE. 333 

In the treatment with an initial concentration of 100 mg/Kg PHE, the expression of 334 

xyLE gene peaked when all PHE had been consumed. The same results were also 335 

observed in an ex situ system, in which xyLE gene was initially present at high PAHs 336 

concentration, but disappeared with a substantial decrease of PAHs after 1 week 337 

(Wikstrom et al., 1996). This is also consistent with the results of Zhao et al. (Zhao et 338 



al., 2011), who described that the expression of C23O gene in PHE-degrader 339 

Pseudomonas sp. ZP1 increased during the PHE degradation, but dramatically 340 

dropped off when PHE ran out.  341 

Figure 2B showed the expression of xyLE gene against different concentrations 342 

of Cu(II) with 100 mg/L PHE as the sole carbon source after 24 h. An unexpected 343 

promotion of xyLE expression was observed when Cu(II) was added, compared to the 344 

control (no Cu(II)), and its expression level increased with the rise of Cu(II). This 345 

indicated that Sphingobium PHE-1 would probably resist the damage caused by Cu(II) 346 

via encouraging xyLE expression for PHE metabolism and catabolism, generating 347 

more energy to enhance the expression of genes related to the oxidative stress 348 

response, DNA and protein repair, metal transport and other processes (Baker-Austin 349 

et al., 2005; Gu et al., 2016). Generally, heavy metals inhibit the microbial 350 

degradation of organic compounds via disrupting general enzymes or functional genes 351 

responsible for PAHs degradation (Sokhn et al., 2001). The exception involved a 352 

metal-tolerant and phenol-degrading strain, for which cadmium was reported to 353 

increase its C23O activity (Hupert-Kocurek et al., 2013). It is interesting that a high 354 

level of Cu(II) promoted the expression of the C23O gene in Sphingobium PHE-1 in 355 

the present study, which should be useful for the bioremediation of copper-PAHs 356 

co-contaminated soils.  357 

The degradation of PHE by bacteria is driven by enzymes and is dependent on 358 

the levels of enzymatic activity. Two key enzymes are involved in the 359 

PHE-degradation process: ring-hydroxylating dioxygenase (PAH-RHD) and aromatic 360 

ring-cleavage dioxygenase. PAH-RHD controls the incorporation of molecular 361 

oxygen into the aromatic nucleus to form cis-dihydrodiol in the initial step of PAHs 362 

metabolism. Thereafter, the dihydroxylated cis-dihydrodiol intermediates are cleaved 363 

by dioxygenase via ortho-cleavage or meta-cleavage pathways. C23O protein acting 364 

as a ring-cleavage enzyme in the meta-cleavage pathways seems to consist of a 365 

superfamily of enzymes (Boldt et al., 1995). C23O genes have been found in strains 366 

Sphingomonas ZP1 (Zhao et al., 2011), Pseudomonas stutzeri AN10, Pseudomonas 367 

putida G7, and Pseudomonas putida NCIB9816 (Habe and Omori, 2003), and their 368 



gene sequences in these bacteria with the ability to degrade different PAHs have been 369 

uncovered. Thus, C23O genes are potentially good indicators in monitoring the 370 

bacterial subpopulations involved in the ring cleavage of aromatics and the final steps 371 

of the degradation of some PAHs. For example, it was reported that C23O genes were 372 

successfully used to monitor the subpopulations of PAHs-degrading microbes in 373 

different types of soils (Wikstrom et al., 1996). 374 

3.4 Sequence analysis of PAH-RHD gene clusters and the effects of PHE and 375 

Cu(II) on its transcription 376 

By amplifying the PAH-RHDα gene from the total DNA of Sphingobium PHE-1 377 

with the designed primers (Table S1), a DNA fragment of 1490 bp was obtained. The 378 

nucleotide sequence of the fragment exhibits 99% and 97% similarity with the 379 

ahdA1b operon affiliated to Sphingomonas sp. ZP1 (EU082776) and Sphingomonas 380 

sp. P2 (AB091693), respectively, which is then named as ahdA1b-1 (Figure S4). 381 

The effects of PHE and Cu(II) on ahdA1b-1 transcription were investigated using 382 

the primers designed according to the nucleic sequences of ahdA1b-1, as illustrated in 383 

Figure 4. It was clear that the ahdA1b-1 gene held a similar expression pattern as 384 

xyLE gene, rapidly increasing over time before 24 h but slowed down from 24 to 48 h 385 

with the exhaustion of PHE in the medium. Meanwhile, the expression of ahdA1b-1 386 

gene in the control (glucose instead of PHE) was significantly lower than those 387 

supplemented with PHE (p<0.05) and had tiny fluctuation throughout the experiment. 388 

It was proposed that the expression of ahdA1b-1 gene was induced by PHE and 389 

reached a plateau when the PHE was used up. The same results were also obtained by 390 

Pinyakong et al., who found the inducible genes encoding terminal oxygenase in 391 

Sphingobium sp. strain P2 (Pinyakong et al., 2003b). Preliminary study on the 392 

response of Sphingomonas aromaticivorans strain F199 to various aromatic 393 

compounds demonstrated that its aromatic catabolic activity was induced after 394 

exposure to naphthalene (Pinyakong et al., 2003b). Additionally, Cu(II) significantly 395 

affected the expression of ahdA1b-1 gene in Sphingobium PHE-1, from the higher 396 

expressed copy numbers of ahdA1b-1 gene copies in Cu(II) amended treatments than 397 

that in samples without copper, even when the Cu(II) concentration was increased to 398 



4.03 mM (p<0.05). The results indicated that ahdA1b-1 expression is promoted by 399 

Cu(II), consistent with the influence of Cu(II) on the expression of xyLE gene. 400 

Although previous research showed that the expression of the genes responsible for 401 

naphthalene degradation in a Pseudomonas strain is enhanced by nickel (Siunova et 402 

al., 2007), no work prior to this study reported the transcription of PAHs-degrading 403 

genes is promoted by high level of Cu(II). 404 

In the first step of PHE metabolism, the aromatic nucleus is attacked by 405 

molecular oxygen forming cis-dihydrodiol with the function of PAH-RHD. 406 

PAH-RHD is composed of an iron-sulphur flavoprotein reductase, an iron–sulphur 407 

ferredoxin and a terminal dioxygenase. The terminal dioxygenase consists of large α 408 

and small β subunits, and two conserved regions exist in α subunit (RHDα) (Kauppi et 409 

al., 1998). Primers based on these conserved regions have been designed and 410 

successfully applied to amplify the target pahAc-like, phnAc-like and nagAc-like 411 

genes (Cebron et al., 2008). Besides, genes encoding degrading proteins are 412 

frequently found in grouping together in a cluster (Qiu et al., 2013). SEFA-PCR was 413 

therefore performed to obtain the flanking DNA sequences of ahdA1b-1 in this study. 414 

A 6.6-kb upstream and a 2.1-kb downstream DNA fragments were amplified with 415 

three pairs of primers (Table S1). After cloning and sequencing, it is noted that the 416 

6.6-kb upstream DNA fragment contains a small subunit and a large subunit 417 

belonging to the PAH-RHD gene, and the 2.1-kb downstream DNA fragment has a 418 

small subunit affiliated to the PAH-RHD gene. The 1490-bp core fragment was 419 

assembled with the flanking fragments to generate a 9.1-kb DNA fragment, which 420 

shows 96% similarity to the PAHs-degrading gene cluster affiliated to Sphingomonas 421 

sp. P2 and Sphingobium yanoikuyae strain B1. As shown in Figure 3, the analysis of 422 

nucleotides and the deduced amino acid sequences of the 9.1-kb DNA fragment using 423 

the online ORF Finder and Blastx programme revealed that six consecutive ORFs 424 

exhibited 99%, 96%, 93%, 97%, 99% and 96% nucleotide sequence identities with 425 

xylA, xylM, ahdA2b, ahdA1b, ahdA2a and ahdA1a, respectively, which are located in 426 

the PAHs-degrading gene cluster of Sphingomonas sp. P2 (AB091693) and S. 427 

yanoikuyae strain B1 (EF151283) (referred to as xylA, xylM, bphA2b, bphA1b, 428 



bphA2a and bphA1a) (Pinyakong et al., 2000, 2003a) . The clusters from xylA to 429 

ahdA1a/bphA1a in the three strains were assembled in the same order and 430 

transcriptional direction (Figure 3), indicating the high conservation of the functional 431 

genes encoding PAH-RHD in strains affiliated to the Sphingomonas genus. It was also 432 

reported that the aromatic-degrading genes from the Sphingobium sp. B1, 433 

Sphingobium sp. Q1 and Novosphingobium aromaticivorans F199 exhibited high 434 

homology (Pinyakong et al., 2003a; Pinyakong et al., 2003b). For example, in 435 

Sphingomonas, the degrading genes encoding arene cis-dihydrodiol dioxygenase and 436 

the enzymes responsible for the conversion of 1,2-dihydroxynaphthalene to salicylate 437 

were reported to be similar in sequence (Waigi et al., 2015). 438 

3.5 The application of Sphingobium PHE-1 coupled with ryegrass in the 439 

remediation of PHE-copper co-contaminated soils  440 

The inoculation of Sphingobium PHE-1 significantly improved the growth of 441 

ryegrass (Figure 5). Interestingly, the growth of ryegrass was also found to be greatly 442 

stimulated by Cu(II), with plants grown in PHE-copper co-contaminated soils having 443 

higher biomass than those grown in soils with PHE contamination only (Figure 5), 444 

which was consistent with the trends of ahdA1b-1 and xyLE gene transcription in 445 

MSM (Figure 2B and Figure 4B). This improvement in ryegrass growth was 446 

attributed to the increasing activities of Sphingobium PHE-1 in the presence of Cu(II). 447 

It was reported that some heavy metal-resistant bacteria could promote the growth of 448 

host plants. Examples included a copper-resistant plant growth-promoting bacterial 449 

(PGPB) strain, Ax10, which was isolated from a copper mine soil and facilitated 450 

Brassica juncea growth and Cu(II) uptake (Ma et al., 2009). Besides, the 451 

nickel-resistant strain PGPB SRS8 was also found to be capable of stimulating plant 452 

growth and nickel accumulation in the crops Ricinus communis and Helianthus 453 

annuus (Ma et al., 2011).  454 

The residual PHE concentrations in soils subjected to different treatments on day 455 

56 were presented in Figure 6. The results clearly illustrated that more PHE was 456 

removed from soils inoculated with Sphingobium PHE-1, compared to the 457 

uninoculated treatments, and ryegrass planting also resulted in lower residual PHE. 458 



The best performance in terms of PHE reduction occurred in the treatment with both 459 

ryegrass and Sphingobium PHE-1. This optimal PHE removal was explained by 460 

microbial degradation and, to some extent, by enhanced adsorption to roots and 461 

accumulation in ryegrass shoots, as found in our previous study (Wang et al., 2012). 462 

Besides, the bioavailability of PAHs, which often limits the biodegradation of these 463 

compounds, may be increased with the aid of some components in the root exudation 464 

(An et al., 2010; Cerniglia, 1993; Gao et al., 2010). 465 

The abundance of xylE genes in soils was also studied to monitor the effect of 466 

ryegrass on the growth and degrading activities of Sphingobium PHE-1, attributing to 467 

its higher specificity than ahdA1b-1 and 16s rRNA genes. A higher abundance of xylE 468 

gene in soils with ryegrass was found than that in soils without ryegrass (Figure 7, 469 

p<0.05), which proved that ryegrass could encourage the abundance of Sphingobium 470 

PHE-1. Additionally, the copy numbers of xylE gene in soil was also enhanced by the 471 

Cu(II) addition, which was in agreement with the transcription of xylE in 472 

Sphingobium PHE-1 (Figure 2B). The increase of xylE abundance in soils planting 473 

with ryegrass was attributed to the positive influence of rhizospheric effect on 474 

microbes. The fibrous root of ryegrass observed in this work provided microbial 475 

attachment sites and enhanced soil aeration, and the vegetation cover created 476 

favourable environmental conditions such as temperature and soil moisture. More 477 

importantly, the root exudates as the ecological driver in the rhizosphere supply 478 

microorganisms with a relatively constant source of nutrients, such as water soluble 479 

carbon, nitrogen and phosphorus, especially in poor soils. The rhizosphere therefore 480 

improves the microbial growth, activities and the abundance of functional genes 481 

(Haritash and Kaushik, 2009). Besides, many secondary plant metabolites in root 482 

exudation with similar structure to aromatic hydrocarbons may stimulate the 483 

metabolic pathways of PAHs degraders (Martin et al., 2014). It was observed that 484 

more microbes, enhanced activities and increased abundance of PAHs-degrading 485 

genes in planted versus unplanted soils occurred in PAHs contaminated soils (Haritash 486 

and Kaushik, 2009; Thomas and Cebron, 2016). 487 

In the present study, the growth of ryegrass was improved by Sphingobium  488 



PHE-1. In turn, the ryegrass provided abundant nutrients to Sphingobium PHE-1 and 489 

promoted its colonisation in the rhizosphere, which enhanced the dissipation of PHE. 490 

It was proved that PHE and pyrene (PYR) dissipation with the aid of microbes in soils 491 

was improved by planting ryegrass and the levels of PHE and PYR increased with the 492 

distance from the root surface (Gao et al., 2013). A similar phenomenon was also 493 

observed in another study, in which the growth of ryegrass significantly increased soil 494 

peroxidase activities, leading to enhanced dissipation of PHE and PYR in, and 495 

additionally, the interactions of ryegrass with the two microbes further improved the 496 

dissipation of PHE and PYR (Yu et al., 2011). In the present study, the growth of 497 

ryegrass was improved by inoculation with Sphingobium PHE-1, further benefiting 498 

bacterial growth by rhizospheric effect and improving PHE dissipation as well. The 499 

capacity of strain Sphingobium PHE-1 to exhibit Cu(II) tolerance and degrade PHE 500 

suggests its feasibility in the remediation of PAHs-heavy metal co-contaminated soils 501 

and sediments. 502 
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Legends of tables and figures 710 

Fig. 1. A: Colonies (a) and transmission electronic microscopy image (b) of 711 

Sphingobium PHE-1. B: Phylogenetic tree derived from the 16S rRNA genes of 712 

Sphingobium PHE-1 and related species by the neighbor-joining method using 713 

MEGA 5.1. 714 

Fig. 2. The expression of xylE gene at different incubation time (A) or Cu(II) 715 

concentration (B). The values are the averages of three replicates. Error bars are 716 

the standard errors of the mean of three replicates. The small letters (a–d) 717 

represent the statistical significance at the 0.05 level with the LSD test. 718 

Fig. 3. Comparison of PAH-RHD cluster structure between Sphingomonas sp. strain 719 

P2, Sphingobium sp. strain PHE-1 and Sphingobium yanoikuyae strain B1. The 720 

open reading frames (ORFs) are indicated by arrows. The scale is in bases.  721 

Fig. 4. The expression of ahdA1b-1 gene at different incubation time (A) or Cu(II) 722 

concentration (B). The values are the averages of three replicates. Error bars are 723 

the standard errors of the mean of three replicates. The small letters (a–d) 724 

represent the statistical significance at the 0.05 level with the LSD test. 725 

Fig. 5. Biomass of dry ryegrass in different treatments. Control: soil amended with 726 

PHE. PHE-1: soil amended with PHE and Sphingobium PHE-1. Cu: soil 727 

amended with PHE and Cu(II). PHE-1+Cu: soil amended with PHE, Cu(II) and 728 

Sphingobium PHE-1. The values are the averages of three replicates. Error bars 729 

are the standard errors of the mean of three replicates. The small letters (a–c) 730 

represent the statistical significance at the 0.05 level with the LSD test. 731 

Fig. 6. Residual PHE concentration in soils from different treatments. Control: soil 732 

amended with PHE. PHE-1: soil amended with PHE and Sphingobium PHE-1. 733 

Cu: soil amended with PHE and Cu(II). PHE-1+Cu: soil amended with PHE, 734 

Cu(II) and Sphingobium PHE-1. The values are the averages of three replicates. 735 

Error bars are the standard errors of the mean of three replicates. The small 736 

letters (a–d) represent the statistical significance at the 0.05 level with the LSD 737 

test. 738 

Fig. 7. The abundance of xylE gene in soils from different treatments. Control: soil 739 



amended with PHE. PHE-1: soil amended with PHE and Sphingobium PHE-1. 740 

Cu: soil amended with PHE and Cu(II). PHE-1+Cu: soil amended with PHE, 741 

Cu(II) andSphingobium PHE-1. The values are the averages of three replicates. 742 

Error bars are the standard errors of the mean of three replicates. The small 743 

letters (a–e) represent the statistical significance at the 0.05 level with the LSD 744 

test 745 



Supporting information  746 

Table S1 Primers used in this study  747 

Table S2 Primers used for transcriptional analysis of PAH-RHD and C23O genes  748 

Fig. S1. Effects of initial PHE concentration on PHE degradation efficiency by 749 

Sphingobium PHE-1. The values are the averages of three replicates. Error bars 750 

are the standard errors of the mean of three replicates. The small letters (a-d) 751 

represent the statistical significance at the 0.05 level with the LSD test. 752 

Fig. S2. Effects of Cu(II) concentration on the PHE degradation efficiency by 753 

Sphingobium PHE-1. The values are the averages of three replicates. Error bars 754 

are the standard errors of the mean of three replicates. The small letters (a-e) 755 

represent the statistical significance at the 0.05 level with the LSD test. 756 

Fig. S3. Phylogenetic tree of catechol -2,3- dioxygenase gene (xyLE) from 757 

Sphingobium PHE-1 along with the closest matches in GenBank, constructed 758 

with MEGA 5.1 using the neighbor-joining method. 759 

Fig. S4. Phylogenetic tree of aromatic compounds-catabolic gene (ahdA1b-1) from 760 

Sphingobium PHE-1 along with the closest matches in GenBank, constructed 761 

with MEGA 5.1 using the neighbor-joining method. 762 

Fig. S5. Gel electrophoresis image of the flanking DNA fragments of ahdA1b-1 by 763 

SEFA-PCR. M: λDNA/HindIII marker; 1: ahdA1b upstream SEFA-PCR 764 

products; 2: ahdA1b downstream SEFA-PCR products. The arrows show the 765 

bands of target fragments. 766 
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Abstract 19 

A copper-tolerant phenanthrene (PHE)-degrading bacterium, strain Sphingobium sp. 20 

PHE-1, was newly isolated from the activated sludge in a wastewater treatment plant. 21 

Two key genes, ahdA1b-1 encoding polycyclic aromatic hydrocarbon 22 

ring-hydroxylating dioxygenase (PAH-RHDɑ) and xyLE encoding 23 

catechol-2,3-dioxygenase (C23O), involved in the PHE metabolism by strain PHE-1 24 

were identified. The PAH-RHD gene cluster showed 96% identity with the same 25 

cluster of Sphingomonas sp. P2. Our results indicated the induced transcription of 26 

xylE and ahdA1b-1 genes by PHE, simultaneously promoted by Cu(II). For the first 27 

time, high concentration of Cu(II) is found to encourage the expression of 28 

PAH-RHDɑ and C23O genes during PHE degradation. Applying Sphingomonas 29 

PHE-1 in PHE-contaminated soils for bioaugmentation, the abundance of xylE gene 30 

was increased by the planting of ryegrass and the presence of Cu(II), which, in turn, 31 

benefited ryegrass growth. The best performance of PHE degradation and the highest 32 

abundance of xylE genes occurred in PHE-copper co-contaminated soils planted with 33 

ryegrass. 34 

 35 

Keywords: Bioremediation; phenanthrene (PHE); Copper; Sphingobium; PAH-RHDɑ 36 

gene; C23O gene 37 

 38 

Capsule: The PHE biodegradability and expression of PHE degradation genes in a 39 

newly isolated bacterium strain were enhanced by high level copper.  40 



 41 

1. Introduction 42 

Soil contamination by organic pollutants and heavy metals is a global 43 

environmental issue due to rapid industrialisation and urbanisation. Polycyclic 44 

aromatic hydrocarbons (PAHs), among the most widespread organic pollutants in the 45 

environment, are of great concern for their persistence, chronic toxicity and 46 

accumulation throughout the food web (Gondek et al., 2008; Macek et al., 2000). 47 

Different to PAHs, heavy metals including copper are non-degradable, stay stabilized 48 

in soils for long-term, accumulate in vegetables, harm microbes by interfering with 49 

enzymes and DNA at high concentration, and often co-exist with organic 50 

contaminants in various environmental media (Guzik et al., 2010; Sokhn et al., 2001). 51 

It is even worse when PAHs and heavy metals co-exist, leaving the higher potential 52 

risks to human health and ecosystems. However, the establishment of effective 53 

methods to reduce the levels of these pollutants is a major challenge. Bioremediation, 54 

the introduction of allochthonous strains (called bioaugmentation) to degrade organic 55 

pollutants (Peng et al., 2008), has received increasing attentions because of its high 56 

potential for in situ or on-site treatments, which is low cost, high safety and no 57 

requirements for secondary waste treatment.  58 

The success of biodegradation depends greatly on the characteristics of 59 

allochthonous bacteria. Heavy metals can inhibit the biodegradation of organic 60 

pollutants by impacting both the physiology and ecology of degrading 61 

microorganisms (Ibarrolaza et al., 2009; Sandrin and Maier, 2003; Shen et al., 2006; 62 

Thavamani et al., 2012a; Thavamani et al., 2012b, c). For example, the activity of 63 

catechol dioxygenase is inhibited in the presence of some heavy metals (Guzik et al., 64 

2010). Bioaugmentation with bacteria exhibiting heavy metal tolerance and PAHs 65 

degrading capability is suggested as a potentially cost-effective strategy for the 66 

remediation of PAHs-metal co-contaminated soil (Thavamani et al., 2011). To date, 67 

more than 40 species of PAHs-degrading bacteria have been isolated from different 68 

environments (Gan et al., 2009; Zhang et al., 2004), e.g. Acinetobacter calcoaceticus 69 

(Zhao and Wong, 2009), Sphingomonas sp. (Gou et al., 2008), Pseudomonas sp. 70 



(Kazunga and Aitken, 2000), Mycobacterium sp. (Dandie et al., 2004; Zeng et al., 71 

2010), Rhodococcus sp. (Song et al., 2011), Achromobacter xylosoxidans (Al-Thani et 72 

al., 2009), Microbacterium sp. (Sheng et al., 2009) and Alcaligenes faecalis (Xiao et 73 

al., 2010). However, only PAHs-degrading abilities are revealed for most of these 74 

strains and little is known about whether their PAHs degrading performance can be 75 

maintained or encouraged in the presence of heavy metals (Wang et al., 2011).  76 

Some key PAH dioxygenase genes in bacteria involved in PAHs metabolism are 77 

typically used as indicators, attributing to their substrate-specificity, high conservation, 78 

and direct link to the functions of PAHs biodegradation (Baldwin et al., 2003). 79 

Microorganisms can adapt to the stress of organic pollutants by regulating the 80 

expression of degradation-related genes, and the degradation efficiency depends 81 

largely on the activities of enzymes encoded by the functional genes. The initial PAHs 82 

dioxygenase (PAH-RHD) and catechol-2,3-oxygenase (C23O) have been identified as 83 

the two key PAHs-degrading enzymes. They participate in the initial step of PAHs 84 

metabolism via the incorporation of molecular oxygen into the aromatic nucleus and 85 

the complete cleavage of the aromatic ring of the intermediate metabolites, 86 

respectively. Therefore, identifying the catabolic genes encoding these enzymes 87 

would significantly contribute to understanding the mechanism and mediating 88 

bacteria involved in the service of improving the degradation efficiency (Mrozik et al., 89 

2003). 90 

The activities of PAHs-degrading bacteria and the functional genes are often 91 

promoted in rhizospheric soils due to the root exudates and root deposition (Lin et al., 92 

2006). In turn, the growth of bacteria in the rhizosphere can increase host plant 93 

tolerance to abiotic stress by improving nutritional status, inhibiting plant disease, and 94 

degrading toxic xenobiotic substances (Peng et al., 2015). Ryegrass is usually selected 95 

as the model plant for treating hydrocarbon-contaminated soils for its fibrous root 96 

system with a large surface area near the soil surface (Xu et al., 2013). In previous 97 

studies, the combination of ryegrass and microorganisms performed well in the 98 

biodegradation of soil PAHs, petroleum and pesticides (Rezek et al., 2008; Tang et al., 99 

2010; Xie et al., 2012). However, limited information is available on the influence of 100 



ryegrass planting on the microbial degradation of organic pollutants in the 101 

co-presence of heavy metals (Sandrin and Maier, 2003).  102 

In the present study, phenanthrene (PHE) was selected as a model PAHs given its 103 

ubiquity in nature and typical characteristics of PAHs, such as K region and bend 104 

structure. This work involved three objectives: (1) to test the Cu(II) tolerance and 105 

PHE-degrading ability of bacterial strain isolated from a wastewater treatment plant; 106 

(2) to characterise the phylotype and expression of PAH-RHD and C23O genes of the 107 

newly isolated strain; and (3) to study its potential in the remediation of PHE-copper 108 

co-contaminated soils with ryegrass planting.  109 

2. Materials and methods 110 

2.1 Enrichment, isolation and PHE degradation test of PHE-degrading bacteria 111 

Activated sludge (20 g) from a wastewater treatment plant was added to an 112 

Erlenmeyer flask with 200 mL of sterile deionised water and shaken for 30 min at 180 113 

rpm and 30ºC. Five millilitres of this suspension was transferred into 95 mL of 114 

mineral salt medium (MSM) with 100 mg/L PHE as the sole carbon source and 115 

subsequently incubated on a rotary shaker (180 rpm) for 4 days at 30°C. The 116 

following enrichment cycles were performed by transferring 5 mL of the enrichment 117 

culture from the preceding enrichment cycle into fresh MSM supplemented with 100 118 

mg/L PHE every 4 days. After isolating the pure PHE-degrading microorganisms by 119 

spreading serially diluted enrichment culture samples onto MSM agar plates 120 

containing 100 mg/L PHE, high-performance liquid chromatography (HPLC) analysis 121 

was applied to evaluate PHE degradation rate in liquid culture medium. Among all the 122 

isolated bacterial strains, one strain was selected for further study because of its high 123 

PHE-degrading ability.  124 

The PHE-degrading ability of the isolated strain was tested by incubation in fresh 125 

MSM with initial PHE concentration of 0, 300, 500, 600, 700, 800 and 900 mg/L, 126 

respectively. The effect of copper on PHE degradation was investigated by incubating 127 

the strain in fresh MSM containing 100 mg/L PHE and Cu(II) (as CuCl2) 128 

concentration of 0, 0.81, 1.61, 2.42, 3.22, 4.03, 4.84, or 5.64 mM. Culture without 129 

inoculum was used as a sterile control to assess the abiotic loss of PHE. The residual 130 



PHE was analysed by HPLC immediately after sampling. 131 

For the treatments assessing the transcription of PAH-RHD and C23O genes, the 132 

isolated strain was inoculated in the MSM with 100 mg/L PHE and Cu(II) 133 

concentration of 0, 0.81, 2.42 and 4.03 mM for 24 h, or with 100 mg/L PHE only for 134 

12, 18, 24 and 48 h, respectively. MSM supplemented with glucose (no PHE) was 135 

used as the blank control. For each treatment, 3% (v/v) (OD600 ≈2.0) inocula were 136 

inoculated initially in triplicates. All the incubations were conducted on a rotary 137 

shaker (180 rpm) at 30°C without light.  138 

 139 

2.2 Characteristics of the isolated strain 140 

2.2.1 Identification of isolated strain, and PAH-RHD and C23O genes 141 

The isolated strain was identified by 16S rRNA sequencing. After DNA 142 

extraction with the PowerSoil kit (MO BIO Laboratories, USA), the 16S rRNA genes 143 

were amplified in accordance with the procedures described previously (Song et al., 144 

2015). The purified polymerase chain reaction (PCR) products were ligated into 145 

vector pEASY-T1 and transformed into Escherichia coli DH5α. Plasmids were 146 

extracted and sequenced as described previously (Jiang et al., 2015). Sequence 147 

similarity searches and alignments were performed using the Basic Local Alignment 148 

Search Tool (BLAST) algorithm (National Center for Biotechnology Information) and 149 

Molecular Evolutionary Genetics Analysis (MEGA 5.1). Sharing 99% identity with 150 

the nucleotide sequences of Sphingobium abikonense NBRC 16140, the isolated strain 151 

was named as Sphingobium PHE-1.  152 

The PAH-RHD and the C23O genes were amplified using the primers listed in 153 

Table S1 with genomic DNA of Sphingobium PHE-1 as the template. The primers 154 

were designed based on the previously reported PAH-RHDɑ and C23O genes. DNA 155 

amplification was performed by the following PCR program: 95ºC for 2 min; 30 156 

cycles at 94ºC for 30 s, 60ºC for 30 s and 72ºC for 60 s; and final extension at 72ºC 157 

for 10 min. The PCR products were checked by agarose gel electrophoresis (1.2%). 158 

The amplicons were further cloned, sequenced and subjected to phylogenetic analysis 159 

as mentioned above. 160 



2.2.2 Analysis of the PAH-RHD gene cluster 161 

The PAH-RHD gene cluster of Sphingobium PHE-1 was obtained by self-formed 162 

adaptor PCR (SEFA-PCR) as described previously (Wang et al., 2007). The primers 163 

used in this study were presented in Table S1. SEFA-PCR was conducted by the 164 

following procedures. Firstly, a single cycle with primer SP3 and the genomic DNA 165 

of Sphingobium PHE-1 as template was carried out as follows: 95ºC for 1 min, 94ºC 166 

for 30 s, 30ºC for 3 min, 70ºC for 5 min and 72ºC for 5 min. The 30-μL PCR mixture 167 

was prepared with 15 μL of 2×GC buffer I, 4 μL of dNTP (2.5 mM), 1 μL of SP3 (5 168 

μM), 0.3 μL of LA-Taq and 1 μL of template (about 50 ng/μL). Secondly, 1 μL of 169 

primer SP1 (25 μM) was added to the reaction mixture and 25 cycles of PCR were 170 

performed as follows: 94ºC for 30 s and 70ºC for 5 min. Thirdly, eight cycles of 171 

thermal asymmetric PCR were carried out with the following program: one cycle of 172 

94ºC for 30 s, 50ºC for 30 s and 70ºC for 5 min; followed by two cycles of 94ºC for 173 

30 s and 70ºC for 5 min. Fourthly, 1 μL of the products were diluted 1000 times and 174 

used as the template for another PCR in a 30-μL mixture containing 15 μL of 2×GC 175 

buffer I, 4 μL of dNTP (2.5 mM), 2 μL of SP2 (5 μM), 0.3 μL of LA-Taq and 1 μL of 176 

template. Then, the PCR was carried out by the following program: 95ºC for 2 min, 177 

followed by 30 cycles of 94ºC for 30 s and 70ºC for 5 min, with final extension at 178 

72ºC for 10 min. The presence of final PCR products was checked by agarose gel 179 

electrophoresis, followed by purification, ligation to vector pMD19-T and sequence. 180 

After assembly, the 9.1-kb DNA fragment containing the PAH-RHD gene was 181 

analysed using the online Open Reading Frame (ORF) Finder 182 

(http://www.ncbi.nlm.nih.gov/gorf/gorf.html) and the Blastx programme 183 

(http://www.blast.ncbi.nlm.nih.gov). 184 

2.2.3. Transcriptional analysis of PAH-RHD and C23O genes 185 

Quantitative reverse transcription PCR (qRT-PCR) was used to analyse the 186 

transcriptional levels of PAH-RHD and C23O genes as follows. Total RNA was 187 

extracted from each sample with a Bacterial RNA Extraction Kit (CWBIO, Beijing, 188 

China) following the manufacturer’s instructions. After removing genomic DNA with 189 

RNase-Free DNase (Qiagen, Hilden, Germany), cDNA was synthesised from RNA 190 

http://www.blast.ncbi.nlm.nih.gov/


template using the QuantiTect reverse transcription kit (CWBIO, Beijing, China) 191 

according to the manufacturer’s instructions. Primers used to amplify PAH-RHD, 192 

C23O, and 16S rRNA genes were designed based on the sequence of genomic DNA 193 

of Sphingobium PHE-1, respectively (Table S2). qRT-PCR was performed on an ABI 194 

Prism 7500 real-time PCR detection system using TransStart Top Green qPCR 195 

SuperMix as follows: 95°C for 30 s, followed by 40 cycles of 95°C for 5 s and 60°C 196 

for 34 s. Melting curves were obtained by slow heating from 60°C to 90°C at 0.1°C/s 197 

and continuous monitoring of the fluorescence signal (Singleton et al., 2009). Three 198 

replicates were performed for each sample. The quantities of PAH-RHD and C23O 199 

gene transcripts for each sample were determined by relative quantification using the 200 

2
−△△Ct 

method (Livak and Schmittgen, 2001). Standard curves for the quantification of 201 

PAH-RHD, C23O, and 16S rRNA genes were created by performing qPCR with serial 202 

dilutions of the standard plasmid containing the target DNA sequence by the 2
−△△Ct 

203 

method.  204 

2.3 Pot experiment with copper–PHE-co-contaminated soil 205 

2.3.1 Set-up of pot experiment 206 

Soil without detectable PAHs and copper was collected from an agricultural field 207 

in Jiangning District, Nanjing, China. After transferred to the laboratory, the soil was 208 

air-dried and sieved through a 2-mm mesh. The physiochemical properties of the soil 209 

were as follows: pH 7.10, total organic matter 2.92%, total nitrogen 0.68 g/Kg and 210 

total phosphorus 1.03 g/Kg. 211 

To prepare the soils contaminated with 500 mg/Kg PHE, the PHE (purity > 96%; 212 

Sigma-Aldrich, Germany) dissolved in methanol was spiked into 5% (w/w) of the 213 

total soil. After the evaporation of methanol in a fume-hood, this contaminated soil 214 

was thoroughly mixed with the remaining soil (Brinch et al., 2002). For PHE-copper 215 

co-contaminated soil, copper (as CuCO3) was added to the PAH-spiked soil at a final 216 

concentration of 500 mg/Kg. Next, 1 Kg of contaminated soil was placed in a ceramic 217 

pot. Following four dry-wet cycles within 4 weeks, the soil was planted with ryegrass 218 

seeds and inoculated with pre-cultivated strain Sphingobium PHE-1 at a density of 219 

1.5×10
7
 cells/g. In total, the four treatments included: PHE-1 inoculation, ryegrass 220 



planting, ryegrass planting with Sphingobium PHE-1 inoculation, and soil without 221 

ryegrass or PHE-1. The pots were watered daily with deionised water to maintain the 222 

moisture content at approximately 60% of the water-holding capacity of the soils. 223 

After 56 days of cultivation in a glasshouse at 20-30°C under natural light, the soils in 224 

the pots were collected, mixed, sieved through a 2-mm mesh, and stored at -20°C for 225 

DNA extraction and PHE analysis. 226 

2.3.2 Quantitation of C23O gene in soil 227 

Microbial genomic DNA was extracted from soil using the FastDNA Spin kit 228 

(MoBIO, USA) in accordance with the manufacturer’s instruction and then used as 229 

template to perform qPCR to quantify C23O gene named xylE. The standard curve for 230 

absolute quantitation of xylE gene was established by SYBR Green fluorescence 231 

quantitative PCR with a template obtained by a series of 10-fold dilutions of the 232 

plasmid constructed with vector pEASY-T1 and xylE fragment. 233 

2.4 PHE extraction and analysis 234 

During strain isolation and cultivation, the PHE was collected by liquid–liquid 235 

extraction. Briefly, the liquid culture was mixed with methylene chloride (1:1 v/v) by 236 

vigorous shaking and then held for 2 h at room temperature. After drying with 237 

anhydrous sodium sulphate, the resulting extract was then concentrated to 1 mL with 238 

a gentle stream of N2 for HPLC analysis (Thavamani et al., 2012c). 239 

PHE in soil samples were collected by ultrasonic extraction. After freeze-drying, 240 

5 g of soil was placed in a glass tube, to which 10 mL of dichloromethane was added. 241 

The suspension was ultrasonicated for 30 min with occasional stirring to prevent its 242 

adherence to the bottom of the tube. The mixture was then centrifuged at 4000 rpm, 243 

and the supernatant was discarded. The above procedure was repeated three times. All 244 

the supernatants were pooled and concentrated to ~0.5 mL after solvent exchange to 245 

hexane. The soil extracts were purified in a multilayer silica gel/alumina column (8 246 

mm i.d.) filled (from top to bottom) with anhydrous Na2SO4 (1 cm), neutral silica gel 247 

(3 cm, 3% w/w; deactivated) and neutral alumina (3 cm, 3% w/w; deactivated) via 248 

elution with 15 mL of hexane/dichloromethane (1:1, v/v). After concentrating with a 249 



gentle stream of N2, the residue was dissolved in methane with a final volume of 1.0 250 

mL for HPLC analysis (Chigbo et al., 2013).  251 

PHE was detected on a HPLC (Waters 600) equipped with an 
18

C reversed-phase 252 

column (4.6 mm × 25 cm) and a photo diode-array detector. Methanol:water (90:10, 253 

v/v) at a flow rate of 0.8 mL/min was used as the mobile phase. HPLC analysis was 254 

performed at a wavelength of 254 nm, and a 20-µL sample or standard PHE 255 

compounds were injected into the chromatograph under standardised conditions. An 256 

external standard method was used for quantitation in terms of peak areas (Dong et al., 257 

2008).  258 

2.5 Statistical analysis 259 

Statistical analysis was performed using SPSS 17.0. The statistical significance 260 

of differences (p-value <0.05) in PHE concentration, abundance of ahdA1b-1 and 261 

xyLE genes, and the biomass of dry ryegrass among the different treatments was 262 

analysed using one-way analysis of variance (ANOVA) and the least significant 263 

difference (LSD) test.  264 

3. Results and discussion 265 

3.1 Characterisation of PHE-degrading bacteria  266 

 After incubation in Luria–Bertani medium for 48 h, the colony of the isolated 267 

strain was observed to be yellow, with a diameter of 3–4 mm, translucent and glossy, 268 

with a smooth surface and neat edges (Figure 1A-a). The images of cells obtained by 269 

transmission electronic microscopy showed that the strain was rod-shaped (0.5-0.7 270 

μm × 1.2-1.7 μm) with flagella (Figure 1A-b). The results of 16S rRNA sequence 271 

showed its 99% identity with the nucleotide sequences of the Sphingobium 272 

abikonense strain NBRC 16140 (NR 113839.1), Sphingobium abikonense strain IAM 273 

12404 (NR 112079.1) and Sphingobium lactosutens strain DS20 (NR 116408.1) 274 

(Figure 1B). The strain was therefore classified as a Sphingobium strain within the 275 

genus Sphingomonas, family Sphingomonadaceae, class Alphaproteobacteria, and 276 

named as Sphingobium PHE-1. 277 

3.2 Impacts of Cu(II) on PHE degradation by Sphingobium PHE-1 278 



Figure S1 showed the PHE removal efficiency in MSM at 24 h with different 279 

concentrations of PHE as the sole carbon source. PHE was completely degraded when 280 

its initial concentration was less than 600 mg/L. Above this level, the removal 281 

efficiency decreased with the increasing initial PHE concentration. The results 282 

indicated that Sphingobium PHE-1 possesses powerful PHE biodegradability, better 283 

than Sphingobium chlorophenolicum C3R metabolizing ~60% of the PHE in 2 days 284 

with an initial concentration of 300 mg/L in liquid culture similar to this work 285 

(Colombo et al., 2011) and a Sphingobium strain utilizing more than 200 mg/L PHE 286 

within 24 h in liquid culture (Prakash and Lal, 2006). Besides, it was observed that ~ 287 

50% of the added PHE was degraded owing to the inoculation of strain Sphingobium 288 

PHE-1 in PHE-copper co-contaminated soils . 289 

To study the influence of Cu(II) on PHE degradation by strain Sphingobium 290 

PHE-1, the removal efficiency of PHE was tested in the presence of different 291 

concentrations of Cu(II). Figure S2 showed that PHE was almost completely degraded 292 

when Cu(II) was less than 3.22 mM. The removal efficiency maintained 88.2% even 293 

when the Cu concentration rose to 4.03 mM and then decreased with the increasing 294 

Cu(II). The similar behaviour was also observed for the mixed flora derived from soil 295 

suspensions, the PHE degradation ability of which was not significantly affected 296 

when the Cu(II) concentration was no more than 0.43 mM. Previous study showed the 297 

declining microbial respiration in the presence of Cu(II), and the higher the Cu(II) 298 

concentration, the more pronounced the inhibition (Sokhn et al., 2001). The limited 299 

impact caused by high level Cu(II) in this work might be explained by the little 300 

influence of Cu(II) on the enzymatic activity of dioxygenase related to PAHs 301 

degradation. It was reported replacement of the iron at the active site of 302 

iron-containing 2,3-dioxygenase with copper weakly affects its activity owing to the 303 

stability of the metal complexes (Gopal et al., 2005; Guzik et al., 2013). 304 

Sphingomonas species have long been known for degrading a wide range of PAHs 305 

in contaminated soils and are often detected in copper-contaminated media, such as 306 

copper-exposed groundwater treatment plants and soils near copper mines (Stolz, 307 

2009). Sphingobium, comprising 25 recognised species, is the main subgenus of the 308 



Sphingomonas genus with the capacity of PAHs degradation (Kertesz and Kawasaki, 309 

2010). It was demonstrated that Sphingobium chlorophenolicum strain C3R 310 

significantly improves the biodegradation rate of PHE in PAHs-contaminated soils in 311 

the presence of both cadmium and arsenic (Colombo et al., 2011). Some other 312 

Sphingobium strains with the ability to degrade PAHs and substituted PAHs were also 313 

isolated from a river, a pentachlorophenol-contaminated industrial site and freshwater 314 

sediment, a polluted stream and 2,4-dichloroprop-pretreated soils (Kertesz and 315 

Kawasaki, 2010). Furthermore, the enzymes involved in the catabolic pathways and 316 

the corresponding genes in Sphingobium strains have also been well studied (Leys et 317 

al., 2004; Pinyakong et al., 2003a; Story et al., 2000).  318 

3.3 The effect of PHE and Cu(II) on C23O gene transcription  319 

In this work, we successfully amplified a C23O gene from strain Sphingobium 320 

PHE-1 by using the primers designed in accordance with known ones. The 321 

phylogenetic information in Figure S3 showed that the xylE gene of Sphingobium 322 

PHE-1 was closely related to the genus Sphingobium, sharing 95%, 92% and 92% 323 

similarity with the nucleotide sequences of S. strain ZP1, S. yanoikuyae strain B1 and 324 

S. strain P2, which was consistent with 16s rRNA results. The copies of xylE gene 325 

were then analysed by qRT-PCR using the primers designed according to the nucleic 326 

sequences of acquired xylE gene. 327 

To test the effect of PHE addition on the expression of xylE gene and evaluate its 328 

change with time, the copy numbers of xyLE gene of Sphingobium PHE-1 in the 329 

presence of PHE were compared to the control (PHE replaced by glucose), as 330 

illustrated in Figure 2A. It was clear that the copies of xyLE kept increasing in the first 331 

24 h and then decreased from 24 to 48 h. Comparison with the constant copy numbers 332 

of xyLE gene in the control yielded the inference that xyLE gene is induced by PHE. 333 

In the treatment with an initial concentration of 100 mg/Kg PHE, the expression of 334 

xyLE gene peaked when all PHE had been consumed. The same results were also 335 

observed in an ex situ system, in which xyLE gene was initially present at high PAHs 336 

concentration, but disappeared with a substantial decrease of PAHs after 1 week 337 

(Wikstrom et al., 1996). This is also consistent with the results of Zhao et al. (Zhao et 338 



al., 2011), who described that the expression of C23O gene in PHE-degrader 339 

Pseudomonas sp. ZP1 increased during the PHE degradation, but dramatically 340 

dropped off when PHE ran out.  341 

Figure 2B showed the expression of xyLE gene against different concentrations 342 

of Cu(II) with 100 mg/L PHE as the sole carbon source after 24 h. An unexpected 343 

promotion of xyLE expression was observed when Cu(II) was added, compared to the 344 

control (no Cu(II)), and its expression level increased with the rise of Cu(II). This 345 

indicated that Sphingobium PHE-1 would probably resist the damage caused by Cu(II) 346 

via encouraging xyLE expression for PHE metabolism and catabolism, generating 347 

more energy to enhance the expression of genes related to the oxidative stress 348 

response, DNA and protein repair, metal transport and other processes (Baker-Austin 349 

et al., 2005; Gu et al., 2016). Generally, heavy metals inhibit the microbial 350 

degradation of organic compounds via disrupting general enzymes or functional genes 351 

responsible for PAHs degradation (Sokhn et al., 2001). The exception involved a 352 

metal-tolerant and phenol-degrading strain, for which cadmium was reported to 353 

increase its C23O activity (Hupert-Kocurek et al., 2013). It is interesting that a high 354 

level of Cu(II) promoted the expression of the C23O gene in Sphingobium PHE-1 in 355 

the present study, which should be useful for the bioremediation of copper-PAHs 356 

co-contaminated soils.  357 

The degradation of PHE by bacteria is driven by enzymes and is dependent on 358 

the levels of enzymatic activity. Two key enzymes are involved in the 359 

PHE-degradation process: ring-hydroxylating dioxygenase (PAH-RHD) and aromatic 360 

ring-cleavage dioxygenase. PAH-RHD controls the incorporation of molecular 361 

oxygen into the aromatic nucleus to form cis-dihydrodiol in the initial step of PAHs 362 

metabolism. Thereafter, the dihydroxylated cis-dihydrodiol intermediates are cleaved 363 

by dioxygenase via ortho-cleavage or meta-cleavage pathways. C23O protein acting 364 

as a ring-cleavage enzyme in the meta-cleavage pathways seems to consist of a 365 

superfamily of enzymes (Boldt et al., 1995). C23O genes have been found in strains 366 

Sphingomonas ZP1 (Zhao et al., 2011), Pseudomonas stutzeri AN10, Pseudomonas 367 

putida G7, and Pseudomonas putida NCIB9816 (Habe and Omori, 2003), and their 368 



gene sequences in these bacteria with the ability to degrade different PAHs have been 369 

uncovered. Thus, C23O genes are potentially good indicators in monitoring the 370 

bacterial subpopulations involved in the ring cleavage of aromatics and the final steps 371 

of the degradation of some PAHs. For example, it was reported that C23O genes were 372 

successfully used to monitor the subpopulations of PAHs-degrading microbes in 373 

different types of soils (Wikstrom et al., 1996). 374 

3.4 Sequence analysis of PAH-RHD gene clusters and the effects of PHE and 375 

Cu(II) on its transcription 376 

By amplifying the PAH-RHDα gene from the total DNA of Sphingobium PHE-1 377 

with the designed primers (Table S1), a DNA fragment of 1490 bp was obtained. The 378 

nucleotide sequence of the fragment exhibits 99% and 97% similarity with the 379 

ahdA1b operon affiliated to Sphingomonas sp. ZP1 (EU082776) and Sphingomonas 380 

sp. P2 (AB091693), respectively, which is then named as ahdA1b-1 (Figure S4). 381 

The effects of PHE and Cu(II) on ahdA1b-1 transcription were investigated using 382 

the primers designed according to the nucleic sequences of ahdA1b-1, as illustrated in 383 

Figure 4. It was clear that the ahdA1b-1 gene held a similar expression pattern as 384 

xyLE gene, rapidly increasing over time before 24 h but slowed down from 24 to 48 h 385 

with the exhaustion of PHE in the medium. Meanwhile, the expression of ahdA1b-1 386 

gene in the control (glucose instead of PHE) was significantly lower than those 387 

supplemented with PHE (p<0.05) and had tiny fluctuation throughout the experiment. 388 

It was proposed that the expression of ahdA1b-1 gene was induced by PHE and 389 

reached a plateau when the PHE was used up. The same results were also obtained by 390 

Pinyakong et al., who found the inducible genes encoding terminal oxygenase in 391 

Sphingobium sp. strain P2 (Pinyakong et al., 2003b). Preliminary study on the 392 

response of Sphingomonas aromaticivorans strain F199 to various aromatic 393 

compounds demonstrated that its aromatic catabolic activity was induced after 394 

exposure to naphthalene (Pinyakong et al., 2003b). Additionally, Cu(II) significantly 395 

affected the expression of ahdA1b-1 gene in Sphingobium PHE-1, from the higher 396 

expressed copy numbers of ahdA1b-1 gene copies in Cu(II) amended treatments than 397 

that in samples without copper, even when the Cu(II) concentration was increased to 398 



4.03 mM (p<0.05). The results indicated that ahdA1b-1 expression is promoted by 399 

Cu(II), consistent with the influence of Cu(II) on the expression of xyLE gene. 400 

Although previous research showed that the expression of the genes responsible for 401 

naphthalene degradation in a Pseudomonas strain is enhanced by nickel (Siunova et 402 

al., 2007), no work prior to this study reported the transcription of PAHs-degrading 403 

genes is promoted by high level of Cu(II). 404 

In the first step of PHE metabolism, the aromatic nucleus is attacked by 405 

molecular oxygen forming cis-dihydrodiol with the function of PAH-RHD. 406 

PAH-RHD is composed of an iron-sulphur flavoprotein reductase, an iron–sulphur 407 

ferredoxin and a terminal dioxygenase. The terminal dioxygenase consists of large α 408 

and small β subunits, and two conserved regions exist in α subunit (RHDα) (Kauppi et 409 

al., 1998). Primers based on these conserved regions have been designed and 410 

successfully applied to amplify the target pahAc-like, phnAc-like and nagAc-like 411 

genes (Cebron et al., 2008). Besides, genes encoding degrading proteins are 412 

frequently found in grouping together in a cluster (Qiu et al., 2013). SEFA-PCR was 413 

therefore performed to obtain the flanking DNA sequences of ahdA1b-1 in this study. 414 

A 6.6-kb upstream and a 2.1-kb downstream DNA fragments were amplified with 415 

three pairs of primers (Table S1). After cloning and sequencing, it is noted that the 416 

6.6-kb upstream DNA fragment contains a small subunit and a large subunit 417 

belonging to the PAH-RHD gene, and the 2.1-kb downstream DNA fragment has a 418 

small subunit affiliated to the PAH-RHD gene. The 1490-bp core fragment was 419 

assembled with the flanking fragments to generate a 9.1-kb DNA fragment, which 420 

shows 96% similarity to the PAHs-degrading gene cluster affiliated to Sphingomonas 421 

sp. P2 and Sphingobium yanoikuyae strain B1. As shown in Figure 3, the analysis of 422 

nucleotides and the deduced amino acid sequences of the 9.1-kb DNA fragment using 423 

the online ORF Finder and Blastx programme revealed that six consecutive ORFs 424 

exhibited 99%, 96%, 93%, 97%, 99% and 96% nucleotide sequence identities with 425 

xylA, xylM, ahdA2b, ahdA1b, ahdA2a and ahdA1a, respectively, which are located in 426 

the PAHs-degrading gene cluster of Sphingomonas sp. P2 (AB091693) and S. 427 

yanoikuyae strain B1 (EF151283) (referred to as xylA, xylM, bphA2b, bphA1b, 428 



bphA2a and bphA1a) (Pinyakong et al., 2000, 2003a) . The clusters from xylA to 429 

ahdA1a/bphA1a in the three strains were assembled in the same order and 430 

transcriptional direction (Figure 3), indicating the high conservation of the functional 431 

genes encoding PAH-RHD in strains affiliated to the Sphingomonas genus. It was also 432 

reported that the aromatic-degrading genes from the Sphingobium sp. B1, 433 

Sphingobium sp. Q1 and Novosphingobium aromaticivorans F199 exhibited high 434 

homology (Pinyakong et al., 2003a; Pinyakong et al., 2003b). For example, in 435 

Sphingomonas, the degrading genes encoding arene cis-dihydrodiol dioxygenase and 436 

the enzymes responsible for the conversion of 1,2-dihydroxynaphthalene to salicylate 437 

were reported to be similar in sequence (Waigi et al., 2015). 438 

3.5 The application of Sphingobium PHE-1 coupled with ryegrass in the 439 

remediation of PHE-copper co-contaminated soils  440 

The inoculation of Sphingobium PHE-1 significantly improved the growth of 441 

ryegrass (Figure 5). Interestingly, the growth of ryegrass was also found to be greatly 442 

stimulated by Cu(II), with plants grown in PHE-copper co-contaminated soils having 443 

higher biomass than those grown in soils with PHE contamination only (Figure 5), 444 

which was consistent with the trends of ahdA1b-1 and xyLE gene transcription in 445 

MSM (Figure 2B and Figure 4B). This improvement in ryegrass growth was 446 

attributed to the increasing activities of Sphingobium PHE-1 in the presence of Cu(II). 447 

It was reported that some heavy metal-resistant bacteria could promote the growth of 448 

host plants. Examples included a copper-resistant plant growth-promoting bacterial 449 

(PGPB) strain, Ax10, which was isolated from a copper mine soil and facilitated 450 

Brassica juncea growth and Cu(II) uptake (Ma et al., 2009). Besides, the 451 

nickel-resistant strain PGPB SRS8 was also found to be capable of stimulating plant 452 

growth and nickel accumulation in the crops Ricinus communis and Helianthus 453 

annuus (Ma et al., 2011).  454 

The residual PHE concentrations in soils subjected to different treatments on day 455 

56 were presented in Figure 6. The results clearly illustrated that more PHE was 456 

removed from soils inoculated with Sphingobium PHE-1, compared to the 457 

uninoculated treatments, and ryegrass planting also resulted in lower residual PHE. 458 



The best performance in terms of PHE reduction occurred in the treatment with both 459 

ryegrass and Sphingobium PHE-1. This optimal PHE removal was explained by 460 

microbial degradation and, to some extent, by enhanced adsorption to roots and 461 

accumulation in ryegrass shoots, as found in our previous study (Wang et al., 2012). 462 

Besides, the bioavailability of PAHs, which often limits the biodegradation of these 463 

compounds, may be increased with the aid of some components in the root exudation 464 

(An et al., 2010; Cerniglia, 1993; Gao et al., 2010). 465 

The abundance of xylE genes in soils was also studied to monitor the effect of 466 

ryegrass on the growth and degrading activities of Sphingobium PHE-1, attributing to 467 

its higher specificity than ahdA1b-1 and 16s rRNA genes. A higher abundance of xylE 468 

gene in soils with ryegrass was found than that in soils without ryegrass (Figure 7, 469 

p<0.05), which proved that ryegrass could encourage the abundance of Sphingobium 470 

PHE-1. Additionally, the copy numbers of xylE gene in soil was also enhanced by the 471 

Cu(II) addition, which was in agreement with the transcription of xylE in 472 

Sphingobium PHE-1 (Figure 2B). The increase of xylE abundance in soils planting 473 

with ryegrass was attributed to the positive influence of rhizospheric effect on 474 

microbes. The fibrous root of ryegrass observed in this work provided microbial 475 

attachment sites and enhanced soil aeration, and the vegetation cover created 476 

favourable environmental conditions such as temperature and soil moisture. More 477 

importantly, the root exudates as the ecological driver in the rhizosphere supply 478 

microorganisms with a relatively constant source of nutrients, such as water soluble 479 

carbon, nitrogen and phosphorus, especially in poor soils. The rhizosphere therefore 480 

improves the microbial growth, activities and the abundance of functional genes 481 

(Haritash and Kaushik, 2009). Besides, many secondary plant metabolites in root 482 

exudation with similar structure to aromatic hydrocarbons may stimulate the 483 

metabolic pathways of PAHs degraders (Martin et al., 2014). It was observed that 484 

more microbes, enhanced activities and increased abundance of PAHs-degrading 485 

genes in planted versus unplanted soils occurred in PAHs contaminated soils (Haritash 486 

and Kaushik, 2009; Thomas and Cebron, 2016). 487 

In the present study, the growth of ryegrass was improved by Sphingobium  488 



PHE-1. In turn, the ryegrass provided abundant nutrients to Sphingobium PHE-1 and 489 

promoted its colonisation in the rhizosphere, which enhanced the dissipation of PHE. 490 

It was proved that PHE and pyrene (PYR) dissipation with the aid of microbes in soils 491 

was improved by planting ryegrass and the levels of PHE and PYR increased with the 492 

distance from the root surface (Gao et al., 2013). A similar phenomenon was also 493 

observed in another study, in which the growth of ryegrass significantly increased soil 494 

peroxidase activities, leading to enhanced dissipation of PHE and PYR in, and 495 

additionally, the interactions of ryegrass with the two microbes further improved the 496 

dissipation of PHE and PYR (Yu et al., 2011). In the present study, the growth of 497 

ryegrass was improved by inoculation with Sphingobium PHE-1, further benefiting 498 

bacterial growth by rhizospheric effect and improving PHE dissipation as well. The 499 

capacity of strain Sphingobium PHE-1 to exhibit Cu(II) tolerance and degrade PHE 500 

suggests its feasibility in the remediation of PAHs-heavy metal co-contaminated soils 501 

and sediments. 502 
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Legends of tables and figures 710 

Fig. 1. A: Colonies (a) and transmission electronic microscopy image (b) of 711 

Sphingobium PHE-1. B: Phylogenetic tree derived from the 16S rRNA genes of 712 

Sphingobium PHE-1 and related species by the neighbor-joining method using 713 

MEGA 5.1. 714 

Fig. 2. The expression of xylE gene at different incubation time (A) or Cu(II) 715 

concentration (B). The values are the averages of three replicates. Error bars are 716 

the standard errors of the mean of three replicates. The small letters (a–d) 717 

represent the statistical significance at the 0.05 level with the LSD test. 718 

Fig. 3. Comparison of PAH-RHD cluster structure between Sphingomonas sp. strain 719 

P2, Sphingobium sp. strain PHE-1 and Sphingobium yanoikuyae strain B1. The 720 

open reading frames (ORFs) are indicated by arrows. The scale is in bases.  721 

Fig. 4. The expression of ahdA1b-1 gene at different incubation time (A) or Cu(II) 722 

concentration (B). The values are the averages of three replicates. Error bars are 723 

the standard errors of the mean of three replicates. The small letters (a–d) 724 

represent the statistical significance at the 0.05 level with the LSD test. 725 

Fig. 5. Biomass of dry ryegrass in different treatments. Control: soil amended with 726 

PHE. PHE-1: soil amended with PHE and Sphingobium PHE-1. Cu: soil 727 

amended with PHE and Cu(II). PHE-1+Cu: soil amended with PHE, Cu(II) and 728 

Sphingobium PHE-1. The values are the averages of three replicates. Error bars 729 

are the standard errors of the mean of three replicates. The small letters (a–c) 730 

represent the statistical significance at the 0.05 level with the LSD test. 731 

Fig. 6. Residual PHE concentration in soils from different treatments. Control: soil 732 

amended with PHE. PHE-1: soil amended with PHE and Sphingobium PHE-1. 733 

Cu: soil amended with PHE and Cu(II). PHE-1+Cu: soil amended with PHE, 734 

Cu(II) and Sphingobium PHE-1. The values are the averages of three replicates. 735 

Error bars are the standard errors of the mean of three replicates. The small 736 

letters (a–d) represent the statistical significance at the 0.05 level with the LSD 737 

test. 738 

Fig. 7. The abundance of xylE gene in soils from different treatments. Control: soil 739 



amended with PHE. PHE-1: soil amended with PHE and Sphingobium PHE-1. 740 

Cu: soil amended with PHE and Cu(II). PHE-1+Cu: soil amended with PHE, 741 

Cu(II) andSphingobium PHE-1. The values are the averages of three replicates. 742 

Error bars are the standard errors of the mean of three replicates. The small 743 

letters (a–e) represent the statistical significance at the 0.05 level with the LSD 744 

test 745 



Supporting information  746 

Table S1 Primers used in this study  747 

Table S2 Primers used for transcriptional analysis of PAH-RHD and C23O genes  748 

Fig. S1. Effects of initial PHE concentration on PHE degradation efficiency by 749 

Sphingobium PHE-1. The values are the averages of three replicates. Error bars 750 

are the standard errors of the mean of three replicates. The small letters (a-d) 751 

represent the statistical significance at the 0.05 level with the LSD test. 752 

Fig. S2. Effects of Cu(II) concentration on the PHE degradation efficiency by 753 

Sphingobium PHE-1. The values are the averages of three replicates. Error bars 754 

are the standard errors of the mean of three replicates. The small letters (a-e) 755 

represent the statistical significance at the 0.05 level with the LSD test. 756 

Fig. S3. Phylogenetic tree of catechol -2,3- dioxygenase gene (xyLE) from 757 

Sphingobium PHE-1 along with the closest matches in GenBank, constructed 758 

with MEGA 5.1 using the neighbor-joining method. 759 

Fig. S4. Phylogenetic tree of aromatic compounds-catabolic gene (ahdA1b-1) from 760 

Sphingobium PHE-1 along with the closest matches in GenBank, constructed 761 

with MEGA 5.1 using the neighbor-joining method. 762 

Fig. S5. Gel electrophoresis image of the flanking DNA fragments of ahdA1b-1 by 763 

SEFA-PCR. M: λDNA/HindIII marker; 1: ahdA1b upstream SEFA-PCR 764 

products; 2: ahdA1b downstream SEFA-PCR products. The arrows show the 765 

bands of target fragments. 766 
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Fig. 1. A: Colonies (a) and transmission electronic microscopy image (b) of Sphingobium PHE-1. B: Phylogenetic 

tree derived from the 16S rRNA genes of Sphingobium PHE-1 and related species by the neighbor-joining method 

using MEGA 5.1.  
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Fig. 2. The expression of xylE gene at different incubation time (A) or Cu(II) concentration (B). The values are 

the averages of three replicates. Error bars are the standard errors of the mean of three replicates. The small letters 

(a–d) represent the statistical significance at the 0.05 level with the LSD test. 

 

 

  



 

Fig. 3. Comparison of PAH-RHD cluster structure between Sphingomonas sp. strain P2, Sphingobium sp. strain 

PHE-1 and Sphingobium yanoikuyae strain B1. The open reading frames (ORFs) are indicated by arrows. The scale 

is in bases.  

  



 

Fig. 4. The expression of ahdA1b-1 gene at different incubation time (A) or Cu(II) concentration (B). The values are 

the averages of three replicates. Error bars are the standard errors of the mean of three replicates. The small letters 

(a–d) represent the statistical significance at the 0.05 level with the LSD test.  

 

 

 

 



 

Fig. 5. Biomass of dry ryegrass in different treatments. Control: soil amended with PHE. PHE-1: soil amended with 

PHE and Sphingobium PHE-1. Cu: soil amended with PHE and Cu(II). PHE-1+Cu: soil amended with PHE, Cu(II) 

and Sphingobium PHE-1. The values are the averages of three replicates. Error bars are the standard errors of the 

mean of three replicates. The small letters (a–c) represent the statistical significance at the 0.05 level with the LSD 

test. 

  



 

 

 

Fig. 6. Residual PHE concentration in soils from different treatments. Control: soil amended with PHE. PHE-1: soil 

amended with PHE and Sphingobium PHE-1. Cu: soil amended with PHE and Cu(II). PHE-1+Cu: soil amended with 

PHE, Cu(II) and Sphingobium PHE-1. The values are the averages of three replicates. Error bars are the standard 

errors of the mean of three replicates. The small letters (a–d) represent the statistical significance at the 0.05 level 

with the LSD test. 

  



 

 

 

 

Fig. 7. The abundance of xylE gene in soils from different treatments. Control: soil amended with PHE. PHE-1: soil 

amended with PHE and Sphingobium PHE-1. Cu: soil amended with PHE and Cu(II). PHE-1+Cu: soil amended with 

PHE, Cu(II) andSphingobium PHE-1. The values are the averages of three replicates. Error bars are the standard 

errors of the mean of three replicates. The small letters (a–e) represent the statistical significance at the 0.05 level 

with the LSD test. 
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