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Abstract. It is by now widely accepted that the arrival process of aggregate 

network traffic exhibits self-similar characteristics which result in the 

preservation of traffic burstiness (high variability) over a wide range of 

timescales. This behaviour has been structurally linked to the presence of 

heavy-tailed, infinite variance phenomena at the level of individual network 

connections, file sizes, transfer durations, and packet inter-arrival times. In this 

paper, we have examined the presence of fractal and heavy-tailed behaviour in a 

number of performance aspects of individual IPv6 microflows as routed over 

wireless local and wide area network topologies. Our analysis sheds light on 

several questions regarding flow-level traffic behaviour: whether burstiness 

preservation is mainly observed at traffic aggregates or is it also evident at 

individual microflows; whether it is influenced by the end-to-end transport 

control mechanisms as well as by the network-level traffic multiplexing; 

whether high variability is independent from diverse link-level technologies, 

and whether burstiness is preserved in end-to-end performance metrics such as 

packet delay as well as in the traffic arrival process. Our findings suggest that 

traffic and packet delay exhibit closely-related Long-Range Dependence (LRD) 

at the level of individual microflows, with marginal to moderate intensity. Bulk 

TCP data and UDP flows produce higher Hurst exponent estimates than the 

acknowledgment flows that consist of minimum-sized packets. Wireless access 

technologies seem to also influence LRD intensity. At the same time, the 

distributions of intraflow packet inter-arrival times do not exhibit infinite 

variance characteristics.  
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1. Introduction 

Seminal measurement studies during the last fifteen years have demonstrated that 

data communications networks’ traffic is self-similar (statistically fractal) in nature 

remaining bursty over a wide range of timescales. These findings advocated that 

statistical properties of the (aggregate) network traffic, when viewed as time series 

data, remain similar irrespective of the time scale of observation, and were in sharp 

contrast with the up till then commonly employed Poisson and Markovian models 

which were based on exponential assumptions about the traffic arrival process. A 

characteristic of self-similar processes is that they often exhibit long memory, or 



Long-Range Dependence (LRD), signifying that their current state has significant 

influence on their subsequent states far into the future. Consequently, values at a 

particular time are related not just to immediately preceding values, but also to 

fluctuations in the remote past. Hence, high variability in the behaviour of self-similar 

processes is preserved over multiple time scales. Pioneering work has focused on the 

measurement and characterisation of LAN [13], WAN [17], and transport/application-

specific traffic [6], having the traffic arrival process at a single network (edge) point 

as the common primary quantity of interest. The revealed LRD properties of 

aggregate network traffic have been subsequently linked to heavy-tailed, infinite 

variance phenomena at the level of individual source-destination pairs, represented by 

ON/OFF sources and packet trains models whereby a source alternates between active 

(ON-period) and idle (OFF-period) states [22][23]. These are in turn attributed to 

distributed systems’ objects and file sizes being heavy-tailed, a property that has been 

shown to be preserved by the protocol stack and mapped to approximate heavy-tailed 

busy periods at the network layer [15][16]. However, the existence (or otherwise) of 

self-similar and/or heavy-tailed behaviour within performance facets of individual 

microflows has not received much attention to date. This is partly due to the majority 

of individual connections in the Internet being short-lived, and therefore their 

behaviour over multiple time scales can be studied only through aggregation. At the 

same time, the vast majority of bytes over the Internet are carried within a relatively 

small number of very large flows which are sufficiently long-lived for the temporal 

evolution of their intraflow properties to be investigated [4]. It is henceforth feasible 

to examine whether the self-similar characteristics of aggregate traffic resulted from 

the superimposition of numerous ON/OFF sources are also manifested at the level of 

long-lived individual traffic flows. Characterising the long-term flow behaviour and 

revealing possible burstiness preservation properties therein can prove instrumental 

for network resource management and accountability purposes, since end-to-end 

flows are the primary entity subjected to open and closed-loop network control. 

Similar to proposals advocating small buffer capacity/large bandwidth resource 

provisioning when input traffic is self-similar, relevant characterisation of end-to-end 

flow behaviour and performance aspects therein can form the basis for designing 

adaptive flow control algorithms to operate at multiple timescales and take into 

consideration potential correlation between distant events/values throughout the 

lifetime of a flow. From a measurement point of view, the comparative analysis of 

temporal flow behaviour is also important since it can reveal certain idiosyncrasies 

potentially linked to the operation of the different transport control algorithms. 

Differences in the long-term behaviour of diverse traffic flows can hint to additional 

causality relationships between burstiness intensity and flow control, as well as the 

levels of traffic multiplexing in the network.  

Likewise, packet delay is one of the most commonly employed metrics to assess 

the service quality levels experienced by an end-to-end flow. In contrast to traffic 

arrivals, delay indicates how traffic is routed between two network nodes and is 

among the primary performance aspects whose absolute value and temporal variations 

(in either the unidirectional or the round-trip representation) are attempted to be 

controlled by transport mechanisms and kept within certain ranges depending on 

individual applications’ requirements. Links between network traffic self-similarity 

and the temporal intraflow delay behaviour can identify the degree of penetration of 



high variability to different facets of network performance, and the relative level of 

causality between performance, end-to-end flow control, and traffic multiplexing in 

the network. A few studies on fractal analysis of packet delay have reported non-

stationary LRD in round-trip delay of synthetic UDP traffic [3], and in aggregate 

NTP/UDP flows [14], yet the burstiness preservation relationships between the 

different transport mechanisms and the unidirectional contributors of the end-to-end 

delay of individual flows have not been investigated. 

In this paper, we have quantified the burstiness preservation properties of a set of 

end-to-end unidirectional IPv6 traffic flows routed over IEEE 802.11 and GPRS 

service networks, two media which themselves exhibit highly variable performance 

characteristics [10][5]. We have comparatively examined the presence of Long-Range 

Dependence (LRD) in the intraflow traffic arrival process and in per-packet 

unidirectional delay, and we have investigated the extent to which transport control, 

packetisation, and wireless access mechanisms influence its intensity. In addition, we 

have analysed the tail behaviour of packet inter-arrival times at the individual flow 

level, and revealed the absence of infinite variance phenomena therein. In section 2 

we provide the definition and mathematical formulation of self-similarity and LRD, 

their interrelation, and a brief discussion on the estimators used to identify and 

quantify LRD on empirical time series. Section 3 includes an outline our 

measurement methodology and a description of the wireless experimental 

infrastructure over which measurements were conducted. In section 4 we present and 

discuss in detail the results of measurement analysis, and we provide possible 

explanations and interpretations of our findings. We comment on the similarity 

between LRD in the per-flow traffic and unidirectional delay, and on the different 

levels of LRD exhibited by diverse application flows and over the different wireless 

topologies. We also compare and contrast the tail behaviour of per-flow packet inter-

arrival times to heavy-tailed distributions. Section 5 concludes the paper. 

2. Self-Similarity and Long-Range Dependence: Definitions and 
Estimation 

A stochastic process or time series Y(t) in continuous time t∈�  is self-similar 

with self-similarity (Hurst) parameter 0 1,H< <  if for all 0 and 0,tα > ≥  

( ) ( ).H
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Self-similarity describes the phenomenon of a time series and its time-scaled version 

following the same distribution after normalizing by α
-H
. It is relatively 

straightforward to show [2] that this implies that the autocorrelation function (ACF) 

of the stationary increment process ( ) ( ) ( 1)X t Y t Y t= − −  at lag k is given by  
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0 1,  where 0 is a constant, 2 2c Hβ β< < > = − [2][16]. This implies that the 

correlation structure of the time series is asymptotically preserved irrespective of time 

aggregation, and the autocorrelation function decays hyperbolically which is the 

essential property that constitutes it not summable: 

1
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When such condition holds, the corresponding stationary process X(t) is said to be 

Long-Range Dependent (LRD). Intuitively, this property implies that the process has 

infinite memory for 0.5 < H < 1, meaning that the individually small high-lag 

correlations have an important cumulative effect. This is in contrast to conventional 

short-range dependent processes which are characterised by an exponential decay of 

the autocorrelations resulting in a summable autocorrelation function. LRD causes 

high variability to be preserved over multiple time scales and is one of the 

manifestations of self-similar processes alongside non-summable spectral density for 

frequencies close to the origin and slowly decaying variances. This latter 

characteristic of self-similar and LRD processes can be disastrous for classical tests 

and prediction of confidence intervals. The variance of the arithmetic mean decreases 

more slowly than the reciprocal of the sample size, behaving like n
-β
 for 0 < β < 1, 

instead of like n
-1
 which is the case for processes whose aggregated series converge to 

second-order pure noise [2][13]. Therefore, usual standard errors derived for 

conventional models are wrong by a factor that tends to infinity as the sample size 

increases. Two theoretical models that have been used to simulate LRD is the 

fractional Gaussian noise (fGn) which is the stationary increment process of fractional 

Brownian motion (fBm), and fractional ARIMA processes that can simultaneously 

model the short and long term behaviour of a time series. 

A number of estimators [21][13] have been extensively used in multidisciplinary 

literature for LRD detection and quantification by estimating the value of the Hurst 

exponent; as 1H →  the dependence is stronger. They are classified in time-domain 

and frequency-domain estimators, depending on the methodology they employ to 

estimate H. Time-domain estimators are based on heuristics to investigate the 

evolution of a statistical property of the time series at different time-aggregation 

levels. They are hence mainly used for LRD detection, rather than the exact 

quantification of the phenomenon. Frequency-domain estimators focus on the 

behaviour of the power spectral density of the time series. In this paper, we have 

employed two time-domain estimators (the aggregated variance and the rescaled 

adjusted range methods) to detect whether our measured quantities exhibit LRD 

characteristics (H > 0.5), and we have subsequently focused on the more robust 

frequency-domain Whittle estimator for the exact LRD quantification. Whittle is a 

maximum likelihood type estimate which is applied to the periodogram of the time 

series and it provides an asymptotically exact estimate of H and a confidence interval. 

However, it presupposes that the empirical series is consistent with a specific process 

(e.g. fGn) whose underlying form must be provided, hence its use with time series 

that have already been shown to be LRD (by other means) is strongly advisable. 

Wavelet-based LRD estimation [1] has also been developed whose accuracy is 

comparable to Whittle, yet it has been lately shown to consistently overestimate the 

Hurst exponent on synthesized LRD series and hence Whittle was preferred for this 

study [12]. 



3. Measurement Methodology and Experimental Environment 

In-line measurement [18] has been employed to instrument a representative set of 

IPv6 traffic flows as these were routed over diverse wireless topologies during one 

week, in November 2005 [19]. The technique exploits extensibility features of IPv6, 

to piggyback measurement data in Type-Length-Value (TLV) structures which are 

then encapsulated within an IPv6 destination options extension header and carried 

between a source and a destination. Being encoded as a native part of the network-

layer header, inline measurement is potentially applicable to all traffic types carried 

over the IPv6 Internet infrastructure. Destination options extension headers in 

particular, are created at the source and are only processed at the (ultimate) 

destination node identified in the destination address field of the main IPv6 header. 

Hence, their presence does not negatively impact the option-bearing datagrams at the 

intermediate forwarding nodes [18]. For the purposes of this study, 32-bit Linux 

kernel timestamps were encoded in an appropriate TLV structure to record time TDEP  

immediately before a packet is serialised at the NIC of the source IPv6 node, and time 

TARR as soon as the packet arrives in the destination IPv6 node’s OS kernel. The 

intraflow traffic arrival process has been calculated as the number of packets (or 

bytes) arriving at the destination within disjoint subintervals throughout the flow 

duration. The end-to-end unidirectional delay for a given packet P is calculated as D 

= T
P

ARR – T
P

DEP. Moreover, the inter-arrival time between two successive packets Pi 

and Pi+1 is computed as 1 .i iP P

ARR ARR
IA T T+= −  For the purposes of the delay measurement 

the two end-systems synchronised using the Network Time Protocol (NTP) with a 

common stratum 1 server through additional high-speed wired network interfaces, in 

order to avoid NTP messages competing with the instrumented traffic over the 

bottleneck wireless links. The NTP daemon was allowed sufficient time to 

synchronise prior to the experiments until it reached a large polling interval. The 

offset reported by NTP was always at least one order of magnitude smaller with 

respect to the minimum one-way delay observed. All the delay traces were 

empirically examined against negative values as well as against linear alterations 

(trend) of the minimum delay over time. None of these offset/skew-related 

phenomena were experienced. 

Instrumented traffic consisted of moderate-size bulk TCP transfers and CBR UDP 

video streaming flows. Measurements have been conducted end-to-end over two 

diverse wireless service networks over the Mobile IPv6 Systems Research Laboratory 

(MSRL) infrastructure. MSRL includes a wireless cellular network as well as a 

combination of 802.11 technologies and it comprises a real service infrastructure, as 

shown in Fig. 1. The measurements were carried out between a host machine 

connected to MSRL’s wired backbone network (Linux 2.4.18; Intel 100BaseT 

adapter) and a host machine with multiple wireless interfaces (Linux 2.4.19; NOKIA 

D211 combo PCMCIA 802.11b/GPRS adapter), connected through the 802.11b/g 

campus-wide network and through the GPRS/GSM W-WAN network. The W-LAN 

infrastructure is part of Lancaster University campus wireless network, and includes 

802.11b and 802.11g. Although the nominal speed for 802.11b is 11Mb/s, it has been 

observed that due to interference with other appliances operating at the same 

frequency band (2.4 GHz), the cards often fallback to 5.5, 2, and 1 Mb/s.  



 

Fig. 1. Wireless experimental environment (MSRL infrastructure) 

The W-WAN network is the Orange UK GPRS/GSM service network, practically 

allowing for speeds of up to 20/50Kb/s (up/downlink), due to asymmetric slot 

allocation. Connectivity between Orange UK and the MSRL backbone is served by a 

2Mb/s wireless Frame Relay point-to-point link. 

4. Measurement Analysis and Results 

Packet-level measurements were taken upon arrival of each packet to its 

destination, hence at irregular time instants. In order to covert the traces to time series 

data, they were discretised into equally-sized bins based on normalised packet arrival 

time. Unidirectional delays and inter-arrival times of multiple packets arriving within 

each bin were averaged, and the mean values were considered for the particular bin. 

Although this process inevitably smooths out short-term variations, bin size was 

carefully selected for each flow to contain as few packets as possible, while at the 

same time avoiding empty bins. The time series’ lengths varied from 2
9
 to 2

12
 which 

has been reported sufficient for Hurst exponent estimates with less than 0.05 bias and 

standard deviation [7]. A number of sanity tests and calibration measures have been 

employed to tune the LRD estimation process by eliminating time series effects such 

as periodicity, trend and short-range correlations which are known to constitute LRD 

estimation error prone. Trends and non-stationarities have been checked against 

during pre-processing, while periodicity and short-term correlations have been 

neutralised using the randomised buckets method to perform internal randomisation to 

the signal [9]. Time-domain (detection) estimators which operate on the aggregated 

time series can suffer from the limited number of samples available at high 

aggregation levels. We have employed oversampling with digital low-pass filtering to 

increase the sampling rate of the time series and hence refine their estimates. For 

further details regarding techniques for tuning the LRD estimation process and their 

effects, the interested reader is referred to [12][20]. 



0 5 10 15 20 25

1
0

1
2

1
4

1
6

1
8

2
0

2
2

1s Aggregation

Time (1s)

T
h
ro
u
g
h
p
u
t

0 5 10 15

4
6

8
1
0

1
2

0.5s Aggregation

Time (0.5s)

T
h
ro
u
g
h
p
u
t

0.0 0.5 1.0 1.5 2.0 2.5

5
1
0

1
5

2
0

2
5

0.1s Aggregation

Time (0.1s)

T
h
ro
u
g
h
p
u
t

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
2

4
6

8
1
0

0.05s Aggregation

Time (0.05s)

T
h
ro
u
g
h
p
u
t

 

Fig. 2. Stochastic Self-Similarity – burstiness preservation across time scales of 50 ms, 100 ms, 

500 ms, and 1000 ms for the bulk TCP data path over the W-LAN network 

LRD behaviour in traffic arrivals and unidirectional end-to-end delay  

The two intraflow properties analysed for LRD behaviour were the traffic arrival 

process and the unidirectional end-to-end packet delay. These were comparatively 

examined for TCP data, TCP reverse, and CBR UDP flows routed over the two 

diverse wireless topologies. We have used the LRD detection (time-domain) 

estimators on all time series data which all reported that traffic arrivals and one-way 

delay exhibit LRD at various intensities, and produced Hurst exponent estimates 0.5 

< H < 1. We subsequently applied the Whittle estimator on the data to quantify the 

levels of LRD with high confidence. Fig. 2 indicatively shows the burstiness 

preservation of the data path of a bulk TCP flow over the W-LAN topology at varying 

time scales, demonstrating the absence of a characteristic size of a burst. Traffic 

throughput is shown in packets which are all MSS-sized and hence byte-throughput is 

linearly identical. The upper left plot shows a complete presentation of the time series 

using one-second bins. Then, the bottom left plot shows the same time series whose 

first 3-second interval is “blown up” by a factor of ten, and the truncated time series 

has time granularity of 100 ms. Likewise, the rightmost plots show parts of the time 

series with an equivalent number of samples for time granularities of 500 and 50 ms, 

respectively. Overall, the plots show significant bursts of traffic at different levels 

spanning almost three orders of magnitude. Table 1 and Table 2 show the Whittle 

estimate (and 95% confidence interval) of the Hurst exponent for traffic arrivals and 

unidirectional delay, respectively, for all the different flows routed over the W-LAN 

and W-WAN networks. Their comparative examination yields some very interesting 

observations. 



Table 1. Hurst exponent estimates – Whittle 

method: Traffic arrivals 

Microflow 
Whittle Estimator 

H est. & 95% C.I. 

TCP data 

[W-LAN] 
0.714 ± 0.005 

TCP data 

[W-WAN] 
0.554 ± 3.47e-05 

TCP reverse 

[W-LAN] 
0.584 ± 0.004 

TCP reverse 

[W-WAN] 
0.534 ± 0.001 

UDP [W-LAN] 0.534 ± 3.37e-05 

UDP [W-WAN] 0.697 ± 0.001 
 

Table 2. Hurst exponent estimates  – Whittle 

method: Unidirectional packet delay 

Microflow 
Whittle Estimator 

H est. & 95% C.I. 

TCP data 

[W-LAN] 
0.739 ± 0.025 

TCP data 

[W-WAN] 
0.599 ± 0.15 

TCP reverse 

[W-LAN] 
0.552 ± 0.007 

TCP reverse 

[W-WAN] 
0.528 ± 0.014 

UDP [W-LAN] 0.687 ± 0.003 

UDP [W-WAN] 0.742 ± 0.20 
 

 

It is evident in both phenomena (tables) that the majority of the unidirectional flows 

over the two media independently, show marginal to moderate LRD intensity with 

Hurst exponent values for some of them close to those of short-range dependent 

processes, differing by less than 0.1. This fact reinforces the argument of LRD being 

intensified by the aggregation of traffic. However, there are cases of individual flows 

which suggest dependency between LRD, traffic type and wireless medium. For bulk 

TCP data over W-LAN, both traffic arrival (whose burstiness preservation was shown 

in Fig. 2) and end-to-end delay exhibit considerable LRD manifested by Hurst values 

greater than 0.71. This is in contrast to the same type of traffic routed over W-WAN 

for which both properties assume marginal intensity values less than 0.6. The opposite 

behaviour with respect to the two wireless media is observed for constant bit rate 

UDP traffic. Over W-LAN, UDP traffic does not assume considerable LRD, whereas 

moderate intensity is suggested for UPD over W-WAN with an estimated Hurst 

exponent close to 0.7. The same relationship holds for the packet delay behaviour of 

the UDP flows over the two media, although the absolute Hurst estimates are in both 

cases larger than those of the traffic process. The acknowledgment path of bulk TCP 

connections over both media is characterised by smaller intensity than the 

corresponding data path, and overall marginal LRD. 

When comparing the Hurst estimates of the per-flow traffic behaviour with those 

of the corresponding unidirectional delay, it is apparent that there is a considerably 

close agreement between their LRD intensities. This implies that although traffic 

arrival process and unidirectional delay are metrics describing different aspects of 

network dynamics (the former describes how traffic is delivered at a single network 

node while the latter describes how traffic is routed between two nodes), they are both 

influenced by common sets of parameters. Hurst estimates of the two processes for 

each flow/medium combination lie within a range which is smaller than the wider 

95% confidence interval of the two. The only exception is the TCP acknowledgment 

path over the W-LAN topology, where the Hurst estimates for traffic and packet delay 

differ by 0.032 while the wider 95% C.I. of the two (delay) is 0.007. Overall, Whittle 

performs better on the traffic arrival process by producing narrow 95% C.I.s for the 



Hurst estimates on the order of 10
-3
 or better. For unidirectional packet delay the 

corresponding C.I.s are on the order of 10
-2
 or better, however in two cases, the width 

of the 95% C.I.s can put even the existence of marginal LRD under doubt.  

It is well accepted that traffic self-similarity arises through the aggregation of 

multiple traffic sources since its causality relationship with the heavy-tailed property 

of the ON/OFF sources model is based on limit theorems for large number of sources 

and large temporal intervals [22][23]. However, the per-flow indications of LRD for 

traffic as well as for the packet delay raise some interesting issues. The two wireless 

configurations over which the measurement was conducted can be safely assumed to 

operate as access networks where clients are mainly downloading content and not 

uploading, hence the download path is more congested than the reverse direction. At 

the same time, the W-LAN network was lightly utilised during the time of the 

experiments, as this was indicated by APs’ client association logs. Therefore, the 

stronger LRD intensity exhibited by the TCP data flow over W-LAN yields some 

dependency between LRD and the packetisation/congestion control algorithm 

operating on the flow, irrespective of traffic aggregation over the medium. The fact 

that similar LRD levels are not seen for the TCP data path over W-WAN hints 

towards relationship between traffic behaviour and link-local delivery mechanisms. 

The dense protocol stack of GPRSoGSM which to some extent replicates TCP’s 

reliable transmission seems to neutralise the effect that transport-layer congestion 

control has on the long-range behaviour of traffic. The higher Hurst estimates 

produced for both TCP data and UDP flows, as opposed to the (lower) estimates of 

the TCP reverse flows over both wireless media signifies dependency between LRD 

behaviour and packet size. It is worth noting that TCP data and UDP flows consisted 

of constant-size packets of 1440 and 544 bytes, respectively, while TCP reverse flows 

consisted of (mainly) 56 and (fewer) 84-byte packets. All sizes exclude network and 

link-layer headers. Apart from the Hurst exponent estimates, accompanying 

indisputable evidence regarding long-memory behaviour of per-flow data are 

computed sample statistics such as ACF which exhibit nontrivial correlations at large 

lags. Fig. 3 indicatively shows the correlation structures of traffic arrivals from a 

selection of flows with different LRD intensity whose estimates appear in Table 1. 

The ACFs demonstrate the different correlation structures between time series with 

considerably different Hurst estimates. The plots also show the effect of the 

randomised buckets with internal randomisation which were employed to neutralise 

short-range correlations and periodicities. It is evident that ACFs follow asymptotic 

decay at various levels, which is unsurprisingly more intense for flows with larger 

Hurst estimates. It is interesting to note that even for the TCP reverse flow whose 

estimated Hurst value is considerably small (<0.6), correlations seem non-degenerate 

since they mostly remain above the 95% C.I. of zero. 

Tail behaviour of intraflow packet inter-arrival times 

The heavy-tailed property of the transmission (or the idle) times of individual 

sources has been characterised as the main ingredient needed to obtain LRD 

characteristics (H>0.5) in aggregate traffic [22][23]. Heavy-tailness has since then 

been reported in a number of facets of traffic behaviour, including (web) file sizes, 

transfer times, burst lengths and inter-arrival times [6][8][17]. 
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Fig. 3. Autocorrelation function (ACF) of TCP data [H=0.714] and TCP reverse [H=0.584] 

traffic over W-LAN, and UDP traffic [H=0.697] over W-WAN 
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Fig. 4. LLCDs of intraflow packet inter-arrival times for TCP data, TCP reverse, and UDP 

traffic over W-LAN and W-WAN configurations 

A distribution is heavy-tailed if [ ] ,  as ,  0 2.P X x x xα α−> → ∞ < <∼ That is, 

regardless of its behaviour for small values of the random variable, its asymptotic 

shape is hyperbolic. For 1 ≤ α < 2, the distribution has infinite variance, whereas for 0 

< α < 1, it has infinite mean as well. The tail index α can be empirically estimated 

using the log-log complimentary distribution (LLCD) plot and calculating its slope 

through least-squares regression for large values of the random variable above which 

the plot appears to be linear. We have used a test (also used in [6]) based on the 



Central Limit Theorem (CLT) to examine whether the packet inter-arrival times 

within our measured traffic flows exhibit infinite variance, and hence heavy-tailed 

characteristics. According to CLT, the sum of a large number of i.i.d. samples from 

any distribution with finite variance will tend to be normally distributed. Hence, for a 

distribution with finite variance, the slope of the LLCD plot of the m-aggregated 

dataset will increasingly decline as m increases, reflecting the distribution’s 

approximation of a normal distribution. On the contrary, if the distribution exhibits 

infinite variance the slope will remain roughly constant with increasing aggregation 

levels (m). Fig. 4 shows the CLT test for various aggregation levels applied to the 

packet inter-arrival times of all flows over the two wireless topologies. It is evident 

that for increasing aggregation levels the slope of the LLCD plots of packet inter-

arrival times decreases, arguing against the infinite variance characteristics of heavy-

tailed distributions like e.g. Pareto. Usually, higher aggregation levels are used for the 

CLT test however these could not be achieved given the length of the instrumented 

flows. Yet, the slope decrease becomes apparent even for slightly increasing 

aggregation levels and absence of infinite variance can be safely assumed. Indeed, the 

least-squares regression we performed on the LLCD plots yielded values α > 2, and 

their overall shape was better described by (light-tailed) log-normal distributions. This 

finding is in accordance to other studies suggesting that log-normal distributions give 

better fit to many duration and inter-arrival distributions observed over the Internet, 

than heavy-tailed Pareto distributions do [8]. It has also been shown that this observed 

light-tailness is not contradictory to LRD of aggregate traffic [11]. 

5. Conclusion 

We have examined the temporal behaviour of traffic performance characteristics at 

the level of individual, sufficiently long-lived flows, routed over diverse wireless 

networks. We have provided evidence of similar LRD intensity between the intraflow 

traffic arrival process and the unidirectional packet delay, demonstrating that LRD 

behaviour of aggregate traffic penetrates other measurable quantities at finer 

granularities, albeit in lesser intensities than the ~0.8 levels reported for traffic 

aggregates [13][6]. However, even for relatively small LRD intensity (Hurst) values, 

the ACFs indicate non-obviously-degenerate correlations at large lags. Through the 

comparative examination of refined Hurst estimates of intraflow traffic properties we 

identified the possibility of other network and traffic idiosyncrasies, such as transport 

control mechanisms, wireless access technologies and packet sizes, influencing the 

intensity of LRD behaviour. At the same time, we have shown the absence of infinite 

variance phenomena at the distributions of intraflow packet inter-arrival times. 

Although this study focused on IPv6 flows, similar behaviour is expected for IPv4 

traffic, since both protocols assume the same packetisation mechanisms at their higher 

layers. Whether in practice intermediate routers treat IPv4 and IPv6 traffic identically 

and how this influences their performance deserves further experimental 

investigation. In addition, comparative performance analysis between flows routed 

over wireless technologies and their wired counterparts is to be further pursued. 
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