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Abstract-The cloud is scalable and cost-efficient, but it is not ideal for hosting all applications. Fog computing proposes 

an alternative of offloading some computation to the edge. Which applications to offload, where to, and when is not 
entirely clear yet due to our lack of understanding of potential edge infrastructures. Through a number of experiments, 
we showcase the feasibility and readiness of micro-clouds formed by collections of Raspberry Pis to host a range of fog 
applications, particularly for network-constrained environments. 
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I.   INTRODUCTION 

Fog computing is coming. The paradigm allows devices at the edge of the network to become proactive in hosting 

as well as consuming data and services [1]. This is great for interconnecting the swarm of edge devices: wearables, 

sensors, smart traffic controllers, interactive displays, etc. Perhaps more importantly, the fog offers potential to 

provide Internet services in locations that have poor access to network and computational resources, as is the case in 

many developing regions. 

Current literature focuses on the fog’s vision and high-level potential [1][6] but not the pragmatic means of 

deploying fog solutions. We identify micro-clouds as platforms that offer promising opportunities in edge resource 

provisioning. We demonstrate through a series of experiments how such platforms are capable of supporting fog 

solutions and we give an overview of the state of the art, charting some short- to medium-term challenges. 

II. WHAT ARE MICRO-CLOUDS? 

A. Predecessors 

Cyber-foraging and cloudlets have been proposed primarily for mobile offloading [2]. Such proposals were 

clearly designed for dedicated (hence static) and powerful servers, potentially provided by ISPs. They employed 

virtual machines (VMs) that are rather heavyweight for limited-capability, potentially transient, edge resources. 

VMs also tend to grow into immutable and brittle units that are difficult to manage and costly to migrate. 

The droplets architecture bridges between the centralisation of the cloud and the opposite extreme 

decentralisation, termed the mist [3]. Despite explaining high level mechanics and associated trade-offs, the paper 

did not specify how such droplets would be deployed. Our experimental results strongly suggest micro-clouds as 

ideal deployment vehicles for such a vision. 

B. Rise of Micro-clouds 

The recent development of small, cheap, low-power computers has prompted a number of new applications, e.g. 

programmable home automation and entertainment systems. Several projects have taken advantage of this and 

started assembling a number of such devices to create small computing clusters. The availability of this hardware, 



coupled with advancements in technologies that enable multi-tennant resource slicing, facilitated the advent of 

micro-cloud systems. 

Micro-clouds are standalone computational infrastructures of small size that can be easily deployed in different 

locations. Their scale is in stark contrast to that of cloud data centers, yet they can offer similar capabilities in the 

qualitative terms of access to resources in an on-demand, pay-as-you-go fashion. As such, they represent prime 

candidates for hosting fog services.  

Micro-clouds are also distinct from mini-clouds or mini-data centers, which are modular server racks deployed 

indoors, e.g. in a temperature and humidity controlled server room. Micro-clouds also refer to a modular assembling 

of computers but with the key difference of being easily portable and independent of existing infrastructure. 

Consequently, micro-clouds lend themselves to deployment outdoors as well as indoors, and especially in 

unprepared or hostile environments. 

III.   WHY MICRO-CLOUDS? 

We discuss two contrasting use cases where micro-clouds are becoming increasingly important. 

A. Resource Poor Environments 

Over the years, developers have collectively come up with distributed systems that are essentially modern variants 

of the classical client-server model. Cloud applications predominantly operate in this fashion:  a client device with 

limited processing and storage responsibilities, communicating with a powerful back end system hosted in a remote 

data center. 

Even in regions where average income is relatively low, end user devices have become fairly affordable for a 

large fraction of the world population. Despite such hardware becoming increasingly powerful and resourceful, 

these clients still heavily rely on the back end (the ‘server’). 

Focusing on the location of the ‘server’, we plot in FIGURE 1 the locations of data centers of major cloud service 

providers as of February 2016. We also identify the locations of population centers with more than 750,000 people 

[4] with black dots as indicators of significant market potential. 



 
FIGURE 1 - Major cloud data centers (with a 750 mile radius) and major urban areas (black dots), showing that for a large amount of end users 

no nearby data center is found. 
 

As is evident from FIGURE 1, for many the ‘server’ is much further away than desired. This is amplified by the 

increasing reliance on interaction between users for business and social purposes. The main concern in this model 

thus becomes the quality of the network connection between clients and the data centers serving them [5]. 

A solution to this problem is to introduce computational resources where needed. Data centers are indeed being 

built, but this is a long term solution involving large budgets, high levels of expertise, and national or regional 

political guarantees. In contrast, injecting smaller infrastructures in the form of micro-clouds provides a much lower 

cost alternative. They require far less expertise, energy, housing, and geopolitical commitments. 

B. Resource Rich Environments 

The low cost and easy-to-set-up aspect of micro-clouds render them highly amenable to a number of applications 

in resource-rich environments. One example is IoT deployments (smart cities, home automation, data-driven 

industries, etc.) where there is a plethora of sensors and actuators. Micro-clouds promise a number of opportunities 

in terms of playing support roles such as aggregation, pre-processing, caching, fault mitigation, and migration 

assistance. This manifestation is supportive of the fog [1][6] and edge-centric [7][8] concepts where heterogeneous 

devices dispersed around the edge intercommunicate to both provide and consume services. 

Another example is emergency applications in response to natural disasters (e.g. floods and earthquakes) and 

security crises (e.g. terrorist attacks and riots). Resources provided through micro-clouds can be used to set up 

instant stations to relay safety information, locate victims, coordinate communication between rescue and security 

units, and provide alternative connectivity means (e.g. mounted on UAVs) in case long-haul access is lost. 



IV.   FEASIBILITY EXPERIMENTS 

We now focus on assessing the feasibility of using micro-cloud computing capabilities to deliver fog services, 

particularly to operate isolated execution environments at the edge. We zoom in on the Raspberry Pi (rPi) as the 

prominent micro-cloud component device due to its wide availability and affordability. The rPi generations used are 

summarised in TABLE 1, all equipped with a Wintec 16GB Class-10 microSD card. 

 
TABLE 1 - RASPBERRY PI MACHINE SPECIFICATIONS 

Model PCB Processor Cache (kB) Memory Power 
Ver. #Cores Clock rate L1 L2 (MB) (mA) 

rPi1B 1.0 1 700 MHz 16 128 256 300 
rPi1B 2.0 1 700 MHz 16 128 512 700 
rPi1B+ 1.2 1 700 MHz 16 128 512 600 
rPi2B 1.1 4 900 MHz 32 512 1024 800 
rPi3B 1.2 4 1.2 GHz 32 512 1024 800 

 

We choose to investigate the ability to run different customer facing services (such as web caching, aggregation, 

pre-processing) in Docker containers as a realistic way of achieving isolation in micro-cloud devices. It also 

provides migration readiness in order to cater to changes in user requirements. We identify 4 key metrics to assess 

the ability of an rPi-based micro-cloud to handle isolated services at the edge: serving latency, hosting capacity, I/O 

overhead, and startup latency. Our rPis run HypriotOS v0.7.0 (unless otherwise stated), a Debian-based Linux 

distribution geared specifically towards running Docker over ARM processors.  

A. Serving Latency 

Our first experiment investigates the responsiveness of application servers deployed on micro-clouds and their 

ability to serve a large number of requests. We deploy Apache httpd serving a webpage with minimal HTML and 

one image (≈100kB) in 2 settings: native, i.e. over Linux, and Dockerized, i.e. running inside a container. We then 

use the benchmarking tool Apache ab to stress test the servers with varying number of concurrent clients between 50 

and 250, reaching a total of 1,000 clients per test. For these experiments representing an edge deployment, the rPi 

servers were within 2 hops and ≈20ms from the simulated clients. The results are plotted in FIGURE 2. 



 

We also deployed a similar server setup (only native httpd) on Amazon EC2 and ran the ab tests from Lahore, 

Pakistan. These cloud servers were located in the following locations offered by Amazon: Dublin, Seoul, Singapore, 

and Tokyo. The results are also presented in FIGURE 2 (keys starting with “EC2-”). 

We draw the main observations from this set of results. First, the results confirm that a classic cloud deployment 

is not ideal for all scenarios, especially for end users in locations like Pakistan where data centers (even Asia-Pacific 

ones) are at a considerable network distance. In such situations, micro-clouds provide a suitable substitute for 

applications requiring low latency. Second, most rPis are very capable of handling a significant number of web 

requests. Despite their limited computational capability, using them in such locations improves latency by at least an 

order of magnitude. However, as the number of concurrent users becomes significantly high, a hybrid deployment 

leveraging both remote data centers and micro-clouds becomes a more viable option as the micro-cloud 

computational limitations start to show. Third, running the servers within Docker introduces a notable amount of 

overhead attributed to isolation. In the case of the Pi1B1, the oldest of the rPis, the native server was able to serve 

250 concurrent users while the Dockerized server was unable to serve more than 30. As a final comment, we note 

that successive rPi generations are becoming increasingly able to withstand additional load.  

B. Hosting Capability 

In our second experiment we explore the limits of hosting multiple Docker containers on an rPi. Although it is 

technically possible for a rPi to simultaneously run hundreds of Dockerized httpd servers, we found that containers 
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FIGURE 2 – CDFs of page retrieval times for different server setups with varying number of concurrent users: (top row 
from left) 50, 100, (bottom row) 150, 200, 250 users. rPis greatly reduce latency for users far from data centers. 



become practically unusable because the Docker daemon eventually starts pushing newly created containers to 

virtual memory. Consequently, containers require a significant delay before becoming usable as memory paging 

increases. Additionally, the rPi overall becomes rather unresponsive. Therefore, instead of examining the technical 

maximum container count, we instead set out to find out the real limit beyond which additional Docker containers 

become excessive. 

We also examine how different production-grade services behave in these terms, rather than looking at a single 

example service. If micro-clouds are to become used as an everyday cloud analogue they will be required to handle 

a wide variety of services including load balancers, web servers, caches, messages queues, and databases. Our 

evaluation therefore includes a look into how different services operate on micro-clouds, covering the following 

representative applications that were all packaged for running on HypriotOS: 

• CrateDB (database) 

• httpd (web server) 

• Jenkins (automation, integration) 

• Ruby (programming runtime) 

• ZooKeeper (coordination, synchronization) 

 

We systematically deploy one Docker container after another, monitoring memory utilization and ending the 

experiment when a threshold of minimum available memory (50MB) is reached..The threshold preserves a certain 

amount of memory to the applications and the OS.  

The experiments (FIGURE 3) were performed on rPi1B2 and rPi1B+ where available user space memory starts at 

~380MB. As applications have different memory requirements, the maximum number of containers varies across 
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FIGURE 3 - Memory usage as a function of the number of deployed 
containers (10 runs). An rPi is capable of hosting a significant number of 
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deployments: from 8 in the case of ZooKeeper to 78 for Ruby. We also note that ZooKeeper deployments never 

reached the threshold, stopping well before this as memory runs out before reaching the threshold. We repeated the 

experiment using rPi3B (running v0.8.0) where available memory was around 800MB. The rPi3B (dashed blue line) 

was able to deploy more than twice as many ZooKeeper containers as the older models. 

Contrary to expectation, the rPi's secondary storage did not have a significant impact. For instance, deploying 60 

containers of the httpd server requires only 8.3kB of disk storage. However, the experiments revealed that main 

memory is a significant bottleneck. 

C. I/O Overhead 

Our third experiment dives into the performance that the rPi architecture delivers to the hosted applications. 

Besides CPU speed, one of the major differences in rPi hardware architecture is the physical memory design. 

Memory access also represents one of the major costs involved in a range of Internet services, from databases to 

serving resources and processing data. We therefore examine the relative cost of reading from and writing to 

different kinds of memory with our various rPi models, compared to a cloud server. To do this we wrote a program 

which reads and writes increasingly large amounts of data to secondary storage, and also writes increasingly large 

amounts of data in RAM (we consider main memory reads and writes to be symmetrical). 

The results, depicted in FIGURE 4, demonstrate the following. First, cloud I/O speeds are considerably faster across 

all types of memory access; this is expected due to their generally higher hardware specification (i.e. CPU speed, 

cache architectures, system bus speed and main memory latency). However, successive rPi models provide 

incremental improvements in I/O speeds. Second, writing to disk contains a far higher relative penalty across all rPi 

models than in the server case (compared to disk read or memory access speeds). We assume that the relative 

additional disk write latency in rPi systems is caused by the relatively slow write speeds on flash memory used in 

SD cards [9]. Software deployments that predominantly use disk reads and memory access, avoiding disk writes, 

may therefore be even more valuable for efficiency on these devices than on cloud-based servers — otherwise the 

network latency gained through geographical proximity may be eclipsed by slower disk access. Of the applications 

we tested, thus, httpd, Ruby and ZooKeeper are most likely to be suited to the rPi environment. Emerging trends in 
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FIGURE 4 - Disk and memory access times (20 runs). Writing to disk  on rPis is 
expensive, but progressively getting better for newer models. 



system design such as in-memory databases may also be particularly useful, though obviously main memory is 

capacity-limited. In the wider research picture, because disk access of applications may not be predictable ahead of 

time, work on adaptive systems may further help to gain the best balance between traditional- and micro-cloud 

deployments, selecting the optimal placement of a server based on real-time observations. 

D. Startup Latency 

Our final experiment measures booting time, which is of importance for deployments where electricity shortage is 

a chronic problem. 

We include a baseline of a t2.small EC2 instance running Ubuntu (without network delay). This takes 27.58s to 

boot (all figures are mean of 20 runs). rPis take less time: 21.97s, 22.02s, and 22.40s for rPi1B1, rPi1B2, and rPi1B+ 

respectively. More recent rPi models undercut EC2 by over 10 seconds, a 40% margin: 16.74s and 16.06s for rPi2B 

and rPi3B respectively. 

Starting Docker on rPi takes considerably more time, though: 5.89s, 5.90s, 5.44s, 3.05s, 4.86s; but only 0.21 on 

the EC2 instance. However, even with this additional delay, one would have a running Docker container on rPi2B or 

rPi3B up to 8 seconds before an EC2 instance is ready. Note that these are pure OS and hypervisor latencies without 

accounting for network latency, which would tip the advantage in rPi's favour even further. 

E. Migration Policy 

Based on the findings on serving and startup latencies, we could develop a simple policy to invoke migration of an 

application from the cloud to a microcloud as follows. Let t be the latency threshold whereby migration is triggered 

if t>0.  

𝑡 = 𝑥! − (𝑥! +𝑚) = 𝑠! + 𝑙! − 𝑠! + 𝑙! −𝑚 

where xc is the total latency of the cloud application and is made up of the startup latency sc and serving latency lc; 

xm, sm, and lm are the equivalent for the candidate microcloud; and m is the latency to transfer any required state. 

Migration would only make sense if the application lifetime is expected to be longer than the cost of migration, i.e. 

xm+m. All variables but m can be obtained as the medians of our experiment results above. There are different 

approaches to estimating m, but this is not our focus here. 

 V.   STATE OF THE ART 

Having explored feasibility, we now consider the state of the art in micro-cloud implementations and promising 

future directions. Work in this domain revolves around 3 main axes: hardware, resource management, and 

programming abstractions. 

A. Hardware 

Small single-board computers, the building blocks of micro-clouds, are advancing all the time with better chips, 

additional modules, lower power requirements, and smaller size. The major challenge here is to assemble such 



devices to build micro-clouds whilst minimizing internal power and network wiring to reduce assembly cost. 

Several commercial and research ventures have already started work on this using different strategies. Examples 

include: PiFace Rack, RuggedPOD, Iridis-Pi [10], Pi Beowulf cluster [11], BitScope, PicoCluster, and Grape 

Cluster. 

B. Resource Management 

Ongoing efforts to design OS and orchestration tools suitable for this scale of computers are revolving around 

container technologies and the microservices architectural philosophy. HypriotOS is a leading effort here, yet it is a 

general purpose OS. There is room for a leaner OS, and for operating isolated application stacks using technologies 

other than Docker, e.g. Unikernels [12] and ContainerX. 

C. Programming Models 

A few works undertook building common tools and vocabulary to simplify setting up and operating fog systems. 

Mobile Fog [13] defines a specification for location-aware applications. Zhang et al [14] introduce a data-centric 

abstraction API based around distributed logs accessible through names not locations. The Holon architecture [15] is 

a more generic, conceptual framework to support the composition of systems-of-systems. 

More solutions are required in this direction to support designing applications that are readily divisible between 

multiple deployment infrastructures. For instance, an application's presentation layer could reside on several micro-

cloud instances close to the users, with a shared data tier managed in a cloud data center. 

Most commercial contributions focus on integration frameworks for machine-to-machine communications in-

between colocated devices and cloud servers. This simplifies the development and maintenance of solutions such as 

home automation, personal healthcare, and smart traffic systems. Examples include Arkessa, Axeda, Lyric, Resin, 

SmartBear, Thingsquare, and Withings. 

 VI.   CONCLUDING REMARKS 

Our results are the first to empirically evaluate the suitability and performance trade-offs of micro-clouds. We 

demonstrate them to be adequate hosting environments for concurrent edge web services, able to serve a large 

number of requests while preserving their responsiveness. Moreover, they boot fairly quickly, making them suitable 

for dynamic deployments where power is intermittent. The only limitation relates to I/O heavy applications as 

writing to disk is extremely expensive, but is progressively getting better. 

These benefits apply to applications that are either resource-rich (e.g. smart city IoT deployment) or resource-poor 

(e.g. remote community). Our network latency results demonstrate significant potential for moving services closer to 

the consumer using cheap, micro-service deployments, as long as the volume of co-hosted services and the type of 

service are carefully considered. 
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