
lexiDB: A Scalable Corpus Database Management
System

Matthew Coole, Paul Rayson and John Mariani

Abstract—lexiDB is a scalable corpus database management
system designed to fulfill corpus linguistics retrieval queries on
multi-billion-word multiply-annotated corpora. It is based on a
distributed architecture that allows the system to scale out to sup-
port ever larger text collections. This paper presents an overview
of the architecture behind lexiDB as well as a demonstration of its
functionality. We present lexiDB’s performance metrics based on
the AWS (Amazon Web Services) infrastructure with two part-of-
speech and semantically tagged billion word corpora: Historical
Hansard and EEBO (Early English Books Online).

I. INTRODUCTION

Corpora utilised by corpus linguists have steadily grown
in scale and complexity over the last fifty years. Beginning
with relatively small corpora (although they were considered
large at the time) of one million words such as Brown [5]
in the 1960s, the size of corpora has been increasing by an
order of magnitude roughly every 10 years. In the 1990s the
British National Corpus (BNC)1 was created with one hundred
million words and now corpora of interest to linguists order
in the billions of words with Historical Hansard2 and Early
English Books Online (EEBO)3 being prime examples. In
parallel to this growth in size of the raw text used in corpora
so too has there been an increase in the number of levels of
annotation attached to such corpora. Beginning with simple
part-of-speech (POS) tagging and lemmatisation, linguists now
utilise more advanced annotation such as dependency parsing,
semantic tags and historical spelling variants when conducting
corpus analysis. This motivates the need for retrieval software
and tools that are capable of supporting annotated corpus data
at this scale and complexity.

In big data terms, increasing the ‘volume’ of corpora pro-
vides greater numbers of examples for mid to low frequency
words and linguistic features which is important for analysis
purposes. The ‘variety’ of data included within a corpus is
also important to achieve for improved representativeness and
coverage of the types of language being studied. In this paper,
we address issues of ‘velocity’ (the application of parallel
or distributed methods), consideration of which is vitally
important since the current crop of corpus linguistics retrieval
tools are struggling to cope with the ever increasing scale of
corpora.

Typically corpus linguists rely on five main retrieval meth-
ods in order to perform their analysis: concordances, collo-
cations, clusters (n-grams), keyword lists and frequency lists.

1http://www.natcorp.ox.ac.uk/
2https://hansard.parliament.uk/
3http://eebo.chadwyck.com/home

Whilst other more complex forms of analysis exist they often
are built on top of one or more of these basic methods or are
sometimes subtle variations of such queries. These query types
are generally not fully or efficiently supported by traditional
DBMSs (Database Management Systems) or IR (Information
Retrieval) systems as shown in previous work [1]. Some
systems have limited support for keyword in context search
(concordances) but in order to support these query types fully,
corpus linguists must usually rely on a tool built on top of an
existing retrieval or database system.

Software that can be used locally on desktop PCs are some-
times favored by linguists as they allow them the flexibility to
use their own corpora and to perform analysis without reliance
on anything more than a laptop. Tools such as WordSmith4

and AntConc5 allow users to perform corpus queries such as
concordances and to generate frequency lists. However these
tools lack support for larger billion word scale corpora.

Other server based tools exist such as Wmatrix [8], CQPweb
[3], SketchEngine6, KorAP [2] and corpus.byu7. Often these
tools are based on Open Corpus Workbench (CWB)8, existing
relational DBMSs such as MySQL9 or text indexers such as
Lucene10. These systems handle corpora of larger scale better
but are limited relative to the flexibility of local tools as
linguists often cannot add their own corpora or annotation or
are restricted in the size of corpora that can be added.

This lack of a clear solution or database management tool
that can be utilized by linguists has lead to many systems
being developed that are tailored for specific uses on specific
projects as shown by Schneider [9] and Wills [10]. Much
like with more generic server based systems the approach is
often based on a relational database management system with
a database design tailored to the needs of the project. More
modern DBMSs such as MongoDB11 allow for such systems
to be built and scaled out (i.e. distributed across multiple
servers) in order to allow a level of scalability. Distributed
computing in general offers many solutions for processing
larger text collections with tools such as Hadoop12 and Spark13

providing compelling options for parallel processing. However

4http://www.lexically.net/wordsmith/
5http://www.laurenceanthony.net/software/antconc/
6https://www.sketchengine.co.uk/
7http://corpus.byu.edu/
8http://cwb.sourceforge.net/
9https://www.mysql.com/
10https://lucene.apache.org/
11https://www.mongodb.com/
12http://hadoop.apache.org/
13http://spark.apache.org/



this form of processing is better suited to batch processing
tasks such as tagging. Any use of such systems still relies
on a degree of technical knowledge as many of these modern
DBMSs and parallel computing software tools do not provide
any direct support for corpus linguistic queries. Porta [7] has
applied MapReduce to word counts, collocations and n-grams
but through scaling up on one server rather than scaling out
on multiple servers.

lexiDB seeks to fill the apparent void that exists between
current corpus linguistic tools and more modern parallel
computing approaches and DBMS solutions. lexiDB is a dis-
tributed DBMS designed specifically for storing and querying
corpus data. It supports four corpus query types; concordances,
collocations, clusters (n-grams) and frequency lists. It is de-
signed to operate on static corpora - once a linguist has built a
corpus they can add it to lexiDB and run queries. lexiDB can
also be distributed across multiple systems to allow linguists
to scale out as their corpus data scales up. This allows lexiDB
to support corpora of the order of billions of words. Sections
II and III describe the basic design and functionality of lexiDB
and section IV presents performance figures for the tool.

II. ARCHITECTURE

lexiDB’s architecture is based on peer-to-peer (p2p) prin-
ciples. All nodes within a distributed configuration maintain
their own partitioned set of data. This p2p network of nodes
is then accessed by a client. lexiDB can also operate with
just a single node if distribution is not required with the
client running on the same machine. The data on each node is
organised into regions (similar to MongoDB chunks14). These
regions maintain their own indexes of the data stored in them
allowing for easy migration of data between nodes when new
nodes are added. The size of these regions is user definable
with different sizes yielding different performance benefits -
typically larger regions are not recommended for systems with
limited memory. Generally a region size of around 10 million
words allows for a good balance of fast data reading and index
build times whilst maintaining a reduced memory impact.

The index scheme utilised by lexiDB takes advantage of
the Zipfian nature of natural language and as such uses a
dictionary look-up system and stores occurrences of each word
within a region as a single integer. Entries in this dictionary are
unique based on the word in the corpus as well as any tagged
information linked to it - i.e. if two words were textually
identical but had different POS tags they would be stored as
two separate entries in the dictionary. The dictionary stores
all entries in lexical order, this allows for easier sorting of
data when performing retrievals (e.g. value 001 is guaranteed
to occur prior to value 003, alphabetically). On top of this a
second level index is built which indexes the words stored in
each region, in this way the top level index is much smaller
and can be kept in memory and access to each region can
be limited when performing a look-up to only access the
regions necessary. lexiDB tends to be memory intensive - it

14https://docs.mongodb.com/manual/core/sharding-data-partitioning/

is recommended that a system running lexiDB should have at
least enough memory to hold an entire copy of the dictionary.

the quick brown fox jumps over the lazy dog

1: brown
2: dog
3: fox
4: jumps
5: lazy
6: over
7: quick
8: the

8 7 1 3 4 6 8 5 2

Fig. 1. Numeric Data Representation

Query execution in lexiDB resembles a map-reduce
paradigm. A query from the client is sent to a particular server.
The query is then distributed to all nodes or peers within the
system configuration. The look-up is performed on each node
using the multi-layered index described above and a result
set is compiled on each node. The results are then returned
to the server that initially received the query. The separate
results from each node are compiled together on this one server
before finally being returned to the client. lexiDB is designed
to be agnostic of server / peer roles - i.e. there is no need
for specific nodes to be designated as query handlers or data
nodes which simplifies the configuration. All nodes should
act as peers taking all roles. However lexiDBs configuration
options do allow for such a separation of roles and concerns
to be made if such a configuration is deemed beneficial or
desirable - for example when nodes have varying hardware it
may be beneficial to designate data nodes as machines with
faster hard drives.

III. FUNCTIONALITY

lexiDB supports four corpus query types: concordances,
collocations, clusters (n-grams) and frequency lists. Although
generation of keyword lists is a typical task performed by
corpus linguists it is not in itself a low data level query as it
builds upon generating frequency lists from a target corpus
and a reference corpus and using these lists to perform a
comparative calculation of keyness. With varying methods
of calculating keyness available (e.g. significance measures
such as log-likelihood and chi-squared plus multiple effect
size measures) the decision was made rather than to support
generation of keyword lists to simply make generation of
frequency lists as simple and efficient as possible to allow
a user to then perform their own calculations for keyness in
whatever way they see fit (as opposed to imposing a particular
keyness measure). lexiDB clients can also provide this support
directly.

As a proof of concept, we have created a vanilla command-
line client for lexiDB rather than a graphical user interface



which could be added for demonstration purposes. The default
client shell can be opened via the command:

> java -jar lexidb-client.jar [SERVER] [PORT]

where [SERVER] and [PORT] are the lexidb server (default
localhost:1289).

A lexiDB server instance can be run using the command:
> java -jar lexidb-server.jar

A. Concordances

Concordances are created using the command:
lexidb> kwic [TERM/TAGS]...

Concordances or keyword-in-context (KWIC) searches (e.g.
see figure 2) can be performed in lexiDB and searches support
regular expressions (via automaton [6]). Tags for the search
term can also be specified (tag search parameters may also be
expressed as regular expressions). Queries can also be refined
to limit the size of the result set returned. This is useful if you
are searching for a very common word and are not interested
in looking at thousands or millions of results. The size of the
context window is limitless, although extremely large context
windows on large result sets are not recommended unless the
system has sufficient memory. Results may be sorted on words
surrounding the keyword with two sort types. The first is
a lexical sort (i.e. alphabetical), the second is a frequency
sort which, for example, when performing a concordance
search for “orange” and sorting by frequency one word before
the keyword would return concordance lines with the most
common word that precedes “orange” in the corpus. Sort
orders can also be reversed. Finally, results may also be
returned in the form of a file - this feature is particularly
useful with large results sets as a linguist could then import
the results into a spreadsheet and gather statistics regarding
a vast set of concordance lines rather than just examining a
handful of exemplars.

Fig. 2. Example of query results for concordance search

B. Collocations

Collocations can be created as follows:
lexidb> col [TERM/TAGS]...

Collocation searches support the same search term specifiers
as in concordance lines (i.e. regular expressions and tag
specifiers) but the searches return a frequency frame of words
occurring within a specified context e.g. a search for “bath”
with a context of two (default) will return all words that
occur within that context and how frequently they occur in
each position. Thus collocates can be examined with a single
search and any calculations based on relative position can be
applied without the need for further searches. Search results

for collocates are sorted by total frequency of the word within
the specified context.

C. Clusters (n-grams)

Clusters are created by running:
lexidb> ngram [TERM/TAGS]... [N]

Clusters or n-grams can be searched for in lexiDB using any
value of ‘n’. Unlike other systems that pre-build n-grams and
store their frequency, lexiDB uses a similar context sensitive
search to collocations and concordances to compute n-grams
on the fly. Meaning rather than being limit to 4-gram or 5-
gram searches lexiDB can support arbitrary values of n-grams.
Searching, as before, supports regular expressions and the
position within the n-gram of the search term can be specified
or unspecified e.g. you may search for bigrams where the
second word is “time”. Search terms can also include specified
tags to refine results. Results are always sorted by frequency
but the ordering can be reversed.

D. Frequency Lists

Frequency lists are shown using the following:
lexidb> list [TERM/TAGS]...

Frequency lists can be generated using any form of regular
expression. To view a frequency list for the whole corpus a
regular expression matching all word types may be used. i.e.
.*. Frequency lists may also be reversed in order.

IV. SCALABILITY RESULTS

To demonstrate the scalability of lexiDB, we conducted a
series of test queries on one, two and four node distributed con-
figurations using two, billion token scale corpora - Historical
Hansard2 (1.68 billion tokens) and EEBO3 TCP phase 1 texts
(0.91 billion tokens). Each of these corpora were tagged with
lemma, POS, HT (Historical Thesaurus) and USAS semantic
tags and stored in the form of *.tsv files. kwic, col and
ngram queries were all performed using the ten most common
words in the corpus (as found by the list .* command -
results also shown). Each query was performed ten times and
a mean query time was found. The most common words were
chosen as this represents a worst case scenario for each query
i.e. a query that has the most results to retrieve and it will
likely be the most computationally and hard disk intensive
and memory consumptive. All lexiDB instances were run on
AWS15 m3.2xlarge VMs (8 vCPUs, 30Gb RAM, 2 x 80Gb
SSDs).

Figure 3 shows the time taken to insert and index each
corpus on the three database configurations. The increase in
speed is clearly evident as lexiDB is scaled out to multiple
nodes, allowing for ever faster insertion times. This insertion
operation is a one time process that a user of lexiDB would
need to perform just once to execute queries against a static
corpus. Whilst reasonably time consuming, it is significantly
faster than we have experienced with other corpus systems,
e.g. CQPweb takes over a day to index Hansard.

15https://aws.amazon.com/



HansardEEBO

106

107

Corpus

In
se

rt
io

n
&

In
de

x
Ti

m
e

(m
s)

(l
og

) 1 node
2 nodes
4 nodes

Fig. 3. Insertion and Indexing

107 108

103

104

Word Frequency (log)

Q
ue

ry
Ti

m
e

(m
s)

(l
og

)

EEBO (1 node) EEBO (2 nodes)
EEBO (4 nodes) Hansard (1 node)

Hansard (2 nodes) Hansard (4 nodes)

Fig. 4. Concordance Lines

The ten most common word types in each corpus used as
search terms were {the, of, and, to, in, that, a, is, it, his} for
EEBO and {the, of, to, that, and, in, a, I, is, not} for Hansard.
Figures 4, 5 and 6 shows the result for the respective context
sensitive queries (Concordances, Collocations and Clusters/N-
Grams) using these lists of words. Because each corpus varies
in size and the frequency of the words differs, the results are
presented as the average query time against the frequency of
the word type within the corpus.

Figure 4 shows the increased performance and reduction in
query time for generating concordance lines. A concordance
query for the word type “the” in the Hansard corpus which
took 77,554ms on a single node was reduced to 22,242ms on

107 108

104

105

Word Frequency (log)

Q
ue

ry
Ti

m
e

(m
s)

(l
og

)

Fig. 5. Collocations

a two node configuration and just 7,792ms on a four node
cluster. This significant increase in speed is likely down to a
reduction in the process time that will be utilized by the Java
garbage collector while executing the query because retrieving
the 108 million concordance lines returned from this query
carries a significant memory overhead in lexiDB.

107 108

103.5

104

104.5

Word Frequency (log)

Q
ue

ry
Ti

m
e

(m
s)

(l
og

)

Fig. 6. Clusters (n-grams)

Collocation searches were run with a default context win-
dow of two words from the search term. Figure 5 shows the
results of these. Again performance increases substantially
as the configuration is scaled out from one to two to four
nodes. The collocation queries themselves take far longer than
the simple concordance queries due to the additional task of
computing a statistics frame for the search term.

Figure 6 shows the results for cluster or n-gram searches.
The query used was for a bigram of the specified search term.
Similar to the results of the collocation queries, we see far



HansardEEBO

103

104

Corpus

Q
ue

ry
Ti

m
e

(m
s)

(l
og

)
1 node
2 nodes
4 nodes

Fig. 7. Frequency List

longer query times than with a concordance search, again as
a result of the computational expense of constructing n-grams
from the retrieved tokens. This method of building n-grams on
the fly, while more time consuming than pre-computing them
at insertion time, saves significantly on disk space.

The time taken to generate the frequency lists are shown in
figure 7. This was simply a list query for the regular expression
.* which will return the frequency of all word types in the
database. Obviously for this general case improvements could
be made as the frequency lists for all words are pre-computed
in lexiDB’s dictionary and could be returned without the need
to match a regular expression against the entire dictionary.

V. CONCLUSION AND FURTHER WORK

In this paper, we have presented lexiDB, a new scalable cor-
pus database management system designed specifically to sup-
port the indexing of text corpora and retrieval using the main
methods employed in corpus linguistics. While other software
achieves conceptually similar scalability, e.g. SketchEngine via
virtualisation [4] and KorAP with Lucene/Solr integration, we
believe that lexiDB is the first corpus database management
system with in-built scalability via a distributed architecture.
A key point to note about lexiDB is its fast data ingest time for
extremely large scale annotated corpora. Normally this has to
be traded off against fast retrieval time, but we believe that
corpus linguists need both capabilities to deal with corpus
updates in, for example, social network analysis where new
data needs to be added regularly. Fast indexing also helps
to reduce the time overhead between experiments, in other
words if we improve the accuracy of automatic annotation
and retag our corpus then we do not need to wait for 24
hours to complete the re-indexing before we can start obtaining
updated results. lexiDB therefore addresses issues of ‘velocity’
in corpus databases and in turn, enables support for greater
‘volume’ and ‘variety’ in corpora indexed in the system.

We have demonstrated the capabilities of lexiDB through
evaluation on two multiply-annotated corpora of the scale of

one billion words and shown the extremely fast retrieval times
for the most frequent words. In addition, due to the distributed
design by adding more nodes, lexiDB is able to scale to even
larger corpora and we will report on these results in further
papers.

Future developments for lexiDB include adaption of the
p2p architecture to create a SETI@home16 style distribution
network that can be used as an infrastructure by corpus
linguists. This would enable lexiDB to be deployed and used,
distributed, with billion plus word corpora for linguists who
may not have the time, training or resources to deploy their
own cluster configuration for the database.

lexiDB is open source and freely available on GitHub17

under the GPL version 3 license18.

ACKNOWLEDGEMENTS

This research is funded at Lancaster University by an
EPSRC Doctoral Training Grant. Our research has benefitted
from discussions within the Corpus Database Project (CDP)
team including Laurence Anthony (Waseda University, Japan),
Stephen Wattam, and John Vidler (Lancaster University, UK).

REFERENCES

[1] M. Coole, P. Rayson, and J. Mariani. Scaling out for extreme scale
corpus data. In Proceedings of 2015 IEEE International Conference on
Big Data, pages 1643–1649. IEEE, 2015.

[2] N. Diewald, M. Hanl, E. Margaretha, J. Bingel, M. Kupietz, P. Banski,
and A. Witt. KorAP architecture - diving in the deep sea of corpus
data. In N. Calzolari, K. Choukri, T. Declerck, S. Goggi, M. Gro-
belnik, B. Maegaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, and
S. Piperidis, editors, Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC 2016), pages 3586–3591,
Paris, France, May 2016. European Language Resources Association
(ELRA).

[3] A. Hardie. CQPweb - combining power, flexibility and usability in
a corpus analysis tool. International Journal of Corpus Linguistics,
17(3):380–409, 2012.

[4] M. Jakubı́ček, P. Rychlý, and A. Kilgarriff. Effective corpus virtualiza-
tion. In M. Kupietz, H. Biber, H. Lüngen, P. Bański, E. Breiteneder,
K. Mörth, A. Witt, and J. Takhsha, editors, Proceedings of the workshop
on Challenges in the Management of Large Corpora (CMLC-2), pages
7–9, Reykjavik, 2014.

[5] H. Kucera and W. N. Francis. Computational Analysis of Present-Day
American English. Brown University Press, 1967.

[6] A. Møller. dk.brics.automaton – finite-state automata and regular ex-
pressions for Java, 2010. http://www.brics.dk/automaton/.

[7] J. Porta. From several hundred million to some billion words: Scaling up
a corpus indexer and a search engine with MapReduce. In M. Kupietz,
H. Biber, H. Lüngen, P. Bański, E. Breiteneder, K. Mörth, A. Witt, and
J. Takhsha, editors, Proceedings of the workshop on Challenges in the
Management of Large Corpora (CMLC-2), pages 25–29, 2014.

[8] P. Rayson. From key words to key semantic domains. International
Journal of Corpus Linguistics, 13(4):519–549, 2008.

[9] R. Schneider. Evaluating DBMS-based access strategies to very large
multi-layer corpora. In Proceedings of the workshop on Challenges in
the Management of Large Corpora (CMLC), 2012.

[10] T. Wills. Relational data modelling of textual corpora: The Skaldic
Project and its extensions. Digital Scholarship in the Humanities,
30(2):294–313, 2015.

16http://setiathome.ssl.berkeley.edu/
17https://github.com/matthewcoole/lexidb
18https://www.gnu.org/licenses/gpl-3.0.en.html


