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Abstract

Differential cross sections are presented for the prompt and non-prompt production of
the hidden-charm states X(3872) and ψ(2S), in the decay mode J/ψπ+π−, measured
using 11.4 fb−1 of pp collisions at

√
s = 8 TeV by the ATLAS detector at the LHC.

The ratio of cross sections X(3872)/ψ(2S) is also given, separately for prompt and
non-prompt components, as well as the non-prompt fractions of X(3872) and ψ(2S).
Assuming independent single effective lifetimes for non-prompt X(3872) and ψ(2S)
production gives RB = Br(B→X(3872) + any)Br(X(3872)→J/ψπ+π−)

Br(B→ψ(2S) + any)Br(ψ(2S)→J/ψπ+π−) = (3.95 ± 0.32(stat) ±
0.08(sys))%, while separating short and long-lived contributions, assuming that the
short-lived component is due to Bc decays, gives RB = (3.57 ± 0.33(stat) ± 0.11(sys))%,
with the fraction of non-prompt X(3872) produced via Bc decays for pT (X(3872)) >
10 GeV being (25 ± 13(stat) ± 2(sys) ± 5(spin))%. The distributions of the dipion
invariant mass in the X(3872) and ψ(2S) decays are also measured and compared to
expectations.



Table of contents

List of figures ix

List of tables xvi

1 Introduction 1

2 Theory and Background 3
2.1 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Quantum Chromodynamics . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Quarkonium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3 Prompt Quarkonium Production . . . . . . . . . . . . . . . . . 10
2.3.4 Charmonium Production from b-hadron Decays . . . . . . . . . 18
2.3.5 Spin Alignment and the ‘Polarisation Puzzle’ . . . . . . . . . . . 20

2.4 The X(3872) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.1 Background and Physical Interpretation . . . . . . . . . . . . . 24
2.4.2 Other Theoretical Interpretations . . . . . . . . . . . . . . . . . 28

3 The ATLAS Experiment 30
3.1 The LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Overview of the ATLAS Detector . . . . . . . . . . . . . . . . . . . . . 32
3.3 The Inner Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Pixel Detector and Semiconductor Tracker . . . . . . . . . . . . 35
3.3.2 Transition Radiation Tracker . . . . . . . . . . . . . . . . . . . 36

3.4 The Calorimeters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.1 Liquid Argon Calorimeter . . . . . . . . . . . . . . . . . . . . . 38



Table of contents vi

3.4.2 Tile Calorimeter . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 The Muon Spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.1 Muon Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6 Data Aquisition and Trigger System . . . . . . . . . . . . . . . . . . . . 41

4 B-Physics Triggers 43
4.1 B-Physics Triggers Overview . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Dimuon Trigger Efficiency Measurement . . . . . . . . . . . . . . . . . 45

4.2.1 The Dimuon Correction Factor cV TX_OS
a . . . . . . . . . . . . . 46

4.2.2 The Dimuon Correction Factor c∆R . . . . . . . . . . . . . . . . 49
4.2.3 The Combined Correction Factor cµµ . . . . . . . . . . . . . . . 52
4.2.4 Single Muon Efficiency Map . . . . . . . . . . . . . . . . . . . . 53

5 ψ(2S) and X(3872) Analysis 56
5.1 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 Outline of the Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3 Event Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3.1 Trigger Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.2 Muon Reconstruction Efficiency . . . . . . . . . . . . . . . . . . 63
5.3.3 Pion Reconstruction Efficiency . . . . . . . . . . . . . . . . . . . 64
5.3.4 Fiducial Region and Acceptance . . . . . . . . . . . . . . . . . . 65
5.3.5 Acceptance Maps for ψ(2S) . . . . . . . . . . . . . . . . . . . . 65
5.3.6 Acceptance Maps for X(3872) . . . . . . . . . . . . . . . . . . . 69
5.3.7 J/ψ and Dipion Polarisation in X(3872) and ψ(2S) Decays . . . 74
5.3.8 Monte Carlo Generation for Selection Efficiency . . . . . . . . . 74

5.4 Signal Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4.1 Lifetime Resolution Determination . . . . . . . . . . . . . . . . 78
5.4.2 X(3872) Mass Resolution . . . . . . . . . . . . . . . . . . . . . 81
5.4.3 Invariant Mass Fits in Pseudo-Proper Lifetime Windows . . . . 82
5.4.4 Lifetime Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Systematics and Results 90
6.1 Systematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.1.1 Muon Reconstruction and Trigger Efficiency . . . . . . . . . . . 90
6.1.2 Pion Reconstruction Efficiency . . . . . . . . . . . . . . . . . . . 91



Table of contents vii

6.1.3 Selection Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.1.4 Lifetime Resolution . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.1.5 Non-prompt Signal Lifetimes . . . . . . . . . . . . . . . . . . . . 91
6.1.6 Mass Fit Model Systematics . . . . . . . . . . . . . . . . . . . . 92
6.1.7 z-displacement of Primary Vertices . . . . . . . . . . . . . . . . 92
6.1.8 Luminosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.1.9 Combined Uncertainties . . . . . . . . . . . . . . . . . . . . . . 93
6.1.10 Short-lived Fractions and other Ratios . . . . . . . . . . . . . . 93

6.2 Polarisation Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7 Dipion Invariant Mass Spectra 110

8 Summary 114

Appendix A Data and Simulation Samples 117

Appendix B Selection Criteria Studies 119
B.1 Signal Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
B.2 Signal Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
B.3 Effect of Selection Criteria on Dipion Invariant Mass Spectrum . . . . . 126
B.4 Bin Migration Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Appendix C Pion Reconstruction Efficiency 131
C.1 Pile-up Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
C.2 Material Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
C.3 Opening Angle Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 135
C.4 Distribution of Signal Pions . . . . . . . . . . . . . . . . . . . . . . . . 136
C.5 z-Displacement of Primary Vertices . . . . . . . . . . . . . . . . . . . . 137
C.6 Total Pion Reconstruction Uncertainty . . . . . . . . . . . . . . . . . . 138

Appendix D Spin Alignment Studies 140

Appendix E Lifetime Modelling 149
E.1 Lifetime Resolution Determination . . . . . . . . . . . . . . . . . . . . 149
E.2 Short-lived Non-Prompt Component . . . . . . . . . . . . . . . . . . . 156



Table of contents viii

E.3 Long-lived Non-Prompt Component . . . . . . . . . . . . . . . . . . . . 157

Appendix F Invariant Mass Fits in Lifetime Windows 165

Appendix G Verification of Fit Model Assumptions 174

Appendix H MC Template for Non-Prompt Ratio 177

Appendix I Systematic Studies 179
I.1 Trigger and Muon Reconstruction Systematics . . . . . . . . . . . . . . 179
I.2 Fit Model Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
I.3 Effects due to z-displacement of Primary Vertices . . . . . . . . . . . . 186

References 188



List of figures

2.1 The charmonium spectrum, including transitional decays. . . . . . . . . 8
2.2 The charmonium spectrum, including exotic states. . . . . . . . . . . . 9
2.3 Production of 3S1 quarkonium states through gluon fusion processes. . 11
2.4 The Colour Singlet Model at NNLO* order, compared to direct J/ψ

cross sections measured differentially in pT. . . . . . . . . . . . . . . . . 12
2.5 Prompt J/ψ and ψ(2S) cross sections measured by CMS compared to

NRQCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Prompt J/ψ and ψ(2S) cross sections measured by ATLAS compared

to NRQCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Prompt J/ψ and ψ(2S) cross sections measured by LHCb compared to

NRQCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8 Non-prompt J/ψ and ψ(2S) cross sections compared to FONLL . . . . 20
2.9 Coordinate system for the measurement of a dilepton decay angular

distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.10 The J/ψ and ψ(2S) polarisation parameters measured by CMS . . . . 23
2.11 The J/ψ and ψ(2S) polarisation parameter λθ measured by LHCb . . . 24
2.12 The discovery of the exotic resonance X(3872) by Belle . . . . . . . . . 25
2.13 Production of the X(3872) as a charm-meson molecule through rescat-

tering process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.14 Measurement of the prompt X(3872) production cross section compared

to theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 The CERN Accelerator complex . . . . . . . . . . . . . . . . . . . . . . 31
3.2 The ATLAS Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Total integrated luminosity recorded from the ATLAS detector . . . . . 33
3.4 The ATLAS Inner Detector . . . . . . . . . . . . . . . . . . . . . . . . 35



List of figures x

3.5 The ATLAS Calorimeter . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 The ATLAS Muon Spectrometer . . . . . . . . . . . . . . . . . . . . . 39

4.1 Diagrams showing the B-physics trigger algorithms . . . . . . . . . . . 44
4.2 Mass spectrum of dimuon candidates from the first half of 2011 . . . . 45
4.3 cV TX_OS

a measured across ∆R(µµ) . . . . . . . . . . . . . . . . . . . . 47
4.4 Tag-and-probe fits to measure cV TX_OS

a . . . . . . . . . . . . . . . . . . 48
4.5 cV TX_OS

a measured across the three rapidity regions of the detector . . 49
4.6 Tag-and-probe fits to the dimuon invariant mass spectra to calculate ρ∆R 51
4.7 ρ∆R for each of the three rapidity regions, and then normalised to one . 52
4.8 Total dimuon efficiency corrections cµµ(∆R, |y(µµ)|) . . . . . . . . . . . 53
4.9 Single muon efficiency map for late 2011 . . . . . . . . . . . . . . . . . 54
4.10 Single muon efficiency maps for early 2011 . . . . . . . . . . . . . . . . 55

5.1 Invariant mass fits to extract unweighted signal candidates . . . . . . . 59
5.2 Effective trigger efficiency map for single muons . . . . . . . . . . . . . 63
5.3 Charged pion reconstruction efficiency map . . . . . . . . . . . . . . . . 64
5.4 Acceptance maps for unpolarised ψ(2S) decays . . . . . . . . . . . . . . 67
5.5 Acceptance maps for ψ(2S) as a ratio to the unpolarised acceptance . . 68
5.6 Definitions of the helicity angles . . . . . . . . . . . . . . . . . . . . . . 69
5.7 Acceptance maps for unpolarised X(3872) decays . . . . . . . . . . . . 72
5.8 Acceptance maps for X(3872) as a ratio to the unpolarised acceptance 73
5.9 Acceptance maps for unpolarised X(3872) as a ratio of the unpolarised

ψ(2S) acceptance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.10 Fits to the truth-level dipion invariant mass spectrum for X(3872) decays 76
5.11 Fits to the dipion invariant mass spectrum for ψ(2S) decays . . . . . . 77
5.12 Mass and lifetime projections for the 2D unbinned maximum likelihood

fit in the ψ(2S) signal region for pT = 16 − 22 GeV . . . . . . . . . . . 80
5.13 Fit to the weighted J/ψπ+π− invariant mass distribution in the range

16 GeV < pT < 70 GeV . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.14 (a) Measured effective pseudo-proper lifetimes for non-prompt X(3872)

and ψ(2S). (b) The ratio of non-prompt X(3872) and ψ(2S) production 86



List of figures xi

6.1 Summary of uncertainties for the measured prompt and non-prompt
ψ(2S) cross sections. The 1.9% luminosity uncertainty is not included
in the plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.2 Summary of uncertainties for the measured prompt and non-prompt
X(3872) cross sections. The 1.9% luminosity uncertainty is not included
in the plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3 Summary of uncertainties for the measured non-prompt fractions of
ψ(2S) and X(3872) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4 Summary of uncertainties for the ratio of measured cross sections between
prompt X(3872) and ψ(2S). . . . . . . . . . . . . . . . . . . . . . . . . 97

6.5 Summary of uncertainties for the ratio of measured cross sections between
non-prompt X(3872) and ψ(2S). . . . . . . . . . . . . . . . . . . . . . 97

6.6 Difference in ψ(2S) yield as a factor of the unpolarised yield for polari-
sation hypotheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.7 Difference in X(3872) yield as a factor of the unpolarised yield for
polarisation hypotheses. . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.8 Measured cross section times branching fractions as a function of pT for
prompt and non-prompt ψ(2S) compared to theory . . . . . . . . . . . 102

6.9 Measured cross section times branching fractions as a function of pT for
prompt and non-prompt X(3872) compared to theory . . . . . . . . . . 103

6.10 Measured cross section times branching fractions as a function of pT for
ψ(2S) and X(3872) compared to CMS . . . . . . . . . . . . . . . . . . 104

6.11 Measured non-prompt fractions for ψ(2S) and X(3872) production
compared to CMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.12 Ratio of cross section times branching fraction between X(3872) and
ψ(2S) for prompt and non-prompt production . . . . . . . . . . . . . . 108

7.1 The invariant mass distributions of the J/ψπ+π− candidates to extract
ψ(2S) and X(3872) signal integrated over a wide range of mππ . . . . . 111

7.2 Normalised differential decay widths of ψ(2S) and X(3872) in bins of
dipion invariant mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

B.1 Effect of selection criteria on signal efficiency and significance for ψ(2S)
and X(3872) signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



List of figures xii

B.2 J/ψπ+π− mass distribution in data for ψ(2S) andX(3872) signal regions,
with the central band and sidebands . . . . . . . . . . . . . . . . . . . 121

B.3 J/ψπ+π− mass distribution in simulation for ψ(2S) and X(3872) signal
regions, with the central band and sidebands . . . . . . . . . . . . . . . 122

B.4 Weights to correct for differences between data and simulation in pT(J/ψ)
and pT(π±) for the ψ(2S) signal . . . . . . . . . . . . . . . . . . . . . . 123

B.5 Weights to correct for differences between data and simulation in
∆R(J/ψ, π±) for ψ(2S) and X(3872) signal . . . . . . . . . . . . . . . . 123

B.6 ψ(2S) signal yields for selection criteria using simulation for the pT bin
12 − 16 GeV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

B.7 X(3872) signal yields for selection criteria using simulation for the pT
bin 12 − 16 GeV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

B.8 Effect of selection criteria on mππ in ψ(2S) → J/ψππ simulation . . . . 127
B.9 Effect of selection criteria on mππ in X(3872) → J/ψππ simulation . . 128

C.1 Distribution of number of reconstructed primary vertices for the 2012
J/ψ → µµ MC samples. . . . . . . . . . . . . . . . . . . . . . . . . . . 131

C.2 Pion reconstruction efficiency maps using simulation for different pile-up
conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

C.3 Distribution of number of reconstructed primary vertices for 2012 data 133
C.4 Difference between the unweighted pion reconstruction efficiency map

and the case where events have been reweighted to match 2012 pile-up
conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

C.5 Difference in pion reconstruction efficiency maps for different geometry
tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

C.6 Distribution of opening angles between the truth pions and closest
reconstructed track in the event for simulation . . . . . . . . . . . . . . 135

C.7 Difference in pion reconstruction efficiency for ∆R < 0.05 and ∆R < 0.03
between the truth pion and closest reconstructed track. . . . . . . . . . 136

C.8 Distribution in η of signal pions associated with reconstructed ψ(2S) →
J/ψπ+π− and X(3872) → J/ψπ+π− decays. . . . . . . . . . . . . . . . 136

C.9 z-displacement distribution of primary vertices for (a) data and (b)
simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



List of figures xiii

C.10 Difference between the central pion reconstruction efficiency map and
the case where simulation has been weighted to match the data z-
displacement of primary vertices . . . . . . . . . . . . . . . . . . . . . . 138

C.11 Statistical error of the pion efficiency map used in the main analysis . . 139

D.1 cos θ∗ distributions for J/ψ produced in ψ(2S) → J/ψπ+π− decays for
various polarisation scenarios . . . . . . . . . . . . . . . . . . . . . . . 141

D.2 ϕ∗ distributions for J/ψ produced in ψ(2S) → J/ψπ+π− decays for
various polarisation scenarios . . . . . . . . . . . . . . . . . . . . . . . 142

D.3 cos θ∗ distributions for dipions produced in ψ(2S) → J/ψπ+π− decays
for various polarisation scenarios . . . . . . . . . . . . . . . . . . . . . . 143

D.4 ϕ∗ distributions for dipions produced in ψ(2S) → J/ψπ+π− decays for
various polarisation scenarios . . . . . . . . . . . . . . . . . . . . . . . 144

D.5 cos θ∗ distributions for J/ψ produced in X(3872) → J/ψρ0
→π+π− decays

for various polarisation scenarios . . . . . . . . . . . . . . . . . . . . . . 145
D.6 ϕ∗ distributions for J/ψ produced in X(3872) → J/ψρ0

→π+π− decays for
various polarisation scenarios . . . . . . . . . . . . . . . . . . . . . . . 146

D.7 cos θ∗ distributions for dipions produced in X(3872) → J/ψρ0
→π+π−

decays for various polarisation scenarios . . . . . . . . . . . . . . . . . 147
D.8 ϕ∗ distributions for dipions produced in X(3872) → J/ψρ0

→π+π− decays
for various polarisation scenarios . . . . . . . . . . . . . . . . . . . . . . 148

E.1 Mass and lifetime projections for the 2D unbinned maximum likelihood
fit in the ψ(2S) signal region for pT = 10 − 12 GeV . . . . . . . . . . . 151

E.2 Mass and lifetime projections for the 2D unbinned maximum likelihood
fit in the ψ(2S) signal region for pT = 12 − 16 GeV . . . . . . . . . . . 152

E.3 Mass and lifetime projections for the 2D unbinned maximum likelihood
fit in the ψ(2S) signal region for pT = 16 − 22 GeV . . . . . . . . . . . 152

E.4 Mass and lifetime projections for the 2D unbinned maximum likelihood
fit in the ψ(2S) signal region for pT = 22 − 40 GeV . . . . . . . . . . . 153

E.5 Mass and lifetime projections for the 2D unbinned maximum likelihood
fit in the ψ(2S) signal region for pT = 40 − 70 GeV . . . . . . . . . . . 153

E.6 Data / fit ratios for the mass projection of the unbinned 2D mass-lifetime
likelihood fits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154



List of figures xiv

E.7 Data / fit ratios for the lifetime projection of the unbinned 2D mass-
lifetime likelihood fits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

E.8 Pseudoproper lifetime distribution of the J/ψ in Bc → J/ψπ simulation,
fitted with an exponential . . . . . . . . . . . . . . . . . . . . . . . . . 156

E.9 Invariant mass fit of the ψ(2S) signal in windows of pseudoproper lifetime
for the pT bin [10, 12] GeV. . . . . . . . . . . . . . . . . . . . . . . . . . 158

E.10 Invariant mass fit of the ψ(2S) signal in windows of pseudoproper lifetime
for the pT bin [12, 16] GeV. . . . . . . . . . . . . . . . . . . . . . . . . . 159

E.11 Invariant mass fit of the ψ(2S) signal in windows of pseudoproper lifetime
for the pT bin [16, 22] GeV. . . . . . . . . . . . . . . . . . . . . . . . . . 160

E.12 Invariant mass fit of the ψ(2S) signal in windows of pseudoproper lifetime
for the pT bin [22, 40] GeV. . . . . . . . . . . . . . . . . . . . . . . . . . 161

E.13 Invariant mass fit of the ψ(2S) signal in windows of pseudoproper lifetime
for the pT bin [40, 70] GeV. . . . . . . . . . . . . . . . . . . . . . . . . . 162

E.14 Extracted lifetime of the long-lived non-prompt ψ(2S) signal . . . . . . 164

F.1 Fits to the invariant mass spectra of the J/ψππ candidates to extract
ψ(2S) and X(3872) signal for pT = 10 − 12 GeV and pT = 12 − 16 GeV 166

F.2 Fits to the invariant mass spectra of the J/ψππ candidates to extract
ψ(2S) and X(3872) signal for pT = 16 − 22 GeV and pT = 22 − 40 GeV 167

F.3 Fits to the invariant mass spectra of the J/ψππ candidates to extract
ψ(2S) and X(3872) signal for pT = 40 − 70 GeV . . . . . . . . . . . . . 168

F.4 Fits to the invariant mass spectra of the J/ψππ candidates to extract
ψ(2S) and X(3872) signal for pT = 10 − 12 GeV with a linear y-axis scale169

F.5 Fits to the invariant mass spectra of the J/ψππ candidates to extract
ψ(2S) and X(3872) signal for pT = 12 − 16 GeV with a linear y-axis scale170

F.6 Fits to the invariant mass spectra of the J/ψππ candidates to extract
ψ(2S) and X(3872) signal for pT = 16 − 22 GeV with a linear y-axis scale171

F.7 Fits to the invariant mass spectra of the J/ψππ candidates to extract
ψ(2S) and X(3872) signal for pT = 22 − 40 GeV with a linear y-axis scale172

F.8 Fits to the invariant mass spectra of the J/ψππ candidates to extract
ψ(2S) and X(3872) signal for pT = 40 − 70 GeV with a linear y-axis scale173



List of figures xv

G.1 Mass and lifetime projections for the 2D unbinned maximum likelihood
fit of simulated ψ(2S) events in the pT bin 16 − 22 GeV . . . . . . . . . 175

G.2 Mass and lifetime projections for the 2D unbinned maximum likelihood
fit of simulated X(3872) events in the pT bin 16 − 22 GeV . . . . . . . 176

H.1 Invariant mass distribution of associated hadronic particles in inclusive
B± decays using simulation . . . . . . . . . . . . . . . . . . . . . . . . 178

H.2 Ratios of non-prompt X(3872) and ψ(2S) production from B± decays
as a function pT(J/ψππ) . . . . . . . . . . . . . . . . . . . . . . . . . . 178

I.1 Distribution of average muon reconstruction efficiency correction weights
fitted with a Gaussian, describing the systematic error for prompt ψ(2S)
signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

I.2 Distribution of average muon reconstruction efficiency correction weights
fitted with a Gaussian, describing the systematic error for prompt
X(3872) signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

I.3 Distribution of average trigger efficiency correction weights fitted with a
Gaussian, describing the systematic error for prompt ψ(2S) signal . . . 182

I.4 Distribution of average trigger efficiency correction weights fitted with a
Gaussian, describing the systematic error for prompt X(3872) signal . . 183

I.5 Prompt and non-prompt ψ(2S) pT differential cross sections for varia-
tions of fit model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

I.6 Prompt and non-prompt X(3872) pT differential cross sections for varia-
tions of fit model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

I.7 η distribution of muons and pions for J/ψπ+π− candidates passing the
selection criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187



List of tables

2.1 Selected properties of the quarks . . . . . . . . . . . . . . . . . . . . . 4
2.2 Selected properties of the leptons . . . . . . . . . . . . . . . . . . . . . 5
2.3 Selected properties of the bosons in the Standard Model . . . . . . . . 5

5.1 List and description of selection criteria applied to candidates to suppress
the background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Branching fractions of decay channels relevant to this analysis . . . . . 62
5.3 Efficiency of selection requirements in pT analysis bins for ψ(2S) simulation 78
5.4 Efficiency of selection requirements in pT analysis bins for X(3872)

simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.5 Fit parameters determined from unbinned maximum likelihood fits of

the ψ(2S) signal region . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.6 Invariant mass fit results in pseudoproper lifetime and pT bins for the

ψ(2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.7 Invariant mass fit results in pseudoproper lifetime and pT bins for the

X(3872) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.8 Fit results in pT bins for the ψ(2S) for the single-lifetime fit . . . . . . 85
5.9 Fit results in pT bins for the X(3872) for the single-lifetime fit . . . . . 85
5.10 Effective pseudo-proper lifetimes for ψ(2S) and X(3872) obtained with

the single-lifetime fit model. . . . . . . . . . . . . . . . . . . . . . . . . 86
5.11 Fit results in pT bins for the ψ(2S) for the two-lifetime fit . . . . . . . . 89
5.12 Fit results in pT bins for the X(3872) for the two-lifetime fit . . . . . . 89

6.1 Summary of mass fit model variations for systematic error studies. . . . 92
6.2 Summary of uncertainties for the ψ(2S) and X(3872) cross section

measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



List of tables xvii

6.3 Summary of uncertainties for ψ(2S) and X(3872) non-prompt fractions 99
6.4 Correction factors for various polarisation hypotheses in pT bins for

ψ(2S) production. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.5 Correction factors for various polarisation hypotheses in pT bins for the

X(3872) production. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.6 Summary of ψ(2S) and X(3872) production measurements, fractions

and ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

B.1 Effect on signal yields and signficance for selection criteria over full pT
range for ψ(2S) and X(3872). . . . . . . . . . . . . . . . . . . . . . . 119

B.2 Measured signal yields when using truth muon, pion and ψ(2S) variables
for selection and bin requirements instead of reconstructed values for
simulated data, to determine bin migration effects. . . . . . . . . . . . 130

E.1 Fit parameters determined from unbinned maximum likelihood fits of
the ψ(2S) signal region, to determine the lifetime resolution functions
in bins of pT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

E.2 Invariant mass fit results in pseudoproper lifetime and pT bins for the
ψ(2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

E.3 Fit results in pT bins for the ψ(2S). Uncertainties are statistical only. . 163

G.1 Summary of the unbinned mass-lifetime fit results to simulated ψ(2S)
and X(3872) signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175



Chapter 1

Introduction

The J/ψ meson and its excited state ψ(2S) were among the first heavy quark-antiquark
bound states, known as quarkonium, to be discovered in the 1970s. Since then,
their production measurements have acted as excellent ‘standard candles’ to compare
theoretical predictions of quarkonium production. The exotic state X(3872) was later
discovered in 2003 [1], and its existence was subsequently confirmed by several other
experiments [2–4]. This was followed by the discoveries of a variety of other X, Y, Z
states, which cannot be explained as ‘traditional’ quarkonium due to the combination
of their measured quantum numbers and masses [5].

The construction of the Large Hadron Collider (LHC) along the French-Swiss border
at CERN allows measurements to be performed at world-record breaking collision
energies. The ATLAS experiment, one of the general purpose detectors at the LHC, has
already provided a wide variety of quarkonium measurements, and previously observed
the X(3872) state during production measurements of the ψ(2S) meson in 2011 [6].
Measurements of X(3872) production have also been performed by the LHCb [7] and
CMS [8] experiments at the LHC.

In this analysis, production measurements of the ψ(2S) and X(3872) states in the
decay channel J/ψπ+π− are performed, using 11.4 fb−1 of proton-proton collision data
collected by the ATLAS experiment at the LHC at a centre-of-mass energy

√
s = 8 TeV.

Chapter 2 provides a theoretical overview of quarkonium and the current status of
X(3872). In Chapter 3 there is a summary of the LHC, followed by a description
of the ATLAS detector and its various components. Chapter 4 provides a more
detailed description of the B-physics triggers, and details a specific B-physics trigger
efficiency measurement. The main analysis method, explaining the ψ(2S) and X(3872)
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production measurements, is in Chapter 5, with the corresponding systematic error
evaluation and results shown in Chapter 6. We describe measurements of the dipion
invariant mass spectra for ψ(2S) and X(3872) decays in Chapter 7. Finally, a summary
of the results is in Chapter 8. Supplementary material is shown in Appendices A - I.

The main analysis presented in this thesis has been published as an ATLAS
conference note [9], and has been presented at the Quarkonium Working Group
International Workshop QwG2016, and at the ICHEP2016 international conference.
The dimuon efficiency measurement also presented in this thesis was used for various
published ATLAS quarkonia analyses using 2011 data, for instance [10].



Chapter 2

Theory and Background

This chapter first provides a brief overview of the Standard Model of particle physics in
Section 2.1. The theory of the strong interaction between quarks, known as Quantum
Chromodynamics, is described in Section 2.2. In Section 2.3 the charmonium spectrum
is described, and the current status of charmonium production, focusing on the J/ψ
and ψ(2S) states, is discussed. Finally, the physical interpretation and experimental
results of the X(3872) are summarised in Section 2.4.

2.1 The Standard Model

The Standard Model (SM) is the most successful theory to describe the way in which
sub-atomic particles behave, through the electromagnetic, weak and strong nuclear
interactions. The fundamental particles that make up matter in the Universe exist
as either quarks or leptons. These are known as fermions, which have a half-integer
spin. For each elementary matter particle, there also exists its corresponding anti-
matter particle. There are three generations of quarks and leptons, which are shown
in Tables 2.1 and 2.2, respectively. Quarks are confined to bound states, for instance
mesons (qq̄), baryons (qqq) and also newly hypothesised tetraquark [11] and pentaquark
states [12], whereas leptons are free to exist individually.

The interactions between the fermions are governed by fundamental forces mediated
by gauge bosons, which have an integer spin. The three fundamental forces in the
SM are: electromagnetism, and the strong and weak nuclear forces, each mediated by
respective gauge bosons shown in Table 2.3. A fourth force, which is not described by
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the SM, is gravity. The strength of the gravitiational force is measured to be many
orders of magnitude lower than the three fundamental forces considered in the SM,
and so its omission presents no practical effect in pp collisions.

The way in which particles acquire mass in the SM is by spontaneous symmetry
breaking through the Brout-Englert-Higgs mechanism [13–15], which requires the
existence of a Higgs boson with zero spin, which was discovered in 2012 jointly
by the ATLAS and CMS experiments at the LHC [16, 17]. The SM is described
by a non-abelian gauge theory containing the unitary composite symmetry group
SU(3)⊗SU(2)⊗U(1). The SU(2)⊗U(1) group describes the electroweak interaction,
while SU(3) describes the strong interaction between quarks and gluons.

Generation I Generation II Generation III

up (u) charm (c) top (t)
Qu = +2

3 Qc = +2
3 Qt = +2

3

mu = 2.3+0.7
−0.5 MeV mc = 1.275 ± 0.025 GeV mt = 173.21 ± 0.51 ± 0.71 GeV

down (d) strange (s) bottom (b)
Qd = −1

3 Qs = −1
3 Qb = −1

3

md = 4.8+0.5
−0.3 MeV ms = 95 ± 5 MeV mb = 4.18 ± 0.03 GeV

Table 2.1 Selected properties of the quarks. The electric charge Q is shown in units of
absolute electron charge. Values are taken from [18].

2.2 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is a non-abelian gauge theory, which describes
the strong interaction and is described by the SU(3) symmetry group. QCD initially
appears very similar to Quantum Electrodynamics (QED), which describes the electro-
magnetic interaction. Instead of the interaction being mediated by a photon, which
corresponds to the single generator of the U(1) symmetry group, it is mediated by
eight gluons corresponding to the eight generators of the SU(3) symmetry group.
Compared to the single electric charge in QED, there are three ‘colour’ charges in
QCD : red, green and blue, which are the orthogonal states in SU(3) colour space.
The SU(3) colour symmetry is exact, and so the strength of the QCD interaction
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Generation I Generation II Generation III

electron (e) muon (µ) tau (τ)
Qe = −1 Qµ = −1 Qτ = −1

me = 0.51100 MeV mµ = 105.66 MeV mτ = 1776.86 ± 0.12 MeV
electron neutrino (νe) muon neutrino (νµ) tau neutrino (ντ )

Qνe = 0 Qνµ = 0 Qντ = 0
mνe < 2 MeV mνµ < 0.19 MeV mντ < 18.2 MeV

Table 2.2 Selected properties of the leptons. The electric charge Q is shown in units
of absolute electron charge. Though neutrinos are expected to be massless in the SM,
experiment suggests they have mass. The neutrino mass upper limits are shown at a
95% confidence level. Values are taken from [18].

Name Mass [GeV] Spin Charge Force

γ (photon) 0 1 0 Electromagnetic
Z0 91.1876 ± 0.0021 1 0 Weak
W± 80.385 ± 0.015 1 ±1 Weak

g (gluon) 0 1 0 Strong
H (Higgs) 125.09 ± 0.21 ± 0.11 0 0 -

Table 2.3 Selected properties of the bosons in the SM. The electric charge is shown in
units of absolute electron charge. Values are taken from [18].
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does not depend on the colour charge [19]. Similarly to QED, where anti-particles
carry opposite electric charge, in QCD anti-quarks carry opposite colour charge. The
symmetry group SU(3) is non-abelian, meaning a key difference between QED and
QCD is that the gluons themselves have colour charge, so unlike the photon they are
self-coupling. Another important property of QCD is asymptotic freedom. That is,
the binding between quarks becomes asymptotically weaker at high energy scales or
small distances such that they can be considered as free particles, which subsequently
allows the use of perturbation theory for calculations and predictions of production in
high-energy collisions. This arises due to the strong coupling constant αS having an
explicit dependence on the energy scale Q as

αS(Q2) = 4π
β0 log(Q2/Λ2

QCD) , (2.1)

at leading order, where β0 is the leading-order coefficient of the beta-function for
QCD, which describes the behaviour of αS at various energy scales and is equal
to 11 − 2nf/3 [19], where nf is the number of quark flavours. For the six flavours
nf = 6 in the SM, β0 is positive, leading to asymptotic freedom primarily due to
anti-screening effects from gluon self-interactions. The QCD scale ΛQCD defines the
scale at which αS can be considered small enough for perturbation theory and is
determined experimentally to be around 100 MeV.

2.3 Quarkonium

Quarkonium denotes the bound state of a qq̄ pair by the strong interaction. They are
the subset of a group of particles called mesons, which are bosons consisting of a bound
qq̄′ pair which may have different flavours. Quarkonium can be the bound state of
any of the (u, d, c, s, b) quarks with their corresponding anti-quark. However, it is not
possible for the top and anti-top quarks to form a quarkonium state because the very
heavy top mass gives it a large decay width, with a correspondingly short lifetime, so
it decays weakly before quarkonium can form. The quarkonium states can be further
categorised: the large mass of the c and b quarks forming ‘heavy quarkonium’ allow
for significantly different properties than quarkonium made from lighter quarks. The
bound cc̄ state is named ‘charmonium’, while the bb̄ state is named ‘bottomonium’.
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2.3.1 Spectroscopy

The properties of heavy quarkonium states have been measured in high energy collider
experiments for decades. The first heavy quarkonium state to be observed in experiment
was the J/ψ in 1974, jointly by experiments at the Brookhaven National Laboratory
(BNL) [20] and the Stanford Linear Accelerator Centre (SLAC) [21], through decays
to e+e− and µ+µ−, as a narrow resonance with a mass around 3.1 GeV. The J/ψ
is a charmonium vector state with the quantum numbers JPC = 1−− and a very
narrow decay width, leading it to become an ideal ‘standard candle’ for quarkonium
studies since its discovery. The bottomonium analogue to the J/ψ, named Υ(1S), was
discovered a few years later in the decay channel Υ(1S) → µ+µ− at Fermilab [22], with
a mass around 9.5 GeV.

The quantum numbers typically assigned to quarkonium are: the total spin of the
qq̄ system S, the orbital angular momentum L, and the total angular momentum J

(where J⃗ = L⃗ + S⃗). In quarkonium spectroscopy, the notation n2S+1LJ is usually
used to describe the quarkonium states, where n is defined as the principal quantum
number. The P -parity quantum number of the qq̄ system is defined as P = (−1)L+1,
and the charge conjugation, or C-parity quantum number, is defined as C = (−1)L+S.
A diagram showing the spectrum of charmonium mass states and their typical decays
to lower mass states is shown in Figure 2.1. The charmonium spectrum includes the
pseudoscalar 0−+ state ηc and the vector ground state J/ψ, their radially excited
counterparts η′ and ψ(2S), and the C-even, orbital excitations ηc0,1,2.

We also see in this diagram the ‘open charm’ threshold. It is defined as the addition
of the mass of the lightest meson consisting of a charm quark, which is the D0 meson
(ūc), and its corresponding anti-particle D̄0 (uc̄). Charmonium states above the open
charm threshold have broad resonances, and decay into other, lighter charmonium
states.

The masses of the states in the charmonium spectrum, ignoring any dependence
on spin, can be estimated using a potential model, which has a dependence on the
distance r between the quark and anti-quark. At small distances, a (leading-order)
potential with the same form as the Coulomb potential can be used:

V (r) = −4
3
αs
r
, (2.2)
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Charmonium Spectroscopy Below Open Flavor Threshold
Z. Metreveli
Department of Physics, Northwestern University, Evanston, IL 60208, USA

Latest experimental results in the charmonium spectroscopy below DD̄ breakup threshold are reviewed.

1. Introduction

Charm quark has large mass (∼1.5 GeV) com-
pared to the masses of u, d, s quarks. Velocity of
the charm quarks in hadrons is not too relativistic
((v/c)2 ∼0.2). Strong coupling constant αs(mc) is
small (∼0.3). Therefore charmonium spectroscopy is
a good testing ground for the theories of strong inter-
actions: quantum cromodynamics (QCD) in both per-
turbative and nonperturbative regimes, QCD inspired
purely phenomenological potential models, nonrela-
tivistic QCD (NRQCD) and lattice QCD.

There are 8 bound states of charmonium below
the DD̄ breakup threshold (Fig. 1). These are spin
triplets J/ψ(13S1), ψ(2S)(23S1), χc0,1,2(1

3P0,1,2) and
spin singlets ηc(1

1S0), ηc(2S)(21S0), hc(1
1P1). Only

J/ψ and ψ(2S) can be produced directly in e+e− an-
nihilation. A lot is known about these triplet states.
Spin singlet states population via radiative transitions
from the vector states is either very weak (M1 transi-
tions for ηc(1S), ηc(2S)), or C-forbidden (hc(1

1P1)).
Accordingly, little is known about these singlet states.

Figure 1: Spectra of the states of charmonium below DD̄
breakup threshold.

The status of charmonium states below DD̄
breakup threshold is summarized in Table I. The
masses and widths from PDG 2007, as well as a num-
ber of measured decay channels from PDG 2002, 2004
and 2007 are presented separately for spin-triplet and
spin-singlet states.

Table I Status of charmonium states.

Mass Width Number of Decays

(MeV) (MeV) PDG

PDG 2007 PDG 2007 2002 2004 2007⋆

Spin Triplets

J/ψ 3096.92±0.01 93.4±2.1 (keV) 134 135 162

ψ(2S) 3686.09±0.03 327±11 (keV) 51 62 115

χc0 3414.75±0.35 10.4±0.7 17 17 51

χc1 3510.66±0.07 0.89±0.05 12 13 35

χc2 3556.20±0.09 2.05±0.12 18 19 37

Spin Singlets

ηc(1S) 2979.8±1.2 26.5±3.5 20 21 31

ηc(2S) 3637±4 14±7 3 4 4

hc 3525.93±0.27 <1 3 3 4

It is obvious from Table I that the parameters of
spin-triplet states are measured with precision, and
the number of measured decay channels is large (no-
tice the marked improvements after 2004). This is not
valid for spin-singlet states. A lot remains to be done
for precision measurements of their parameters and
decay channels.

Some new and recent experimental developments on
charmonium spectroscopy below open flavor threshold
will be reviewed.

2. Observation of ηc(2S)

It is important to identify the spin-singlet states in
order to determine the hyperfine, or spin-spin inter-
action, which is responsible for singlet-triplet split-
ting of qq̄ states. Identification of ηc(2S) is im-
portant to know the possible variation of spin-spin
interaction from Coulombic (J/ψ, ηc(1S)) to Con-
finement (ψ(2S), ηc(2S)) regions of the qq̄ interac-
tion. Most potential model calculations predicted
M(ηc(2S)=3594-3626 (MeV).

Prior to 2002 there were several unsuccessful at-
tempts to identify ηc(2S) in pp̄, γγ-fusion, inclusive
photon analysis.

Finally, ηc(2S) was first observed in B decays by
Belle [1]. It was followed by its observation in γγ-
fusion by CLEO [2] (see Fig. 2 left), and BaBar [3].

Fig. 2.1 The charmonium spectrum, including transitional decays between states.
Also shown is the ‘open-charm’ threshold, above which resonances are expected to be
broad [23].

and at large distances a confining potential dominates,

V (r) = Kr, (2.3)

where K is the QCD string tension, equal to roughly 1 GeV/fm [19]. This is known as
the Cornell potential [24] and is commonly used to model quarkonium states, but other
models have also been used. The relatively large mass of the c quark in comparison
to the ΛQCD scale allows the subsequent use of non-relativistic quantum mechanics to
model the charmonium state and estimate the mass of the system. Corrections can
subsequently be made to account for spin-spin interactions [25]. The masses of the
charmonium states can also be calculated directly using QCD, through the use of lattice
QCD with a non-relativistic QCD (NRQCD) effective field theory, with generally good
agreement to the measurements [26]. The heaviest charmonium state measured to be
below the open charm threshold is the ψ(2S) meson, with the result that it contains
no or little feed-down from higher mass states, and so is seen as a cleaner state for
production studies.
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• In the fusion of two quasi-real photons, e+e� ! e+e��� ! e+e�X, where

e+ and e� are scattered at a small angle and are not detected; the signal

events have no tracks and neutral particles but the daughters of X. If the

photons are quasi-real, Landau-Yang theorem holds,19 and J 6= 1; moreover

C = + is costrained.

• In double charmonium production, for example e+e� ! J/ X, which con-

strains X to have C opposite to the one of the associated charmonium.

The production in B decays allows X to have any JPC , albeit low values of the
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Fig. 13. Charmonium sector. In the upper panel, we show ordinary charmonia and neutral exotic
states, in the lower panel charged exotic states. Black lines represent observed charmonium levels,
blue lines represent predicted levels according to Radford and Repko,18 red line are exotic states.
The open charm thresholds are reported on the right.

.

Fig. 2.2 The upper panel shows the charmonium spectrum, including exotic states
indicated in red. The blue lines represent quark mode predictions. The lower panel
shows the charged exotic states [27]. More recently, the exotic states X(4274), X(4500)
and X(4700) have been observed by LHCb [28].

In 2003, an exotic resonance was discovered by the Belle collaboration [1] in
the J/ψπ+π− invariant mass spectrum, and was later confirmed by several other
experiments [2–4]. More details of the X(3872) can be found in Section 2.4. This was
followed by the discovery of a variety of other so-called X, Y and Z states which cannot
be explained as ‘traditional’ quarkonium due to the combination of their measured
quantum numbers and masses [5]. The charmonium spectrum, now including the exotic
states and decay patterns, can be seen in Figure 2.2. Also shown are the various DD
thresholds, which are relevant as some of these exotic states are often theorised to be
loosely bound DD molecules of various types.
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2.3.2 Production

Quarkonium can be produced through hadron-hadron interactions in two main ways.
Prompt quarkonium are produced from QCD sources, and from the subsequent feed-
down from higher mass states, which are produced from QCD sources. Non-prompt
quarkonium are produced from the decay of long-lived sources such as b-hadrons
produced from the hadronic collisions. Theoretical models have been produced which
describe the cross sections and spin-alignments of the quarkonium, separately for
prompt and non-prompt production processes, which are described in the following
sections.

2.3.3 Prompt Quarkonium Production

Colour Singlet Model

The Colour Singlet Model (CSM) is one of the earliest theories to model quarkonium
production. It can be factorised into two independent processes [29]. The first is the
initial production of the qq̄ pair, which happens at short relative distances, so can be
calculated with perturbative QCD. The second, is the formation of the qq̄ pair into a
bound state. This is a low energy, non-perturbative process, but can be parameterised
into a constant according to the initial wavefunction of the quarkonium state, assuming
the static approximation [30] (i.e. the constituent quarks are at rest in the quarkonium
frame). The partonic cross section of a heavy quarkonium state H in the CSM can
therefore be expressed as

σCSM[ij → H +X] = σ[ij → qq̄ +X]
∣∣∣∣∣dΨnL(0)

drL

∣∣∣∣∣
2

, (2.4)

where σ[ij → qq̄+X] is the partonic cross section of the qq̄ pair produced from interac-
tions of partons i and j, and dΨnL(0) is the quarkonium wavefunction evaluated at the
origin, which can be extracted either from potential models (detailed in Section 2.3.1)
or through experiment. Aside from the parton distribution function [31], which governs
the internal structure of the proton at a given energy scale, the quarkonium wavefunc-
tion is the only free term in the CSM, meaning it is strongly predictive. The main
assumption of the CSM is that the qq̄ pair is produced with the same colour and spin
as the quarkonium in the final state. This means that a qq̄ pair must be produced in a
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colour singlet state, due to the requirement of the final state quarkonium to be colour
singlet. In the high-energy conditions of modern collider experiments, quarkonium
production is dominated by gluon fusion processes [32]. Gluon fusion diagrams for
producing 3S1 states at various orders of αS, consistent within the CSM framework,
are seen in Figure 2.3.

2 J.P. Lansberg: On the mechanisms of heavy-quarkonium hadroproduction

and need to be considered on the same footing as the
CSM cut. A first evaluation [21] of the latter incorpo-
rating constraints for the low- and large-PT (the scaling
limit) region give rates significantly larger than the usual
CSM cut. Moreover, low-PT data from RHIC are very well
described without need of re-summing initial-gluon contri-
butions. However, as expected [21], this approach under-
estimates the cross-section at large values of PT and other
mechanisms have to be considered in this region.

In section 2, we present the latest results available
on QCD corrections to hadroproduction of J/ ,  0 and
⌥ (nS). In section 3, we discuss how the s-channel cut
contribution to the CS channel can be evaluated and we
present a comparison with data. In section 4, we briefly
review other recent theoretical results. In section 5, we
show how the study of the production of quarkonia in as-
sociation with a heavy-quark pair of the same flavour may
be used to disentangle between the di↵erent mechanisms
proposed to explain quarkonium production. Finally, we
present our conclusions and outlooks.

2 QCD corrections

More than ten years ago now, the very first NLO calcula-
tion on quarkonium production to date became available.
It was centred on unpolarised photoproduction of  [23]
via a colour-singlet (CS) transition. Later on, NLO cor-
rections were computed for direct �� collisions [24,25] for
which it had been previously shown [26] that the LO CS
contribution alone was not able to correctly reproduce the
measured rates by DELPHI [27]. NLO corrections have
also recently been computed for the integrated cross sec-
tion of two J/ -production observables at the B-factories:
J/ + cc̄ [28] and J/ + ⌘c [29]. As of today, only the
full colour-octet (CO) contributions to direct �� collisions
have been evaluated at NLO for PT > 0 [24,25].

At the LHC and the Tevatron,  and ⌥ production
proceeds most uniquely via gluon-fusion processes. The
corresponding cross section at NLO (↵4

S for hadroproduc-
tion processes) are significantly more complicated to com-
pute than the former ones and became only available one
year ago [30,19]. We shall discuss them in the next section.

The common feature of all these calculations is the sig-
nificant size of the NLO corrections, in particular for large
transverse momenta PT of the quarkonia for the computa-
tions of di↵erential cross sections in PT . In �p an pp colli-
sions, QCD corrections to the CS production indeed open
new channels with a di↵erent behaviour in PT which raise
substantially the cross section in the large-PT region.

Let us discuss this shortly for the gluon-fusion pro-
cesses which dominate the yield in pp. If we only take
into account the CS transition to 3S1 quarkonia, it is well
known that the di↵erential cross section at LO as a func-
tion of PT scale like P�8

T [6]. This is expected from con-
tributions coming from the typical “box” graphs of Fig. 1
(a). At NLO [30,19], we can distinguish three noticeable
classes of contributions. First, we have the loop contribu-

tions as shown on Fig. 1 (b), which are UV divergent3

but as far their PT scaling is concerned, they would still
scale like P�8

T . Then we have the t-channel gluon ex-

change graphs like on Fig. 1 (c). They scale like P�6
T .

For su�ciently large PT , their smoother PT behaviour
can easily compensate their ↵S suppression compared to
the LO (↵3

S) contributions. They are therefore expected
to dominate over the whole set of diagrams up to ↵4

S .
To be complete, we should not forget the ↵4

S contribu-
tions from Q+QQ̄ (where Q is of the same flavour as the
quarks in Q). Indeed, one subset of graphs for Q + QQ̄
is fragmentation-like (see Fig. 1 (d)) and scales like P�4

T .
Such contributions are therefore expected to dominate at
large PT , where the smoother decrease in PT is enough
to compensate the suppression in ↵S and the one due to
the production of 4 heavy quarks. As mentioned above, in
practice [19], this happens at larger PT than as expected
before [20]. We shall come back to this channel later. In
the next sections, we shall discuss the impact of the NLO
corrections to the CS channels and then a first computa-
tion including the a priori dominant ↵5

S contributions i.e.
topologies illustrated by Fig. 1 (e) and (f).
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Fig. 1. Representative diagrams contributing to 3S1 hadropro-
duction via Colour-Singlet channels at orders ↵3

S (a), ↵4
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(b,c,d), ↵5
S (e,f) and via Colour-Octet channels at orders ↵3

S

(g,h). The quark and antiquark attached to the ellipsis are
taken as on-shell and their relative velocity v is set to zero.

To what concerns the CO contributions, the e↵ects of
NLO (here ↵4

S) contributions are expected to be milder.

3 These divergences can be treated as usual using dimen-
sional regularisation, see e.g. [30].
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(c)

Fig. 2.3 Production of 3S1 quarkonium states through gluon fusion processes at (a) LO
(α3

S), (b) NLO (α4
S) and (c) NNLO (α5

S) consistent with the Colour Singlet Model [33].

By the early 1990’s, measurements of cross sections for large-pT prompt J/ψ and
ψ(2S) samples using data from the Tevatron showed stark differences in both overall
normalisation and as a function of pT to the CSM predictions at leading order [34].
Further attempts have been made to explain the data within the CSM framework
by including higher order contributions (at NLO, NNLO*). Although increasing the
power of αS, some of these higher-order contributions need not be small, for instance
the NNLO gluon fragmentation channel at order α5

S (see Figure 2.3(c)) has a p4
T

enhancement compared to leading order diagrams [33], so is expected to dominate over
leading order production at high-pT. However, whilst NLO and NNLO contributions
have improved the pT dependence and normalisation of the CSM with respect to
data, it is still not in agreement. The comparison of the CSM at NNLO* with J/ψ

production measurements from ATLAS, CMS and LHCb at
√
s = 7 TeV for a variety

of rapidity regions is in Figure 2.4, and shows the CSM still underestimates direct
J/ψ production. In Figure 2.4(b), it is seen that the cross section measured by LHCb
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decreases at very low pT. This is due to the non-zero initial transverse momenta of the
colliding partons.

J/ production at
p

s = 1.96 and 7 TeV 2

2. Cross-section

For the NLO cross section, we use the partonic matrix elements of [3]. In order to investigate
the expected impact of NNLO QCD corrections for increasing PT , we also present the NLO
results plus the real-emission contributions at ↵5

S evaluated along the lines of [6], referred
to as NNLO?. At ↵5

S , the last‡ kinematically-enhanced topologies open up, with a P�4
T fall

o↵ of d�/dP2
T . The procedure used here for the NNLO? is exactly that of [6]: the real-

emission contributions at ↵5
S are evaluated using MADONIA [12] by imposing a lower bound

on the invariant-mass squared of any light partons (si j). The dependence on this cut should
decrease for larger PT since no collinear or soft divergences can appear there for the new
channels opening up at ↵5

S with a leading-PT behaviour, i.e. the ones which interest us. For
other channels, whose Born contribution is at ↵3

S or ↵4
S , the cut would produce logarithms

of si j/smin
i j . These are not necessarily small, but they are expected to be factorised over their

corresponding Born contribution, which scales as P�8
T or P�6

T . They are thus suppressed by at
least two powers of PT with respect of the leading-PT contributions (P�4

T ). The sensitivity on
smin

i j is expected to be small at large PT .
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Figure 1: d�/dPT ⇥ Br for direct J/ production from NLO and NNLO? CS contributions atp
s = 1.96 TeV (left) and at

p
s = 7 TeV for central (middle) and forward (right) rapidities.

These are compared to the CDF [14], ATLAS, CMS and LHCb data [15, 16, 17] multiplied
by a constant direct fraction from CDF [18]. See text for details on theoretical-error bands.

Our results are shown on Fig. 1. The CSM is very close to the existing data, if
the upper range of the NNLO? is a relevant evaluation of the NNLO. The uncertainty
bands at NLO are obtained from the combined variations of the charm-quark mass (mc =

1.5 ± 0.1 GeV), the factorisation µF and the renormalisation µR scales chosen in the couples
((0.75, 0.75); (1, 1); (1, 2); (2, 1); (2, 2)) ⇥ mT with m2

T = 4m2
Q + P2

T . The band for the NNLO?

is obtained using a combined variation of mc, 0.5mT < µR = µF < 2mT and 2.25 < smin
i j < 9.00

GeV2. We have used the NLO set CTEQ6 M [13] and have taken |RJ/ (0)|2 = 1.01 GeV3 and
Br(J/ ! `+`�) = 0.0594.

‡ We do not expect any further kinematical enhancement as regards the PT dependence when going further
in the ↵S expansion: P�4

T is the slowest possible fall-o↵. Above ↵5
S , usual expectations for the impact of QCD

corrections would then hold. One would expect a K factor multiplying the yield at NNLO accuracy, which would
be independent of PT and of a similar size as those of other QCD processes. A further enhancement by an order
of magnitude between the NNLO and N3LO results would be quite worrisome.
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(b)

Fig. 2.4 The Colour Singlet Model at NNLO* order, compared to direct J/ψ cross
sections measured differentially in pT by (a) ATLAS and CMS for the central rapidity
regions and (b) LHCb at a more forward rapidity region [32].
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Colour Evaporation Model

Along with the CSM, another early model which attempts to explain quarkonium
production is the Colour Evaporation Model (CEM), which was proposed in the late
1970’s [35]. Like the CSM, the CEM had reasonable success in explaining measurements
until the mid-1990’s when disagreement had emerged at higher collision energies. The
key difference is that the initial production of the qq̄ pair in the CEM can be produced
in a coloured state, and in some versions of the theory a spin state [36], different to
that of the quarkonium state it will eventually form through soft interactions with
the colour field [37], which is the origin of the term ‘colour evaporation’. These soft
gluon interactions are expected to have a negligible effect on the kinematics of the
qq̄ pair. Hence, in the CEM, every heavy qq̄ pair with an invariant mass below the
open-flavour threshold will form some quarkonium state. The leading-order cross
section of a quarkonium state H from pp collisions is given in the CEM as

σCEM[pp → H +X] = FH

∫ 4M2

4m2
q

dm2
qq̄

dσ

dm2
qq̄

[pp → qq̄ +X]. (2.5)

The probability of a produced qq̄ pair forming a heavy quarkonium state H, commonly
expressed as FH , is assumed to be production-process and kinematically independent,
meaning once FH for a given quarkonium state is measured, it can be used to predict
other production processes in different kinematic regions [38]. M is the mass of the
lightest meson which contains the heavy quark q, mq is the mass of the heavy quark,
mqq̄ is the invariant mass of the qq̄ pair, and dσ

dm2
qq̄

is the inclusive differential cross
section for the qq̄ pair to be produced from the pp collision. It is in this term where
the assumptions of the CEM i.e. colour evaporation and spin randomisation are made
[37] and it can typically be calculated using perturbation theory.

The Colour-Octet-Mechanism (COM) and NRQCD Factorisation

The Colour-Octet-Mechanism (COM) was developed in the early 1990’s [39], and
contains elements of both the CSM and CEM in its construction. It expands upon
the CSM idea of factorising the production of quarkonium into high-energy/short-
distance (typically in the hard-scattering processes of the qq̄ pair production) and
low-energy/long-distance (typically in the transition of the qq̄ pair into the quarkonium
state) components. The factorisation can be explained using an effective field theory
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known as NRQCD, which approximates full QCD in a non-relativistic limit. It is based
on the momentum transfer scale mqv (the relative momentum of the heavy quark
in the centre-of-mass frame). Other important energy-momentum scales include the
mass of the heavy quark mq and the kinetic energy mqv

2. For the non-relativistic
approximation to be valid, one requires:

(
mqv

2
)2
<< (mqv)2 << m2

q (2.6)

which is satisfied when v2 ≈ 0.25 and v2 ≈ 0.1 for charmonium and bottomonium,
respectively.

Similarly to the CEM, the qq̄ pair need not be produced with the same quantum
numbers as the final quarkonium state, but can end up in the final state through
the non-perturbative emission of soft gluons. The inclusive cross section for the
direct production of a heavy quarkonium state H can be expressed as a sum over
short-distance coefficients and long distance matrix elements (LDMEs):

σCOM[pp → H +X] =
∑
n

σn[pp → qq̄ +X](Λ)
〈
OH
n (Λ)

〉
(2.7)

where Λ is the ultra-violet cut-off of the NRQCD effective theory, σn[pp → qq̄ + X]
are the short-distance production coefficients for producing a qq̄ with a certain set of
quantum numbers and can usually be calculated perturbatively, and

〈
OH
n (Λ)

〉
are the

LDMEs, which describe the probability of a qq̄ pair with a certain set of quantum
numbers to transition into the quarkonium final state. They are expected to be
phenomological constants, determined through fits to experimental data, and once
found can be used to predict production rates in other processes. Typical values for
the matrix elements, found from fits to CDF data, can be found in [40].

The NRQCD factorisation framework is currently the most successful model for
describing quarkonium production, possibly due to the large number of fittable param-
eters. Comparison with data from CMS [41] is shown in Figure 2.5 for J/ψ and ψ(2S)
production at

√
s = 7 TeV across a wide range of pT and rapidity. Good agreement

is seen across the whole pT and rapidity range. Comparison to ATLAS data [10] in
Figure 2.6, also at

√
s = 7 TeV but with a wider pT range, again shows overall good

agreement across the whole pT and rapidity region, although there is a possible slight
overestimation of the data in the largest pT bins. The NRQCD theory is also compared
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to LHCb data in a more forward rapidity region 2.0 < y < 4.5 for prompt J/ψ [42] and
ψ(2S) [43] production, shown in Figure 2.7, where again reasonable agreement is seen.
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(b)

Fig. 2.5 pT differential cross sections measured by CMS compared to NRQCD for (a)
prompt J/ψ and (b) prompt ψ(2S) production at

√
s = 7 TeV for a range of rapidity

regions [41].
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Figure 7: The differential prompt cross-section times dimuon branching fraction of J/ψ (left) and ψ(2S) (right) as
a function of pT(µµ) for each slice of rapidity. The top (bottom) row shows the 7 TeV (8 TeV) results. For each
increasing rapidity slice, an additional scaling factor of 10 is applied to the plotted points for visual clarity. The
centre of each bin on the horizontal axis represents the mean of the weighted pT distribution. The horizontal error
bars represent the range of pT for the bin, and the vertical error bar covers the statistical and systematic uncertainty
(with the same multiplicative scaling applied). The NLO NRQCD theory predictions are also shown.
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Figure 7: The differential prompt cross-section times dimuon branching fraction of J/ψ (left) and ψ(2S) (right) as
a function of pT(µµ) for each slice of rapidity. The top (bottom) row shows the 7 TeV (8 TeV) results. For each
increasing rapidity slice, an additional scaling factor of 10 is applied to the plotted points for visual clarity. The
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(with the same multiplicative scaling applied). The NLO NRQCD theory predictions are also shown.
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(b)

Fig. 2.6 pT differential cross sections measured by ATLAS compared to NRQCD for
prompt (a) J/ψ and (b) ψ(2S) production at

√
s = 7 TeV for a range of rapidity

regions [10].
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Figure 8: Comparison of the LHCb results for the differential prompt J/y production for unpolarised
J/y (circles with error bars) with: (top, left) direct J/y production as predicted by LO and NLO
NRQCD; (top, right) direct J/y production as predicted by NLO and NNLO? CSM; (bottom, left)
prompt J/y production as predicted by NLO NRQCD; (bottom, right) prompt J/y production as pre-
dicted by NLO CEM. A more detailed description of the models and their references is given in the
text.

• top, left: direct J/y production as calculated from NRQCD at leading-order in as (LO,
filled orange uncertainty band) [31] and next-to-leading order (NLO), with colour-octet
long distance matrix elements determined from HERA and Tevatron data (hatched green
uncertainty band) [32], summing the colour-singlet and colour-octet contributions.

• top, right: direct production as calculated from a NNLO? colour-singlet model (CSM,
filled red uncertainty band) [11, 33]. The notation NNLO? denotes an evaluation that
is not a complete next-to-next leading order computation and that can be affected by
logarithmic corrections, which are however not easily quantifiable. Direct production as
calculated from NLO CSM (hatched grey uncertainty band) [7, 9] is also represented.

• bottom, left: prompt J/y production as calculated from NRQCD at NLO, including con-
tributions from cc and y(2S) decays, summing the colour-singlet and colour-octet con-
tributions [34].
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(a)

from b-hadrons in the range 2 < y ≤ 4.5 and pT ≤16 GeV/c, we obtain

σprompt(ψ(2S)) = 1.44 ± 0.01 (stat) ± 0.12 (syst)+0.20
−0.40 (pol) µb,

σb(ψ(2S)) = 0.25 ± 0.01 (stat) ± 0.02 (syst) µb,

where the systematic uncertainty includes all the sources listed in Table 1, except for the
polarization, while the last asymmetric uncertainty is due to the effect of the unknown
ψ(2S) polarization and applies only to the prompt component.
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of three nonrelativistic QCD models are also shown for comparison. MWC [28] and
KB [29] are NLO calculations including colour-singlet and colour-octet contributions.
AL [30, 31] is a colour-singlet model including the dominant NNLO terms.

7 Inclusive b → ψ(2S)X branching fraction mea-

surement

The inclusive branching fraction for a b-hadron decaying to ψ(2S) is presently known with
50% precision: B(b → ψ(2S)X) = (4.8 ± 2.4) ×10−3 [18]. Combining the present result for
σb(ψ(2S)) with the previous measurement of σb(J/ψ ) [8] we can obtain an improved value
of the aforementioned branching fraction. To achieve this, it is necessary to extrapolate
the two measurements to the full phase space. The extrapolation factors for the two
decays have been determined using the LHCb simulation [12] and they have been found
to be α4π(J/ψ)=5.88 [8] and α4π(ψ(2S))=5.48. Most of the theoretical uncertainties are
expected to cancel in the ratio of the two factors ξ = α4π(ψ(2S))/α4π(J/ψ) = 0.932,
which is used in Eq. (4). A systematic uncertainty of 3.4% is estimated for this correction
and included in the final result below. Therefore

B(b → ψ(2S)X)

B(b → J/ψX)
= ξ

σb(ψ(2S))

σb(J/ψ )
. (4)
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(b)

Fig. 2.7 pT differential cross sections measured by LHCb compared to NRQCD for (a)
prompt J/ψ [42] and (b) prompt ψ(2S) [43] production at

√
s = 7 TeV for the forward

rapidity region 2.0 < y < 4.5. MWC [44] and KB [45] are NLO NRQCD calculations
including colour-singlet and colour-octet contributions, while AL [32] is a colour-singlet
model including the dominant NNLO terms.



2.3 Quarkonium 18

kT Factorisation

The kT factorisation model uses an alternative approach to calculate hadronic cross
sections. The transverse momentum kT of the initial partons is much smaller than
their longitudinal momentum, hence it is often assumed to be zero. This is called
collinear factorisation. Instead, the kT factorisation approach uses parton-level cross
sections calculated with the CSM [46], or non-perturbative colour-octet matrix elements
deduced from fits to data [47], and supplements these with transverse momentum
dependent (unintegrated) PDFs to include the effects of initial gluon radiation and
intrinsic gluon transverse momentum. These transverse momentum dependent (TMD)
gluon densities are not well constrained phenomenologically, however, and numerous
sets of distributions exist (see [47]).

2.3.4 Charmonium Production from b-hadron Decays

Charmonium states are produced in significant fractions through the decays of long-lived
b-hadrons produced in high-energy hadronic collisions. This is due to a combination of
the large b-hadron cross section, and branching fractions to charmonium states of the
order 1% [18]. Typically, b-hadrons such as B±, B0, B0

s and Λb, along with excited B∗

states which decay into these, are produced in the pp collisions, which then decay into
final states associated with charmonium. Although the Bc cross section is measured
to be small [18] in comparison to other b-hadrons, charmonium states produced from
Bc decays have been observed and studied by experiment, for instance in the decay
channel Bc → J/ψD+

s [9, 48]. Charmonium states produced through b-hadron decays
are separable experimentally from promptly produced charmonium (from QCD sources)
by a displaced vertex relative to the primary collision point, due to the long lifetime of
most b-hadrons at around 10−12 seconds [18].

FONLL

In the Fixed Order + Next-to-Leading Log (FONLL) model, the b-hadron production
cross section is found by matching NLO QCD with an all-order resummation to next-
to-leading log accuracy in the limit where the heavy quark pT is much greater than its
mass. The logarithms resummed to NLL accuracy are of the form αnS logn(pT/m) and
αnS log(n−1)(pT/m) [49].
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The b-hadron cross section is found from two processes. Firstly, the production
cross section of the b quark dσFONLLb is calculated, which is then convoluted by a
non-perturbative fragmentation function f(b → Hb) describing the probability of a
b quark to fragment into a heavy hadron Hb. A single inclusive distribution, for instance
pT or rapidity, of a charmonium state C produced from b-hadron decays dσFONLLC can
then be obtained with

dσFONLLC = dσFONLLb ⊗ f(b → Hb) ⊗D(Hb → C), (2.8)

where D(Hb → C) is a function describing the weak decay of the b-hadron into the
charmonium state. The fragmentation functions f(b → Hb) depend on the fraction
of momentum x that Hb receives from the b quark during fragmentation. One such
parameterisation is the Kartvelishvili et al. function [50]

f(x) = xα(1 − x), (2.9)

which contains a free, phenomological parameter α that can be determined from
experiment. The FONLL model has been shown to have good agreement with heavy
hadron production measurements, highlighted in Figure 2.8 for non-prompt J/ψ and
ψ(2S) production at

√
s = 7 TeV.
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(a) (b)

Fig. 2.8 pT differential cross sections compared to FONLL for non-prompt (a) J/ψ and
(b) ψ(2S) production at

√
s = 7 TeV for a range of rapidity regions [10].

2.3.5 Spin Alignment and the ‘Polarisation Puzzle’

While there is reasonably good agreement between the NRQCD model and the direct
production of J/ψ and ψ(2S) states differentially in pT and rapidity (although the
colour-octet and colour-singlet contributions are determined by fits to data, thus
lowering predictive power), this historically has not translated into agreement between
predicted spin alignment and that observed in experiment [51]. The spin alignment, or
polarisation, of a particle can be defined as its preferential production with a certain
subset of angular momentum eigenstates Jz along a given quantisation axis, from
a superposition of various production mechanisms. For NRQCD, at higher energies
the colour-octet components are expected to dominate production through gluon
fragmentation processes, leading to an expected strong transverse polarisation Jz = ±1
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for the ψ mesons in the helicity frame (i.e. the z axis aligned with their momentum
direction). Meanwhile, the CSM predicts strong longitudinal polarization Jz = 0 [51].

For vector quarkonium (JPC = 1−−), for instance the J/ψ and ψ(2S), an individual
production mechanism would produce the vector state |V ⟩ with angular momentum
eigenstates Jz = +1, 0,−1 with respect to a given polarisation axis z,

|V ⟩ = a+1 |+1⟩ + a0 |0⟩ + a−1 |−1⟩ , (2.10)

where common reference axes include: the momentum direction of the quarkonium,
named the helicity (HX) frame; the momentum direction of one of the colliding beams
in the collision, named the Gottfried-Jackson (GJ) frame; and the bisector of the
direction of one of the beams and the opposite of the other, named the Collins-Soper
(CS) frame [52].

In most experiments, measuring the polarisation of vector quarkonia V is performed
by analysing the angular distribution of the dilepton daughters of the quarkonium
decay, which usually proceeds through the Drell-Yan process whereby the V annihilates
into a virtual photon, which subsequently decays into a pair of leptons V → γ∗ → ℓ+ℓ−.
Helicity is defined as the projection of spin into momentum space h = S⃗ · p⃗/|p⃗|, and
in the massless approximation the fermions must have opposite helicities due to the
coupling to the virtual photon, leading to Jz′ = ±1 for the lepton pair, where the
z′ axis is the direction of travel of the positively charged muon in the V rest frame.
This means the dilepton system is a Jz′ eigenstate |ℓ+ℓ−; J = 1; l = ±1⟩. The massless
assumption is a fair one to make; the Jz = 0 component for J/ψ produced through the
same mechanism from e+e− collisions is found from precise QED calculations to be of
the order 10−4 [52].

The dilepton system eigenstates of Jz′ can then be expressed in terms of a superpo-
sition of eigenstates of Jz through a change in quantisation axis z′ → z with complex
rotations involving Wigner D-matrices [52]

|J,M ′⟩ =
+J∑

M=−J
DJ
MM ′(α, β, γ) |J,M⟩ , (2.11)

where (α, β, γ) are the Euler angles describing the rotation and DJ
MM ′ is defined

as e−iMαdJMM ′(β)e−iM ′α, where dJMM ′(β) is a reduced Wigner D rotation matrix for
particular J and MM ′, and as an example d1

0,±1 = ± sin θ/
√

2, where θ is the polar
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angle between the momentum direction of the positively charged lepton in the V rest
frame and the arbitrary quantisation axis z, hereby referred to as θ∗. The angular
distribution of the dilepton system can subsequently be described by [53]

dN

d cos θ∗dϕ∗ = 1
(3 + λθ)

(
1 + λθ cos2 θ∗ + λϕ sin2 θ∗ cos 2ϕ ∗ +λθϕ sin 2θ ∗ cosϕ∗

)
,

(2.12)
where ϕ∗ is defined as the azimuthal angle between the V decay plane and its production
plane, and λi are coefficients directly related to the helicity amplitudes, often known as
the polarisation parameters. A diagram visualising the θ∗ and ϕ∗ variables in dilepton
decays is shown in Figure 2.9.

Fig. 2.9 Coordinate system for the measurement of a dilepton decay angular distribution,
showing the polarisation angles θ∗ and ϕ∗ [52].

A study of J/ψ and ψ(2S) decays to the dimuon final state by CMS [54] at
√
s = 7 TeV measured the polarisation parameters to be consistent with zero for

both the J/ψ and ψ(2S) (see Figure 2.10). Also shown is the comparison to the
NLO NRQCD prediction, which predicts transverse polarisation for both cases and
therefore disagrees with the data, exhibiting a stronger disagreement with the ψ(2S)
polarisation. The LHCb experiment has also measured the polarisation of J/ψ [55]
and ψ(2S) [56] decaying to the dimuon final state in the forward rapidity region
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2.5 < y < 4.0, measuring the polarisation as close to zero for both states. The results
for the polarisation parameter λθ are shown in Figure 2.11.
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Fig. 2.10 The polarisation parameters measured by CMS for J/ψ (left) and ψ(2S)
(right) compared to NLO NRQCD predictions [54].
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Figure 6: Comparison of LHCb prompt J/ polarization measurements of �✓ with direct NLO
color singlet (magenta diagonal lines [38]) and three di↵erent NLO NRQCD (blue diagonal lines
(1) [38], red vertical lines (2) [39] and green hatched (3) [40]) predictions as a function of the pT

of the J/ meson in the rapidity range 2.5 < y < 4.0 in the helicity frame.

measured polarization and its uncertainty to the e�ciency calculation in the cross-section
measurement. To re-evaluate the J/ production cross-section, the same data sample,
trigger and selection requirements as in Ref. [2] are used. Technically the polarization
correction is done by reweighting the muon angular distribution of a simulated sample
of unpolarized J/ ! µ+µ� events to reproduce the expected distribution, according to
Eq. (1), for polarized J/ mesons. The polarization parameters �✓, �✓� and �� are set to
the measured values, quoted in Table 2 for each bin of pT and y of the J/ meson.

In addition to the polarization update, the uncertainties on the luminosity determi-
nation and on the track reconstruction e�ciency are updated to take into account the
improvements described in Refs. [42,43]. For the tracking e�ciency it is possible to reduce
the systematic uncertainty to 3%, compared to an 8% uncertainty assigned in the original
measurement [2]. Taking advantage of the improvements described in [42] the uncertainty
due to the luminosity measurement has been reduced from the 10%, quoted in [2] to the
3.5%. The results obtained for the double-di↵erential cross-section are shown in Fig. 7 and
reported in Table 4. The integrated cross-section in the kinematic range of the polarization
analysis, 2 < pT < 14 GeV/c and 2.0 < y < 4.5, is

�prompt(2 < y < 4.5, 2 < pT < 14 GeV/c) = 4.88 ± 0.01 ± 0.27 ± 0.12 µb

and for the range pT < 14 GeV/c and 2.0 < y < 4.5, it is

�prompt(2 < y < 4.5, pT < 14 GeV/c) = 9.46 ± 0.04 ± 0.53 +0.86
�1.10 µb.
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Figure 5: Polarisation parameter �✓ of the prompt  (2S) meson in the helicity frame as a
function of pT, in the rapidity range 2.5 < y < 4. The predictions of NLO CSM [37] and three
NLO NRQCD models (1) [37], (2) [38] and (3) [39] are also shown. Uncertainties on data are the
sum in quadrature of the statistical and systematic uncertainties. The horizontal bars represent
the width of pT bins for the  (2S) meson.

in good agreement with each other, with di↵erences much smaller than the statistical
uncertainties. In the Collins-Soper frame, �✓ takes small negative values especially in the
low-pT region and increases with pT. This trend is more significant for the extreme y
bins. In the helicity frame, the polarisation parameter �✓ is consistent with zero, with no
significant dependence on pT or y of the  (2S) meson. The polarisation parameters �✓�
and �� are consistent with zero in both the helicity and Collins-Soper frames, and their
absolute values are below 0.1 for most of the kinematic bins.

In Fig. 5, the measured values of �✓ in the helicity frame as a function of pT of the
 (2S) meson, integrating over the rapidity range 2.5 < y < 4.0, are compared with the
predictions of the CSM [37] and NRQCD [37–39] models at NLO. Our results disfavour the
CSM calculations, in which the  (2S) meson is significantly longitudinally polarised. The
three NRQCD calculations in Refs. [37–39], which use di↵erent selections of experimental
data to determine the non-perturbative matrix elements, provide a good description of
our measurements in the low-pT region. However, the prediction of increasing polarisation
with pT in these models is not supported by the LHCb data.
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(b)

Fig. 2.11 The polarisation parameter λθ measured by LHCb for (a) J/ψ [55] and (b)
ψ(2S) [56] compared to theoretical predictions.

2.4 The X(3872)

2.4.1 Background and Physical Interpretation

The X(3872) is an exotic resonance first discovered by the Belle collaboration in
2003 [1] through its decay to J/ψπ+π− in the exclusive decay B± → K±J/ψπ+π−. The
resonance in the J/ψπ+π− invariant mass spectrum can clearly be seen in Figure 2.12.
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Its existence was subsequently confirmed by BaBar [2], and it was also measured to
be produced predominantly through prompt QCD processes in pp̄ collisions by the
CDF [3] and D0 [4] experiments. It was first observed at the LHC by the LHCb
experiment [7], and LHCb have subsequently confirmed the quantum numbers of
X(3872) to be JPC = 1++ [57]. A particularly interesting aspect of the X(3872) is
the closeness of its mass of 3871.69 ± 0.17 MeV to the D0D̄∗0 threshold, such that it
is often speculated to be a loosely bound charm-meson molecule with a very small
binding energy [58] and particle content

X(3872) = 1√
2
(
D∗0D̄0 +D0D̄∗0

)
=
(
D∗0D̄0

)
+
. (2.13)

Fig. 2.12 The discovery of the exotic resonance X(3872) in the J/ψπ+π− invariant
mass spectrum by Belle [1].

The typical relative momentum between the D0 and D̄∗0 in high-pT pp collisions is
around 1.5 GeV, compared to a relative momentum of around 28 MeV estimated for
the X(3872) [59]. An upper bound was therefore placed on the prompt production
cross section of such a molecule [60], and it was concluded that the measured prompt
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X(3872) production rate from the Tevatron exceeded this upper bound by orders of
magnitude.

In a more recent interpretation of X(3872) production as a D0D̄∗0 molecule, it was
assumed that the X(3872) could also be produced through rescattering processess [61],
shown in Figure 2.13. Using the NRQCD factorisation framework, with a factorisation
formula of the form

σ[X(3872)] =
∑
n

σ̂[cc̄n]
〈
OX
n

〉
, (2.14)

various simplifying assumptions can be made to reduce NRQCD matrix elements
〈
OX
n

〉
to a smaller set. The assumptions considered were:

• S-wave dominance: The X(3872) has an equal probability to be formed from any
cc̄ pair that is created in a S-wave state with small relative momentum, regardless
of the colour and spin of the cc̄. This assumption uses the same pattern of matrix
elements as the Colour Evaporation Model [61].

• Colour-octet 3S1 dominance: The X(3872) can only be formed from a cc̄ pair
produced in the 3S1 colour-octet state with small relative momentum [61].

Fig. 2.13 Diagram showing the production of the X(3872) as a charm-meson molecule
through rescattering process [59].

For pT > 4 GeV, it was found that each of these simplifying assumptions give
the same differential cross section result. The production rate was found to increase
by several orders of magnitude relative to the previously determined upper bound,
providing a possible explanation of the discrepency between theory and experiment.

However, a production cross section measurement of promptly produced X(3872)
was performed by CMS [8] as a function of pT (see Figure 2.14(a)), and shows the
NRQCD prediction for the prompt X(3872) production rate (where X(3872) is assumed
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to be a loosely bound D0D̄∗0 molecule) with rescattering to be significantly too large,
although it describes the pT dependence reasonably well.
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these results, the measured integrated cross section for prompt X(3872) production times branch-
ing fraction is:

sprompt(pp ! X(3872)+ anything) · B(X(3872) ! J/yp+p�) = 1.06 ± 0.11 (stat.) ± 0.15 (syst.) nb.

This result assumes that the X(3872) and y(2S) states are unpolarized. The NRQCD prediction
for the prompt X(3872) cross section times branching fraction in the kinematic region of this
analysis is 4.01 ± 0.88 nb [11], significantly above the measured value.

7 Measurement of the p+p� invariant-mass distribution
The decay properties of the X(3872) are further investigated with a measurement of the p+p�

invariant-mass distribution from X(3872) decays to J/yp+p�. Here, the same event selection as
described in Section 3 is applied. The event sample 2011a is used, with a transverse momentum
threshold of 7 GeV for the muon pair, within the kinematic range 10 < pT < 50 GeV and |y| <
1.25 for the J/yp+p�. In this sample, the X(3872) yield with the p+p� invariant mass larger
than 0.5 GeV is determined from a fit to the J/yp+p� invariant-mass spectrum to be 6302 ±
346, where the uncertainty is statistical only. The m(p+p�) > 0.5 GeV criterion is imposed to
remove events with low efficiency owing to the requirement on the Q value of the decay.

To extract the dipion invariant-mass spectrum from X(3872) decays, the event sample is di-
vided into twelve intervals of dipion invariant mass in the range 0.5 < m(p+p�) < 0.78 GeV.
In each interval, a maximum-likelihood fit to the J/yp+p� invariant-mass distribution is per-
formed, where the signal is modelled with a single Gaussian. The position and width of the
X(3872) signal are fixed to the values obtained in the fit to the full sample, except for the last

(a)

(b)

Fig. 2.14 (a) Measurement of the prompt X(3872) production cross section differentially
in pT by CMS [8]. The NRQCD factorisation framework with the X(3872) modelled
as a loosely bound D0D̄∗0 molecule with rescattering shows an overprediction. (b) The
same measurement fitted to an NLO NRQCD factorisation theory of X(3872) modelled
as mixed χc1(2P ) −D0D̄∗0 state, produced through the χc1(2P ) component [62].
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A later interpretation of X(3872) as a mixed χc1(2P ) − D0D̄∗0 state, where the
X(3872) is produced predominantly through its χc1(2P ) component has also been
proposed [62]. As previously discussed, the very small binding energy of a hypothesised
D0D̄∗0 molecule makes it unlikely that this alone could have such a high rate of
production through prompt QCD processes found at the Tevatron, and including
rescattering processes overpredicts the data. Additionally, properties of the X(3872)
such as the pT distribution also have similarities to the ψ(2S). This interpretation
might also explain the observed large isospin violation in X(3872) → J/ψρ decays
through rescattering of the intermediate D0D̄∗0 component [63]. The mixed χc1(2P ) −
D0D̄∗0 hypothesis is used with the NLO NRQCD model and fitted to CMS data
(see Figure 2.14(b)), showing good agreement [62]. An additional motivation for this
interpretation is that one of the free parameters of the fit, the colour-octet matrix
element ratio, is almost the same as for χc1(1P ) production.

2.4.2 Other Theoretical Interpretations

Charmonium State

The closest charmonium state in mass to the X(3872) which also satisfies quantum
number requirements is the 23P1 state, known as the χc1(2P ). This could explain
observed decays to J/ψω, however the isospin violating decay to J/ψρ at around the
same rate as J/ψω is difficult to explain with this pure charmonium state, although
the large isospin violation could be explained through a virtual coupling to the D0D̄∗0,
which could also have the effect of lowering the bare mass of the χc1(2P ) down to the
X(3872) mass.

Tetraquark

A tetraquark is the binding of a coloured diquark and anti-diquark pair to form a
colourless state. They are similar to qq̄ mesons, but instead there are diquark pairs at
the end of the colour string instead of quarks. Tetraquarks are therefore often expected
to decay into pairs of baryons, for example the tetraquark candidate Y (4660) is found
to decay into a Λ+

c Λ−
c final state [64]. However, due to limited phase space from its

relatively low mass, the X(3872) is forced to decay through J/ψρ and J/ψω.
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In the interpretation of X(3872) as a tetraquark, the X(3872) can be considered as
a mixture of two neutral mass eigenstates:

Xu = [cu][c̄ū], Xd = [cd][c̄d̄], (2.15)

where the mass difference is on the order of md −mu. Mixing occurs from annihilation-
creation of the light quark pairs, leading to pure isospin mixtures of the form (Xu ±
Xd)/

√
2 [65]. Isospin symmetry is predicted to be close to maximally violated, and

correspondingly so are the subsequent strong decays. This may explain the observed
isospin-violation from J/ψω and J/ψρ final state measurements of the X(3872). How-
ever, a study by CDF found no evidence for the existence of two nearby mass states,
limited by their experimental resolution, and set an upper limit on the mass difference
of 3.6 MeV at a 95% confidence level, assuming an equal contribution of the two
states [66].

Additional predictions of the tetraquark model are the existence of charged states.
The charged tetraquark candidate Zc(3900)± has been observed in decays to J/ψπ± [67],
and its neutral partner Zc(3900)0 was later observed in decays to J/ψπ0π0 [11]. However,
searches for the charged partner of the X(3872) have been performed, for instance in
the J/ψρ+ final state [68], and no evidence of its existence has been found.



Chapter 3

The ATLAS Experiment

3.1 The LHC

The Large Hadron Collider (LHC) is the world’s highest energy particle accelerator, with
beams of protons colliding at a maximum design centre-of-mass energy of

√
s = 14 TeV,

and an instantaneous luminosity of L = 1034 cm2s−1. The LHC was constructed at
the CERN accelerator complex, close to the French-Swiss border, inside the tunnel
previously used for the LEP experiments (which used an electron-positron collider).
This circular tunnel is 26.7 km in circumference and approximately 100 m underground
to shield from cosmic radiation and to provide protection from the high energy radiation
produced in the beam collisions.

A diagram of the CERN accelerator complex can be seen in Figure 3.1. The protons
are initially accelerated by the LINACS, a linear accelerator which boosts their energy
to 50 MeV. They then travel through to the BOOSTER, a synchrotron accelerator
which increases their energy to 1.4 GeV. Next, they are accelerated through the Proton
Synchrotron (PS) and Super Proton Synchrotron (SPS) to energies of 25 GeV and
450 GeV, respectively. After they reach an energy of 450 GeV the protons can be
injected into the main ring, where they are further accelerated to maximum energy for
the beam collisions.

There are four main experiments situated along the main ring, which are: CMS [69],
ATLAS [70], LHCb [71] and ALICE [72]. The ATLAS and CMS general purpose
experiments are designed to study a wide range of physics. These include: Higgs boson
searches and measurements, supersymmetry searches, Standard Model measurements
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and B-physics studies. The LHCb and ALICE experiments are more specialised to
study B-physics and heavy ion collisions, respectively. There are also several smaller
experiments, for instance LHCf [73].

Fig. 3.1 Diagram showing the group of accelerators and experiments which form the
CERN Accelerator complex [74].

The LHC started running in 2010, with each proton beam accelerated to an energy
of 3.5 TeV, and a centre-of-mass energy of

√
s = 7 TeV. By the end of 2011 the LHC

had delivered a total integrated luminosity of over 5 fb−1 to each of the ATLAS and
CMS detectors, and by mid-June in 2012 had produced enough collisions for both
the ATLAS and CMS collaborations to jointly make the historic discovery of a boson
consistent with the Standard Model Higgs at a mass of around 125 GeV [16, 17].

After the first long shutdown (LS1) from spring 2013 to the beginning of 2015 for
upgrades, the LHC has resumed data taking with beam collisions at a record-breaking
√
s = 13 TeV (6.5 TeV per beam).
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3.2 Overview of the ATLAS Detector

The ATLAS detector [75] is a cylindrical, forward-backward symmetric, general purpose
particle detector designed to study physics at the TeV energy scale. It is located at
Point 1 on the LHC ring, approximately 93 m underground to shield the outside
from the high energy radiation produced in the collisions, and to prevent cosmic rays
reaching the detector. The detector consists of numerous sub-detector components. A
schematic diagram of the detector showing the various sub-detector components in a
cutaway view is shown in Figure 3.2.

Fig. 3.2 Schematic diagram showing a cutaway view of the ATLAS detector and its
sub-detector components [75].

The innermost part of the inner detector (ID) is comprised of pixel and silicon
microstrip (SCT) tracking technology for high-precision measurements, and further
outwards also the transition radiation tracker (TRT). The inner detector is immersed
in a 2 T solenoidal magnetic field. Enclosing the ID and solenoidal magnet are the
electromagnetic (ECAL) and hadronic (HCAL) sampling calorimeters, which provide
good containment of the electromagnetic and hadronic showers in order to limit punch-
through into the muon spectrometer (MS). The ECAL uses liquid argon, while the
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HCAL is an arrangement of steel and scintillator tiles. Surrounding the calorimeters,
the MS consists of three air-core toroidal magnets, generating a magnetic field capable
of 1.5 - 7.5 Tm of bending power, dependent on rapidity. The MS consists of both
precision measurement detectors (monitored drift tubes and cathode strip chambers)
and fast-trigger detectors (thin-gap chambers and resistive plate chambers). The
ATLAS detector uses a three-level trigger system in order to reduce the frequency of
events written to disk to around 200 Hz. Figure 3.3 shows the integrated luminosity of
pp collisions delivered to and collected by the ATLAS detector from 2011 onwards.
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Fig. 3.3 (a) Total integrated luminosity of pp collisions delivered, recorded and good-for-
physics from the ATLAS detector for the 2011 and 2012 run periods [76]. (b) Delivered
luminosity to the ATLAS detector for run periods from 2011 - 2016 [77].

This analysis uses a dimuon trigger. The hardware-based Level 1 (L1) muon
trigger finds regions-of-interest (RoIs) by searching for hit coincidences in layers of
the muon trigger detectors inside pre-defined geometrical windows, and uses one of
a range of fixed pT thresholds to bind the path of the muon to give a rough position
(∆η× ∆ϕ ≈ 0.1 × 0.1). Overlap between two or more closely separated muons whereby
the trigger only finds a single RoI at L1 is possible, and is accounted for in the data-
driven method of measuring the dimuon trigger efficiency. The software-based two-stage
high level trigger (HLT) is seeded by the L1 RoI, and can then use more precise MS and
ID information in its algorithms at each stage in order to reconstruct the final muon
trigger object with a resolution comparable to the full offline reconstructed muons.
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The coordinate system widely used to describe the ATLAS detector is as follows.
The origin of the coordinate system is defined by the nominal interaction point. A
right-handed coordinate system is used, with the z-axis defined by the beam direction.
Side-A of the detector represents the positive z direction. The x−y plane is orthogonal
to the beam direction, where the positive x-axis direction points from the interaction
point to the centre of the LHC ring, and the positive y-axis direction points upwards
along the zenith. The azimuthal angle ϕ is measured around the beam axis, and the
polar angle θ is measured from the z axis. The pseudorapidity η is defined as

η = − ln tan (θ/2) , (3.1)

which is equal to rapidity when a physics object is approximately massless. For the case
where there is an appreciable mass, for instance jets, rapidity y is more appropriate,

y = 1
2 ln

(
E + pz
E − pz

)
, (3.2)

where E is the energy and pz is the momentum projection in the z-direction of the
physics object. The distance ∆R in pseudorapidity-azimuthal space is defined as

∆R =
√

∆ϕ2 + ∆η2, (3.3)

where ∆ϕ and ∆η are defined as the separation in azimuthal and pseudorapidity space,
respectively.

3.3 The Inner Detector

The inner detector (ID) is located closest to the beam pipe and the interaction point
(IP), providing high-precision momentum measurements of charged particles and also
vertex identification, with a fine detector granularity needed for the large track density.
The ID consists of the pixel and silicon microstrip (SCT) trackers, which are surrounded
by the straw tubes of the transition radiation tracker (TRT). The layout of the various
sub-components during Run 1 are shown in Figure 3.4. During Long Shut Down 1
(LS1), the ID was upgraded to include an additional pixel layer closest to the beam pipe,
known as the Insertable B-layer (IBL) [78], compensating for the eventual deterioration
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of the current pixel layers from radiation effects. This also provides the benefit of
improved vertex resolution, particularly of secondary vertices necessary for B-physics
studies. The ID is immersed in a 2 T magnetic field produced by the central solenoid
magnet in order to measure the transvere momentum of the charged particles. These
precision tracking components cover the region |η| < 2.5.

Fig. 3.4 Schematic diagram showing a cutaway view of the ATLAS inner detector (ID)
and its sub-components during Run 1 [75]. An additional pixel layer known as the IBL
was inserted for Run 2.

3.3.1 Pixel Detector and Semiconductor Tracker

During Run 1

The silicon pixel detector offers the highest granularity, and is located closest to the
beam pipe. It provides the first spatial measurement of charged particles produced
from the IP. It is arranged as three concentric cylindrical layers around the beam
pipe in the barrel region |η| < 1, and as disks of three layers perpendicular to the
beam axis in the endcap regions. The pixel layer closest to the beam pipe is critical
for B-physics studies, in order to best resolve the secondary vertices from long-lived
b-hadrons, and is known as the B-layer. The pixel detector contains around 80 million
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read-out channels: around 67 million in the cylindrical barrel layers and 13 million in
the endcap layers, with each pixel sensor having size R − ϕ× z = 50 × 400 µm2 with
resolution R − ϕ× z = 10 × 115 µm2 [75]. The pixel detector covers the radial region
50.5 < r < 150.0 mm.

The SCT consists of 4088 silicon strip modules. These are arranged as four
concentric cylindrical layers around the beam pipe in the barrel region. Each of the
two endcaps contain nine disk layers perpendicular to the beam direction, which can
be seen in Figure 3.4. The SCT provides four spatial measurements for traversing
charged particles, from eight strip measurements. In the barrel region, each module
consists of two 6.4 cm silicon strip sensors daisy-chained together with a pitch of
80 µm, on each side of the module [75]. The strips on each side of the module have
a small 40 mrad angle between them, to perform a stereo angle measurement. The
typical resolution of each module in the SCT is (R − ϕ , z) = (17 , 580) µm in the
barrel, and (R − ϕ , R) = (17 , 580) µm in the endcaps, covering the radial region
299 < r < 514 mm.

Run 2 Upgrade

The high-luminosity, high-radiation environment close to the IP has the effect of
degrading the pixel detector, particularly the B-layer. The lifetime in integrated
luminosity of the present B-layer due to these radiation effects is estimated to be
around 300 fb−1 [78], with the onset of tracking efficiency degradation at an even lower
integrated luminosity. For Run 2, an additional pixel layer was inserted closest to the
beam pipe, known as the Insertable B-Layer (IBL). A comprehensive technical report
of the IBL can be found in [78]. The IBL is expected to maintain robust tracking
until the replacement of the inner detector in 2025. The IBL also provides improved
precision for vertexing and b-tagging.

3.3.2 Transition Radiation Tracker

The TRT is the outermost component of the ID, and consists of roughly 298, 000
proportional drift tubes. The tubes have a 4 mm diameter, with a wall made from
polyimide, offering good electrical and mechnical properties with minimal thickness at
around 35 µm. The walls are kept at a voltage of −1.5 kV [75]. The tubes are filled
with a gas mixture consisting of 70% Xe, 27% CO2 and 3% O2. An anode sense wire,



3.4 The Calorimeters 37

kept at ground potential, made from gold-plated tungsten, runs through the centre of
each straw tube. The tubes are around 1.5 m in length in the barrel, arranged along
the beam axis. They are around 0.4 m in length in the endcaps, and are arranged
perpendicular to the beam axis [79]. The spaces between the straws are filled with
polymer fibres, which create the transition radiation as the highly relativistic charged
particles traverse the material boundary. TRT measurements are only performed in
the R− ϕ plane, and have a precision of 130 µm for each tube, across the radial region
563 < r < 1066 mm.

3.4 The Calorimeters

The sampling calorimeters cover the range |η| < 4.9, and are designed to measure the
energy (and position/direction) of both charged and neutral particles and jets. The
calorimeter system must also contain electromagnetic and hadronic showers to prevent
punch-through into the muon system (MS) [75]. A cutaway schematic diagram of the
calorimeter system is shown in Figure 3.5.

Fig. 3.5 Schematic diagram showing a cutaway view of the ATLAS calorimeter sys-
tem [75].
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3.4.1 Liquid Argon Calorimeter

The Liquid Argon (LAr) calorimeter system is used for both electromagnetic (EM)
and hadronic calorimetry, and shares a vacuum vessel with the solenoidal magnet to
reduce dead material. The LAr EM calorimeter in the barrel region (|η| < 1.475)
provides fine granularity (∆η × ∆ϕ = 0.0031 × 0.0245 in the first layer, known as
the strip layer, becoming coarser ∆η × ∆ϕ = 0.05 × 0.0245 in the back layer) for
precision measurements of photons and electrons [75], with a thickness between 24 X0

and 33 X0 dependent upon |η|. The EM calorimeter in the endcaps (EMEC) is divided
into two coaxial wheels, with the outer wheel covering 1.375 < |η| < 2.5 and the inner
wheel covering 2.5 < |η| < 3.2. The EM calorimeter uses lead absorber plates and an
accordion geometry to provide full ϕ symmetry without any azimuthal cracks. The
electrodes used to read out the signal are located in between the gaps of the absorber
plates, and consist of three copper layers separated by polyimide insulating sheets [75].
The two outer layers are placed under a high-voltage, leaving the inner layer as the
readout of the signal by capacitive coupling from the induced current in the LAr gap
from drifting charges due to particle interactions [80].

The LAr calorimeter system is also used for the Hadronic End-cap Calorimeters
(HEC). The HEC is a copper-LAr sampling calorimeter which uses a flat-plate de-
sign [75], covering the range 1.5 < |η| < 3.2. The HEC consists of a front (HEC1) and
back (HEC2) wheel in each of the end-cap cryostats, which they share with the EMEC.
The gaps between the copper plates are also occupied by electrodes, with the central
electrode being the readout. The size of the readout cell is ∆η × ∆ϕ = 0.1 × 0.1 for
|η| < 2.3 and 0.2 × 0.2 for |η| > 2.3 [75].

3.4.2 Tile Calorimeter

Surrounding the EM calorimeter in the barrel region is the tile calorimeter, covering
the region |η| < 2.7. The tile calorimeter is sub-divided into a central barrel and
two forward barrels. Each barrel contains 64 steel-scintillator modules, with the
modules divided longitudinally into three layers. The steel is used as the absorber
material, while the scintillator acts as the active medium. The signal is then read out
through fibre optic cables into photomultiplier tubes. The inner two layers have the
resolution ∆η × ∆ϕ = 0.1 × 0.1, while the outer layer has a slightly poorer granularity
in pseudorapidity ∆η × ∆ϕ = 0.2 × 0.1.
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3.5 The Muon Spectrometer

The Muon Spectrometer (MS), the outermost part of ATLAS, detects charged particles
which have travelled through the calorimeters. The MS uses air-core toroid magnets to
measure the momentum of charged particles in the range |η| < 2.7 by measuring track
trajectories of charged particles bent by the toroidal magnetic field, and triggers on
particles in the range |η| < 2.4. The MS contains a variety of sub-detector components,
providing a mixture of high precision tracking measurements and fast read-outs for
triggering. The sub-detector components comprising the MS are shown in Figure 3.6.

Fig. 3.6 Schematic diagram showing a cutaway view of the ATLAS muon spectrome-
ter [75].

In the barrel region, the muon chambers are arranged in three concentric cylinders
around the beam axis. In the end-caps, the chambers are placed in planes perpendicular
to the beam axis, again as three layers. The sub-detector components are:

• Monitored Drift Tubes (MDT) provide precision measurements. They are
pressurised drift tubes consisting of an Ar/CO2 gas mixture at 3 bar. The free
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electrons resulting from ionisation are collected at a central tungsten-rhenium
wire at a potential of around 3 kV. The maximum drift time is around 700 ms,
with an average resolution per tube of around 80 µm.

• Cathode-Strip Chambers (CSC) provide precision measurements. The safe-
operation rate limit for the MDTs is 150 Hz/cm2, which is exceeded in the region
|η| > 2 in the first end-cap layer, so here they are replaced by the CSCs. The
CSCs are multiwire proportional chambers with wires oriented in the radial
direction [75], with a resolution of 60 µm.

• Resistive Plate Chambers (RPC) are part of the trigger system in the barrel
region. They consist of three cylindrical layers around the beam axis, offering
up to six measurements in η and ϕ. The RPC is a gaseous parallel electrode
plate detector, where to resistive plates are sepearated by a distance of 2 mm by
insulating gas mainly consisting of C2H2F4. An electric field across the plates of
4.9 kV/mm causes avalanches to form along the traversing, ionising track, which
drift towards the anode. The signal is read out by capacitive coupling. [75].

• Thin Gap Chambers (TGC) are part of the trigger system in the end-cap
region. They are multiwire proportional chambers, similar to the CSC, to cope
with the high interaction rate in the |η| > 2 region.

3.5.1 Muon Reconstruction

Muons with a wide range of transverse momenta from 3 GeV to around 1 TeV can be
reconstructed with the ATLAS detector, with high efficiency within the range |η| < 2.3.
Momentum resolution is typically between 4 % - 10 %, and is largely limited by energy
loss as particles traverse the detector before reaching the MS, and is also limited at very
high-pT (> 300 GeV) as particles traverse the detector in much straighter lines. High
precision measurements in the ID can also help with muon identification, particularly
for pT < 20 GeV. There are three main types of muon identification, which each use
two main types of reconstruction algorithm, named ‘Staco’ and ‘Muid’:

• Standalone muons: the muons are identified from hits solely in the MS by
linking track segments in each of the three layers, with no information used from
the ID. The muon trajectory is subsequently extrapolated back to the IP, taking
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into account multiple scattering and energy loss in the calorimeters. The Staco
algorithm assigns energy loss based on the material traversed by the muon, while
Muid can also use calorimeter energy measurements.

• Combined muons: MS tracks are paired with ID tracks, using a χ2 match
from the covariance matrices of the inner and outer tracks, to identify combined
muons. The Staco and Muid algorithms perform a recombination of the inner and
outer tracks to obtain the combined track vector, both taking into account energy
losses from traversing the detector material [81]. Staco performs a statistical
recombination of the inner and outer track vectors, while Muid does a partial
refit by starting from the inner track vector and covariance matrix and then
adding measurements from the outer track [81].

• Tagged muons: MS algorithms propagate all ID tracks with enough momentum
into the first layer of the MS, where nearby track segments are searched for. If a
segment is found to be close enough to the predicted track, then that ID track
is tagged as a muon. However, the ID track and MS segment tracks are not
combined to form a new track [81].

3.6 Data Aquisition and Trigger System

The nominal pp bunch crossing rate delivered by the LHC of 40 MHz would lead to far
too many events for the ATLAS detector to read out with current technology. A three-
level trigger system is therefore used to filter events, named Level 1 (L1), Level 2 (L2)
and Event Filter (EF). At L1, the trigger system uses reduced granularity information
from the calorimeters and muon trigger chambers described previously, which deliver
fast read-outs. The two higher trigger levels (HLT) subsequently refine the decisions
of the previous level using full granularity and precision detector measurements [75]
at the software level. The L1 trigger reduces the event rate from the bunch crossing
rate to around 75 kHz, which is further reduced to around 200 Hz after the L2 and EF
trigger selections.

The data aquisition system (DAQ) receives event information from the read-out
electronics at rates up to the L1 trigger rate. The L1 trigger searches for specific
signatures, for example high-pT muons, electrons and jets. From these it defines one or
more Regions of Interest (RoIs), which are regions in (η, ϕ) space where the system has
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identified interesting physics processes. These are determined by the central trigger
processor, which implements the menu of L1 trigger selections. The L1 trigger decision
on whether or not to keep the event must be made within 2.5 µs. The L2 trigger is
then seeded by the L1 RoI data, which uses full granularity and precision detector
information within the RoI, which is approximately 2 % of the total event data. The
L2 trigger selection reduces the event rate to below 3.5 kHz, with a processing time
of around 40 ms [75]. Finally, the EF trigger selection uses the full event information
to perform the final trigger decision, reducing the event rate to around 200 Hz with
a processing time of the order 4 seconds. More detail on the algorithms used for
B-physics triggers can be found in Chapter 4.

Events selected by the EF are then sent to the output nodes (called SFOs) of the
DAQ/HLT system [75], and the event files can subsequently be transferred to the
CERN central data-recording facility for processing and storage. The SFOs can transfer
event files at rates of up to 400 Hz, and have a local storage capacity buffer of 24 hours
before data transfer. At the transfer stage, the sets of files map to ATLAS-defined
data streams, for instance B-physics and τ -leptons, depending on which triggers fired
in the event.

The amount of data collected by the ATLAS experiment, along with the other
LHC experiments, in addition to simulated data, is too large to be managed at a single
site. Data processing is therefore shared using the Worldwide LHC Computer Grid
(WLCG), which is usually referred to as just the ‘Grid’. The Grid sites are split into
three different ‘tiers’. The CERN data centre represents the first tier, known as ‘Tier 0’,
which processes and stores the raw data files. This data can be distributed to one of
roughly thirteen ‘Tier 1’ sites, which are usually located at national laboratories of
participating countries and provide storage of raw and reconstructed data, as well as
large-scale reprocessing. The ‘Tier 2’ sites are usually located in participating research
institutions, and can be used to perform physics analyses on reconstructed data and
provide storage of the processed data.



Chapter 4

B-Physics Triggers

In this chapter, a brief overview of the B-Physics triggers is first provided in Section 4.1.
The B-Physics trigger algorithms are explained, and the various B-Physics triggers used
in ATLAS analyses are described. In Section 4.2, we describe an efficiency measurement
of a dimuon B-Physics trigger performed using 2011 data, which formed part of the
author’s service task for ATLAS. The method used to extract this trigger efficiency is
similar to the method used for 2012 data.

4.1 B-Physics Triggers Overview

Most B-physics analyses from the ATLAS experiment use decays containing at least
one dimuon pair in the final state. Therefore, dimuon triggers are used around the
invariant mass range of the ψ, Υ and B mesons, and also across the full mass range,
spanning from below the J/ψ mass to just above the Υ mass (called DiMu triggers).
These are known as the B-physics triggers. The B-physics triggers can be separated
into two categories according to the algorithms used to select the dimuon pair [82].
These are highlighted in Figure 4.1.
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Fig. 4.1 Diagrams showing the two different B-physics trigger algorithms. The left
figure shows the topological trigger, seeded by two Level 1 muon RoIs. On the right
shows the TrigDiMuon trigger, seeded by a single L1 muon RoI [82].

Either the trigger is seeded at Level 1 by a single muon RoI, and at Level 2 the
HLT algorithm searches for a second track within a wide (η, ϕ) region around the
triggered muon candidate; or the trigger is seeded at L1 by two muon RoIs and the
muons are confirmed at the HLT, known as topological triggers. The muon trigger
objects are typically required to have opposite sign charge and a loose vertex χ2 match,
assuring the muons originate from a common vertex, to reduce the trigger rate while
maintaining high signal yields. The invariant mass ranges for the various triggers are:

• ψ mass range: (2.5 - 4.3) GeV, trigger names ending with Jpsimumu.

• B mass range: (4.0 - 8.5) GeV, trigger names ending with Bmumu.

• Υ mass range: (8 - 12) GeV, trigger names ending with Upsimumu.

• DiMu mass range: (1.5 - 14.0) GeV, trigger names ending with DiMu.

The beginning of the trigger names denote the trigger level: either Level 1 (L1), Level
2 (L2), or ‘Event Filter’ (EF). The trigger name also contains information on the
minimum pT of the pairs of muons. For example, an Event Filter level trigger firing
on two muons each with minimum pT = 4 GeV in the J/ψ mass range is named
EF_2mu4T_Jpsimumu, where the additional ‘T’ denotes a tighter selection requirement
on the muons. As an illustrative example, the spectrum of dimuon candidates collected
during the first half of the 2011 run period is shown in Figure 4.2. Also shown are
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the invariant mass ranges of some of the B-physics triggers. There is a large increase
in signal yield for the ψ and Υ mesons using the B-physics triggers (red, green and
blue regions), rather than a high-pT single muon trigger, which is shown in grey. The
B-physics triggers covering the narrower ψ and Υ mass ranges also produce slightly
higher signal yields than the DiMu trigger, which covers a wider mass range and can
be seen as the black line.
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Fig. 4.2 Invariant mass spectrum of dimuon candidates from the first half of 2011 data
taking. The mass range and measured yields are shown for various triggers [83].

4.2 Dimuon Trigger Efficiency Measurement

The EF_2mu4T_Jpsimumu dimuon trigger efficiency is extracted for data collected from
the ATLAS detector during the latter half of 2011, using offline reconstructed dimuon
events from J/ψ → µ+µ− and Υ(nS) → µ+µ− decays. For this measurement we use
the triggers:

• EF_mu18_medium: single muon trigger with minimum pT threshold of 18 GeV.

• EF_2mu4T_DiMu_voVtx_noOS: dimuon trigger with minimum pT threshold of
4 GeV for both muons but no vertex quality or opposite sign charge requirements.

• EF_2mu4T_Jpsi(Upsi)mumu: dimuon trigger with minimum pT threshold of
4 GeV for both muons, with vertex quality and opposite charge requirements
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consistent with being produced from a J/ψ(Υ(nS)). For events where the
EF_2mu4T_DiMu_voVtx_noOS trigger has fired, the only difference in the
EF_2mu4T_Jpsi(Upsi)mumu trigger are the additional vertex and opposite sign
requirements.

To extract the efficiency we use a method similar to the early 2011 trigger efficiency
measurement [84], which employs a data-driven tag-and-probe technique. We use the
efficiency formula:

ϵEF_mu4T
µ2 =

NEF_mu18_medium & EF_2mu4T_Jpsimumu
J/ψ

NEF_mu18_medium
J/ψ

× 1
c∆R

× 1
cV TX_OS
a

(4.1)

where c∆R and cV TX_OS
a are the correction factors for the effect of vertex and opposite

sign requirements, and overlapping RoIs, respectively, for the the EF_2mu4T_Jpsimumu

dimuon trigger. These two correction factors are subsequently combined to create the
overall dimuon correction cµµ, which should be used in addition to each single muon
efficiency for a pair of muons to find the overall EF_2mu4T_Jpsimumu trigger efficiency.

4.2.1 The Dimuon Correction Factor cV TX_OS
a

cV TX_OS
a is a correction to the dimuon trigger efficiency due to signal loss from the vertex
χ2 cut and opposite sign requirements. This correction is measured in three separate
rapidity bins each covering distinct regions of the detector. These are: |y(µµ)| < 1.0
(barrel), 1.0 < |y(µµ)| < 1.2 (transition region) and 1.2 < |y(µµ)| < 2.3 (endcaps) for
∆R(µµ) > 0.3. cV TX_OS

a has been shown to be roughly constant across ∆R(µµ) above
this value (see Figure 4.3). For ∆R(µµ) < 0.3, the signal efficiency further descreases
due to the closeness of the muons in ∆R, and is investigated in the next Section 4.2.2.
To calculate cV TX_OS

a we find the ratio between those reconstructed J/ψ → µ+µ−

events passing the EF_2mu4T_DiMu_voVtx_noOS trigger and those subsequently passing
the EF_2mu4T_Jpsimumu trigger across a further subset of |y(µµ)| bins for the barrel,
transition and endcap regions. This is done by fitting the invariant mass of the dimuons
with a double Gaussian for the signal region and a second-order polynomial for the
background. The ψ(2S) signal region is ignored by the fit. Examples of the fits in
each rapidity subregion are shown in Figure 4.4. All dependencies cancel out in this
ratio besides the effect of the vertex quality and opposite sign requirements, and the
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subsequent ratios are fitted in the three rapidity regions with zeroth order polynomials
(see Figure 4.5).
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Fig. 4.3 cV TX_OS
a measured across ∆R(µµ) for the three rapidity sub-regions of the

detector: (a) the barrel region, (b) transition region and (c) endcap region. We see
only slight variation of cV TX_OS

a when ∆R(µµ) > 0.3. This is therefore used as a cut
when measuring cV TX_OS

a as a function of J/ψ rapidity.
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Fig. 4.4 Examples of the tag-and-probe fits used to extract J/ψ signal in bins of |y(µµ)|
for ∆R(µµ) > 0.3, measuring cV TX_OS

a in each bin. These highlighted fits show a range
of |y(µµ)|. The fit model is described in the text.
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Fig. 4.5 cV TX_OS
a measured across multiple |y(µµ)| rapidity sub-regions, fitted with

zeroth order polynomials for the three rapidity regions of the detector: barrel (red),
transition region (green) and endcaps (blue), to reduce statistical error.

4.2.2 The Dimuon Correction Factor c∆R

The dimuon trigger efficiency is also dependent on the spatial separation of the two
muons, with small separation leading to overlapping RoIs and hence a reduced efficiency.
We measure the ratio of the signal yields in ∆Rµµ bins:

ρ∆R(∆Rµµ, |y(µµ)|) = N∆R(EF_mu18_medium & EF_2mu4T_Xmumu)
N∆R(EF_mu18_medium) (4.2)

for the same three rapidity regions as the cV TX_OS
a measurement. The specific dimuon

trigger used depends in which ∆R bin the signals are being measured. Due to phase
space limitations, above ∆Rµµ ≈ 0.35 the J/ψ → µ+µ− signal dies out. For ∆R values
larger than this (up to 0.9) the subsequent dimuon trigger used is EF_2mu4T_Upsimumu

and Υ(nS) → µ+µ− (n = 1, 2, 3) yields are measured. For smaller ∆R (less than 0.35)
the EF_2mu4T_Jpsimumu trigger is used. Examples of the fits are shown in Figure 4.6.
For the J/ψ signal region, we fit the invariant mass of the dimuon candidates with
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a double Gaussian for the signal and a second-order polynomial for the background,
where the nearby ψ(2S) signal region is ignored by the fit. For the Υ(nS) signal region,
double Gaussians are used to parameterise the Υ(1S), Υ(2S) and Υ(3S) mass peaks.
The widths are left free to be determined by the fit, while the means are fixed to the
world-average values. The background is described by an exponential function.

The subsquent ρ∆R values are fitted with an error function (which describes the
shape of the ∆R turn-on reasonably well). The ρ∆R fits, in addition to describing
the ∆R turn-on, also describe the effect of cV TX_OS

a and the effect of the single muon
trigger on the lower pT muon. To ensure this dependence does not influence the shape
of the turn-on, we impose a minimum pT cut on the second muon of 8 GeV, which places
it in the plateau region of the single muon efficiency. For the final c∆R corrections, we
must normalise the plateau value for each of the ρ∆R fits to one. The results of the
ρ∆R fits and c∆R are shown in Figure 4.7.
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Fig. 4.6 (a) - (c) Fits to the dimuon invariant mass spectrum to measure J/ψ signal,
using a tag-and-probe technique to calculate ρ∆R, for a variety of ∆R(µµ) and |y(µµ)|
bins. For larger ∆R(µµ), the J/ψ signal runs out of phase space, and so fits to the
heavier Υ mesons are performed instead. Examples of these are shown in (d) - (f).
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Fig. 4.7 The upper row shows ρ∆R ratios plotted as a function of ∆R for each of the
three rapidity regions: (a) barrel, (b) transition region, (c) endcaps, fitted with an
error function. Also shown are the ±1σ variations in the fits. The lower row shows the
error functions with their plateau regions normalised to 1.

4.2.3 The Combined Correction Factor cµµ
The total dimuon correction cµµ is the combined effect of cV TX_OS

a and c∆R,

cµµ(∆R, |y(µµ)|) = cV TX_OS
a (|y(µµ)|) × c∆R(∆R, |y(µµ)|). (4.3)

In Figure 4.8 we therefore scale each c∆R plot by its respective cV TX_OS
a to achieve the

total dimuon correction.



4.2 Dimuon Trigger Efficiency Measurement 53

µµR∆
0 0.2 0.4 0.6 0.8

R∆
V

T
X

_O
S

 &
 

µµ
C

0

0.5

1

)| < 1.0µµ0.0 < |y(

Turn-on Function 

 uncertainty contourσ 1±
 uncertaintyσFit for +1 

 uncertaintyσFit for -1 

(a)

µµR∆
0 0.2 0.4 0.6 0.8

R∆
V

T
X

_O
S

 &
 

µµ
C

0

0.5

1

)| < 1.2µµ1.0 < |y(

Turn-on Function 

 uncertainty contourσ 1±
 uncertaintyσFit for +1 

 uncertaintyσFit for -1 

(b)

µµR∆
0 0.2 0.4 0.6 0.8

R∆
V

T
X

_O
S

 &
 

µµ
C

0

0.5

1

)| < 2.3µµ1.2 < |y(

Turn-on Function 

 uncertainty contourσ 1±
 uncertaintyσFit for +1 

 uncertaintyσFit for -1 

(c)

Fig. 4.8 Total dimuon efficiency corrections cµµ(∆R, |y(µµ)|) for each of the three |y(µµ)|
rapidity regions. Also shown are the error bounds generated from ±1σ variations of
the ρ∆R fits combined with the errors from the cV TX_OS

a measurements.

4.2.4 Single Muon Efficiency Map

We measure the single muon efficiency following:

ϵ(pµ2
T , q

µ2 × ηµ2) = NJ/ψ(EF_mu18_medium & EF_2mu4T_Jpsimumu)
NJ/ψ(EF_mu18_medium) × cµµ(∆R, |y(µµ)|) . (4.4)
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To do this we measure the ratio between the number of J/ψ → µ+µ− signal events
which pass the EF_mu18_medium trigger and the additional subset of events passing the
EF_2mu4T_Jpsimumu trigger, however each event belonging to the subset is also scaled
by its corresponding 1/cµµ(∆R, |y(µµ)|) to correct for loss in dimuon trigger efficiency.
The single muon efficiency is measured in (pµ2

T , q
µ2 × ηµ2) bins, and the resulting map

is shown in Figure 4.9(a).
Also shown in Figure 4.9(b) is the statistical error map for the single muon efficiency.

Systematic uncertainties were also measured by varying: between single and double
Gaussians for the signal, and 1st and 2nd order polynomials for the background, the fit
range, and the bin widths of the fits. The subsequent systematic errors were found to
be much smaller than the statistical uncertainty.

For comparison, we also show single muon efficiency maps for early 2011 data in
Figure 4.10. This map had to be split into two separate samples due to a change in
trigger matching criteria from data period H onwards.

EF_mu4

)µ(η ×q 
2− 1− 0 1 2

) 
[G

eV
]

µ(
Tp

10

E
ff.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

EF_mu4

(a)

EF_mu4

)µ(η ×q 
2− 1− 0 1 2

) 
[G

eV
]

µ(
Tp

10

S
ta

t E
rr

.
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

EF_mu4

(b)

Fig. 4.9 a) Single muon efficiency map for late 2011 data periods in (pT , q × η) bins
of the lower pT muon, derived from J/ψ → µ+µ− signal events. b) the corresponding
statistical error map.



4.2 Dimuon Trigger Efficiency Measurement 55

Fig. 4.10 Single muon efficiency maps for early 2011 data periods (a) B2 - G and (b)
H - J, previously determined in [84].

In summary, we use the formula shown in Equation 4.1 to measure single muon
efficiency in bins of muon (pT, q×η) for late 2011 data. The dimuon trigger efficiency is
lowered due to its vertex and opposite sign requirements on the dimuons, and also when
the ∆R between the muons is small (due to RoI overlap). Dimuon trigger correction
factors are derived for the vertex and opposite sign requirements, cV TX_OS

a (|y(µµ)|), in
Section 4.2.1. The correction for the muon RoI overlap, c∆R(∆R, |y(µµ)|), is described
in Section 4.2.2. The single muon efficiency map is then created, shown in Figure 4.9(a).



Chapter 5

ψ(2S) and X(3872) Analysis

In this chapter, we describe the analysis performed to extract prompt and non-prompt
ψ(2S) and X(3872) cross sections, along with their relevant ratios and fractions, in
the decay channel J/ψπ+π−. In Section 5.1, we describe the selection requirements
for the J/ψπ+π− candidates, and measure the unweighted ψ(2S) and X(3872) signal
candidates after the selection requirements. We briefly outline the analysis method
used to extract the prompt and non-prompt signal in Section 5.2, and in Section 5.3
we detail the weights used to correct for signal loss due to: the detector acceptance,
trigger and reconstruction efficiencies, and also the additional selection requirements.
Section 5.4 provides a detailed description of the signal extraction method, for two
separate descriptions of the non-prompt ψ(2S) and X(3872) signal. The first, where
the non-prompt signal originates purely from long-lived b-hadrons, and the second
where we hypothesise an additional, shorter-lived Bc component.

5.1 Event Selection

Events used in this analysis are triggered by a pair of muons successfully fitted to a
common vertex, using the dimuon trigger EF_2mu4T_Jpsimumu_L2StarB, which was
active between the data taking periods C6 - L in 2012. This trigger differs slightly
from the EF_2mu4T_Jpsimumu trigger used in most 2011 ATLAS quarkonia analyses,
described in Section 4.2, by using a new software framework for the tracking trigger
at Level 2, named L2Star [85]. The EF_2mu4T_Jpsimumu trigger was found to have a
lifetime bias during the 2012 run period, so the majority of 2012 quarkonia analyses
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use the L2Star alternative trigger. The data sample corresponds to an integrated
luminosity of 11.4 fb−1, collected at a proton-proton collision energy

√
s = 8 TeV.

Detail on the specific datasets used for the analysis can be found in Appendix A.
The dimuon trigger requires two oppositely-charged muons to originate from a

common vertex through a constrained fit with a very loose χ2 cut on the event selection,
giving negligible signal loss. Events are chosen containing ≥ 2 muons, where each of
the muons is required to have formed a combined track through the inner detector and
muon spectrometer as identified through the Staco algorithm [86], which is described
in Section 3.5.1. These combined muons must each have pT ≥ 4 GeV and |η| < 2.3.
Additionally, the muon candidates are subject to the Muon Combined Performance
(MCP) requirements detailed in [87].

We perform a constrained vertex fit of the J/ψ and pairs of the remaining tracks,
for which we use the pion mass hypothesis and require the charge of these reconstructed
tracks to have opposite signs and to also satisfy pT > 0.6 GeV, |η| < 2.4. We also
impose a loose quality cut on the J/ψπ+π− vertex, requiring the difference between
the longitudinal impact parameter, z0, of the reconstructed J/ψ vertex and the pion
candidate tracks to be less than 50mm, which is imposed before the four-track vertexing
takes place and has been shown with simulation samples to cause negligible impact on
signal yield. Each reconstructed muon is required to have good spatial matching to
a trigger object of ∆R =

√
∆ϕ2 + ∆η2 < 0.01, in order to accurately correct for the

efficiency of the trigger.
Missing trigger objects were discovered in the data for around 4% of the recon-

structed events (due to a known bug in the B-physics code), so for these cases we
remove the matching requirement. This way of dealing with the missing trigger objects
is consistent with other analyses [88]. The loss of events due to the trigger object
requirement is already small (< 1%) and so the effect of skipping this requirement on
a small amount of the dataset is expected to be negligible.

Significance studies were performed on the data by introducing additional selection
criteria, to suppress background while retaining high signal yields, and it was found
that a χ2 probability cut on the J/ψπ+π− vertex, P (χ2) > 4%, gave the greatest
X(3872) signal signficance defined as S = Nsignal/

√
Nsignal +Nbackground. Requiring

an opening angle ∆R < 0.5 between the J/ψ and each pion candidate was found to
significantly boost X(3872) signal significance, particularly at low pT , by suppressing
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combinatoral background especially at larger mJ/ψπ+π− . A constraint on the value of
mJ/ψπ+π− − mPDG

J/ψ − mπ+π− to be less than 0.3 GeV was also imposed. This cut is
similar to the ones imposed in previous X(3872) analyses [89][7][8]. More detail on
these signficance studies can be found in Appendix B.1. We summarise the selection
criteria used for the analysis in Table 5.1. The efficiencies of these selections were
studied differentially in pT with Monte Carlo, with more detail in Appendix B.2.

A fit to the invariant mass of the selected candidates is shown in Figure 5.1(b). We
model the ψ(2S) and X(3872) signal with double Gaussians, and the background with a
fourth order Chebyshev polynomial. We measure total uncorrected ψ(2S) and X(3872)
yields of roughly 470,000 and 30,000 events, respectively, for the total phase space in
which the measurement takes place (|y(J/ψπ+π−)| < 0.75, 10 GeV < pT (J/ψπ+π−) <
70 GeV).

The total J/ψ sample for the J/ψπ+π− candidates, including selection cuts, is
shown in Figure 5.1(a). We observe an extremely clean J/ψ sample with very small
background. A double Gaussian is used to fit the signal, which is required due to the
large span in rapidity and pT of the J/ψ candidates, and a second order Chebyshev
polynomial parameterises the background. We measure approximately 3.6 M J/ψ

candidates. The dotted vertical lines in Figure 5.1(a) show the cut in J/ψ mass of the
J/ψπ+π− candidates, requiring

∣∣∣m (J/ψ) −m
(
J/ψPDG

)∣∣∣ < 120 MeV.

cut description cut values

reco quality qµ1 · qµ2 < 0 qπ+ · qπ− < 0
χ2 (J/ψ) < 200

pT (J/ψ) > 8 GeV |y (J/ψ) | < 2.3∣∣∣m (J/ψ) −m
(
J/ψPDG

)∣∣∣ < 120 MeV
P (χ2) (J/ψππ) > 0.005

P (χ2) (J/ψππ) > 0.04
∆R (J/ψ, π) < 0.5

Q (J/ψππ) = mJ/ψπ+π− −mPDG
J/ψ −mπ+π− < 300 MeV

Table 5.1 List and description of selection criteria applied to candidates to suppress
the background.
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Fig. 5.1 (a) The invariant mass distribution of the J/ψ candidates satisfying all selection
criteria except the ±120 MeV J/ψ mass window requirement indicated here by the
dotted vertical lines. The curve shows the result of a fit with a double Gaussian for
signal and a second order polynomial for background. (b) Invariant mass of the selected
J/ψπ+π− candidates collected over the full pT range 10 − 70 GeV and the rapidity
range |y| < 0.75 after selection cuts. The curve shows the results of the fit using double
Gaussians for the ψ(2S) and X(3872) peaks and a fourth-order polynomial for the
background. The X(3872) mass range is highlighted in the inset.
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5.2 Outline of the Method

The production cross sections of the ψ(2S) and X(3872) states decaying to J/ψπ+π−

are measured in five bins of J/ψπ+π− transverse momentum pT, with bin boundaries
(10, 12, 16, 22, 40, 70) GeV. The selected J/ψπ+π− candidates are weighted in order to
correct for signal loss at various stages of the selection process. Following previous
similar analyses [6, 10] a per-candidate weight ω is calculated as

ω =
[
A(pT, y) · ϵtrig(pT, y) · ϵµ(pµ+

T , ηµ+) · ϵµ(pµ−
T , ηµ−) · ϵπ(pπ+

T , ηπ+) · ϵπ(pπ−
T , ηπ−)

]−1
.

(5.1)
The trigger efficiency ϵtrig and the muon reconstruction efficiency ϵµ were obtained
using data-driven tag-and-probe methods consistent with [10, 90] and are detailed
in Sections 5.3.1 and 5.3.2, respectively. The pion reconstruction efficiency ϵπ was
obtained through MC simulations using a method consistent with previous ATLAS
analyses [6], with detail in Section 5.3.3.

The acceptance, A(pT, y), is defined as the probability that the muons and pions
comprising a J/ψπ+π− candidate with transverse momentum pT and rapidity y fall
within the fiducial limits described in Section 5.3.4. The acceptance correction maps
were created using the same generator-level simulation method as the majority of
previous ATLAS quarkonium production measurements [6, 10]. The difference in the
quantum numbers of ψ(2S) and X(3872) (JPC = 1−− and 1++, respectively) shows up
as a difference in the expected dependence of acceptance on the spin alignment of the
two states. This leads us to create two different sets of acceptance correction maps for
the ψ(2S) and X(3872), with respective explanations in Sections 5.3.5 and 5.3.6.

In addition to the per-event weights described above, in each of the pT bins the
efficiencies of the other background suppression cuts (shown in Table 5.1) are determined
using MC simulation and are corrected for, separately for ψ(2S) and X(3872). The
simulated distributions are reweighted to match the data, and the subsequent efficiencies
are found to be between (84 − 95)%. The details of the MC generation and efficiency
determination are found in Section 5.3.8.

In order to separate prompt production of the ψ(2S) and X(3872) states and the
non-prompt production from the decays of long-lived particles such as b-hadrons, the
data sample in each pT bin is further divided into intervals of pseudo-proper lifetime τ ,
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defined as
τ = Lxym

c pT
, (5.2)

where m is the invariant mass, pT is the transverse momentum and Lxy is the transverse
decay length of the J/ψπ+π− candidate. Lxy is defined as

Lxy = L⃗ · p⃗T
pT

, (5.3)

where L⃗ is the vector pointing from the primary pp collision vertex to the J/ψπ+π−

vertex, while p⃗T is the transverse momentum vector of the J/ψπ+π− system. The
coordinates of the primary vertices (PV) are obtained from charged tracks not used
in the decay vertices, and are transversely constrained to the luminous region of the
colliding beams. The matching of a J/ψπ+π− candidate to a PV is made by finding
the one with the smallest three-dimensional impact parameter, calculated between the
J/ψπ+π− momentum and each PV.

Based on the analysis of the lifetime resolution and lifetime dependence of the
signal, four lifetime intervals were defined:

w0 :−0.3 ps < τ(J/ψππ) < 0.025 ps,

w1 :0.025 ps < τ(J/ψππ) < 0.3 ps,

w2 :0.3 ps < τ(J/ψππ) < 1.5 ps,

w3 :1.5 ps < τ(J/ψππ) < 15.0 ps.

In each of these intervals, and for each pT bin, the invariant mass distribution of the
J/ψπ+π− system is built using fully corrected weighted events. Fits are then performed
to the invariant mass distribution to simultaneously extract ψ(2S) and X(3872) signal
for each pT and pseudoproper lifetime bin. Subsequently, lifetime fits are performed on
these signal yields to extract the prompt and non-prompt signal yields Y ψ, Y X . Once
these yields are determined in each pT bin, the double differential cross sections (times
the product of the relevant branching fractions) can be calculated:

Br(i → J/ψπ+π−)Br(J/ψ → µ+µ−)d
2σ(i)
dpTdy

= Y i

∆pT∆y
∫

Ldt
, (5.4)
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where i stands for ψ(2S) or X(3872),
∫

Ldt is the total integrated luminosity, while
∆pT and ∆y are widths of the relevant transverse momentum and rapidity bins, with
∆y = 1.5. Br(i → J/ψπ+π−) and Br(J/ψ → µ+µ−) are the branching fractions of
these respective decays, and their values are shown in Table 5.2.

Decay channel Branching Fraction [%]
J/ψ → µ+µ− 5.93 ± 0.06

ψ(2S) → J/ψπ+π− 34.46 ± 0.30
X(3872) → J/ψπ+π− 4.2 − 9.3

Table 5.2 Branching fractions of decay channels relevant to this analysis. The first
two values are taken from [18]. The last value is estimated in [61].

We also measured the yields of non-prompt ψ(2S), X(3872) as a fraction of the
inclusive samples:

f iNP = Y i
NP

Y i
P + Y i

NP
(5.5)

which benefits from a reduction in systematic uncertainty due to the partial cancellation
of the errors in the numerator and denominator terms.

The cross sections measured in this thesis are obtained under the assumption of
no spin alignment, but appropriate sets of correction factors for a number of extreme
spin alignment scenarios are calculated and presented in Section 6.2 for each pT bin,
separately for ψ(2S) and X(3872).

5.3 Event Weights

5.3.1 Trigger Efficiency

The efficiency of the dimuon trigger EF_2mu4T_Jpsimumu_L2StarB for the 2012 run
period was previously measured for other quarkonia analyses [10]. The method follows
similar steps to previous measurements of the dimuon trigger efficiency, which was
developed for 7 TeV data, and is described in detail in Section 4.2.
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The dimuon trigger efficiency ϵtrig can be expressed as the product of the two single
muon efficiencies ϵRoI as

ϵtrig = ϵRoI
(
p1
T , q

1 · η1
)

· ϵRoI
(
p2
T , q

2 · η2
)

· cµµ (∆R, |yµµ|) , (5.6)

with some correlation correction factor cµµ, which is the combined correction for the
effect of overlapping RoI’s, and vertex and opposite sign requirements, which reduce
the dimuon trigger efficiency. The single muon efficiency map ϵRoI (pT , q) for 2012 data,
measured by following Equation 4.1, is shown in Figure 5.2. The typical shapes of
cµµ (∆R, |yµµ|) can be found in Section 4.2.3.

Fig. 5.2 Effective trigger efficiency map for single muons in bins of (pT, q × η) [91].

5.3.2 Muon Reconstruction Efficiency

We use the same muon reconstruction maps as described in [87], which used a sample of
approximately 2M J/ψ → µµ decays that are unbiased by dimuon trigger requirements
due to the use of single muon and ‘muon + track’ triggers. A tag-and-probe method was
used to measure the efficiency. For J/ψ → µµ events, the tag is defined as a combined
muon, and the probes are ID tracks which satisfy various constraints without significant
loss of J/ψ reconstruction efficiency. The reconstruction efficiency is measured in fine
bins of probe muon (pT , η) by finding the ratio of events where the tag-and-probe pairs
are found but the probe was not successfully reconstructed in the MS, to events where



5.3 Event Weights 64

both the tag and probe are found, and subtracting this ‘inefficiency’ from unity. There
is an additional efficiency of muon track reconstruction from the inner detector, which
is taken to be 99 ± 1% [10, 90].

5.3.3 Pion Reconstruction Efficiency

The pion reconstruction efficiency is measured using pions from J/ψ → µ+µ− Monte
Carlo, simulated under ATLAS 2012 run conditions. We require the closest recon-
structed track in an event to be within an opening angle ∆R < 0.05 of truth pions. If
the track condition is satisified then the pion is counted as being reconstructed. The
number of pions which are successfully matched are then divided by the total number
of truth pions in bins of (pT , q · η) to generate the pion reconstruction efficiency map,
seen in Figure 5.3.
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Fig. 5.3 Charged pion reconstruction efficiency map versus pT and q·η from J/ψ → µ+µ−

MC under 2012 run conditions.

The effect of pile-up on pion reconstruction has been investigated and was found
to cause small (< 1%) differences in the efficiency map, which have been included
as a systematic. Small differences in efficiency for various ATLAS geometry tags
(which model the ATLAS detector in simulation) have also been investigated, and
also the effect of tightening the successful match criteria between the truth pion and
reconstructed track to an opening angle of less than 0.03. Additionally, the simulated
events are reweighted to match the data distribution of z vertex displacement, and the
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difference in reconstruction efficiency is found to be < 0.5% in each bin. More detail
on these studies can be found in Appendix C, where we conclude the overall track
reconstruction efficiency uncertainty of each pion to be ±1.25%, which is conservatively
added for both pions to give a dipion reconstruction efficiency uncertainty ±2.5%.

5.3.4 Fiducial Region and Acceptance

The acceptance is defined as the probability that the µ+µ−π+π− final decay products
from the mother ψ(2S) or X(3872) travel through a fiducial region of the detector.
This fiducial region is defined as:

• pT (µ±) > 4 GeV and |η(µ±)| < 2.3

• pT (π±) > 0.6 GeV and |η(π±)| < 2.4

The acceptance strongly depends on spin alignment, and acceptance maps for several
polarisation hypotheses are created by means of re-weighting ‘central’ unpolarised
event samples. High statistics generator-level Monte Carlo is produced separately for
ψ(2S) and X(3872) due to their different masses, and also due to the difference in
calculating the event weights for the different polarisation scenarios. In the case of
ψ(2S) → J/ψπ+π−, the dipion system is known to be produced in a spatially isotropic
state with respect to the J/ψ, so the J/ψ directly inherits its spin alignment from the
mother ψ(2S). In contrast, X(3872) has been measured to decay to J/ψπ+π− through
an intermediate ρ0 → π+π− decay, causing the dipion system to be no longer spatially
isotropic. The acceptance maps are produced in fine bins of [pT , |y|, mπ+π− ], with
100,000 events generated in each bin.

5.3.5 Acceptance Maps for ψ(2S)

As mentioned above, spin alignment of the J/ψ is directly inherited from the mother
ψ(2S), due to the dipion system primarily being produced in an S-wave state relative
to the J/ψ. We express the angular dependence of the J/ψ → µ+µ− decay as:

d2N
d cos θ∗dϕ∗ ∝ 1 + λθ cos2 θ∗ + λϕ sin2 θ∗ cos 2ϕ∗ + λθϕ sin 2θ∗ cosϕ∗ (5.7)

where λi are the three separate polarisation parameters and θ∗(ϕ∗) are the po-
lar(azimuthal) angles between the positive muon momentum in the J/ψ → µ+µ−
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decay frame and the direction of ψ(2S) in the lab frame. The acceptance maps
are built in fine bins across the ranges: 8 GeV < p

ψ(2S)
T < 70 GeV, |y|ψ(2S) < 0.8,

2mπ < mπ+π− < mψ(2S) −mJ/ψ. The acceptance can vary substantially between vari-
ous polarisation scenarios, and several extreme polarisation hypotheses are considered:

• Unpolarised - An isotropic distribution which is independent of the polarisation
parameters i.e. λθ = λϕ = λθϕ = 0, which we label UNPOL. This is used as the
central hypothesis.

• Transversely polarised with λθ = +1, λϕ = λθϕ = 0, which we label T+0

• Transversely polarised with λθ = +1, λϕ = +1, λθϕ = 0, which we label T++

• Transversely polarised with λθ = +1, λϕ = −1, λθϕ = 0 which we label T+−

• Longitudinal - with λθ = −1, λϕ = λθϕ = 0 , which we label LONG

• Off-Plane Positive - with λθ = 0, λϕ = 0, λθϕ = +0.5, which we label OFFP+

• Off-Plane Negative - with λθ = 0, λϕ = 0, λθϕ = −0.5, which we label OFFP−

It is of note that there exists no individual production process that can lead to
an unpolarised state, but only a fortunate cancellation of the spin alignments from
a superposition of different production subprocesses [52]. The polarisation of ψ(2S)
has been measured by CMS [54] and LHCb [56], and it was found that each of the λ
parameters were close to zero, justifying our choice of unpolarised production for the
central hypothesis.

The acceptance maps generated for ψ(2S) → J/ψπ+π− decays with the lowest and
highest dipion invariant mass, mππ, along with their ratio, are shown in Figure 5.4.
The acceptance increases as a function of pT, and is largely independent of the rapidity
range considered in this analysis. Acceptance decreases as a function of mππ, as can
be seen in Figure 5.4(c). In Figure 5.5 we show the acceptance maps for different
polarisation scenarios, each divided by the unpolarised acceptance map, for some central
mππ = 0.4381 GeV bin. We see for the LONG case that the acceptance increases
with respect to unpolarised acceptance. For the T+0 , T++ and T+− scenarios,
the acceptance decreases with respect to the unpolarised map, and for OFFP+ and
OFFP− the acceptance is very similar to the unpolarised case.
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Fig. 5.4 Acceptance maps for unpolarised ψ(2S) decays for (a) low mππ, (b) high mππ,
and (c) the ratio between the two.
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Fig. 5.5 Acceptance maps for ψ(2S) as a ratio to the unpolarised acceptance for (a)
T+0, (b) T++, (c) T+−, (d) LONG, (e) OFFP+, (f) OFFP−.
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5.3.6 Acceptance Maps for X(3872)

The angular distribution ofX(3872) in the decayB+ → K+X(3872)→J/ψ(→µ+µ−)ρ0(→π+π−)

has been previously determined using the helicity formalism [92] and is expressed as the
product of Wigner D-matrices. This distribution is dependent on the six parameters(
θX , θJ/ψ, θρ, ϕX , ϕJ/ψ, ϕρ

)
, which are defined relative to the relevant helicity decay

frames. A diagram detailing these parameters is shown in Figure 5.6.

Fig. 5.6 Definitions of the helicity angles
(
θX , θJ/ψ, θρ

)
(left) and

(
ϕX , ϕJ/ψ, ϕρ

)
(right)

[92].

The angles θX , ϕX are defined by the momentum of the J/ψ in the X(3872) rest
frame, with θX defined as the polar angle between the J/ψ in the X(3872) rest frame
and the X(3872) in the lab frame, and ϕX being the angle of the plane created between
the J/ψ in the X(3872) frame and the X(3872) in the lab frame, where ϕX = 0 when
aligned with the X(3872) production plane. The angle θJ/ψ is defined as the polar
angle between the momentum of the positive muon in the J/ψ decay frame and the
J/ψ momentum in the X(3872) rest frame. ϕJ/ψ is the angle of the plane formed
between the positive muon in the J/ψ rest frame and the J/ψ in the X(3872) rest
frame. The angles (θρ, ϕρ) are calculated completely analogously to

(
θJ/ψ, ϕJ/ψ

)
, but

instead taking π+ instead of µ+ and ρ0 instead of J/ψ. We take the LHCb angular
distribution result [92] and generalise to X(3872) produced with any subset of angular
momentum eigenstates as:
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dΓ
dΩ ∝

∑
j

∣∣∣∣∣∑
m

∑
λJ/ψλρ

AmD
1∗
λJ/ψj

(
ϕJ/ψ, θJ/ψ,−ϕJ/ψ

)
D1∗

−λρ0 (ϕρ, θρ,−ϕρ)

×DJX∗
m(λJ/ψ−λρ) (ϕX , θX ,−ϕX)AλJ/ψλρ

∣∣∣∣∣
2 (5.8)

where j is the angular momentum projection of the dimuon system along its z′

(the direction of travel of the positive muon in the J/ψ rest frame), and must be
equal to ±1 to good approximation to satisify helicity conservation from the decay
J/ψ → γ∗ → µ+µ− (where this photon is approximately on-shell). λJ/ψ and λρ are the
helicities of the J/ψ and ρ0, respectively. Am is the amplitude of each X(3872) angular
momentum eigenstate m = −1, 0,+1. AλJ/ψλρ is defined as the helicity amplitude for
the pair of helicity states λJ/ψλρ.

We use the same pT and |y| binning as with ψ(2S), and additionally extend the
dipion invariant mass range to 2mπ < mπ+π− < mX(3872) − mJ/ψ. We use the same
polarisation hypotheses as for the ψ(2S) case, but redefine the polarisation scenarios
to be in terms of X(3872) angular momentum eigenstate amplitudes:

• T+0: Am=+1 = +1, Am=0 = Am=−1 = 0 OR Am=+1 = Am=0 = 0, Am=−1 = +1

• T++: Am=+1 = +1, Am=0 = 0, Am=−1 = +1

• T+−: Am=+1 = −1, Am=0 = 0, Am=−1 = +1

• LONG: Am=+1 = 0, Am=0 = +1, Am=−1 = 0

• OFFP+: Am=+1 = −
√

6/3, Am=0 = +1/
√

3, Am=−1 = 0

• OFFP−: Am=+1 = +
√

6/3, Am=0 = +1/
√

3, Am=−1 = 0

As for the ψ(2S) case, there exists no individual sub-process which produces an
unpolarised distribution of X(3872). Instead, it should be an incoherent sum of the
angular distributions for pure m = −1, m = 0 and m = +1 states to produce the
unpolarised distribution. We see the acceptance map of X(3872) decays in pT and |y|
for low mππ = 0.2831 GeV and high mππ = 0.7605 GeV in Figure 5.7, along with the
ratio of the two acceptance maps. Similarly to the ψ(2S) decays, the acceptance is
found to decrease as a function of mππ.
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The acceptance maps for other polarisation hypotheses are shown in Figures 5.8
as ratios with respect to the unpolarised acceptance. In contrast to the ψ(2S), we
measure for the LONG case that the acceptance decreases with respect to unpolarised
decays. For the T+0 , T++ and T+− scenarios, the acceptance increases with respect
to unpolarised, and for OFFP+ and OFFP− the acceptance is very similar to the
unpolarised case. The magnitude of the difference from unpolarised for X(3872) decays
is found to be smaller than for ψ(2S) decays.

Additionally, we show the ratio of UNPOL acceptance for X(3872) compared
to ψ(2S) for the lowest dipion mass (mππ ≈ 2mπ) and the largest possible mass(
mππ ≈ mψ(2S) −mJ/ψ

)
in Figure 5.9. These differences are discussed further in

Section 5.3.7.
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Fig. 5.7 Acceptance maps for unpolarised X(3872) decays for (a) low mππ, (b) high
mππ, and (c) the ratio between the two.
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Fig. 5.8 Acceptance maps for X(3872) as a ratio to the unpolarised acceptance for (a)
T+0, (b) T++, (c) T+−, (d) LONG, (e) OFFP+, (f) OFFP−.
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Fig. 5.9 Acceptance maps for unpolarised X(3872) as a ratio of the unpolarised ψ(2S)
acceptance for (a) low (mππ ≈ 2mπ) and (b) high

(
mππ ≈ mψ(2S) −mJ/ψ

)
dipion

invariant mass.

5.3.7 J/ψ and Dipion Polarisation in X(3872) and ψ(2S) De-
cays

We see from Figures 5.5 and 5.8 that the acceptance for the different polarisation
scenarios compared to the unpolarised case is opposite for ψ(2S) and X(3872) decays.
For example, the transverse polarisation acceptance is larger than unpolarised for
X(3872) decays, but lower than unpolarised for ψ(2S). For the ψ(2S) → J/ψπ+π−

decays, the daughter J/ψ is expected to inherit the polarisation of the ψ(2S). The
dipion system is assumed to have spin-0, and thus remains unpolarised regardless of
the polarisation of the mother ψ(2S). However, in X(3872) → J/ψρ0

→π+π− decays the
picture is more complicated because the dipion system is in a vector state. These
effects are investigated in Appendix D.

5.3.8 Monte Carlo Generation for Selection Efficiency

We use Monte Carlo simulation to determine the efficiency of the background sup-
pression selection criteria detailed in Table 5.1 in bins of analysis pT. We generate
ψ(2S) → J/ψπ+π− events separately for promptly and non-promptly produced ψ(2S)
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using Pythia 8.1 [93]. The decays of b-hadrons are then simulated with EvtGen [94]. For
the X(3872) decay, we use χc1(1P ) → J/ψπ+π−, as X(3872) is unavailable in Pythia.
The χc1(1P ) is chosen as having the same quantum numbers (IG(JPC) = 0+(1++)) as
the X(3872), and its mass is set to the X(3872) PDG mass. The generated events
are then passed through full simulation of the detector using the ATLAS simulation
framework [95], based on Geant 4 [96, 97], and then processed with the same software
as used for data.

Independent χc1(1P ) → J/ψρ0 MC is generated at truth level, and is used to
weight the X(3872) simulation across the dipion invariant mass range to account
for the intermediate ρ0 decay in X(3872) → J/ψπ+π−, which has been measured as
the dominant decay process [8], by finding the ratio of the fitted functions shown in
Figures 5.10(a) and 5.10(b). The mππ distribution of the non-resonant X(3872) →
J/ψπ+π− simulation in Figure 5.10(a) is fitted with a function describing the phase
space (PS),

PS = N

√√√√(m2
ππ − 4m2

π)[m4
J/ψ +m4

X +m4
ππ − 2(m2

J/ψm
2
ππ +m2

Xm
2
ππ) +m2

J/ψm
2
X ]

4m2
X

,

(5.9)
where N is the normalisation, mππ is the dipion invariant mass, and: mπ, mJ/ψ and
mX are the world-average pion, J/ψ and X(3872) masses, respectively. The mππ

distribution of the X(3872) → J/ψρ0 simulation is fitted with the same phase space
function combined with an additional term describing the ρ0 mass resonance,

f(mππ) = PS × p1

(mππ −mρ)2 + p2
, (5.10)

where PS is the phase space function described in Equation 5.9, mππ is the dipion
invariant mass, and mρ is the world-average mass of the ρ0 meson. The free parameters
p1 and p2 are determined from the fit, which is shown in Figure 5.10(b).

Differences are also seen between the dipion mass distribution of the ψ(2S) in
simulation and data, with the dipion invariant mass in data following a Voloshin-
Zakharov curve [98] (see Equation 7.2) to a good approximation, while following a
phase-space distribution in simulation consistent with Equation 5.9. The dipion mass
distributions are fitted for data and simulation in Figure 5.11, and the ratio of the
fitted functions is used to weight the ψ(2S) simulation at truth level. The method



5.3 Event Weights 76

used to extract the dipion invariant mass distribution for ψ(2S) and X(3872) signal is
expanded upon in Chapter 7.

We observe the selection efficiency for prompt and non-prompt produced signal
to agree within statistical error for both ψ(2S) and X(3872), and so the prompt and
non-prompt samples were combined in order to improve the statistical precision of
this study. Additionally, the simulated events are weighted at reconstruction level to
correct for any remaining differences in pT(J/ψ), pT(π±) and ∆R(J/ψ, π±) between
data and simulation, with the difference from the unweighted case used as a systematic
error. More detail on the reweighting can be found in Appendix B.2.
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Fig. 5.10 Fits to the truth-level dipion invariant mass spectrum for (a) X(3872) →
J/ψπ+π− and (b) X(3872) → J/ψρ0(→ π+π−). The ratio between the two fitted
functions, which are described in the text, is used as a per-event weight in the
X(3872) → J/ψπ+π− simulation sample.
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Fig. 5.11 Fit to the truth-level dipion invariant mass spectrum for ψ(2S) → J/ψπ+π−

decays (red) using a function describing the phase-space, and to the data distribution
(blue) using the Voloshin-Zakharov function [98] (see Equation 7.2). The ratio between
the two fitted functions is used as a per-event weight in the ψ(2S) → J/ψπ+π−

simulation sample.

For each of the simulation samples, we initally require:

• The dimuon trigger EF_2mu4T_Jpsimumu_L2StarB to have fired.

• The muons and pions belonging to each J/ψπ+π− candidate to satisfy the
acceptance criteria.

• The J/ψπ+π− candidates to consist of two combined muons (details on muon
reconstruction definitions can be found in Section 3.5.1).

because each of these is already corrected for in the data using per-event weights. We
can then fit the signal mass peaks for each of the subsequent selection criteria, detailed
in Table 5.1, to measure the selection efficiency in each analysis pT bin.

The selection criteria were determined using data-driven studies on the ψ(2S) and
X(3872) signal, across the full range of pT (due to limited statistics), by performing
mass fits simultaneously to the ψ(2S) and X(3872) signal whilst varying the strength
of selection criteria. More detail of these studies can be found in Appendix B.1.

The systematic error is evaluated as the efficiency differences with and without
these corrections. The selection efficiencies are shown in Table 5.3 for ψ(2S) and
Table 5.4 for X(3872), with the corresponding mass fits shown in Appendix B.2.
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ψ(2S) selection efficiency [%] across pT range [GeV]
Selection 10 − 12 12 − 16 16 − 22 22 − 40 40 − 70
reco quality 94.0 ± 1.1 ± 0.8 95.7 ± 0.7 ± 0.2 96.2 ± 0.7 ± 0.2 95.7 ± 0.6 ± 0.1 97.8 ± 3.0 ± 1.5
P
(
χ2
)

(J/ψππ) 91.4 ± 1.1 ± 0.8 92.9 ± 0.7 ± 0.1 94.0 ± 0.7 ± 0.3 93.4 ± 0.7 ± 0.1 94.9 ± 3.0 ± 1.1
∆R (J/ψ, π) 91.0 ± 1.1 ± 1.4 92.9 ± 0.7 ± 0.1 94.0 ± 0.7 ± 0.3 93.4 ± 0.7 ± 0.1 94.9 ± 3.0 ± 1.0
Q (J/ψππ) 91.7 ± 1.1 ± 1.4 93.4 ± 0.7 ± 0.1 94.3 ± 0.7 ± 0.3 93.7 ± 0.7 ± 0.1 94.7 ± 2.9 ± 1.1

Table 5.3 Cumulative efficiency of selection requirements in pT analysis bins for ψ(2S)
simulation. The first column of errors are statistical. The second are systematic.

X(3872) selection efficiency [%] across pT range [GeV]
Selection 10 − 12 12 − 16 16 − 22 22 − 40 40 − 70
reco quality 98.4 ± 3.8 ± 2.1 98.2 ± 2.1 ± 2.1 96.6 ± 1.8 ± 1.1 97.1 ± 2.5 ± 1.3 88.3 ± 5.7 ± 1.4
P
(
χ2
)

(J/ψππ) 96.3 ± 3.8 ± 2.1 96.0 ± 2.1 ± 2.3 93.6 ± 1.8 ± 0.7 94.4 ± 2.5 ± 1.3 82.7 ± 5.8 ± 2.8
∆R (J/ψ, π) 86.5 ± 3.5 ± 0.4 92.8 ± 2.1 ± 1.3 93.1 ± 1.8 ± 0.4 94.4 ± 2.5 ± 1.3 82.7 ± 5.8 ± 2.8
Q (J/ψππ) 85.6 ± 3.6 ± 0.0 91.8 ± 2.1 ± 1.6 92.7 ± 1.9 ± 0.6 94.2 ± 2.6 ± 1.5 84.3 ± 5.5 ± 2.3

Table 5.4 Cumulative efficiency of selection requirements in pT analysis bins for X(3872)
simulation. The first column of errors are statistical. The second are systematic.

The effect of each selection requirement on the dipion invariant mass distribution
mππ, separately for ψ(2S) and X(3872) decays, is shown in Appendix B.3 for a range of
pT. It is seen that certain selection criteria, particularly Q (J/ψππ) and ∆R (J/ψ, π),
tend to bias the dipion invariant mass spectrum.

5.4 Signal Extraction

Our approach is to measure the yields of ψ(2S) and X(3872) by performing 1-
dimensional binned χ2 fits to the J/ψπ+π− invariant mass distributions, in windows
of pseudo-proper lifetime for each pT bin. The extracted yields are then fitted with
lifetime PDFs to separate prompt and non-prompt components. Modelling of the
lifetime PDFs requires knowledge of the lifetime resolution function for each pT bin.

5.4.1 Lifetime Resolution Determination

The lifetime resolution function Fres(τ) is parameterised as a weighted sum of three
normalised Gaussians with a common mean, with respective width parameters σ1 = στ ,
σ2 = 2στ and σ3 = 4στ . Fres(τ) has a width dependence on the rapidity and pT of
the J/ψπ+π− candidates, and it was found that this triple Gaussian appropriately
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models the variation of Fres(τ) in the rapidity and pT bins used in this analysis.
The resolution parameter στ and the relative weights of the three Gaussians are
determined separately for each analysis pT bin, using 2-dimensional mass-lifetime
unbinned maximum likelihood fits on the subset of data which contains a narrow range
of masses around the ψ(2S) peak. A full description of the PDF used to perform
the fits, along with fit projections and results, can be found in Appendix E.1. The
fit results are highlighted in Table 5.5. The fitted values for στ are within the range
of (32 − 52) × 10−3 ps, with the weight of the narrowest Gaussian (1 − f τ23) steadily
increasing with pT from 6% to about 50%. Also shown in the table is the fraction of
the narrower Gaussian f1 in the double Gaussian used to parameterise the ψ(2S) mass
peak, with the average used as a fixed parameter throughout the analysis.

pT interval [GeV]
10 − 12 12 − 16 16 − 22 22 − 40 40 − 70

Lifetime Resolution Parameters
τmean[ps] × 10−3 −1.7 ± 0.5 −0.6 ± 0.3 −0.5 ± 0.2 −0.3 ± 0.2 −1.0 ± 0.9
στ [ps] × 10−3 44.3 ± 6.2 45.9 ± 3.3 52.0 ± 1.5 40.9 ± 1.5 32.2 ± 6.9

fτ3 0.34 ± 0.08 0.29 ± 0.03 0.19 ± 0.01 0.22 ± 0.01 0.20 ± 0.13
fτ23 0.94 ± 0.07 0.85 ± 0.05 0.59 ± 0.03 0.61 ± 0.04 0.49 ± 0.22

Mass Peak Parameters
mmean[GeV] 3.686 ± 0.000 3.686 ± 0.000 3.686 ± 0.000 3.686 ± 0.000 3.686 ± 0.000
mσ[MeV] 5.4 ± 0.1 5.1 ± 0.1 5.0 ± 0.1 5.0 ± 0.1 5.4 ± 0.8

f1 0.81 ± 0.03 0.73 ± 0.02 0.72 ± 0.03 0.74 ± 0.04 0.72 ± 0.24

Table 5.5 Fit parameters determined from unbinned maximum likelihood fits of the
ψ(2S) signal region, to determine the mass and lifetime resolution functions in bins of
pT.

The same lifetime resolution function can also be applied to the X(3872) signal in
each pT bin - studies were performed on ψ(2S) and X(3872) simulation showing that
the measured lifetime resolution using unbinned maximum likelihood fits are equal to
a good approximation for ψ(2S) and X(3872) signal, seen in Appendix G.

An example of the 2D unbinned mass-lifetime maximum likelihood fit for the pT

bin 16 − 22 GeV is shown in Figure 5.12, where the fit is projected into the mass and
pseudo-proper lifetime of the J/ψπ+π− candidates.
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Fig. 5.12 (a) Mass projection over the full lifetime range and (b) lifetime projection
over the full mass range, for the 2D unbinned maximum likelihood fit in the ψ(2S)
signal region in the pT bin [16, 22] GeV to establish lifetime resolution.



5.4 Signal Extraction 81

5.4.2 X(3872) Mass Resolution

The ratio between X(3872) and ψ(2S) mass peak widths in fits to the invariant mass
spectrum of reconstructed J/ψπ+π− candidates, which we define as κ, is expected to
be roughly constant in the pT and rapidity range considered in this analysis. κ can
therefore be fixed in simultaneous fits to the ψ(2S) and X(3872) mass peaks, so the
X(3872) mass peak width does not need to be determined by the fit. This is necessary
for stable fits due to the small signal-to-background ratio and low statistics of the
X(3872) signal at high pT. Due to constraining the invariant mass of the dimuon
candidates to the J/ψ world-average mass in the constrained four track vertex fit, we
can expect the mass signal resolution of the mother ψ(2S) or X(3872) decaying into
J/ψπ+π− to increase roughly linearly with distance from threshold m− 2mπ −mPDG

J/ψ .
We would therefore expect the width of the X(3872) mass peak to be wider than the
ψ(2S) peak by a factor

κ ≃
mX(3872) − 2mπ −mPDG

J/ψ

mψ(2S) − 2mπ −mPDG
J/ψ

= 1.6. (5.11)

We perform fits to the invariant mass distribution of the J/ψπ+π− candidates
to simultaneously measure ψ(2S) and X(3872) signal parameters, and so determine
κ. Double Gaussians are used to fit each signal peak, where the width of the wider
Gaussian is fixed as twice the width of the narrower. Due to the wide variation of
weights in the lower pT bins and the lower signal-to-background ratio, the fit is quite
unstable when we attempt to fit the weighted J/ψπ+π− invariant mass distribution in
the full pT range. Instead, we fit the range 16 < pT < 70 GeV, which offers a better
signal-to-background ratio and a more stable fit. The mass resolution was observed in
simulation to be largely independent of pT, justifying the decision to remove lower pT

candidates from this study. We see this fit in Figure 5.13.
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Fig. 5.13 Fit to the weighted J/ψπ+π− invariant mass distribution in the range
16 GeV < pT < 70 GeV.

This fit gives a good χ2/ndof = 112.1/90 and κ = 1.52 ± 0.06. As discussed earlier
in this section, for simulation the value of κ does not vary much as a function of pT,
and is certainly within the ± 0.06 error we use as a systematic variation. It was decided
to use this value of κ = 1.52 ± 0.06 as central for the main analysis.

5.4.3 Invariant Mass Fits in Pseudo-Proper Lifetime Win-
dows

Our approach is to measure the yields of ψ(2S) and X(3872) by performing 1-
dimensional binned χ2 fits in J/ψπ+π− invariant mass. We perform these fits in
four pseudo-proper lifetime windows w0 − w3:

w0 : −0.3 ps < τ(J/ψππ) < 0.025 ps

w1 : 0.025 ps < τ(J/ψππ) < 0.3 ps

w2 : 0.3 ps < τ(J/ψππ) < 1.5 ps

w3 : 1.5 ps < τ(J/ψππ) < 15.0 ps

The fitting function used to determine the yields consists of two double Gaussian peaks
for the two signals and a smooth background:



5.4 Signal Extraction 83

f(m) = Y ψ
(
f1G

ψ
1 (m) + (1 − f1)Gψ

2 (m)
)

+ Y X
(
f1G

X
1 (m) + (1 − f1)GX

2 (m)
)

+Nbkg(m−mth)p1ep2(m−mth)P (m−mth),
(5.12)

where the threshold mass mth = mJ/ψ + 2mπ = 3376.06 MeV. The ψ(2S) and X(3872)
signal yields Y ψ and Y X , coefficients of the second-order polynomial P , and parameters
Nbkg, p1 and p2 are determined from the fits. Signal peaks for ψ(2S) and X(3872) are
described by normalised double Gaussians with common means: Gψ

1 (m) and GX
1 (m)

are the narrower Gaussians with respective widths σψ and σX , while Gψ
2 (m) and GX

2 (m)
are wider Gaussians with widths 2σψ and 2σX . The fraction of the narrower Gaussian
f1 is fixed to be the same for ψ(2S) and X(3872), while the widths σψ and σX are
related by σX = κσψ. The parameters f1 and κ are fixed for the main fits to the values
f1 = 0.76 ± 0.04, κ = 1.52 ± 0.06 (see Sections 5.4.1 and 5.4.2 for their determination),
and are varied within these uncertainties in the systematic studies. Differences in
κ as a function of pT, and differences in f1 between ψ(2S) and X(3872) signal are
found to be well within these systematic variations using simulation. The fits and their
corresponding pull distributions are shown in Appendix F. The fit quality is found to
be good throughout the range of transverse momenta and lifetimes.

The yields extracted from the fits are shown in Table 5.6 for the ψ(2S) and
Table 5.7 for the X(3872), and are subsequently fitted with PDFs describing the
lifetime distributions, to separate prompt and non-prompt signal components.

ψ(2S) Yields [×105] vs. pT [GeV]
τ window 10 − 12 12 − 16 16 − 22 22 − 40 40 − 70

w0 17.48 ± 0.36 11.03 ± 0.11 3.53 ± 0.03 1.14 ± 0.01 0.078 ± 0.004
w1 14.07 ± 0.37 9.04 ± 0.10 2.94 ± 0.03 1.01 ± 0.01 0.071 ± 0.003
w2 9.13 ± 0.29 7.04 ± 0.09 2.97 ± 0.03 1.27 ± 0.01 0.104 ± 0.004
w3 6.74 ± 0.16 5.21 ± 0.06 2.22 ± 0.02 0.94 ± 0.01 0.081 ± 0.003

Table 5.6 Invariant mass fit results in pseudoproper lifetime and pT bins for the ψ(2S).
Uncertainties are statistical only.
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X(3872) Yields [×104] vs. pT [GeV]
τ window 10 − 12 12 − 16 16 − 22 22 − 40 40 − 70

w0 10.77 ± 2.32 10.55 ± 0.76 3.53 ± 0.26 1.19 ± 0.11 0.09 ± 0.03
w1 9.27 ± 2.70 8.21 ± 0.71 2.60 ± 0.24 0.72 ± 0.11 0.04 ± 0.02
w2 4.03 ± 1.74 3.83 ± 0.63 1.29 ± 0.21 0.45 ± 0.10 0.04 ± 0.02
w3 2.06 ± 0.81 2.09 ± 0.34 0.98 ± 0.13 0.30 ± 0.06 0.02 ± 0.01

Table 5.7 Invariant mass fit results in pseudoproper lifetime and pT bins for the X(3872).
Uncertainties are statistical only.

5.4.4 Lifetime Fitting

The probability density function (PDF) describing the dependence of ψ(2S) and
X(3872) signal yields on the pseudo-proper lifetime τ is a superposition of prompt (P)
and non-prompt (NP) components:

F i(τ) = (1 − f iNP )F i
P (τ) + f iNPF

i
NP (τ), (5.13)

where fNP is the non-prompt fraction, while i stands for either ψ(2S) or X(3872). The
prompt components of ψ(2S) and X(3872) production should not have any observable
decay length, hence FP (τ) is effectively described by the lifetime resolution function
Fres(τ), assumed to be the same for ψ(2S) and X(3872) signals. This was verified
using simulated data samples, seen in Appendix G. The lifetime resolution function
was determined for each pT bin in Section 5.4.1.

Single-Lifetime Fits

The simplest description of the non-prompt components of the signal PDF is given by
a single one-sided exponential smeared with the resolution function, with the effective
lifetime τeff of the exponential determined from the fit. This model, referred to as a
‘single-lifetime fit’, is applied to the ψ(2S) and X(3872) yields from Tables 5.6 and 5.7,
and the results of the corresponding binned minimum-χ2 fits are shown in Tables 5.8
and 5.9.
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pT interval [GeV]
10 − 12 12 − 16 16 − 22 22 − 40 40 − 70

ψ(2S) Yields [×105] vs. pT

Total Yield 47.82 ± 0.62 32.55 ± 0.18 11.72 ± 0.06 4.37 ± 0.03 0.33 ± 0.01
Prompt Yield 28.76 ± 0.54 17.73 ± 0.15 5.39 ± 0.05 1.64 ± 0.02 0.10 ± 0.01

Non-Prompt Yield 19.06 ± 0.46 14.82 ± 0.14 6.33 ± 0.05 2.73 ± 0.02 0.23 ± 0.01

Fractions vs. pT

fNP 0.40 ± 0.01 0.46 ± 0.00 0.54 ± 0.00 0.62 ± 0.00 0.69 ± 0.01

Fit quality in each pT bin
χ2/ndof 0.62/1 1.21/1 0.10/1 0.28/1 1.60/1

Table 5.8 Fit results in pT bins for the ψ(2S) for the single-lifetime fit. Uncertainties
are statistical only.

pT interval [GeV]
10 − 12 12 − 16 16 − 22 22 − 40 40 − 70

X(3872) Yields [×104] vs. pT

Total Yield 26.11 ± 3.99 24.92 ± 1.27 8.44 ± 0.43 2.68 ± 0.20 0.19 ± 0.05
Prompt Yield 18.36 ± 3.57 17.50 ± 1.11 5.69 ± 0.37 1.77 ± 0.16 0.12 ± 0.04

Non-Prompt Yield 7.74 ± 2.83 7.42 ± 1.01 2.75 ± 0.33 0.92 ± 0.16 0.07 ± 0.03

Fractions vs. pT

fNP 0.30 ± 0.09 0.30 ± 0.03 0.33 ± 0.03 0.34 ± 0.05 0.35 ± 0.16

Fit quality in each pT bin
χ2/ndof 0.13/1 0.21/1 0.23/1 0.23/1 0.18/1

Table 5.9 Fit results in pT bins for the X(3872) for the single-lifetime fit. Uncertainties
are statistical only.
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pT bin [GeV] τeff(ψ(2S)) [ps] τeff(X(3872)) [ps]
10 − 12 1.44 ± 0.04 1.12 ± 0.40
12 − 16 1.43 ± 0.02 1.18 ± 0.17
16 − 22 1.43 ± 0.01 1.45 ± 0.21
22 − 40 1.41 ± 0.01 1.37 ± 0.26
40 − 70 1.44 ± 0.04 1.27 ± 0.62

Table 5.10 Effective pseudo-proper lifetimes for ψ(2S) and X(3872) obtained with the
single-lifetime fit model.
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Fig. 5.14 (a) Measured effective pseudo-proper lifetimes for non-prompt X(3872) and
ψ(2S). (b) The ratio of non-prompt X(3872) and ψ(2S) production. The measured
distribution is fitted to the kinematic template described in the text. The fit quality is
acceptable, with χ2/dof = 5.4/4.

Figure 5.14(a) and Table 5.10 show the effective pseudo-proper lifetimes for non-
prompt ψ(2S) and X(3872) signals in bins of pT. While for ψ(2S) the fitted values of
τeff are measured to be around 1.45 ps in all pT bins, the signal from X(3872) at low pT

tends to have shorter lifetimes, possibly hinting on a different production mechanism
at low pT.

In Figure 5.14(b) the ratio of non-prompt yields of X(3872) and ψ(2S) is plotted
as a function of transverse momentum. The measured distribution is compared to the
kinematic template, which was calculated as a ratio of the simulated pT distributions
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of non-prompt X(3872) and non-prompt ψ(2S), assuming that the same mix of the
parent b-hadrons contributes for both signals. The shape of the template reflects the
kinematics of the decay of a b-hadron into ψ(2S) or X(3872), with the width of the
band showing the range of variation for extreme values of the invariant mass of the
recoiling hadronic system. The creation of this template is detailed in Appendix H.
A fit of the measured ratio to this template allows us to determine the ratio of the
average branching fractions

R1L
B = Br(B → X(3872) + any)Br(X(3872) → J/ψπ+π−)

Br(B → ψ(2S) + any)Br(ψ(2S) → J/ψπ+π−)
= (3.95 ± 0.32(stat) ± 0.08(sys))%.

(5.14)

However, the observed variation of this ratio with pT shows a somewhat falling trend
(Figure 5.14(b)) which does not completely agree with the shape of the template,
possibly suggesting the presence of an additional contribution to the non-prompt
X(3872) yield in the low-pT bins, which is unforeseen within the single-lifetime model.

Two-Lifetime Fits

An alternative fit model is also implemented in this analysis, which allows for two
non-prompt contributions with distinctly different effective lifetimes (the ‘two-lifetime
fit’). The statistical power of the data sample is insufficient for determining two
free lifetimes, especially in the case of X(3872) production, so in this fit model the
non-prompt PDF is represented in each pT bin by a sum of two contributions with
different lifetimes, and a relative weight determined by the fit:

F i
NP (τ) = (1 − f iSL)FLL(τ) + f iSLFSL(τ), (5.15)

where the indices SL and LL refer to short-lived and long-lived non-prompt components,
respectively, and f iSL are the short-lived non-prompt fractions, for i = ψ(2S), X(3872).
The PDFs FSL(τ) and FLL(τ) are parameterised as single-sided exponentials with
fixed lifetimes, smeared with the lifetime resolution function Fres(τ) described above.
According to this fit model, the long-lived parts of the non-prompt contributions
originate from the usual mix of B±, B0, Bs mesons and baryons, while the short-lived
part is assumed to be due to the contribution of B±

c mesons.



5.4 Signal Extraction 88

The Bc cross section is predicted to have a steeper dependence in pT than other
b-hadrons [99], for instance the B+, at low and intermediate transverse momenta such
as those seen at the LHC. This is primarily due to a dominant non-fragmentation
mechanism, where the c̄ quark is produced in the interaction of the b quark with the
rest of the hadronic system. This production mechanism is expected to dominate at low
pT, but is suppressed at high pT by an extra factor of 1/p2

T [99]. Signficant production
of X(3872) from Bc decays may also explain the measured effective pseudoproper
lifetimes of X(3872) at low pT for the single-lifetime fits being smaller than that for
the ψ(2S) (see Table 5.10), because the lifetime of the Bc, τ(Bc) = (0.507 ± 0.009) ps
[18], is much smaller than the lifetimes of other b-hadrons.

The effective pseudo-proper lifetime of the short-lived component τSL is determined
from MC simulation studies using Bc decays. It is found to be τSL = 0.40 ± 0.05 ps,
somewhat shorter than the world average lifetime τ(Bc) = 0.507 ps of the parent
Bc [18]. This takes into account the non-negligible energy release in the Bc decay,
with the uncertainty in τSL reflecting its probable range of variation. The effective
pseudo-proper lifetime of the long-lived component τLL is determined from the two-
lifetime test fits to the ψ(2S) mass range, with τLL free and allowing for an unknown
contribution of a short-lived component with lifetime τSL. Across the pT bins, τLL is
found to be within the range 1.45 ± 0.05 ps. The effective pseudo-proper lifetimes
τLL and τSL are fixed to the above values for the main fits, and are varied within the
quoted uncertainties during systematic studies. More detail on the methods used to
estimate the pseudo-proper lifetimes of the short-lived and long-lived components can
be found in Appendices E.2 and E.3, respectively.

The results of the two-lifetime fits are presented in Tables 5.11 and 5.12 for the
ψ(2S) and X(3872), respectively, where the errors are purely statistical and determined
by the fits. The final results of the two-lifetime fits are presented in Section 6.3 after
the discussion of systematic uncertainties in Section 6.1. The two-lifetime fits are used
for ψ(2S) and X(3872) to obtain all subsequent results, unless specified otherwise, with
the relatively small differences between the results of the single-lifetime and two-lifetime
fits being highlighted alongside all other sources of systematic uncertainty.
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pT interval [GeV]
10 − 12 12 − 16 16 − 22 22 − 40 40 − 70

ψ(2S) Yields [×105] vs. pT

Total Yield 47.85 ± 0.62 32.55 ± 0.18 11.72 ± 0.06 4.37 ± 0.03 0.33 ± 0.01
Prompt Yield 28.66 ± 0.60 17.64 ± 0.17 5.37 ± 0.06 1.63 ± 0.02 0.10 ± 0.01

Non-Prompt Yield 19.19 ± 0.58 14.92 ± 0.17 6.35 ± 0.06 2.74 ± 0.03 0.23 ± 0.01
Short-Lived NP Yield 0.35 ± 0.75 0.36 ± 0.23 0.10 ± 0.08 0.10 ± 0.04 0.01 ± 0.01
Long-Lived NP Yield 18.85 ± 0.48 14.56 ± 0.17 6.25 ± 0.06 2.64 ± 0.03 0.22 ± 0.01

Fractions vs. pT

fNP 0.40 ± 0.01 0.46 ± 0.00 0.54 ± 0.00 0.63 ± 0.00 0.69 ± 0.01
fSL 0.02 ± 0.04 0.02 ± 0.02 0.02 ± 0.01 0.04 ± 0.01 0.03 ± 0.03

Fit quality in each pT bin
χ2/ndof 0.48/1 0.45/1 0.67/1 0.39/1 1.00/1

Table 5.11 Fit results in pT bins for the ψ(2S) for the two-lifetime fit. Uncertainties
are statistical only.

pT interval [GeV]
10 − 12 12 − 16 16 − 22 22 − 40 40 − 70

X(3872) Yields [×104] vs. pT

Total Yield 26.27 ± 4.03 24.92 ± 1.28 8.45 ± 0.44 2.68 ± 0.20 0.19 ± 0.05
Prompt Yield 17.76 ± 3.81 17.02 ± 1.23 5.66 ± 0.41 1.77 ± 0.17 0.12 ± 0.04

Non-Prompt Yield 8.52 ± 3.52 7.90 ± 1.22 2.79 ± 0.40 0.91 ± 0.19 0.06 ± 0.04
Short-Lived NP Yield 3.00 ± 4.37 2.19 ± 1.56 0.08 ± 0.53 0.03 ± 0.24 0.00 ± 0.05
Long-Lived NP Yield 5.50 ± 2.42 5.71 ± 1.00 2.71 ± 0.37 0.88 ± 0.17 0.06 ± 0.04

Fractions vs. pT

fNP 0.32 ± 0.12 0.32 ± 0.04 0.33 ± 0.04 0.34 ± 0.06 0.34 ± 0.18
fSL 0.35 ± 0.39 0.28 ± 0.16 0.03 ± 0.19 0.03 ± 0.26 0.03 ± 0.63

Fit quality in each pT bin
χ2/ndof 0.05/1 0.01/1 0.20/1 0.31/1 0.23/1

Table 5.12 Fit results in pT bins for the X(3872) for the two-lifetime fit. Uncertainties
are statistical only.



Chapter 6

Systematics and Results

6.1 Systematics

6.1.1 Muon Reconstruction and Trigger Efficiency

The procedure used to determine systematic errors for the trigger and muon recon-
struction efficiencies closely follows the procedures adopted in [6]. Each bin of the
muon reconstruction and trigger efficiency maps is randomly fluctuated according to
a normal distribution, with the statistical error of each bin used as the width. This
process is repeated 1000 times, to create 1000 trigger and muon reconstruction efficiency
map variations. The average weight from each of the map variations is found in the
ψ(2S) and X(3872) signal regions, for prompt |τ (J/ψπ+π−) /∆τ (J/ψπ+π−)| < 2 and
non-prompt |τ (J/ψπ+π−) /∆τ (J/ψπ+π−)| > 2.5 signal. The resulting distribution of
average weights is fitted with a Gaussian, the width of which is used as the systematic
error. Examples of the fitted distributions are shown in Appendix I.1 for both the
muon and trigger reconstruction efficiencies. We measure the systematic error of the
trigger efficiency as 1 − 3% and the muon reconstruction efficiency as less than 1% for
both the ψ(2S) and X(3872) signal regions.

The efficiency of the muon tracking in the ID is assigned an error of ±1% [88],
primarily due to a dependence on the total number of pp collisions per event. This
error is used directly as a systematic error for each pT bin.
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6.1.2 Pion Reconstruction Efficiency

A number of effects were considered as sources of systematic error in pion reconstruction
efficiency corrections. These include: corrections due to differences in pile-up and vertex
z displacement between data and MC, material uncertainties in the inner detector,
uncertainty in truth matching, and statistical errors in the Monte Carlo used to create
the pion efficiency maps. The overall systematic uncertainty of these effects was found
to be a flat 2.5% for the dipion system. Details of the uncertainty determination can
be found in Appendix C.

6.1.3 Selection Cuts

Details of the selection criteria are shown in Table 5.1. The efficiencies of the cuts
were studied with Monte Carlo simulation. The simulated events were weighted at
the reconstruction level to match the data pT(J/ψ), pT(π±) and ∆R(J/ψ, π±) signal
distributions. The efficiency of the cuts, along with their statistical and systematic
errors, can be seen in Table 5.3 for ψ(2S) signal and Table 5.4 for X(3872). The
statistical and systematic errors of the efficiency when all the cuts are applied are
summed in quadrature and used directly as a systematic in each pT bin.

6.1.4 Lifetime Resolution

We vary the lifetime resolution PDF by the uncertainty of its width, and separately the
uncertainty of its mean, in each pT bin (shown in Table 5.5), and repeat the lifetime
fits as a systematic variation. Additionally, we re-measure the lifetime resolution using
unbinned fits with a small short-lived (0.4 ps) non-prompt signal component, fixed to
a fraction of 15% of the non-prompt signal, and re-perform the lifetime fits.

6.1.5 Non-prompt Signal Lifetimes

We vary the slope of the non-prompt signal lifetime PDFs by their uncertainties,
individually for short-lived and long-lived signal components. The maximum variations
from the central model for each variation are used as systematic errors.
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6.1.6 Mass Fit Model Systematics

Several different fit models are considered for systematic study, each varying by one
component from the central fit model by an amount considered reasonable from the
errors of unweighted mass-lifetime fits and binned χ2 fits to the total data sample.
The weighted events are refitted for each model, and the maximum difference in yields
returned by the fits from the central fit for each pT bin are used as a systematic error.
A summary of each of the systematic fit models is shown in Table 6.1.

Variation
Signal variation

1 (fit σψ(2S)
1 , σ

ψ(2S)
2 = 2.0 × σ

ψ(2S)
1 ) → (fit σψ(2S)

1 , σ
ψ(2S)
2 = 1.8 × σ

ψ(2S)
1 )

2 (fit σψ(2S)
1 , σ

ψ(2S)
2 = 2.0 × σ

ψ(2S)
1 ) → (fit σψ(2S)

1 , σ
ψ(2S)
2 = 2.2 × σ

ψ(2S)
1 )

3 (fit σψ(2S)
1 , σ

ψ(2S)
2 = 2.0 × σ

ψ(2S)
1 ) → (fit σψ(2S)

1 , σ
ψ(2S)
2 = free × σ

ψ(2S)
1 )

4 narrow Gauss fraction f1 = 0.76 → narrow Gauss fraction f1 = 0.72
5 narrow Gauss fraction f1 = 0.76 → narrow Gauss fraction f1 = 0.80
6 narrow Gauss fraction f1 = 0.76 → narrow Gauss fraction f1 = free
7 (fit σψ(2S)

1 , σX(3872) = 1.52 × σ
ψ(2S)
1 ) → (fit σψ(2S)

1 , σX(3872) = 1.47 × σ
ψ(2S)
1 )

8 (fit σψ(2S)
1 , σX(3872) = 1.52 × σ

ψ(2S)
1 ) → (fit σψ(2S)

1 , σX(3872) = 1.58 × σ
ψ(2S)
1 )

9 (fit σψ(2S)
1 , σX(3872) = 1.52 × σ

ψ(2S)
1 ) → (fit σψ(2S)

1 , σX(3872) = free × σ
ψ(2S)
1 )

Background variation
10 2nd order polynomial term × exponential → 3rd order polynomial term × exponential

Table 6.1 Summary of mass fit model variations for systematic error studies.

6.1.7 z-displacement of Primary Vertices

The distribution of primary vertices along the z-axis of the detector could have an effect
on cross section measurements in several ways. The z-displacement of the vertices is
measured to have some difference between data and simulation. This effect is already
considered on pion reconstruction, studied in Appendix C.5, which is included as a
systematic error in the pion reconstruction efficiency. In addition, the z-displacement
will also cause a smearing of the acceptance criteria at the boundaries |η(µ±)| < 2.3 and
|η(π±)| < 2.4, and smearing of the rapidity selection boundary |y(J/ψπ+π−)| < 0.75. In
the case of acceptance, the smearing is found to make no difference to the cross section
measurement, due to the muons and pions lying far inside acceptance boundaries, along
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with the smearing effect being small. For the rapidity selection, the effect of smearing
causes a cross section uncertainty limited to no more than about 1%. Details of how
the z-displacement effects were estimated can be found in Appendix I.3.

6.1.8 Luminosity

The uncertainty of the integrated luminosity measurement during the 2012 data-taking
period is 1.9%, using a methodology described in [100] by the ATLAS Luminosity
Group.

6.1.9 Combined Uncertainties

We produce uncertainty plots showing the contribution of each of the systematic and
statistical errors, and combine by adding in quadrature to find the total error of the
cross section measurement for ψ(2S) (Figure 6.1) and X(3872) (Figure 6.2) for each pT
bin. Additionally, we create uncertainty maps for the non-prompt ψ(2S) and X(3872)
fractions (Figure 6.3), and also for the ratio of the measured X(3872) and ψ(2S) cross
sections for prompt and non-prompt production (Figures 6.4 and 6.5).

The sources of various uncertainties and their smallest (Min), median (Med) and
largest (Max) values across the pT bins are summarised in Table 6.2 for the differential
cross sections of X(3872) and ψ(2S) states, and in Table 6.3 for the measured fractions.
The statistical and individual systematic uncertainties are added in quadrature to form
the total error shown in the tables. In general, the results for X(3872) are dominated
by statistical errors, while for ψ(2S) statistical and systematic uncertainties are of
comparable size. The last row in Tables 6.2 and 6.3 shows the relative differences
between the values obtained using the single- and the two-lifetime fits, labelled as
‘1L-fit’ and ‘2L-fit’, respectively. For the quantities listed in Tables 6.2 and 6.3, these
differences were found to be generally fairly small, compared to the combined systematic
uncertainty from other sources.

6.1.10 Short-lived Fractions and other Ratios

In the case of FSL for ψ(2S), we use the systematic errors from the non-prompt ψ(2S)
fraction, shown at the top of Figure 6.3. Accordingly, in the case of FSL for X(3872),
the systematic errors obtained for the non-prompt X(3872) fraction, shown at the
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bottom of Figure 6.3 are used. As for the ratios of various lifetime components of
X(3872) and ψ(2S), the systematic errors derived for the non-prompt X(3872)/ψ(2S)
ratio, shown in Figure 6.5, are used.
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Fig. 6.1 Summary of uncertainties for the measured prompt and non-prompt ψ(2S)
cross sections. The 1.9% luminosity uncertainty is not included in the plot.
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Fig. 6.2 Summary of uncertainties for the measured prompt and non-prompt X(3872)
cross sections. The 1.9% luminosity uncertainty is not included in the plot.
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Fig. 6.3 Summary of uncertainties for the measured non-prompt fractions of ψ(2S)
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Fig. 6.4 Summary of uncertainties for the ratio of measured cross sections between
prompt X(3872) and ψ(2S).

 [GeV]
T

p
10 20 30 40 50 60

F
ra

ct
io

na
l U

nc
er

ta
in

ty
 [%

]

0.05
0.1
0.2

1
2

10
20

100 (2S) ratio |y| < 0.75ψNon-Prompt X(3872) : Non-Prompt 

Total_Uncertainty
Total_Systematics
Statistical
 Resolution widthτ
 Resolution meanτ
 Resolution variationτ

Short lifetime variation
Long lifetime variation
Muon Reconstruction
Pion Reconstruction
Trigger
Inner Detector
Fit Model
Selection

Fig. 6.5 Summary of uncertainties for the ratio of measured cross sections between
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6.1 Systematics 98

ψ(2S)[%] X(3872)[%]
Source of uncertainty Min Med Max Min Med Max

Statistical 0.9 1.4 5.4 7.3 9.9 63
Trigger eff. 1.0 1.3 2.5 1.1 1.3 2.6
Muon tracking 2.0 2.0 2.0 2.0 2.0 2.0
Muon reconstruction eff. 0.2 0.2 0.3 0.2 0.2 0.4
Pion reconstruction eff. 2.5 2.5 2.5 2.5 2.5 2.5
Bkgd suppression cuts 0.8 0.8 3.0 2.0 3.0 6.0
Mass fit model variation 0.6 0.8 1.2 0.9 1.6 2.6
Short-lifetime variation 0.1 0.2 0.3 0.2 0.7 1.7
Long-lifetime variation 0.6 1.0 1.2 0.3 0.6 0.9
Lifetime resolution model 0.4 1.5 4.0 0.6 2.6 3.4
Total Systematic 3.5 3.6 6.4 4.1 4.9 7.5

(2L-fit − 1L-fit) / 2L-fit (prompt) −0.1 −0.4 −0.6 −0.3 −0.5 −3.4
(2L-fit − 1L-fit) / 2L-fit (non-prompt) +0.1 +0.4 +0.7 +0.1 +1.4 +9.8

Table 6.2 Summary of uncertainties for the ψ(2S) and X(3872) cross section measure-
ments showing the smallest (Min), median (Med) and largest (Max) values across the
pT bins. The last two rows are described in the text. The uncertainty of the integrated
luminosity 2.8% is not included.
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Absolute uncertainty [%]
fψNP fXNP fXSL

Source of uncertainty Min Med Max Min Med Max Min Med Max

Statistical 0.4 0.5 1.4 4.2 5.8 17.8 16.4 25.8 63
Trigger eff. 0.1 0.1 0.3 0.1 0.1 0.4 0.0 0.1 0.1
Muon tracking eff. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Muon reconstruction eff. 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1
Pion reconstruction eff. 0.4 0.5 0.7 0.3 0.3 0.4 0.0 0.3 0.4
Bkgd suppression cuts 0.8 1.1 1.4 0.6 0.7 0.7 0.1 0.1 0.7
Mass fit model variation 0.1 0.1 0.2 0.2 0.6 1.8 1.0 1.3 2.4
Lifetime resolution variation 0.2 0.7 1.7 0.4 1.0 2.9 1.8 3.6 12.1
Short-lifetime variation 0.0 0.1 0.1 0.1 0.4 0.8 0.3 0.7 2.8
Long-lifetime variation 0.3 0.4 0.4 0.2 0.2 0.3 3.3 4.0 4.4
Total Systematic 1.3 1.5 2.4 1.0 1.4 3.6 4.1 4.9 13.5

(2L-fit − 1L-fit) / 2L-fit +0.4 +0.6 +0.9 +0.9 +3.1 +9.1 − − −

Table 6.3 Summary of uncertainties for ψ(2S) and X(3872) non-prompt fractions, and
short-lived non-prompt fraction for X(3872) production, showing the smallest (Min),
median (Med) and largest (Max) values across the pT bins. For the fractions in this
table the luminosity uncertainty cancels out. The last row is described in the text.

6.2 Polarisation Variation

Various extreme polarisation scenarios considered in this analysis were described in
Sections 5.3.5 and 5.3.6. We find the difference in yields for each ψ(2S) and X(3872)
polarisation scenario by comparing the mean of the distribution of weights for the
respective signal bands for each polarisation hypothesis, and dividing the mean of the
distribution by the mean weight in the unpolarised case. The correction factors for
the different polarisation scenarios are shown separately for ψ(2S) (Figure 6.6) and
X(3872) (Figure 6.7) across the pT bins, and in tabular form in Tables 6.4 and 6.5.
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Fig. 6.6 Difference in ψ(2S) yield as a factor of the unpolarised yield for polarisation
hypotheses.
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Fig. 6.7 Difference in X(3872) yield as a factor of the unpolarised yield for polarisation
hypotheses.
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pT [GeV]
Polarisation Hypothesis 10 − 12 12 − 16 16 − 22 22 − 40 40 − 70

T+0 1.306 1.277 1.229 1.168 1.098
T++ 1.508 1.331 1.247 1.173 1.099
T+− 1.156 1.228 1.213 1.163 1.097

LONG 0.682 0.698 0.729 0.777 0.848
OFFP+ 1.049 1.042 1.028 1.015 1.005
OFFP- 0.956 0.962 0.974 0.985 0.995

Table 6.4 Correction factors for various polarisation hypotheses in pT bins for ψ(2S)
production.

pT [GeV]
Polarisation Hypothesis 10 − 12 12 − 16 16 − 22 22 − 40 40 − 70

T+0 0.921 0.920 0.929 0.943 0.960
T++ 0.900 0.915 0.928 0.942 0.960
T+− 0.944 0.925 0.930 0.943 0.960

LONG 1.207 1.212 1.181 1.139 1.091
OFFP+ 0.969 0.974 0.983 0.990 0.997
OFFP- 1.033 1.027 1.018 1.010 1.003

Table 6.5 Correction factors for various polarisation hypotheses in pT bins for the
X(3872) production.
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6.3 Results and Discussion

The measured differential cross section (times the product of the relevant branching
fractions) for prompt production of ψ(2S) is shown in Figure 6.8(a). It is described
reasonably well by the NLO NRQCD model [101] with long-distance matrix elements
(LDMEs) determined from the Tevatron data, although some overestimation is observed
at the highest pT values. The kT factorisation model [47] with LDMEs determined
from fits to 7 TeV CMS data [102] describes ATLAS data reasonably well with a slight
underestimation at higher pT. The NNLO* Colour-Singlet Model (CSM) predictions [33]
are also shown. These are close to the data points at low pT, but significantly
underestimate them at higher pT values.

The measured differential cross section for non-prompt ψ(2S) production is pre-
sented in Figure 6.8(b), compared with the predictions of the FONLL calculation [49]
with no free parameters. The calculation describes the data well over the whole range
of transverse momenta.
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Fig. 6.8 Measured cross section times branching fractions as a function of pT for (a)
prompt ψ(2S) production compared to NLO NRQCD [101] and the NNLO* CSM [33],
and (b) non-prompt ψ(2S) production compared to FONLL [49] model predictions.
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Similarly, the differential cross section for prompt production of X(3872) is shown
in Figure 6.9(a). It is well described by the prediction of the NRQCD model which
considers X(3872) to be a mixture of χc1(2P ) and a D0D̄∗0 molecular state [62], with
the production being dominated by the χc1(2P ) component and the normalisation
fixed through the fit to CMS data [8].

The measured differential cross section for non-prompt production of X(3872) is
shown in Figure 6.9(b). This is compared to a calculation based on the FONLL model
prediction for ψ(2S), recalculated for X(3872) using the kinematic template for the
non-prompt X(3872)/ψ(2S) ratio shown in Figure 5.14(b) and the effective value
of the product of the branching fractions Br(B → X(3872) + any)Br(X(3872) →
J/ψπ+π−) = (1.9 ± 0.8) × 10−4 estimated in [61] based on the Tevatron data [103].
This calculation overestimates the data by a factor increasing with pT from about 4 to
about 8 over the pT range of this measurement.
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Fig. 6.9 Measured cross section times branching fractions as a function of pT for (a)
prompt X(3872) compared to NLO NRQCD predictions with the X(3872) modelled as
a mixture of χc1(2P ) and a D0D̄∗0 molecular state [62], and (b) non-prompt X(3872)
compared to the FONLL [49] model prediction, recalculated using the branching
fraction estimate from [61] as described in the text.
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We compare the prompt and non-prompt ψ(2S) differential production cross sections
to the CMS result obtained at

√
s =7 TeV [104] in Figures 6.10(a) and 6.10(b),

respectively. Good consistency is seen between each of the measurements for both
prompt and non-prompt production. We also compare the prompt X(3872) cross
section to the CMS result obtained at

√
s =7 TeV [8] in Figure 6.10(c). Again, excellent

consistency is seen between the measurements, and our result extends the pT range of
the measurement from around 30 GeV to 70 GeV.
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Fig. 6.10 Measured cross section times branching fractions as a function of pT for (a)
prompt ψ(2S) production, (b) non-prompt ψ(2S) production, and (c) prompt X(3872)
production compared to the CMS results at

√
s =7 TeV [104, 8]. Good consistency

between the results is seen throughout.

The non-prompt fractions of ψ(2S) andX(3872) production are shown in Figure 6.11.
In the case of ψ(2S), fNP increases with pT, in good agreement with measurements
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obtained with dimuon decays of ψ(2S) from ATLAS [10] and CMS [104]. The non-
prompt fraction of X(3872) is essentially independent of pT. This measurement agrees
within errors with the CMS result obtained at

√
s =7 TeV [8].

Figure 6.12 shows the pT dependence of the ratio of X(3872) to ψ(2S) cross sections,
separately for prompt and non-prompt production contributions. The non-prompt
production cross section of X(3872) is further split into short-lived and long-lived
components. The short-lived contribution to the non-prompt ψ(2S) production is
found to be not significant, see Table 6.6. The measured ratio of long-lived X(3872) to
long-lived ψ(2S), shown in Figure 6.12(b) with blue triangles, is fitted with the MC
kinematic template described in Section 5.4.4 to obtain

R2L
B = Br(B → X(3872) + any)Br(X(3872) → J/ψπ+π−)

Br(B → ψ(2S) + any)Br(ψ(2S) → J/ψπ+π−)
= (3.57 ± 0.33(stat) ± 0.11(sys))%.

(6.1)

This is somewhat lower than the corresponding result (Equation 5.14) obtained from
the same data with the single-lifetime fit model, and both are considerably smaller
than the value (18 ± 8)% obtained by combining the estimate for the numerator,
(1.9±0.8)×10−4 [61], obtained from the Tevatron data, with the world average branching
fractions from the denominator, Br(B → ψ(2S) + any) = (3.07 ± 0.21) × 10−3 and
Br(ψ(2S) → J/ψπ+π−) = (34.46 ± 0.30)%.

Bc production in high energy hadronic collisions at low transverse momentum is
expected to be dominated by non-fragmentation processes [99]. These processes are
expected to have pT dependence ∝ p−2

T relative to the fragmentation contribution, while
it is the fragmentation contribution which dominates the production of long-lived b-
hadrons [49]. So the ratio of short-lived non-prompt X(3872) to long-lived non-prompt
ψ(2S), shown in Figure 6.12(b) with red squares, is fitted with a function a/p2

T to find
a = 2.04 ± 1.43(stat) ± 0.34(sys) GeV2. This value, and the measured non-prompt
yields of X(3872) and ψ(2S), are used to determine the fraction of non-prompt X(3872)
from short-lived sources, integrated over the pT range (pT > 10 GeV) covered in this
measurement:

σ(pp → Bc + any)Br(Bc → X(3872) + any)
σ(pp → non-prompt X(3872) + any) = (25 ± 13(stat) ± 2(sys) ± 5(spin))%,

(6.2)



6.3 Results and Discussion 106

where the last uncertainty comes from the variation of the spin alignment of X(3872)
over the extreme scenarios discussed in the Section 6.2. Since the cross section for Bc

production makes up only a small fraction of the inclusive beauty production, this
value of the ratio would mean that the production of X(3872) in Bc decays is strongly
enhanced compared to its production in the decays of other b-hadrons, although we
report our result as consistent with zero at 1.8σ.

The numerical values of all cross sections and fractions shown in Figures 6.8 - 6.12
are presented in Table 6.6.
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Fig. 6.11 Measured non-prompt fractions for (a) ψ(2S) and (b) X(3872) production,
compared to CMS results at

√
s = 7 TeV. The blue circles are the results shown in

this paper, while the green squares show CMS results [104, 8].
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Fig. 6.12 Ratio of cross section times branching fraction between X(3872) and ψ(2S)
for (a) prompt and (b) non-prompt production. In (b), the total non-prompt ratio
(black circles) is separated into short-lived (red squares) and long-lived (blue triangles)
components for the X(3872), shown with respective fits described in the text. The
quality of all three fits is good, with χ2/dof = 0.43/4, 2.3/4 and 2.2/4 for SL, LL and
total NP components, respectively. The data points are slightly shifted horizontally
for visibility.
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Chapter 7

Dipion Invariant Mass Spectra

The distributions of the dipion invariant mass mππ in the ψ(2S) → J/ψπ+π− and
X(3872) → J/ψπ+π− decays are measured by determining the corrected yields of
ψ(2S) and X(3872) signals in narrow bins of mππ. Some of the selection criteria aimed
at the reduction of combinatorial background in the cross section measurement, namely

• Q (J/ψπ+π−) = mJ/ψπ+π− −mPDG
J/ψ −mπ+π− < 300 MeV

• ∆R (J/ψ, π±) < 0.5

are found to bias the mππ distributions and are removed for this analysis. For this study
further requirements are placed on the pseudo-proper lifetime significance, τ/∆τ < 2.5,
and the transverse momentum of the J/ψπ+π− candidates, pT > 12 GeV, aimed at
reducing the combinatorial background.

The invariant mass distributions of the corrected J/ψπ+π− candidates selected for
this analysis are shown in Figure 7.1(a) for the mass range around the ψ(2S) peak and
in Figure 7.1(b) for X(3872). The interval of allowed mππ values is subdivided into 21
and 11 bins for ψ(2S) and X(3872), respectively. In each mππ bin, the signal yield is
extracted using a fit to the function

f(m) = f1G1(m) + (1 − f1)G2(m) +Nbkg

(
m− p0

m0 − p0

)p1

e−p2(m−p0)−p3(m−p0)2
, (7.1)

where m is the invariant mass of the J/ψπ+π− system, Nbkg is the normalisation factor
of the background PDF, m0 is the world average mass [18] of the parent resonance,
and p0,1,2,3 are free parameters. The signals are described by the same double-Gaussian
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Fig. 7.1 The invariant mass distributions of the J/ψπ+π− candidates to extract (a)
ψ(2S) and (b) X(3872) signal integrated over a wide range of mππ.

PDFs f1G1(m) + (1 − f1)G2(m) as the ones used in the cross section analysis described
in Section 5.2. In most mππ bins the position of the signal peak is determined from
the fit, however in some bins with small signal yields it is necessary to fix the centre
and the width of the signal peak to the values obtained from the fits over the whole
mππ range shown in Figure 7.1. As in the cross section analysis, the fraction of the
narrow Gaussian f1 is fixed to 0.76 ± 0.04, varied within the range of ±0.04 during
systematic studies. In another systematic variation a first order polynomial is added
as a factor to the PDF in Equation 7.1. For both the ψ(2S) and X(3872) samples, the
errors from the fits in mππ bins are found to be statistically dominated.

The resulting normalised differential distributions in mππ are shown in Figure 7.2(a)
for the ψ(2S) → J/ψπ+π− and in Figure 7.2(b) for X(3872) → J/ψπ+π− decays.
The solid blue curve in Figure 7.2(a) represents a fit to the data points with the
Voloshin-Zakharov distribution [98]

1
Γ

dΓ
dmππ

∝
(
m2
ππ − λm2

π

)2
× PS, (7.2)

where PS stands for the dipion phase space. The fitted value of the parameter λ is
found to be λ = 4.16 ± 0.06(stat) ± 0.03(sys), in agreement with λ = 4.35 ± 0.18
measured by BES [105], and λ = 4.46±0.25 measured by LHCb [106]. The shaded blue
histogram in Figure 7.2(b) is obtained from straightforward simulations, assuming the
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Fig. 7.2 (a) Normalised differential decay width of ψ(2S) → J/ψ(→ µ+µ−)π+π− in bins
of dipion invariant mass over the range 0.28 GeV < mππ < 0.595 GeV, fitted with the
Voloshin-Zakharov model. Also shown in red is the normalised distribution of mππ phase
space. (b) Normalised differential decay width of X(3872) → J/ψ(→ µ+µ−)π+π−

in bins of dipion invariant mass over the range 0.28 GeV < mππ < 0.79 GeV. Also
shown is the MC prediction for the decay X(3872) → J/ψ(→ µ+µ−)ρ0(→ π+π−) (blue
histogram) and the normalised distribution of mππ phase space (red histogram).
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dipion system in the decay X(3872) → J/ψπ+π− is produced purely via the ρ0 meson,
and appears to be in good agreement with the data. In both decays the measured mππ

spectrum strongly disfavours the dipion phase space distribution, shown in Figures
7.2(a) and 7.2(b) with the red shaded areas.



Chapter 8

Summary

The measurement of the differential production cross section of ψ(2S) and X(3872)
states in the J/ψπ+π− final state is carried out using 11.4 fb−1 of pp collision data
recorded by the ATLAS detector at a centre-of-mass energy

√
s = 8 TeV. The prompt

and non-prompt production of ψ(2S) and X(3872) is studied separately, as a function
of transverse momentum in the rapidity region |y| < 0.75 and transverse momentum
range 10 GeV < pT < 70 GeV.

The prompt ψ(2S) cross section measurements show good consistency with theo-
retical predictions based on NLO NRQCD, and kT factorisation with the colour-octet
component tuned to 7 TeV CMS data, at low pT, with slight deviation apparent at high
pT. The predictions from the NNLO* colour-singlet model calculations underestimate
the data, especially at higher pT. The non-prompt ψ(2S) measurements show excellent
agreement with FONLL predictions across the whole pT range. Both prompt and
non-prompt ψ(2S) cross section measurements show good agreement with previous
measurements.

The prompt X(3872) cross section measurement shows good agreement with the
CMS result [8] in the area of transverse momenta 10 GeV < pT < 30 GeV where they
overlap, and extends the range of transverse momenta up to 70 GeV. Good agreement
is found with theoretical predictions within the NLO NRQCD model, which considers
X(3872) to be a mixture of χc1(2P ) and a D0D̄∗0 molecular state, with the production
being dominated by the χc1(2P ) component and the normalisation fixed through the
fit to CMS data [62]. The non-prompt production of ψ(2S) is described well by the
FONLL predictions, but the same predictions, recalculated for X(3872) using the
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branching fraction extracted from the Tevatron data, overestimate the non-prompt
production of X(3872), especially at large transverse momenta.

Two models of lifetime dependence of the non-prompt production are considered:
a model with a single effective lifetime, and an alternative model with two distinctly
different effective lifetimes. The two models give virtually identical results for the
prompt and non-prompt differential cross sections of ψ(2S) production and for the
prompt cross section of X(3872), however the non-prompt production of X(3872) is
slightly enhanced in the two lifetime model.

Within the single-lifetime model, under the assumption that non-prompt ψ(2S) and
X(3872) come from the same mix of parent b-hadrons, the following result is obtained
for the ratio of the branching fractions:

R1L
B = Br(B → X(3872) + any)Br(X(3872) → J/ψπ+π−)

Br(B → ψ(2S) + any)Br(ψ(2S) → J/ψπ+π−)
= (3.95 ± 0.32(stat) ± 0.08(sys))%.

(8.1)

In the two-lifetime model, the two lifetimes are fixed to expected values for ψ(2S)
and X(3872) originating from the decays of Bc and from long-lived b-hadrons, with
their relative weight determined from the fits to the data. The ratio of the branching
fractions RB is determined from the long-lived component alone:

R2L
B = Br(B → X(3872) + any)Br(X(3872) → J/ψπ+π−)

Br(B → ψ(2S) + any)Br(ψ(2S) → J/ψπ+π−)
= (3.57 ± 0.33(stat) ± 0.11(sys))%.

(8.2)

In this two-lifetime model, the fraction of the short-lived non-prompt component in
X(3872) production, for pT > 10 GeV, is found to be

σ(pp → Bc + any)Br(Bc → X(3872) + any)
σ(pp → non-prompt X(3872) + any) = (25 ± 13(stat) ± 2(sys) ± 5(spin))%.

(8.3)
The invariant mass distributions of the dipion system in ψ(2S) → J/ψπ+π− and

X(3872) → J/ψπ+π− decays are also measured. For the ψ(2S), the dipion spectrum is
fitted with the Voloshin-Zakharov model to obtain λ = 4.16 ± 0.08, in agreement with
previous results: λ = 4.35 ± 0.18 from BES [105] and λ = 4.46 ± 0.25 from LHCb [106].
For X(3872) → J/ψπ+π−, the dipion mass spectrum shows a peak consistent with the
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dipion system being produced dominantly through an intermediate ρ0 meson decay, in
agreement with previous measurements from CMS [8], Belle [89] and CDF [107].



Appendix A

Data and Simulation Samples

The input data for this analysis are from periods C - L of the
√
s = 8 TeV 2012

B-physics group DAODs. We use the JpsiFinder algorithm to find common vertices
of offline reconstructed muons, and subsequently perform four-track vertex fits of
the muons and pairs of hadronic tracks, with the J/ψ mass constained to the world-
average and the hadronic tracks given a pion mass hypothesis, to extract the J/ψπ+π−

candidates.

• data12_8TeV.periodC.physics_Bphysics.PhysCont.DAOD_JPSIMUMU.grp14_v04_p1425/

• data12_8TeV.periodD.physics_Bphysics.PhysCont.DAOD_JPSIMUMU.grp14_v04_p1425/

• data12_8TeV.periodE.physics_Bphysics.PhysCont.DAOD_JPSIMUMU.grp14_v03_p1425/

• data12_8TeV.periodG.physics_Bphysics.PhysCont.DAOD_JPSIMUMU.grp14_v03_p1425/

• data12_8TeV.periodH.physics_Bphysics.PhysCont.DAOD_JPSIMUMU.grp14_v04_p1425/

• data12_8TeV.periodI.physics_Bphysics.PhysCont.DAOD_JPSIMUMU.grp14_v03_p1425/

• data12_8TeV.periodJ.physics_Bphysics.PhysCont.DAOD_JPSIMUMU.grp14_v03_p1425/

• data12_8TeV.periodL.physics_Bphysics.PhysCont.DAOD_JPSIMUMU.grp14_v03_p1425/

We use a group 2012 MC sample in order to measure the pion reconstruction
efficiency

• mc12_8TeV.208001.Pythia8B_AU2_CTEQ6L1_pp_Jpsimu4mu4.merge.AOD.e1331_a159_a173

_r3549/
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which was created with the geometry version ATLAS-GEO-20-00-01. The pion re-
construction efficiency is dependent on the simulation of the detector material, and
the resulting ntuples are reweighted according to the current "best" geometry tag
ATLAS-GEO-20-01-00, which has an improved ID material description.

Simulation samples of prompt and non-prompt produced ψ(2S) → J/ψπ+π− and
X(3872) → J/ψπ+π− are required to measure certain selection criteria efficiencies.
Events are generated using Pythia8B, and are reconstructed under ATLAS 2012 run
conditions. Pythia8B does not contain X(3872), so we use χc1(1P ) instead, as having
the same (IG(JPC) = 0+(1++)) quantum numbers, setting its mass to the X(3872)
world-average.

• mc12_8TeV.208022.Pythia8B_AU2_CTEQ6L1_pp_Psi2S_JpsiPiPi.merge.AOD.e3263_a188

_a180_r3549/

• mc12_8TeV.208230.Pythia8B_AU2_CTEQ6L1_bb_Psi2S_JpsiPiPi.merge.AOD.e3263_a188

_a180_r3549/

• mc12_8TeV.208023.Pythia8B_AU2_CTEQ6L1_pp_X3872_JpsiPiPi.merge.AOD.e3263_a188

_a180_r3549

• mc12_8TeV.208231.Pythia8B_AU2_CTEQ6L1_bb_X3872_JpsiPiPi.recon.AOD.e3263_a188

_a180/

We also require a Bc simulation sample. We use a sample of B+
c → J/ψπ+ decays,

which was previously produced and used for [48], where more information can be found.

• mc12_8TeV.108601.PythiaBc_Bc_JPsi_mu2p5mu2p5_Pi.merge.AOD.e1988_a188_a180

_r3549



Appendix B

Selection Criteria Studies

B.1 Signal Significance

We determine the values of the selection criteria described in Table 5.1 by performing
simultaneous binned χ2 fits of the ψ(2S) and X(3872) signal across J/ψπ+π− invariant
mass, and finding the cut values which maximise X(3872) signal significance. The
significance is defined as:

S = Nsig√
Nsig +Nbkg

, (B.1)

where S is the signal significance and Nsig (Nbkg) are the number of signal(background)
events within a ±3σ band of the fitted mean. The fits are shown in Figure B.1, with
the corresponding cut flow shown in Table B.1.

Selection N(ψ(2S)) N(X(3872)) S(ψ(2S)) S(X(3872))
No additional 588613 ± 3777 35481 ± 2011 478.9 ± 3.1 24.6 ± 1.4
P (χ2)(J/ψππ) > 4% 568404 ± 1900 34199 ± 1571 477.8 ± 1.6 24.7 ± 1.1
∆R(J/ψ, π) < 0.5 557144 ± 1849 31681 ± 1208 477.3 ± 1.6 27.5 ± 1.0
Q(J/ψππ) < 300 572764 ± 1746 32726 ± 1717 494.3 ± 1.5 34.8 ± 1.8
pT (π±) > 600 MeV 465462 ± 1572 30414 ± 883 463.7 ± 1.6 35.5 ± 1.0

Table B.1 Effect on signal yields and signficance for selection criteria over full pT range
for ψ(2S) and X(3872).
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Fig. B.1 Effect of selection criteria on signal efficiency and significance for ψ(2S) and
X(3872) signal for the full data sample. Binned χ2 fits are performed for (a) no
additional cuts, (b) P (χ2)(J/ψππ) > 4%, (c) ∆R(J/ψ, π) < 0.5, (d) Q(J/ψππ) <
300 MeV, (e) pT (π±) > 600 MeV.
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B.2 Signal Efficiency

We use Monte Carlo samples generated for ψ(2S) and X(3872) production detailed
in Section 5.3.8 to measure the efficiency of the selection criteria. The invariant mass
of the dipion system for events in the ψ(2S) MC sample are weighted to match that
seen in data (the data is fitted with the Voloshin-Sakharov model in Chapter 7) at
truth level. Similarly, the X(3872) events are weighted to match the invariant mass
distribution of the dipion system when the pions are produced from an intermediate ρ0

decay, seen in Section 5.3.8, at truth level.
Additionally, the MC generated events are weighted at the reconstruction level to

match the data pT distribution of the J/ψ and pions, and also to match the opening
angles between the J/ψ and each pion. We use the method of sideband subtraction on
the J/ψπ+π− invariant mass spectrum to measure pT(J/ψ), pT(π±) and ∆R(J/ψ, π±)
for ψ(2S) and X(3872) signal regions in the data and Monte Carlo. We estimate an
invariant mass width of σ = 5 MeV for the ψ(2S) and σ = 8 MeV for X(3872) signal,
and the PDG mass values are used for the means. The central band covers ±3σ, whilst
the upper and lower sidebands cover (+7 → +10)σ and (−10 → −7)σ, respectively.
The invariant mass spectra of the J/ψπ+π− candidates in the ψ(2S) and X(3872)
regions, along with sidebands are shown in Figure B.2 for data, and Figure B.3 for MC.
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Fig. B.2 Invariant J/ψπ+π− mass distribution in data for (a) ψ(2S) and (b) X(3872)
signal regions. Also shown are the central band (blue), and upper/lower sidebands
(red).
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Fig. B.3 Invariant J/ψπ+π− mass distribution in simulation for (a) ψ(2S) and
(b) X(3872) signal regions. Also shown are the central band (blue), and upper/lower
sidebands (red).

The pT(J/ψ), pT(π±) and ∆R(J/ψ, π±) distributions measured in the sidebands
are subtracted from those distributions measured in the central band. The subsequent
sideband-subtracted distributions found for data are divided by the ones found for MC
to establish data/MC corrections used to reweight the MC on a per-event basis to
measure the efficiencies of the selection criteria. The weights are shown in Figure B.4(a)
for pT(J/ψ) and Figure B.4(b) for pT(π±) for the ψ(2S). The correction weights in
those pT distributions are not expected to differ largely for the ψ(2S) and X(3872)
signal, so due to the limited statistics of the X(3872) data sample it was decided to
use correction weights derived from the ψ(2S) to correct for the pT(J/ψ) and pT(π±)
of the X(3872).

A larger difference is observed for the ∆R(J/ψ, π±) correction weights, shown in
Figure B.5(a) for ψ(2S) and Figure B.5(b) for X(3872), so here we use each respective
correction weight distribution.

Selection criteria efficiencies are then measured by fitting the ψ(2S) and X(3872)
MC signal using the weighted events, examples of which can be seen in Figures B.6
and B.7 in the pT = 12 − 16 GeV bin for ψ(2S) and X(3872), respectively. As an
assessment of the systematic error on the reweighting, we then re-perform the fits with
the events unweighted by the pT(J/ψ), pT(π±) and ∆R(J/ψ, π±) corrections, with the
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difference in each efficiency used as the systematic error. The error is measured to be
small (within 1% in most bins).
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Fig. B.4 Weights to correct for differences between data and simulation in (a) pT(J/ψ)
and (b) pT(π±) for the ψ(2S) → J/ψππ signal.
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Fig. B.5 Weights to correct for differences between data and simulation in ∆R(J/ψ, π±)
for (a) ψ(2S) → J/ψππ decays and (b) X(3872) → J/ψππ decays.
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Fig. B.6 ψ(2S) signal yields for selection criteria using MC12 simulation for the pT bin
[12, 16] GeV. (a) The case with only trigger and combined muon requirements. Subse-
quent selection criteria are cumulatively added in (b) reco quality, (c) P (χ2)(J/ψππ),
(d) ∆R(J/ψ, π) and (e) Q(J/ψππ).
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Fig. B.7 X(3872) signal yields for selection criteria using MC12 simulation for the pT
bin [12, 16] GeV. (a) The case with only trigger and combined muon requirements. Sub-
sequent selection criteria are cumulatively added in (b) reco quality, (c) P (χ2)(J/ψππ),
(d) ∆R(J/ψ, π) and (e) Q(J/ψππ).
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B.3 Effect of Selection Criteria on Dipion Invariant
Mass Spectrum

Some of the selection criteria we use to maximise signal efficiency in the main cross-
section analysis i.e. the opening angle requirement between the J/ψ and each pion
∆R(J/ψ, π±) < 0.5, and Q = mJ/ψπ+π− −mPDG

J/ψ −mπ+π− < 0.3 GeV are likely to bias
the invariant mass distribution of the dipion system. We investigate this in Figures B.8
and B.9 for ψ(2S) and X(3872) decays, respectively, by plotting the dipion invariant
mass distributions with each of the selections cumulatively added. We confirm the
selection bias, so omit these selection criteria when measuring dipion invariant mass in
Chapter 7.
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Fig. B.8 Cumulative effect of selection criteria on mππ in ψ(2S) → J/ψππ simulation for
(a) 10 < pT (J/ψππ) < 12 GeV, (b) 12 < pT (J/ψππ) < 16 GeV, (c) 16 < pT (J/ψππ) <
22 GeV, (d) 22 < pT (J/ψππ) < 40 GeV and (e) 40 < pT (J/ψππ) < 70 GeV.



B.3 Effect of Selection Criteria on Dipion Invariant Mass Spectrum 128

 [GeV]ππm
0.3 0.4 0.5 0.6 0.7

E
ve

nt
s 

/ 1
0 

M
eV

0

50

100

150

200

250

300

350

400
X(3872) Simulation

Without dR & Q
dR

dR & Q

(a)

 [GeV]ππm
0.3 0.4 0.5 0.6 0.7

E
ve

nt
s 

/ 1
0 

M
eV

0

0.2

0.4

0.6

0.8

1

1.2

310×

X(3872) Simulation

Without dR & Q
dR

dR & Q

(b)

 [GeV]ππm
0.3 0.4 0.5 0.6 0.7

E
ve

nt
s 

/ 1
0 

M
eV

0

100

200

300

400

500

600

700

800

900

X(3872) Simulation

Without dR & Q
dR

dR & Q

(c)

 [GeV]ππm
0.3 0.4 0.5 0.6 0.7

E
ve

nt
s 

/ 1
0 

M
eV

0

50

100

150

200

250

300

350

400

450

X(3872) Simulation

Without dR & Q
dR

dR & Q

(d)

 [GeV]ππm
0.3 0.4 0.5 0.6 0.7

E
ve

nt
s 

/ 1
0 

M
eV

0

5

10

15

20

25

30

35

40

45

X(3872) Simulation

Without dR & Q
dR

dR & Q

(e)

Fig. B.9 Cumulative effect of selection criteria on mππ in X(3872) → J/ψππ sim-
ulation for (a) 10 < pT (J/ψππ) < 12 GeV, (b) 12 < pT (J/ψππ) < 16 GeV, (c)
16 < pT (J/ψππ) < 22 GeV, (d) 22 < pT (J/ψππ) < 40 GeV and (e) 40 < pT (J/ψππ) <
70 GeV.
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B.4 Bin Migration Effects

We use a ψ(2S) → J/ψπ+π− simulation sample to measure the effect that the limited
resolution of event reconstruction has on measured signal yields. We initally measure
reconstructed ψ(2S) yields in pT bins with all the selection requirements used in the
analysis, described in Table 5.1. The results of this study are summarised in Table B.2,
where the column entitled ‘inital’ contains the yields corresponding to the selection
criteria used in the main analysis.

To measure the effect of reconstructed muon pT smearing for the requirement of
both muons satisfying pT > 4 GeV, we instead require the truth muons in the event
to satisfy pT > 4 GeV. These numbers are presented in the column entitled ‘truth
muon’. The difference in the signal yields between using the reconstructed or truth
muons for the minimum pT requirement allows us to quantify the effect of the smearing
on the selection requirement. The same method is applied for the minimum pT (π±)
requirement - we require the truth pions belonging to the ψ(2S) → J/ψπ+π− event to
have pT (π±) > 600 MeV instead of the reconstructed pions, with signal yields shown
in the column entitled ‘truth pion’.

To estimate the effect of bin migration on our analysis, we measure the signal in
bins of truth ψ(2S) pT and rapidity, with the number shown in the columns entitled
‘truth ψ(2S) pT ’ and ‘truth ψ(2S) y’ . The measured signal yields for each case are
shown in Table B.2.

We can conclude from this that the difference in measured yields due to the finite
resolution of muon and pion pT reconstruction in our selection requirements does
not exceed 1% in each of the pT bins. We can make a similar conclusion for the bin
migration effect of reconstructed J/ψπ+π− candidates - using the truth pT and rapidity
for the analysis bins instead of the reconstructed variables causes a small difference in
yields of < 1%, and < 3% in the highest pT bin. Similar small bin migration effects were
measured in previous quarkonia cross section analyses, and are considered negligible
due to their small effect.
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Measured Signal Yields
pT (J/ψππ) [GeV] Initial truth muon truth pion truth ψ(2S) pT truth ψ(2S) y

10 − 12 3170 ± 65 3150 ± 65 3134 ± 65 3181 ± 65 3168 ± 65
12 − 16 9093 ± 111 9049 ± 111 9036 ± 112 9062 ± 110 9085 ± 111
16 − 22 7251 ± 99 7248 ± 98 7229 ± 99 7215 ± 99 7252 ± 98
22 − 40 3735 ± 71 3720 ± 71 3709 ± 72 3759 ± 71 3731 ± 71
40 − 70 232 ± 19 233 ± 19 238 ± 19 240 ± 19 232 ± 19

Table B.2 Measured signal yields when using truth muon, pion and ψ(2S) variables for
selection and bin requirements instead of reconstructed values for simulated data, to
determine bin migration effects.



Appendix C

Pion Reconstruction Efficiency

C.1 Pile-up Conditions

We measure the pion reconstruction efficiency using a 2012 J/ψ → µµ MC sample. The
pion reconstruction efficiency depends on the pile-up conditions, which are different for
simulation and real data. We investigate the difference in reconstruction efficiency for
four distinct cases, where the number of primary vertices in the reconstructed events
are: 5 − 10, 10 − 15, 15 − 20, 20 − 25. The distribution of number of primary vertices,
N(PV ), for the MC sample is shown in Figure C.1.
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Fig. C.1 Distribution of number of reconstructed primary vertices for the 2012 J/ψ →
µµ MC samples.
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Figure C.2 shows the reconstruction efficiency map for the lowest N(PV ) bin and
the difference in efficiency maps for the higher N(PV ) bins. We observe the differences
in efficiency increase gradually with increase in pile-up, and find maximal differences of
around ±2% around the edges of the (pT , q × η) space, with agreement more centrally
within 1%.
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Fig. C.2 (a) Pion reconstruction efficiency map for MC where the number of recon-
structed primary vertices is between 5 and 10. Also shown are the differences between
this map and the case where N(PV ) is between (b) 10 − 15, (c) 15 − 20, (d) 20 − 25.

We now compare the N(PV ) distribution of the MC sample with the real data
(specifically of portion of Period L 2012 data, which is assumed to be representative of
the full 2012 data). We show the N(PV ) distribution of the data in Figure C.3(a). The
MC can be reweighted according to the data distribution to create a new reconstruction
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efficiency map which is more representative of real run conditions. The per-event
weights applied to the MC are taken from the normalised ratio between the data
and MC distributions, shown in Figure C.3(b). The difference between the central
unweighted map and the reweighted map are shown in Figure C.4. We see very small
differences (<< 1%) between the reweighted efficiency map and the central efficiency
map.
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Fig. C.3 (a) Distribution of number of reconstructed primary vertices for a portion of
2012 Period L data and (b) the normalised ratio between the data and MC distribution.
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Fig. C.4 Difference between the unweighted pion reconstruction efficiency map and the
case where events have been reweighted to match 2012 pile-up conditions.
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C.2 Material Uncertainty

We note the geometry tag used for the pion reconstruction efficiency measurement
using simulation as ATLAS-GEO-20-00-01, which is not the current ‘best’ description
of the detector (which is ATLAS-GEO-21-01-00). Studies performed in [108] confirm
that the difference in efficiency between ATLAS-GEO-18-01-03 and the best description
is very small (< 1%) and their other studies found the efficiency with our tag is in
agreement with ATLAS-GEO-18-01-03 within statistical error (primarily due to an
identical description of the ID for these two tags). We have reweighted the map
obtained from our MC sample to match the ‘best’ geometry tag, with the difference in
efficiency shown in Figure C.5(a). The difference in efficiency is seen to be << 1%.
To measure the additional systematic error due to material uncertainty, we create a
new map in Figure C.5(b) by finding the difference between the efficiency maps for
the ‘best’ tag ATLAS-GEO-21-01-00 and the tag ATLAS-GEO-21-06-01, where there is
15% more inner detector material. This is obtained using the approriate scale factors
from [108]. The difference is seen to be small, limited by a value of 0.35%.

ηq*
2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

 [G
eV

]
Tp

1

10

20−

15−

10−

5−

0

5

10

15

20
3−10×

(a)

ηq*
2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

 [G
eV

]
Tp

1

10

20−

15−

10−

5−

0

5

10

15

20

(b)

Fig. C.5 (a) Difference in pion reconstruction efficiency maps between tags
ATLAS-GEO-20-00-01 and ATLAS-GEO-21-01-00, and (b) difference in pion reconstruc-
tion efficiency maps between tags ATLAS-GEO-21-01-00 and ATLAS-GEO-21-06-01.
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C.3 Opening Angle Selection

We decide whether a truth pion has been successfully matched to a reconstructed
track if the opening angle between the pion and its closest reconstructed track is less
than 0.05. We see in Figure C.6 that this selection is conservative, and that the large
majority of pion matches are at much smaller opening angles. However, the amount
of flat background, where the truth pion is matched with the wrong reconstructed
track, is very small compared to the number of correct matches. We investigate the
effect of the maximum opening angle by recreating the efficiency map with a tighter
opening angle of 0.03. The difference between the efficiency maps using ∆R < 0.05 and
∆R < 0.03 is shown in Figure C.7. We observe a decrease in the measured efficiency of
< 1% for the central η region, rising to 2 − 3% for larger η.
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Fig. C.6 Distribution of opening angles between the truth pions and closest reconstructed
track in the event for simulation. The blue line shows the maximum ∆R selection for
the central efficiency method, and the red line shows a systematic change to ∆R < 0.03.



C.4 Distribution of Signal Pions 136

ηq*
2.5− 2− 1.5− 1− 0.5− 0 0.5 1 1.5 2 2.5

 [G
eV

]
Tp

1

10

0.1−

0.08−

0.06−

0.04−

0.02−

0

0.02

0.04

0.06

0.08

0.1

Fig. C.7 Difference in pion reconstruction efficiency for ∆R < 0.05 and ∆R < 0.03
between the truth pion and closest reconstructed track.

C.4 Distribution of Signal Pions

We see the η distribution of the pions associated with ψ(2S) → J/ψπ+π− and
X(3872) → J/ψπ+π− decays, where |y(J/ψπ+π−)| < 0.75 and for our selection
criteria, are contained within the range η(π±) < 1.5, as seen in Figure C.8.
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Fig. C.8 Distribution in η of signal pions associated with reconstructed ψ(2S) →
J/ψπ+π− and X(3872) → J/ψπ+π− decays.
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C.5 z-Displacement of Primary Vertices

The z-displacement distribution of primary vertices is measured to have a difference in
data and simulation, seen in Figure C.9. We investigate the effect this has on pion
reconstruction efficiency determination by reweighting the Monte Carlo simulation
according to a [data/MC] scale factor as a function of z-displacement of primary vertex.
The difference between the central efficiency map and the z-displacement reweighted
map is shown in Figure C.10. We observe only small differences of < 0.5% between
the two maps, which is used as an additional systematic.
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Fig. C.9 z-displacement distribution of primary vertices for (a) data and (b) simulation.
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Fig. C.10 Difference between the central pion reconstruction efficiency map and the
case where simulation has been weighted to match the data z-displacement of primary
vertices. We observe only small differences < 0.5%.

C.6 Total Pion Reconstruction Uncertainty

The sources of the systematic errors on the pion reconstruction efficiency corrections
include the following:

1. Corrections of the MC due to pile-up differences (Section C.1).

2. Material uncertainty in the inner detector (Section C.2).

3. Uncertainty on truth matching (Section C.3).

4. Corrections of the MC due to z-displacement differences (Section C.5).

5. Statistical error of the Monte Carlo (see Figure C.11).

As seen from the respective efficiency maps (Figures C.4, C.5(b), C.7, C.10 and C.11),
the variations from central are generally small. The uncertainties for each of the above
effects are found to be within for the following limits: (0.5%, 0.4%, 1.0%, 0.3%, 0.1%),
respectively. The overall systematic uncertainty linked to the pion efficiency is then
calculated as the quadratic sum of these numbers, equal to 1.25% per pion. Since the
pions are likely be close in the detector fiducial volume, a systematic uncertainty of
2 × 1.25% = 2.5% was assigned for the dipion system.
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Fig. C.11 Statistical error of the pion efficiency map used in the main analysis. Each
bin contains only a small (<< 1%) error due to the high statistics of the MC sample
used to measure the efficiency.



Appendix D

Spin Alignment Studies

In this Appendix, we investigate the dependence of the acceptance on different polari-
sation scenarios, separately for ψ(2S) and X(3872) decays. We plot the cos θ∗ and ϕ∗

distributions of the daughter J/ψ and dipion system for ψ(2S) and X(3872) generator
level simulated decays to J/ψπ+π− for each polarisation scenario, where the momen-
tum of ψ(2S)(X(3872)) is used as the polarisation axis. We fix the ψ(2S)(X(3872))
pT = 12 GeV, y = 0.05 and mππ = 0.435 GeV, plotting the distributions after the
acceptance criteria are applied.

For the ψ(2S) → J/ψπ+π− decays (Figures D.1 to D.4), we see the daughter J/ψ
inherits the polarisation of the ψ(2S). The dipion system is unpolarised regardless of
the polarisation of the mother ψ(2S). However, in X(3872) → J/ψρ0(→ π+π−) decays
(Figures D.5 to D.8) we see that the daughter J/ψ in every case has a polarisation
different to that of the X(3872). For example, when X(3872) is longitudinally polarised,
the J/ψ is then transversely polarised. The dipion system inherits the same polarisation
as the X(3872). The acceptance criteria are harsher for the J/ψ than for the dipion
system, and so the acceptance of the X(3872) is dominated by the daughter J/ψ
polarisation. This explains why the dependence of acceptance on polarisation is
different for ψ(2S) and X(3872).
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Appendix E

Lifetime Modelling

E.1 Lifetime Resolution Determination

We determine the lifetime resolution function using two-dimensional mass-lifetime
unbinned maximum likelihood fits in the ψ(2S) signal region, separately for each of
the five pT bins. The signal PDF is defined as:

PDFsig(m, τ) = fPsig
[
MP

ψ (m) · T Pψ (τ)
]

+ (1 − fPsig)
[
MN

ψ (m) · TNψ (τ)
]
, (E.1)

where fPsig is the fraction of the signal which is promptly produced. The PDFs
MP

ψ (m),MN
ψ (m) model the mass distributions of promptly and non-promptly produced

ψ(2S), and T Pψ (τ), TNψ (τ) model their respective lifetime distributions. MP
ψ (m),MN

ψ (m)
are modelled as double Gaussians where the wider Gaussian G2 has twice the width of
the narrower Gaussian G1: f1G1 + (1 − f1)G2. The prompt lifetime signal component
T Pψ (τ) is modelled by the resolution function, defined here to be a triple Gaussian,
where the widths of the two wider Gaussians are fixed to be 2 times and 4 times the
width of the narrowest. A double Gaussian is first constructed with the widest Gτ

3 and
intermediate Gτ

2 Gaussians, as Gτ
23 = f τ3G

τ
3 + (1 − f τ3 )Gτ

2. We then construct the triple
Gaussian to include the narrowest gaussian G1 as: T Pψ (τ) = f τ23G

τ
23 + (1 − f τ23)Gτ

1.
As an example, for the pT = 12 − 16 GeV bin, the double Gauss constructed from

the wider two Gaussians contains a fraction f τ3 = 0.29±0.03 of the widest Gauss. When
the triple Gaussian is then formed by subsequently adding the narrowest Gaussian, the
double Gaussian has a fraction f τ23 = 0.85 ± 0.05. The non-prompt signal component
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TNψ (τ) is a single-sided exponential with a free lifetime convoluted with the resolution
function T Pψ (τ).

The background PDF is defined as:

PDFbkg(m, τ) = fPbkg

[
MP

bkg(m) · T Pbkg(τ)
]

+ (1 − fPbkg)
[
MN

bkg(m) · TNbkg(τ)
]
, (E.2)

where fPbkg is the fraction of background which is promptly produced, MP
bkg(m)(MN

bkg(m))
are the mass components of the prompt(non-prompt) background, and T Pbkg(τ)(TNbkg(τ))
are the respective lifetime components. The mass components are both modelled
as second order Chebyshev polynomials. The prompt lifetime component T Pbkg(τ)
is modelled by the resolution function, and the non-prompt component TNbkg(τ) is
modelled as a mixture of a double-sided exponential and two single-sided exponentials,
all convoluted by the resolution function T Pψ (τ).

The total PDF is a combination of the signal and background PDFs:

PDFtot(m, τ) = fsigPDFsig(m, τ) + (1 − fsig)PDFbkg(m, τ), (E.3)

where fsig is the fraction of events which are signal. This PDF was used to fit the
mass-lifetime distribution of the data around the ψ(2S) signal. A summary of the
resulting fit parameters are shown in Table E.1.

The resolution function T Pψ (τ), with parameters listed in Table E.1, is used as the
lifetime resolution PDF for the rest of this analysis, for both ψ(2S) and X(3872) signal
and for the background as well. In Appendix G it is shown that indeed the lifetime
resolution for ψ(2S) and X(3872) signal is the same within error. Since the fitted
values of f1 are reasonably stable across the pT range, the value f1 = 0.76 ± 0.04 was
adopted for the main fits.

The mass and lifetime projections of the fits are shown in Figures E.1 - E.5 for each
pT bin, and fit quality is assessed by plotting the ratio of the data and the fit model
for the mass projections in Figure E.6 and the lifetime projections in Figure E.7. Good
consistency with unity is seen throughout.
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pT interval [GeV]
10 − 12 12 − 16 16 − 22 22 − 40 40 − 70

Lifetime Resolution Parameters
τmean[ps] × 10−3 −1.7 ± 0.5 −0.6 ± 0.3 −0.5 ± 0.2 −0.3 ± 0.2 −1.0 ± 0.9
τσ[ps] × 10−3 44.3 ± 6.2 45.9 ± 3.3 52.0 ± 1.5 40.9 ± 1.5 32.2 ± 6.9

fτ3 0.34 ± 0.08 0.29 ± 0.03 0.19 ± 0.01 0.22 ± 0.01 0.20 ± 0.13
fτ23 0.94 ± 0.07 0.85 ± 0.05 0.59 ± 0.03 0.61 ± 0.04 0.49 ± 0.22

Mass Peak Parameters
mmean[GeV] 3.686 ± 0.000 3.686 ± 0.000 3.686 ± 0.000 3.686 ± 0.000 3.686 ± 0.000
mσ[MeV] 5.4 ± 0.1 5.1 ± 0.1 5.0 ± 0.1 5.0 ± 0.1 5.4 ± 0.8

f1 0.81 ± 0.03 0.73 ± 0.02 0.72 ± 0.03 0.74 ± 0.04 0.72 ± 0.24

Table E.1 Fit parameters determined from unbinned maximum likelihood fits of the
ψ(2S) signal region, to determine the lifetime resolution functions in bins of pT.
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Fig. E.1 (a) Mass projection over the full lifetime range and (b) lifetime projection
over the full mass range, for the 2D unbinned maximum likelihood fit in the ψ(2S)
signal region in the pT bin [10, 12] GeV to establish lifetime resolution.
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Fig. E.2 (a) Mass projection over the full lifetime range and (b) lifetime projection
over the full mass range, for the 2D unbinned maximum likelihood fit in the ψ(2S)
signal region in the pT bin [12, 16] GeV to establish lifetime resolution.
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Fig. E.3 (a) Mass projection over the full lifetime range and (b) lifetime projection
over the full mass range, for the 2D unbinned maximum likelihood fit in the ψ(2S)
signal region in the pT bin [16, 22] GeV to establish lifetime resolution.
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Fig. E.4 (a) Mass projection over the full lifetime range and (b) lifetime projection
over the full mass range, for the 2D unbinned maximum likelihood fit in the ψ(2S)
signal region in the pT bin [22, 40] GeV to establish lifetime resolution.
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Fig. E.5 (a) Mass projection over the full lifetime range and (b) lifetime projection
over the full mass range, for the 2D unbinned maximum likelihood fit in the ψ(2S)
signal region in the pT bin [40, 70] GeV to establish lifetime resolution.
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Fig. E.6 Data / fit ratio for the mass projection of the unbinned 2D mass-lifetime
likelihood fits performed in the ψ(2S) signal region to determine the lifetime resolution
function in analysis bins of pT ascending from (a) [10, 12] GeV to (e) [40, 70] GeV.
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Fig. E.7 Data / fit ratio for the lifetime projection of the unbinned 2D mass-lifetime
likelihood fits performed in the ψ(2S) signal region to determine the lifetime resolution
function in bins of pT ascending from (a) [10, 12] GeV to (e) [40, 70] GeV.



E.2 Short-lived Non-Prompt Component 156

E.2 Short-lived Non-Prompt Component

We use Monte Carlo simulation to estimate the possible variation of the pseudoproper
lifetime of the short-lived component, τSL, in inclusive Bc → i (i = ψ(2S), X(3872))
decays, for the two-lifetime fits. The largest possible τSL is close to the lifetime of the
Bc, and would correspond to the invariant mass of the associated hadronic particles
in the Bc decay being maximal. The upper limit of τSL is therefore set close to the
Bc lifetime, τ(Bc) = (0.507 ± 0.009) ps [18]. Oppositely, the shortest possible τSL
arises from the invariant mass of the associated hadronic particles in the Bc decay
being minimal, which in this case would be a pion. We use Bc → J/ψπ simulation
to estimate the shortest possible τSL, by fitting the J/ψ pseudoproper lifetime with
an exponential in the region in which our analysis is sensitive to Bc signal, shown in
Figure E.8.
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Fig. E.8 Pseudoproper lifetime distribution of the J/ψ in Bc → J/ψπ simulation. The
distribution is fitted with an exponential to measure the pseudoproper lifetime in the
region our analysis is most sensitive to.

This lighter J/ψ will have an even shorter pseudoproper lifetime than the ψ(2S)
and X(3872) from the kinematics, and so this measurement of τSL = 0.295 ± 0.001 ps
represents by far the shortest possible τSL. In summary, we set τSL = 0.40 ± 0.05 ps,
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which appropriately covers the range of possible pseudoproper lifetimes for ψ(2S) and
X(3872) produced from Bc decays.

E.3 Long-lived Non-Prompt Component

We use a mix of data and simulation to estimate the pseudoproper lifetime τLL of
ψ(2S) and X(3872) from long-lived B decays, for the two-lifetime fits. A data-driven
method is used to measure the central value of τLL and its statistical error. We perform
fits to the ψ(2S) mass signal in windows of pseudo-proper lifetime (shown in Figures
E.9 - E.13) far from the resolution threshold such that prompt signal is negligible to
first order:

• 0.50 − 0.75 ps

• 0.75 − 1.5 ps

• 1.5 − 2.7 ps

• 2.7 − 5.0 ps

• 5.0 − 15.0 ps

The signal yields returned by the fits in each pT bin, and for each pseudoproper lifetime
window, are shown in Table E.2.
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Fig. E.9 Invariant mass fit of the ψ(2S) signal in windows of pseudoproper lifetime for
the pT bin [10, 12] GeV.
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Fig. E.10 Invariant mass fit of the ψ(2S) signal in windows of pseudoproper lifetime
for the pT bin [12, 16] GeV.
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Fig. E.11 Invariant mass fit of the ψ(2S) signal in windows of pseudoproper lifetime
for the pT bin [16, 22] GeV.
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Fig. E.12 Invariant mass fit of the ψ(2S) signal in windows of pseudoproper lifetime
for the pT bin [22, 40] GeV.
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Fig. E.13 Invariant mass fit of the ψ(2S) signal in windows of pseudoproper lifetime
for the pT bin [40, 70] GeV.

ψ(2S) Yields [×105] vs. pT [GeV]
τ window 10 − 12 12 − 16 16 − 22 22 − 40 40 − 70

w0 2.1 ± 0.2 1.7 ± 0.05 0.73 ± 0.02 0.32 ± 0.01 0.023 ± 0.002
w1 4.7 ± 0.2 3.6 ± 0.07 1.5 ± 0.02 0.67 ± 0.01 0.057 ± 0.002
w2 4.0 ± 0.2 2.9 ± 0.05 1.3 ± 0.02 0.53 ± 0.01 0.047 ± 0.002
w3 2.2 ± 0.1 1.8 ± 0.03 0.75 ± 0.01 0.33 ± 0.006 0.028 ± 0.002
w4 0.7 ± 0.05 0.47 ± 0.02 0.20 ± 0.006 0.082 ± 0.003 0.008 ± 0.0007

Table E.2 Invariant mass fit results in pseudoproper lifetime and pT bins for the ψ(2S).
Uncertainties are statistical only.
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We then construct two lifetime PDFs. The first describes the short-lived Bc

component, modelled as an exponential with a lifetime 0.4 ps convoluted with the
resolution function. The long-lived component is an exponential with a free lifetime
determined by the fit, convoluted with the resolution function. A minimum-χ2 fit is
performed, where the lifetime PDFs are integrated over the pseudoproper lifetime bins:

χ2 =
n∑
i=1

[
di − Ynp (Fslf isl + (1 − Fsl)f ill)

∆di

]2

(E.4)

where Ynp is the total non-prompt signal yield, Fsl is the short-lived non-prompt signal
fraction, and f isl and f ill are the integrals of the short and long non-prompt lifetime
PDFs, respectively, over the specific lifetime boundaries of the ith bin.

These fits are performed separately in each of the analysis pT bins. The results of
the fits are shown in Table E.3.

pT interval [GeV]
10 − 12 12 − 16 16 − 22 22 − 40 40 − 70

ψ(2S) Yields [×106] vs. pT

Ynp 1.95 ± 0.095 1.49 ± 0.029 0.65 ± 0.01 0.28 ± 0.005 0.022 ± 0.001

Fractions vs. pT

FSL 0.051 ± 0.056 0.035 ± 0.023 0.025 ± 0.019 0.053 ± 0.021 −0.077 ± 0.069

Measured Pseudo-proper Lifetime
τ [ps] 1.47 ± 0.05 1.47 ± 0.02 1.43 ± 0.02 1.44 ± 0.02 1.45 ± 0.05

Fit quality in each pT bin
χ2/ndof 3.6/3 1.4/3 2.7/3 0.6/3 2.6/3

Table E.3 Fit results in pT bins for the ψ(2S). Uncertainties are statistical only.

The extracted long-lived lifetime for each pT bin is shown in Figure E.14, and fitted
with a zeroth order polynomial to determine the average lifetime τLL = 1.45±0.01(stat),
which is used as the central value for each pT bin in the analysis. The systematic
error on this measurement is evaluated using simulation. As explained previously,
the average pseudoproper lifetime of the ψ(2S) and X(3872) is dependent on the
invariant mass of the associately produced hadronic component, from here on referred
to as X ′. A large invariant mass of X ′ causes the pseudoproper lifetime of ψ(2S) or



E.3 Long-lived Non-Prompt Component 164

X(3872) to be much closer to the proper lifetime of the decaying B hadron on average.
Oppositely, if X ′ has a small invariant mass then the pseudoproper lifetime of the ψ(2S)
or X(3872) will be less than the proper lifetime of the decaying B hadron. We measure
the pseudoproper lifetime from truth Monte Carlo for two extreme cases. The first,
where X ′ is a kaon. The second, where X ′ is any particle(s) with an invariant mass
greater than 1.28 GeV. The pseudo-proper lifetime is measured as τ = 1.41 ± 0.01 ps
where X ′ is a kaon, and τ = 1.56 ± 0.01 ps where m(X ′) > 1.28 GeV. These two
cases represent the most extreme cases of production, and in reality there is some
mixture of all m(X ′). We consequently assign a total error on the long-lived lifetime
measurement of 0.05 ps. In summary, the long-lived lifetime component is fixed as
τLL = 1.45 ± 0.05 ps, which appropriately covers the range of effective pseudoproper
lifetimes for ψ(2S) and X(3872) produced from long-lived B decays.

Fig. E.14 Extracted lifetime of the long-lived non-prompt ψ(2S) signal component for
each pT bin, fitted with a zeroth order polynomial to measure the average lifetime.



Appendix F

Invariant Mass Fits in Lifetime
Windows

We show the the minimum-χ2 fits to the invariant mass of the J/ψπ+π− candidates in
windows of pseudoproper lifetime for each anlysis pT bin, used to extract the ψ(2S)
and X(3872) signal yields, in Figures F.1-F.3. We also show the fits with a linear scale
on the y-axis instead of a logarithmic scale, in Figures F.4 - F.8.
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Fig. F.1 Fits to the invariant mass spectra of the J/ψππ candidates to extract ψ(2S) and
X(3872) signal for each pseudo-proper lifetime window in the pT bin (a) [10, 12] GeV and
(b) [12, 16] GeV. Shown underneath the fits are the corresponding pull distributions.
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Fig. F.2 Fits to the invariant mass spectra of the J/ψππ candidates to extract ψ(2S) and
X(3872) signal for each pseudo-proper lifetime window in the pT bin (a) [16, 22] GeV and
(b) [22, 40] GeV. Shown underneath the fits are the corresponding pull distributions.



168

)  
0

 < 0.025 ps (wτData: -0.3 < Fit

)
1

 < 0.3 ps (wτData: 0.025 < Fit
)

2
 < 1.5 ps (wτData: 0.3 < Fit

)
3

 < 15 ps (wτData: 1.5 < Fit

)  
0

 < 0.025 ps (wτData: -0.3 < Fit

)
1

 < 0.3 ps (wτData: 0.025 < Fit
)

2
 < 1.5 ps (wτData: 0.3 < Fit

)
3

 < 15 ps (wτData: 1.5 < Fit

 < 70 GeV
T

40 < p

|y| < 0.75

) [GeV]-π+πψm(J/
3.65 3.7 3.75 3.8 3.85 3.9 3.95

 C
an

di
da

te
s 

/ 3
.5

 M
eV

- π
+ π

ψ
J/

210×3

310

310×2

310×3
-1=8 TeV, 11.4 fbs

3.65 3.7 3.75 3.8 3.85 3.9 3.95(d
at

a 
- 

fit
) 

/ e
rr

or

4−
2−
0
2
4  = 84.5 / 91dof / n2χ0w

3.65 3.7 3.75 3.8 3.85 3.9 3.95(d
at

a 
- 

fit
) 

/ e
rr

or

4−
2−
0
2
4  = 102.7 / 91dof / n2χ1w

3.65 3.7 3.75 3.8 3.85 3.9 3.95(d
at

a 
- 

fit
) 

/ e
rr

or

4−
2−
0
2
4  = 71.2 / 91dof / n2χ2w

) [GeV]ππψm(J/
3.65 3.7 3.75 3.8 3.85 3.9 3.95(d

at
a 

- 
fit

) 
/ e

rr
or

4−
2−
0
2
4  = 73.1 / 91dof / n2χ3w

Fig. F.3 Fits to the invariant mass spectra of the J/ψππ candidates to extract ψ(2S)
and X(3872) signal for each pseudo-proper lifetime window in the pT bin [40, 70] GeV.
Shown underneath the fits are the corresponding pull distributions.
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Fig. F.4 Minimum χ2 mass fits to extract ψ(2S) and X(3872) signal yields displayed
with a linear y-axis scale, in windows of pseudoproper lifetime: (a) -0.3 - 0.025 ps, (b)
0.025 - 0.3 ps, (c) 0.3 - 1.5 ps, (d) 1.5 - 15 ps for the pT = [10, 12] GeV bin.
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Fig. F.5 Minimum χ2 mass fits to extract ψ(2S) and X(3872) signal yields displayed
with a linear y-axis scale, in windows of pseudoproper lifetime: (a) -0.3 - 0.025 ps, (b)
0.025 - 0.3 ps, (c) 0.3 - 1.5 ps, (d) 1.5 - 15 ps for the pT = [12, 16] GeV bin.
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Fig. F.6 Minimum χ2 mass fits to extract ψ(2S) and X(3872) signal yields displayed
with a linear y-axis scale, in windows of pseudoproper lifetime: (a) -0.3 - 0.025 ps, (b)
0.025 - 0.3 ps, (c) 0.3 - 1.5 ps, (d) 1.5 - 15 ps for the pT = [16, 22] GeV bin.
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Fig. F.7 Minimum χ2 mass fits to extract ψ(2S) and X(3872) signal yields displayed
with a linear y-axis scale, in windows of pseudoproper lifetime: (a) -0.3 - 0.025 ps, (b)
0.025 - 0.3 ps, (c) 0.3 - 1.5 ps, (d) 1.5 - 15 ps for the pT = [22, 40] GeV bin.
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Fig. F.8 Minimum χ2 mass fits to extract ψ(2S) and X(3872) signal yields displayed
with a linear y-axis scale, in windows of pseudoproper lifetime: (a) -0.3 - 0.025 ps, (b)
0.025 - 0.3 ps, (c) 0.3 - 1.5 ps, (d) 1.5 - 15 ps for the pT = [40, 70] GeV bin.



Appendix G

Verification of Fit Model
Assumptions

For good stability of the mass and lifetime fit models when extracting ψ(2S) and
X(3872) signal from the J/ψπ+π− candidates, several assumptions were made. When
modelling the mass peaks with double Gaussians, the narrower Gauss fraction f1 was
forced to be the same for the two signals at a value of 0.76 ± 0.04 (determined as an
average from mass-lifetime fits to the data where this fraction was free). The lifetime
resolution model Fres(τ) for the ψ(2S) and X(3872) signal was also shared.

The larger statistics ψ(2S) signal in data will dominate the shape of Fres(τ) and
f1. A Monte Carlo study has subsequently been performed to verify that there are no
significant differences in Fres(τ) and f1 for ψ(2S) and X(3872) signal in each analysis
pT bin.

The description of the MC used for this study is detailed in Section 5.3.8. We
perform unbinned mass-lifetime maximum likelihood fits separately for ψ(2S) and
X(3872) signal regions. To mirror the main analysis, the narrower X(3872) Gaussian
describing the mass peak has its width fixed to 1.52× the ψ(2S) Gaussian width. The
parameter f1 is left free for both fits. As with the main analysis, Fres(τ) is modelled as
a triple Gaussian, with the wider two Gaussians 2× and 4× the width of the narrowest.
The fractions of these Gaussians are determined from the ψ(2S) fit, and are fixed for
the X(3872) fit, however the width and mean of Fres(τ) are left free in both fits.

Projections of the mass-lifetime fits are shown for the ψ(2S) and X(3872) signal in
the pT = 12 − 16 GeV bin in Figures G.1 and G.2, respectively. Table G.1 shows f1
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and the mean and width of Fres(τ) returned by the fits in each bin of pT for the ψ(2S)
and X(3872) samples. We see agreement of f1 within a few percent for ψ(2S) and
X(3872), well within the systematic error of ±4% already applied to the main analysis
as a systematic variation. The Fres(τ) parameters also closely agree with each other,
leading us to conclude it is a safe assumption to allow the ψ(2S) and X(3872) signal
to share the same lifetime resolution function in the main analysis.

pT [GeV] ψ(2S) X(3872)
f1 [%] τmean

res [×10−3 ps] τwidth
res [ps] f1 [%] τmean

res [×10−3 ps] τwidth
res [ps]

10 − 12 75.9 ± 2.9 −1.2 ± 0.8 0.20 ± 0.01 78.0 ± 1.8 −1.4 ± 1.3 0.20 ± 0.01
12 − 16 80.1 ± 1.5 −0.7 ± 0.5 0.23 ± 0.01 80.4 ± 0.9 −0.9 ± 0.7 0.23 ± 0.01
16 − 22 82.0 ± 1.5 −0.5 ± 0.5 0.18 ± 0.01 81.0 ± 1.0 −1.7 ± 0.7 0.18 ± 0.01
22 − 40 79.6 ± 2.2 −0.7 ± 0.5 0.15 ± 0.01 78.9 ± 1.3 −0.6 ± 0.9 0.15 ± 0.01
40 − 70 89.9 ± 8.2 −0.3 ± 0.4 0.11 ± 0.01 86.6 ± 5.4 6.8 ± 3.4 0.12 ± 0.01

Table G.1 Summary of the unbinned mass-lifetime fit results to simulated ψ(2S) and
X(3872) signal.
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Fig. G.1 (a) Mass projection over the full lifetime range and (b) lifetime projection
over the full mass range for the 2D unbinned maximum likelihood fit of the simulated
ψ(2S) events in the pT bin [16, 22] GeV.
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Fig. G.2 (a) Mass projection over the full lifetime range and (b) lifetime projection
over the full mass range for the 2D unbinned maximum likelihood fit of the simulated
X(3872) events in the pT bin [16, 22] GeV.



Appendix H

MC Template for Non-Prompt
Ratio

We use the truth information from Monte Carlo generated for non-prompt ψ(2S)
and X(3872) production detailed in Section 5.3.8 to create templates with which
to fit X(3872)/ψ(2S) non-prompt ratio results. The same acceptance criteria are
applied to the muons and pions in these samples as in the main analysis. The events
are subsequently weighted by acceptance maps as a correction. The templates are
produced as a function of pT (J/ψπ+π−) by measuring the ratio of the produced X(3872)
and ψ(2S) in inclusive B± decays. The decay kinematics will vary according to the
invariant mass of the associated hadronic particles in the B± decays. We see the
distribution of mass of the associated hadronic particles m(X ′) in the B± decays in
Figure H.1 for ψ(2S) and X(3872). From this, we decide to create three templates.
The central template uses the ratio between all produced ψ(2S) and X(3872) events
which satisfy the acceptance criteria. As a systematic variation, we then split the
X(3872) sample into two parts according to m(X ′), one where X ′ is a kaon (where
mK ≈ 0.494 GeV), and the other where m(X ′) > 1.0 GeV. The production ratios as a
function of pT (J/ψπ+π−) are shown in Figure H.2(a). We then normalise the number
of events in each of the samples prior to creating the ratio, effectively normalising the
cross section times branching ratio of each of the samples to unity, and then re-produce
the ratios, shown in Figure H.2(b). These templates can subsequently be used to fit
non-prompt X(3872)/ψ(2S) ratios to establish branching fraction ratios, assuming the
non-prompt ψ(2S) and X(3872) are produced by a similar combination of b-hadrons.
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Fig. H.1 Invariant mass distribution of associated hadronic particles in inclusive B±

decays to (a) ψ(2S) and (b) X(3872) in our truth MC samples. As a systematic
variation for the production ratios, we split the X(3872) sample according to m(X ′) at
the kaon mass and at > 1.0 GeV.
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Appendix I

Systematic Studies

I.1 Trigger and Muon Reconstruction Systematics

We evaluate the sytematic effects on measured cross sections due to uncertainties of
the trigger and muon reconstruction efficiency maps. We build 1000 different trigger
and muon reconstruction efficiency maps by varying each bin from its central value,
using a normal distribution with a width described by the bin error. Then, separately
for the prompt and non-prompt ψ(2S) and X(3872) signal regions for each analysis
pT bin, we create distributions of average weights in each signal region, using each of
the 1000 maps. The distributions of average weights in each pT bin can then be fitted
with a Gaussian, where the width relative to the mean describes the systematic error.
These errors are subsequently used in the main analysis.

The fitted average weight distributions for the muon reconstruction map variations
are shown in Figure I.1 for prompt ψ(2S) signal, and Figure I.2 for prompt X(3872)
signal. Practically identical results were measured for non-prompt signal. The fitted
average weight distributions for the trigger efficiency map variations are shown in
Figure I.3 for prompt ψ(2S) signal and Figure I.4 for prompt X(3872) signal. Again,
results for non-prompt signal are almost identical.
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Fig. I.1 Distribution of average muon reconstruction efficiency correction weights fitted
with a Gaussian, describing the systematic error for prompt ψ(2S) signal, for the pT
bins (a) 10 − 12 GeV, (b) 12 − 16 GeV, (c) 16 − 22 GeV, (d) 22 − 40 GeV and (e)
40 − 70 GeV.
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Fig. I.2 Distribution of average muon reconstruction efficiency correction weights fitted
with a Gaussian, describing the systematic error for prompt X(3872) signal, for the
pT bins (a) 10 − 12 GeV, (b) 12 − 16 GeV, (c) 16 − 22 GeV, (d) 22 − 40 GeV and (e)
40 − 70 GeV.
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Fig. I.3 Distribution of average trigger efficiency correction weights fitted with a
Gaussian, describing the systematic error for prompt ψ(2S) signal, for the pT bins (a)
10 − 12 GeV, (b) 12 − 16 GeV, (c) 16 − 22 GeV, (d) 22 − 40 GeV and (e) 40 − 70 GeV.



I.1 Trigger and Muon Reconstruction Systematics 183

Mean Weight
2 2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4

E
ve

nt
s 

/ b
in

0

10

20

30

40

50

60

70  0.001±Mean = 2.208 
 0.001±Sigma = 0.036 

 < 12 GeV
T

10 < p

Prompt X(3872)

(a)

Mean Weight
1.8 1.85 1.9 1.95 2 2.05 2.1 2.15

E
ve

nt
s 

/ b
in

0

20

40

60

80

100  0.001±Mean = 1.974 
 0.000±Sigma = 0.020 

 < 16 GeV
T

12 < p

Prompt X(3872)

(b)

Mean Weight
1.7 1.75 1.8 1.85 1.9 1.95 2 2.05

E
ve

nt
s 

/ b
in

0

10

20

30

40

50

60

70

80

90  0.001±Mean = 1.877 
 0.000±Sigma = 0.019 

 < 22 GeV
T

16 < p

Prompt X(3872)

(c)

Mean Weight
1.75 1.8 1.85 1.9 1.95 2 2.05 2.1

E
ve

nt
s 

/ b
in

0

10

20

30

40

50

60

70

80  0.001±Mean = 1.911 
 0.001±Sigma = 0.025 

 < 40 GeV
T

22 < p

Prompt X(3872)

(d)

Mean Weight
1.9 1.95 2 2.05 2.1 2.15 2.2 2.25 2.3

E
ve

nt
s 

/ b
in

0

10

20

30

40

50

 0.001±Mean = 2.094 
 0.001±Sigma = 0.046 

 < 70 GeV
T

40 < p

Prompt X(3872)

(e)

Fig. I.4 Distribution of average trigger efficiency correction weights fitted with a
Gaussian, describing the systematic error for prompt X(3872) signal, for the pT bins (a)
10 − 12 GeV, (b) 12 − 16 GeV, (c) 16 − 22 GeV, (d) 22 − 40 GeV and (e) 40 − 70 GeV.
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I.2 Fit Model Variations

We vary the fit models to the invariant mass distributions of the J/ψπ+π− candidates
in windows of pseudoproper lifetime, for each analysis pT bin. The variations of the
fit models are described in Section 6.1.6. The pT differential prompt and non-prompt
ψ(2S) cross sections according to the fit model variations are shown in Figure I.5, and
for X(3872) in Figure I.6. Each variation gives only a small difference from the central
model, and the maximum difference in each pT bin is used as the systematic error.
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I.3 Effects due to z-displacement of Primary Ver-
tices

The distribution of primary vertices along the z-axis of the detector might be expected
to have an effect on the measurement of the cross section in a number of ways. The
z-displacement of the vertices is measured to have some difference between data
and simulation, see Figure C.9. The magnitude of the effect on pion reconstruction
efficiency is measured in Appendix C.5 by reweighting the simulation to match the
data z-displacement distribution, and the difference is measured to be within 0.5% of
the central efficiency, which is used as an additional systematic.

The z-displacement will also cause a smearing of the acceptance criteria |ηµ| < 2.3
and |ηπ| < 2.4 of final muon and pion decay products. The degree of the smearing
is estimated by modelling one of the decay products traversing the full width of the
inner detector (ID), which has a radius ≈ 1m, evaluated at the edge of the acceptance
|η| < 2.3. We can express the longitudinal distance z of the traversing particle by
r/ tan θ with θ corresponding to the acceptance edge and r to the radius of the ID.
The variation of the acceptance edge in pseudo-rapidity with respect to a change in z

can be estimated as

∆η(z) =
∣∣∣∣∣∂η(z)
∂z

δz

∣∣∣∣∣ (I.1)

where the error in z is given by δz, which is taken as the RMS of the z-displacement
of the primary vertices measured in the data, shown in Figure C.9, and is equal to 48
mm. We estimate the z-displacement to cause only minimal smearing of the acceptance
edge ∆η ≈ 0.01. In Figure I.7 we show ηµ and ηπ distributions of the events used in
the analysis. None of these events have final decay products close to the edge of the
acceptance, and so this small smearing will have negligible effect.
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Fig. I.7 η distribution of (a) muons and (b) pions for J/ψπ+π− candidates passing the
selection criteria.

The magnitude of a similar effect is estimated for the smearing of the selection edge
|y(J/ψπ+π−)| < 0.75. We estimate the smearing in rapidity using a method identical
to the acceptance edge smearing estimation, except we use

∆y(z) =
∣∣∣∣∣∂y(z)
∂z

δz

∣∣∣∣∣ (I.2)

where for this case the rapidity y depends of the invariant mass and pT of the J/ψπ+π−

vertex. We estimate the size of the smearing ∆y for four distinct cases. We must
separate due to invariant mass of the J/ψππ vertices, for which we use the ψ(2S) and
X(3872) PDG masses. We also separate into two extreme pT cases, pT = 10 GeV
and 70 GeV. The invariant mass of the J/ψπ+π− vertex is found to have no effect
on the smearing to first order. The smearing is estimated as ∆y = [0.03, 0.04] for
pT = [10, 70] GeV at y = 0.75.

The rapidity dependence in the area of interest for both ψ(2S) and X(3872) is
expected to be fairly flat. Our estimates are based on Figures 15 and 16 from [91]. The
rapidity dependence in each pT bin can be parameterised as being ∝ (1 + ay2) with
a ≲ 0.1. The correction factor due to rapidity interval smearing is then estimated to
be 1 − 2a∆y2, which would mean that this effect is limited to no more than about 1%.
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