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Skipping and snake orbits of electrons: Singularities and catastrophes
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Near the sample edge, or a sharp magnetic field step, the drift of two-dimensional (2D) electrons in a
magnetic field has the form of skipping and snake orbits. We show that families of skipping and snake orbits
of electrons injected at one point inside a 2D metal generically exhibit caustics folds, cusps, and cusp triplets,
and, in one exceptional case, an extreme section of the butterfly bifurcation. Periodic appearance of singularities
along the ±B interface leads to the magneto-oscillations of nonlocal conductance in multiterminal electronic
devices.
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Skipping orbits were introduced into the physics of metals
by Niels Bohr in the early studies of diamagnetism.1 They
also play a special role in the two-dimensional (2D) electron
systems, by determining the chiral current-carrying properties
of the electron edge states2 in the quantum Hall effect.3

Snake orbits have been discussed, first, in the context of the
electrons propagation along domain walls in ferromagnetic
metals4,5 and, later, used for channeling ballistic electrons in
2D semiconductors in a spatially alternating magnetic field,6–11

B = lzBsignx. In isotropic 2D metals, where all electrons
with energies close to the Fermi level revolve along cyclotron
circles with the same radius, R = pF /eB, skipping and snake
orbits have the form of consecutive circular segments matched
by the specular reflection at the edge, or by the smooth
continuity on the opposite sides of the ±B interface; see
Fig. 1. A close relation between these two families can
be established12 by folding a sheet of a 2D material (e.g.,
graphene,13 which can sustain sharp bends) in a homogeneous
magnetic field. The electron path near the fold looks like a
skipping orbit with circular segments alternating between the
top and bottom layers, but, when projected onto an unfolded
sheet, the electron motion resembles the motion near a ±B

interface.
Below, we study bunching in the families of skipping and

snake orbits of electrons injected into a 2D metal from a
pointlike source and singularities in the spatial distribution of
electronic trajectories. Mathematically, such features originate
from the singularities in the differentiable maps in Thom’s
catastrophe theory.14,15 Caustic folds and bifurcation cusps are
the most common singularities, which are often encountered
in ray optics16 and responsible for sunlight sparkling on the sea
or twinkling starlight.17 In electronics, observations of caustics
are less common. Caustics and focusing of surface-band elec-
trons have been observed in “corals” built by the STM manipu-
lation of atoms on noble-metal surfaces,18 and, inspirationally
for this work, one family of caustics has been identified19

for skipping orbits of electrons injected from a point contact
into a 2D electron gas in GaAs/AlGaAS heterostructures.20–23

Here, we demonstrate that caustic bunching is generic for
snake/skipping orbits of electrons injected into a 2D metal
at any distance X0 < 2R near the ±B interface/sample

edge. For X0 > R > 1
2X0, Fig. 1, the networks of caustics

display a periodic appearance of individual cusps, which split
into cusp triplets when R > X0. In general, such crossover
would happen via the formation of swallowtail singularities,16

but, uniquely for a sharp field step/sample edge, these two
regimes are separated, at X0 = R, by a 4th-order unstable
singularity which represents an extreme section of the butterfly
bifurcation known in the catastrophe theory of surfaces in
higher-dimensional spaces.24

For electrons isotropically injected into a 2D metal with
an isotropic dispersion of electrons, at a point (−X0,0) near
the ±B interface/edge at x = 0, their trajectories can be
parametrized using the angle θ (counted in the anticlockwise
direction) between the initial velocity and the y axis. In Fig. 1,
these trajectories are drawn for 0 < θ < 2π , with a step of
0.1. For the orbits near the ±B interface/edge, these are the
sequences of semicircles with the coordinates rn = (xn, yn),

xn = ζn + R sin ϕ, ζn = γ n(R cos θ − X0),

yn = ηn + R cos ϕ, ηn = 2n

√
R2 − ζ 2

0 + R sin θ,

where n = 0,1,2,... labels the number of times the trajectory
arrived at the interface/edge at x = 0, angle ϕ counted from
the y axis allows one to describe all points on a single
segment (γ nR sin ϕ < −ζ0, for n > 0), and γ = +1/−1 for
skipping/snake orbits. A sheet density,

ρ =
∫

δ(r − rn)dϕdθ,

of such trajectories can be evaluated (using a sequence of
substitutions) as

ρ(r) = [1 − γ nsignx]

∣∣∣∣∂F

∂θ

∣∣∣∣
−1∣∣∣∣

F=0

, (1)

F (x,y; θ,R) ≡ (x − ζn)2 + (y − ηn)2 − R2. (2)

This density is singular along caustics Rn = (un,vn), where,
simultaneously,

∂F

∂θ
= 0 and F = 0. (3)
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FIG. 1. (Color) Caustics (blue) of snake orbits (red) for electrons
injected at a distance X0 from the ±B interface: (a) R < X0;
(b) R > X0. A little star shows the position of the injector on the x-y
plane, and the vertical line, the ±B interface at x = 0. (c) Positions, vc

n

of cusps on the right-hand side (bottom) and left-hand side (top) from
the ±B interface. Top panels: Semiclassically calculated interference
patterns in the vicinity of classical singularities.

This determines the equations for caustics,

un = ζn ± R
cns√
1 + c2

n

, cn = 2nζ0√
R2 − ζ 2

0

+ cot θ,

vn = ηn ± R
γ ns√
1 + c2

n

, s = −sign(sin θ ), (4)

where we choose the sign “±” and permitted range of θ using
the requirement that

ζ0

√
1 + c2

n ± γ ncnsR < 0.

These caustics can be viewed as projections of the folds of
a 2D surface F (x,y; θ ) = 0 in the space x,y,θ onto the x-y
physical coordinate plane.

The density of trajectories is most singular in the vicinity
of cusps, with the tips located at the points (uc

n,v
c
n), which are

projections of the regions where two oppositely curved folds
on the surface F (x,y; θ = 0) merge together, flattening the

wrinkles. The tip of the cusp is characterized by the condition
d2F/dθ2 = 0, additional to Eq. (3). This was used, together
with Eqs. (4), both for analytical determination of the form of
caustic cusps and for numerical plotting of caustics in Fig. 1
for strong and weak magnetic fields. Also, catastrophe theory
can be applied to the analysis of the interference of waves
resulting in characteristic patterns in the vicinity of singular
points of the distribution of classical trajectories;17,25 we show
such generic interference patterns in the top insets in Figs. 1(a)
and 1(b).

For a strong magnetic field, such that X0 > R > 1
2X0, the

periodically appearing cusps are illustrated in Fig. 1(a), with
universal curving of caustics near the tip of the cusps,

un − uc
n ∝ ±(

vc
n − vn

)3/2
, uc

n = −γ nX0. (5)

The y positions of the cusps vc
n are plotted in Fig. 1(c)

against the ratio R/X0. The top/bottom parts of Fig. 1(c)
distinguish between the cusps appearing on the left/right from
the magnetic field step. For skipping orbits, the latter should
be folded onto the same half-plane. When R < 1

2X0, all the
extended caustics disappear, leaving only one limiting caustic
of the closed orbits: a circle with a 2R radius centered at the
source. The inset in Fig. 1(c) shows the limiting positions of
the cusps at R → 1

2X0 (spaced with the period of ≈0.4X0)
before their final disappearance.

The second regime in the formation of catastrophes of
snake/skipping orbits is characteristic of the weak magnetic
fields, such that R > X0. In this case, cusp singularities appear
in triplets, as shown in Fig. 1(b), and their positions are shown
on the right-hand side of Fig. 1(c). Note that for X0/R → 0
caustics in Fig. 3(b) transform into caustics of skipping orbits
originated from a point source exactly at the edge of a 2D
system.19 The semiclassically calculated interference pattern
of the electron waves in the vicinity of the cusp triplets is
illustrated in the top inset in Fig. 1(b).

The cusp triplets in Fig. 1(b) are typical for the section
of a butterfly caustic surface,16,24 for which the most singular
critical section is realized when R = X0, Fig. 2. The butterfly
singularity is usually associated with a 4-dimensional surface,
described by a polynomial equation,

F (z; a,b,c,d) = z5 − az3 − bz2 − cz − d = 0, (6)

in the vicinity of the origin of a 5-dimensional space with
coordinates (z,a,b,c,d). In the context of skipping/snake
orbits, Eqs. (2) and (6) are related by the substitution

z = θ + 2nR − y

5X0
+ x + γ nX0

30nX0
,

a = 2y + 8nR

3nX0
− 4, b = 2(x + γ nX0)

nX0
, (7)

c = 4(y − 2nR)

nX0
, d = −2b.

The coordinates x and y, plus parameters θ and R/X0, select a
4-dimensional section of such a 5-dimensional space, whereas
at the transition between the two regimes of caustics, R = X0,
relations in Eq. (7) select an even more peculiar section of
a generic surface described by Eq. (6): a pair of folds on a
surface in the space (x,y,θ ) which merge together at the point
where dNF/dθN = 0, with N = 1,2,3,4. Projected onto the

155433-2



SKIPPING AND SNAKE ORBITS OF ELECTRONS: . . . PHYSICAL REVIEW B 85, 155433 (2012)

y

x

BB B

X0

4 order
  cusp

th

FIG. 2. (Color) Snake orbits (left) and skipping orbits (right) for
electrons injected at a distance R = X0 from the ±B interface/edge,
with caustics (blue) merging at a “4th-order cusp”: a 2D section
of the 4-dimensional “butterfly” caustic surface in a 5-dimensional
space.16,24 Inset shows the interference pattern in the vicinity of such
4th-order cusp.

x-y plane, this pair of folds can be seen as a caustic bifurcation
(4th-order cusp), Fig. 2, with

un − uc
n = ±

(
4

5

)5/4 (
vc

n − vn

)5/4

(nR)1/4
,

uc
n = −γ nX0, vc

n = 2nX0. (8)

The above results are also applicable to the electron skipping
orbits, by folding caustics of snake orbits onto a single half
plane, as shown on the right-hand side of Fig. 2.

Although the butterfly catastrophe would be a stable
singularity for the families of rays in high-dimensional
spaces,14–17,24 it is not stable in 3 dimensions (x,y,θ ). Its
formation, with a peculiar bifurcation described by Eq. (9),
is peculiar for an infinitely sharp ±B interface. Any weak
smearing of the interface, or an effective gauge field created
for electrons by lattice deformations, e.g., in a bent region
of a folded graphene sheet,26 replaces it by a precursive
formation of a weaker singularity somewhere near the already
existing cusp—a “swallowtail” catastrophe16,24—consisting
of the nucleation of a pair of cusps, followed by gradual
separation of the latter until the cusps form the triplets shown
in Fig. 1(b). Nevertheless, a reminiscence of the higher-order
singularities may be picked up by a finite-radius local probe
detecting a higher density of electrons injected from a pointlike
source in one of the experimental setups proposed below.

The periodic appearance of cusps of snake and skipping
orbits suggests that they can generate classical magneto-
oscillation of conductance in ballistic multiterminal devices

FIG. 3. (Color online) (a) Bunching of trajectories (for X0 = R)
and the calculated magneto-oscillations of the current ISD in the
three-terminal geometry (for W = π 2X0). Here, the injected current
is registered in the drain placed on the right from the ±B field
step. The marks α,α′/β,β ′ relate maxima/minima of ISD to the
cusps reaching the upper edge of the sample on the right/left
from the field step, as marked on Fig. 1(c). Here, oscillations of
current are plotted against the dimensionless ratio W/R = BeW/pF ,
which is the same as magnetic measured in units of pF /eW ,
and, thus, represent the form of measureable magneto-oscillation.
(b) Bunching of trajectories and magneto-oscillations of the source-
drain current in a four-terminal device with a ±B interface and
width W . Two top panels illustrate families of trajectories for the
conditions corresponding to the maximum/minimum (α/β) of ISD ,
with positions of the cusps pointed by arrows. The smaller and faster
oscillations of current in (a) and (b) are the artifact of numerical
procedure.

incorporating a ±B interface (or graphene fold in a magnetic
field). Figure 3 shows the calculated magneto-oscillations
of electrical current for two geometries of such devices. In
Fig. 3(a) we plot the magnetic-field-dependent fraction, ISD/I0

of the current I0, injected from a point contact near the ±B

interface, which reaches the drain on the right-hand side of the
edge. This was calculated by following the propagation of each
of the injected electrons for the time up to 10W/vF (where W

is the distance from the source to the upper edge). Such a
cutoff in the length of electronic trajectories mimics the effect

155433-3



NATHAN DAVIES et al. PHYSICAL REVIEW B 85, 155433 (2012)

of a finite mean-free path,  ∼ 10W . The large oscillations
in ISD are the result of singularities in the ensemble of the
electron trajectories: Each time when a cusp on the right from
the interface reaches the upper sample edge, ISD experiences
a maximum, and when a singularity on the left reaches the
sample edge, a minimum. Such oscillatory behavior persists
both in the regime of individual cusp formation and the regime
of cusp triplets. However, for the lowest magnetic fields,
such that R/X0 � 1, the cusps in each triplet get separated
so much that one of them crosses the ±B interface; after
that, the magneto-oscillations of ISD become rather irregular
and loose in the amplitude. Figure 3(b) gives an example of
magneto-oscillations of the current ISD in a 4-terminal device
incorporating a ±B interface. Here, current is injected from
an isotropic side contact at the lower edge (biased against
the electrode on the left-hand side at the upper edge) and
registered using a drain contact placed at the right-hand
side at the upper edge. Similarly to Fig. 3(a), oscillations
of ISD in Fig. 3(b) reflect the periodic appearance (on the
left- and right-hand sides from the ±B interface) of cusps in
the family of sequentially linked skipping and snake orbits.
The magneto-oscillations of source-drain current in Fig. 3

demonstrate a characteristic behavior, whose details depend
on the value of W/X0.

To summarize, we show that snake/skipping orbits of
electrons injected at one point into a 2D metal (at the
distance X0 from the ±B interface/edge) generically display
caustic bunching and formation of intense local singularities—
cusps—with two characteristic regimes of cusp formation:
(i) the periodic appearance of individual cusps (for 2R >

X0 > R) and (ii) cusp triplets (for R > X0). Singularities
in the distribution of trajectories, which are most intense
when R = X0, can lead to the classical magneto-oscillations
in the nonlocal conductance of multiterminal devices made,
e.g., of a bifolded graphene flake. Alternatively, one can
employ near-field optics to generate electron-hole pairs in the
heterostructure, with electrons placed at the energy close to the
Fermi level, and, then, to detect the presence of singularities by
measuring magnetic-field and source-position dependencies
of a voltage drop between a fixed point contact and a massive
contact placed farther up along the edge.
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